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Abstract 
 
This paper performs new and more robust tests of the QALY model when health varies 
over time. Our tests require no confounding assumptions and are robust to violations of 
expected utility. Our results support the use of QALYs at the aggregate level, i.e. in 
economic evaluations of health care. At the individual level, the support for QALYs is 
less convincing. The individual data are, however, largely consistent with a more general 
QALY-type model that remains tractable in applications. 
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1. Introduction 
 
Recently, many methodological improvements have been made to advance the tools of 
economic evaluation in health care. Nevertheless, some pressing questions remain. 
Perhaps the most important question that remains unsettled is how the benefits of health 
care should be valued. The most common approach is to value these benefits in terms of 
utilities and the utility model that is most widely used is the quality-adjusted life-years 
(QALY) model. This model makes several simplifying assumptions. For chronic health 
states these assumptions have been tested experimentally and generally found to be 
invalid. As an implication, several alternative models have been proposed. Nonetheless, 
most of the studies assumed expected utility (EU) as a descriptive theory of individual 
choice. Correcting for some common violations of the EU resulted in support for the 
QALY model (Doctor et al., 2004), which suggests that violations of expected utility may 
have confounded other results. 
 
Remarkably, a similar exercise has not been performed for the clinically more realistic 
case when health varies over time (although chronic health QALYs are a special case of 
variable health QALY model, therefore violations of the former are also violations of the 
latter). The few studies that have performed tests of the QALY model when health varied 
over time made simplifying assumptions which may have confounded their results. The 
only study that performed an axiomatic test of the QALY model (Spencer 2003a) 
obtained inconclusive results. As in the chronic case, her tests critically depend on the 
validity of expected utility, which is known to be invalid as a descriptive theory of 
decision under risk.  
 
In this paper we examine the preference foundations of the QALY model when health 
varies over time. Our tests explicitly correct for violations of expected utility and are 
based on the axiomatization of the variable-health QALYs under general utility model of 
Bleichrodt and Quiggin (1997). Their model contains EU and many non-EU models as 
special cases. Importantly, their model includes prospect theory (Kahneman and Tversky, 
1979; Tversky and Kahneman, 1992), currently the most popular descriptive theory of 
decision under risk.  
 
The aim of the paper is to evaluate the descriptive validity of the QALY model when 
health varies over time, at the aggregate as well as individual level. While aggregate 
preferences constitute an important input to policy decision making, for example about 
reimbursement of novel interventions, individual validity of QALYs has important 
implications for their use as a basis for medical decision making at the point of care and 
for facilitating informed choice by patients themselves. 
 
The structure of the paper is following. In section 2, we introduce theory and notation 
behind our experimental tests, based mainly on Bleichrodt and Quiggin’s (1997) paper. 
We review existing – mixed – empirical evidence on the valuation of variable health in 
section 3. Design of our experiment is described in section 4, while the section 5 presents 
results and their analysis at the aggregate as well as individual level. The discussion of 
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the results and possible conclusions which can be drawn from them are presented in 
sections 6 and 7, respectively. 
 
 
2. Theory and notation 
 
Let q = (q1,…,qT) denote a health profile that gives health state qt at period t. T denotes 
the last period of life of the decision maker. In our experiment we will only consider 
health profiles consisting of three periods and, hence, we will take T=3 in what follows. 
A binary prospect (p:q; r) gives health profile q with probability p and health profile r 
with probability 1 − p. Throughout the paper we will only use prospects involving at most 
two different outcomes and, consequently, we restrict attention to binary prospects.  
 
A preference relation í is given over the set of binary prospects. The conventional 
notation ê and ~ is used to denote strict preference and indifference. By restricting 
attention to constant prospects, i.e. prospects for which q = r or for which p = 0 or p = 1, 
a preference relation over outcomes can be defined, which we also denote by í. It is 
implicit in the notation (p:q;r) that q í r, i.e. all prospects are rank-ordered. 
 
We assume that a prospect (p:q;r) can be evaluated as  

 
πU(q) + (1−π)U(r)        (1) 

 
and choices and preferences correspond with this evaluation. In Eq.1, π is a decision 
weight assigned to the outcome that obtains with probability p. This decision weight is 
entirely general. We will refer to Eq.1 as general rank-dependent utility (GRU). Equation 
1 is consistent with many theories of decision under risk. For example, if π = p then Eq.1 
reduces to expected utility and if π = w(p), with w a probability weighting function, then 
Eq.1 reduces to rank-dependent utility and prospect theory for outcomes of the same sign. 
Eq. 1 was first suggested by Miyamoto, 1988, and was subsequently used by Miyamoto 
and Wakker, 1996 and Bleichrodt and Quiggin, 1997. 
 
Under the QALY model the function U(⋅) in Eq.1 is additive: 
 

U(q) = ∑
T
;t=1Vt(qt)        (2) 

 
where the functions Vt can be period-specific. Often a more restrictive QALY model is 
used where the functions Vt are common for all periods and a constant discount factor is 
applied to all periods: 
 

U(q) = ∑
T
;t=1δ

t-1V(qt).        (3) 
 
The focus in this paper is on Eq.2, which captures the essential idea of QALYs of 
additivity over time. Bleichrodt and Gafni, 1996 showed how Eq.3 can be obtained from 
Eq.2 by adding one additional preference condition. 



 5

Let aivjq denote the health profile q with qi replaced by ai and qj replaced by vj, i,j 
∈{1,2,3}, i≠j. For example, if i =1, j = 2, then aivjq = (a1,v2,q3). Consider the following 
condition: 
 
Definition 1: the preference relation í satisfies generalized marginality (GM) when for 
all  i,j ∈{1,2,3}, i≠j, and for all health profiles q, health states a,b,c,d,v,w,x,y, and for all 
p: 
(p:aivjq; biwjq) í (p:civjq; diwjq) ⇔ (p:aixjq; biyjq) í (p:cixjq; diyjq). 
 
It is easy to show that under GRU, the QALY model (Eq.2) implies generalized 
marginality. Let k ≠ i,j. Under GRU and the QALY model, (p:aivjq; biwjq) í (p:ciwjq; 
dixjq) implies that 
 

π(Vi(ai) + Vj(vj) + Vk(qk)) + (1−π)(Vi(bi) + Vj(wj) + Vk(qk)) ≥ 
   π(Vi(ci) + Vj(vj) + Vk(qk)) + (1−π)(Vi(di) + Vj(wj) + Vk(qk))       (4a) 

 
or 
 

πVi(a1) + (1−π)Vi(bi) ≥ πVi(ci) + (1−π)Vi(di)     (4b) 
 
Eq. 4b implies that 
 

π(Vi(ai) + Vj(xj) + Vk(qk)) + (1−π)(Vi(bi) + Vj(yj) + Vk(qk)) ≥ 
       π(Vi(ci) + Vj(xj) + Vk(qk)) + (1−π)(Vi(di) + Vj(yj) + Vk(qk))    

 
and thus (p:aixjq; biyjq) í (p:cixjq; diyjq). 
 
Bleichrodt and Quiggin (1997, Theorem 4) showed that under GRU, the QALY model 
not only implies generalized marginality, but generalized marginality also implies the 
QALY model. Hence, generalized marginality is the central condition of the QALY 
model. 
 
We next define utility independence. Let J be a subset of {1,2,3} and let q and k be two 
health profiles. By kJq we denote the health profile q with qj replaced by kj for all j in J. 
For example, if J = {1,3} then kJq = (k1,q2,k3).  
 
Definition 2:  The preference relation í satisfies utility independence (UI) if for all 
subsets J of {1,2,3}, for all health profiles k,l,m,n,q,r, and for all probabilities p: 
 

(p:kJq; lJq) í (p:mJq; nJq) ñ (p:kJr; lJr) í (p:mJr; nJr). 
 
In other words, time periods during which all health profiles yield the same health state 
do not affect preferences. Utility independence is less restrictive than generalized 
marginality: generalized marginality implies utility independence but the reverse is not 
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true. Miyamoto and Wakker (1996, Theorem 4) showed that if utility independence holds 
but generalized marginality is violated then 
 

U(q) = ∏
T
;t=1Vt(qt).        (5) 

 
Equation 5 is still a tractable model. Consequently, not all is lost when generalized 
marginality is violated. Spencer and Robinson, forthcoming tested for utility 
independence and found support for it in 6 out of 8 tests. Our tests of utility independence 
differed in several respects from the tests in Robinson and Spencer as we will explain in 
Section 4. 
 
Guerrero and Herrero, 2005 further relaxed utility independence and only imposed it for 
initial health states. They showed that even then a reasonably tractable model results. 
Their condition is hard to test empirically because it involves dynamic decisions and tests 
of their model require the comparison of choices made at different points in time. We do 
not consider their model in this paper. 
 
3. Existing empirical evidence 
 
Empirical evidence provides only mixed support for the QALY model as a descriptive 
model of choice regarding chronic health states (Tsuchiya and Dolan, 2005). Similar 
evidence is scarce with respect to the decisions about variable health. In particular, 
conditions underlying the QALY model for variable health have not been, with a single 
exception, tested in an axiomatic setting. 
 
Nonetheless, a body of research in the psychology of decision making suggests that 
people pay attention to some characteristics of sequences that are not readily captured by 
standard models based on the UI of individual periods. In particular, people care about 
“improvement and deterioration over time, and peak and end levels”, rather than just the 
sum of time-specific utilities (Ariely and Loewenstein, 2000, p. 508). These so-called 
sequencing effects have also been documented in health (Ross and Simonson, 1991; 
Kahneman et al, 1993; Gafni, 1995; Chapman, 2000).  
 
Two types of approaches can be used to evaluate the descriptive validity of the QALY 
model for variable health. The more common approach compares direct valuation of the 
health profile with valuation derived from its constituent health states using the additive 
formula. Assuming zero discounting, additive separability means that the value of a 
complete health profile would be equal to the sum of the values of its constituent health 
states, irrespective of the order of the states. If there is nonzero discounting, the value of 
the health profile depends exclusively on the time-specific weights and values of the 
health states that make up the health profile.  
 
Nonetheless, the two values may differ not only because the model is violated, but also 
due to other confounding factors. In particular, it requires specific assumptions about 
discounting. On the other hand, axiomatic studies test preference foundations of the 
model directly, i.e. they test necessary and sufficient conditions stated in terms of 
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observable preferences which hold if and only if a model in question holds. This 
approach has several advantages. By making its assumptions explicit and behaviorally 
observable, it allows not only to test the model, but also to identify which of these 
assumptions are empirically justified. Furthermore, it prevents many of the decision 
biases due to the fact that all experimental stimuli are similar, i.e. it does not require that 
both health states and health profiles are used in an experiment. Last but not least, it 
requires fewer assumptions about specific aspects of individual decision making not 
related to the model, for example about those related to time preference. 
 
Several studies attempted to determine experimentally whether the sequence of 
presentation of states in a health profile would affect the valuations assigned to them. In a 
study by Krabbe and Bonsel (1998), a small effect of the sequence of the tradeoffs was 
detected at the group level even after accounting for discounting effects. Individual level 
data suggested that this is due to two groups of respondents who were sensitive to the 
sequence of events. One group preferred the best years first; the other group preferred the 
reverse sequence. Nonetheless, the majority of the respondents were indifferent to the 
sequence. 
 
Richardson and others (1996) interviewed a sample of women who did not have breast 
cancer to value 4 breast cancer–related health scenarios using VAS, TTO, and SG. Using 
specific assumptions about discounting, they found that the number of QALYs calculated 
indirectly from the individual health states was 30% to 50% higher than the number of 
QALYs calculated from the direct value of the profile.  
 
Kuppermann and others (1997) interviewed pregnant women and let them value (using 
VAS and SG) 8 health “paths” related to the pregnancy. At the individual level, 
preferences were not additive, without any pattern emerging from the data. Additivity 
was also violated at the aggregate level, although it was possible to infer the mean value 
of the health profiles from individual states under different assumptions. Generally, 
individual values tend to overvalue the health profiles assessed directly. 
 
MacKeigan and others (1999) presented diabetics with nine health profile covering 30 
years and followed by death and asked them to value these by VAS and TTO. They 
found that the indirect and direct values obtained were not statistically significantly 
different from one another. On the other hand, the correspondence between the two 
methods was weak.  
 
According to our knowledge, only a handful of studies performed axiomatic tests of the 
conditions underlying the QALY model. In a study by Treadwell (2000) testing 
preference independence (a condition stating that if two profiles have the same health 
state during a certain period, the preference between them does not switch if the health 
state in that period changes to some other common health state), psychology students 
were asked to choose between the pairs of health profiles. Each task was accompanied by 
a similar task in which, should the preference independence hold, subjects should choose 
a specific profile (i.e. if they chose A over B in one task, they should choose A’ over B’ 
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in the other). Although the results were mixed, the independence assumption was more 
commonly satisfied than it was violated. 
 
Treadwell (1998) tested the preferential independence condition on a sample of 98 
subjects. In his first experiment, the condition was satisfied in all 27 tests. Second 
experiment, designed specifically to be sensitive to violations of preference 
independence, yielded similar results.  
 
Spencer (2003a) conducted interviews with the sample of 29 residents of York 
participating in a pilot Health and Safety study. She tested for additive independence in 
two ways while controlling for risk attitude and time preference. Her results were 
inconclusive; the first test, using the SG method, rejected additive independence 
assumption, while the second failed to provide clear-cut results. However, the validity of 
Spencer tests depend critically upon the validity of expected utility theory, which is 
known to be a flawed descriptive model of human decision making under risk. 
 
A paper by Spencer and Robinson (2007) tested utility independence in an axiomatic 
setting. They first conducted 5 tests of utility independence using a standard gamble 
method on a sample of 64 subjects. Due to the concerns about ordering effects, they 
conducted a second study in which 3 of the tests were repeated in random order to 
prevent these effects. In most of the tests, utility independence has been satisfied. 
 
 
4. Experiment 
 
Participants 
 
Participants in the experiment were students at Erasmus University Rotterdam. They 
were compensated by a gift certificate worth 10 euros. In total, 60 subjects participated, 
30 males and 30 females. The median age of the subjects was 22 years. Three participants 
had to be excluded from the analysis either for not cooperating, or for apparent use of an 
extremely simple heuristic (targeting 100% or 0% in all tasks).  
 
Research design 
 
We elicited indifference probabilities between prospects involving health profiles using a 
standard-gamble method. If the respective condition (UI or GM) being tested holds, the 
elicited probabilities in the two decision tasks corresponding to the left-hand and right-
hand side of formula 3 and 5 should be the same.  
 
Bleichrodt and Quiggin specified the QALYs under uncertainty rather than risk. 
Although their specification is more general (risk is a special case of uncertainty), it also 
makes it difficult to manipulate the experimental situation in a way that allows for 
systematic elicitation of preferences. Therefore, in our experiment decision tasks were 
presented with specific probabilities, rather than using state-contingent prospects as in 
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their paper. Probabilities presented in both options of the decision task were the same, to 
indicate that corresponding states of the world used were identical.  
 
To describe health states, we needed a descriptive system in which it is possible to 
unequivocally rank health states from best to worse and which is at the same time 
reasonably realistic. This latter requirement is even more important because our sample 
consisted of college students, usually with limited experience with more severe health 
limitations. Instead of using clinically realistic descriptions, we used the generic EuroQol 
system, which describes states of health along five functional dimensions – mobility, self 
care, daily activities, pain and anxiety/depression (Dolan, 1997). Outcomes on each of 
these dimensions can be coded into three levels: no problems, some problems and severe 
problems. In our study, we used only the former two; our goal was to elicit preferences 
with regard to moderate health states, which can be imagined more easily by a healthy 
population. 
 
Four distinct health states were used in the experiment. Each health state was labeled 
using capital letters from the middle of the alphabet, minimizing potential distortive 
associations with some other letters (D – death, etc.). The EuroQoL system was 
introduced in the initial instructions and, throughout the experiment, subjects had the 
descriptions of the health states available on paper cards in front of them. Health states 
are summarized in Table 1 and reproduced in Annex 1. 
 

Table 1: Description of health states used in the experiment 
 

Label Color EuroQoL 
code 

EuroQoL 
utility 

K Green 11111 1.000 
L Yellow 11121 0.850 
M Orange 11122 0.722 
N Red 12222 0.551 

 
Due to the fact that we used axiomatization of the QALY model under generalized RDU, 
it was important to take into account rank-ordering of the prospects. To prevent changes 
in decision weights due to rank reversals, we maintained rank-ordering of the health 
profiles throughout the study. Health states were uniquely ordered in terms of utility by 
using worse or equal rating on each EuroQoL dimension in each of the lexicographically 
ordered health states (e.g. K was weakly preferred to L on each of the EuroQoL 
dimensions). Analogously, the ordering of health profiles in a certain decision task was 
uniquely determined by using worse or equal health states in each of the subsequent 
health profiles (e.g. KMN was weakly preferred to MMN because in each of the periods, 
the former allowed to live in the same or better health state than the latter). As a result, 
the four outcomes (health profiles) satisfied the ordering in Table 2 in each of the choice 
situations. One prospect (labeled “Option”) in a certain task did not dominate the other; 
otherwise it would not be possible to elicit indifferences. 
 

Table 2: Rank-ordering of health profiles in a decision task 
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 Left column Right column 
Option A Best option Worst option 
Option B Second-best option Second-worst option 

 
Health states were assigned colors (green the best, red the worst, yellow and orange in 
between) in an order which – based on pilots – was considered intuitive. Although 
increasing the possibility of invoking idiosyncratic preferences, color-coding was 
introduced to facilitate decision making in a cognitively demanding situation.  
 
Health profiles were represented by rows of successive boxes labeled by capital letters. 
Each box represented a health state described on one of the cards. Each health profile 
consisted of three periods, each lasting for 20 years. A screenshot of a choice situation is 
in Figure 1.  
 

Figure 1: Screenshot of a decision task 
 

 
 
Subjects were asked to make a series of hypothetical choices between two options 
presented on a computer screen. Each of the options gave the subject a probability to live 
in a certain health profile, starting today, and a complementary probability to live in a 
different health profile. Thus, we presented subjects with a standard gamble question with 
two prospects.  
 
Initial probabilities were determined by chance. Based on a subject’s current and 
immediately preceding choice in a particular decision task, the probabilities were 
adjusted after each choice according to the midpoint elicitation procedure. The procedure 
consists of a series of binary choices, with probabilities in subsequent steps determined as 
an average (midpoint) of those presented in the last two steps. Threshold probability 
difference between two last choices representing indifference was set to 5 percent, i.e. if 
the difference between the probability to be used in a current step and the one used in the 
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last was lower than 5, the procedure is terminated and the midpoint between the two 
probabilities is assumed to represent indifference.  
 
Thus, possible error solely due to the (in)sensitivity of measurement was 8 percentage 
points (double the error in a single task, because we were comparing indifference 
probabilities between two corresponding tasks). This might look like a non-negligible 
difference; however, our pilots suggested that it would be unrealistic to expect subject to 
have more accurate, consistent cognitive representation of probabilities in decisions tasks 
of similar complexity. Table 3 presents health profiles that were used in test (decision 
trees for GM tasks are reprinted in Annex 3). Health states common to all health profiles 
used in a particular pair of decision tasks are underlined. 
 

Table 3: Health profiles used in GM tasks 
 

  Best 
outcome  

Intermediate 
outcome 

Intermediate 
outcome 

Worst 
outcome 

1 A KMN MMN MNN NNN 
B KKN MKN MMN NMN 

2 A KKM KLM KMN KNN 
B KKL KMM KLL KNM 

3 A KLL  KLM LLM LLN 
B KLL KLM  MLM MLN 

 
UI was tested in a similar manner. Rank-ordered prospects in a standard-gamble setting 
were based on formula 5. Specific decision tasks used in the experiment are exhibited in 
Table 4 (again, common outcomes are underlined). Decision trees for UI tasks are 
reprinted in Annex 4. 
 

Table 4: Health profiles used in UI tasks 
 

  Best 
outcome  

Intermediate 
outcome 

Intermediate 
outcome 

Worst 
outcome 

1 A LLM LMM MMM MNM 
B LLN LMN MMN MNN 

2 A KKL KML KMN KNN 
B LKL LML LMN LNN 

3 A LKN LMN LMN LNN 
B NKM NMM NMM NNM 

4 A KML KMM KMM KMN 
B MLL MLM MLM MLN 

 
Procedure 
 
The experiment was computerized; however, both the possibility of misunderstanding the 
instructions and the level of difficulty of the choice tasks posed significant challenges for 
individual administration. To prevent unreliable answers, which could have been caused 
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in the beginning by not understanding the structure of the decision situation properly, and 
towards the end by the repetitive nature of the tasks, an experimenter was always present. 
He was not only reading the instructions and explaining the questions, but also operating 
the computer for the subject. We limited the experimenter’s involvement to reading or 
rephrasing the instructions, and minimized any kind of other communication. 
 
Before data collection, the program was piloted among graduate students at EUR. 
Improvements aimed at improving cognitive processing of the tasks suggested during the 
pilot were implemented.  
 
The experiment began with an introduction motivating the experiment, explaining the 
idea of hypothetical questions in health, showing definitions of health states and giving 
the opportunity to practice a standard gamble question. 

 
Actual testing consisted of 4 pairs of UI tasks and 3 pairs of GM pairs. The tasks were 
presented in a random fashion. Initial probabilities of living in different health profiles 
were also determined at random. 
 
After eliciting indifference, the first choice in the task was repeated as a consistency 
check. If answered differently than in the beginning, the elicitation process was repeated 
again. We recorded the number of reversals of the original choices for each of the 
subjects. If the subject answered consistently, the program moved on to the next task. As 
a consistency test at the decision-task level, we also repeated one GM question and one 
UI question (GM1A and UI4B).  
 
The median duration of the experiment was 40 minutes. Furthermore, it consisted of three 
parts – instructions and practice questions, data collection for the experiment reported 
here, and data collection for an unrelated experiment in decision making in health. Actual 
collection of the data for the experiment reported in this paper took approximately 15-20 
minutes.  
 
 
5. Results 
 
Basic descriptives and consistency checks 
 
Basic descriptive statistics of the elicited indifference probabilities can be found in Table 
5 and 6. All mean and median values fall in the interval between 53 and 66; interestingly, 
none of them is bellow 50%. 
 

Table 5: Descriptives for GM tests 
                

  
Profile 

1 
Profile 

2 
Profile 

3 
Profile 

4 Mean Median IQR 
GM1A MMN MNN KMN NNN 53.70 54 32-76 
GM1B MKN MMN KKN NMN 55.53 56 44-67 
GM2A KLM KMN KKM KNN 62.26 61 52-75 
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GM2B KLL KMM KKL KNM 61.30 62 48-74 
GM3A KLM LLM KLL LLN 61.19 61 47-74 
GM3B KLM MLM KLL MLN 62.58 61 50-78 
Consistency check (GM1A) KLM MLM KLL MLN 58.74 58 44-70 

 
 

Table 6: Descriptives for UI tests 
                

  
Profile 

1 
Profile 

2 
Profile 

3 
Profile 

4 Mean Median IQR 
UI1A LLM MNM LMM MMM 59.56 58 51-70 
UI1B LLN MNN LMN MMN 62.75 62 52-76 
UI2A KKL KNN KML KMN 63.40 66 52-74 
UI2B LKL LNN LML LMN 55.91 54 44-70 
UI3A LKN LNN LMN LMN 58.67 61 48-70 
UI3B NKM NNM NMM NMM 55.49 57 39-68 
UI4A KML KMN KMM KMM 64.28 62 54-75 
UI4B MLL MLN MLM MLM 61.39 62 50-72 
Consistency check (UI3B) NKM NNM NMM NMM 62.02 60 50-71 

 
 
At the aggregate level, consistency appears to be a problem. For the GM task, we rejected 
the consistency check, using a non-parametric test but not a parametric test (which 
suggests that the difference was driven by outliers; difference between means was 5.04, 
medians 4 percentage points). Similarly, consistency check for the UI task was rejected 
parametrically and non-parametrically at the .05 level, but not non-parametrically at .01 
level (difference between means was 6.53, medians 3 percentage points). 
 
Subjects exhibited only moderate tendency to reverse their initial choices (median subject 
reversed it only once out of 16 tasks, and the mean number of reversals was 1.81 per 
subject). We recorded reversals of initial choice in 11.29% of the decision tasks (103 
reversals out of 16 tasks x 57 subjects = 912 tasks). It suggests that understanding of the 
tasks was accurate. It also implies that mistakes were rare when probabilities differed 
significantly from indifference, as was usually the case with initial choices. 
 
Aggregate-level analysis 
 
To perform parametric tests of the difference between the corresponding pairs of tasks at 
the aggregate level, normality of the distribution of elicited values has to be satisfied. 
After performing both Skewness/Kurtosis and Shapiro-Wilk W tests for normality (Table 
7 and 8), we conclude that with a possible exception of the first GM task, we cannot 
reject the null hypothesis that distributions are normal. The case of the GM task may 
appeared by chance due to the fact that we tested 16 questions for significance.Therefore, 
it was justified to use a t-test for testing the difference of means.1 

                                                 
1 Throughout this section, significance at .05 level is indicated by *, 0.01 level by **. 



Table 7: Normality tests, GM tasks 
          
Variable p(S-K 

test) 
  p(S-W 

test) 
  

GM1A 0.005 ** 0.048  
GM1B 0.927  0.995  
GM2A 0.771  0.751  
GM2B 0.328  0.128  
GM3A 0.670  0.223  
GM3B 0.792  0.204  
Consistency 
check 

0.438   0.149   

 
 

Table 8: Normality tests, UI tasks 
        
Variable p(S-K 

test) 
  p(S-W test) 

UI1A 0.806  0.392
UI1B 0.865  0.881
UI2A 0.791  0.742
UI2B 0.836  0.742
UI3A 0.991  0.574
UI4B 0.932  0.932
UI4A 0.798  0.502
UI4B 0.436  0.220
Consistency 
check 

0.347   
0.196

 
GM condition was satisfied at the aggregate level. Using a standard t-test, we were not 
able to reject at .05 confidence level the null hypothesis that the mean probability is equal 
between the pairs of tasks. Using non-parametric Wilcoxon signed-rank test yield similar 
results - we did not reject the condition at the .05 level.  
 

Table 9: Tests of GM at the aggregate level 
         
  Parametric  Non-parametric   
GM1 0.604  0.484  
GM2 0.766  0.429  
GM3 0.629  0.614  
Consistency 
check 0.064  0.038 * 

 
Testing – less restrictive – UI generally satisfied the condition, with a single exception. In 
the second UI task, the condition was strongly rejected parametrically and non-
parametrically.  
 

Table 10: Tests of UI at the aggregate level 
          

  Parametric   
Non-
parametric   

UI1 0.237  0.380  
UI2 0.008 ** 0.016 *
UI3 0.214  0.369  
UI4 0.239  0.116  
Consistency 
check 0.005 ** 0.011 *

 
Nonetheless, the general pattern of not rejecting the two conditions may have been 
caused by limited statistical power of the tests rather than by the fact that the model 
represents subjects’ preferences. Sample size may have been too small, or variation of 
elicited probabilities too high to reject the hypothesis (confidence intervals were quite 
wide, Figure 2 and 3). 
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Figure 2: Median indifference 

probabilities and confidence intervals 
 

UI4UI3UI2UI1GM3GM2GM1

Task

70

60

50

40

Medians of B
Medians of A

95% upper bound
95% lower bound

95% upper bound
95% lower bound

Median

 

Figure 3: Mean indifference probabilities 
and confidence intervals 
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On the other hand, our sample size with a standard deviation of 15 would have enough 
power to detect a difference in aggregate values of 6 percentage points or higher (α = .05, 
1 - β = .80). Therefore, not finding many violations of either of the conditions is probably 
not due to the limited power of our tests. 
 
Furthermore, subjects may have tended to adjust their choices towards the 50% 
probability, especially in cognitively demanding tasks as those used in our experiment. 
We performed two tests to verify whether these conjectures could be the case. It is 
unlikely that targeting the middle of the probability interval was prevalent among the 
subjects. Mean elicited probabilities for the vast majority of the tasks were significantly 
different from 50% (Table 11 and 12).  
 
Table 11: Mean difference to 50%, GM 

      
  p-value   
GM1A 0.277  
GM1B 0.017 * 
GM2A 0.000 **
GM2B 0.000 **
GM3A 0.000 **
GM3B 0.000 **

 
 

Table 12: Mean difference to 50%, UI 
      
  p-value   
UI1A 0.001 **
UI1B 0.000 **
UI2A 0.000 **
UI2B 0.031 * 
UI3A 0.000 **
UI3B 0.051  
UI4A 0.000 **
UI4B 0.000 **

 
This finding is further strengthened by the fact that there was not a single subject whose 
elicited indifferences always fell between 40% and 60% in either GM or UI tasks.  
 

Table 13: Mean difference between non-corresponding tasks, GM 
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  GM2A GM2B GM3A GM3B 
GM1A 0.003 ** 0.048 * 0.046 * 0.015 *
GM1B 0.007 ** 0.037 * 0.088  0.038 *
GM2A         0.754  0.914  
GM2B         0.975   0.735   

 
Table 14: Mean difference between non-corresponding tasks, UI 

                         
  UI2A UI2B UI3A UI3B UI4A UI4B 

UI1A 0.174  0.281  0.710  0.205  0.059  0.535  
UI1B 0.783  0.025 * 0.111  0.027 * 0.488  0.626  
UI2A         0.062  0.003 ** 0.707  0.492  
UI2B         0.301  0.873  0.005 ** 0.059  
UI3A                0.027 * 0.275  
UI3B                0.001 ** 0.042 * 

 
In addition, differences in mean elicited probabilities across decision tasks (i.e., between 
the non-corresponding tasks) were statistically significant in almost half of the cases 
(Table 13 and 14). Therefore, empirically meaningful differences in elicited probabilities 
can be detected from our sample. 
 
Individual-level analysis 
 
To evaluate the robustness of the data, as well as to assess the suitability of the QALY 
model to represent individual preferences, we also conducted an individual-level analysis. 
Robustness of the model was evaluated by looking at two metrics: magnitude of 
individual differences in indifference probabilities in the corresponding pairs of the tasks 
and number of reversals of the first choice, as described above.  
 
Mean individual difference between the pairs was, especially in the UI tasks, not much 
higher than the sensitivity of the experiment (8 percentage points, Table 15 and 16). This 
was even more so for median differences, suggesting that individual differences are 
driven by outliers. 
 

Table 15: Descriptives for individual 
differences, GM 

        
  Mean Median IQR 
GM1 20.04 16 6-30 
GM2 16.68 13 5-20 
GM3 17.63 15 9-24 

 

Table 16: Descriptives for individual 
differences, UI 

  Mean Median IQR 
UI1 13.65 7 4-18 
UI2 14.40 12 4-20 
UI3 13.53 8 5-16 
UI4 13.39 10 3-18 

 
A question of what constitutes an inconsistency arises. As noted above, we could expect 
errors up to 8 percentage points purely due to the indifference elicitation procedure. In 
addition, more errors may have been caused by a “stochastic”, “constructed” or 
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“discovered” nature of people’s preferences for unfamiliar choices (Braga and Starmer, 
2005).  
 
The frequency of “inconsistencies” depends crucially upon the chosen threshold value 
above which we call a difference in elicited probabilities an inconsistency. For example,  
only 7% of the subjects always “satisfied” the GM condition if the threshold was set to 
8%, but the proportion rose to 33% if it was set to 18%. It is interesting that although a 
similar proportion of the subjects always satisfied the condition in both UI and GM tasks, 
the number of inconsistencies was generally lower in the UI tasks (Table 17 and 18).  
 
Significant proportion of inconsistencies may be interpreted as violating the QALY 
model. However, it can also reflect difficulty of the question and the fact that preferences 
over health profiles may be less readily available than those over e.g. monetary gambles 
with low stakes. Nonetheless, the proportion of individual inconsistencies is comparable 
to the findings of the studies using simpler, for example monetary stimuli. 
 
Table 17: Frequency and cumulative proportion of individual differences in elicited 

probabilities under the threshold, GM 
              

  Frequency Cum. % 
  8< 13< 18< 8< 13< 18< 

0 4 12 19 7% 21% 33% 
1 12 13 18 28% 44% 65% 
2 22 21 15 67% 81% 91% 
3 19 11 5 100% 100% 100% 

 
Table 18: Frequency and cumulative proportion of individual differences in elicited 

probabilities under the threshold, UI 
              

  Frequency Cum. % 
  8< 13< 18< 8< 13< 18< 

0 4 14 19 7% 25% 33% 
1 16 21 18 35% 61% 65% 
2 23 15 15 75% 88% 91% 
3 12 7 5 96% 100% 100% 
4 2 0 0 100% 100% 100% 

 
We did not find any systematic differences in the number of inconsistencies among the 
elicited probabilities within the tasks testing one condition. Nonetheless, individual 
reversals were far less common among UI than GM tasks (Table 19 and 20). This is not 
surprising, because the former is a less restrictive condition. 
 

Table 19: Proportion of individual differences in elicited probabilities over the 
threshold by task, GM 

              
  Frequency % 

  8< 13< 18< 8< 13< 18< 
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GM1 39 32 24 68% 56% 42% 
GM2 34 26 16 60% 46% 28% 
GM3 40 30 23 70% 53% 40% 

 
Table 20: Proportion of individual differences in elicited probabilities over the 

threshold by task, UI 
              

  Frequency % 
  8< 13< 18< 8< 13< 18< 
UI1 20 17 12 35% 30% 21% 
UI2 30 19 15 53% 33% 26% 
UI3 26 16 13 46% 28% 23% 
UI4 30 20 14 53% 35% 25% 

 
The magnitude of the inconsistencies is rarely correlated across tasks (Table 21). Thus, 
the results do not suggest individual differences in the ability to consistently answer the 
type of questions used in the experiment. 
 

Table 21: Pairwise correlation of differences  
in elicited probabilities across tasks 

                        
  GM1   GM2   GM3   UI1   UI2   UI4 

GM2 0.48                    
p-value 0.000 **                   
GM3 0.21  0.08                
p-value 0.115  0.568                
UI1 0.02  0.27  0.21            
p-value 0.888  0.041 * 0.123            
UI2 0.04  0.00  -0.03  0.02        
p-value 0.758  0.987  0.840  0.906        
UI3 0.15  -0.04  0.00  -0.08  -0.08    
p-value 0.268  0.762  0.996  0.578  0.535    
UI4 0.17  0.00  0.38  0.17  0.21  0.02 
p-value 0.203   0.989   0.003 ** 0.206   0.124   0.890 

 
 
6. Discussion 
 
Our results support both UI and GM as empirically valid preference conditions of the 
QALY model. However, a note of caution is important here. Decision tasks used in the 
experiment are cognitively very demanding. Subjects have to trade off at least three 
dimensions (quality of life, duration and probability), with potential sequence effects 
constituting – possible and tested – fourth consideration. Thus, some subjects reported 
confusion in the practice question, and may have tended to use some simple heuristics 
later on. Two of these heuristics are especially plausible in our context. 
 
A cognitively difficult decision task under uncertainty may lead to targeting 50%-50% 
indifference. Indifference elicitation procedure utilizing a midpoint technique (“ping-
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ponging” the subject from extreme to more moderate probabilities) might have facilitated 
this heuristic. However, we were able to rule out this possibility by testing the 
indifference values against a 50% probability and, in most of the cases, finding 
significant differences. 
 
More importantly, subjects may have limited the complexity of the situation by 
eliminating some aspects of the decision tasks. For example, they could have eliminated 
the common outcome in the UI tasks in order to simplify it. Thus, support for the 
conditions may have resulted from the heuristic, rather than from genuine preferences. 
 
Although von Neuman-Morgenstern expected utility does not have to hold for our test to 
be valid, we do not correct for all observed phenomena in human decision making. The 
validity of the test depends crucially upon the validity of generalized rank-dependent 
utility theory. If it is not a reasonably accurate description of preferences, results may be 
confounded in a similar way than when assuming expected utility. Nonetheless, even if 
that was the case, due to the fact that many of the biases have been corrected for, the 
extent of confounding is probably much lower than in similar experiments which 
assumed expected utility. 
 
In addition, a preference reversal specific to health domain known as maximal endurable 
time (MET, Sutherland et al, 1982; Stalmeier and Bezembinder, 1996; Dolan and 
Stalmeier, 2003; Spencer, 2003b) could pose a problem. Although its very existence is 
subject to discussion, we tried to limit its extent by choosing moderate health states, for 
which it is unlikely to be present. During the experiment, and while debriefing the 
subjects, none of them expressed any views suggesting that this anomaly may have 
influenced their choices. Furthermore, the existence of MET would constitute a 
significant violation of the QALY model, and as such would have been detected by our 
tests. 
 
Although the conditions tested hold at the aggregate level, one might question the 
robustness of the model by pointing out the number of reversals at the individual level. 
However, QALY is usually not aimed at describing individual preferences, but rather at 
making policy decisions. Thus, satisfying the conditions using aggregate values may be 
sufficient for these purposes. 
 
 
7. Conclusion 
 
We have performed the most robust test of the QALY model available in the literature 
today. Our tests do not require additional confounding assumptions about for example 
discounting and take account of violations of expected utility. At the aggregate level we 
observed support for the QALY model as we could not reject generalized marginality, the 
central condition of the QALY model. 
 
Nonetheless, care should be taken when using the model for decision making at the 
individual level. Although the subjects exhibited reasonable levels of consistency when 
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probabilities differed significantly from indifference, most of them exhibited less 
robustness in their elicited indifference values. 
 
We also tested for utility independence, a less restrictive preference condition than 
generalized marginality, which still implies a tractable model. Utility independence was 
supported at the aggregate level. At the individual level we find more support for utility 
independence than for generalized marginality. For a substantial proportion of our 
subjects the observed deviations from utility independence can reasonably be attributed 
to the elicitation procedure and imprecision of preference. Our aggregate findings on 
utility independence are consistent with the findings of Spencer and Robinson, 
forthcoming in spite of the differences in experimental design between their and our 
study. Spencer and Robinson do not report individual-level results. 
 
Our results provide support for the QALY model at the aggregate level. It should be 
pointed out though that this conclusion is based on three tests only. It should also be kept 
in mind that we only used mild to moderate health states to avoid considerations like 
maximal endurable time. Our conclusions may no longer hold when more severe health 
states are involved. Before QALYs can be safely applied in cost effectiveness analysis, 
more evidence is needed and we invite other researchers to try and replicate our findings 
using other experimental designs.  
 
At the individual level, the support for QALYs is much weaker. It appears that QALYs 
cannot be applied in medical decision making without some additional tests of the 
decision maker’s preference structure. The tests developed in this paper may be helpful in 
doing so. Even when QALYs are found not to hold, not all is lost. Our results, suggest 
that there is more support for utility independence at the individual level. Utility 
independence still implies a tractable model that can be applied in practice. Hence, in 
contrast with a common belief that QALYs are not consistent with people’s preferences 
for health, the overall message of this paper seems to be supportive of the use of QALY-
type models in health economics. 
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Annex 1: Description of health states used in the experiment 
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Annex 2: Initial ordering of decision tasks 
 

1 GM1A 
2 UI5B 
3 GM3B 
4 UI4A 
5 GM2A 
6 UI1A 
7 GM1A_CC
8 UI4B 
9 UI2B 

10 GM3A 
11 UI5A 
12 GM1B 
13 UI1B 
14 UI4B_CC 
15 GM2B 
16 UI2A 
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Annex 3: Decision trees for GM tasks  
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GM3 

 
 

p1 

1-p1 

p1 

1-p1 
KLL LLN  

KLM LLM

~ 

p1 

1-p1 

p1 

1-p1 KLL MLN  

KLM MLM

~ 

⇔ 



 29

Annex 4: Decision trees for UI tasks  
 

UI1 

 
 

UI2 

 
 
 

p1 

1-p1 

p1 

1-p1 

KKL

KML

KNN  

KMN  

~ 

p1 

1-p1 

p1 

1-p1 

LKL

LML

LNN  

LMN  

~ 

⇔ 

p1 

1-p1 

p1 

1-p1 

LLM

LMM

MNM  

MMM

~ 

p1 

1-p1 

p1 

1-p1 

LLN  

LMN  

MNN  

MMN  

~ 

⇔ 



 30

UI3 
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