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A B S T R A C T  

 

This research looks for a casual effect of strategic alliances on service quality while taking into 

account other factors such as market structure and firm sizes. We derive data from the US Department 

of Transportation (DOT) and restrict our research sample to only U.S. domestic flights. Because we 

consider the effect of codeshare agreements between all major airlines, in combination with the 

limitation of the on time performance dataset, we are forced to make use of a new and unique method 

for estimating the effect of strategic alliances on service quality. In this new method, we compare 

codeshared routes by non-codeshared routes by using a dummy variable that values one if more than 

5% of all flights on a particular route for a specific quarter are defined as codeshared flights. The main 

finding of this thesis is that airlines operating on codeshared routes experience on average fewer and 

less long delays than on non-codeshared routes. This effect is stronger on more competitive routes.

 

Keywords: Airline service quality, codeshare agreements, airline competition, firm size 

JEL classification: L13, L40, L93 
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1. Introduction  

Flight delays are a widespread issue in the airline industry and the most common reason for 

airline passengers to complain (Dresner & Xu, 1995). Delays are inconvenient for airlines as well. 

They could cause multiple unwanted scenes, varying from paying compensation costs to facing a 

reduction in passenger demand.  

In this thesis, we consider strategic alliances as a potential factor that causes delays. The 

airline industry deals with an increased amount of strategic alliances since the 1990s, during this 

period, numerous airlines made so-called codeshare agreements (CSA) with each other. On the one 

hand, codeshared allied airlines have the advantage of removing problematic flights on codeshared 

markets. An airline in a CSA can easily transfer problematic flights on route A-B, without losing a 

destination, since it can still offer flights on route A-B by selling the tickets from its allied partner. On 

the other hand, competition authorities have shown their concern about the increasing number of 

CSA. They argue that CSA could be anti-competitive. After all, carriers in a CSA with each other 

could abuse their market power, leading to fewer incentives for optimising service quality. 

Given the issues of on time performances (OTP) and the recent trend of CSA as a dominant 

feature in the domestic airline industry, an interesting research question is: how do strategic alliances 

affect partners' service quality? Answering this question would shed light on whether strategic 

alliances have made issues concerning service quality better or worse.  

The current empirical literature about the causal relationship between strategic alliances and 

service quality is somewhat inconclusive, with some papers arguing that strategic partnerships lead to 

improvements in service quality (Hassin & Shy, 2004; Gayle & Thomas, 2015; Yimga, 2017). While 

others find the opposite effect (Yimga & Gayle, 2014), or even no effect at all (Goh & Uncles, 2003; 

Tiernan, 2008; Tsantoulis, 2008). A possible explanation for the mixed results is that including a 

proxy for strategic alliances controls for other underlying mechanisms than only cooperation, such as 

competition levels or firm sizes. Larger firms, operating on competitive routes, are perhaps more 

likely to enter CSA. When we consider for example all domestic CSA in the past decade, it seems that 

especially larger firms established CSA. Furthermore, CSA are maybe more likely to be established 

on competitive routes since CSA offers more efficiency and competitive benefits on this type of 

routes. Through these reasons, it may be unclear which underlying mechanism is dominant above the 

other. To deal with this issue appropriately, we provide a model in which the effects of strategic 

alliances, market structure and firm size on service quality are examined together in one model. The 

benefit of using this approach is that the results will show which underlying mechanisms actually 

affect service quality.  

Analysing CSA usually works out fine for papers focusing on alliances and fares. However, 

within the service quality research area, working with CSA-data has some critical limitations. The 
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most important one is that codeshared flights cannot be differentiated from non-codeshared flights in 

the on-time performance dataset. The literature often deals with this limitation by using a difference-

in-difference strategy (Yimga, 2017; Gayle & Thomas, 2015). This strategy compares relative 

changes in OTP between specific allied firms and non-alliance firms before and after those specific 

firms agreed to ally. The relative change between these two comparisons is in a difference-in-

difference strategy identified as the effect of CSA. Unfortunately, the difference-in-difference 

approach would not work out for our research since we also take into account the effect of firm sizes 

on service quality. When we would use a difference-in-difference strategy, we would be limited to 

consider only the impact of the firm sizes of the allied firms that are examined in the difference-in-

difference strategy, leading to a low variation of the variable firm sizes in the dataset. To deal with the 

data-limitation mentioned above and to still answer our research question correctly, we focus on 

comparing codeshared routes with non-codeshared routes instead of comparing codeshared flights 

with non-codeshared flights. More specifically, we compare a route at a particular time when it is 

defined as a codeshared route to the same route at a particular time when it is defined as a non-

codeshared route. We identify codeshared routes in the OTP-database by creating a dummy variable 

which values one if more than 5% of all flights on a particular market for a specific quarter are 

defined as codeshared flights.  

Our results will serve as supportive evidence concerning decisions to interfere (or not to 

interfere) further into strategic alliances. When for example strategic alliance negatively affects 

service quality on particular high competitive routes, competition boards could consider forbidding 

new partnerships between domestic airlines on competitive routes. Also, this thesis would be of 

interests for airline companies as well; our results will influence the way airlines companies assess 

collaboration opportunities. Our results could, for example, indicate whether it is more or less 

beneficial to collaborate with larger or smaller airlines. 

Our research also provides additional insights that could be of scientific relevance. Previous 

literature has already shown the double effect of CSA on service quality. Yimga (2017) suggests that 

alliances improve OTP and that this effect is more abundant on routes where the alliance partners 

faced each other before the alliance. This finding implicates that efficiency effects outweigh 

competitive forces in general but even more on markets where the partners encountered each other 

before they became allies. To verify the results of Yimga, we take a broader view of possible factors 

that influence the impact of CSA on service quality. More specifically, we include an interaction term 

to control for CSA under different market structures. Including this moderator extends Yimga’s 

research since he only managed for route level competition by estimating the direct effect of the 

number of airlines serving a route on service quality. The second extension to Yimga’s research is that 

we also take into account the effect of firm sizes in general, as well as a moderator variable 

concerning CSA. Larger airlines probably exuberance fewer delays since they have more resources 
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available to handle disruptive events. The idea for adding size also as a moderator stems from the 

research of van Reeven and Pennings (2016). They empirically proof that firm size acts as a 

moderator in the relation between multimarket contact (MMC) and service quality. Reeven and 

Pennings reason that the size of an airline determines if cooperation between two airlines is beneficial 

or not. We examine if this reasoning also applies for CSA. 

The rest of this research is structured as follows: Section 2 contains our theoretical framework 

and empirical results of the past literature. Section 3 describes the hypotheses related to the research 

question. Section 4 describes the data and methods used. Section 5 discusses our empirical findings. 

Section 6 concludes and provides recommendations for further research. Finally, section 7 contains 

the appendices. 

 

2. Theoretical Framework 

This section provides some in-depth explanations about past literature related to service 

quality. The first paragraph focusses on service quality in general, followed in the second, third 

and fourth paragraph with a theoretical and empirical overview concerning service quality on the 

one hand and respectively strategic alliances, market structure and firm size on the other hand.  

2.1  Service Quality   

Airline companies often criticise that airline delays are behind their control, as in the case of 

extreme weather. However, in most circumstances, delayed flights are often clarified as a 

consequence of a trade-off between OTP and costs. OTP can namely be improved by proactively 

anticipating delays and investing in additional resources. When for example a storm is forecasted, an 

airline can choose to cancel a proportion of the flights during the storm, with the intention to use a 

relatively larger pool of resources, to make sure the remaining flights arrive on time. Another example 

of the trade-off between OTP and delays occurs when whether or not spare aeroplanes are scheduled 

to reduce delays caused by other delayed flights. Furthermore, when imminent delays occur, airlines 

can control which flights are affected. They can redeploy their assets and maintenance crew to flights 

where the consequences of delays are likely to be more expensive (Mazzeo, 2003). Another typical 

example of the trade-off between OTP and costs is ‘schedule padding’. Carriers could have an 

incentive to control for delays on paper by adjusting schedule times. Most of the time this is done by 

adding extra time to arrival time. Expected delays are automatically controlled for in this way. 

However, schedule padding also has a downside, when a plane is scheduled for ‘longer’ flights it has 

logically also a lower utilisation rate, leading to lower revenues. Therefore, schedule padding is in the 

end mainly a trade-off between fewer delays on paper and higher opportunity costs.  
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Besides a trade-off between costs and delays, there is also a trade-off between a carrier’s 

strategy and delays. For instance, decreasing the length and frequency of delays is also possible by 

avoiding congested airports and choosing for secondary airports. The same reasoning applies to 

avoiding peak hours. Delays could easily be reduced if a carrier adapts its flight schedules to less 

congested schedule times.  

2.2 Strategic alliances  

Before the following paragraph explains how strategic alliances affect service quality from a 

theoretical and empirical perspective, first a short background about CSA is presented below. 

2.1.1 Background CSAs 

Strategic alliances have become widespread throughout the airline industry and are mostly 

identified in the literature in the form of CSA. These voluntary partnerships are reciprocal agreements 

between two or more carriers in which airline A, who operates the flight, permits its partner B to sell 

seats on airline A’s flight segment1. The airline that actually transports the passengers is called the 

operating carrier (or operator). The partner airline, or the ticketing or marketing carrier, is the one who 

arranges flight reservations or sells a proportion of the tickets to passengers for flights that are not 

operated by itself. For illustration purposes, a codeshare agreement between Delta Air Lines (DL) and 

Northwest Airlines (NW), allows DL, as ticketing carrier, to sell tickets on flights operated by NW, 

and vice-versa. Although the flight is operated only once, tickets are listed twice (under both carrier 

names) in the computer reservation systems. A marketer receives a booking commission to cover 

handling costs for selling tickets on a codeshared flight, while the operators keep the remaining 

revenue of the tickets sold by the marketers. The specific arrangements differ between CSA and even 

between different routes within the same codeshare alliance. Marketers are authorised to sell a few 

seats, a whole block, or even an entire flight. One thing that is usually constant in a codeshare 

agreement is the balance between acting as a marketer or as an operator between airlines in an 

alliance. The reason for this is that revenue mostly accrues to the operating carrier, with the 

consequence that the benefits from the agreement are not equal when in CSA one party acts more 

often as an operator carrier compared to its partner.  

In the literature, there is made a distinction between roughly three types of air travel products2. 

The first and largest type of air travel products are pure online flights; in this case, the same airline is 

the operator and marketer on all flights segments. The next group, traditional codeshares, consists of 

flights in which the ticketing carrier stays the same for all flight segments, but the operating carrier 

can differ between flights segments. For example, an itinerary operated by Delta Air Lines (DL) on 
                                                        
1 A flight segment is a non-stop route between the origin and destination airports. 
2 An air travel product is a unique combination of an itinerary, marketer and operator airline. An itinerary can be described 
as a round trip ticket for passengers. 
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flight segment A and operated by Northwest Airlines (NW) on flight segment B, but marketed 

entirely by NW. The last group of air travel products are so-called virtual codeshares. These type of 

air travel products are offered by the same operating carrier during the entire flight, but, the marketer 

is on all flight segments different from the operator. For instance, an itinerary operated by DL on 

flight segment A and B, but marketed on both flight segments by NW.  

2.1.2 Competitive and efficiency motives 

The theory about CSA is further elaborated with the help of two different type of motives for 

starting a CSA, namely, competitive motives and efficiency motives.  

On the one hand, carrier’s motives for CSA are related to the benefits of reducing competitive 

pressure. Gayle (2007) argues that codeshare agreements are a consequence of collusive goals. Gayle 

claims that airlines attempt, especially on overlapping routes3, to fix prices. Reducing competitive 

pressure can also take a less extreme form of dishonest behaviour. Bamburger et al. (2004) 

hypothesise that airlines use CSA as a tacit agreement between partners to prevent airlines from 

entering each other’s markets. Airlines would have fewer incentives to enter each other’s market in 

the case airline A offers codeshared flights with airline B at especially those markets where airline B 

is active as well, and vice-versa. A third competitive motive stems from the theory about frequent 

flyer programs. Since CSAs enable the ability to earn frequent flyer miles while travelling with the 

other carrier, the proportions of customers, which are characterised by higher switching costs, will 

increase. Making it harder for other airlines to win customers from the allied partners (Goetz & 

Shapiro, 2012).  

On the other hand, motives, for especially traditional codeshares, are related to efficiency 

advantages. First of all, traditional-CSA enables airlines in the CSA to offer better-connected 

networks and a more ‘seamless’ travel with shorter and less frequent delays. A partner’s network 

looks then like an extension of an airline’s network, leading to the fact that carriers increasingly 

consider the impact of their delays on the time schedules of their partners. Allied airlines put in these 

alliances much effort to align their networks and it results, among other things, in close gates 

proximity, access to partner’s lounges, eliminating the need to buy two separate tickets, aligned flight 

schedules to minimise layover times, more check-in posts and better luggage services. Another 

efficiency motive related to traditional CSA is expanding the network of an airline without the 

necessity for investing in additional aeroplanes. Even when a carrier has the authority to enter and 

land in another country’s airspace, CSA are attractive since they allow airlines to offer new routes 

without investing in additional resources (Brueckner, 2001). The third efficiency motive for 

codesharing is lower fares on interline routes4. The theoretical model of Brueckner & Whalen (2000) 

                                                        
3 Overlapping routes are routes at which allied partners faced each other before the CSA. 
4 Interline routes are routes with more than two operating carriers.  
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describes two reasons for this: Firstly, CSA prevent double marginalisation. Based on the work of 

Lerner (1934), Brueckner & Whalen explain that airfares are higher in markets where different 

airlines sell complementary goods, such as tickets for traditional codeshared flights, compared to 

markets in which only one monopolist sells tickets for both flight segments. Secondly, traffic will 

increase as a consequence of lower fares resulting on its turn in improved economics of density.  

Besides the advantages, it is also important to consider the downsides of offering codeshared 

flights. Costs of codesharing often involve consolidation and coordination costs as a consequence of 

aligning flight schedules, rearranging airport facilities and sharing of equipment. These costs may 

seem negligible, but according to Goetz and Shapiro (2012), these costs make only 40% of all 

domestic flights worthwhile to be codeshared.  

2.1.3 Empirical results 

The literature is somewhat inconclusive about the relation between alliances and service quality 

(Yimga, 2017). More robust findings are related to the effect of alliances on fares (Brueckner & 

Whaalen, 2000; Brueckner, 2001). The literature focusing on fares mainly suggest that alliances 

negatively affect fares and increase traffic on interline routes (Brueckner and Whalen, 2000; 

Brueckner, 2003). On the other hand, these authors argue that alliances increase fares on overlapping 

routes. These findings are in line with the theoretical analysis of Park (1997). Park finds that the CSA 

on interline routes are more likely to be based on efficiency motive, while anti-competitive effects 

arise when airlines start CSA on overlapping routes.  

Fewer papers explored the relationship between strategic alliances and service quality. However, 

since Tiernan et al. (2008), Gayle & Thomas (2015) and Yimga (2017), more research has been 

fulfilled in this area. Tiernan et al. (2008) hypothesise that strategic alliances value service quality to 

a more considerable extent, compared to individual airlines, since negative customers experiences 

caused by only one member, negatively affect the whole coalition. Their results, however, suggest 

that there is no evidence for better service quality for allied carriers. Gayle & Thomas (2015) and 

Yimga (2017) indicate that alliances positively affect service quality. They argue that CSA provide 

seamless service with shorter and less frequent delays since layover times can be better coordinated 

on interline routes when airlines cooperate with each other. Yimga (2017) additionally finds that the 

impact on service quality is more substantial on routes where the alliance partners competed each 

other before the CSA was established.  

2.2 Competition and service quality  

This paragraph describes the theory and empirical results related to the effect of market structures 

on service quality. Firstly, we describe why competition boards worry about CSA and the associated 
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counterarguments of airlines. Secondly, we present previous results from the literature about the effect 

of market structure on service quality. 

2.2.1 Competitions boards versus allied partners 

Competition boards have shown their concern about CSA since they could be anti-competitive. 

The boards are especially concerned about CSA when they are practised on overlapping market 

because efficiency motives are then likely to be overwhelmed by competitive motives, causing a lack 

of incentives to maintain or improve OTP.  

Carriers claim on the other hand that there are still enough incentives for allied partners to 

compete each other in a CSA. They argue that the ticketing carrier only receives a small compensation 

for booking costs and that airlines therefore still have enough incentives to gain market share from 

competitors and their allied partner(s).  

2.2.2 Evidence from the literature 

Numerous papers, both theoretical and empirical, analysed the effect of competition on service 

quality. Most of these findings are identified as robust results and provide significant proof for the 

positive impact of competition on service quality (Mazzeo, 2003; Mayer and Sinai, 2003; Rupp et al., 

2006; Prince and Simon, 2009; Steven et al., 2016). These authors argue that reducing delays lead to 

increased market shares and that airlines therefore would have more incentives to offer higher quality 

goods on more competitive routes. Subsequently, in a concentrated market like a monopoly market, 

airlines would have more incentive to improve margins by saving costs on service quality (which 

increases delays), since there are no other airlines available for customers to switch to.  

The effect of competition on service quality is often also indirect measurable. Market structures 

namely often affect the strength of the relationship between other independent variables and service 

quality. For example, Prince & Simon (2009) show that the mutual forbearance effect is stronger on 

more concentrated routes. The interaction effect of competition and strategic alliances has also been 

examined for mergers and pre-competition levels between merged airlines (Gayle and Chen, 2013). 

This paper suggests that the influence on service quality is like a U-shaped function of competition 

level prior to the merger. They find a quality increase on non-overlapping routes before the merger is 

settled. But a quality decrease on markets where airlines did compete each other prior to the merger. 

The results of Prince & Simon (2017) differ concerning the decrease of service quality on overlapping 

routes. They find supportive evidence for improvements regarding service quality on overlapping 

markets, especially for the impact on the long term.  

Despite the overwhelming evidence for a positive effect of competition on service quality, it can 

be argued that more competitive routes experience relatively more delays compared to concentrated 

routes. The reason for this argument is based on the paper of Borenstein and Netz (1999). They 
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examine the relationship between competition and differentiation. For this, they use the theory of 

spatial product differentiation, which states that firms can have two options regarding distinction in 

competitive markets: (1) firms try to steal customers from their competitors by offering the same type 

of product or (2) firms try to differentiate their product to reduce competition. The results of 

Borenstein and Netz suggest that airlines try to steal customers in competitive markets by choosing 

the same schedule times as their competitors as much as they can. This shift to popular 

arrival/departure times on competitive markets leads to more congested airports, and thus to more 

frequent delays. 

2.3 Airline size and service quality  

The first part of this paragraph shortly explains why larger firms are more likely to offer higher 

services quality concerning on-time performance than smaller firms. The second part provides the 

theory and empirical results that show that smaller airlines benefit more from cooperation than larger 

airlines. 

2.3.1 Effect of Airline size    

Larger airlines are probably more likely to reduce the magnitude and frequency of delays since 

they can achieve network benefits. These network benefits arise for sizeable airlines because these 

type of airlines can spread investments, such as additional aeroplanes and maintenance facilities, over 

more routes. Network benefits enable airlines to adapt flexibly to unexpected delays in several 

circumstances. The consequence of a suddenly damaged aircraft, for example, would be minimised 

when an additional unscheduled plane would be available, or if there is a maintenance crew available 

of considerable size, that could repair the aircraft rapidly. 

2.3.2 Airline size as moderator variable 

According to the theory of Economides (1999), efficiency motives are for cooperation (and thus 

also for airline alliances) especially likely to be the case for composite goods. Composite goods are 

products that are more valuable or efficient when they are produced cooperatively instead of 

individually. Examples of the types of products are interline-routes and virtual codeshared products 

on non-stop routes. Interline-routes fall into this category since two different markets are combined to 

create a composite service. A virtual code-shared product can be defined as composite goods as well 

since it enables airlines to provide a more frequent service to their customers.  

Various papers note that especially smaller firms are more likely to favour compatibility 

compared to large firms (Katz and Shapiro, 1985; Barley et al., 1992). One way to support that this 

statement is also valid within the airline industry is by referring to the logic that smaller firms are 

more likely to benefit from improved network efficiency. Cooperation can cause higher growth 

opportunities for smaller carriers since larger carriers could have more resources to share. The 
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relatively higher increase in route options in cooperation with a major firm makes a smaller carrier 

relatively better able to exploit economies of scope as a consequence of collaboration. Also, airlines 

probably realise a more significant increase in demand because cooperation leads to a rise in demand 

for both firms, but, again, to a relatively more considerable increase for minor airlines.  

3. Hypotheses development  

As the previous section covered the academic background related to the strategic alliances, market 

structure and firm sizes, it is now useful to mention our expectation about the impact of strategic 

alliances on service quality. Before we hypothesise the causal effect of strategic alliances on service 

quality and the casual effect of strategic alliances for different levels of market structure and firm 

sizes, we first hypothesise the individual impact of strategic alliances, market structure and firm sizes 

on service quality for the sake of robustness. 

3.1 Effect of the key variables on service quality  

Although the efficiency motives explained in section 2.1.2 clarify the positive relation between 

alliance and OTP, they are impossible to test in this research. They are primarily related to interline 

routes, while OTP-data only available is for non-stop routes. Fortunately, there is an underlying 

mechanism that supports a relation between alliances and service quality for non-stop routes. On non-

stop routes, codeshared allied airlines namely have the advantage of removing flights on codeshared 

markets, which are more likely to be delayed. An airline in a CSA can easily transfer problematic 

flights on route A-B, without losing a destination, since it can still offer flights on route A-B by 

selling the tickets from its allied partner. Mainly code-shared routes with the following characteristics 

are more likely to be removed from an airline’s network (Yimga, 2017):  

• Flights operating on particular routes with on average poor OTP. 

• Flights departing at peak hours. These types of trips increase congestion, especially at hub 

airports. An airline in a CSA could easily internalise this externality (Brueckner, 2005). 

• Flights that compete each other since they have an equal schedule scheme. 

• Flights that are operated by less efficient aeroplanes in terms of mechanical issues. 

• Flights where the costs of delays are the highest.  
 

Hypothesis 1A – Alliances, in the form of codeshare agreements, positively affect on-time 

performances, ceteris paribus. 
  

Based on the robust findings of the literature related to the impact of competition on service 

quality and the assumption that we control correctly for the findings of Bornstein & Netz (1999) by 

including control variables for congestion, we derive the following hypothesis: 
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Hypothesis 1B – Competition levels positively affect on-time performances, ceteris paribus. 
  

As mentioned in section 2.3.1, larger airlines face relatively fewer delays since they have on 

average more resources per route available to handle disruptive events. They can use their resources 

and additional benefits, such as extra landing slots, larger maintenance crews, and non-scheduled 

available aircraft, to increase their flexibility as a response to delays when for example a defect 

aeroplane needs to be repaired or replaced.  
  

Hypothesis 1C – The size of an airline positively affects on-time performance, ceteris paribus. 
  

The current aviation literature is quite inconclusive concerning the causal effect of alliances on 

service quality. Besides the fact that service quality is difficult to measure, mixed results are perhaps 

caused by the mutual dependence between the proxies for strategic alliances, competition and firm 

sizes. When we consider for example all codeshare alliances of the past decade, it seems that 

especially larger airlines are more likely to be part of an alliance. Furthermore, it can be argued that 

airline alliances are more likely to form strategic alliances with firms with whom they compete on the 

same routes for competitive as well as efficiency motives. These type of routes where both firms 

operate on are likely associated with high demand and therefore also more likely to be competitive.  

Because of the potential mutual dependence, it is necessary to control if the effect of strategic 

alliances on service quality stays the same when you control for the effect of strategic alliances, 

market structure and firm sizes on service quality together in one model. We still believe though that 

strategic alliances positively affect service quality in such a model. Even if a large part of the effect of 

strategic alliances on service quality is explained by the variation of market structure and firm sizes, 

allied partners would probably still be able to offer higher quality service compared to non-allied 

firms since they have the opportunity to remove flights on codeshared markets. 
 

Hypothesis 1D – Alliances, in the form of codeshare agreements, positively affect on-time 

performances, ceteris paribus, even when we control for market structure and firm sizes. 
 

3.2 Market structure as interaction effect  

An interaction term concerning CSA and competition levels is added to the main model to 

identify the effects of CSA on service quality for different levels of competition. Including this 

moderator extends the research of Yimga. He only controlled for route level competition and strategic 

alliances by estimating its direct effect on service quality while it could be possible that these two 

variables reinforce each other. As far as we are aware, is this the first research that investigates this 

intermediate effect concerning service quality, and therefore, including this hypothesis to our 

research, is a contribution to the literature in itself.  
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Although the interaction effect of competition on strategic alliances is unknown concerning 

service quality, it has been researched broadly affecting fares (Gayle, 2007; Bamberger et al., 2004). 

These authors find that the negative effect of alliances on fares is on average higher on more 

concentrated routes. Taking these findings into account, our thesis should hypothesise that alliances 

affect OTP more positively on more concentrated routes. Airlines would have in this type of markets 

fewer incentives for increasing market power which makes them more likely to enter CSA based on 

efficiency motives (Gayle, 2007). This argument may be suitable for studies concerning airfares. 

However, we do not expect that entering CSA is a choice based on the impact of efficiency motives 

related to service quality. On the contrary, we expect that the influence of CSA on service quality is 

something that comes into play only as a consequence of CSA, not as a reason for entering CSA. 

Following this argument, in combination with hypothesis 1A and the idea that codeshared allies 

would experience a relatively larger increase in market power as a result of CSA on more 

concentrated routes than on competitive routes, we argue that airlines experience relatively more 

disadvantages of strategic alliances on more concentrated routes. After all, a larger increase in market 

power leads to a higher preference of improving margins by saving cost related to service quality 

compared to a smaller increase in market power.  
 

Hypothesis 2 – Alliances positively affect on-time performance to a larger extent on more 

competitive markets, ceteris paribus. 
 

3.3 Firm size as intermediate effect   

The relatively more substantial increase in route options in cooperation with a major firm makes a 

smaller carrier able to provide a relatively higher increase in service quality compared to a large firm 

that is going to collaborate with a smaller firm. After all, larger firms have relatively more resources 

to share in an alliance, which could potentially reduce delays, compared to smaller firms. 
 

Hypothesis 3 – Alliances positively affect on-time performance to a larger extent for small-

sized firms compared to larger firms in codeshare agreements, ceteris paribus.  

 

4. Data and Methods 

This section describes consecutively, from which sources we derive the datasets from, the way we 

aggregate the datasets, how we construct the datasets, which proxies we use to measure our key and 

control variables in a panel analysis, summary statistics, and finally, we describe our model.  
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4.1 Data sources 

We make use of the following four different databases for analysis: (1) the Airline On-Time 

Performance Database, (2) the Airline Origin and Destination Survey (DB1B), (3) the T-100 

Domestic Segment Database (U.S. Carriers) and (4) the Metropolitan and Micropolitan Statistical 

Area Dataset. 

Most data for analysis stems from the Bureau of Transportation Statistics (BTS), an independent 

statistical agency within the U.S. Department of Transportation (DOT) 5. One of the datasets that the 

BTS provides is the Airline On-Time Performance dataset (OTP-dataset). This dataset contains data 

which we use to calculate proxies for market structure, the total number of routes per carrier, 

congestion, airport dominance and off course service quality. The BTS publishes data for each month 

and only for non-stop flights. Airline companies are required to report their airline on-time 

performance data to the BTS when they are responsible for; at least 1% of total domestic revenue 

and/or at least 1% of all domestic passenger enplanements that have taken place.  

The second dataset we use for creating our research sample is the Airline Origin and Destination 

Survey (DB1B) dataset from the BTS. This dataset covers a 10% random sample of all U.S. airline 

tickets from reporting carriers (BTS, 2017). Besides information about origin and destinations for 

non-stop routes, this survey also includes data to calculate proxies for allied markets, airline size 

regarding passengers, and finally, enplanements. The BTS published airline data for every quarter in 

three separated files, namely: DB1B_Coupon6, DB1B_Market7, and DB1B_Ticket8. We merge these 

files into one comprehensive dataset by using the unique itinerary_id and market_id for identifying 

similar observations in the three different datasets.  

The third dataset we use for creating the research sample is the T-100 Domestic Segment (U.S. 

Carriers) 9. We use the T-100 dataset only for determining available seat miles of a carrier for each 

month.  

                                                        
5 https://www.transtats.bts.gov/databases.asp?Mode_ID=1&Mode_Desc=Aviation&Subject_ID2=0  
6 This dataset contains specific information related to coupons. Each coupon in an itinerary resembles a different 
observation. A coupon is issued for each segment of an itinerary without a plane change.  
7 This dataset contains specific information related to markets. Each directional market in an itinerary resembles a different 
observation. Markets are in this thesis defined as directional air travel between an origin and destination airport pair. 
8 This dataset contains specific information related to itineraries. The ticket dataset includes one single observation for all 
data on an itinerary. Each itinerary is described as a round trip ticket for passengers. Thus, the ticket dataset consists data 
about two direction markets in the same observation.  
9 The T-100 domestic segment dataset is often preferred above the DB1B and OTP-dataset for calculating measurements 
throughout the literature. The OTP-dataset might underrepresent typical route-carrier characteristics. The literature argues 
that the OTP-sample is not an entirely random sample and that therefore the T-100 dataset should be used for robustness 
purposes. Still, this thesis makes only use of the DB1B-database and OTP-database for calculating proxies for the reason that 
it is not possible to separate CSA routes from non-CSA routes in the T-100-database. The T-100 database does not contain 
any data about ticketing and marketing carriers.  
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The last dataset used in this thesis is the Metropolitan and Micropolitan Statistical Area Dataset 

from the U.S. Census Bureau10. This dataset has been used to derive instrument variables (IV) to deal 

with endogeneity issues. 

4.2 Data aggregation 

This paragraph explains the chosen timespan of the research sample, how we correct for mergers 

in the dataset, how we aggregate the research sample and how we define routes.  

The timespan is set from 2003q1 till 2016q4. We have chosen this timespan for the following 

three reasons. Firstly, it took the airline industry more than a year to recover from 9/11 and to achieve 

pre-attack levels. Secondly, a boost in domestic CSA from 2003 is observed onwards (Ito & Lee, 

2007). The average increase of codeshared routes improves the sample to a more equally divided 

research sample, which is essential for comparing non-codeshared markets with codeshared routes. 

Thirdly, some of the datasets used in this research, such as the Metropolitan and Micropolitan 

Statistical Area Dataset, did not collect/published data yet for periods after 2016 at the moment of 

writing this thesis.  

It is important to note that codes and names of airlines may change as a consequence of mergers 

during the timespan of the dataset11. Acquired airlines often continue to operate under its company 

name or code for several quarters following a merger, while the merged companies are already 

running as the same airline. Therefore, to determine the carrier’s code and names accurately, the 

names and codes are altered to the targeting firm from the date they are merged. For instance, Delta 

and Northwest began reporting jointly in January 2010, following their 2008 merger announcement. 

To account for this adequately, we recode Northwest (NW) to Delta (DL) from 2008:q4 onwards. 

All datasets are averaged and collapsed to route-carrier-quarter level before they are merged into 

one final dataset. A single observation is a row of data that contains all relevant information about a 

particular route operated by a particular carrier in a specific quarter. Since the OTP, T-100 and DB1B-

datasets do not match perfectly, and the final sample only includes observations without missing data, 

the total number of observations finally decreases to 177.496. The three datasets do not ideally merge 

due to initial filtering of each dataset and as the consequence that the DB1B dataset and T-100 

database define non-stop routes differently. The discrepancy is that the DB1B dataset does not correct 

                                                        
10 In contradiction to the other datasets, this dataset is only available per year and is not provided by the DOT but by the 
United States Census Bureau: https://www.census.gov/programs-surveys/metro-micro.html.  
11 “America west and US airway started to report combined on-time data in January 2006 and combined traffic and financial 
data in October 2007 following their 2005 merger announcement. Delta and Northwest began reporting jointly in January 
2010 following their 2008 merger announcement. Continental Micronesia was combined into Continental Airlines in 
December 2010, and joint reporting began in January 2011. United and Continental began reporting jointly in January 2012 
following their 2010 merger announcement. Southwest (WN) and AirTran (FL) began reporting jointly in January 2015 
following their 2011 merger announcement. American (AA) and US Airways (US) began reporting jointly as AA in July 
2015 following their 2013 merger announcement” (BTS, 2017). 
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for connecting flights, flights that make a stop without changing from planes, while the T-100 dataset 

does control for connecting flights.  

The choice for examining route-carrier level is in line with numerous recent papers (for instance: 

Mazzeo, 2003; Prince and Simon, 2009). These papers suggest that the level of service quality differs 

per carrier and route. Typical route and carriers characteristics that for example potentially influence 

service quality are respectively firm sizes and airport dominance. An additional benefit of using route-

carrier-quarter level data is that it makes the research sample accessible for controlling for route-

carrier fixed effects, such as distance and financial performances. The reason for choosing a quarterly 

time-interval is in line with the paper of Prince and Simon (2017). They focus on both daily and 

quarterly level and reason that using quarterly periods should be preferred since it prevents computer 

limitations. When you study such a large dataset as we do, and choose a daily time-interval, the 

computer power only allows you to use a limited proportion of the data. Using quarterly periods 

enables to use all data. However, the disadvantage of not using daily periods is that we cannot control 

for daily unobserved factors such as regular air traffic, long security lanes or extreme weather. 

It is vital to define markets clearly when working with airline data. In this thesis, we describe 

markets as directional air travel between an origin and destination pair, in which all airports resemble 

a single origin or destination (Borenstein, 1990)12. Airports pairs are preferred above city pairs as a 

unit of observation since including airport pairs controls instantly for unobserved fixed airport effects, 

such as slot and airport capacity, in a fixed effect model. An additional reason for defining markets as 

airport pairs is related to control correctly for the impact of airport congestion on OTP. 

4.3 Data construction 

This paragraph describes step-by-step which adjustments need to be made to the combined 

datasets to enable a more manageable and valid research sample.  

We make several adjustments to the DB1B database before the proxies for size, CSA etc. are 

calculated. Firstly, since this thesis focuses only on passenger flights, (1) all observation with 

passengers = 0 are dropped. Additionally, (2) all observations wherefore distance = 0 or 

origin_airport = dest_airport are dropped as well. These observations are likely to contain errors and 

missing data. The next step (3) is to limit the research sample to only U.S. major carriers. See table 1 

for an overview of the included airlines in the research sample. By restricting to major carriers, 

regional and small carriers that voluntarily submitted their data are automatically excluded from the 

dataset, creating a less heterogeneous sample. Additionally, it is necessary to exclude regional and 

small carries before we determine codeshared routes since these companies behave substantially 

                                                        
12 With using the term ‘directional flights’, a differentiation is made between two different markets in the same itinerary. For 
example, a flight from New York (JFK) to Los Angels (LAX) is defined as a separate market compared to a flight from LAX 
to JFK. 
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different in CSA compared to major domestic airlines (Goetz & Shapiro, 2012). We identify major 

carriers with the help of the DOT’s early Air Carrier Grouping list13. Next step to be taken (4) is to 

keep only non-stop routes14. This adjustment seems to be ambiguous. After all, congestion variables 

are less representative if they are calculated after a dataset is already filtered on non-stop routes. In 

this thesis, there is chosen to filter on non-stop routes before calculating the proxies since there would 

otherwise be a measurement error. An extreme example of a situation in which such a bias occurs is 

when interline routes are categorized as much more congested than non-stop flights. Furthermore, (5) 

all international routes and domestic routes operated by foreign carriers are excluded from the dataset. 

Reasons for focusing on the U.S. domestic airline industry are the large amount of available data for 

the U.S. airline industry and the fact that during the timespan of this research, almost all major U.S. 

carriers entered into broad domestic codeshare agreements. The total number of passengers on 

codeshared flights was almost 2 million in 2003 (Ito & Lee, 2007). At the end of the timespan of this 

research, codeshared flight became rather rare. These changes in the use of CSA enable us to examine 

the within variation which enables to isolate the effect of CSA on OTP for the same route-carrier 

observation over time. The third reason for focusing on the U.S. airline industry is associated with the 

focus on virtual-CSA in this paper15. Ito and Lee (2007 found that an overwhelming proportion of 

domestic codeshared flights involve virtual-CSA (85%), while international-CSA typically involve an 

itinerary for which two or more operating carriers wants to offer a traditionally connecting flight 

(=interline route). Thus, focusing on only domestic flights creates an effective control group 

concerning CSA. The sixth adaption (6) to the DB1B dataset is in line with this reasoning and 

excludes all observations with missing ticketing/operating carrier names. Step seven (7) is to drop all 

observations that contain data about markets that are served less than five times by a particular carrier 

in a specific quarter. Moreover, (8) the sample only keeps airline routes with more than 100 

observations in total. Steps seven and eight guarantees that each route contains enough repeated 

observations. 

                                                        
13 This list groups carriers every year according to their operating revenue in three groups. The third group consists of 
airlines that achieve an operating income of higher than 1 billion dollars. This research defines an airline as a major carrier 
when an airline has been listed at least once in Group III during the timespan of this research. Exceptions to this rule are 
regional and cargo carriers, these types of carries are always excluded from the dataset, independently from their operating 
revenue. Major hub-and-spoke carriers often cooperate with regional airlines. On these flights, the regional carrier often 
operates the flight under the name of the major carrier. When this is the case, the flight is defined as a CSA, since the 
operating and ticketing carrier differ. But, in practice, these regional partners are not acting as a codeshare ally but more as a 
subsidiary airline (Goetz and Shaprio, 2012). To control for this, we make sure that all observations, for which the operating 
or ticketing carrier is marked as a regional airline, are dropped. Failing to do so would overcount the number of codeshared 
routes.  
14 Non-stop routes are created by restricting the sample to include only observations to which applies market_coupons ≤ 1 
and coupons ≤ 2. 
15 The focus on virtual-CSA is related to the restriction of the OTP-dataset. This dataset contains only data for non-stop 
routes. Implying that all codeshared flights within the final dataset are defined as virtual codeshared flights since the 
marketer is different from the operator on all flight segments.  
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We also made some adjustments to the Airline On-Time Performance and the T-100 Domestic 

Segment database16. All cancelled and diverted flights are dropped (9). Including these variables 

requires too many ad hoc assumptions to make results comparable (Mazzeo, 2003). Furthermore, (10) 

all observations related to missing/incorrect OTP-proxies and missing tail number are useless and are 

excluded as well. (11) Delayed flights for more than 3 hours are counted as delays of 3 hours to 

reduce the impact of outliers. Next, (12) for preparing the T-100 Domestic Segment database, all 

observations for which the variables: Passengers, distance, and the number of seats are equal to zero, 

are dropped from the dataset. Additionally, the dataset is restricted to only keep domestic passenger 

flights. Finally, (13) the MSA population database is prepared by cutting all observations 

corresponding to missing values. This dataset is consequently merged with the final dataset by using 

airports as the unique variable.  
 

Table 1: Airlines included in the dataset * US Airways merged with American Airlines in 2013 ** Air Tran got acquired by 
Southwest Airlines in 2011 *** Continental merged with United Airlines **** Northwest Airlines merged with Delta in 2008 
***** America West merged with US Airways in 2005 ****** ATA Airlines was declared bankrupt in 2008 ******* Virgin 
America was acquired by Alaska Airlines in 2016. 

Airline Name Airline Code  Mean arrival delay 
 (in minutes) 

Enplaned passengers in 2016 
(in millions) 

Alaska Airlines AS  8.86 41.9 
American Airlines AA  12.68 198.7 

Delta Air Lines DL  10.04 183.7 
Frontier Airlines F9  14.06 12.6 

Hawaiian Airlines HA  8.29 11.1 
Jet Blue B6  14.84 38.2 

Southwest Airlines WN  10.11 151.7 
Spirit Airlines NK  17.99 21.6 

United Airlines UA  12.52 143.2 
US Airways* US  10.83 - 
Air Tran** FL  12.725 - 

Continental*** CO  13.44 - 
Northwest Airlines **** NW  11.65 - 

America West***** HP  10.68 - 
ATA Airlines ****** TZ  12.12 - 

Virgin America ******* VX  11.83 - 
 

4.4 Dependent variable 

Below we discuss the proxies we use in this thesis to index on-time performance.  

Departure delay in minutes 

This proxy for OTP is measured by calculating the difference between actual departure time and 

scheduled departure time on a flight-by-flight basis. Just as for (most) other measurements for OTP 

mentioned below, the most critical disadvantage of using departure delays in minutes is that carriers 

have incentives to reduce delays on paper by adjusting schedule times, a phenomenon called 

‘schedule padding’. However, departure delays are generally speaking less subjected to schedule 

padding. Airlines namely often prefer manipulating arrival time over departure time (Rupp & 

Sayanak, 2008). 

                                                        
16 For consistency purposes, steps; 1, 2, 3, 7 and 8 are repeated for preparing the OTP and T-100 database. 
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Arrival delay in minutes 

The proxy arrival delay in minutes is the amount of time an aircraft arrives too late at the arrival 

gate. This proxy is often used in the literature for measuring OTP since it considers the type of delays 

were passenger truly suffer the most from.  
 

Figure 1: Average arrival delay in minutes  

 
 

The proportion of nonstop flights that arrives at least 15 minutes too late 

The percentage of flights that arrive more than 15 minutes later than scheduled is probably the 

most popular way for measuring delays in the literature. These proxies are already calculated in the 

on-time performance database as a binary variable which equals one when a flight arrives more than 

15 minutes late17.  
  

Figure 2: Flights arriving more than 15 minutes delayed (in %) 

 
 

                                                        
17 We also considered a 30 minutes difference between actual and scheduled arrival time since it means more from an 
economic perspective. However, we omitted this proxy in our analysis since this proxy represents rather extreme cases. A 30 
minutes delay deviates too much from the average 11.43 minutes arrival delay. 
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Total travel time 

Total travel time is the time elapsed from scheduled departure time till actual arrival time at the 

destination airport. This proxy is calculated by summing up the amount of departure delay in minutes 

to the total actual flight time. The advantage of using this proxy is that it is independent of the 

carrier’s influence on scheduled arrival time and could therefore not be manipulated.  

All in all, a dummy variable for arrival delays of longer than 15 minutes is used as a proxy for 

OTP in the main regression. This proxy is most commonly used throughout the literature and 

therefore interesting for this thesis for the sake of comparison. The other three above-mentioned 

proxies for OTP: total travel time and the proxies for arrival and departure delay in minutes are used 

for robustness purposes. Of these three proxies used for robustness, we mostly prefer total travel time 

since it is independent of schedule padding and therefore probably more accurate. Furthermore, we 

prefer ‘arrival delay proxies’ above ‘departure delay proxies’ since arrival delays measure the actual 

negative impact of delays on passengers.  

4.5 Independent variables 

This paragraph describes the proxies used to examine the (interaction) effect of the three key 

variables alliances, market structure and size on service quality.  

4.5.1 Strategic alliances 

Firstly, we explain why CSA, instead of international alliances and antitrust immunities, are used 

for identifying strategic alliances. Then, the problem of examining OTP-data in combination with 

CSA is discussed, followed by our unique approach to solve this issue.  

We based our choice for using CSA as an index for strategic alliances on an econometrical point 

of view. Airlines practice CSA in numerous markets at different times and between various carriers. 

This multiplicity of unique combinations improves the within variation as well as the variation 

between different observations. On the contrary, using international alliances as a proxy for alliances 

would contain much less variation across time and markets. Next, this thesis does not consider the 

impact of antitrust immunities (ATI) on service quality since there is much overlap between ATI and 

CSA. ATI are actually the same as CSA, but then with the additional privilege to set airfares 

cooperatively. Therefore, their effects on service quality are expected to be equal18.  

Although researching domestic CSA is beneficial from an econometrician perspective, examining 

virtual-CSA has one crucial limitation that needs to be taken in mind. As depicted in figure 3, the 

                                                        
18 In contradiction to the similar effect of ATI and CSA on service quality, there exist differences between the effects of ATI 

and CSA concerning airfares. Brueckner (2003) examines this relationship on fares and shows that both type of alliances 

negatively affects fares, but that the presence of ATI impacts fares to a larger extent.  
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percentage of domestic flights operated by U.S. major carriers that were virtually codeshared on non-

stop routed decreased to almost 0%. In 2016, U.S. carriers have apparently shifted their focus 

concerning non-stop routes practically completely to pure online flights. CSA on domestic non-stop 

routes are not considered useful anymore, as networks of airlines have increased, enabling them to 

offer more destinations within the U.S. by themselves. (Kieler, 2016). The shift from virtual CSA to 

pure online air travel products on non-stop routes weakens the practical relevance of my research 

somewhat, although, the results of this thesis are still interesting for airline companies. After all, the 

efficiency motives that could apply for non-stop routes are likely to be valid for traditional-CSA as 

well19.  
 

Figure 3: Proportion of domestic virtual codeshared flights operated by U.S. carriers on non-stop routes  

 
 

The second problem of analysing CSA arises when the DB1B-dataset is matched with the OTP-

database. This issue is a consequence of the fact that identifying ticketing carriers is not possible in 

the OTP-dataset. A codeshared route from Los Angels (LAX) to New York (JFK) can be 

distinguished from a non-codeshared route from LAX to JFK in the OTP-dataset. This limitation 

implicates that it is impossible to match a specific DB1B observation that resembles a particular 

codeshared market in a particular quarter with the associated observation in the OTP-dataset. The 

airline industry literature usually deals with this problem by using a difference-in-difference 

strategy20. This strategy compares relative changes in OTP between specific allied firms and non-

alliance firms before and after those specific firms agreed to ally. Yimga (2017) for instance, analyses 

the airlines: Northwest, Delta and Continental with their domestic competitors before and after they 

                                                        
19 See an efficiency motive that applies to virtual-CSA as well as traditional-CSA in section 3.1. 
20 See for example Yimga (2017) and Gayle (2015). 
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formed a codeshare alliance. The relative change between these two comparisons is in a difference-in-

difference strategy identified as the effect of CSA.  

Despite the difference-in-difference strategy is commonly used in the literature, we have 

developed a new way to identify CSA. The first reason for using another method for identifying CSA 

is related to the potential selection bias that could occur in a difference-in-difference strategy. 

Selection bias is the bias introduced by the selection of particular codeshare alliances for analysis that 

are not assigned randomly but deliberately chosen by researchers. If the selection bias is not taken into 

account, some conclusions of the study might not be accurate. The bias has then led to a research 

sample which would not be representative for the entire population. Fortunately, our method leads to 

less selection bias since we consider all large domestic airlines, see section 4.3. This brings us to our 

second argument in favour at our approach; we do not want to limit ourselves to only one or two 

codeshare alliances since we want to make use of the full sample to correctly measure the effect of 

firm sizes on service quality. The more codeshare alliances we include, the more accurate our 

estimations related to the impact of firm size on service quality will be. 

Our new method is based on making a distinction between codeshared routes and non-codeshared 

routes. A codeshared route is determined as a route upon which at least 5% of all operating flights on 

a particular market in a particular quarter are defined as codeshared flights21. To identify codeshared 

routes at a particular time, a dummy variable is created which values one if more than 5% of all 

operated flights on a route during a particular quarter are considered as codeshared flights and zero 

otherwise. It is important to note that this dummy variable gives us the opportunity to explore the 

within variation since the dummy variable often varies over time within the same observation (see 

figure 3).  

The higher the threshold is set for determining codeshared routes, the fewer markets are identified 

as codeshared routes. Furthermore, the average arrival delay in minutes constantly declines when 

higher thresholds are used. See table 2 for more precise information and the total number of routes 

related to each threshold. 
 

Table 2: OTP for codeshared and non-codeshared flights based on different thresholds. 

  Threshold level (%)  Number of observations 
(#) 

Codeshared routes 
(in %) 

Average arrival delay  
(in minutes) 

 

  1%  31,465 YES (17.2%) 11.37  
  1%  146,031 NO 11.44  
  5%  21,223 YES (11.9%) 11.15  
  5%  156,273 NO 11.44  
  10%  15,450 YES (8.7%) 10.89  
  10%  162,046 NO 11.48  
  15%  11,710 YES (6.6%) 10.73  
  15%  165,786 NO 11.48  
  20%  9,046 YES (5.1%) 10.56  

                                                        
21 In line with the paper of Yimga (2017), we define flights as codeshared flights when the operating carrier differs from the 
ticketing carriers. 
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  20%  168,450 NO 11.48  
  30%  7,197 YES (4.1%) 10.22  
  30%  170,299 NO 11.48  
  40%  6,657 YES (3.8%) 10.19  
  40%  170,839 NO 11.48  
  50%  6,289 YES (3.5%) 9.98  
  50%  171,207 NO 11.48  
 

We keep it simple to put the threshold on 5% in all our analyses22. We expect that codeshared 

routes, based on a 5% boundary level, consist of a sufficient amount of observations and a sufficient 

difference in average delay between codeshared and non-codeshared routes to derive significant 

results. Additionally, a 5% level is chosen since it is close to the actual proportion of codeshared 

flights during the timespan of our research, which is 4.75 %.  

4.5.2 Competition  

The second key variable in our model is market structure. A commonly used proxy to control for 

route-level competition is the Herfindahl-Hirschman Index (HHI). This proxy is often used in the 

literature and is calculated by the sum of squares of an airline’s proportion of the total number of 

flights between the origin and destination airports in a particular quarter. A value close to one 

indicates a monopoly market, while a value closer to zero is typical for extremely competitive 

markets. 
 

𝐻𝐻𝐼!" =  𝑆!!
!

!!!

 

 

In the above equation, a reflects the airline, i the market and t the quarter period. Total number 

carriers operating on a specific route is denoted by N, while the market share of airline a is denoted by 

𝑆! . 

The second proxy for market structure is created by dividing all routes in either monopoly, 

duopoly or competitive routes. Another frequently used method for forming categorical variables, 

based on market structure, is by separating all routes into three equally sized categories. In our 

                                                        
22 We have taken several thresholds of codeshared flights in consideration for creating dummy variables that resemble 
codeshared routes. Our findings indicate that codeshared routes, based on a 1%, 5% or 10% boundary level, positively 
impact OTP. These results are robust for different OTP proxies and indicate that codeshared routes are associated with fewer 
delays. We find the opposite effect for codeshared routes based on a 40% and 50% boundary level. However, we argue that 
these routes probably resemble extreme circumstances. Routes with a high proportion of codeshared flights are likely 
correlated with concentrated markets. When the percentage of codeshared routes is high on a particular route, it is likely that 
those routes are dominated by the allied partners. Allied airlines could behave as monopolist on these type of markets, 
enabling them to enforce their market power and subsequently leading to worse OTP. In this thesis, we do not elaborate 
further on this topic since it is out of the scope of our research question. Finding more proof for the correct threshold would 
be interesting for further research though.  
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research, we prefer the first type of categorical variables. A change between zero and one competitors 

is after all experienced as more important, than a shift from for example seven to eight competitors.  

The third proxy for market structure is the number of carriers that provide at least five non-stop 

flights at a particular route in a specific quarter. The latter restriction allows to only account for 

airlines that offer regular service on an origin-destination pair in a specific quarter.  

This thesis makes use of the logged HHI in the main panel analysis. The other proxies are used 

for robustness purposes. Including the HHI instead of categorical variables for market structure 

enables to capture more of the heterogeneous impact of market structure. Furthermore, the choice for 

including HHI above the number of carriers operating a particular route is based on the benefit of HHI 

to give additional insights into the distribution of market share within a route.  

4.5.3 Size 

The third key variable of interest is firm size. Measuring firm size has been done in several ways 

throughout the literature. The most common proxies are mentioned below: 

• The total number of routes of an airline in a particular quarter (Reeven and Pennings, 2016). 

• The total number of domestic flights of a carrier in a particular quarter as a proportion of all 

domestic flight in the US.  

• The total number of passengers of an airline in a particular quarter (Evans and Kessides, 

1994); the disadvantage of this proxy is likely endogenous. The amount of passengers is 

similar to market demand, and market demand is on its turn related to congestion, which 

negatively impacts service quality.  

• Available seat miles of an airline in a particular quarter; this proxy is less endogenous than 

the other proxies since capacity cannot change as fast as market demand. Additionally, it 

presents more information about the route than the first two proxies since it also tells 

something about the length and capacity of the planes serving the routes. For these reasons, 

we use available seat miles as a proxy for firm size. The first two measurements are used for 

robustness. We do not consider the total number of passenger in our robustness check since 

this proxy is probably too much related to the endogeneity concern.  

4.6 Control variables 

In this paragraph, we describe the variables used for confounding effects related to congestion and 

airport dominance. 

OTP depends, among other things, on the congestion level at airports (Rupp and Sayanak, 2008). 

Congestion is positively related to competition since higher competition levels often mean higher 

traffic, and therefore, to estimate the isolated effect of competition accurately, it is necessary to 
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control for congestion. One way to capture this effects is by controlling for hub airports23. Congestion 

often occurs at hub airports because airlines usually schedule flights at congested times at hubs. 

Probably the best way to control for hub airports is by making a distinction between OUT_OF_HUB 

and INTO_HUB. These proxies are included as a binary variable that values respectively one if a 

particular carrier operates from and to its hub airport. Flights to hub airports are expected to be less 

delayed compared to flights out of hub airports since airlines would have more incentives on this type 

of flights to reduce delays for connecting passengers. After all, the costs for rebooking passengers are 

high. 

Table 3: Airlines and their hubs. Carriers and their hub airports are classified in line with the paper of Yimga (2017)24. 

Airline Code Airline Name Hub Airport code 
AS Alaska Airlines SEA, PDX, LAX & PHX 
G4 Allegiant air NO HUBS 
AA American Airlines  ORD, DFW, LAX, MIA, JFK & LGA 
DL Delta Air Lines ATL, CVG, JFK, LGA, BOS, LAX, MSP, SEA & DTW 
F9 Frontier Airlines AUS, ATL, RD, CVG, CLE, LAS, MIA, PHL, TTN & DCA 
HA Hawaiian Airlines OGG & HNL 
B6 Jet Blue BOS, FLL, LGB, JFK & MCO 
WN Southwest Airlines ATL, BWI, MDW, DAL, DEN, HOU, LAS, LAX OAK, MCA & PHX 
NK Spirit Airlines ACY, ORD, DFW, DTW, FLL & LAS 
UA United Airlines IAH, ORD, SFO, DEN, LAX, EWR & IAD 
VX Virgin America LAX, SFO 
US US Airways CLT, DVA, PHL & PHX 
FL Air Tran BWI, MKE, ATL & MCO 
WO World Airways NO HUBS 
CO Continental EWR, CLE & IAH 
NW Northwest Airlines  DTW, MSP & MEM 
HP America West PHX & LAS 
 

This thesis also controls for congestion by including the flight frequency of a carrier at the 

destination and origin airport. A commonly used proxy for this effect is the number of departures the 

airline made on a particular market each quarter. The advantage of this method is that you control at 

the same time for economies of scope. However, since this variable is probably highly related to the 

proxies for firm size, another way is used to control further for congestion in this thesis: namely, the 

total number of flights movements at the origin and destination airport.  

As argued above, hub airports are often more congested than other airports, leading to more 

delays. However, hub airports are also often concentrated airports where airlines achieve economies 

of scope. The variable “airport dominance” is included in our model to identify this positive impact on 

service quality. Airport dominance is determined by calculating the proportion of flights departing 

from an airport per quarter for each carrier. Subsequently, airports are classified as “dominant 

airports” for specific airlines during a specific quarter in the case of the airport dominance level of a 

particular airline is higher than 0.5.  

                                                        
23 This thesis defines hubs as strategical airports where an airline’s major facilities and operations are located, and where 
most of its flights arrive at or depart from. 
24 We do not control for mergers during the timespan of this research for determining hub airports for specific carriers. 
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4.7 Summary statistics  

This paragraph describes some characteristics of our dataset, such as the total number of 

observations, the unbalanced pattern in our panel analysis and motives for using a log-log model. 

Additionally, this paragraph provides tables concerning summary statistics and correlations between 

the variables used in the main regression. 

The research sample contains data from 2003:q1 till 2016:q4 and consists of 177.496 

observations. A noticeable disadvantage of this dataset is that it is unbalanced. This is not caused as a 

consequence of missing data but is caused by mergers. Since merged airlines proceed reporting airline 

data under the name of only one airline, observations of the airline that alters its unique airline code, 

end abruptly following a merger. Another cause for the unbalance in our dataset is the continual 

adaptions of airlines to its networks. An airline deciding to stop offering flights on a particular route 

ends after all in missing observations in the panel dataset.  

Summary statistics can be found in table 4. All continuous variables in the model are logged. The 

first reason for using a log-log model is to generate variables with less skewed distributions. This is 

useful since the sktest rejects the “H0 hypothesis: the variable is normally distributed” for all 

variables25. The second reason for using a log-log model is for the convenience of interpreting the 

results in the model. 

An essential condition in our model is that the within variation of the variable CSA_dummy (5%) 

should be large enough. Fortunately, the within variation is 0.218, almost equal to it’s between 

variation. Indicating that the within variation is large enough to derive efficient results.  
 

Table 4: Summary statistics for the variables used in the main regression. 

Variable Unit Mean S.D Min Max 
Total travel time Minutes 5.09 0.48 3.34 6.58 
Arrival delay Minutes 11.43 7.448 0 336 
Departure delay Minutes 10.71 7.197 0 332 
Arrival delay (>15 min) Binary 0.195 0.107 0 1 
CSA (5%) Binary 0.0870 0.282 0 1 
HHI Route Interval 0.757 0.259 0.185 1 
Seat miles Seat miles 2.193e+10 1.094e+10 1.170e+09 5.829e+10 
Dominance origin airport Interval 0.520 0.500 0 1 
Dominance dest airport Interval 0.520 0.500 0 1 
Flights movements origin Count 330,813 233,495 2,684 1.083e+06 
Flights movements dest Count  330,867 233,510 2,684 1.083e+06 
Into hub Binary 0.432 0.495 0 1 
Out of hub Binary 0.432 0.495 0 1 
N = 177496, # rcid = 7,528      

 

Although some considerable correlations exist between especially the control variables, such as 

between into_hub and flights_movements_origin, the validity of this study is not in danger. The 

variation influence factor (VIF) of all variables is always below 2, far below the rule of thumb of 10. 

                                                        
25 A sktest is used to test if the continuous variables are normally distributed. The hypothesis that the variables are normally 
distributed is rejected for all variables.  
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Table 5: Correlation matrix for the variables used in the main regression. 

 Variable 1 2 3 4 5 6 7 8 9 10 11 12 
1 Arrival delay (>15 min) 1.00            
2 CSA (5%) 0.00 1.00           
3 HHI Route -0.07 0.00 1.00          
4 Seat miles -0.12 0.00 0.13 1.00         
5 CSA * HHI Route 0.00 0.94 0.10 0.00 1.00        
6 CSA * seat miles -0.01 0.90 0.00 0.12 0.85 1.00       
7 Flights movements origin 0.17 0.01 -0.31 0.00 -0.02 0.02 1.00      
8 Flights movements dest 0.00 0.01 -0.31 0.00 -0.02 0.02 -0.21 1.00     
9 Into hub 0.19 -0.02 -0.03 -0.02 -0.02 -0.03 0.46 -0.25 1.00    
10 Out of hub -0.09 -0.02 -0.02 -0.02 -0.02 -0.04 -0.25 0.46 -0.47 1.00   
11 Dominance origin airport	 -0.01 -0.02 0.19 0.08 -0.01 0.00 -0.06 0.01 0.10 -0.06 1.00  
12 Dominance dest airport	 -0.06 -0.02 0.19 0.08 -0.01 0.00 0.01 -0.06 -0.06 0.10 -0.03 1.00 
  

4.8 Model 

This paragraph describes the model used in the panel analysis and provides an overview of the 

advantages of using a route-carrier and carrier-year-quarter fixed effect model.  

The base model used for analysis is a fixed effect model (FE). The empirical goal of this model is 

to determine the combined effects of the three key variables and the two moderators on OTP.  

   

𝑂𝑇𝑃!"# = 𝛼 + 𝛽𝑊!"# + 𝛾𝑋!"# + 𝛿𝑌!"# + 𝜕𝑍!"# + 𝜆!" + 𝜐!"  +  𝜖! 
  

Wtic indexes market structure characteristics in quarter t, in market i, for carrier c, Xtic is a vector 

of dummy variables representing the presence of a CSA, Ytic indexes the size of a firm, vector variable 

Ztic includes the control variables for congestion and airport dominance.  

Based on previous literature, we know that delays depend on many other factors which our model 

does not control for yet. Fortunately, a fixed effect model is able to deal with this appropriately. Our 

model controls namely for unobserved effects by including route-carrier fixed effects, indexed as 𝜆!", 

and year-quarter-carrier fixed effects, indexed as 𝜐!"26.  

A route-carrier fixed effect model easily controls for unobserved constant factors over time. 

Controlling for route simultaneously enables to correct for the fact that carriers behave differently in 

various markets. Examples of unobserved route fixed effects are distance, speed and flight direction. 

Typical time-invariant airport-pair characteristics are landing and departing conditions, airport 

capacity and airport facilities 

Carrier-year-quarter fixed effects are implemented by including dummy variables for each carrier 

at each quarter in the research sample. The first reason for using this type of fixed effect is to account 

                                                        
26 A Hausman test is used to compare results of the fixed effects model and random effects model. The results of the 
Hausman test indicate that the estimations of the random and fixed model differ significantly from each other. This result 
suggests that the random effects models leads to inconsistent estimators, meaning that the fixed effect model is more 
appropriate to use.  
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for carrier-specific heterogeneity. Examples of differences between (or within) carriers over time are 

carriers’ unique financial performances or when for instance a particular carrier suddenly starts a new 

strategy which impacts its OTP. The second reason why we add carrier-year-quarter fixed effects is to 

control for seasonal effects, such as weather and holidays. Examples of other unobserved time effects 

during the timespan of our research sample are the economic crisis, technological trends and 

fluctuations in kerosene prices. Controlling for these time fixed effects is beneficial since it mitigates 

the correlation between carrier-route effects that influence each observation universally.  

 

5. Results 

The following section is roughly divided into four parts. The first part presents the findings 

related to hypothesis 1A-1D. The second part of this paragraph describes model 2, in which the 

interaction terms are added for validating hypotheses 2 and 3. The third part describes the endogeneity 

issues related to the proxies used for identifying market structure. In the fourth paragraph, we show 

the results of our analysis for different proxies for market structure and firm size for the sake of 

robustness. 

5.1 Model 1 

Hypotheses 1A-1D are tested in five stages. First of all, three base regressions are estimated to 

facilitate comparison with earlier research. The first three columns of table 6 show our findings 

related to respectively strategic alliances, market structure and firm size. Secondly, the key variables 

are added in one regression to assess whether the effect of strategic alliances on service quality stays 

the same when we control for market structure and firm size (see column 4). The results in column 4 

should reveal whether there is empirical evidence for mutual dependence between the variables 

strategic alliances, market structure and firm size. Finally, in column 5 we add our remaining control 

variables. 
 

Table 6: Impact of CSA on the probability of arrival delays of more than 15 minutes. Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) (4) (5) 
MODEL 1 Strategic Alliances Market Structure Firm Size All three key variables Including control 

variables 
      
CSA_dummy5 -0.00479***   -0.00489*** -0.00524*** 
 (0.00137)   (0.00138) (0.00138) 
log_HHI_Route  0.00522***  0.00535*** 0.00591*** 
  (0.00197)  (0.00197) (0.00201) 
log_seat_miles_per_carrier   1.588*** 1.586*** 1.519*** 
   (0.121) (0.122) (0.123) 
log_flights_movements_dest     0.0247*** 
     (0.00827) 
log_flights_movements_origin     0.0254*** 
     (0.00726) 
dominance_origin_airport     -0.00483*** 
     (0.00152) 
dominance_dest_airport     -0.00490*** 
     (0.00148) 
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Constant 0.158*** 0.160*** -37.68*** -37.63*** -36.64*** 
 (0.00126) (0.00149) (2.895) (2.896) (2.909) 
      
Observations 177,496 177,496 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 7,528 7,528 
Carrier-Route FE YES YES YES YES YES 
Carrier-Year-Quarter FE YES YES YES YES YES 
Control variables NO NO NO NO YES 
 

Column 1 shows the effect of codeshared routes on the probability of flights arriving more than 15 

minutes late at the destination airport. The results are in line with the paper of Yimga (2017) and 

indicate that on codeshared routes, where at least 5% of the flights are considered as codeshared 

flights, fewer delays occur. More specifically, when a route is defined as a codeshared route the 

probability of an arrival delay of more than 15 minutes is on average lower at a 1% significance level 

compared to flights on non-codeshared routes, ceteris paribus. The economic mechanism that could 

cause the negative impact of codeshared routes on delays is probably the advantage that allied airlines 

have to remove problematic flights on codeshared markets (see section 3.1). Although this finding is 

statistically significant, we have our doubts about the economic significance of our finding. The 

magnitude of the effect of CSA is not very impactful. For example, when we consider its effect on 

arrival delays in minutes instead of a dummy variable that indicates arrival delays, an on average exp 

(0.0223) =1.02 minute shorter arrival delay on codeshared routes is not really worth mentioning27. 

The problem of low, but significant magnitudes, is common in large panel datasets such as ours. Even 

the tiniest effects are fast recognized as statistically significant.  

Column 2 presents the results of the impact of market structure on OTP. The panel regression 

presented in this column is similar to the one in column 1. The only difference is that market structure 

is examined instead of strategic alliances. The results in Column 2 are in line with previous research 

(Mazzeo, 2003) and indicate that flights operating on more concentrated routes are significantly more 

likely to be delayed. These results support hypothesis 1B and are caused by the underlying economic 

mechanism that airlines operating in competitive markets have more incentives to offer higher quality 

goods.  

Analysing column 3, we see that the size of a firm positively affects the dummy variable of arrival 

delays at a 1% significance level. This finding contradicts Hypothesis 1C. Airlines are apparently not 

able to benefit from economies of scope concerning service quality. In fact, larger airlines are 

associated with much higher probabilities of delays as well as longer delays. A possible clarification 

for this results is related to the fact that we only examine the within variation. Because we limit 

ourselves to the within variation, an increase in available seat miles means probably not per se an 

increase in resources. It means more likely an increase in utilisation rate of the resources. An increase 

in the utilisation rate leads subsequently probably to less available spare resources per flight. On 

                                                        
27 Information for this calculation is derived from table 12. 
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average fewer resources per flight makes growing airlines less flexible in general and increases the 

probability of delays.  

The fourth column in table 6 shows almost identical results to column 1, 2 and 3 in which the key 

variables are examined separately. Only the magnitudes change slightly in column 4. This finding is in 

line with hypothesis 1D and implicates that there is no mutual dependence between the three key 

variables. This is an important finding since it supports the causal positive effect of strategic alliances 

on service quality.  

The fifth column is an extension of column 4. Our control variables are added to this model. The 

most important finding is that the results related to hypothesis 1A – 1D stay the same. Furthermore, 

column 5 indicates a positive effect between flights movements at the origin and destination airport 

and the OTP dummy variable. The magnitudes are substantial and significant, implicating that airport 

congestion has a large influence on service quality. We also control for congestion by including 

dummy variables for hub airports. The first way we control for hub airports is by including dummy 

variables for flights arriving at hub airports and flights departing from hub airports. However, because 

these dummies are constant over time within the research sample, the fixed effects estimator takes out 

all the variance. There is nothing left for those dummies to explain. Fortunately, since these variables 

are only included as a control variable, it is not a problem for us that the effects do not become 

visible. Note that including these variables still (slightly) affect the impact of other variables used in 

the model. The second way we control for hub airports is by identifying dominance airports. Our 

results in column 5 suggest that carriers on routes from or to dominance airports experience on 

average fewer delays. This result implicates that airlines gain advantages in handling flights 

operations on airports where they maintain a high market share. Hence, market power at airports 

enables carriers to reduce delays. A possible underlying mechanism for this result is that airlines have 

more resources available at airports where they are dominant, allowing an airline to react fast and 

effective when delays occur.  

5.2 Model 2 

The second model, reported in table 7, includes the interaction effect of CSA and market structure 

as well as the interaction effect of CSA and firm size. Model 2 is used to identify respectively the 

impact of strategic alliances for different levels of competition and the impact of strategic alliances 

considering different firm sizes.  
 

Table 7: Impact of CSA on service quality for different levels of competition and different firm sizes. Robust standard errors 
in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) 
MODEL 2 CSA x Competition CSA x Firm Size 

   
CSA_dummy5 -0.00210* -0.0701 
 (0.00172) (0.0669) 
log_HHI_Route 0.00491** 0.00591*** 
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 (0.00203) (0.00201) 
log_seat_miles_per_carrier 1.520*** 1.519*** 
 (0.123) (0.123) 
CSA5_x_log_HHI_Route 0.00843***  
 (0.00254)  
log_CSA5_x_seat_miles  0.00273 
  (0.00281) 
log_flights_movements_dest 0.0246*** 0.0246*** 
 (0.00827) (0.00827) 
log_flights_movements_origin 0.0253*** 0.0253*** 
 (0.00726) (0.00726) 
dominance_origin_airport -0.00482*** -0.00480*** 
 (0.00153) (0.00152) 
dominance_dest_airport -0.00488*** -0.00487*** 
 (0.00148) (0.00148) 
Constant -36.65*** -36.64*** 
 (2.909) (2.909) 
Observations 177,496 177,496 
R-squared 0.225 0.225 
Number of rcid 7,528 7,528 
Carrier-Route FE YES YES 
Carrier-Year-Quarter FE YES YES 

 

The results in column 1 are in line with hypothesis 2 and indicate that the probability of offering 

higher service quality as a consequence of partnerships diminishes as log_HHI_Route increases. 

Otherwise stated, CSA are more likely to lead to fewer delays, especially on more competitive routes. 

When we consider for example the impact of CSA on arrival delays, our findings indicate that the 

overall effect of CSA on arrival delays is negative for all levels of market structure at a 1% 

significance level (see table 13 in Appendix B). However, at levels of HHI_Route close to zero (an 

unlikely and extreme value), a 1% increase in HHI_Route on codeshared routes, leads to a larger 

decrease of arrival delays in minutes, compared to the impact of a 1% increase in HHI_Route at levels 

of HHI_Route close to one. A potential economic mechanism that could clarify our results related to 

hypothesis 2 is that CSA on more concentrated routes lead to a relatively larger increase in market 

power than on more competitive routes. Therefore, carriers operating on more concentrated routes 

have relatively fewer incentives to make use of the benefits in a CSA, such as the option to move 

flights which have a relatively high probability of being delayed.  

The second model also includes the interaction effect of CSA and firm size. This model is used to 

identify the effect of codeshared routes on service quality for small firms compared to large firms. 

Unfortunately, the results in column 2 are insignificant, implicating that we do not suggest that 

smaller airlines are more likely to benefit from a CSA compared to larger firms or vice versa.  

5.3 Endogeneity issues  

The simultaneous causality issue is a common problem while analysing the effect of competition 

on service quality. Market structure of course influences service quality, however, service quality 

could influence market structure as well on its turn. This paragraph shortly explains why this issue is 

relevant in our case and how we try to solve this problem.  

The best way to explain why the endogeneity problem is relevant to consider in this thesis is 

probably by showing an example. Imagine an airline that acts as a monopolist in a particular market. 

This carrier has fewer incentives to offer high service quality and will probably even try to increase 
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profit margins by saving on resources that could reduce delays. Hence, the monopolist is likely going 

to abuse its market power. Competitors will notice that the monopolist offers low service quality and 

will enter the monopolistic market. They know that the low service quality in the concentrated market 

enables them to steal more easily market share from the monopolist.  

When there is not controlled for this simultaneity, the endogeneity problem results in a biased 

estimation of the effect of market structure on service quality (Greenfield, 2014). The causality 

between market structure and service quality is then overestimated. It is worth mentioning although 

that above-described endogeneity problem is somewhat mitigated in practice. It is namely often 

challenging for airlines to invest in new markets. The reason behind this is that changing an airline’s 

network demands high investments and takes much time and effort.  

We try to solve the potential endogeneity problem by estimating delays using a 2SLS estimation 

in which instrument variables (IV) are used to estimate the proxies for market structure. Good 

instrument variables should be correlated with the proxies for market structure but not with the error 

term. Also, the instrument variables are not allowed to be a direct cause of the dependent variable. 

The instrument variables we use are pop_geo_mean, pop_geo_mean2, pop_arth_mean and 

enplanements (see appendix B). These variables were first introduced by Borenstein and Rose (1994) 

and later on often practised in the literature (Gerardi and Shapiro, 2009; Dai et al. 2014). 
 

Table 8: Impact of strategic alliances, market structure and firm size on service quality. Robust standard errors in 
parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) 
MODEL 3  Using IV for  

Market structure 
  
CSA_dummy5 -0.00524*** 
 (0.00137) 
log_HHI_Route 0.00591*** 
 (0.00203) 
log_seat_miles_per_carrier 1.520*** 
 (0.122) 
log_flights_movements_dest 0.0246*** 
 (0.00825) 
log_flights_movements_origin 0.0253*** 
 (0.00724) 
dominance_origin_airport -0.00483*** 
 (0.00152) 
dominance_dest_airport -0.00488*** 
 (0.00148) 
Constant -36.65*** 
 (2.909) 
Observations 177,496 
R-squared 0.225 
Number of rcid 7,528 
Carrier-Route FE YES 
Carrier-Year-Quarter FE YES 

  

The results of our model using instrument variables, presented in table 8, are almost completely 

the same as the estimations of model 1. Only the magnitude changes somewhat.  

Despite the little differences between the two models, and although model 3 controls for the 

endogeneity issue, we strongly prefer the estimations of model 2 for answering our hypotheses. The 

reason behind this is that the Sargan Hansen Test suggests that the instruments we use are 
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inconsistent and invalid. Implicating that using the instrument variables lead to probably even more 

inconsistent results compared to the results of the fixed effect model, described in section 4.8. Note 

that because of this decision the endogeneity possible is not controlled for. The effect of market 

structure on service quality should therefore not be mistaken as a causal effect. However, we believe 

that our findings related to the effect of strategic alliances on service quality are not strongly biased 

though. We control namely step-by-step for many factors such as market structure, congestion, route-

carrier fixed etc., while observing only very small changes in the coefficients. Meaning that the 

endogenous issue is likely to be nihil for the impact of CSA on OTP.  

5.4 Robustness check 

Although the variables in the main regressions are carefully chosen, we still perform some 

alternative analyses to check the robustness of hypothesis 1 – hypothesis 3 further. In our robustness 

check, we consider different measurements for OTP and different proxies for market structure and 

firm size. 

Before we describe the results of our robustness check, note that this thesis does not include a 

robustness analysis by considering city pairs instead of airport pairs. The reason behind this is that our 

research sample contains several congestion proxies which would become useless when we define 

markets as routes between city pairs instead of airports pairs (Ito and Lee, 2007). 

5.4.1 Hypothesis 1A 

The negative effect of codeshared routes on service quality is robust at a 1% significance level for 

all measurements for OTP (see table 12 in Appendix B).  

5.4.2 Hypothesis 1B 

The impact of log_HHI_Route on service quality looks somewhat inconclusive when we consider 

our results of model 1 in combination with our robustness check. Our robustness results indicate a 

negative relation between log_HHI_Route and total travel time and between log_HHI_Route and 

arrival delay in minutes, at respectively, a 1% and 10% significance level (see table 13). The 

economic mechanism that could explain the first described result, the negative relation between 

log_total_travel_time and log_HHI_Route, is that flights on more concentrated routes can achieve 

shorter total flight times since they operate on less congested routes. Although, this explanation does 

not seem very plausible since we control for airport dominance, flight movements at the airports and 

hubs in our model. A clarification of the negative relation between log_HHI_Route and arrival delay 

in minutes lacks as well. However, since this result is only significant at a 10% level, we do not 

elaborate this result further in this thesis.  
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The results presented in table 14 also suggest that our results related to hypothesis 1B are less 

robust than mentioned in section 5.1.2. The robustness check indicates that log_HHI_Route is the only 

proxy that shows a significant effect between service quality and market structure. 

 However, since HHI and the dummy variable for arrival delays of more than 15 minutes are 

qualified as proper measurements for market structure and OTP in the literature, we still suggest that 

higher competition levels lead to higher service quality.  

5.4.3 Hypothesis 1C 

The robustness check concerning hypothesis 1C is in line with our findings mentioned in section 

5.1. Hence, the size of a firm positively affects delays at a 1% significance level for all measurements 

for OTP and size in our analyses (see tables 15 and 16).  

5.4.4 Hypothesis 1D 

Compared to our earlier findings, our robustness check presented in tables 17 and 18 show similar 

results when other proxies are used for finding evidence for hypothesis 1D. Thus, our robustness 

check strengthens our suggestions that there is no mutual dependence between the three key variables 

in model 1. 

5.4.5 Hypothesis 2 

We find some additional support for hypothesis 2 when we use other proxies for OTP and the key 

variables in model 2. Firstly, findings in table 19 suggest that CSA also reduce delays to a more 

considerable extent for other proxies for OTP. Secondly, the robustness check presented in table 20 

shows that our first interaction effect is observable as well when the proxy monopoly is used instead 

of log_HHI_Route as a measurement for market structure.  

5.4.6 Hypothesis 3 

Tables 21 and 22 present some findings that suggest that the effect of the interaction effect 

between firm size and CSA is less ambiguous than mentioned in section 5.3. 

The robustness results in table 21 show that the interaction effect of CSA and firms size on actual 

travel time and proxies for departure delays is negative and significant at a 5% level. These findings 

implicate that flights operating on codeshared routes cause fewer departure delays for larger firms and 

contradicts thereby hypothesis 3. A possible reason why we observe that larger firms are more likely 

to benefit from CSA concerning service quality is associated with hypothesis 1. It can be argued that 

especially larger firms have the advantage of removing problematic and delayed flights from 

codeshared routes. The resources that become available when problematic flights are removed from 

an airline’s network can probably become of better use for larger firms. They have more options 

available for switching the ‘removed’ aeroplane to. However, we do not want to put much weight on 
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this underlying mechanism, and in fact on the results of table 12 in general, since the results of the 

interaction effects are only significant for total actual travel time and departure delays. While, as 

explained earlier, we prefer the proxies for arrival delays, since these proxies indicate the form of 

delays where passenger actually suffer from and are more commonly used throughout the literature. 

We also find a significant and negative effect when we focus on other proxies for firm size (see 

table 22). However, we do put too much value on these findings as well since the endogeneity issue 

likely plays a role here.  

 

6. Conclusion  

As it has turned out, we find robust evidence for the positive effect of strategic alliances on 

service quality. Improvements in OTP are likely a consequence of the advantage that allied airlines 

have to remove problematic flights on codeshared markets. The impact of CSA on OTP stays the 

same when we take into account control variables and the potential mutual dependence between 

strategic alliance, market structure and firm size. This is an important finding since it supports the 

causal positive effect of strategic alliances on service quality. Furthermore, our findings suggest that 

the impact of CSA on service quality is more substantial on more competitive routes. CSA lead 

namely to a relatively smaller increase in market power on competitive routes compared to 

concentrated routes, and therefore, to a relatively less strong increase of preference for improving 

margins by saving costs related to service quality on more competitive routes.  

From a welfare perspective, our results implicate that passengers experience fewer delays on 

codeshared routes, and benefit from shortened travel times when flying on a codeshared flight, 

especially if these routes are characterised by a high level of competitiveness. Of course, we should 

include other consequences of alliances in our model such as prices for a complete welfare analysis. 

However, based on the impact of CSA on proxies for OTP for different levels of market structure and 

firm size, there does not appear any reasons for competition boards to prevent U.S. airlines from 

engaging in domestic CSA. Therefore, we recommend competition boards not to interfere further into 

strategic alliances based on adverse competitive effects concerning service quality. Additionally, we 

recommend airline companies not to withhold assessing alliances based on the idea that it worsens 

OTP. 

Despite our scientific contribution related to the findings for the mutual independence of the key 

variables and the interaction effect of market structure and strategic alliances, this thesis does not 

provide supportive (or contradicting) evidence for the hypothesis that smaller airlines are more likely 

to benefit in a CSA. A possible reason for this ambiguous result is that we, as a consequence of 

limitations related to the on-time performance dataset, only considered virtual-CSA. It would be 
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interesting though to examine what the impact of traditional-CSA for different firm sizes is on service 

quality, especially since other underlying mechanisms would be at stake. Therefore, we hope that this 

thesis sufficient indicates the importance of the effect of CSA on OTP and that the U.S. DOT would 

add additional data, related to ticketing and operating carriers in the OTP dataset. Adding these data 

would enable to research the effect of traditional CSA for different firm sizes and competition levels 

on service quality without using a classic difference-in-difference strategy. Also, further research is 

needed to examine the impact of other forms of cooperation, such as international alliances, on service 

quality for the sake of robustness.  
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8. Appendices 

8.1 Appendix A: Variable description  
 

Table 9: A-1 Main variables 

Variables used in the main regressions 
Log_total_travel_time Natural logarithm of the total time elapsed from scheduled departure time till actual arrival time at the 

destination airport.  
Arr_del15 A dummy variable that equals one if a flight arrives more than 15 minutes later than scheduled. 
Log_arr_delay_new Natural logarithm of the amount of time (in minutes) an aircraft arrives later than scheduled. 
Log_dep_delay_new Natural logarithm of the amount of time (in minutes) an aircraft departs later than scheduled. 
CSA_dummy5 A dummy variable that equals one if a route is defined as a codeshared route. Markets are marked as 

codeshared routes when more than 5% of all flights on a route in a particular quarter are identified as 
codeshared flights. 

Log_HHI_Route Natural logarithm of the sum of squares of an airline’s proportion of the total number of flights 
between the origin and destination airports in a particular quarter. A value close to one indicates a 
monopoly market, while a value closer to zero is typical for competitive markets. 

Log_seat_miles Natural logarithm of the total amount of seat miles per carrier per quarter. 
Log_flights_movements_dest Natural logarithm of the total number of arrivals and departures at the destination airport per quarter. 
Log_flights_movements_origin Natural logarithm of the total number of arrivals and departures at the origin airport per quarter. 
Dominance_dest_airport A dummy variable that equals one if a particular destination airport is classified as a dominant airport 

for a particular airline. Airports are defined as a dominant airport for particular airlines when these 
particular airlines achieve a higher market share at the airport than 0.5. Market share at the airport is 
calculated by dividing airline’s total flight movement at a particular airport in a particular quarter by 
total flights movement at an airport in a particular quarter.  

Dominance_origin_airport A dummy variable that equals one if a particular origin airport is classified as a dominant airport for a 
particular airline. Airports are defined as a dominant airport for particular airlines when these 
particular airlines achieve a higher market share at the airport than 0.5. Market share at the airport is 
calculated by dividing airline’s total flight movement at a particular airport in a particular quarter by 
total flights movement at an airport in a particular quarter.  

Into_hub A dummy variable that equals one if a particular carrier operates to its hub airport. Hub airports are 
identified based on the paper of Yimga (2017). 

Out_of_hub  A dummy variable that equals one if a particular carrier operates from its hub airport. Hub airports are 
identified based on the paper of Yimga (2017). 

 

Table 10: A-2 Instrument variables 

Variables used in the 2SLS regressions 
Log_enplanements Natural logarithm of the enplanement instrument. This instrument is calculated by the following 

formula:  
 

log (𝑒𝑛𝑝𝑙𝑎𝑛𝑒𝑚𝑒𝑛𝑡𝑠) =  log
(𝑒𝑛𝑝𝑙!! ∗ 𝑒𝑛𝑝𝑙!!)
𝑘 𝑒𝑛𝑝𝑙!! ∗  𝑒𝑛𝑝𝑙!!

 

 
In the above equation, a reflects the airline, k indexes all airlines and enpl1 and enpl2 are the quarterly 
enplanements at respectively the origin and destination airports. 

Log_pop_geo_mean Natural logarithm of the geometric mean of the metropolitan area population at the origin and 
destination airports. 

Log_pop_geo_mean2 The squared natural logarithm of the geometric mean of the metropolitan area population at the 
origin and destination airports. 

Log_pop_arth_mean Natural logarithm of the arithmetic means of the metropolitan area population at the origin and 
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destination airports. 
 

Table 11: Other proxies for the three key factors 

Variables used for robustness purposes 
Nr_carriers The number of carriers that provide at least five non-stop flights at a particular route in a specific 

quarter. 
Monopoly A dummy variable that equals one if only one carrier offers flights on a particular route in a specific 

quarter. 
Duopoly A dummy variable that equals one if only two carriers offer flights on a particular route in a specific 

quarter. 
Competitive_route A dummy variable that equals one if more than two carriers offer flights on a particular route in a 

specific quarter. 
log_tot_nr_routes The natural logarithm of the total number of routes that a particular airline offers in a particular 

quarter. 
log_nr_flights_absolute The natural logarithm of the total number of flights that a particular airline offers in a particular 

quarter. 
 

8.2 Appendix B: Robustness results  
 

Table 12: Impact of CSA on several proxies of service quality. Robust standard errors in parentheses *** p<0.01, ** 
p<0.05, * p<0.1. 

 (1) (2) (3) 
Hypothesis 1A log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
CSA_dummy5 -0.00321*** -0.0460*** -0.0180** 
 (0.000845) (0.00857) (0.00752) 
Constant 4.363*** -7.487*** -5.497*** 
 (0.113) (0.880) (0.853) 
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 13: Impact of HHI on several proxies for service quality. Robust standard errors in parentheses *** p<0.01, ** 
p<0.05, * p<0.1. 

 (1) (2) (3) 
Hypothesis 1B (1) log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
log_HHI_Route -0.00412*** -0.00997 -0.0216* 
 (0.00133) (0.0127) (0.0118) 
Constant 4.388*** -7.403*** -5.366*** 
 (0.113) (0.883) (0.858) 
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 14: Impact of different measurements for market structure on the probability of arrival delays of more than 15 
minutes. Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) (4) (5) (6) (7) (8) 
         
Hypothesis 1B (2) log_HHI_route nr_carriers monopoly duopoly 

log_HHI_route 
monopoly 
duopoly 

nr_carriers 

monopoly 
log_HHI_route 

monopoly 
nr_carriers 

monopoly 
duopoly 

monopoly 

         
monopoly   -0.00587* 0.00140 -0.00233 0.00111 0.00191 0.00149 
   (0.00306) (0.00406) (0.00186) (0.00170) (0.00183) (0.00129) 
duopoly   -0.00262 0.000190   0.000462  
   (0.00165) (0.00233)   (0.00138)  
log_HHI_Route 0.00579***  0.0103***  0.00795***    
 (0.00200)  (0.00339)  (0.00285)    
nr_carriers  -0.000779  -0.000251  -0.000358   
  (0.000814)  (0.00180)  (0.00107)   
Constant -0.438*** -0.415*** -0.424*** -0.418*** -0.434*** -0.417*** -0.419*** -

0.416*** 
 (0.138) (0.138) (0.138) (0.138) (0.138) (0.138) (0.138) (0.138) 
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Observations 177,496 177,496 177,496 177,496 177,496 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 7,528 7,528 7,528 7,528 7,528 
Carrier-Route FE YES YES YES YES YES YES YES YES 
Carrier-Year-
Quarter FE 

YES YES YES YES YES YES YES YES 

Control variables YES YES YES YES YES YES YES YES 
 

Table 15: Impact of firm sizes on several proxies for service quality. Robust standard errors in parentheses *** p<0.01, ** 
p<0.05, * p<0.1 

 (1) (2) (3) 
Hypothesis 1C (1) log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
log_seat_miles_per_carrier 0.535*** 12.10*** 14.73*** 
 (0.0841) (0.792) (0.835) 
Constant -8.383*** -295.8*** -356.6*** 
 (1.986) (18.79) (19.83) 
    
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 16: Impact of different measurements for firm sizes on arrival delays of more than 15 minutes. Robust standard errors 
in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) 
Hypothesis 1C (2) Log total number of seat miles Log total number of routes Log total number of flights 
    
log_seat_miles 1.526***   
 (0.123)   
log_tot_nr_routes  2.438***  
  (0.196)  
log_nr_flights_absolute   4.741*** 
   (0.381) 
Constant -36.78*** -15.91*** -56.65*** 
 (2.907) (1.236) (4.503) 
Observations 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
Control variables YES YES YES 
 

Table 17: Impact of CSA, market structure and firm sizes on several proxies for service quality. Robust standard errors in 
parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) 
Hypothesis 1D (1) log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
CSA_dummy5 -0.00314*** -0.0459*** -0.0176** 
 (0.000845) (0.00858) (0.00753) 
log_HHI_Route -0.00405*** -0.00887 -0.0211* 
 (0.00133) (0.0127) (0.0118) 
log_seat_miles_per_carrier 0.540*** 12.11*** 14.76*** 
 (0.0841) (0.792) (0.835) 
Constant -8.474*** -296.0*** -357.0*** 
 (1.987) (18.79) (19.83) 
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 9: Impact of different measurements for firm sizes and CSA on the probability of arrival delays of more than 15 
minutes. Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 (1) (2) (3) (4) (5) (6) 
Hypothesis 1D (2) mono mono duo mono HHI mono duo HHI log_tot_nr_routes_per_carrier log_nr_flights_absolute 
       
CSA_dummy5 -0.00518*** -0.00520*** -0.00523*** -0.00515*** -0.00524*** -0.00524*** 
 (0.00137) (0.00137) (0.00138) (0.00137) (0.00138) (0.00138) 
monopoly 0.00157 0.00216 -0.00230 -0.00556*   
 (0.00129) (0.00183) (0.00186) (0.00305)   
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duopoly  0.000640  -0.00242   
  (0.00138)  (0.00165)   
log_seat_miles_per_carrier 1.525*** 1.524*** 1.519*** 1.520***   
 (0.123) (0.123) (0.123) (0.123)   
log_HHI_Route   0.00804*** 0.0102*** 0.00591*** 0.00591*** 
   (0.00285) (0.00338) (0.00201) (0.00201) 
log_tot_nr_routes_per_carrier     2.426***  
     (0.196)  
log_nr_flights_absolute      4.719*** 
      (0.381) 
Constant -36.75*** -36.74*** -36.64*** -36.64*** -15.88*** -56.42*** 
 (2.908) (2.908) (2.909) (2.909) (1.237) (4.505) 
Observations 177,496 177,496 177,496 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 7,528 7,528 7,528 
Carrier-Route FE YES YES YES YES YES YES 
Control variables YES YES YES YES YES YES 
Carrier-Year-Quarter FE YES YES YES YES YES YES 
 

Table 10: Impact of CSA for different competition levels on several proxies of service quality. Robust standard errors in 
parentheses *** p<0.01, ** p<0.05, * p<0.1 

 (1) (2) (3) 
Hypothesis 2 (1) log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
CSA_dummy5 -0.00196* -0.0345*** -0.00224 
 (0.00107) (0.0106) (0.00935) 
log_HHI_Route -0.00443*** -0.0125 -0.0261** 
 (0.00133) (0.0128) (0.0120) 
log_seat_miles_per_carrier 0.540*** 12.11*** 14.76*** 
 (0.0841) (0.792) (0.835) 
CSA5_x_log_HHI_Route 0.00316** 0.0304** 0.0411*** 
 (0.00157) (0.0155) (0.0139) 
Constant -8.477*** -296.0*** -357.1*** 
 (1.987) (18.79) (19.83) 
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 20: Impact of different measurements of CSA for different competition levels on the probability of arrival delays of 
more than 15 minutes. Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) (4) (5) (6) 
Hypothesis 2 (2) mono mono duo mono HHI mono duo HHI log_tot_nr_routes_per_carrier log_nr_flights_absolute 
       
CSA_dummy5 -0.00924*** -0.00840*** -0.0112*** -0.0111 -0.00210 -0.00210 
 (0.00163) (0.00241) (0.00372) (0.00713) (0.00172) (0.00172) 
monopoly 0.000282 0.00119 -0.00391** -0.00678**   
 (0.00133) (0.00186) (0.00194) (0.00320)   
duopoly  0.00103  -0.00215   
  (0.00141)  (0.00172)   
CSA5_x_monopoly 0.00915*** 0.00829*** 0.0111*** 0.0110   
 (0.00203) (0.00271) (0.00383) (0.00714)   
CSA5_x_duopoly  -0.00129  7.52e-05   
  (0.00259)  (0.00379)   
log_seat_miles_per_carrier 1.525*** 1.524*** 1.519*** 1.520***   
 (0.123) (0.123) (0.123) (0.123)   
log_HHI_Route   0.00855*** 0.0105*** 0.00491** 0.00491** 
   (0.00293) (0.00351) (0.00203) (0.00203) 
CSA5_x_log_HHI_Route   -0.00277 -0.00274 0.00843*** 0.00843*** 
   (0.00477) (0.00688) (0.00254) (0.00254) 
log_tot_nr_routes_per_carrier     2.427***  
     (0.196)  
log_nr_flights_absolute      4.720*** 
      (0.381) 
Constant -36.76*** -36.75*** -36.64*** -36.64*** -15.88*** -56.44*** 
 (2.908) (2.908) (2.910) (2.909) (1.237) (4.505) 
Observations 177,496 177,496 177,496 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 7,528 7,528 7,528 
Carrier-Route FE YES YES YES YES YES YES 
Control variables YES YES YES YES YES YES 
Carrier-Year-Quarter FE YES YES YES YES YES YES 
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Table 21: Impact of CSA for different firm sizes on several proxies of service quality. Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 (1) (2) (3) 
Hypothesis 3 (1) log_total_actual_time log_dep_delay_new log_arr_delay_new 
    
CSA_dummy5 0.124*** 1.508*** -0.0264 
 (0.0377) (0.428) (0.379) 
log_HHI_Route -0.00405*** -0.00886 -0.0211* 
 (0.00133) (0.0127) (0.0118) 
log_seat_miles_per_carrier 0.540*** 12.11*** 14.76*** 
 (0.0841) (0.792) (0.835) 
log_CSA5_x_seat_miles -0.00534*** -0.0655*** 0.000369 
 (0.00159) (0.0180) (0.0159) 
Constant -8.475*** -296.0*** -357.0*** 
 (1.987) (18.79) (19.83) 
Observations 177,496 177,496 177,496 
R-squared 0.209 0.225 0.227 
Number of rcid 7,528 7,528 7,528 
Carrier-Route FE YES YES YES 
Control variables YES YES YES 
Carrier-Year-Quarter FE YES YES YES 
 

Table 22: Impact of different measurements of CSA for different firm sizes on the probability of arrival delays of more than 
15 minutes. Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 (1) (2) (3) (4) (5) (6) 
Hypothesis 3 (2) mono mono duo mono HHI mono duo HHI log_tot_nr_routes_per_carrier log_nr_flights_absolute 
       
CSA_dummy5 -0.0692 -0.0692 -0.0713 -0.0718 0.0248 0.00562* 
 (0.0668) (0.0668) (0.0669) (0.0668) (0.0157) (0.00292) 
monopoly 0.00156 0.00214 -0.00232 -0.00559*   
 (0.00129) (0.00183) (0.00186) (0.00305)   
duopoly  0.000639  -0.00243   
  (0.00138)  (0.00165)   
log_seat_miles_per_carrier 1.525*** 1.524*** 1.519*** 1.520***   
 (0.123) (0.123) (0.123) (0.123)   
log_CSA5_x_seat_miles 0.00270 0.00270 0.00278 0.00281   
 (0.00280) (0.00280) (0.00281) (0.00281)   
 (0.00148) (0.00148) (0.00148) (0.00147) (0.00148) (0.00148) 
 (0.00297) (0.00298) (0.00298) (0.00298) (0.00298) (0.00298) 
log_HHI_Route   0.00806*** 0.0102*** 0.00596*** 0.00610*** 
   (0.00285) (0.00339) (0.00201) (0.00201) 
log_tot_nr_routes_per_carrier     2.427***  
     (0.196)  
log_CSA5_x_tot_routes     -0.00487*  
     (0.00249)  
log_nr_flights_absolute      4.720*** 
      (0.381) 
CSA5_x_nr_flights_absolute      -6.76e-08*** 
      (1.46e-08) 
Constant -36.75*** -36.74*** -36.64*** -36.64*** -15.88*** -56.44*** 
 (2.908) (2.908) (2.909) (2.909) (1.237) (4.506) 
Observations 177,496 177,496 177,496 177,496 177,496 177,496 
R-squared 0.225 0.225 0.225 0.225 0.225 0.225 
Number of rcid 7,528 7,528 7,528 7,528 7,528 7,528 
Carrier-Route FE YES YES YES YES YES YES 
Control variables YES YES YES YES YES YES 
Carrier-Year-Quarter FE YES YES YES YES YES YES 
 

8.3 Appendix C: Remaining tables and figures 
 

Table 23: Metropolitan Area, Airport Code and Population for 2003 and 2016 

City, state Airport Code Population 2003 Population 2016 
New York EWR, JFK, LGA 18671320 20153634 
Los Angeles, CA LAX, BUR, LGB, SNA 12717433 13310447 
Chicago, IL MDW, ORD 9286162 9512999 
Philadelphia, PA PHL 5787788 6070500 
Dallas, TX DAL, DFW 5582033 7233323 
Miami, FL FLL, MIA 5280671 6066387 
Washington, DC DCA, IAD 5086376 6131977 
Houston, TX HOU, IAH 5084017 6772470 
Atlanta, GA ATL 4673146 5789700 
Detroit, MI DTW 4492756 4297617 
Boston, MA BOS, PVD 4458187 4794447 
Oakland, CA OAK 4153143 4679166 
San Francisco, CA SFO, NT 4153143 4679166 
Phoenix, AZ PHX 3600163 4661537 
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Seattle, WA SEA 3138938 3798902 
Minneapolis, MN MSP 3078253 3551036 
San Diego, CA SAN 2926814 3317749 
St. Louis, MO STL 2743862 2807002 
Baltimore, MD BWI 2621815 2798886 
Tampa, FL TPA 2522780 3032171 
Pittsburgh, PA PIT 2400193 2342299 
Denver, CO DEN 2297441 2853077 
Cleveland, OH CLE 2136026 2055612 
Cincinnati, OH CVG 2066256 2165139 
Portland, OR PDX 2034000 2424955 
Sacramento, CA SFM 1967052 2296418 
Kansas City, KS MCI 1912368 2104509 
San Antonio, TX SAT 1808267 2429609 
Orlando, FL MCO 1803474 2441257 
San Jose, CA SJC 1723138 1978816 
Columbus, OH CMH 1678827 2041520 
Virginia Beach, VA ORF 1631596 1726907 
Indianapolis, IN IND 1600165 2004230 
Las Vegas, NV LAS 1572924 2155664 
Milwaukee, WI MKE 1528417 1572482 
Charlotte, NC CLT 1436890 2474314 
Nashville, TN BNA 1386743 1865298 
Austin, TX AUS 1382693 2056405 
New Orleans, LA MSY 1312039 1268883 
Memphis, MS MEM 1238075 1342842 
Jacksonville, FL JAX 1194706 1478212 
Louisville, KY SDF 1190011 1283430 
Hartford, CT BDL 1173575 1206836 
Buffalo, NY BUF 1154212 1132804 
Richmond, VA RIC 1139312 1281708 
Oklahoma City, OK OKC 1131487 1373211 
Birmingham, AL BHM 1073439 1147417 
Rochester, NY ROC 1039674 1078879 
Salt Lake City, UT SLC 1016377 1186187 
Tucson, AZ TUS 903320 1016206 
Raleigh-Cary, NC RDU 889313 1302946 
Hawaii, HA KOA, LIH, OGG, HNL 888026 992605 
Tulsa, OK TUL 876919 987201 
ALBANY, NY ALB 839741 881839 
Omaha, NE OMA 790535 924129 
Albuquerque, NM ABQ 766154 909906 
El Paso, TX ELP 694672 841971 
Wichita, KS ICT 579800 644672 
Colorado Springs, CO COS 572399 712327 
Boise, ID BOI 510,787 691423 
Fort Myers, FL RSW 490,139 722336 
Dayton, OH DAY 465,989 637674 
Spokane, DC GEG 430,867 556634 
Lexington, KY LEX 426187 506751 
Reno, NE RNO 374743 457667 
Anchorage, AL ANC 339131 402557 

 


