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Abstract

This paper builds on the work of Moreira and Muir (2016). Their investment strategy takes

less risk when volatility is relatively high and more risk when volatility is relatively low. The

contribution to the literature of this paper is that this investment strategy is tested for in-

dividual stocks as well as jointly for the constituents of the Dow Jones Industrial Average

index. Several different volatility and multivariate volatility models will be used to forecast

the (co)variance (matrix). This strategy has an enormous theoretical potential for outperfor-

mance. However, this paper documents that in practice scaling the market exposure based on

the level of risk generally does not outperform the buy-and-hold strategy in terms of alphas

and Sharpe ratios.

Keywords: Volatility Timing, Volatility Targeting, Volatility Scaling, Market Timing, Volatil-

ity Forecasting, Covariance Forecasting
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1 Introduction

Ever since the seminal paper of Engle (1982) a lot of research has been dedicated to volatility.

There is so much interest in volatility because of the importance of volatility in many finan-

cial decision problems (e.g. option pricing and portfolio construction). Volatility is roughly

defined as the dispersion of returns for a given security. One of the problems associated with

volatility is that volatility is latent. That is, volatility cannot be observed directly. There-

fore, a model is needed to estimate volatility. Over the years many different types of volatility

models have been introduced, such as ARCH-type (Engle, 1982; Bollerslev, 1986), stochastic

(Heston, 1993) and realised volatility models (Barndorff-Nielsen and Shephard, 2004). All of

these models are extended to be able to handle multiple assets. These extensions made them

interesting for practice as well as academia.

Investors are mainly concerned about two concepts, namely return and risk (usually measured

as volatility). The old adage in finance is that ‘there is no free lunch’. This roughly means that

the only way to get more return is to accept more risk. However, in practice outperformance is

possible. There are two possible ways to achieve outperformance, either by security selection

(cross-sectional strategy: Fama and French (1993); Jegadeesh and Titman (1993)) or by

market timing (time-series strategy: Pesaran and Timmermann (1995); Moskowitz, Ooi and

Pedersen (2012)). This paper focuses on the latter. That is, the implemented strategy invests

more in the market when the risk-reward trade-off is favorable than when the risk-reward

trade-off is unfavorable. Andrew Lo calls this strategy the ‘cruise control’ strategy (Lo, 2017).

The cruise control is set at a specific speed (target volatility). When the car goes down hill the

brakes are automatically applied (reduce exposure: put some money in the bank) and when

the car goes up hill the car automatically applies some extra throttle (increase exposure: use

borrowed funds to invest extra). It should be highlighted that this strategy does not alter the

cross-sectional weights of the constituents in the market. The weights could be seen as ‘given’.

For example, the constituents could be weighted by their market capitalization or in the case

of the Dow Jones Industrial Average (DJIA) index the constituents are price-weighted. Lo

(2015) explains that this cruise control strategy separates active risk management from active

investment management. Another important aspect of this strategy concerns the ‘relative’

risk compared to a buy-and-hold portfolio. The unconditional risk of this strategy is (by

design) very similar to the buy-and-hold portfolio. However, the conditional ‘relative’ risk in

every period can be quite large (i.e. high tracking error).
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An empirical observation of daily asset returns is that volatility clusters, meaning that peri-

ods of high and low volatility alternate. It is likely to be beneficial for an investor to forecast

volatility if it is predictable to some extent. Moreira and Muir (2016) show that for factors an

increase in volatility is not offset by a proportional change in expected returns.1 Therefore,

the Sharpe ratio of their strategy is higher than the benchmark. They do this for a wide

range of factors.2 This paper uses the constituents of the DJIA index. Hence, it extends the

paper of Moreira and Muir (2016) by looking at individuals stocks. Furthermore, the con-

stituents are jointly modelled to test whether multivariate variance forecasts help to improve

the performance. The univariate models used in this research are the AutoRegressive Con-

ditional Heteroskedasticity (ARCH) model (Engle, 1982), the Generalized AutoRegressive

Conditional Heteroskedasticity (GARCH) model (Bollerslev, 1986), the Heterogeneous Au-

toRegressive (HAR) model (Corsi, 2009) and the High frEquency bAsed VolatilitY (HEAVY)

model (Shephard and Sheppard, 2010). The multivariate models used are the Constant Con-

ditional Correlation (CCC) GARCH model (Bollerslev, 1990), the Dynamic Conditional Cor-

relation (DCC) GARCH model (Engle and Sheppard, 2001), the vech-HAR model (Chiriac

and Voev, 2011) and the multivariate HEAVY model (Noureldin, Shephard and Sheppard,

2012). A horse race will be held between all of these uni- and multivariate models. The first

step is to make the forecasts of the (co)variance (matrix) according the model. Then the

stock or portfolio will be scaled according to the strategy. The performances of the different

implementations will be compared for some economic measures. The hypothesis is that the

risk-adjusted returns for this strategy are higher than for the buy-and-hold strategy. Be-

cause, also for equities an increase in volatility will not be offset by a proportional change in

expected returns. A backtest is a reasonably safe way to test the performance of this strategy

(Cooper, 2010).

This research cannot be compared to factor investing, and more specifically to the low volatil-

ity and betting-against-beta factors (Blitz and Van Vliet, 2007; Frazzini and Pedersen, 2014).

The low volatility factor states that on average low volatility assets earn higher risk-adjusted

returns than high volatility assets. The rationale behind the betting-against-beta factor is

that the securities market line (SML) is too flat relative to the capital asset pricing model

(CAPM). Both factors are cross-sectional strategies. As mentioned before, the research ob-

1The Appendix contains the replicating results of Moreira and Muir (2016). The Financial Times wrote an
article about this paper, available at: https://www.ft.com/content/397937d6-e491-11e5-bc31-138df2ae9ee6.

2Ken French library, available at: mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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jective of this paper is to create and maintain a trading strategy where the volatility of

the portfolio will be ‘timed’ in the time-series dimension. This means that the volatility of

volatility will be smoothed, in contrast to return smoothing where the volatility of returns is

smoothed (Hallerbach, 2012).3 This strategy is also different from the delta-hedging strategy

of Black and Perold (1992). Their strategy reduces the (equity) exposure when the market

falls. The strategy considered in this paper reduces the equity exposure because of an increase

of the volatility.

This strategy is going against current economic theory on portfolio allocation. The strategy

takes relatively less risk in periods of high volatility and relatively more risk in period of

low volatility. A complete explanation why this strategy should be able to outperform the

benchmark is beyond the scope of this research and left for future research. However, sev-

eral different possible explanations are briefly mentioned. The first explanation assumes that

some investors are slow to trade. So, an increase (or decrease) in volatility is not immediately

met with a proportional change in the expected return. The second possible explanation is

that investors have leverage constraints. Therefore, they are not able to use this strategy.

The third possible explanation is that portfolio managers are compared to a benchmark and

that they are not allowed to deviate too much from the benchmark holdings (i.e. low tracking

error).

The motivation for this research is twofold. First, this topic is relevant for academia, because

theory states that it is only possible to obtain a higher return if the associated risk is higher.

Moreira and Muir (2016) show that volatility timing yields outperformance at an asset class

level. If there is also outperformance within an asset class some theory might possibly have

to be revisited. Secondly, it is also a relevant topic for asset managers. Because, if outper-

formance is possible they probably want to implement this strategy into their portfolio. As

mentioned before, the paper of Moreira and Muir (2016) is used as a starting point. The

contribution of this paper will be to elaborate Moreira and Muir (2016) on the following

aspects:

3A basic introduction to volatility scaling is provided by Man AHL. Available at: https://www.man.com/ahl-
explains-volatility-scaling.
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• Does this trading strategy also work for individual stocks?

• Do different univariate volatility models yield (very) different results?

• Does this trading strategy also work for the index?

• Do different multivariate volatility models yield (very) different results?

These four questions focus on performance. The last research questions check the robustness

of the results:

• Is this strategy still feasible if transaction costs are taken into account?

• Is this strategy still feasible if constraints on the amount of leverage are considered?

• Does the performance of the strategy change (substantially) if volatility is used instead

of variance?

This paper finds that volatility targeting is possible in theory. However, in practice this

strategy is generally not profitable for individual stocks and the DJIA index. Also, multivari-

ate models do not perform better than the index. Imposing leverage constraints and using

volatility instead of variance do not alter the conclusions. Transaction costs decrease the

performance substantially.

The rest of this paper is organized as follows: section 2 provides an overview of the existing

literature regarding this topic. Section 3 explains the data used in this research, followed

by methodology in section 4. Section 5 presents the results of the research and section 6

concludes this paper.
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2 Literature Review

Volatility timing, sometimes in combination with market timing, is and has been a topic

of great interest by many academic and corporate researchers. This section will provide an

overview of the literature on volatility timing.

2.1 Theory

Markowitz (1952) started modern finance with his paper on portfolio selection. He demon-

strates how an investor should allocate his wealth based on the first and second (co)moment

of the assets under consideration. Given the assumptions of the model all investors should

scale the tangency (market) portfolio based on their risk aversion. The investors’ optimal

portfolio allocation changes over time. For example, in periods of high returns investors

should allocate more to stocks compared to the risk-free rate. Hallerbach (2012) provides

a theoretical derivation for the optimality of volatility weighting over time. He concludes

that the better the conditional volatility forecasts, the more constant the volatility of the

(normalized) market will be and the higher the timing information ratio.

2.2 Volatility Managed Portfolios

The paper of Moreira and Muir (2016) forms the basis of this thesis. Therefore, it will be

explained in some depth.4 They document for several well-known factors (market, value,

momentum, profitability, return on equity, investment and betting-against-beta factors, and

the currency carry trade) that volatility timing increases the Sharpe ratios and produces large

alphas. A (short-term) mean-variance investor will find an utility gain of around 65%. The

reason that this outperformance can be achieved, is that changes in volatility are not offset

by proportional changes in expected returns.

Moreira and Muir (2017) conduct research to volatility timing for long term investors. They

assume an investor who allocates between a risky and a riskless asset. Also, they assume that

volatility and expected returns are time-varying. The conclusion is that volatility timing is

also beneficial for long term investors.

4Their methods will be explained in detail in Section 4.1.
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Lo (2015) implements a similar strategy for the daily CRSP value-weighted index. He docu-

ments that the Sharpe ratio for the volatility managed portfolio increased by 33% compared

to the buy-and-hold portfolio. Also, the cumulative return is almost 300% higher. Harvey

et al. (2018) confirm these results for the US equities market based on Ken French data and

based on S&P500 futures.

2.3 Volatility Trading Rules

One strand of literature backtests trading strategies based on the level or change in volatil-

ity. Copeland and Copeland (1999) decide whether to invest in value and large cap firms

or growth and small cap firms based on the one day percentage change in the VIX. They

conclude that value and large cap portfolios outperform growth and small cap portfolios when

volatility increases, and vice versa.

The idea behind the paper of Cooper (2010) and Moreira and Muir (2016) is similar. The

weights (leverage) in the portfolio are determined by the level of risk. Cooper (2010) has two

strategies that are relevant for this paper, the ‘constant volatility strategy’ (CVS) and the

‘optimal volatility strategy’ (OVS). The CVS uses volatility as measure of risk and the OVS

uses the variance as measures of risk. Depending on the level of leverage they choose the

corresponding leveraged exchange traded funds (ETF’s).

2.4 Mean-Variance Framework with Constant Returns

Another strand of literature on volatility timing assumes a mean-variance investor. Fur-

thermore, it is assumed that expected returns are constant. Merton (1971) showed that

forecasting (daily) returns is (far) more difficult than forecasting (co)variances. Hence, the

weights of the assets in the portfolio are only determined by the covariance matrix. Fleming

et al. (2001) manage a portfolio across different asset classes (stocks, bonds, gold and cash)

at a daily frequency. They assume a short horizon mean variance investor. They find that

volatility timing strategies outperform static portfolios that have the same target expected

return and volatility.
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2.5 Incorporating High-Frequency Data

Recently, models that incorporate high-frequency data to forecast the (co)variance have been

developed (Chiriac and Voev, 2011; Noureldin, Shephard and Sheppard, 2012). The idea

behind Fleming et al. (2003) is the same as Fleming et al. (2001). But, here they incorporate

high-frequency data instead of daily data. They document that using intraday returns to

estimate the conditional covariance instead of daily data is substantial. Hautsch et al. (2013)

also conclude that: ‘high-frequency based covariance forecasts outperform low-frequency ap-

proaches over investment horizons of up to a month’.

De Pooter, Martens and Van Dijk (2005) investigate the optimal sampling frequency for the

constituents of the S&P100. They conclude that the optimal frequency ranges from 30 to

65 minutes. Bandi et al. (2008) also investigate the optimal sampling frequency. However,

their objective is to select a time-varying optimal sampling frequency for each entry in the

covariance matrix based on the mean squared error (MSE). Liu (2009) tries to minimize the

tracking error of following the S&P500 index with the 30 DJIA index stocks. He concludes

that an investor will only use high-frequency data if the investor rebalances his portfolio daily

or if the investor has less than six months of historical data.

7



3 Data

The decision which benchmark and corresponding investment universe are used to backtest

a strategy has a large impact on the results of the research (Goltz and Campani, 2011; Kidd,

2012). This research uses the constituents of the DJIA index and the DJIA index itself as the

investment universe and the corresponding buy-and-hold portfolio is used as the benchmark.

The DJIA index was founded in 1885. However, this research needs high-frequency (intraday)

data for some methods. The possible investment universe is therefore limited to more recent

years. Moreover, Wurgler (2010) concludes that the correlation between two assets increases

when both are included in an index. Therefore, to create an unbiased analysis this research

uses a period where the constituents of DJIA index do not change. The longest and fairly

recent period where the constituents of the DJIA index do not change is from June 8, 2009

until September 24, 2012. There are 833 daily observations in total. The data is explained

in more detail in the next section.

3.1 Wharton Research Data Services

The Wharton Research Data Services (WRDS) has two relevant databases for this research.5

The Center for Research in Security Prices (CRSP) database provides the daily returns of the

constituents of the DJIA index. The Trade and Quote (TAQ) database provides the intraday

data.

CRSP

CRSP provides the daily data for the thirty constituents of the DJIA index. Table 3 provides

some descriptive statistics for the constituents and the index between June 8, 2009 and

September 24, 2012.6 The returns are adjusted for stock splits and dividends. The weights

5Available at: wrds-web.wharton.upenn.edu/
6The constituents of the DJIA index between June 8, 2009 and September 24, 2012 are: 3M Company (MMM),

Alcoa Inc. (ARNC (AA)), American Express Company (AXP), AT&T Inc. (T), Bank of America Corporation
(BAC), The Boeing Company (BA), Caterpillar Inc. (CAT), Chevron Corporation (CVX), Cisco Systems (CSCO),
The Coca-Cola Company (KO), E.I. du Pont de Nemours & Company (DD), Exxon Mobil Corporation (XOM),
General Electric Company (GE), Hewlett-Packard Company (HPQ), The Home Depot, Inc. (HD), Intel Corpora-
tion (INTC), International Business Machines Corporation (IBM), Johnson & Johnson (JNJ), JPMorgan Chase &
Co. (JPM), Kraft Foods Inc. (MDLZ (KFT)), McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK), Mi-
crosoft Corporation (MSFT), Pfizer Inc. (PFE), The Procter & Gamble Company (PG), The Travelers Companies,
Inc. (TRV), United Technologies Corporation (UTX), Verizon Communications Inc. (VZ), Wal-Mart Stores, Inc.
(WMT) and The Walt Disney Company (DIS).
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are determined by their respective daily close prices.7 The volatility index for the DJIA index

measures the implied volatility of the index (ticker: VXD). The methodology for the VXD is

the same as for the VIX (volatility index of the S&P500).

Trade and Quote

The TAQ database contains all tick data for the thirty stocks. The following steps are used

to clean the trade data:

• only select trades between exchange hours

• only select trades from NYSE and NASDAQ

• delete trades with price or volume equal to zero

• delete trades with abnormal sales condition

• delete trades with abnormal correction indicator

• merge trades with same time-stamp

• extract five minutes prices by means of last trade in the corresponding interval

The DJIA index is not traded. The high-frequency data of the constituents are used to obtain

the high-frequency data for the DJIA index. The five minute returns are multiplied with their

respective weight (determined at the end of the previous day) in the index.

3.2 Ken French Library and Global Financial Data

Global Financial Data (GFD) provides the daily DJIA index level and volatility index level

data.8 To replicate the results of Moreira and Muir (2016) factor premiums are needed.

These are obtained from the Ken French library.9 The daily factors used are the market

factor, value (HML) factor, size (SMB) factor and momentum (MOM) factor. The risk-free

rate is also obtained from the Ken French library.

7The weights of the stocks are determined by their price, and not by their market capitalization. Hence, a
higher price means a larger weight in the index.

8Available at: https://www.globalfinancialdata.com/
9Available at: mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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4 Methods

This section explains the methods used in this research. The methods are based on the ideas of

Moreira and Muir (2016). Therefore, the first subsection explains their research methodology.

The second and third subsections explain the portfolio scaling procedure and the general set-

up of all the models. Then the conditional (co)variance models are explained. The last two

subsections explain the robustness checks and the performance measures, respectively.

4.1 Methodology of Moreira and Muir (2016)

Moreira and Muir (2016) construct a volatility managed portfolio by scaling an excess return

by the inverse of its conditional variance:

fσt+1 =
c

σ̂2t (f)
ft+1, (1)

where fσt+1 is the return of the volatility managed portfolio, ft+1 is the buy-and-hold portfolio

excess return, σ̂2t (f) is a proxy for the portfolios conditional variance and c controls the average

exposure of the strategy. The portfolio f is already determined in this set-up (Ken French

factor). They use the variance of last month as a proxy for the conditional variance:

σ̂2t (f) =
1∑

d=1/22

(
ft+d −

∑1
d=1/22 ft+d

22

)2

(2)

Multi-factor portfolios are constructed such that the multi-factor portfolio is mean-variance

efficient for the set of factors used. If Ft+1 denotes a vector of factor returns, b denotes the

static weights that produce the maximum in-sample Sharpe ratio, then the mean-variance

efficient portfolio is calculated as fMVE
t+1 = b′Ft+1. Again, it is stressed that this trading

strategy does not alter the cross-sectional weights of the portfolio.

4.2 Equity Volatility Targeting Strategy

The first two research questions of this paper are directly related to equation 1. The first

question can be answered by using the constituents of the DJIA index (and the DJIA index

itself) for ft+1 instead of factors. The second question can be answered by considering different

volatility models for σ̂2t (f). Moreira and Muir (2016) use the variance of last month for σ̂2t (f),

10



this paper intends to use forecasts for σ̂2t (f). To make this explicit in the notation this paper

will use ĥt+1|t. Similar as to Moreira and Muir (2016) the constant c is chosen such that the

unconditional variances of the managed portfolio and the buy-and-hold portfolio are ex-ante

equal. The formula for this paper is:

rσt+1 =
c

ĥt+1|t
rt+1, (3)

where rσt+1 is the return of the volatility scaled stock, c controls the average exposure, rt+1

is the return of the buy-and-hold strategy and ĥt+1|t is the forecasted (conditional) variance.

The multivariate equivalent of equation 3 is:

rσ,Pt+1 = wtr
σ
t+1 = wt

c

ĥPt+1|t

rt+1, (4)

where rσ,Pt+1 is the return of the volatility managed portfolio, wt denotes the weights of the

constituents in the DJIA index, rσt+1 is the n times 1 vector of volatility managed returns,

c is a scaler controlling the average exposure of the strategy, ĥPt+1|t denotes the variance of

the entire portfolio (of stocks in the DJIA index) and rt+1 is the vector of returns of the

buy-and-hold portfolio. The conditional variance of the portfolio is calculated as follows:

ĥPt+1|t = w′tĤt+1|twt, (5)

where Ĥt+1|t denotes the forecast of the covariance matrix.

The different univariate models make forecasts for ĥt+1|t and the multivariate models for

Ĥt+1|t. The first forecast for the variance is made for January 3, 2012. So, the estimation

period is from June 8, 2009 to December 30, 2011. All models make use of an expanding

window. Some models use maximum likelihood estimation (MLE) to estimate the parameters.

These models need starting values h0 or H0 for the (co)variance. Often, the unconditional

(co)variance of the entire sample is used. However, to eliminate the look-ahead bias, the

unconditional (co)variance is estimated with observations up to and including t− 1. In total

184 forecasts of the daily variance are made from January 3, 2012 to September 24, 2012.

11



4.3 General Set-Up

Univariate Volatility Models

The general set-up for the univariate volatility models is as follows:

rt = µ+ εt,

εt = zt
√
ht,

ht = f(It−1),

(6)

where µ is the mean daily (simple) return (assumed to be constant), zt is assumed to have a

standard normal distribution, I denotes the information set, ht is some function depending

of the specific model on the information set at time t − 1 and εt is the error term with the

following properties:

E[εt|It−1] = 0,

E[ε2t |It−1] = ht,

E[ε2t ] = σ2,

(7)

where E denotes the expectation and σ2 denotes the unconditional variance. The first equa-

tion states that the conditional mean is zero and the second equation states that there is a

time-varying conditional variance. A direct consequence is that:

E[rt|It−1] = µ,

V [r2t |It−1] = ht,
(8)

where V denotes the variance.

All models are estimated using variance targeting. This reduces the number of parameters

to be estimated with one. Also, the mean return is set to the unconditional mean (up until

t− 1). The parameter(s) θ of the MLE models can be estimated by optimizing the quasi log

likelihood function. This is the sum of all quasi log likelihoods:

lt(θ) ∝ −ln(ht)−
ε2t
ht
, (9)

where lt denotes the quasi log likelihood. The one-step ahead forecast can directly be obtained

by iterating one step forward.
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Multivariate Volatility Models

The multivariate set-up is similar to the univariate one:

rt = µ+ εt,

εt = H
1/2
t zt,

Ht = f(It−1),

(10)

where µ is the n times 1 vector of mean returns, zt is assumed to have a multivariate standard

normal distribution, Ht is a function depending of the specific model on the information set

at time t− 1 and εt has the following properties:

E[εt|It−1] = 0,

E[εtε
′
t|It−1] = Ht,

E[εtε
′
t] = Σ,

(11)

where Σ is the unconditional covariance matrix. The DCC GARCH and multivariate HEAVY

models will be represented in their BEKK parametrization (with K = 1, q = 1 and p = 1):

Ht = C ′C +Aεt−1ε
′
t−1A+BHt−1B (12)

All models will be estimated with covariance targeting, which decreases the number of pa-

rameters to be estimated substantially. Also, the mean vector will be estimated by the

unconditional mean vector. In this paper A and B are assumed to be scalers.

The sample covariance (or correlation) matrix cannot be estimated properly when the con-

centration ratio (N/T) is larger than 1/100. In the case of this paper this ratio is 30/833 (at

best). Therefore, a linear shrinkage estimator will be applied to the unconditional covariance

(or correlation) matrix (Engle at el., 2017). The linear shrinkage estimator is expressed as:

Σ̃ =

n∑
i=1

[ρλ̄+ (1− ρ)λi]uiu
′
i, (13)

where Σ̃ is the shrunken sample covariance matrix, ρ is the shrinkage intensity (a number

between zero and one), λ is the vector of eigenvalues of the sample covariance matrix Σ̂, ui’s

are the corresponding eigenvectors and λ̄ is the cross-sectional average of the eigenvalues.
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The shrinkage intensity ρ will be optimised within the maximum likelihood procedure.

The quasi log likelihood for the multivariate models at time t is:

lt(θ) ∝ −ln(det(Ht))− (ε′tH
−1
t εt), (14)

where det denotes the determinant. Again, forecasts for the covariance matrix can be directly

obtained through iteration.

4.4 Univariate Variance Models

ARCH(1) Model

The ARCH model was introduced by Engle (1982). The conditional variance is modelled

as a linear function of the squared past shocks. This paper uses the following ARCH(1)

representation:

ht = (1− α)σ̂2 + αε2t−1, (15)

Because ht is a (conditional) variance it should be non-negative. Therefore, α should be

between zero and one. This parameter can be estimated by maximizing the log likelihood

function.

GARCH(1,1) Model

The GARCH(1,1) specification of Bollerslev (1986) for the conditional variance is:

ht = (1− α− β)σ̂2 + αε2t−1 + βht−1 (16)

It extends the ARCH specification by adding the lagged conditional variance. Again, to

ensure that ht is non-negative all parameters should be non-negative and their sum should be

smaller than one. The parameters are estimated by means of maximum likelihood estimation.
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HAR Model

The HAR model of Corsi (2009) depends on high-frequency data. The first step is to calculate

the realised variance:

RV t =

M∑
j=1

r2t,j , (17)

where RV t is the realised variance on day t, r2t,j denotes the squared return of the jth period

of length 1/M during day t. The trading hours for the DJIA index are between 09.30 and

16.00. The length of the period is equal to five minutes. Hence, M is equal to 78. The

realised variance is an unbiased and consistent estimator of the true variance. So, volatility

becomes directly observable, i.e. it is not latent anymore. It is therefore possible to model

volatility directly. The model proposed by Corsi (2009) with variance targeting is:

ht = RV t−1+β1(RV t−1−RV t−1)+β2(RV t−1,5−RV t−1,5)+β3(RV t−1,22−RV t−1,22)+εt, (18)

where RV t−1,L = 1
L

∑L
j=1RV t−j and the bar denotes the time-series average up until time t.

The lagged realised variances RV t−1, RV t−1,5 and RV t−1,22 represent the daily, weekly and

monthly realised variances, respectively. The parameters can be estimated with OLS.

HEAVY Model

The HEAVY model of Shephard and Sheppard (2010) ‘applies’ the realised variance to the

GARCH(1,1) model. Their idea was to replace ε2t−1 with the more accurate measure RV t−1.

This leads to the following model:

ht = (1− ακ− β)σ̂2 + αRV t−1 + βht−1, (19)

where κ is a factor to adjust α. Because, due to overnight effects the RVt is likely to be a

biased downward measure of r2t . Therefore, it is estimated as:

κ =
1
T

∑T
t=1RVt

1
T

∑T
t=1 r

2
t

(20)

To ensure that the conditional variance is non-negative the parameters have the same restric-

tions as for the GARCH(1,1) model. The parameters are estimated with MLE. A note should

be made about the two models that incorporate high-frequency data. The HAR model models

the open-to-close variance, while the HEAVY model models the close-to-close variance.
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4.5 Multivariate Variance Models

There are many multivariate models for modeling and forecasting the (conditional) covariance

matrix. However, most models suffer from the curse of dimensionality. Hence, most models

restrict the number of parameters to make them feasible in higher dimensions. The multi-

variate models considered here are the multivariate extensions of the models in the previous

section. First, two multivariate extensions of the GARCH model are explained. Then the

multivariate HAR and HEAVY models are explained.

CCC GARCH Model

The CCC GARCH model assumes that the covariance matrix Ht can be modelled as:

Ht = DtRDt, (21)

where Dt is a matrix with conditional standard deviations
√
hii,t on the diagonal and R is

the correlation matrix. The individual elements of Ht can be modelled as:

hii,t = (1− αii − βii)σ̂2ii + αiiε
2
i,t−1 + βiihii,t−1, for i = 1, ..., N (22)

hij,t = ρij
√
hii,t

√
hjj,t for all i 6= j (23)

Equation 22 models the individual conditional variances as GARCH(1,1) processes. Equation

23 is the formula for the covariance between i and j. The model is estimated as follows:

• Estimate univariate GARCH(1,1) models for the individual variances

• Calculate the standardized residuals

• The correlation matrix is estimated by means of the unconditional correlation matrix

of the standardized residuals
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DCC GARCH Model

The DCC GARCH model is similar to the CCC GARCH model, except that the correlation

matrix is now time-varying. So, the covariance matrix can be formulated as:

Ht = DtRtDt (24)

The conditional variances are modelled in the same way as equation 22. The conditional

correlations are modelled as follows:

Qt = (1− α− β)Q̃+ αẑt−1ẑt−1
′ + βQt−1, (25)

where Qt is the conditional pseudo-correlation matrix, Q̃ is the unconditional correlation

matrix with the shrinkage estimator applied and zt−1 are the standardized residuals. The

correlation matrix is obtained by:

Rt = Diag(Qt)
−1/2QtDiag(Qt)

−1/2 (26)

Multivariate HAR Model

The realised covariance matrix is multivariate equivalent of the realised variance. It is calcu-

lated as follows:

RCt =
M∑
j=1

rt,jr
′
t,j , (27)

where rt,j is a vector of returns of the jth period of length 1/M during day t. The next step

is to take the Cholesky decomposition of RCt, which is denoted by Pt:

P ′tPt = RCt (28)

Then let Xt denote half-vectorization of Pt, such that:

Xt = vech(Pt) (29)

The daily volatility Xt is modelled as:

Xt,d = Xt−1,d+βd(Xt−1,d−Xt−1,d)+βw(Xt−1,w−Xt−1,w)+βm(Xt−1,m−Xt−1,m)+ωt,d, (30)
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where d denotes the daily volatility, w denotes the weekly (5 days) volatility and m denotes

the monthly (22 days) volatility. Again, the bar denotes the time-series average. Chiriac

and Voev (2011) use 20 days for the monthly specification. However, to maintain internal

consistency with the univariate HAR model this paper uses 22 days for the monthly volatility.

The parameters βd, βw and βm are scalers. The independent variables Xt,(.) are averages of

past values of Xt.

The covariance matrix can be obtained as follows:

Ht = invvech(Xt)
′ invvech(Xt), (31)

where invvech denotes the inverse of the half-vectorization operation.

Multivariate HEAVY Model

The multivariate HEAVY model uses the following specification for the covariance matrix:

Ht = (I −Aκ−B)Σ̃ + αRCt−1 + βHt−1, (32)

where A = αI, B = βI, I is the identity matrix and κ is the multivariate equivalent of κ:

κ = E[RCt]
1/2E[Ht]

−1/2 (33)

4.6 Robustness

Borrowing and Transaction Costs

To trade in financial markets some costs have to be incurred. This robustness test checks

whether this strategy is viable if transactions and borrowing costs are incurred. The risk-free

rate is used for the borrowing costs or yield if the leverage is smaller than one. It is assumed

that the transactions costs are 5 basis points. The management fee for the DJIA index is

assumed to be 10 basis points per year.
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Leverage Constraint and Volatility Scaling

This paper considers two strategies to reduce the turnover of this strategy. First, the portfolio

leverage is limited between 0.8 and 1.2:

0.8 ≤ c

ĥt+1|t
≤ 1.2 (34)

Secondly, volatility scaling is used instead of the variance scaling. The time-series weight is

calculated as: c√
ĥt+1|t

. Hence, the changes in time-series weights are lower.

Random Walk Forecasts

The random walk model is a ‘naive’ model that uses the current level as the forecast for the

next period. However, in practice it is a difficult model to beat. The first random walk model

uses the realised variance of day t−1 as a forecast for day t. The second model uses the level

of the volatility index in stead of the realised variance.

Ex-Post Optimal Time-Series Weighting

The theoretical optimal strategy is to use the realised variance of day t to as a forecast for

day t. This strategy is not feasible in practice. However, it gives the theoretical ‘maximum’

performance of the strategy. Also, comparing the different forecasting models with the ex-post

optimal scaling gives an indication how the different models perform.

Ex-Post Optimal Gamma

This strategy scales the stock or portfolio based on the variance or volatility. These two are

relatively arbitrarily chosen. It might be optimal to scale by a different power. First, equation

3 is rewritten to:

rσt+1 = c ĥt+1|t
−γ

rt+1,

where γ is a scaling parameter. So, γ is assumed to be one for the variance and one half

for the volatility. However, ex-post can be determined whether this value for γ is optimal in

terms of the Sharpe ratio or alpha. An optimal γ larger than one indicates that the strategy

should adapt much more strongly to changes in the level of the forecast than it currently

does. The optimization of γ for the multivariate models is done in the same way.
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4.7 Performance Measures

Sharpe Ratio

The first performance measure is the Sharpe ratio (Sharpe, 1994). It measures the excess

return per unit of risk:

S =
E(r − rf )√
V ar(r − rf )

(35)

Where r the return of the (managed) asset or portfolio and rf denotes the risk-free rate. The

expected return is calculated as the geometric average.

Time-Series Regression

The second performance measure uses a time-series regression to test the (out)performance:

rσt − rf,t = α+ β(rm,t − rf,t) + εt, (36)

where rσt is the return of the managed portfolio, rm,t is the market (DJIA index) return and

rf,t is the risk-free rate. A significantly positive α indicates outperformance.

Timing Ability

This strategy is performing well when the portfolio exposure is smaller than 100% when there

is a negative return and when the portfolio exposure is larger than 100% if there is a positive

return. The hit ratio is an intuitive way to measure this.

Kurtosis

The distribution of (equity) returns is not normal. The distribution has fat tails (extreme

returns happen more often) and is negatively skewed (large negative returns happen more

often large positive returns). Volatility targeting tries to ‘normalize’ the returns. So, another

intuitive measure is to compare the kurtosis of the unscaled and the scaled returns.

Rolling Volatility

This strategy with volatility scaling targets a specific level of volatility. Therefore, the volatil-

ity of volatility should be small. The level of volatility should be stable for the scaled portfolio

when the volatility is calculated based on a rolling window of 20 days. The volatility of the

unscaled portfolio ‘should’ change more over time.
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5 Results

The results are presented in the following sections. The first subsection will contain the

main results, then the results for the univariate and multivariate models are presented. More

detailed results can be found in the Appendix.

5.1 Main Results

Volatility targeting with the ex-post realised variance works exceptionally well. This shows

that this strategy has a large potential for outperformance. However, all univariate and mul-

tivariate models perform poorly. None of them do better than the buy-and-hold strategy in

terms of Sharpe ratio or alpha. The random walk forecast with the realised variance also per-

forms poorly. The HAR model is the only model that is able to outperform the buy-and-hold

portfolio for the DJIA index based on alpha and Sharpe ratio. However, the outperformance

is not significant.

The forecasted variances of the index based on the univariate models are most of the time a

bit too high compared to the realised variances. The time-series weights for the DJIA index

are much ‘spikier’ for the realised variance than all univariate models. The parameter esti-

mates for the ARCH, GARCH and HAR model are quite stable over time. Only the HEAVY

parameters vary slightly near the end of the forecasting period.

Modelling the constituents of the DJIA index jointly does not perform better than the buy-

and-hold strategy. All models have lower Sharpe ratios, lower returns and negative alphas.

The betas and time-series weights are both close to one. The MHEAVY model performs

better than the other multivariate models. The CCC GARCH and DCC GARCH models

perform better than the univariate GARCH model for the DJIA index. This is also true for

MHEAVY model, but not for the MHAR model.

The parameters of all multivariate models are stable over time. Again, the forecasted vari-

ances are too high compared to the realised variance. The time-series weights change much

more gradually over time compared to the time-series weights for the univariate models. The

rolling volatility is not more stable for the managed portfolios than for the buy-and-hold

portfolio.
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5.2 Univariate Results

Table 1 presents the performance measures for the univariate models.

Table 1: Performance Univariate Models

Ticker Sharpe B&H ARCH S. ARCH A. GARCH S. GARCH A. HAR S. HAR A. HEAVY S. HEAVY A.

DJIA 1.45 1.37 -0.93 0.70 -8.22 1.65 3.44 1.14 -1.91

MSFT 1.24 1.31 1.83 1.28 1.46 1.17 -0.81 1.23 0.77

KO 1.14 1.06 -1.00 1.39 3.77 1.27 3.01 1.39 4.63

DD 1.03 0.91* -2.03* 0.25* -13.36* 1.01 0.06 0.46 -10.22

XOM 0.91 0.88 -0.36 0.33 -8.34 0.80 -1.28 0.97 8.68

GE 1.84 1.82 -0.37 1.38 -7.55 1.61 -3.69 1.47 -5.36

IBM 1.06 1.13 1.32 0.98 -0.54 0.87 -2.14 0.30 -11.24

CVX 1.00 1.02 0.36 0.82 -2.05 1.23 5.26 0.74 -3.32

UTX 0.74 0.69 -1.04 0.58 -2.83 0.48 -4.74 0.70 0.95

PG 0.72 0.68 -0.36 0.51 -2.69 0.84 1.75 0.97 4.23

CAT 0.09 0.07 -0.42 -0.44 -13.96 0.04 -0.80 0.06 -0.15

BA -0.20 -0.24 -0.80 -0.77 -11.46 -0.35 -2.96 -0.70 -10.09

PFE 1.76 1.75 -0.01 1.82 1.09 1.70 -0.46 1.82 2.93

JNJ 1.15 0.85 -2.61 0.69 -3.67 1.12 0.17 0.39* -6.94

MMM 1.55 1.42 -1.77 0.69* -11.59* 1.27 -3.65 0.51* -14.30

MRK 1.92 2.03 1.80 2.02 2.60 2.00 1.63 1.88 -0.06

AA 0.26 0.15 -3.10 -0.08 -9.52 0.18 -1.75 0.33 2.97

DIS 2.72 2.75 1.03 2.64 -0.04 2.51 -2.71 2.64 0.95

HPQ -1.70 -1.41 10.33 -1.15 21.54 -1.80 -4.46 -1.79 -5.51

MCD -0.45 -0.40 0.71 -0.50 -0.76 -0.25 2.80 0.00 7.06

JPM 1.05 1.03 0.32 0.98 2.08 1.35 14.02 1.42 17.08

WMT 2.05 2.68 13.73* 2.34 9.47 1.83 -2.26 1.39 -9.81

AXP 1.40 1.26 -2.66 0.92* -9.3* 1.69 8.18 1.55 6.94

INTC -0.25 -0.31 -1.13 -0.34 -1.93 -0.56 -6.30 0.18 11.08

BAC 1.65 1.57 -1.27 1.54 3.89 1.30 -9.88 1.41 -3.54

TRV 1.42 1.51 2.18 1.03 -5.80 1.72 6.26 1.36 1.68

VZ 1.73 1.84 1.45 1.42 -3.89 1.76 0.63 1.44 -3.62

T 2.88 2.77 -1.08 2.25 -6.68 2.89 1.11 2.40 -4.72

HD 2.72 2.35 -6.12 2.55 0.19 3.25 12.57* 3.10 13.07

CSCO 0.25 0.20 -1.37 0.20 -1.37 0.20 -1.29 0.03 -5.74

KFT 1.25 1.32 1.30 0.66* -8.32* 1.29 0.97 1.22 0.14

#Outperformance 0 1 0 0 0 1 0 0

Note: this table contains the performance measures for the individual variance mod-
els. The Sharpe ratio (S.) and alpha (A.) are annualized. ‘B&H’ denotes buy-and-
hold. The last row counts the number of times the model performs significantly
better than the index. An asterisk denotes a significant difference from the buy-
and-hold performance. The significance of alpha is determined by the t-statistic of
the constant of the time-series regression. The significance of the difference for the
Sharpe ratios is determined with methodology of Ardia and Boudt (2015).
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None of the univariate models is able to significantly outperform the buy-and-hold strategy.

Incorporating high-frequency data does not yield any benefit compared to the models that

use daily data in terms of the number of times of significant outperformance. These results do

match the results of the always long time-series momentum strategy of Moskowitz, Ooi and

Pedersen (2012). They document that their strategy has a positive alpha for ninety percent

of the assets and for 26% of these assets this alpha is significant.

The ARCH model has a higher Sharpe ratio than the buy-and-hold portfolio and a posi-

tive alpha for about one third of the assets. None of the assets have a significantly higher

Sharpe ratio than buy-and-hold portfolio and one asset a significantly lower Sharpe ratio.

There is one asset with a significantly better Sharpe ratio and one asset with a significantly

worse Sharpe ratio. There are a couple of ‘extreme’ results in terms of alpha. There are

five constituents for which alpha is lower than minus two, the lowest being −6.12%. Three

constituents have an alpha larger than two, two of them have alphas larger than ten percent.

The GARCH model generally performs worse than the ARCH model. Only for six out of

the 31 assets it performs better than the buy-and-hold portfolio in terms of Sharpe ratio and

only four stocks have a higher Sharpe ratio than the corresponding ARCH model. It also has

many large negative alphas (16) and large positive alphas (6). The largest being −13.36%

and 21.54%.

The HAR model performs roughly similar as the ARCH model. The HEAVY model performs

slightly worse. The HAR and HEAVY models perform worse than buy-and-hold strategy

based on Sharpe ratios (18 and 21, respectively) and alphas (16 and 16, respectively). The

HEAVY model performs better than the HAR model for fourteen constituents based on al-

phas. The HEAVY model has more extreme negative alphas (13 vs 10) and more extreme

positive alphas (10 vs 8).

Figures 2, 3, 6 and 8 show the parameter estimates, forecasted variances and time-series

weights for the different univariate models. The ARCH parameter is roughly 0.10 for the

DJIA index. This implies that the forecasts are dominated by the unconditional variances.

Hence, the time-series weights do not deviate much from one. The estimation period was

a period with higher volatility than the backtesting period. The forecasted variances are

generally too high, because the unconditional variance changes slowly over time (especially
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for an expanding window). Although, it should be noted that all models (except the HAR

and MHAR models) model the close-to-close variance while the realised variance measures

the open-to-close variance. The beta of the GARCH model is well above 0.8, indicating the

persistence of the volatility over time. The forecasted variances change much more over time

than for the ARCH model. This can also be seen in the dispersion of the time-series weights.

The parameters of the HAR model are all stable over time. The negative value for the weekly

variance is difficult to interpret. The variance forecasts made by the HAR model follow the

pattern of the realised variances quite well. Only the level is generally a bit too high. This

leads to lower spikes in the amount of leverage. In the beginning of the period both HEAVY

parameters hover around 0.6. Near the end of the period alpha becomes a bit higher while

beta decreases a bit. The sum of the parameters is larger than one, which is usually prob-

lematic for volatility models. But, the κ for the DJIA index is about 0.60 to compensate for

this.

Table 6 presents the results for the robustness strategies. The random walk forecast with the

volatility index does not perform well. This strategy increases the Sharpe ratio for only one

stock and only for four stocks is the alpha positive. Moreover, the DJIA index itself does not

benefit by scaling with the volatility index level. The random walk forecast with the realised

variance also performs poorly. It does increase the Sharpe ratio for thirteen stocks. However,

none of them are significant. There is only one significant improvement in terms of alpha.

Scaling by the ex-post realised variance performs extremely well. For 26 stocks is the alpha

positive and nine of them are significant. This strategy significantly increases the Sharpe

ratio for six stocks.

Tables 7, 9 and 11 contain the results of the various robustness tests. Putting constraints

on the amount of leverage does not change the overall performance much compared to the

unconstrained strategy. As expected, the alphas are becoming less extreme (both positive

and negative). The same holds for scaling with the volatility instead of the variance of the

portfolio. When transaction costs are incorporated the performance deteriorates even further.

The ARCH model is able to outperform the buy-and-hold portfolio for six assets, the GARCH

model for five, the HAR model for seven and the HEAVY model for eight in terms of Sharpe

ratios. However, none of them are significant.
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Tables 13, 14, 15 and 16 show the optimal ex-post gamma and the corresponding value. A

notable result are the extreme optimal gamma’s, both in terms of the dispersion and in terms

of the absolute level. Even more surprising, for multiple assets is the optimal gamma nega-

tive. Hence, implying that when volatility is high the time-series weight should be relatively

high. For the DJIA index is the optimal gamma (very) negative for the ARCH, GARCH and

HEAVY model. Only the HAR model has a positive optimal gamma.

Figures 11 and 12 show the average return and realised volatility sorted on the realised

volatility of the previous period. Similar as to Moreira and Muir (2016) the realised volatility

is slightly increasing over the buckets. However, in contrast to Moreira and Muir (2016) the

returns are not flat over the buckets. Even more extreme, the return after a period of high

volatility is very high.
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5.3 Multivariate Results

The results for the multivariate models can be found in table 2.

Table 2: Performance Multivariate Models

B&H DJIA Index CCC GARCH DCC GARCH MHAR MHEAVY

Annual Return 18.54 14.50 12.85 16.83 17.66

Unc. Variance 0.55 0.58 0.63 0.53 0.54

Annual Sharpe 1.45 1.12 0.96 1.34 1.40

Kurtosis 0.88 1.25 1.85 0.84 0.79

Annual Alpha -3.65 -5.55 -0.83 -0.57

Alpha T-Stat -1.55 -1.85 -0.27 -0.77

Beta 1.02 1.05 0.96 0.99

Timing Ability 0.49 0.49 0.51 0.49

Mean TS 1.03 1.05 1.04 1.00

Note: this table contains the performance measures for the multivariate variance
models. The Sharpe ratios and alphas are annualized. ‘B&H’ denotes buy-and-hold.
An asterisk denotes a significant difference from the buy-and-hold performance. The
significance of alpha is determined by the t-statistic of the constant of the time-series
regression. The significance of the difference for the Sharpe ratios is determined with
methodology of Ardia and Boudt (2015).

None of the multivariate models is able to outperform the DJIA index in terms of Sharpe

ratio, return or alpha. The backtesting period had a very high return of 18.5% annualized.

Resulting in a Sharpe ratio of almost 1.5. All models have similar unconditional variances,

betas and mean time-series weights. The CCC GARCH performs better than the DCC

GARCH model. But, both perform worse than the univariate ARCH model. The MHAR

model performs worse than the HAR model, while the MHEAVY performs better than the

HEAVY model. A possible explanation for the ‘disappointing’ performance of the strategy is

the low kurtosis in combination with high returns of the index. During the backtest period

there were not enough extreme returns. Hence, the strategy had no change to scale back

when needed and scale up when the volatility is low.
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Figures 1, 4, 5, 7, 9 and 10 show the cumulative return, parameters estimates, forecasted

variances, time-series weights and rolling volatility for the different multivariate models. The

parameter estimates are all stable over time. The alpha of the DCC GARCH model is roughly

0.40 and the beta is about 0.05. Hence, the conditional correlation matrix is mostly a com-

bination of the unconditional correlation matrix and the standardized shock. The linear

shrinkage intensity is always zero for the DCC GARCH and MHEAVY models. A possible

reason why the shrinkage intensity is ‘optimised’ at zero is the large dispersion in eigenvalues.

Tables 4 and 5 show the summary statistics for the eigenvalues. Ledoit and Wolf (2012) state

that the linear shrinkage estimator is not optimal in this case. Although, linear shrinkage

should still be better than not applying shrinkage at all.

Again, all forecasts are in general too high compared to the realised variance. The forecasts

made with the CCC GARCH and DCC GARCH models are similar, except that the DCC

GARCH model experiences a couple of large spikes. The MHAR variance forecasts are gener-

ally lower than the MHEAVY forecasts. It holds for all models that their time-series weights

are only gradually changing over time. Furthermore, they do not spike like the weights for

the realised variance. All models have lower cumulative returns than the index from May

till September. Furthermore, there is no clear pattern in the rolling volatility. None of the

models show a constant level of volatility.

Tables 8, 10 and 12 show the robustness results for the multivariate models. Imposing a

leverage constraint or scaling with volatility improves the performance for all models. Incor-

porating transaction costs makes the performance obviously worse.

Table 17 shows the ex-post optimal gamma. All multivariate models have large negative

optimal gammas. Again, this could be due to low volatility in the market during the backtest

period. The only positive optimal gamma is the one for the ex-post optimal strategy.
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6 Conclusion

This paper backtests the investment strategy of Moreira and Muir (2016) to a new investment

universe. The investment universe considered are the constituents of the DJIA index and the

DJIA index itself. Moreira and Muir (2016) propose an investment strategy that intends to

time the volatility of the portfolio. This paper uses volatility models to forecast the volatility.

The first obtained result of this paper is that the trading strategy does not generally work

for individual stocks. Most Sharpe ratios are lower than a ‘simple’ buy-and-hold strategy.

Different models do yield some different results, but there are no extreme differences. Setting

constraints on the amount of leverage does not change the performance. The second obtained

result is that volatility timing of the DJIA index does not generally work. Again, different

models do yield some different results, but the differences are small. The third obtained result

is that modelling the covariance of constituents of the DJIA index jointly does not yield any

benefit. None of the multivariate models provide evidence that they are able to outperform

the buy-and-hold strategy.

To conclude, volatility timing for individual stocks and the DJIA index does seem to be

possible in theory. However, in practice this strategy does not work well. This research

implies that investors should not try to time volatility for equities.

6.1 Discussion of Research

This report shows that the trading strategy of Moreira and Muir (2016) does not work for

individual stocks and for the DJIA index. The obvious question is why this trading strategy

does not work? A possible explanation is that this strategy is only beneficial if volatility

itself is volatile and that during the period considered in this research the volatility is not so

volatile. Hence, other time periods might show more promising results for this strategy.

There are many other possible extensions for further research. First of all, the question

raised above: why does this strategy work for factors but not for individual stocks? Also, the

methodology can be adjusted in several ways. This research predicts one day ahead, it might

be beneficial to make multi-period forecasts (either direct or by iteration). This strategy could

also be tested with a monthly horizon instead of a daily one. The high-frequency data could
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be subsampled instead of using intervals. And, would it then be more suitable to use a rolling

or an expanding window? Also, quote data next to trade data can be used. This research

could be extended to other indices, other asset classes or by implementing trough derivatives.

The current strategy could be enhanced to lower the transaction costs, e.g. do not trade when

the signal changes slightly. It could be beneficial to winsorize large absolute returns for better

parameter estimation. It could be advantageous to use log returns and hence model the log

volatility. Log returns are somewhat better behaved than normal returns. Another possible

extension is to create a bottom-up portfolio of individually volatility scaled stocks. Then the

overall portfolio could also be scaled. The current strategy forces the market exposure to

be 100% on average. If this strategy is combined with a cross-sectional strategy if might be

beneficial to loosen this restriction. It could also be beneficial to only have positions when

markets are open, so close out at the end of the day. Yet another possible extension is to

model returns as well. This could improve the (co)variance forecasts. An example would be

the Factor-GARCH model.
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7 Appendix

7.1 Descriptive Statistics of DJIA

Table 3: Descriptive Statistics of DJIA

Ticker Min. Mean Max. Variance Mean Weight

DJIA -5.50 0.07 4.24 1.13

MSFT -8.26 0.06 5.65 2.05 1.83

KO -4.08 0.07 3.92 0.96 4.10

DD -7.15 0.11 6.01 2.88 2.90

XOM -6.19 0.05 5.22 1.61 5.01

GE -6.54 0.09 7.11 3.19 1.16

IBM -4.95 0.09 5.67 1.43 10.31

CVX -7.54 0.09 5.58 1.97 5.99

UTX -8.76 0.06 5.15 2.14 4.92

PG -4.54 0.05 4.24 0.88 4.18

CAT -9.22 0.14 8.11 4.59 5.25

BA -7.23 0.06 8.36 3.20 4.38

PFE -4.75 0.09 5.64 1.78 1.26

JNJ -3.22 0.04 5.38 0.74 4.24

MMM -6.25 0.07 7.36 1.94 5.59

MRK -6.62 0.09 6.42 1.82 2.38

AA -11.42 0.02 9.46 6.40 0.83

DIS -9.11 0.11 5.95 2.59 2.42

HPQ -20.03 -0.07 7.22 3.86 2.57

MCD -4.64 0.07 4.69 0.97 5.16

JPM -9.41 0.05 8.44 4.78 2.68

WMT -4.66 0.06 4.21 0.92 3.73

AXP -8.83 0.12 11.28 3.92 2.98

INTC -4.46 0.07 7.80 2.47 1.47

BAC -20.32 0.01 16.74 8.64 0.82

TRV -7.59 0.07 7.66 1.96 3.65

VZ -5.51 0.09 3.78 1.12 2.31

T -4.25 0.08 4.15 1.04 1.93

HD -5.89 0.13 5.56 2.13 2.38

CSCO -16.21 0.01 15.95 3.67 1.38

KFT -5.87 0.07 5.01 1.11 2.17

Note: this table shows the descriptive statistics of the constituents of the DJIA
index and the DJIA index itself between June 8, 2009 and September 24, 2012. The
returns and variance are in percentages. The mean return and the mean weight are
the time-series averages.
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7.2 Additional Results

Cumulative Returns

Figure 1: Cumulative Returns for the Multivariate Models
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Note: this figure shows the cumulative returns for the different multivariate models.

35



Parameter Estimates

Figure 2: Univariate Maximum Likelihood Parameter Estimates
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Note: this figure shows the MLE parameters for the different univariate model spec-
ifications over time.

Figure 3: Univariate OLS Parameter Estimates
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Note: this figure shows the OLS parameters for the HAR model over time.
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Figure 4: Multivariate Maximum Likelihood Parameter Estimates
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Note: this figure shows the MLE parameters for the different multivariate model
specifications over time.

Figure 5: Multivariate OLS Parameter Estimates
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Note: this figure shows the OLS parameters for the MHAR model over time.
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Forecasted Variance

Figure 6: Forecasted Variance of the DJIA for the Univariate Models
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Note: this figure shows forecasted variances of the DJIA for the different univariate
models.

Figure 7: Forecasted Variance of the DJIA for the Multivariate Models
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Note: this figure shows forecasted variances of the DJIA for the different multivariate
models.
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Time-Series Weights

Figure 8: DJIA Index Time-Series Weights for the Univariate Models
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Note: this figure shows time-series weights for the DJIA for the different univariate
models.

Figure 9: DJIA Index Time-Series Weights for the Multivariate Models
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Note: this figure shows time-series weights for the DJIA for the different multivariate
models.
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Rolling Volatility

Figure 10: Rolling Volatility for the Multivariate Models
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Note: this figure shows the rolling volatility for the DJIA for the different multivariate
models with volatility scaling.
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Time-Series Sorts on Realised Volatility

Figure 11: Average Return after Sorting on Previous Day Realised Vol.

Low Vol 2 3 4 High Vol

Buckets

R
et

ur
n

0.
00

0.
05

0.
10

0.
15

Note: this figure shows the returns of the DJIA index after sorting the realised
volatility on the previous day into five buckets. Hence, ‘Low Vol’ indicates that the
realised volatility on the previous belongs to lowest 20% of the distribution.

Figure 12: Average Realised Vol. after Sorting on Previous Day Realised Vol.
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Note: this figure shows the returns of the DJIA index after sorting the realised
volatility on the previous day into five buckets. Hence, ‘Low Vol’ indicates that the
realised volatility on the previous belongs to lowest 20% of the distribution.
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Summary Eigen Values for Linear Shrinkage

Table 4: DCC GARCH Model Correlation Matrix Eigen Values Summary

Nr. Min. 1st Qu. Median Mean 3rd Qu. Max.

1 13.70 13.81 13.86 13.89 13.94 14.26

2 1.51 1.55 1.56 1.56 1.57 1.60

3 1.03 1.04 1.04 1.04 1.05 1.05

4 0.94 0.95 0.96 0.96 0.97 0.98

5 0.86 0.87 0.88 0.88 0.88 0.89

6 0.84 0.85 0.85 0.85 0.85 0.86

7 0.76 0.77 0.78 0.78 0.78 0.79

8 0.71 0.72 0.73 0.73 0.75 0.76

9 0.63 0.64 0.64 0.64 0.65 0.66

10 0.61 0.62 0.62 0.62 0.63 0.64

11 0.58 0.58 0.59 0.59 0.60 0.61

12 0.55 0.56 0.56 0.56 0.57 0.57

13 0.53 0.55 0.55 0.55 0.55 0.56

14 0.51 0.53 0.53 0.53 0.54 0.55

15 0.50 0.52 0.52 0.52 0.52 0.53

16 0.48 0.49 0.50 0.50 0.50 0.50

17 0.47 0.48 0.48 0.48 0.49 0.49

18 0.45 0.45 0.46 0.46 0.47 0.47

19 0.44 0.44 0.44 0.44 0.44 0.45

20 0.41 0.43 0.43 0.43 0.43 0.43

21 0.40 0.40 0.41 0.41 0.41 0.41

22 0.38 0.39 0.39 0.39 0.40 0.40

23 0.34 0.37 0.37 0.37 0.38 0.38

24 0.34 0.34 0.35 0.35 0.35 0.36

25 0.30 0.31 0.31 0.31 0.32 0.32

26 0.29 0.29 0.30 0.30 0.30 0.30

27 0.25 0.26 0.26 0.26 0.26 0.27

28 0.22 0.23 0.23 0.23 0.23 0.24

29 0.17 0.19 0.20 0.19 0.20 0.21

30 0.16 0.17 0.18 0.17 0.18 0.19

Note: this table contains summary results for the eigen values of the unconditional
correlation matrix in the DCC GARCH model.
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Table 5: MHEAVY Model Covariance Matrix Eigen Values Summary

Nr. Min. 1st Qu. Median Mean 3rd Qu. Max.

1 44.53 46.04 46.68 47.16 48.27 50.69

2 4.78 4.89 4.96 4.94 5.00 5.09

3 2.74 2.81 2.86 2.87 2.93 3.01

4 2.40 2.44 2.45 2.46 2.47 2.54

5 1.99 2.02 2.05 2.05 2.08 2.14

6 1.88 1.90 1.92 1.92 1.94 2.00

7 1.51 1.54 1.57 1.58 1.60 1.68

8 1.42 1.47 1.48 1.49 1.50 1.57

9 1.31 1.36 1.38 1.38 1.41 1.46

10 1.15 1.17 1.18 1.18 1.19 1.24

11 1.11 1.12 1.13 1.15 1.17 1.21

12 1.08 1.10 1.11 1.12 1.13 1.16

13 0.99 1.01 1.01 1.02 1.04 1.06

14 0.94 0.97 0.99 0.99 1.00 1.03

15 0.87 0.88 0.90 0.90 0.91 0.92

16 0.81 0.83 0.85 0.85 0.86 0.88

17 0.75 0.76 0.77 0.77 0.78 0.80

18 0.72 0.73 0.74 0.75 0.76 0.77

19 0.69 0.70 0.71 0.71 0.73 0.75

20 0.60 0.61 0.62 0.62 0.64 0.65

21 0.59 0.60 0.61 0.61 0.62 0.64

22 0.59 0.59 0.60 0.61 0.62 0.63

23 0.54 0.55 0.56 0.56 0.57 0.58

24 0.47 0.48 0.49 0.49 0.50 0.51

25 0.40 0.41 0.42 0.42 0.43 0.43

26 0.40 0.40 0.41 0.41 0.42 0.42

27 0.36 0.37 0.37 0.37 0.37 0.38

28 0.29 0.30 0.30 0.30 0.31 0.32

29 0.26 0.26 0.26 0.26 0.27 0.27

30 0.24 0.24 0.24 0.25 0.25 0.25

Note: this table contains summary results for the eigen values of the unconditional
covariance matrix in the MHEAVY model.
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7.3 Robustness Results

Performance Robustness Strategies

Table 6: Performance Robustness Strategies

Ticker Sharpe B&H RWF VXD S. RWF VXD A. EPO S. EPO A. RWF RV S. RWF RV A.

DJIA 1.45 1.26 -1.96 2.72* 22.41* 1.11 -1.78

MSFT 1.24 0.97 -5.22 1.17 1.24 1.33 7.64

KO 1.14 1.06 -0.86 2.23 21.59* 1.43 9.68

DD 1.03 0.87 -2.65 1.04 2.85 0.53 -8.00

XOM 0.91 0.74 -2.34 1.34 10.35 1.10 8.12

GE 1.84 1.64 -3.31 2.45 21.82 0.87 -16.58

IBM 1.06 1.03 -0.26 1.14 4.59 0.73 -3.07

CVX 1.00 0.84 -2.43 2.01* 24.05* 1.50 15.83

UTX 0.74 0.59 -2.79 0.61 -0.46 0.22 -10.59

PG 0.72 0.71 -0.08 0.96 5.38 1.09 8.62

CAT 0.09 -0.12 -5.49 0.87 29.32 0.33 13.79

BA -0.20 -0.49 -5.45 -0.14 1.20 -0.47 -5.92

PFE 1.76 1.69 -0.67 1.62 1.34 1.46 -1.77

JNJ 1.15 0.97 -1.52 0.89 -1.02 0.62 -4.05

MMM 1.55 1.32 -2.86 1.93 11.13 0.49 -14.56

MRK 1.92 1.72 -2.72 1.56 -0.92 1.86 4.01

AA 0.26 -0.06 -8.86 -0.01 -7.11 0.41 13.40

DIS 2.72 2.45 -4.13 2.55 4.65 1.45* -20.8

HPQ -1.70 -1.98 -8.94 -1.60 -3.55 -1.60 -0.41

MCD -0.45 -0.36 1.15 2.08* 45.09* 0.27 13.37

JPM 1.05 1.04 0.17 1.06 8.53 1.69 43.99

WMT 2.05 1.63* -6.33* 2.78 18.23 1.81 0.96

AXP 1.40 1.31 -1.40 2.23 30.83 1.81 19.05

INTC -0.25 -0.67* -8.49* 1.48* 49.65* -0.65 -9.57

BAC 1.65 1.44 -7.52 1.42 1.28 0.89 -20.82

TRV 1.42 1.36 -0.77 1.95 14.00 1.97 16.91

VZ 1.73 1.37 -4.59* 2.75 19.4* 1.68 2.37

T 2.88 2.54* -4.13* 4.17* 32.63* 2.87 6.95

HD 2.72 2.72 0.74 4.36* 56.02* 3.49 30.74*

CSCO 0.25 0.24 -0.20 1.41 39.11* 0.07 -3.37

KFT 1.25 1.25 0.32 1.21 3.67 1.10 0.89

#Outperformance 0 0 6 9 0 1

Note: this table contains the performance measures for the robustness models. The
Sharpe ratio (S.) and alpha (A.) are annualized. ‘B&H’ denotes buy-and-hold, ‘RWF’
denotes Random Walk Forecast, ‘EPO’ denotes Ex-Post Optimal and ‘RV’ denotes
realised variance. The last row counts the number of times the model performs sig-
nificantly better than the index. An asterisk denotes a significant difference from the
buy-and-hold performance. The significance of alpha is determined by the t-statistic
of the constant of the time-series regression. The significance of the difference for
the Sharpe ratios is determined with methodology of Ardia and Boudt (2015).
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Performance with Transaction Costs

Table 7: Performance Univariate Models with Transaction Costs

Ticker Sharpe B&H ARCH S. ARCH A. GARCH S. GARCH A. HAR S. HAR A. HEAVY S. HEAVY A.

DJIA 1.44 1.31* -1.54* 0.59 -9.50 1.44 0.90 0.97 -4.11

MSFT 1.24 1.24 0.46 1.25 0.87 1.06 -2.93 1.12 -1.53

KO 1.13 0.96 -2.12 1.34 3.21 1.01 -0.71 1.24 2.52

DD 1.02 0.89* -2.41* 0.20* -14.18* 0.92 -1.55 0.32 -12.97

XOM 0.90 0.85 -0.83 0.27 -9.06 0.71 -2.59 0.79 4.25

GE 1.84 1.79 -0.77 1.34* -8.1 1.52 -5.24 1.38 -6.92

IBM 1.05 1.07 0.42 0.91 -1.61 0.66 -5.23 0.10 -14.54

CVX 0.99 1.00 0.25 0.76 -2.94 1.08 2.59 0.68 -4.32

UTX 0.73 0.67 -1.37 0.53 -3.76 0.37 -7.05 0.61 -1.30

PG 0.71 0.57 -1.75 0.41 -4.12 0.73 0.40 0.80 1.88

CAT 0.09 0.05 -1.02 -0.48 -14.73* -0.06 -3.66 0.01 -1.58

BA -0.21 -0.29 -1.58 -0.82 -12.25* -0.44 -4.38 -0.85 -12.87

PFE 1.75 1.72 -0.40 1.76 0.45 1.61 -1.57 1.71 1.45

JNJ 1.14 0.73* -3.51* 0.58 -4.67 0.96 -1.21 0.12* -9.41*

MMM 1.55 1.38* -2.29* 0.65* -12.05* 1.20* -4.54* 0.36* -16.38*

MRK 1.91 1.97 1.01 1.96 1.72 1.93 0.60 1.81 -1.20

AA 0.26 0.13 -3.72 -0.10 -10.01 0.11 -3.90 0.29 1.82

DIS 2.71 2.67 -0.37 2.59 -0.90 2.43 -4.17 2.55 -0.85

HPQ -1.70 -1.52 6.20 -1.19 19.77 -1.85 -5.70 -1.88 -8.26

MCD -0.46 -0.48 -0.39 -0.53 -1.11 -0.42 0.35 -0.20 3.84

JPM 1.04 0.97 -1.48 0.95 1.02 1.25 10.27 1.38 15.83

WMT 2.04 2.54 11.15 2.23 7.20 1.67 -5.00 1.25* -11.94*

AXP 1.39 1.22* -3.38 0.88* -10.08* 1.56 5.10 1.42 3.33

INTC -0.26 -0.32 -1.19 -0.37 -2.43 -0.64 -7.71 0.03 7.32

BAC 1.64 1.52 -3.44 1.51 2.58 1.23 -12.55 1.36 -5.64

TRV 1.41 1.39 0.35 0.98 -6.48 1.55 3.46 1.23 -0.79

VZ 1.73 1.79 0.85 1.33 -4.88 1.66 -0.64 1.34 -4.89

T 2.87 2.71 -1.79 2.19* -7.44 2.75 -0.57 2.32 -5.77

HD 2.72 2.24* -7.96* 2.48 -1.20 3.13 10.02 2.92 9.21

CSCO 0.25 0.20 -1.44 0.20 -1.43 0.14 -2.80 -0.05 -7.74

KFT 1.24 1.23 0.07 0.60* -9.04* 1.17 -0.58 1.12 -1.14

#Outperformance 0 0 0 0 0 0 0 0

Note: this table contains the performance measures for the individual variance mod-
els with transaction costs. The Sharpe ratio (S.) and alpha (A.) are annualized.
‘B&H’ denotes buy-and-hold. The last row counts the number of times the model
performs significantly better than the index. An asterisk denotes a significant differ-
ence from the buy-and-hold performance. The significance of alpha is determined by
the t-statistic of the constant of the time-series regression. The significance of the
difference for the Sharpe ratios is determined with methodology of Ardia and Boudt
(2015).
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Table 8: Performance Multivariate Models with Transaction Costs

B&H DJIA Index CCC GARCH DCC GARCH MHAR MHEAVY

Annual Return 18.42 13.82 11.03 15.67 17.30

Unc. Variance 0.55 0.58 0.63 0.53 0.54

Annual Sharpe 1.44 1.07 0.83* 1.25 1.37

Kurtosis 0.88 1.25 1.87 0.84 0.79

Annual Alpha -4.13 -6.97 -1.73 -0.78

Alpha T-Stat -1.75 -2.32 -0.57 -1.05

Beta 1.02 1.05 0.96 0.99

Timing Ability 0.49 0.49 0.51 0.49

Mean TS 1.03 1.05 1.04 1.00

Note: this table contains the performance measures for the multivariate variance
models with transaction costs. The Sharpe ratios and alphas are annualized. ‘B&H’
denotes buy-and-hold. An asterisk denotes a significant difference from the buy-
and-hold performance. The significance of alpha is determined by the t-statistic of
the constant of the time-series regression. The significance of the difference for the
Sharpe ratios is determined with methodology of Ardia and Boudt (2015).
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Performance with Leverage Constraint

Table 9: Performance Univariate Models with Leverage Constraint

Ticker Sharpe B&H ARCH S. ARCH A. GARCH S. GARCH A. HAR S. HAR A. HEAVY S. HEAVY A.

DJIA 1.45 1.37 -0.91 1.17 -3.01 1.45 0.17 1.45 0.23

MSFT 1.24 1.31 1.68 1.28 1.20 1.24 0.34 1.19 -0.74

KO 1.14 1.09 -0.59 1.22 1.18 1.09 -0.40 1.09 -0.47

DD 1.03 0.91* -2.03* 0.69 -5.83 1.00 -0.25 0.90 -2.12

XOM 0.91 0.89 -0.29 0.56 -4.99 0.80 -1.40 0.49* -5.86*

GE 1.84 1.82 -0.37 1.54 -5.06 1.60 -4.04 1.74 -1.35

IBM 1.06 1.12 1.04 1.03 -0.27 0.95 -1.50 0.79 -3.91

CVX 1.00 1.02 0.36 0.99 0.10 1.04 1.05 0.70 -4.71

UTX 0.74 0.69 -1.04 0.65 -1.48 0.64 -1.87 0.73 0.21

PG 0.72 0.68 -0.45 0.59 -1.70 0.76 0.52 0.74 0.40

CAT 0.09 0.07 -0.37 -0.10 -5.01 -0.06 -4.02 0.26 5.26

BA -0.20 -0.26 -1.18 -0.42 -4.19 -0.34 -2.71 -0.28 -1.47

PFE 1.76 1.75 -0.01 1.80 0.67 1.72 -0.34 1.99 3.47

JNJ 1.15 0.96 -1.68 0.76 -3.37 1.17 0.37 0.77* -3.37

MMM 1.55 1.42 -1.75 1.03* -7.08* 1.28 -3.53 1.29 -3.30

MRK 1.92 2.02 1.59 1.85 -0.65 1.93 0.38 1.90 0.02

AA 0.26 0.19 -2.11 0.02 -6.84 0.07 -5.37 0.26 0.33

DIS 2.72 2.73 0.49 2.68 -0.12 2.53 -2.79 2.72 0.74

HPQ -1.70 -1.63 2.52 -1.67 0.69 -1.68 -0.04 -1.77 -2.76

MCD -0.45 -0.42 0.44 -0.43 0.23 -0.32 1.84 -0.27 2.51

JPM 1.05 0.94 -2.82 1.02 -0.25 1.22 6.06 1.07 1.12

WMT 2.05 2.32 5.42* 2.16 2.45 1.87 -2.49 1.71 -5.16

AXP 1.40 1.26 -2.62 1.04* -7.07* 1.63 5.62 1.34 -0.74

INTC -0.25 -0.31 -1.13 -0.40 -3.09 -0.49 -4.94 -0.19 1.35

BAC 1.65 1.54 -3.31 1.48 -5.55 1.60 -0.82 1.53 -3.56

TRV 1.42 1.57 2.94 1.13 -4.42 1.61 3.38 1.43 0.64

VZ 1.73 1.84 1.43 1.54 -2.38 1.71 -0.07 1.52 -2.58

T 2.88 2.82 -0.62 2.64 -2.74 2.94 1.23 2.57 -3.48

HD 2.72 2.56 -2.54 2.65 -0.51 3.11 8.12* 2.77 1.66

CSCO 0.25 0.20 -1.44 0.20 -1.44 0.09 -4.19 0.15 -2.68

KFT 1.25 1.36 1.84 0.93* -4.49* 1.35 1.70 1.28 0.82

#Outperformance 0 1 0 0 0 1 0 0

Note: this table contains the performance measures for the individual variance mod-
els with leverage constraint. The Sharpe ratio (S.) and alpha (A.) are annualized.
‘B&H’ denotes buy-and-hold. The last row counts the number of times the model
performs significantly better than the index. An asterisk denotes a significant differ-
ence from the buy-and-hold performance. The significance of alpha is determined by
the t-statistic of the constant of the time-series regression. The significance of the
difference for the Sharpe ratios is determined with methodology of Ardia and Boudt
(2015).
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Table 10: Performance Multivariate Models with Leverage Constraint

B&H DJIA Index CCC GARCH DCC GARCH MHAR MHEAVY

Annual Return 18.54 15.36 15.59 16.89 17.66

Unc. Variance 0.55 0.56 0.58 0.52 0.54

Annual Sharpe 1.45 1.21 1.20 1.36 1.40

Kurtosis 0.88 1.03 1.13 0.69 0.79

Annual Alpha -2.69 -2.76 -0.77 -0.57

Alpha T-Stat -1.42 -1.48 -0.34 -0.77

Beta 1.00 1.02 0.96 0.99

Timing Ability 0.49 0.49 0.51 0.49

Mean TS 1.02 1.03 1.02 1.00

Note: this table contains the performance measures for the multivariate variance
models with leverage constraint. The Sharpe ratios and alphas are annualized.
‘B&H’ denotes buy-and-hold. An asterisk denotes a significant difference from the
buy-and-hold performance. The significance of alpha is determined by the t-statistic
of the constant of the time-series regression. The significance of the difference for
the Sharpe ratios is determined with methodology of Ardia and Boudt (2015).
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Performance with Volatility

Table 11: Performance Univariate Models with Volatility Scaling

Ticker Sharpe B&H ARCH S. ARCH A. GARCH S. GARCH A. HAR S. HAR A. HEAVY S. HEAVY A.

DJIA 1.45 1.41 -0.48 1.10 -3.74 1.55 1.35 1.35 -0.69

MSFT 1.24 1.28 0.88 1.27 0.77 1.20 -0.68 1.26 0.59

KO 1.14 1.10 -0.54 1.26 1.63 1.20 1.07 1.25 1.67

DD 1.03 0.97* -1.02* 0.67* -6.30* 1.06 0.69 0.72 -5.20

XOM 0.91 0.90 -0.19 0.62 -4.07 0.86 -0.71 0.84 -0.38

GE 1.84 1.83 -0.19 1.62 -3.79 1.73 -1.94 1.68 -2.57

IBM 1.06 1.10 0.71 1.03 -0.29 0.98 -1.08 0.77 -4.14

CVX 1.00 1.01 0.18 0.92 -0.98 1.13 2.61 0.86 -2.01

UTX 0.74 0.71 -0.52 0.67 -1.29 0.60 -2.72 0.69 -0.53

PG 0.72 0.70 -0.17 0.61 -1.44 0.80 1.04 0.83 1.59

CAT 0.09 0.08 -0.23 -0.15 -6.37 0.05 -1.04 0.09 0.16

BA -0.20 -0.22 -0.36 -0.47 -5.17 -0.27 -1.43 -0.44 -4.52

PFE 1.76 1.76 -0.01 1.79 0.49 1.72 -0.39 1.88 2.09

JNJ 1.15 0.98 -1.44 0.87 -2.34 1.12 -0.17 0.74* -3.64

MMM 1.55 1.49 -0.91 1.12* -5.74* 1.41 -1.83 1.08 -6.05

MRK 1.92 1.98 0.90 1.99 1.25 1.97 0.86 1.92 0.12

AA 0.26 0.20 -1.68 0.08 -5.15 0.22 -1.03 0.28 0.98

DIS 2.72 2.75 0.58 2.69 -0.14 2.63 -1.39 2.72 0.67

HPQ -1.70 -1.53 5.16 -1.44 8.35 -1.77 -2.61 -1.79 -3.58

MCD -0.45 -0.42 0.38 -0.47 -0.34 -0.36 1.21 -0.22 3.16

JPM 1.05 1.07 0.99 1.05 1.10 1.19 5.24 1.24 6.95

WMT 2.05 2.48 8.00* 2.29 5.20 1.98 -0.75 1.73 -4.85

AXP 1.40 1.33 -1.34 1.16* -4.63 1.57 4.00 1.49 2.73

INTC -0.25 -0.28 -0.57 -0.30 -1.08 -0.41 -3.18 -0.02 5.10

BAC 1.65 1.63 -0.29 1.61 -0.04 1.53 -3.70 1.52 -3.39

TRV 1.42 1.46 0.81 1.22 -3.05 1.55 2.45 1.39 0.23

VZ 1.73 1.79 0.74 1.59 -1.79 1.77 0.53 1.60 -1.61

T 2.88 2.83 -0.62 2.56 -3.59 2.90 0.55 2.65 -2.53

HD 2.72 2.52 -3.48 2.66 -0.32 3.02 5.99* 2.97 5.89

CSCO 0.25 0.23 -0.67 0.23 -0.67 0.23 -0.70 0.14 -2.95

KFT 1.25 1.28 0.51 0.95* -4.14* 1.28 0.50 1.26 0.28

#Outperformance 0 1 0 0 0 1 0 0

Note: this table contains the performance measures for the individual variance mod-
els with volatility scaling. The Sharpe ratio (S.) and alpha (A.) are annualized.
‘B&H’ denotes buy-and-hold. The last row counts the number of times the model
performs significantly better than the index. An asterisk denotes a significant differ-
ence from the buy-and-hold performance. The significance of alpha is determined by
the t-statistic of the constant of the time-series regression. The significance of the
difference for the Sharpe ratios is determined with methodology of Ardia and Boudt
(2015).
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Table 12: Performance Multivariate Models with Volatility Scaling

B&H DJIA Index CCC GARCH DCC GARCH MHAR MHEAVY

Annual Return 18.54 16.43 15.59 17.45 18.08

Unc. Variance 0.55 0.55 0.57 0.52 0.54

Annual Sharpe 1.45 1.29 1.21 1.40 1.42

Kurtosis 0.88 0.96 1.14 0.61 0.82

Annual Alpha -1.79 -2.69 -0.43 -0.29

Alpha T-Stat -1.55 -1.87 -0.28 -0.79

Beta 1.00 1.01 0.97 0.99

Timing Ability 0.50 0.48 0.50 0.48

Mean TS 1.01 1.01 1.01 1.00

Note: this table contains the performance measures for the multivariate variance
models with volatility scaling. The Sharpe ratios and alphas are annualized. ‘B&H’
denotes buy-and-hold. An asterisk denotes a significant difference from the buy-
and-hold performance. The significance of alpha is determined by the t-statistic of
the constant of the time-series regression. The significance of the difference for the
Sharpe ratios is determined with methodology of Ardia and Boudt (2015).
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Performance with Optimal Gamma

Table 13: ARCH Model Optimal Gamma

Ticker Opt. Gamma for Alpha Opt. Alpha Opt. Gamma for Sharpe Opt. Sharpe

DJIA -2.50 1.69 -2.50 3.00

MSFT 2.50 1.40 2.50 5.79

KO -2.50 1.39 -2.50 5.98

DD -2.50 1.32 -2.50 5.63

XOM -2.50 0.97 -2.50 1.13

GE -2.50 1.87 -2.50 1.20

IBM 2.50 1.18 2.50 2.78

CVX 2.50 1.05 2.50 0.96

UTX -2.50 0.87 -2.50 2.79

PG -0.27 0.73 -2.50 3.84

CAT -2.50 0.16 -2.50 2.16

BA -1.27 -0.18 -1.25 0.44

PFE -0.41 1.76 -2.50 0.11

JNJ -2.50 1.94 -2.50 16.95

MMM -2.50 1.91 -2.50 5.59

MRK 2.50 2.15 2.50 4.78

AA -2.50 0.69 -2.50 16.28

DIS 1.01 2.75 2.50 2.20

HPQ 1.92 -1.31 2.50 72.86

MCD 2.50 -0.35 2.50 1.58

JPM 0.37 1.07 0.50 0.99

WMT 1.95 2.79 2.50 63.88

AXP -2.50 1.71 -2.50 7.66

INTC -2.50 -0.10 -2.50 3.06

BAC 0.06 1.65 0.09 0.02

TRV 2.50 1.66 2.50 9.17

VZ 2.50 1.96 2.50 3.48

T -1.53 2.98 -2.50 7.60

HD -2.29 3.60 -2.50 80.34

CSCO -2.50 0.35 -2.50 2.68

KFT 2.50 1.42 2.50 5.88

Note: this table contains the optimal ex-post gamma for the ARCH model and the
corresponding optimal value.
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Table 14: GARCH Model Optimal Gamma

Ticker Opt. Gamma for Alpha Opt. Alpha Opt. Gamma for Sharpe Opt. Sharpe

DJIA -2.20 2.09 -2.50 54.71

MSFT 1.04 1.28 2.50 3.32

KO 2.50 1.76 2.50 16.33

DD -2.50 1.85 -2.50 44.09

XOM -2.07 1.50 -2.50 33.03

GE -2.50 2.49 -2.50 33.42

IBM -0.22 1.06 -0.72 0.26

CVX -0.69 1.03 -2.50 15.63

UTX -1.30 0.82 -2.50 7.20

PG -0.99 0.90 -2.50 25.72

CAT -2.50 0.59 -2.50 33.14

BA -2.33 0.35 -2.50 24.59

PFE 2.50 1.87 2.50 3.85

JNJ -2.34 2.31 -2.50 115.85

MMM -1.93 2.59 -2.50 53.39

MRK 2.40 2.05 2.50 10.54

AA -2.50 1.13 -2.50 71.70

DIS -0.33 2.72 2.50 1.82

HPQ 2.50 -0.35 2.50 243.62

MCD -2.50 -0.34 -2.50 1.63

JPM 0.25 1.06 2.50 20.59

WMT 1.00 2.34 2.50 65.23

AXP -2.50 2.17 -2.50 32.65

INTC -2.50 0.05 -2.50 12.99

BAC -0.54 1.66 2.50 156.53

TRV -2.25 2.02 -2.50 35.74

VZ -1.46 1.92 -2.50 6.12

T -1.16 3.30 -2.50 106.88

HD -0.30 2.73 2.50 9.20

CSCO -2.50 0.35 -2.50 2.68

KFT -1.31 1.78 -2.50 42.46

Note: this table contains the optimal ex-post gamma for the GARCH model and the
corresponding optimal value.
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Table 15: HAR Model Optimal Gamma

Ticker Opt. Gamma for Alpha Opt. Alpha Opt. Gamma for Sharpe Opt. Sharpe

DJIA 2.50 1.90 2.50 24.64

MSFT -2.49 1.45 2.50 1.31

KO 2.15 1.37 2.50 38.05

DD 0.40 1.06 0.47 0.69

XOM -1.80 1.02 -2.50 7.76

GE -2.33 2.17 -2.50 19.02

IBM -0.42 1.09 -0.95 1.40

CVX 2.05 1.30 2.50 20.73

UTX -1.29 1.27 -2.50 3442.94

PG 2.01 0.87 2.50 3.49

CAT 2.50 0.12 2.50 13.33

BA -2.50 0.01 -2.50 9.15

PFE -2.38 1.99 2.50 1.04

JNJ 2.50 1.22 2.50 5.11

MMM -2.06 1.88 -2.50 9.55

MRK 2.43 2.04 2.50 3.98

AA -1.37 0.33 -2.50 5.40

DIS -1.32 2.84 -2.50 12.61

HPQ -2.50 -0.43 -2.50 109.40

MCD 2.50 0.12 2.50 12.92

JPM 2.47 1.64 2.50 114.85

WMT -0.07 2.05 -0.17 0.06

AXP 1.77 1.78 2.50 71.98

INTC -2.50 0.32 -2.50 22.52

BAC -0.22 1.66 -0.81 2.13

TRV 2.50 2.14 2.50 35.99

VZ 0.63 1.77 0.89 0.64

T 0.52 2.90 2.50 2.92

HD 2.25 3.48 2.50 48.09

CSCO -0.56 0.26 -2.50 9.53

KFT 1.12 1.29 2.50 1.88

Note: this table contains the optimal ex-post gamma for the HAR model and the
corresponding optimal value.
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Table 16: HEAVY Model Optimal Gamma

Ticker Opt. Gamma for Alpha Opt. Alpha Opt. Gamma for Sharpe Opt. Sharpe

DJIA -0.26 1.46 -2.50 18.68

MSFT 0.42 1.26 1.00 0.77

KO 2.50 1.75 2.50 39.34

DD -1.42 2.01 -2.50 18809.83

XOM 1.32 1.01 2.50 19525.91

GE -1.25 2.02 -2.50 31.96

IBM -0.48 1.15 -0.73 2.52

CVX -2.33 1.41 -2.50 40.19

UTX 1.53 0.71 2.50 47.99

PG 2.50 1.44 2.50 39.21

CAT 0.26 0.09 0.50 0.16

BA -2.13 0.35 -2.50 81.12

PFE 0.59 1.89 1.01 2.93

JNJ -1.65 2.35 -2.50 210.13

MMM -1.20 2.07 -2.50 210.67

MRK 0.22 1.92 0.44 0.12

AA 2.50 0.46 2.50 18.49

DIS 0.27 2.73 1.07 0.95

HPQ 2.27 -1.67 -2.50 2120.31

MCD 2.50 0.40 2.50 43.29

JPM 2.41 1.68 2.50 152.39

WMT -1.55 2.58 -2.50 43.95

AXP 1.35 1.57 2.50 191.56

INTC 2.50 0.52 2.50 69.46

BAC -1.07 1.81 2.50 45.02

TRV -0.37 1.42 2.50 22.47

VZ -0.86 1.83 -1.38 2.20

T -1.28 3.17 -2.50 38.56

HD 1.48 3.13 2.50 105.28

CSCO -2.50 0.64 -2.50 47.52

KFT 0.34 1.26 0.57 0.28

Note: this table contains the optimal ex-post gamma for the HEAVY model and the
corresponding optimal value.
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Table 17: Optimal Gamma for Multivariate Models

Opt. Gamma for Alpha Opt. Alpha Opt. Gamma for Sharpe Opt. Sharpe

Random Walk -0.34 1.48 -2.50 47.08

VXD -2.50 1.75 -2.50 7.19

Ex-Post Optimal 1.76 3.02 2.50 307.87

CCC GARCH -2.50 1.98 -2.50 10.61

DCC GARCH -2.50 2.29 -2.50 19.63

MHAR -0.95 1.48 -2.50 3.56

MHEAVY -2.50 1.57 -2.50 1.66

Note: this table contains the optimal ex-post gamma for the multivariate models
and the corresponding optimal value.
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7.4 Replicating Results of Moreira and Muir Study

Table 18: Results of Replicating Moreira and Muir Individual Factors

Alpha Alpha SE Beta Beta SE

MKT 0.20 0.12 0.60 0.03

MKT Annualized 2.47

MKT Results Moreira and Muir 4.86 1.56 0.61 0.05

SMB 0.01 0.09 0.76 0.03

SMB Annualized 0.13

SMB Results Moreira and Muir -0.58 0.91 0.62 0.08

HML 0.09 0.07 0.59 0.03

HML Annualized 1.10

HML Results Moreira and Muir 1.97 1.02 0.57 0.07

RMW 0.16 0.05 0.44 0.02

RMW Annualized 2.00

RMW Results Moreira and Muir 2.44 0.83 0.62 0.08

CMA 0.02 0.05 0.57 0.02

CMA Annualized 0.29

CMA Results Moreira and Muir 0.38 0.67 0.68 0.05

MOM 0.65 0.10 0.37 0.02

MOM Annualized 8.08

MOM Results Moreira and Muir 12.51 1.71 0.47 0.07

Note: this table contains the performances measures for the replicating study of the
results of Moreira and Muir (2016). ‘SE’ denotes standard error. ‘MKT’ denotes
the market return. ‘SMB’ the size factor. ‘HML’ the value factor. ‘RMW’ the
profitability factor. ‘CMA’ the investment factor. ‘MOM’ denotes the momentum
factor. ‘Annualized’ denotes the annualized alpha. ‘Results Moreira and Muir’ are
the results presented in Moreira and Muir (2016).
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Table 19: Results of Replicating Moreira and Muir Multiple Factors

Sharpe Sharpe Sharpe Alpha Alpha Alpha

Annualized M&M Annualized M&M

FF3 Managed 0.15 0.53 0.69 0.10 1.21 4.99

FF3 MVE 0.17 0.61 0.52

FF3M Managed 0.34 1.17 1.09 0.30 3.60 4.04

FF3M MVE 0.27 0.93 0.98

FF5 Managed 0.32 1.10 1.20 0.16 1.90 1.34

FF5 MVE 0.28 0.96 1.19

FF5M Managed 0.39 1.36 1.42 0.22 2.69 2.01

FF5M MVE 0.31 1.08 1.34

Note: this table contains the performance measures for the replicating study of the
results of Moreira and Muir (2016). ‘M&M’ denotes Moreira and Muir. ‘Managed’
denotes volatility timed. ‘MVE’ denotes mean-variance efficient. ‘FF3’ denotes
the Fama-French three factor model. ‘FF3M’ denotes the Fama-French three fac-
tor model including momentum. ‘FF5’ denotes the Fama-Fench five factor model.
‘FF5M’ denotes the Fama-French five factor model including momentum.
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