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Abstract 

 

In this thesis I investigate whether the volatility managed portfolio strategy implemented on 

German and European single factors and multifactor portfolios leads to attractive risk-adjusted 

returns. Empirical evidence suggests that certain German and European managed factors present 

large and significant alphas and high Sharpe ratios, whereas all German and European multifactor 

portfolios outperform their peers. Moreover, when using the GARCH (1,1) approach instead of 

the realized variance approach, the volatility managed portfolio strategy offers superior and higher 

risk-adjusted returns only for the German and European momentum factor.  
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1 Introduction 

 

The ability to manage risk and make sound forward-looking financial decisions has always been 

an essential component for boosting financial performance in an economy. As Bernstein suggests 

(1998, p. 4) “today, we rely less on superstition and tradition than people did in the past, not 

because we are more rational, but because our understanding of risk enables us to make decisions 

in a rational way”. In the same vein, since Markowitz (1952) mathematically demonstrated a direct 

link between mean and variance of stock returns, much of the financial literature has extensively 

investigated the relationship between risk and expected return. 

 

Models such the Capital Asset Pricing Model (CAPM), developed by Sharpe (1964), assume a 

positive linear relationship between systematic risk and expected return. A traditional investment 

is often considered as one, where the expected return is either an exact compensation for the risk 

an investor is bearing or where expected return exceeds what the markets would consider to be a 

fair compensation. Various asset pricing models have been used to approximate the trade-off 

between risk and return. Nevertheless, empirical findings do not seem to be unanimous of whether 

the relation of risk and return is both either positive or negative, and linear or nonlinear. This 

ambiguity may exist because volatility fluctuates over time.   

 

Data from several studies suggest that these contradictions might be the result of traditional 

assumptions such as (i) variations in expected returns can only be explained by variations in 

volatility and (ii) expected returns are high even when business conditions are persistently risky. 

In fact, recent time-series studies on the mean-variance trade-off show that the relation between 

risk and return tends to be uncertain especially during extreme periods of volatility. For example, 

in response to an unexpected increase in stock market volatility, Muir (2016) suggests that “in 

volatile markets, there is a lot of additional risk that investors are exposed to, and if they are not 

being adequately compensated for that risk, then the right thing to do is to exit the market” (see, 

e.g., Rosenberg, 2016). This argument is largely explained by Moreira and Muir (2016a). The 

authors show that the mean-variance trade-off is weak, especially in volatile times. 
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To demonstrate this, they find that past volatility does poorly predict current expected returns, 

whereas past volatility predicts current volatility in turbulent times. Furthermore, the authors find 

that movements of volatility are persistent, but to a less extent than movements in expected returns. 

By combining their findings, the authors suggest that after a rise in volatility on stock markets the 

better alternative is to time volatility. In other words, they recommend to reduce risk market 

exposure when volatility is high and to take position again when markets start to recover. To do 

so the authors time risk i.e. manage volatility by using their volatility managing portfolio strategy 

(VMP hereafter). 

 

The VMP strategy is computed by scaling monthly single factors and multifactor portfolios by the 

inverse of its respective realized variance of the previous month. Once the factors and multifactor 

portfolios are scaled they are called managed factors and managed multifactor portfolios. The 

realized variance is the key variable of the strategy and is calculated with daily data. If the realized 

variance in the previous month i.e. the one-month-lagged realized variance is higher than expected, 

then the risk exposure to the market in the following month should be reduced. 

 

The study by Moreira and Muir (2016a) shows that managing the volatility of a variety of U.S risk 

factors and U.S. multifactor portfolios produce positive and significant alphas, large Sharpe ratios 

and utility gains from a mean-variance investor perspective. In other words, this simple strategy 

offers to the average investor an attractive opportunity to earn superior risk-adjusted returns in real 

time. This pattern is robust when controlling for other risk factors, after transaction costs and across 

different country indices.  

 

The main contribution of my research to the existing literature is the investigation whether the 

VMP strategy outperforms when using international data. More specifically, I manage the German 

version of the three risk factors of Fama and French (1992) namely market, size and value and the 

momentum risk factor of Carhart (1997). The sample period investigated is from January 1990 to 

June 2016. Moreover, I use different combinations of risk factors to create multifactor portfolios. 

I manage four monthly German multifactor portfolios during the same sample period used in the 

factor analysis. Considering specific particularities of the German stock market the empirical 

results are interpreted in single and multifactor settings. 
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The evidence presented in this thesis supports the hypothesis that managing German risk factors, 

the managed momentum factor is the only one that presents optimal results. In other words, 

managed momentum shows a large and statistically significant alpha as well as a higher Sharpe 

ratio compared to the German non-managed momentum factor. This is also true when controlling 

for momentum using other German factors and two different subsample periods. Applying the 

VMP strategy on multifactor portfolios, I find that the alphas for all German managed multifactor 

portfolios are positive and significant. The managed Sharpe ratios are moderately higher than those 

for the non-managed Sharpe ratios. 

  

I also evaluate the benefits of the VMP strategy at a regional level. Previous studies which explored 

both country- and regional-specific risk factors show that country-specific factors outperform 

regional-specific factors. The reason is that data used to construct such factor returns should have 

a high degree of capital market integration, which is usually the case only in domestic capital 

markets. In my research, however, I analyze a highly integrated regional capital market; the Euro 

area. I manage the European Fama-French three risk factors; market, size and value, as well as the 

European Carhart’s momentum factor. 

 

The analysis on both European single factors and European multifactor portfolios covers the period 

from July 1990 to December 2016. I provide evidence that all factors except the European 

managed market factor present positive and significant alphas and higher managed Sharpe ratios 

than the European non-managed factors. For the case of European multifactor portfolios, all 

managed multifactor portfolios outperform the non-managed ones. 

 

The German and the European analysis suggest that the market factor does not present statistical 

significance when applying the VMP strategy. However, the German and European managed 

momentum factor generally presents superior risk-adjusted returns. The overall findings are 

somewhat at odds with the existing literature, which suggests that country-specific factors perform 

better than regional-specific ones. Furthermore, I find that the European time-series analysis on 

single factors generally presents higher and statistically significant alphas than the German single 

factor analysis.  
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To my best knowledge, this is the first master thesis that replicates the main analysis of Moreira 

and Muir (2016a) by using all U.S. risk factors as in the original paper. One factor, however is 

excluded; the carry factor. The carry factor is not used in the analysis because its returns belong to 

other different asset class than equities. The objective is to replicate the VMP strategy on factors 

and multifactor portfolios and compare my findings to those of the authors. Moreover, the study 

of Moreira and Muir (2016a) is a country-specific analysis; therefore, it will serve as benchmark 

to make respective comparisons with the German analysis of this thesis. 

 

For the U.S study, I consider a similar sample period as in Moreira and Muir’s (2016a) research. 

It starts on January 1927 and ends in December 2016. The U.S. non-managed risk factors are:  

market, size, value, momentum, investment1, profitability, return on equity and investment2. For 

the U.S. multifactor portfolios, I manage the Fama and French (1993) three- and five- (2015) factor 

models, the Carhart (1997) four-factor model, and the four-factor model of Hou, Xue and Zhang 

(2014). 

 

I find that the alphas earned by the single and multifactor analysis are positive except for the alpha 

of the managed size factor. Moreover, the largest alpha value belongs again to the managed 

momentum factor in the single regression analysis and to the Fama and French three-factor model 

for the multifactor analysis. In most cases, the alphas are also statistically significant and managed 

Sharpe ratios are substantial. 

 

In addition, I examine whether another measure for the conditional variance could be a better proxy 

than the one-month-lagged realized variance. I forecaste variance by modelling the simplest form 

of the Generalized Auto Regressive Conditional Heteroscedasticity model: the GARCH (1,1). I 

find that managing German and European single factors with the GARCH (1,1) approach leads to 

larger and statistically significant alphas and higher Sharpe ratios than managing factors compared 

to the realized variance approach, though only for the German and European managed momentum 

factor. Consequently, implementing a forecasted variance, such as one-month-lagged GARCH 

(1,1), enhances the performance of the VMP strategy when managing momentum.   

 

1 This factor is the difference between the returns of conservative and aggressive investment stocks (CMA). 
2 This factor is the difference between returns of low and high investment stocks (IA). 
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The remainder of this thesis is structured as follows: The following section 2 shows the literature 

review related to the mean-variance criterium suggesting the existence of a non-dynamic and 

intertemporal relationship between risk and return. Next, I explain some volatility timing strategies 

and the key intuition behind the volatility managed portfolio strategy. Then, I present the 

underlying literature which serves to develop my three hypotheses. Section 3 describes the data 

collected and the empirical description of the variables used in the regressions. Section 4 shows 

the methodology, strategy construction and performance measures. Section 5 presents the 

regression results based on the realized variance approach of single factors and multifactor 

portfolios. Moreover, section 5 shows the output of single factor regressions when implementing 

the GARCH (1,1) approach. Finally, section 6 summarizes, draws conclusions and shows possible 

limitations of my research.  

 

 

2 Literature review 

 

The Modern Portfolio Theory of Markowitz (1952) states that there exists a direct relationship 

between mean and variance of stock returns. In the Sharpe (1967) and Lintner´s (1965) static 

approach, the Capital Asset Pricing Model (CAPM) goes beyond by assuming that the mean-

variance criterion is characterized by a linear relation between systematic risk and expected 

returns. Since then, asset pricing literature, such as Frama and French (1989) and Harvey (1989) 

investigate the intertemporal interaction between mean and variance. While Campbell (1987), 

Nelson (1991) and Glosten, Jagannathan and Runkle (1993) find evidence of volatility being 

negatively related to expected returns, French, Schwert and Stambaugh (1987) and Campbell and 

Hentschel (1992) find a positive relationship. These mixed empirical results suggest a great 

ambiguity to justify a traditional mean-variance approach across time. 

 

2.1 Volatility timing  

 

Fleming, Kirby and Ostdiek (2001) demonstrate that implementing volatility timing strategies 

across asset allocations can generate substantial economic benefits for mean-variance investors. 
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As Busse (1998) shows, mutual fund managers can efficiently time market volatility. He also finds 

a significant increase in risk-adjusted returns when investors decrease their market risk exposure 

during periods of high expected volatility. 

 

In the context of risk factor investing, Barroso and Santa-Clara (2015) suggest that momentum´s 

volatility is highly variable but predictable over time. Hence, the dynamic of momentum´s 

volatility can be managed, eliminating potential exposure to crashes. Moreira and Muir (2016a) 

use a similar methodology as Barroso and Santa-Clara (2015) but they address the asset allocation 

problem evaluating several systematic factors and multifactor models, which gives a better 

information about the evolution of the aggregate mean-variance trade-off in the economy. 

 

2.1.1 Volatility managed portfolio strategy 

 

Moreira and Muir (2016a) base their study on the intertemporal dynamic of the trade-off between 

risk and return. The authors show that while past volatility captures enough information to predict 

future volatility, it cannot explain expected returns, especially during periods of high market 

volatility. Hence the traditional mean-variance trade-off might be a weak reference for portfolio 

allocation. Furthermore, the authors suggest that fluctuations in volatility and expected returns are 

counter-cyclical. They observe that in response to a volatility shock, volatility initially spikes but 

expected returns do not follow the same increasing pattern. Subsequently, while volatility 

decreases returning to its mean3, expected return stay elevated for a prolonged period. This means 

that volatility is indeed persistent4 though to a lower extent than expected returns. 

By combining these findings, that (i) volatility poorly explains expected returns, (ii) past volatility 

predicts future volatility and (iii) volatility is less persistent5 than expected returns, the authors 

suggest that when stock markets are volatile the better alternative for an average investor is to time 

volatility. By doing so they apply their VMP strategy. For example, they recommend that suggest 

that when stock markets are volatile the better alternative for an average investor is to time 

 
3 Engle and Patton (2001) and Hillebrand (2003) describe in detail the mean reversion in volatility. 
4 Volatility persistence is a well-established phenomenon of volatility, see, e.g., Fama (1965), Chou (1988), Schwert 
(1989) and Nelson (1991).  
5 For a more detailed study on the different persistence of German and European factor returns in this thesis refers to 

Appendix A 7.3. 
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volatility. By doing so they apply their VMP strategy. For example, they recommend that investors 

should reduce their risk exposure by around 50% on a volatility shock on the market. The reason 

is that investors might not be adequately compensated for the risk that are bearing. 

More specifically, the strategy consists of reducing risk exposure during periods when market 

conditions are volatile, because the mean-variance trade-off becomes initially more uncertain 

deteriorating the optimal portfolio allocation. The next strategical move is that investors should 

re-take positions as volatility starts diminishing. The more the stock market starts to recover i.e. 

the more volatility decreases, the more the mean-variance trade-off gradually ameliorates. 

Moreira and Muir (2016a) suggest that average investors can obtain attractive risk-adjusted returns 

in real time by implementing the VMP strategy. To illustrate the benefits of the strategy the authors 

manage a broader set of U.S. systematic risk factors and multifactor portfolios. The strategy is 

computed by scaling monthly factors and multifactor portfolios by the inverse of the respective 

realized variance of the previous month (one-month-lagged RVt
2 or RVt−1

2 , hereafter). If the RVt
2 

in the preceding month is higher (lower) than expected, the risk exposure to the market in the 

following month should be reduced (increased). The authors measure the superior strategy´s 

performance through positive and significant alphas and positive Sharpe ratios.  

 

2.2 Hypothesis development 

 

By studying the business conditions and behavior between stock volatility and expected stock 

return, Fama and French, (1989) support the traditional view that expected returns are higher when 

economic conditions are risky. Moreira and Muir (2016a), however, contradict this financial 

wisdom; by suggesting that during turbulent times, the mean-variance tradeoff is weak because 

expected returns adjust more slowly than volatility. Therefore, investors are not adequately 

compensated for the risk they are taking. In fact, the authors’ suggested strategy differs from 

strategies; such as the buy-and-hold strategies or even strategies that maintain constant risky 

holdings, especially in recessions. 

 

Concerning market risk premiums, French, Schwert and Stambaugh (1987) suggest the existence 

of a direct and positive relation between risk premium and volatility. In the work of Backus and 
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Gregory (1993), the risk premium on the market portfolio is shown to be lower during volatile 

times. This latter evidence is consistent with the authors of the VMP strategy. 

 

Muir’s (2016) assumes that mean-variance investors might not be efficiently rewarded for the 

extra risk that investors are exposed to during risky periods. The reason is that during volatile 

times, volatility in capital markets is affected by much more additional risk than only systematic 

risk6. Therefore, a smart step would be exit the market. Thereby, the intuition of the VMP strategy 

has led to a growing debate among academics and in financial media. Motivated by this debate, I 

investigate empirically the feasibility and performance of the VMP strategy using German and 

European factor returns.  

 

2.2.1 German managed factors 
 

 

Moreira and Muir (2016a) find significant and positive alphas across U.S. single factors and divers  

U.S. multifactor portfolios by implementing their VMP strategy. While well-diversified U.S. risk 

factors, such as market, size and value from Fama and French (1992), are recognized worldwide 

in various empirical studies, there are empirical evidences that these U.S. factors are country-

specific. For example, Griffin (2002) advocates that other domestic versions of the Fama-French 

three-factor model fail to explain stock returns. Hence, my motivation is to examine the 

performance of the VMP strategy´s validity by applying other country-specific factors.  

 

In this thesis, I attempt to answer the question whether the VMP strategy is also suitable for factors 

consisting in German stock returns. The German economy and its capital market are of special 

interest for several reasons. First, the German stock market is one of the most important 

international capital markets and the second largest European market by market capitalization7. 

Second, in contrast with its European neighbors, Germany´s economy maintained its strong 

economic power during the last 2009 great recession. Despite a severe contraction of the GDP  

 

6 To see Muir, T., (2016) interview: https://www.cnbc.com/2016/03/23/when-markets-get-scary-panicking-is-smart-

yale-profs.html. 
7 Statistics of the German market capitalization can be obtained in the World Bank data set from 1975 to 2017: 

https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=FR-DE-GB&name_desc=false. 

https://www.cnbc.com/2016/03/23/when-markets-get-scary-panicking-is-smart-yale-profs.html
https://www.cnbc.com/2016/03/23/when-markets-get-scary-panicking-is-smart-yale-profs.html
https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=FR-DE-GB&name_desc=false
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between 2008 and 2009, Germany showed a low increase in unemployment and a stable export- 

import balance (see, e.g., Dustmann, Fitzenberger, Schönberg, and Spitz-Oener, 2014). Finally, 

Schildbach, (2017) demonstrates that the German stock market has largely outperformed its 

European peers despite the 2011 European sovereign debt crisis.  

 

One of the major inconveniences of conducting international factor analysis is the lack of reliable 

data. In my thesis, I use a reliable and publicly available dataset for German risk factors. Therefore, 

to test the VMP strategy´s performance, I construct a country-specific model managing four 

German risk factors: market, size, value and momentum. Considering specific characteristics of 

the German stock market explained by Ziegler, Eberts, Schröder, Schulz and Stehle (2007) and 

Stehle, Brückner, Lehmann, Schmidt (2015a), I expect that: 

 

• Hypothesis 1: The managed German factors and multifactor portfolios present positive and 

significant alphas and substantial Sharpe ratios in comparison with the non-managed 

German factors and multifactor portfolios. 

 

2.2.2 European managed factors  

 

To construct an adequate risk factor model, Fama and French (1998) show that such a model 

should be based on a high degree of capital market integration.  This assumption is consistent with 

the time-series study of Griffin (2002), which shows that domestic factor models outperforms 

global ones. Fama and French (2012) complement this research by suggesting that regional risk 

factors generate better results than global risk factors.  

 

Since countries have more integrated capital markets than financial or economic regions, it is not 

surprising that very few studies provide empirical comparisons between country-specific and 

region-specific data. However, the regional case study of the European capital market, represents 

an exception to the rule. According to Hardouvelis, Malliaropulos and Priestley (1999), European 

countries have gradually become a highly integrated stock market region, due to the progressive 

elimination of economic, financial and trade barriers. Therefore, I expect that managing European 

factors would provide acceptable results when implementing the VMP strategy, though to a lesser 
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magnitude than the German country-specific model. Following some assessments criteria of 

Moerman (2005), I suggest that:   

 

• Hypothesis 2: Managed European factors and multifactor portfolios outperform the non-

managed European factors and multifactor portfolios with positive and significant alphas 

and substantial Sharpe ratios though to a lower extent than in the German case. 

 

2.2.3 Volatility managed portfolio strategy: GARCH (1,1) approach 

 

Moreira and Muir (2016a) suggest that when managing factors by other variance forecasting 

measures, such as those proposed by Andersen and Bollerslev (1998), the VMP strategy offers 

similar outputs. Nevertheless, the results cannot be compared because they have not been 

published. Andersen and Bollerslev (1998) examine the implications of the Generalized Auto 

Regressive Conditional Heteroscedasticity (GARCH) using different data frequencies. They 

conclude that GARCH (1,1) does provide a good volatility forecast. Therefore, my objective in 

this thesis is to examine whether implementing GARCH (1,1) model provides a similar or superior 

performance than that of the realized variance approach, when constructing the VMP strategy.  

 

Previous research has concluded that GARCH is a parsimonious forecast measure. It also shows 

better forecasting power to model time-series data when it exhibits heteroskedasticity and volatility 

clustering8 (see, e.g., Akgiray, 1989). Moreover, Hansen and Lunde (2005) conclude that none 

relative competing GARCH-based model outperforms the accuracy forecast of the GARCH (1,1). 

Therefore, I assume that: 

• Hypothesis 3: Managing German and European factors with the one-month-lagged 

GARCH (1,1) provides a better performance in terms of alphas and Sharpe ratios than 

managing German and European factors with one-month-lagged RVt 
2. 

 

 

8 Volatility clustering captures the volatility shock magnitudes i.e. big (small) volatility shocks are followed by big 

(small) volatility shocks.  
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3 Data  

 

3.1 Data description 

 

To analyze the VMP strategy’s implementation, I use a data set which contains four German risk 

factors. I use daily and monthly German factor returns. The factors are the German version of 

Fama-French three risk factors and the German Carhart’s momentum factor. The factors are 

defined as GMKTRF, GSMB, GHML, and GMOM for market, size, value and momentum, 

respectively. I gather the dataset from Professor Stehle´s website at Humboldt University Berlin9. 

These risk factors capture specific peculiarities of the German stock market and cover the period 

from January 1990 to June 201610. 

 

The risk factors include data from the largest German security exchange; the Frankfurt Stock 

Exchange (FSE). The German MVE multifactor portfolios are GMKMO, GHMO, GFF3 and GC. 

GMKMO and GHMO are the portfolios that combine the non-managed market and momentum 

factors for the former and non-managed value and momentum factors for the latter portfolio. GFF3 

is the Fama and French three-factor portfolio, and the GC is the Carhart four-factor portfolio.  

 

The European data consists of daily and monthly factor returns. The factors are European market 

(EMKTRF), size (ESMB), value (EHML) and momentum (EMOM). I obtained this data from the 

website of Ken French and the sample covers the period from July 1990 to December 2016. 

Although two out of sixteen countries considered in the data set do not belong to the Euro Area, 

their financial markets are highly integrated to the Euro Area members11. The European MVE 

multifactor portfolios are the combination of European market and momentum factor (EMKMO), 

the combination of European value and momentum factor (EHMO), the European Fama and 

French three-factor model (EFF3) and the European four-factor model of Carhart (EC).  

 

9 Brückner, Lehmann, Schmidt and Stehle (2015b) provide a detailed description and construction of the German data.  
10 The German risk factors can be downloaded from the University Humboldt website: 

http://www.wiwi.hu-berlin.de/professuren/bwl/bb/data/fama-french-factors-germany. The dataset belongs to the ALL 

(BP: TOP) group with tax credit. 
11 Non-EU countries: Norway and Switzerland. Norway belongs to the European Economic Area (EEA). Although, 
Switzerland is neither an EU nor EEA member, it is part of the European single market. 

http://www.wiwi.hu-berlin.de/professuren/bwl/bb/data/fama-french-factors-germany
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I downloaded U.S. daily and monthly factors from Ken French’s website namely market 

(MKTRF), size (SMB), value (HML), momentum (MOM), profitability (RMW), and investment 

(CMA). MKTRF, SMB and HML form the original Fama and French three-factor model (FF3). 

With the addition of RMW and CMA factors, I form the Fama and French (2015) five-factor model 

(FF5). I also combine factors to create the U.S. Carhart four-factor model (C). The sample periods 

for MKTRF, SMB, HML and MOM start on January 1927, and for RMW and CMA starts on July 

1963. These factor returns are calculated from data from listed firms in the NYSE, AMEX, and 

NASDAQ exchanges. 

  

Additionally, I collect U.S. daily and monthly factors on investment (IA), and on returns on equity 

(ROE) described in Hou, Xue and Zhang, (2014)12. IA and ROE are two of the four-factors model 

of Hou, Xue and Zhang (2014). This U.S. four-factor model is noted as HXZ. The HXZ is 

combined with the momentum factor to create the HXZMO portfolio. The sample period of the 

factors ROE and IA and the multifactor portfolios HXZ and HXMO start on January 1967. The 

ending dates for all the U.S. factors and multifactor portfolios is December 201613. 

 

3.2 Summary statistics 

 

Table I shows the summary statistics for all non-managed risk factors and non-managed 

multifactor portfolios. All factor returns are in percentages. Panel A reports the statistics of the 

four non-managed German factors, GMKTRFnm, GSMBnm, GHMLnm and GMOMnm, each of them 

accounts for 318 monthly observations. Panel B shows the four European non-managed risk 

factors, EMKTRFnm, ESMBnm, EHMLnm and EMOMnm. Each European factor has also 318 

monthly observations. In panel C, each of the U.S.  factors: MKTRFnm, SMBnm, HMLnm and 

MOMnm consists of 1,080 monthly observations, except of RMWnm and CMAnm (642 monthly 

observations) as well as ROEnm and IAnm (600 monthly observations). Panel D, E and F report the 

mean-variance efficient (MVE) multifactor portfolios for Germany, Europe, and the United States,  

 respectively.  

 

12 I am grateful to Professor Lu Zhang for providing me the data described in Hou, Xue and Zhang, (2014). 
13 I am thankful to Professor Alan Moreira to give me some insights how to collect the U.S. data. 

 



Page | 13  
 

The non-managed MVE portfolios for Germany are GMKMOnm, GHMOnm GFF3 and GCnm and 

those for Europe are EMKMOnm, EHMOnm, EFF3nm and ECnm. Each of these MVE portfolios has 

318 monthly observations. The U.S. multifactor portfolios FF3nm and Cnm have 1,080 monthly 

observations. The data sample of the FF5nm and the portfolio conformed by FF5nm plus momentum 

(FF5MOnm) account for 641 monthly observations. The last two MVE multifactor portfolios in 

Panel F are: HXZnm and HXZMOnm. Both portfolios consist on 600 monthly observations.  

 

At first glance, all average factor returns (mean) are positive, with exception for GSMBnm (-0.56) 

and ESMBnm (-0.007). The values are lower than the one, with exception for GMOMnm (1.22). 

The mean of the monthly market factor differs considerably among the German (0.39), European 

(0.45) and U.S. (0.65) data. The means of the momentum factor are the largest factor means among 

the three types of data: GMOMnm (1.22), EMOMnm (0.89) and U.S. MOMnm (0.66). The standard 

deviation sheds light on the historical average volatility. Among the three different data sets, 

market and momentum factors are on average the riskier factors. For example, the standard 

deviations of U.S., German and European market factor are 5.38, 5.37, 4.96, respectively. 

Momentum volatility ranges between 4.03 for EMOMnm and 5.41 for GMOMnm.  

 

One way to model the mean-variance framework is using normal distributed returns. The normal 

distribution on returns has a relevant implication because it shapes the statistical estimation results 

considerably. In theory, it suffices to observe the balance between the mean and variance of normal 

distributed returns to explain the portfolio problem for a mean-variance investor. If returns obey a 

normal distribution approximately, they should have a skewness qual to zero and a kurtosis equal 

to three. The summary statistics show that none of the factor and multifactor portfolio distributions 

present symmetry around their means (skewness ≠ 0). Moreover, all return distributions present 

leptokurtic, i.e. positive excess kurtosis. The presence of non-normal distribution in my data is a 

typical phenomenon of financial data. 

 

While most of the U.S. factors present positive skewness, i.e. the probability of large gains is 

higher than the probability of large losses, most of the German and European factors have negative  

skewness, i.e. the probability of large losses is higher than the probability of large gains. In the 
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Table I 

 

Summary statistic of monthly non-managed factors and MVE multifactor portfolios 

Table I shows the summary statistics of return distributions for the non-managed factors and MVE multifactor portfolios. The first moment, i.e. the mean denotes 

the average value of the factor and multifactor return. The standard deviation (Std. Dev.) is the square root of the second moment. The third and fourth moments 

are skewness and kurtosis, respectively. Skewness captures the asymmetry of the distribution and kurtosis depicts the tail thickness of the distribution. None of the 

factor and multifactor portfolio distributions are characterized by a normal distribution. * denotes that the sample period of RMWnm and CMAnm factors starts on 

July 1963 (642 observations). ** denotes that the sample period of ROE and IA factors starts on January 1967 (600 observations). *** and **** denotes that data 

sample of FF5nm and FF5MOnm start on July 1963 and that of HXZnm and HXZMOnm start on January 1967. 

 

Non-managed single factors 

 Mean Std. Dev. Skewness Kurtosis 

Panel A: German factors, Jan. 1990-Jun. 2016 (318 observations) 

GMKTRFnm 0.39 5.37 -0.54 4.58 

GSMBnm -0.56 3.55 -0.04 3.78 

GHMLnm 0.50 3.11 0.45 6.00 

GMOMnm 1.22 5.41 -1.28 11.7 

Panel B: European factors, Jul. 1990-Dec. 2016 (318 observations) 

EMKTRFnm 0.45 4.96 -0.58 4.52 

ESMBnm -0.00 2.24 -0.08 3.94 

EHMLnm 0.34 2.40 0.36 5.87 

EMOMnm 0.89 4.02 -1.25 10.30 

Panel C: U.S. factors, Jan. 1927-Dec. 2016 (1,080 observations) 

MKTRFnm 0.64 5.38 0.19 10.74 

SMBnm 0.21 3.22 1.93 22.32 

HMLnm 0.40 3.51 2.16 22.03 

MOMnm 0.66 4.73 -3.05 30.58 

RMWnm* 0.24 2.23 -0.35 16.21 

CMAnm* 0.31 2.00 0.28 4.64 

ROEnm** 0.54 2.54 -0.69 7.65 

IAnm** 0.41 1.87 0.11 4.44 

 

 Mean Std. Dev. Skewness Kurtosis 

Panel D: German MVE portfolios, Jan.1990-Jun. 2016 (318 observations) 

GMKMOnm 0.70 3.61 0.28 3.99 

GHMOnm 0.96 3.63 -1.03 8.21 

GFF3nm 0.92 3.53 -1.19 11.8 

GCnm 0.57 2.02 -1.25 8.58 

Panel E: European MVE portfolios, Jul.1990-Dec. 2016 (318 observations) 

EMKMOnm 0.75 2.73 -0.76 5.54 

EHMOnm 0.60 1.95 -0.10 6.94 

EFF3nm 0.33 2.08 -0.09 4.02 

ECnm 0.60 1.77 -0.23 4.40 

Panel F: U.S. MVE portfolios, Jan.1927-Dec. 2016 (1,080 observations) 

FF3nm 0.48 3.23 2.14 26.24 

Cnm 0.55 1.94 -0.50 7.08 

FF5nm*** 0.30 1.01 0.10 5.43 

FF5MOnm*** 0.36 1.02 -0.36 7.74 

HXZnm**** 0.45 1.04 -0.07 6.10 

HXZMOnm**** 0.45 1.05 -0.18 6.52 

 

Non-managed MVE multifactor portfolios 



Page | 15  
 

case of MVE multifactor portfolios or well-diversified systematic portfolios, investors seek to 

diversify their portfolios to avoid a high probability of large losses. Paradoxically, the statistics for 

most of the MVE multifactor portfolios exhibit negative skewness. Levy and Post (2005a) propose 

a possible explanation for this paradox. They assume that the correlation between returns tends to 

rise during high volatility periods. This in turn diminishes the benefits of diversification.  

 

All factor and multifactor portfolio present high kurtosis, meaning that all return distributions have 

fat tails, or rather that there is a high probability of extreme returns. For example, the German, 

European and U.S. MOMnm factor distributions have their left tails extremely fat ranging from 

11.7 for GMOMnm to 30.58 for MOMnm. The fattest tail among portfolios has the value of 26.24 

for FF3nm portfolio.  The high values of kurtosis reflect that extreme negative returns can occur 

with a much more frequency than expected. This might be explained by the fact that variance is 

not constant over time (see, e.g., Levy and Post, 2005b). 

 

Overall, the descriptive statistics reveals that my data set is not normally distributed, confirmed by 

high levels of significance of the Jarque-Bera test statistics as shown in Appendix A, section 7.1. 

A common problem in time-series studies is that even if a normal distribution were used to model 

the mean-variance investors’ problem, investors might underestimate the level and magnitude of 

recessions and booms. The problem is that the normal distribution quantifies isolated outlier events 

as extremely rare. However, these extreme outlier events are more frequently observable in capital 

markets than the normal distribution predicts (see, e.g., Reinhart and Rogoff, 2009). 

 

3.3 Correlation matrix  

 

Table II reports Pearson’s correlation matrix for the non-managed factors at monthly frequency. 

Pearson’s correlation coefficient (ρ) helps to identify linear relationships among variables. Panel 

A and B show the correlation coefficients for the German and European risk factors, respectively. 

Panel C reports the correlations for U.S risk factors. The criteria for correlation degree are: high 

correlation degree ± 0.50 < ρ < ± 1, moderate correlation degree ± 0.30 < ρ < ± 0.49 and low 

correlation degree ± 0.01 < ρ < + 0.29. Most of the German coefficient correlations are low and 

negative, except of the correlation between GMKTRFnm and GSMBnm (-0.50). 
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Table II 

 

Pearson`s correlation coefficients of non-managed factors  

Table II reports the correlation matrix for German, European and U.S. risk factors at monthly frequency. The criteria 

for the correlation degree are: high correlation ± 0.50 < ρ < ± 1, moderate correlation ± 0.30 < ρ < ± 0.49 and low 

correlation ± 0.01 < ρ < + 0.29. For most of the factors, the correlation coefficients are low and negative. * specifies 

the significance level of correlation coefficients at 5%.  

 

 

 

 

The output of Panel B shows that all correlation coefficients of the European factors are low. While 

most of the European factor correlations are negative, the coefficient correlations between 

EMKTRFnm and EHMLnm, and between ESMBnm and EMOMnm are positive. The coefficient 

results are mixed when observing U.S. correlations. Panel C shows that while just over half of the 

correlation outcomes are low and negative, there are also very high positive correlations. The two 

highest coefficient values belong to the correlation between CMAnm and IA (ρ= 0.91) and HMLnm 

and CMAnm (ρ= 0.69). 

 

Panel A: German factor correlation coefficients 

                           GMKTRFnm   GSMBnm    GHMLnm     GMOMnm 

GMKTRFnm 

GSMBnm 

GHMLnm 

GMOMnm 

 1.00 

-0.50*              1.00  

-0.02               -0.17*          1.00  

-0.27*             -0.14*          0.09             1.00 

Panel B: European factor correlation coefficients 

                           EMKTRFnm    ESMBnm     EHMLnm    EMOMnm 

EMKTRFnm 

ESMBnm 

EHMLnm 

EMOMnm 

 1.00 

-0.17*              1.00 

 0.18*             -0.06            1.00 

-0.28*              0.09           -0.28*           1.00 

Panel C: U.S factor correlation coefficients 

 MKTRFnm       SMBnm       HMLnm      MOMnm      RMWnm     CMAnm     ROEnm     IAnm 

MKTRFnm  1.00 

SMBnm    0.32*              1.00 

HMLnm  0.24*              0.12*          1.00 

MOMnm -0.33*            -0.14*         -0.41*          1.00 

RMWnm -0.23*            -0.40*          0.07            0.10*           1.00 

CMAnm -0.38*            -0.16*          0.69*         -0.01           -0.03           1.00 

ROEnm -0.20*            -0.37*         -0.13*          0.50*          0.66*        -0.08*        1.00 

IAnm -0.38*            -0.25*          0.67*          0.02            0.09*          0.91*        0.03         1.00 
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4 Methodology 

 

4.1 Mean-variance framework 

 

The starting point to understand the VMP strategy is to study such strategy through the perspective 

of a mean-variance investor. This investor evaluates her portfolio allocation according to the 

intertemporal attractiveness of the risk-return trade-off. According to Moreira and Muir (2016a), 

the mean-variance trade-off is given by: 

 

𝜇𝑡

𝜎𝑡
2  (1) 

where 𝜇𝑡  is the expected excess return and 𝜎𝑡
2 is the conditional variance. Since variance is not 

directly observable, it should be estimated as σt
2̂. 

 

4.2 Portfolio construction 

 

Moreira and Muir (2016a) use the following methodology to construct the realized variance (RVt
2):  

 

𝑅𝑉𝑡
2= 𝜎𝑡

2̂ =∑ (𝐹𝑡+𝑑
𝑛𝑚1

𝑑=1/22 − (
∑ 𝐹𝑡+𝑑

𝑛𝑚1
𝑑=1/22

22
))

2

  (2) 

where Ft+d
nm  is the return of the non-managed factor. RVt

2 is the sum of the squared deviation of 

each daily factor return on day d and the daily average return. The value 22 is the average number 

of daily observations per month. From this equation, one can obtain the one-month-lagged 

RVt
2 (or RVt−1

2 ) i.e. the proxy of the conditional variance of the non-managed factor. The square 

root of RVt
2 is its realized volatility (RVt). Once RVt−1

2  is obtained, the authors construct the 

managed factor (Ft
m) with the following model: 

𝐹𝑡
𝑚 =

𝐶

𝑅𝑉𝑡−1
2 𝐹𝑡

𝑛𝑚 .  (3) 
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Ft
m is obtained by scaling monthly non-managed factor by the inverse of its respective RVt−1

2 . The 

constant c serves to control the average risk exposure of the strategy. In other words, c is set in 

such a way that the unconditional standard deviation of the managed factor is the same as the 

unconditional standard deviation of the non-managed factor. 

 

4.3 Mean-variance weakness  

 

To validate the weakness of the mean-variance framework, Moreira and Muir (2016a) assume that 

while there is a strong relation between past volatility and current volatility, there is a weak relation 

between past volatility and average returns during periods of high volatility. To verify these 

predictions, I estimate both, the average impact of past volatility on current returns and the average 

impact of past volatility on current volatility. 

 

4.3.1 Volatility and return predictions 

 

By estimating the relation between volatility and return I run a time-series regression of monthly 

log factor return on its previous monthly log realized volatility. The following equation 

approximates this relation: 

 

𝑙𝑜𝑔 (𝐹𝑡
𝑛𝑚) = 𝑎 + 𝑏𝑙𝑜𝑔(𝑅𝑉𝑡−1) + 𝜖𝑡   (4) 

 

where one-moth-lagged RVt is the factor past realized volatility. Further, I run a time-series 

regression of monthly realized volatility on the one-month-lagged RVt . For this purpose, I take 

logs of both past and current volatility of factor returns. The regression equation is:  

 

𝑙𝑜𝑔 (𝑅𝑉𝑡) = 𝑎 + 𝑏𝑙𝑜𝑔(𝑅𝑉𝑡−1) + 𝜖𝑡    (5) 

 

In the original paper of Moreira and Muir (2016a), the authors sort the factor returns according to 

the level of factor realized volatility. More specifically, they form low to high volatility groups to 

calculate the risk-return predictions. However, I do not sort the data into low to high factor 

volatility. Therefore, both regressions are not intended to accurately capture the intertemporal 
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prediction during economic contraction and expansion periods. Nonetheless, I empirically 

approach the average relation between one-month-lagged volatility and returns and the relation 

between one-month-lagged volatility and current volatility.  The coefficient of the one-month-

lagged realized volatility (b) will be reported for both equations 4 and 5. The larger and the more 

statistically significant the past realized volatility coefficient, the stronger is the power of 

prediction. 

 

4.4 Managed single factor and multifactor portfolio  

 

4.4.1 Single managed factor 

 

The VMP’s methodology consists of running a time-series regression of each managed factor on 

its respective non-managed factor: 

 

           𝐹𝑡
𝑚 = 𝛼 +  𝛽𝐹𝑡

𝑛𝑚 + 𝜖𝑡.  (6) 

A positive alpha means that the Sharpe ratio of the managed factor is relatively higher than the 

Sharpe ratio of the non-managed factor. The factors used in this thesis are highly diversified so 

that total risk of each factor coincides with its respective systematic risk. Moreover, every non-

managed factor captures a different dimension of systematic risk. For instance, GMKTRF explains 

German market risk and GSMB captures German firm size risk. 

 

4.4.2 Managed multifactor portfolio 

 

I create different combinations of monthly non-managed factors to create monthly non-managed 

multifactor portfolios. The multifactor portfolio is created to be a mean-variance efficient (MVE) 

portfolio. The constant weights of the monthly non-managed factors are calculated in such a way 

that they produce the maximal Sharpe ratio of the MVE portfolio. This means that the MVE 

portfolio is an optimal portfolio in the mean-variance space when a risk-free rate is available. The 

non-managed MVE portfolio is: 
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𝑀𝑉𝐸_𝑝𝑡
𝑛𝑚 = ∑ 𝑊𝑖 𝐹𝑡,𝑖

𝑛𝑚𝑖
𝑡=1             (7) 

where Wi is the monthly weight of the non-managed factor i ( Ft.i
nm). To construct the managed 

MVE portfolio, the non-managed MVE portfolio is scaled by the inverse of its one-month-lagged 

realized variance (RVMVE,t−1
2 ). RVMVE,t−1,

2  uses the same methodology as RVt−1
2 . The only 

difference is that the daily MVE portfolio returns are constructed using daily weights at a given 

risk-free rate. The managed MVE portfolio is: 

 

𝑀𝑉𝐸_𝑝𝑡
𝑚 =

𝑐

𝑅𝑉𝑀𝑉𝐸,𝑡−1,
2 𝑀𝑉𝐸_𝑝𝑡

𝑛𝑚, (8) 

 

where c is a constant that normalizes the variance of the managed MVE portfolio to be equal as 

the non-managed MVE portfolio. The time-series equation of the managed MVE portfolio is: 

 

𝑀𝑉𝐸_𝑝𝑡
𝑚 = 𝛼 + 𝛽 𝑀𝑉𝐸_𝑝𝑡

𝑛𝑚 + 𝜖𝑡. (9) 

 

By running a time-series regression of the managed MVE portfolio on the non-managed MVE 

portfolio, a positive alpha implies that the VMP strategy increases the Sharpe ratio of the MVE 

portfolio compared to the best Sharpe ratio of any MVE non-managed multifactor portfolio. This 

means that a positive alpha expands the mean-variance frontier.  

 

4.5 Performance measurement of the VMP strategy 

 

To evaluate the managed portfolio performance Moreira and Muir (2016a) construct the managed 

Sharpe ratio (SRm). The SRm is the square root of the sum of the squared non-managed Sharpe 

ratio (SRnm2
) and the squared appraisal ratio ((α/σɛ) 2). The SRnm is defined as the expected 

excess factor return divided by the realized standard deviation of the factor. The managed Sharpe 

ratio is calculated as following: 

𝑆𝑅𝑚 = √(𝑆𝑅𝑛𝑚)2  + (
𝛼

𝜎𝜀
)

2

  (10) 



Page | 21  
 

where σɛ is the root mean squared error (RMSE) and measures the accuracy of (multi)factor return 

estimations relative to the historical (multi)factor average returns (see, e.g., Verbeek, 2012). The 

appraisal ratio (AR) will be reported in annualized terms (√12 * AR). When using different MVE 

portfolios, this term indicates how much the dynamic of VMP strategy expands the mean-variance 

efficient frontier compared to the non-managed multifactor strategy14 i.e. passive strategies.   

 

4.6 Forecasting variance 

 

Most of the performance of the VMP strategy comes from the technique to proxy conditional 

variance by using RVt−1
2 . Although RVt−1

2 ´s construction seems to involve a simple methodology, 

I investigate, whether a forecasted variance measure can be a more accurate proxy for the 

conditional variance than the RVt−1
2 . I approximate conditional variance by using the one-month-

lagged Generalized Auto Regressive Conditional Heteroscedasticity process (one-month-lagged 

GARCH (1,1) or σt−1
2  hereafter).  

 

4.6.1 The GARCH (1,1) forecasting model 

 

The traditional GARCH (p,q) which allows for different lags can be written as:  

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑝
𝑖=1 𝑅𝑡−𝑖

2 + ∑ 𝛽𝑖
𝑞
𝑖=1 𝜎𝑡−𝑖

2̇  (11) 

where σt
2 is the forecasted variance which depends on the weighted average of past squared returns 

(Rt−i
2 ), on its own previous lags (σt−i

2̇ ) and on the parameters ω, α and β. If the aim is to forecast 

variance on a short-term, the simplest version of GARCH(p,q), the GARCH (1,1), suffices. This 

means only one lag of squared returns and one lag of the variance itself are looked at. I use the 

following standard GARCH (1,1) process: 

𝜎𝑡
2 =  𝜔 + 𝛼𝑅𝑡−1

2 + 𝛽 𝜎𝑡−1
2̇ ,   (12) 

14 In the paper of Moreira and Muir (2016a), “Volatility Managed Portfolios”, the portfolio formation and empirical 

methodology are explained in the section 2. My thesis uses the same methodology, strategy construction and criterium 

of performance for the analysis of the single factors and multifactor portfolios. However, most of the equation terms 

are changed to avoid repetitive notations. 
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where ω= θσL
2. The parameter θ is the weight assigned to the long-run average variance, σL

2
. To 

ensure non-negativity of GARCH (1,1), the equation (12) requires that θ + α + β =1. The GARCH 

(1,1) is constructed using daily factor returns and the parameters are calculated using the method 

of Maximum Likelihood Estimation (see, e.g., Hull, 2012) 

 

4.6.2 Managed GARCH (1,1) factor construction 

 

I scale the monthly non-managed factors15 (Ft
ng

) by the inverse of its respective one-month-lagged 

GARCH (1,1) or σt−1
2  , to construct the managed GARCH (1,1) factor (Ft

g
). Ft

g
 can be obtained by 

the following model:    

𝐹𝑡
𝑔

=
𝑐

𝜎𝑡−1
2  

𝐹𝑡
𝑛𝑔

.  (13) 

The constant c serves to control the average risk exposure of the strategy. Once Ft
g is obtained, I 

run a time-series regression of the managed GARCH (1,1) factor on the non-managed factor 

(Ft
ng

)16. Similarly, as in the realized variance approach, a positive and significant alpha and a large 

Sharpe ratio imply the superior performance of the strategy. 

 

5 Empirical results 

 

5.1 German risk factors  

 

5.1.1 Predictions of volatility and returns for Germany factors 

 

In the study of Moreira and Muir (2016a), the trade-off between mean and variance is explained 

by the assumption that past volatility does not explain average returns, emphasizing that this  

 

15 Ft
ng

 is the same as the Ft
nm i.e monthly non-managed factors. The “g” denotes only that the GARCH (1,1) approach 

is applied in computation.  
16 To model monthly GARCH (1,1) from daily GARCH (1,1) I use an estimation window to aggregate daily GARCH 

(1,1) observations (in average 22 observations per month) for each month. (see, e.g., Liu and Tse, 2013, p 5).  

Moreover, it is important to reiterate that the monthly one-month-lagged GARCH (1,1) is noted as 𝜎𝑡−1
2  whereas one 

lag of the variance using daily data is 𝜎𝑡−1
2̇ . 

 



Page | 23  
 

relation is especially weak during periods of high volatility. The authors illustrate two scenarios: 

One where the risk-return trade-off is strong and another where it is weak. In both cases, the 

volatility is high. If the relation between risk and return is strong, volatility should predict average 

returns. This intuitively leads to obtain potential high expected returns if investors increase their 

risk exposure on the market. However, if the risk-return relation is weak, volatility cannot predict 

average returns, because stock volatility varies even more in volatile periods. Therefore, an 

adequate compensation for risk-taking is not achievable. 

 

 

Table III 

Average returns and current volatility predicted by past volatility 

Panel A reports the coefficients for time-series regressions of monthly non-managed factor returns on its previous 

one-month-lagged realized volatility (log (Ft
nm) = a + blog (RVt-1) + ϵt). Panel C shows the coefficients for time-series 

regressions of monthly factor volatility on its one-month-lagged realized volatility (log (RVt) = a + blog (RVt-1) + ϵt). 

Panel B presents Person´s correlation coefficients between non-managed factor return and its respective one-month-

lagged realized volatility. Panel D shows Person´s correlation coefficients between factor volatility and its respective 

one-month-lagged realized volatility. The sample period for all German factor returns starts in January 1990 and ends 

in June 2016. I perform the two-sided test and t-values are in parentheses, t-values are based in standard errors which 

are adjusted for heteroscedasticity. *, **, and *** denote the 10%, 5% and 1% significance level, respectively.   

 

 

Panel A: Regression of factor returns on lagged realized volatility 

 GMKTRFnm GSMBnm GHMLnm GMOMnm 

RVt-1 -0.02 -0.04 0.01 -0.26 

(t) (-0.64) (-1.12) (0.27) (-1.16) 

Observations  317 317 317 317 

R2 0.00 0.00 0.00 0.01 

Panel B: Correlation between factor returns and lagged realized volatility 

RVt-1 -0.04 -0.06 0.01 -0.13** 

Panel C: Regression of factor realized volatility on lagged realized volatility 

RVt-1 0.63*** 0.68*** 0.58*** 0.72*** 

(t) (14.18) (15.52) (11.65) (17.67) 

Observations 317 317 317 317 

R2 0.40 0.47 0.33 0.52 

Panel D: Correlation between factor realized volatility and lagged realized volatility 

RVt-1 0.63** 0.68** 0.58** 0.72** 
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To study the power of past volatility to predict average returns, I run a time-series regression of 

the log average return on the log one-month-lagged realized volatility for each German risk factor. 

The regressions are at monthly frequency. In Table 3, Panel A reports the coefficients of the one-

month-lagged realized volatility. I find that all coefficients except that of the value factor volatility 

are negative. None of the past realized volatilities have a statistically significant impact on factor 

returns.  Therefore, the one-month-lagged volatility of market, size, value, and momentum appear 

not to predict factor average returns. 

 

Panel B complements the previous regressions by showing the Pearson’s correlation coefficients 

between the one-month-lagged realized volatility and average return. While the correlation 

coefficient for market and size factor volatility is negative and insignificant, this is positive though 

also insignificant for value’s volatility. The lagged realized volatility of momentum is negatively 

correlated with the momentum average returns at the 5% level.    

 

Moreira and Muir (2016a) also argue that the relation between past realized volatility and current 

realized volatility is strong. To investigate this finding, I run a time series regression of the log 

realized volatility on the log one-month-lagged realized volatility. Regarding Panel C, I find that 

all coefficients for the lagged realized volatility are positive and highly significant at the 1% level. 

Therefore, past volatility has a high power of prediction for current volatility at the short term. 

This output is highly relevant because the power of explanation of past volatility on current 

volatility is a key piece when implementing the VMP strategy. Panel D reports the correlation 

coefficients between lagged realized volatility and current realized volatility. All correlation 

coefficients are highly positive and significant at the 5% level, especially for the momentum factor. 

 

5.1.2 Time-series German factor volatility 

 

Figure I depicts the monthly time-series realized volatility of German factors from January 1990 

to June 2016. Bars in shaded grey present the OECD based recession and crisis periods for the 

German economy during the last 26 years. At first glance, the increase in volatility for all German 

factors coincide with the turbulent periods, showing that factors’ volatility is strongly associated 

with the business cycle pattern. During the last 26 years, the German stock market was hit by  
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Figure I 

German factor volatility and business cycle, 1990-2016 

The y-axis shows the German monthly time-series realized volatility of the non-managed factors: GMKTRFnm, 

GSMBnm, GHMLnm and GMOMnm from January 1990 to June 2016. Bars in shaded grey present OECD based 

recession and crisis periods for the Germany economy, namely the ERM crisis in 1992-1993, deterioration of business 

sentiment in 1998, recession in 2002-2003, financial crisis in 2008-2009, 2011 debt crisis, and 2015 migrant crisis. 

All German factors present a similar business cycle pattern, i.e. the movements across factors follow a similar volatility 

pattern over time.  

 

 

Source: OECD economic indicators. 

 

several economic contractions, such as the Exchange-rate mechanism (ERM) crisis in 1992-1993, 

the deterioration of business sentiment in 1998, the recession of 2002-2003, the financial crisis in 

2008-2009, the debt crisis 2011 and the migrant crisis 2015. 

 

One can observe that German factors, especially market and momentum, have high volatility in 

the middle of the analyzed period, which includes the recession from the start of mid-2002 until 

mid-2003, after the introduction of the Euro. Thereafter, volatility dropped significantly until the 

global financial crisis 2008 reached Germany. Throughout 2008 until the second quarter of 2009, 

factors’ volatility increased dramatically, especially for market and momentum factors. From then 

onwards volatility followed a downward trend with some fluctuations until the second quarter of 

2011. During the debt crisis period of 2011-2013, volatility of market, size and momentum raised 

steeply and declined again after the crisis. 
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A striking feature of this analysis is that momentum volatility peaked during the 2008 financial 

crisis. The profitability of the momentum factor had large drawdowns, causing the crash of the 

German momentum strategy in the third quarter of 2009. There is some evidence that market 

participants such as mutual funds and foreign investors traded aggressively on this strategy during 

that time due to the high profitability of the German momentum factor (see, e.g., Baltzer, Jank and 

Smajlbegovic, 2015). Nevertheless, when German momentum reversed, less sophisticated 

investors suffered great losses. Therefore, the VMP strategy on momentum and other momentum 

trading strategies proposed by Barroso and Santa-Clara (2014) and Daniel and Moskowitz (2016) 

propose that during this volatile episode the best alternative is to reduce exposure to momentum, 

especially for non-sophisticated investors.  

 

5.1.3 German managed single factors 

 

To investigate, whether the VMP strategy works by using German factors, I run a time-series 

regression of the managed factor on its respective non-managed factor. Panel A in Table IV 

illustrates the regression outputs of the market, size, value, and momentum factors. The alphas are 

positive and statistically insignificant for the managed market and value factors. The annualized 

alpha of the size factor is statistically insignificant as well though has a negative sign. The German 

momentum factor is the only factor that reports a highly positive and statistically significant 

annualized alpha of 8.14%. The latter finding is consistent with the work of Moreira and Muir 

(2016) who also find that managing momentum produces high and significant risk-adjusted 

returns. 

 

Panel A also reports root mean squared errors (RMSE) and annualized appraisal ratios (√12 * AR= 

√12 * α/σɛ). AR allows to measure the expansion of the slope of the mean-variance efficient 

frontier by managing factors in comparison with the non-managed factors. The managed 

momentum factor has the highest annualized AR of 0.73, which produces an increase in its Sharpe 

ratio (Shm = 0.27) compared with its non-managed Sharpe ratio (Shnm = 0.17). Controlling for the 

Fama and French three-factors, the output is relatively unchanged. Panel B shows that while sign 

of the annualized alpha of the market factor turns from positive to negative, those of size, value 

and momentum stay  
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Table IV 

Single managed factors for Germany 

Panel A shows the monthly time-series regressions for the German managed factors on their respective non-managed 

factors. The regression equation is: 𝐹𝑡
𝑚 = 𝛼 +  𝛽𝐹𝑡

𝑛𝑚 + 𝜖𝑡+1, where 𝐹𝑡
𝑚 is the managed factor which is calculated by 

scaling its respective monthly non-managed factor ( 𝐹𝑡
𝑛𝑚) by the inverse of its one-month-lagged realized variance 

(c/𝑅𝑉𝑡−1
2 ). C is a scalar so that the managed factor has the same unconditional standard deviation as the non-managed 

factor. Each factor is annualized in percentage per year by multiplying monthly factors by 12. Managed and non-

managed Sharpe ratios, RMSE, and annualized AR are reported in the table. Panel B reports the three factors of Fama 

and French as control variables for each regression. Panel C shows the annualized alphas for two different subperiods 

as robustness check. The whole sample period extends from January 1990 to June 2016. I perform the two-sided test 

and t-values are in parentheses and t-values are based in standard errors which are adjusted for heteroscedasticity. *, 

**, and *** denote the 10%, 5% and 1% significance level, respectively.   

 

  

Panel A: Individual regressions 

    GMKTRFm GSMBm GHMLm GMOMm 

Alpha 0.46 -0.36 1.15 8.14*** 

(t) (0.27) (-0.59) (1.25) (3.48) 

GMKTRFnm 0.35***    

(t) (8.50)    

GSMBnm  0.31***   

(t)  (15.47)   

GHMLnm   0.47***  

(t)   (9.36)  

GMOMnm    0.36*** 

 

(t)    (6.92) 

Shnm 0.07 -0.23 0.07 0.17 

Shm 0.07 0.23 0.09 0.27 

RMSE 28.76 10.61 17.41 38.21 

Annualized. AR 0.05 -0.11 0.22 0.73 

Observations 317 317 317 317 

R2  0.38 0.61 0.50 0.28 

Panel B: Alphas controlling for the Fama and French three factors 

Alpha -0.06 -0.26  1.05 7.35*** 

(t) (-0.04) (-0.44) (1.12) (3.07) 

Panel C: Alphas for subsample periods 

1990 – 2000 -1.26 -1.70* 0.40 0.68 

(t)  (-0.36)  (-1.86) (0.30) (0.17) 

2001 – 2016  1.52  0.55 1.57 8.68*** 

(t)  (1.19)  (0.72) (1.32) (4.83)   
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the same. The alphas of market, size and value stay statistically insignificant and the momentum’s 

alpha is again large and statistically significant. 

 

Moreira and Muir (2016s) state that during volatile periods alphas should be positive and 

significant, because the performance of the VMP strategy is based on a high degree of variation in 

volatility. If movements on volatility were minimal or constant alphas would be close to zero. 

Therefore, I perform a robustness check across two subsample periods: a less risky period from 

1990 to 2000 and a risky period from 2001 to 2016. Panel C shows that the annualized alphas for 

the period of 1990-2000 are either low or negative. The only statistically significant alpha belongs 

to the managed size factor (alpha = -1.70). The negative or low alphas might be explained by the 

fact that in Germany the period from 1990 to 2000 was less volatile than the period from 2001 to 

2016. This is consistent with Figure I, which shows that during the 90s, two out six OECD based 

economy contractions were present in this decade. By regressing managed factors across the 2001-

2016 subperiod, all alphas increase and are positive. However, only the annualized alpha for 

managed momentum factor is large (alpha=8.68%) and statistically significant (t= 4.83). Overall, 

it seems that implementing the VMP strategy to German factors, the German momentum factor is 

the only managed factor leading to high risk-adjusted expected returns.  

 

5.1.4 German mean-variance efficient multifactor portfolios  

 

By adding more uncorrelated systematic factors to a single factor portfolio, the mean-variance 

investor can obtain the benefits of diversification with any combination of the systematic or mean-

variance efficient (MVE) portfolios. In other words, the lower the correlation between the 

systematic portfolios the higher the gain of diversification and the mean-variance frontier shift 

outward. This is the case for the factors I use in this thesis. As mentioned in Table II, the correlation 

among non-managed German factors are very low. The MVE multifactor portfolios are: 

GMKMOnm, GHMOnm, GFF3nm and GC4nm.  

 

Portfolio theory says that a linear relation between expected average return and risk is obtained 

when a risk-free rate is available in the mean-variance space. This linear relation is called Capital 

Market Line (CML). To obtain an efficient portfolio, investors can allocate their wealth in different 
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proportions by mixing risky portfolios and the risk-free rate. In equilibrium, the tangency point 

between the MVE frontier and the CML represents the optimal efficient portfolio. Similarly, as 

Moreira and Muir (2016a), I use constant weights of the monthly non-managed factors. The 

weights are calculated in such a way that they maximize the slope of the CML. This slope is also 

known as the maximum Sharpe ratio of the MVE portfolio. This means, the MVE portfolio is the 

optimal efficient portfolio. A particularity of the MVE multifactor portfolio is that it is the only 

portfolio which invests 100% of the wealth in risky portfolios and 0% in the risk-free asset. For 

instance, Figure II illustrates, how I construct the non-managed mean-variance efficient GFF3 

portfolio. The GFF3nm invests 100% in German risky factors and 0% in the German risk-free rate. 

Allowing for short-selling, the monthly GFF3t
nm is constructed using the following equation: 

 

𝐺𝐹𝐹3𝑡
𝑛𝑚 = 𝑊𝑚𝐺𝑀𝐾𝑇𝑅𝐹𝑡

𝑛𝑚+ 𝑊𝑠𝐺𝑆𝑀𝐵𝑡
𝑛𝑚 + 𝑊𝐻𝐺𝐻𝑀𝐿𝑡

𝑛𝑚 , (14) 

 

where 𝑊𝑚 , 𝑊𝑠  and 𝑊𝐻 are the constant weights of the monthly market, size and value factors for 

the period January 1990 to June 2016. The average German risk-free rate for the whole period is 

3.20%17. This rate is, however, too high considering that since the financial crisis of 2008, the 

German risk-free rate merely has arrived at 100bps. In fact, throughout the last year of the analyzed 

period, the German risk-free rate has raged between 40 bps to -37 bps. Therefore, I consider rather 

a more realistic scenario setting the German risk-free rate at 0%18. 

 

Moreira and Muir (2016a) highlight that the non-managed Sharpe ratios might be overstated 

compare to the real ones since the non-managed MVE portfolios are constructed in-sample. This 

in turn might underestimate the calculations for managed Sharpe ratios. Therefore, I deduce that 

the German non-managed Sharpe ratios might also be slightly inflated as well. Furthermore, since 

the German non-managed MVE portfolios are constructed using constant-weight returns for a 

historical 26-year period, the VMP strategy ought to be taken as a theoretical reference only.  

 

 

17 To obtain the proxy of the time-series risk-free rate for Germany, I follow the same procedure of Stehle and Schmidt 

(2013, p. 24-25). I use the monthly one-month money market rates (Monatsgeld) from January 1990 to May 2012. 

Then, I use the one-month EURIBOR (Einmonatsgeld) from June 2012 to June 2016. The German data is publicly 

available in the Deutsche Bundesbank databank. 
18 Daily German risk-free rate is also set up at 0% to construct daily MVE portfolios. 
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Figure II 

Mean-variance efficient frontier and Capital market line 

Figure II shows the mean-variance efficient frontier along with the Capital Market Line (CML). Following the 

portfolio theory, incorporating a risk-free rate to the mean-variance framework, a linear relation between expected 

average return and risk is obtained (CML). By identifying the tangency portfolio between the mean-variance efficient 
frontier and the CML, it is possible to obtain the optimal mean-variance efficient (MVE) portfolio. In this figure, the 

non-managed MVE portfolio (GFF3t
nm) is constructed by using the monthly GMKTRFnm, GSMBnm and GHMLnm 

factor as follows: GFF3t
nm = WmGMKTRFt

nm+ WsGSMBt
nm + WHGHMLt

nm. The monthly factor returns cover the 

period from January 1990 to June 2016. Allowing for short-selling, the weights are Wm = 0.20,  Ws = -0.20 and 

WH =1.0 for of GMKTRFnm, GSMBnm and GHMLnm respectively. The monthly German risk-free rate is set at 0%. 

 

 
 

 

 

5.1.5 German managed MVE multifactor portfolio regressions 

 

Table V contains the annualized alphas of the time-series regressions of the managed MVE 

portfolios on the non-managed MVE portfolios. I restate the managed market factor’s results in 

the first column for a simple comparison. Panel A shows that all German managed MVE portfolios 

have positive and statistically significant alphas. While the highest alpha belongs to the GFF3m 

portfolio (alpha = 4.44%), the lowest belongs to the GC4m portfolio (alpha = 0.84%). Moreira and 

Muir (2016a) also find that all managed MVE portfolios outperform all non-managed MVE 

portfolios, where the annualized alpha of the Fama and French three-factor model outperforms the 

most. 
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Table V 

Managed MVE multifactor portfolios for Germany 

Panel A shows the monthly output of the time-series regressions of the managed MVE portfolios on the non-managed 

MVE portfolios from January 1990 to June 2016. The managed MVE portfolio is the non-managed MVE portfolio 

scaled by the inverse of its respective MVE-one-month-lagged realized variance (c/RVMVE,t−1
2 ). C is a scalar so that the 

managed MVE portfolio has the same unconditional variance as the non-managed MVE portfolio. Managed and non-

managed Sharpe ratios, RMSE and annualized AR are reported in the table. The annualized AR is calculated by √12 ∗

(alpha RMSE)⁄ . Panel B reports the alpha results when regressing across two subsample periods. I perform the two-sided 

test and t-values are in parenthesis, t-values (t) are based on standard errors that are adjusted for heteroscedasticity. 

Each non-managed MVE portfolio is annualized in percentage per year by multiplying monthly non-managed MVE 

portfolio by 12. *, **, and *** denotes the 10%, 5% and 1% significance level, respectively.   

 

Panel A: Multifactor regressions 

 GMKTRFm GMKMOm GHMOm GFF3m GC4m 

Alpha 0.46 0.86* 1.72*** 4.44*** 0.84*** 

(t) (0.27) (1.65) (3.50) (2.62) (2.51) 

GMKTRFnm 0.35***     

(t) (8.50)     

GMKMOnm  0.15***    

(t)  (1.65)    

GHMO   0.12***   

(t)   (6.54)   

GFF3nm    1.03***  

(t)    (13.92)  

GCnm     0.21*** 

(t)     (10.13) 

SRnm 0.07 0.49 0.47 0.23 0.53 

SRm 0.07 0.50 0.51 0.26 0.55 

RMSE 28.76 7.72 7.81 35.24 5.14 

Annualized AR 0.05 0.38 0.76 0.43 0.56 

Observations 317 317 317 317 317 

R2 0.38 0.41 0.31 0.62 0.50 

Panel B: Alphas for subsample periods 

1990-2000 -1.26 -0.44 -0.73 3.37 -0.13 

(t) (-0.36) (-0.46) (-1.02) (1.30) (-0.28) 

2001-2016 1.52 1.53*** 2.19*** 5.13*** 1.36*** 

(t) (1.19) (4.13) (5.21) (2.31) (3.84) 
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The annualized AR of multifactor portfolio regressions are considerable higher in comparison with 

most of the annualized AR of the single factor regressions. The MVE annualized AR range 

between 0.38 to 0.76. Panel B shows the regressions across two subsamples, 1990-2000 and 2001-

2016.  As expected, none of the MVE alphas is statistically significant and most of them are 

negative across the low-volatility 1990-2000 subperiod. Across the risky 2001-2016 subperiod, I 

obtain positive and statistically significant alphas for all MVE multifactor portfolios. By 

interpreting the reward to the total volatility trade-off, I expect to obtain larger managed Sharpe 

ratios. Indeed, all managed Sharpe ratios are higher than the non-managed ones. However, the 

managed Sharpe ratios show a modest increase, which might be an indicator that they are 

understated.  

 

5.2 European risk factors 

 

5.2.1 Predictions of volatility and returns for European factors 

 

To assess whether the power of past volatility predicts average return for European factors, I a run 

time-series regression of the log average return on the log one-month-lagged realized volatility. 

As seen in Table VI, Panel A reports low, negative, and statistically insignificant volatility 

coefficients for the market, value, and momentum factors. The size factor is also negative, though 

statistically significant at the 5% level (t = -2.29). Hence, while the one-month-lagged volatility of 

market, value and momentum seems not to predict average returns, the one-month-lagged 

volatility of the size factor has a low and negative relation its average returns.  

 

Panel B shows the results of the Pearson’s correlation coefficients between the one-month-lagged 

realized volatility and the average return. Past realized volatility has a low and negative coefficient 

correlation with average return for all European factors. When regressing current volatility on one-

month-lagged realized volatility, Panel C shows positive and statistically significant lagged 

volatility coefficients. Analyzing Panel D, the correlation coefficients between past and current 

realized volatility are large and positive. Thus, I conclude that the power of prediction of past 

realized volatility on current volatility is strongly positive for European risk factors.  
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Table VI 

Predictions of European factor returns and volatility 

 

Panel A reports the coefficients for the time-series regression of monthly factor return on its one-month-lagged 

realized volatility (log (Ft
nm) = a + blog (RVt-1) + ϵt). Panel C shows the coefficients for time-series regression of 

monthly factor volatility on its previous one-month-lagged realized volatility. All the independent and dependent 

variables are in logarithms (log (RVt) = a + blog (RVt-1) + ϵt). The sample period for all factors starts in July 1990 and 

end in December 2016. Panels B and D present the Person´s correlation coefficients between factor return and its one-

month-lagged realized volatility and the factor volatility and its one-month-lagged realized volatility, respectively. 

The two-sided test is performed, and t-values are in parentheses, t-values are based on standard errors that are adjusted 

for heteroscedasticity. Each non-managed European factor is annualized in percentage per year by multiplying 

monthly non-managed European factors by 12. *, **, and *** denotes the 10%, 5% and 1% significance level, 

respectively. 

 

 

 

 

 

 

5.2.2 European single managed factors 

 

Table VII provides the results obtained from the time-series regressions of the European managed 

factors on the non-managed factors. Panel A shows that all annualized alphas of managed factors 

are positive and statistically significant, except for the annualized alpha of market factor. The 

Panel A: Regression of factor returns on lagged volatility 

 EMKTRFnm ESMBnm EHMLnm EMOMnm 

RVt-1 -0.01 -0.12** -0.13 -0.24 

(t) (-0.64) (-2.29) (-1.30) (-1.20) 

Observations 316 316 316 316 

R2 0.002 0.01 0.004 0.020 

Panel B: Correlation between factor returns and lagged volatility 

RVt-1 -0.04 -0.10 -0.06 -0.15** 

Panel C: Regression of factor volatility on lagged volatility 

RVt-1 0.31*** 0.36*** 0.80*** 0.82*** 

(t) (13.58) (19.54) (25.09) (28.49) 

Observations 316 316 316 316 

R2 0.41 0.54   0.65 0.67 

Panel D: Correlation between factor volatility and lagged volatility 

RVt-1 0.64** 0.73** 0.80** 0.82** 
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largest alpha belongs to managed momentum (alpha =19.72% and t=5.17). The annualized alphas 

for the managed size and value factor are 1.22% (t=2.03) and 4.08% (t=2.14), respectively. 

The values of RMSE are large and range from 10.71 for the size factor to 67.91 for the momentum 

factor. Regarding the annualized AR, I obtain that the slope of the mean-variance efficient frontier 

is expanded by 0.39, 0.40 and 0.99 for the managed size, value, and momentum factor, 

respectively. In terms of Sharpe ratios, all managed Sharpe ratios are twice as large in contrast to 

the non-managed Sharpe ratios. 

 

Panel B shows the regression results after adding the European version of the Fama-French three 

factors as control variables. The findings are relatively unchanged. The managed size, value and 

momentum factors continue to be positive and statistically significant whereas the managed market 

factor is still positive though statistically insignificant. For the robustness check, I split out the 

whole sample in two subsamples: a less risky one from 1990 to 2000 and a risky subsample from 

2001 to 2016. As in the case of Germany in Table IV, the OECD based recession and crisis periods 

are used to categorize a volatile- and less-volatile period in the European analysis. The explanation 

for this is that most of the OECD based economic contractions which affected the German 

economy affected first the Euro Area as well. 

 

Panel C reports the negative and statistically insignificant alphas of market, size, and value across 

the less volatile 1990-2000 subperiod. It is not surprising that the alpha of managed momentum 

factor is positive and significant across this period. However, the striking result is that it is even 

higher (alpha=21.93%) when comparing with the annualized alpha for the momentum factor of 

the whole period. It could be that even during the less volatile period, the movements of 

momentum’s volatility were large and fluctuating. Panel C also reports the robustness check for 

the risky 2001-2016 subperiod. As expected, all managed factors have annualized alphas which 

are positive and statistically significant, except for the managed market factor. Overall, it seems 

that implementing the VMP strategy on the European factors leads to high risk-adjusted expected 

returns for size, value and momentum factors but not for the market factor.  
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Table VII 

 

Single managed factors for Europe 
 

From Table VII, one can observe the results of the monthly time-series regressions for the European managed factor 

(Ft
m) on their respective non-managed factor (Ft

nm). Ft
m is calculated by scaling its respective non-managed factor by 

the inverse of its one-month-lagged realized variance (c/RVt−1
2 ). C is a scalar so that the managed factor has got the 

same unconditional standard deviation as the non-managed factor. R2, root mean squared errors (RMSE) and 

annualized appraisal ratios (AR) are reported in the table. Annualized AR is calculated by √12 ∗ (alpha RMSE)⁄ . 

Panel B reports the regression results when using the three factors of Fama and French as control variables. Panel C 

shows the annualized alphas for two different subperiods. Moreover, t-values are in parenthesis and based on standard 

errors which are adjusted for heteroscedasticity. The sample period extends from July 1990 to December 2016. Each 

factor is annualized in percentage per year by multiplying monthly factors by 12. *, **, and *** denote significance 

at the 10%, 5% and 1% significance level, respectively.   

 

 

Panel A: Individual regressions  

    EMKTRFm ESMBm EHMLm EMOMm 

Alpha 1.21 1.22** 4.08** 19.72*** 

(t) (0.92) (2.03) (2.14) (5.17) 

EMKTRFnm 0.29***    

(t) (7.30)    

ESMBnm  0.45***   

(t)  (12.82)   

EHMLnm   0.87***  

(t)   (8.47)  

EMOMnm    0.63*** 

(t)    (5.96) 

Shnm 0.01 -0.10 0.05 0.17 

Shm 0.05 0.15 0.12 0.33 

RMSE 21.40 10.71 34.70 67.91 

Annualized. AR 0.19 0.39 0.40 0.99 

Observations 317 317 317 317 

R2  0.40 0.56 0.35 0.17 

Panel B: Alphas controlling for Fama and French three factors 

Alpha 1.22 1.06* 3.72** 17.27*** 

(t) (0.94) (1.75) (1.98) (4.65) 

Panel C: Alphas for subsample periods 

1990 – 2000 -0.20 -0.10 -3.90 21.93*** 

(t) (-0.07) (-0.11) (-1.14) (2.89) 

2001 – 2016 1.64 2.00*** 9.36*** 17.18*** 

(t) (1.46) (2.58) (4.48) (5.43) 
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5.2.3 European managed MVE multifactor portfolio regressions 

 

The European non-managed MVE portfolios are constructed using the same technique as in the 

case of the German analysis. Panel A in Table VIII presents the evidence that all annualized alphas 

of the European managed MVE multifactor portfolios are large and statistically significant. The 

largest annualized alpha belongs to the EHMOm (alpha=3.01%, t=6.85), whereas the lowest 

annualized alpha belongs to the EFF3m (alpha=0.95%, t=2.07). The annualized AR are also high 

and range from 1.19 for EHMOm to 0.39 for EFF3m. All managed Sharpe ratios present a slightly 

increase than the non-managed Sharpe ratios.  

 

Panel B reports the annualized alphas when regressing across subsample periods. While I expect 

across the less volatile subperiod either negative or close-to-zero alphas, most of the MVE 

portfolios’ results present positive and statistically significant annualized alphas, especially for 

EMKMOm (alpha=2.73, t=3.84) and EHMOm portfolio (alpha=2.77, t= 4.44). Only the EFF3m 

portfolio turns out negative and statistically insignificant (alpha = - 0.89).  Managed ECm portfolio 

generates the lowest positive annualized alpha of 0.71% (t=1.68). 

 

These results might indicate that the less risky subperiod presented a high variation in the European 

stock volatility. Analyzing with more detail, however, all combinations of portfolios that present 

positive and significant alphas are those including the momentum factor. As shown in Table VII, 

the annualized alpha of managed momentum factor shows a very large percentage, suggesting that 

the 90s were also characterized by high variations in momentum’s volatility in the European 

markets. As a result, the contribution of momentum volatility in the MVE portfolio construction 

is significant. As expected, all alphas are positive and significant across the subsample 2001-2016. 

 

5.3 Replication of the VMP strategy: U.S. factors  

 

I replicate the main results of Moreira and Muir (2016a) by using the same U.S. factors. The same 

methodology to construct managed and non-managed factors and MVE portfolios is implemented.   

The objective is to compare my results of the single factor and multifactor portfolio regressions to 

the findings of the original paper. Furthermore, since the work of Moreira and Muir (2016a) is a  
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Table VIII 

Managed MVE multifactor portfolios for Europe 

Panel A contains the monthly output of the time-series regressions of the managed MVE portfolios on the non-

managed MVE portfolios from July 1990 until December 2016. The managed MVE portfolio is the non-managed 

MVE portfolio scaled by the inverse of its respective MVE-one-month-lagged realized variance (c/RVMVE,t−1
2 ). C is a 

scalar so that the managed MVE portfolio has the same unconditional variance as the non-managed MVE portfolio. 

Managed and non-managed Sharpe ratios, RMSE and annualized AR are reported in the table. The annualized AR is 
calculated by √12 ∗ (alpha RMSE)⁄ . Panel B reports the alphas when running regression across two subsample periods. I 

perform the two-sided test and t-values are in parentheses, t-values (t) are based on standard errors that are adjusted 

for heteroscedasticity. Each non-managed MVE portfolio is annualized in percentage per year by multiplying monthly 

non-managed MVE portfolio by 12. *, **, and *** denotes the 10%, 5% and 1% significance level, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Multifactor regressions 

    EMKTRFm EMKMOm EHMOm EFF3m ECm 

Alpha 1.21 2.06*** 3.01*** 0.95*** 1.36*** 

(t) (0.92) (5.27) (6.85) (2.07) (4.34) 

EMKTRFnm 0.29***     

 (t) (7.30)     

EMKMO  0.17***    

(t)  (9.45)      

EHMO   0.20***   

(t)   (7.15)   

EFF3nm    0.26***  

(t)    (9.91)  

ECnm     0.25*** 

(t)     (10.17) 

SRnm 0.01 0.42 0.46 0.19 0.50 

SRm 0.05 0.51 0.57 0.22 0.54 

RMSE 21.40 6.97 8.68 8.35 6.32 

Annualized AR 0.19 1.02 1.19 0.39 0.74 

Observations 317 317 317 317 317 

R2  0.40 0.40 0.23 0.38 0.43 

Panel B: Alphas for subsample periods 

1990-2000 -0.20 2.73*** 2.77*** -0.89 0.71* 

(t) (-0.07) (3.84) (4.44) (-1.29) (1.68) 

2001-2016 1.64 1.65*** 2.58*** 2.16*** 1.74*** 

(t) (1.46) (3.74) (5.18) (3.74) (4.28) 
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country-specific study, it will serve as basis for the comparisons with the German analysis of this 

thesis. 

 

5.3.1 Time-series volatility by factor using U.S. data 

 

Figure III plots the U.S. monthly time-series realized volatility of the non-managed factors 

MKTRFnm, SMBnm, HMLnm, MOMnm, RMWnm and CMAnm. Bars in shaded grey present some 

NBER based recession and great depression periods. All factors, especially market and momentum 

presented exceptionally high realized volatility at the beginning of the analysis, which includes the 

Great Depression. Thereafter volatility dropped significantly but increased at the end of the 1930’s.  

 

Throughout almost the next 40 years, the volatility of the factors varied to a much lesser extent, 

which coincided with a relatively less volatile period of the capital market in the U.S. Thereafter, 

several economy contractions appear to have affected the American economy, which in turn 

caused variations of the volatility of the risk factors in large magnitude. As in the case of Germany, 

the movements on U.S. factor volatility follows a similar business cycle pattern over time. 

 

In general, U.S. market and momentum factors are the riskiest ones. This is consistent with Panel 

C in Table 1, where the standard deviations of these U.S factors are the largest for the entire period. 

Similarly, (see, Figure 1) the German market and momentum factors are also on average the riskier 

factors during contractions. Since the German managed momentum factor is the only one 

presenting statistically significant alphas, I find interesting to compare the momentum volatility 

movements in both countries. 

 

Despite the dates of the U.S. NBER business cycle differ strongly from the German OECD 

expansion and contraction dates, the financial crisis 2008-2009 affected both countries almost at 

the same time. While German and U.S momentum strategy performed remarkably well in the past, 

it performed extremely poor during the last financial crisis. In 2009, the U.S. momentum factor 

experienced one of the most meaningful crashes. Likewise, the German momentum factor saw 

large drawdowns, which caused the crash of the German momentum in the same year. This is 

consistent with the work of Baltzer, Jank, and Smajlbegovic, (2015). They find that the course and  
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Figure III 

 U.S. factor volatility and business cycle 

Figure III shows the U.S. monthly time-series realized volatility of the factors MKTRFnm, SMBnm, HMLnm and 

MOMnm from January 1927 to December 2016. The time-series realized volatility of the factors RMWnm and CMAnm 

starts in July 1963 and finishes on December 2016. Bars in shaded grey present some NBER based recession and great 

depression periods. All U.S. factors present a similar business cycle pattern, i.e. the volatility movements across factors 

follow a similar pattern. Note that the U.S. NBER business cycle dates differ strongly from the German OECD 

expansions and contraction dates.   

 

 
Source: NBER based recession indicators. 

   

 

 

magnitude of U.S. and German momentum crashes coincided significantly during the last financial 

crisis. 

 

5.3.2 U.S. single managed factors 

 

In Panel A of Table IX, I replicate the U.S. factor regressions of Moreira and Muir (2016a) from 

January 1927 until December 2016. Moreira and Muir (2016a) find that all annualized alphas are 

positive except the one for the managed size factor. In my regressions, I obtain the same expected 

signs for the annualized alphas for all managed factors. The authors also find that most of the 

alphas are significant. In my regressions, five out of eight alphas are statistically significant namely 

the alpha for the market, momentum, profitability, return of equity and investment factor. 
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With respect to the alpha magnitudes, most of my annualized alphas are higher than those reported 

by Moreira and Muir (2016). The authors highlight the regression results of the market factor 

because managing this factor would be easily available for the average investor. They obtain a 

managed market’s alpha of 4.86%, whereas I find a statistically significant alpha equal to 2.89% 

(t = 3.34).  

 

Furthermore, the authors point out that the managing momentum factor would be difficult strategy 

for the average investor. This is consistent with an extensive body of literature which assumes that 

investing in momentum needs the professional experience of investment managers (see, e.g., Sias, 

2005). Whereas I find a statistically significant alpha for the momentum factor equal to 15.24%, 

Moreira and Muir (2016a) report an annualized alpha of 12.51%. In my results, most of the 

RMSE’s values are higher than those of the original regressions. Panel B shows the annualized 

alphas when controlling for Fama and French three factors. My results change slightly compared 

to the alphas of Panel A. Again, most of the annualized alphas are positive and statistically 

significant.   

 

To facilitate comparison between the U.S. and the German single factor regressions, in Panel C, I 

use the same sample period as in the German analysis in Table IV. More specifically, I use the 

period from January 1990 to June 2016 to regress the U.S. managed market, size, value, and 

momentum factor on their respective non-managed factor19. The expected signs are obtained. The 

U.S alpha of managed size factor is negative and those of the managed market, value and 

momentum factor are positive. 

 

The main differences lie in the level of significance and magnitude. For example, while the 

German alpha for the managed market factor is very low (alpha = 0.46%) and insignificant (t = 

0.27), the U.S. alpha for market is higher (alpha = 2.39%) and statistically significant (t = 2.30). 

The alphas of the U.S and German momentum are statistically significant, although both presents 

a very different magnitude (U.S. alpha= 13.28% and German alpha= 8.14%). 

 

 

19 To make comparison feasible, I run a time-series regression of U.S. managed factors on U.S. non-managed factors 

by using the same German sample period and compering the results only for market, value, size and momentum.  
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Table IX 

 

U.S. single risk factor regressions 
 

Panel A shows the monthly time-series regressions of the U.S. managed on their respective non-managed factors. 

Each factor is annualized in percentage per year by multiplying monthly factors by 12. RMSE, and annualized AR are 

reported in the table. Panel B reports the alpha results when the three factors of Fama and French are used as controlling 

variables. Panel C shows the annualized alphas from the period January 1990 to June 2016 to make the respective 

comparisons with the German single factor analysis. I perform the two-sided test and t-values are in parentheses, t-

values are based in standard errors which are adjusted for heteroscedasticity. *, **, and *** denote the 10%, 5% and 

1% significance level, respectively.  

Panel A: Individual regressions 

    MKTRFm SMBm HMLm MOMm RMWm CMAm ROEm  IAm 

alpha 2.89*** -0.85  2.18 15.24*** 4.41***  0.09 7.85***  1.60* 

(t) (3.34) ( -0.68) (1.57) (7.41) (2.93) (0.09) (5.21) (1.95) 

MKTRFnm 0.35***        

(t) (12.67)        

SMBnm  0.87***       

(t)  (7.63)       

HMLnm   0.76***      

(t)   (7.58)      

MOMnm    0.57***     

(t)    (7.05)     

RWMnm     1.02***    

(t)     (7.03)    

CMAnm      1.02***   

(t)      (14.04)   

ROEnm       1.01***  

(t)       (10.08)  

IAnm        0.92*** 

(t)        (13.53) 

RMSE 28.71 42.85 47.74 61.15 37.68 25.89 36.65 20.75 

Annualized AR 0.59 -0.06 0.15 0.86 0.40 0.01 0.74 0.26 

N 1079 1079 1079 1079 641 641 599 599 

R2  0.39 0.38 0.31 0.22 0.35 0.48 0.42 0.50 

Panel B: Alphas controlling for the Fama and French three factors 

Alpha 3.26*** -0.46 3.15** 12.84*** 5.88*** -0.47 8.43*** 1.00 

(t) (3.77) (-0.37) (2.26) (6.83) (3.86) (-0.47) (5.53) (1.19) 

Panel C: Individual regressions, January 1990-June 2016 

Alpha 2.39** -0.61 0.18 13.28*** 2.77* -0.33 8.95*** 1.08 

(t) (2.30) (-0.60) (0.08) (4.69) (1.77) (-0.27) (5.02) (1.01) 
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5.3.3 U.S. MVE managed multifactor portfolios 

 

Moreira and Muir (2016a) construct six different combinations of factors to form the non-managed 

MVE multifactor portfolios. The authors show that managing these portfolios, all regressions 

produce positive and significant alphas and substantial Sharpe. I run time-series regressions using 

almost the same sample period and I construct the same six U.S. MVE portfolios as in the original 

paper.  

 

Panel A, in Table X shows that all alphas of the U.S. managed MVE portfolios are positive and 

statistically significant, except the one for the Fama and French five-factor portfolio (alpha= 0.13, 

t=1.43). Moreover, the magnitudes of all alphas are much lower compared to the original results20. 

While the original annualized AR range from 0.33 to 0.91, my regressions present annualized AR 

which range from 0.35 to 0.82. As mentioned in section 5.1.4. the non-managed Sharpe ratios 

might be overstated relative to the real ones, therefore managed Sharpe ratios could have very low 

values21. My results show that the managed Sharpe ratios for all MVE portfolios increase though 

at a modest level. 

 

To compare the German and U.S. MVE portfolio regressions, I use the same sample period from 

January 1990 to June 2016 as in the German equivalent analysis. Looking at Panel B, it is only 

possible to compare the alphas for the German and U.S. Fama and French three-factor portfolio 

(GFF3m vs FF3m) and the German and U.S. Carhart four-factor portfolio (GCm vs Cm). 

 

While the alpha of German managed Fama and French three-factor portfolio is large and 

statistically significant (alpha = 4.44), the U.S equivalent alpha is 1.33% and statistically 

insignificant (t=0.70). In the case of the Carhart four-factor portfolio, the magnitude of German 

alpha is much lower (alpha = 0.84%) than the U.S alpha (alpha = 1.84%). Both annualized alphas’ 

results are statistically significant.  

 

 

 

20 See Table 2 in the original paper of Moreira and Muir (2016): “Volatility Managed Portfolios”. 
21 This point is neither theoretically nor mathematically explained by the authors. Therefore, my assumption of 

understated managed Sharpe ratios just follows the referent insights of Moreira and Muir (2016a). 
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Table X 

U.S. MVE multifactor regressions  

Panel A reports the monthly output for the time-series regressions of the managed MVE portfolios on the non-managed 

MVE portfolios using U.S data. Managed and non-managed Sharpe ratios, RMSE and annualized AR are reported in 

the table. The annualized AR is calculated by √12 ∗ (alpha RMSE)⁄ . Panel B reports the annualized alpha results from 

the period January 1990 to June 2016 to compare them with the German alphas of Table VIII. I perform the two-sided 

test and t-values are in parentheses and based on standard errors that are adjusted for heteroscedasticity. Each non-

managed MVE portfolio is annualized in percentage per year by multiplying monthly non-managed MVE portfolio 

by 12. *, **, and *** denotes the 10%, 5% and 1% significance level, respectively. 

 

 

 

 

Panel A: Multifactor regressions 

    MKTRFm FF3m Cm FF5m FF5MOm HXZm HXZMOm  

alpha 2.89*** 4.11*** 2.04*** 0.13 0.51***  0.39*** 0.42*** 

(t) (3.34) (3.39) (7.13) (1.43) (4.17) (5.44) (5.31) 

MKTRFnm 0.35***       

(t) (12.67)       

FF3nm  0.49***      

(t)  (6.71)      

Cnm   0.25***     

(t)   (13.13)     

FF5nm    0.21***    

(t)    (12.11)    

FF5MOnm     0.20***   

(t)     (10.31)   

HXZnm      0.13***  

(t)      (11.71)  

HXZMOnm       0.13*** 

(t)       (11.36) 

SRm 0.20 0.21 0.42 0.40 0.50 0.58 0.50 

SRnm 0.11 0.19 0.38 0.40 0.48 0.54 0.45 

RMSE 28.71 41.05 10.27 2.66 2.98 1.69 1.76 

Annualized AR 0.59 0.35 0.69 0.17 0.60 0.79 0.82 

N 1079 1079 1079 641 641 599 599 

R2  0.39 0.17 0.25 0.48 0.40 0.48 0.47 

Panel B: Multifactor regressions January 1990-June 2016 

Alpha 2.39** 1.33 1.84*** 0.21* 0.53*** 0.45*** 0.48*** 

(t) (2.30) (0.70) (4.15) (1.90) (3.70) (5.04) (4.89) 
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5.4 Managed GARCH (1,1) regressions  

 

5.4.1 Forecasted volatility vs. realized volatility 

 

The forecasted volatility GARCH (1,1) takes on significantly lower values than the realized 

volatility does during the 318-month period. This means that even if the GARCH (1,1) volatility 

follows a similar pattern as the realized volatility, the movements of the GARCH (1,1) volatility  

 

Figure IV 

 

 GARCH (1,1) volatility vs. realized volatility 

 
Figure IV illustrates the time-series of the monthly GARCH (1,1) volatility vs. the realized volatility of the German 

market, size, value and momentum factors. The volatility analyzed covers the 26-year period. It can be clearly seen 

that the GARCH (1,1) volatility and the realized volatility follow a similar pattern, but the GARCH (1,1) volatility 

tends to have lower spikes.  
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present less dramatic fluctuations, especially during recessions. However, the movements of the 

GARCH (1,1) volatility and the realized volatility of the German size factor are different. While 

the realized volatility of size shows more spikes, the GARCH (1,1) volatility is smoother. This is 

clearly depicted in Figure IV, where the red line represents the GARCH (1,1) volatility and the 

blue line depicts the realized volatility of the German market, size, value and momentum factor 

returns. 

 

5.4.2 Single managed GARCH (1,1) factors  

 

I assess the performance of the VMP strategy by scaling the non-managed factors by the inverse 

of the one-month-lagged GARCH (1,1) rather than the inverse of the one-month-lagged realized 

variance. Expecting better results than those when using the realized variance approach (see Table 

IV and VII), I manage the German and European market, size, value and momentum factors. 

 

The German (Table XI) and the European (Table XII) regression results show that compared with 

market, value and size, the managed momentum factor presents the highest and the only significant 

alpha. The German and European managed GARCH (1,1) alphas of momentum reach values of 

32 % and 61%, respectively. These alphas’ values triple the alphas of the German and European 

managed momentum when using the realized variance approach. 

 

Under the GARCH (1,1) analysis, all root mean squared errors are large, and the German and 

European annualized appraisal ratios for momentum are 0.91 and 1.32, respectively.  The managed 

Sharpe ratios present, however, a slight increase. The managed Sharpe ratios of momentum are 

0.31 and 0.41 for Germany and Europe, respectively. These results suggest that managing the 

volatility of momentum implementing the GARCH (1,1) approach offers higher risk-adjusted 

returns compared to managing momentum using the realized variance procedure in the German 

and European stock markets. 
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Table XI 

 

German single managed factors, GARCH (1,1) approach 
 

Table XI shows the monthly time-series regressions for the German managed factors on their respective non-managed 

factors. In the GARCH (1,1) approach, the GARCH (11) managed factor (Ft
g
)  is calculated by scaling the monthly 

non-managed factor ( Ft
ng

) by the inverse of its one-month-lagged GARCH (1,1) or σt−1
2 , such as c/σt−1

2 . C is a scalar 

so that the managed factor has got the same unconditional standard deviation as the non-managed factor. R2, root 

mean squared errors (RMSE) and annualized appraisal ratios (AR) are reported in the table. Annualized AR is 

calculated by √12 ∗ (alpha RMSE)⁄ . The respective t-values are in parenthesis and based on standard errors which 

are adjusted for heteroscedasticity. The sample period extends from January 1990 to June 2016. Each factor is 

annualized in percentage per year by multiplying monthly factors by 12. *, **, and *** denote 10%, 5% and 1% 

significance level, respectively.   

 

 

Single regressions  

    GMKTRFg GSMBg GHMLg GMOMg 

Alpha 3.16 0.63 2.47 32.40*** 

(t) (0.83) (0.89) (1.06) (4.67) 

GMKTRFng 1.37***    

(t) (13.51)    

GSMBng  1.28***   

(t)  (47.37)   

GHMLng   1.98***  

(t)   (13.12)  

GMOMng    1.44*** 

(t)    (7.63) 

Shng 0.07 -0.23 0.07 0.17 

Shg 0.08 0.23 0.09 0.31 

RMSE 66.26 12.83 42.46 122.48 

Annualized AR 0.16 0.16 0.20 0.91 

Observations 317 317 317 317 

R2  0.64 0.94 0.75 0.41 
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Table XII 

 

European single managed factors, GARCH (1,1) approach 
 

From Table XII can be observed monthly time-series regressions for the European managed factors on their respective 

non-managed factors. R2, root mean squared errors (RMSE) and annualized appraisal ratios (AR) are reported in the 

table. Annualized AR is calculated by √12 ∗ (alpha RMSE)⁄ . The sample period extends from July 1990 to December 

2016. Each factor is annualized in percentage per year by multiplying monthly factors by 12. *, **, and *** denote 

10%, 5% and 1% significance level, respectively.   

 

 

Single regressions  

    EMKTRFg ESMBg EHMLg EMOMg 

Alpha 4.03 -0.13 2.34 61.22*** 

(t) (1.11) (-0.05) (0.65) (6.37) 

EMKTRFng 1.17***    

(t) (10.60)    

ESMBng  2.22***   

(t)  (14.52)   

EHMLng   5.15***  

(t)   (16.57)  

EMOMng    2.45*** 

(t)    (7.09) 

Shng 0.01 -0.10 0.05 0.17 

Shg 0.06 0.01 0.06 0.42 

RMSE 60 45.70 68.44 159.06 

Annualized AR 0.23 -0.01 0.12 1.32 

Observations 317 317 317 317 

R2  0.57 0.63 0.82 0.35 
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5.5 Discussion 

 

The VMP strategy can be easily implemented, by scaling risk factors and MVE multifactor 

portfolios by the inverse of the one-month-lagged realized variance. Since risk exposure is not  

constant over time (see, e.g., Schwert, 1989) and volatility is persistent, though less persistent than 

expected returns (see, e.g., Moreira and Muir, 2016a), the VMP strategy seems to offer attractive 

risk-adjust returns to investors. In fact, investors should reassess the non-dynamic view of the 

traditional risk-return trade-off despite the conventional financial wisdom. Selling when equity 

stocks are expected to be volatile and buying when the market starts to recover seems to be a smart 

volatility timing strategy. 

 

The VMP strategy depends on the value of the prior month realized variance of each factor to 

increase or decrease exposure in the next month on the stock market. Hence, the realized variance 

is the key variable in my research. The evidence in this thesis suggests that the German managed 

momentum factor is by far the only strategy which provides attractive risk-adjusted returns. 

Institutional investors who hold the momentum factor should apply the VMP strategy when the 

German capital market experiences large movements in volatility. For example, exiting the 

German market during the second and third quarter in 2009, the VMP strategy would have 

prevented a loss of 42.01% in terms of cumulative returns (see, e.g., Baltzer, Jank, Smajlbegovic, 

2015).  

 

While the analysis on German single factors is a country-specific study, the case of European 

factors is a regional-specific one. Therefore, a direct comparison might not be a rigorous analysis. 

However, drawing a theoretical comparison between country and regional risk factors, might help 

investors to obtain gains from international diversification. I find that most managed European 

factors outperform non-managed European factors. Therefore, my results entail the fact that timing 

risk factors from a highly integrated region, such as the Euro Area, benefits investors as well. 

 

As in the German. case, investing in the European managed momentum factor provides the best 

performance among factors. This is true not only for the entire sample analyzed but also for the 

controlling regressions and robustness checks. My results corroborate the findings of Moreira and 
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Muir (2016a) as well as results of similar volatility timing strategies on momentum such as those 

of Barroso and Santa-Clara (2015). 

 

Despite of the pervasive performance when managing momentum, timing momentum deserves a 

special attention. Since the VMP strategy requires monthly rebalancing, replicating and timing 

momentum would require large amount of capital and professional investment management. 

Hence, the suggestion that managing factors is a practicable strategy for average investors should 

be interpreted with caution.  Curiously, one of my findings is somewhat at odds with the results of 

Moreira and Muir (2016a). While the U.S. market factor shows superior performance across 

different regressions, my data provide no evidence that managing market factor offers significant 

risk-adjusted returns. Even when using control variables or regressing across different subsample 

periods, the alphas of managed market factor continues to be either close-to-zero or negative and 

statistically insignificant.  

 

Moreira and Muir (2016a) show mathematically that the time-series of the alpha is a measure of 

opposite movements between risk-return trade-off and variance. This suggests that when the 

relation between returns and variance is strong alphas should be close-to-zero in volatile periods. 

However, when the risk-return relation is weak, alphas should be positive even in risky periods. 

Since the alphas are increasing in the volatility of volatility, the alphas should present higher values 

during risky times than those alphas evaluated in less turbulent periods. 

 

Finally, the alphas of the German and European managed momentum factor are higher when 

scaling the non-managed momentum factor with the one-month-lagged GARCH (1,1) rather than 

using the realized variance approach. This means that the performance of momentum when using 

the VMP strategy is pervasive across German and European data and when implementing different 

measures of variance.       
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6 Conclusion 

 

The time-series analysis in this thesis demonstrates only the German managed momentum factor 

and most of the European managed factors present large and statistically significant alphas as well 

as higher managed Sharpe ratios than their non-managed peers. Moreover, all managed German 

and European MVE multifactor portfolios outperform passive strategies, expanding the mean-

variance efficient frontier. 

 

Two findings are notable: First, the managed market factor leads to inconsistent results and shows 

only close-to-zero and insignificant alphas. Second, the managed momentum factor presents 

pervasively large and statistically significant alphas and substantial Sharpe ratios. In addition, my 

study provides some suggestions: The VMP strategy should be applied only by institutional 

investors when considering to time momentum’s volatility in the German and European markets. 

Furthermore, when using the GARH (1,1) approach, only the German and European momentum 

managed factor provides better performance in terms of annualized alphas and Sharpe ratios than 

managing German and European factors with the realized variance approach. 

 

Although this thesis research has been carefully conducted, I am still aware of some limitations 

and potential sources of bias. First, the lack of prior research studies on the VMP strategy impedes 

comparison and economic interpretation of the positive alphas. Second, the small size of the 

monthly German and European factor data might affect the significance of the regression results. 

This issue can be addressed by a careful constructing of risk factors for longer periods. Third, since 

the VMP strategy might be improved using more realistic volatility measures, other sophisticated 

GARCH models than the GARCH (1,1) could be implemented. 
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7 Appendix A 

 

7.1 Test for normality 

 

To test whether the German, European, and U.S factor and MVE portfolio returns follow a normal 

distribution, I use the Jarque-Bera (JB) test (see, e.g., Jarque and Bera, 1980). Referring to the 

results in Table XIII, all the P-values for the German, European and U.S factors and MVE 

portfolios are below 0.05, except for the German size factor. Thus, I can reject the null hypothesis 

of normality for all risk factors and MVE portfolios, with the exception of GSMB. The  𝝌 2
2  

statistic has been adjusted because of the small sample size of German and European factors. 

Critical values that are extremely large are not reported and are signalled by “-“. 

 

7.2 Test for heteroscedasticity 

 

To test the existence of heteroscedasticity on the distribution of factor returns, I use the test 

signaled by Breusch and Pagan (1980). The null hypothesis that the authors propose implies that 

in a regression model, the variance of error term or residual is constant, i.e. the variance presents 

homoscedasticity. I find a very clear rejection of the null hypothesis for all German and European 

factors, except for the German size factor (GSMBnm). The results of the Breusch-Pagan test are 

not reported. It should be noted that the heteroscedasticity of all regressions using the realized 

variance and GARCH approach, has been corrected by adjusting the standard errors. 

 

7.3 Risk and return dynamics of the German and European market factors  

 

I investigate the dynamics of risk and return of the non-managed market factor. To do so, I use the 

impulse-response analysis by using a vector autoregression with one lag or VAR (1), which allows 

analyzing whether the monthly one-month-lagged realized variance predicts factor returns. Figure 

V shows the impulse-response effect after one-volatility shock i.e. one-standard deviation increase 

of the log of the one-month-lagged realized variance. Panel A and Panel B report the impulse-

response analysis of the log of the one-month-lagged RV2 of the market factor on the log of the 

market returns for Germany and Europe, respectively. 
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Table XIII 

Normal distribution test 

 

Table XIII presents the Jarque-Bera test for normality. This a goodness-of-fit test which jointly combines the skewness 

and kurtosis summary’s outputs in one test. If the P-value is larger or equal to 0.05, the null hypothesis is not rejected. 

𝝌 2
2  values have been adjusted because the German and European datasets are based on a small data sample (318 

observations). Panel A shows the statistical results for the German, European and U.S factor returns. Panel B reports 

the test outputs for the MVE portfolios. “-“ denotes that the values are extremely large and they are not reported.  
 

 Observations  Prob. Skewness Prob. 

Kurtosis 

Adjusted 
𝝌 2

2 
Prob. > 𝝌 2

2 

Panel A: Individual portfolios 

GMKTRFnm 318 0.00 0.00 23.39 0.00 

GSMBnm 318 0.72 0.01 5.79 0.05 

GHMLnm 318 0.00 0.00 30.23 0.00 

GMOMnm 318 0.00 0.00 - 0.00 

EMKTRFnm 318 0.00 0.00 24.14 0.00 

ESMBnm 318 0.53 0.00 7.26 0.02 

EHMLnm 318 0.00 0.00 26.77 0.00 

EMOMnm 318 0.00 0.00 - 0.00 

MKTRFnm 1,080 0.00 0.00 - 0.00 

SMBnm 1,080 0.00 0.00 - 0.00 

HMLnm 1,080 0.00 0.00 - 0.00 

MOMnm 1,080 0.00 0.00 - 0.00 

RMWnm 642 0.00 0.00 - 0.00 

CMAnm 642 0.00 0.00 28.95 0.00 

ROEnm 600 0.00 0.00 - 0.00 

IAnm 600 0.24 0.00 19.46 0.00 

Panel B Multifactor portfolios 

GMKMOnm 318 0.00 0.00 65.35 0.00 

GHMOnm 318 0.00 0.00 - 0.00 

GFF3nm 318 0.03 0.00 - 0.00 

GCnm 318 0.00 0.00 10.74 0.00 

EMKMOnm 318 0.00 0.00 38.90 0.00 

EHMOnm 318 0.43 0.00 28.71 0.00 

EFF3nm 318 0.48 0.00 8.05 0.01 

ECnm 318 0.07 0.00 13.19 0.00 

FF3nm 1,080 0.00 0.00 - 0.00 

Cnm 1,080 0.00 0.00 - 0.00 

FF5nm 642 0.25 0.00 34.54 0.00 

FF5MOnm 642 0.00 0.00 69.58 0.00 

HXZnm 600 0.47 0.00 39.97 0.00 

HXZMOnm 600 0.06 0.00 46.82 0.00 
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The top graphs of Panels A and B show that realized variance of the German and European factors 

spikes fist and then decreases in a consecutive series after one-volatility shock. This effect 

diminishes after seven or eight months approximately. This is consistent with the theory that 

variance is mean reverting. The impact on realized returns differs substantially from the impact 

onto variance. The bottom graph of Panel A shows that after one-volatility shock, the increase of 

German returns is by far weaker than that of its respective realized variance. The returns rise 

marginally and then decrease constantly. This effect dies out after approximately four or five 

months. In the bottom graph of Panel B, one can see that returns of the European market factor 

decrease marginally after an impact of one-volatility shock. After that, however, returns increase 

modestly and stay elevated for a longer period. 

 

Overall, I present evidence that (i) the realized variance and realized returns of the German and 

European market factors are counter-cyclical. Furthermore, (ii) the realized variance is mean 

reverting. I show as well that after one-volatility shock (iii) German returns rise in a much lower 

magnitude than variance (iv) though this effect dies out after some months. The effect on European 

returns is quite different namely (v) the European returns decrease marginally, (vi) but then recover 

staying elevated for several months.  

 

All my results concerning the dynamics of the realized variance are consistent with Moreira and 

Muir’s (2016) findings, except for the outputs (iv) and (v). The authors show that U.S market 

returns increase much less on volatility impact but stay elevated for a longer period, whereas I find 

that the German and European market returns behave quite differently. Hence a possible reason 

why the alpha of German and European managed factors underperforms when comparing it with 

the alpha U.S managed market factor.  
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Figure V 

Risk and return dynamics after one-volatility shock 

Figure V depicts the impulse-response of the realized variance and realized returns of monthly German and European 

market factors after one- volatility shock to the realized variance. The impulse-response analysis uses a VAR (1) of 

realized variance and realized returns. The x-axis is in months. The shady bands represent the lower and upper bounds 

at 95% of confidence interval (CI). In both cases, the movements of German and European realized variance and  

realized returns are counter-cyclical. Moreover, the German and European market factor variances are mean reverting. 

The European market returns are more persistent than its variance. 

 

Panel A: Variance and returns of the German 

market factor  
Panel B: Variance and returns of the European 

market factor 
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7.4 Average realized volatility by subsample period 

 

From left gray (blue) to right gray (blue) bar, Figure VI shows the average realized volatility of 

the market, size, value and momentum factors for each subperiod. The gray bars depict the less 

risky subperiod, whereas the blue bars represent the risky one. Figure VI reveals that the period 

from 1990 to 2000 is less volatile than the period from 2001 to 2016 on average. 

 

Figure VI 

Average realized volatility per factor 

Figure VI illustrates the average realized volatility of each risk factor for each subsample period. In Panels A and B, 

the less volatile (1990-2000) subperiod is differentiated by gray bars and the risky period (2001-2016) by blue bars. 

The first, second, third and fourth bar of each subperiod represents the average realized volatility of market, size, value 

and momentum, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Average realized volatility of German risk factors 

 

Panel B: Average realized volatility of European risk factors 
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7.5 Test for volatility clustering in the residuals 

 

Since the seminal studies of Mandelbrot (1963) und Fama (1965), volatility clustering is a well-

known phenomenon in the finance literature. This phenomenon describes that periods of high 

(low) volatility are followed by periods of high (low) volatility. I compute the residuals for each 

German (Table IV), European (Table VII) and U.S (Table IX) managed single factor regression, 

to determine whether the residuals are characterized by volatility clustering. I find that residuals 

for every regression model displays volatility clustering. For instance, Figure VII plots the monthly 

residual estimations obtained from the monthly time-series regression of managed momentum 

factor on the non-managed momentum factor for the German, European and U.S. data set.  

 

Figure VII 

 

Volatility clustering in residuals  

Figure VII illustrates the residual estimations obtained from the time-series regression of the monthly managed 

momentum factor on the non-managed momentum factor. All models are estimated from 1990 to 2016. The upper, 

middle, and lower graphs show the residuals of the German, European and U.S regression models, respectively. The 

three graphs clearly depict the existence of periods with high volatility followed by periods of high volatility as well 

as periods of low volatility followed by periods of low volatility. The average monthly change is sometimes higher 

and sometimes close to zero, especially from 2000 onwards. The distribution of non-managed momentum factor is 
characterized by fat tails, which is reflected in the high significance of the JB test.  
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8 Appendix B 

8.1 Acronyms 

 
AR Appraisal ratio  IA U.S. investment factor 

AMEX American stock exchange  JB Jarque-Bera test 

C U.S. Carhart four factor portfolio MKTRF U.S. market factor 
CI Confidence interval MOM U.S. momentum factor 

CAPM Capital asset pricing model MVE Mean-variance efficient 

CMA U.S. Fama and French investment  
factor 

NASDAQ National association of securities 
dealers automated quotations 

CML Capital market line NYSE New York stock exchange 

EEA European Economic Area LM Lagrange multiplier test 

EFF3 European Fama and French three  
factor portfolio 

OECD Organization for economic co-
operation and development 

EHML European value factor RMSE Root mean squared error 

EHMO European value factor + European 
momentum factor 

ROE U.S. return on equity factor 

EMKMO European market factor + European 

momentum factor 

RMW U.S profitability factor   

EMKTRF European market factor SMB U.S. size factor 

EMOM European momentum factor U.S. Unites States 

ESMB European size factor VAR Vector autoregressive 

EU European Union VIX U.S. volatility index 
FF3 U.S. Fama and French three factor 

portfolio 

VMP Volatility managed portfolios 

FF5 U.S. Fama and French five factor 
portfolio 

  

FSE Frankfurt Stock Exchange   

GC German Carhart four factor portfolio   

GDP Gross Domestic Product   
GFF3 German Fama and French three factor 

portfolio 

  

GHML German value factor   
GHMO German value factor + German 

momentum factor 

  

GMKMO German market factor + German 
momentum factor 

  

GMKTRF German market factor   

GMOM German momentum factor   

(G)ARCH (Generalized) autoregressive 
conditional heteroscedasticity 

  

GSMB German size factor   

HML U.S. value factor   

HXZ Hou-Xue-Zhang four factor portfolio    
HXZMO Hou-Xue-Zhang four factor portfolio + 

U.S. momentum factor 
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