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Abstract

Statistical downscaling techniques are used to translate global climate scenarios into
local impact forecasts. In this study, I propose a new algorithm for downscaling
by using a linear mixed-effect state-space model (LMESS). The rationale to use
this model in a climate data context is that it allows for both time-varying and
fixed relations between dependent and explanatory variables. My findings show the
importance of identifying the correct random and fixed effects. I develop a new
method for selection based on the state-space formulation with fixed parameters by
Chow (1984). T apply the proposed methods to climate data at five different weather
stations in the Netherlands. My findings show that the LMESS model is not able
to consistently outperform a multivariate linear regression forecast method.
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1 Introduction

Improving the ability to predict weather events becomes increasingly important, as the
coastal regions of Europe, and especially the Netherlands, are highly susceptible to extreme
weather events (Beniston et al., 2007). In this region, the occurrence of hurricanes
(Haarsma et al., 2013) and extreme heat waves (Beniston, 2004) is on the rise. These
events cause both natural and economic damage and will majorly impact billions of people
(Dorland, Tol, & Palutikof, 1999). Global Circulation Models (GCMs) are an important
tool in the assessment of climate change, but have low resolution, making them unable to
predict local impacts. A considerable amount of research has therefore gone into answering
the question: “How do we scale down global climate models to make local impact forecasts?”
The methods that provide an answer to this question are called downscaling methods.

Multiple downscaling techniques have been developed to bridge the gap between
global forecasts and local impacts. Most research has gone into linear regression methods,
as Fowler, Blenkinsop, & Tebaldi (2007) show. However, Kokic, Crimp, & Howden (2011)
show that a linear mixed-effect state-space (LMESS) approach provides better predictions
of rainfall and temperature than linear regression in Australia. The rationale behind
their results is that the LMESS model generalises the linear regression model by allowing
smooth time variation of regression coefficients. Furthermore, the LMESS model allows
for forecasting of non-stationary time series, which is a known feature of climate variables
(Tank, Zwiers, & Zhang, 2009). The LMESS model is also a generalisation of the linear
state-space model, but has less chance of over-fitting, because it allows for a subset of
parameters to remain fixed.

In this research, I build on the steps taken by Kokic et al. (2011) to propose an
algorithm to forecast climate variables using the linear mixed-effect state-space model.
The contributions made to the existing literature are threefold. Firstly, I investigate the
remark made by Kokic et al. (2011) that the manual variable selection procedure used
in their study is suboptimal and propose two variable selection algorithms never before
applied in the context of linear mixed-effect state-space models. One is based on the
state-space aspect of the LMESS model by adjusting the conventional linear state-space
model and using the estimation framework developed by Chow (1984) and Durbin &
Koopman (2012). From the mixed-effect aspect of the LMESS model stems the second

variable selection method I evaluate, which is an adjusted form of the variable selection



algorithm proposed by Bondell, Krishna, & Ghosh (2010).

Secondly, I examine the influence of incorrect model selection on forecasting with
the linear mixed-effect state-space model. The susceptibility of forecast accuracy to
model specification has been studied in other contexts, such as auto-regressive conditional
heteroskedasticity (Nelson & Foster, 1995), standard volatility (Andersen & Bollerslev,
1998), and neural networks (Swanson & White, 1997), but not yet for the LMESS model.
Evaluating the forecasting performance of wrong model specifications relative to the true
model highlights the necessity of an accurate variable selection algorithm.

Thirdly, I study the application of the proposed linear mixed-effect state-space forecast
algorithm to a new selection of observations. In this research, I use data from five weather
stations in the Netherlands. This extends the research of Kokic et al. (2011) by studying
a different climate than the Australian climate considered in their study. For this reason,
I use a new selection of explanatory covariates. Furthermore, I shorten the temporal
distance between measurements to one month to investigate the capability of the linear
mixed-effect state-space model to forecast on a shorter time scale.

Research into climate change and its consequences is mainly focused on global or
continental scale. Wetherald & Manabe (1995) show the influence of rising CO; levels on
lack of precipitation in summer under a variety of circumstances using an idealised model
for global geography. Another example is the research of Hoerling, Hurrell, & Xu (2001),
who identify the North Atlantic Oscillation to be a driving factor of climate change across
the North Atlantic region. A conclusion that was supported by later research of Cassou,
Terray, & Phillips (2005), who studied the influence of the tropical region of the Atlantic
ocean on climate regimes in Europe. Although these studies show a general long-term
climate trend, the translation to local impacts is not addressed. Convery & Wagner (2015)
argue that research on a local scale is at least as important, since improving forecasts
and reducing uncertainty helps policy makers to develop appropriate measures to reduce
climate risk. Local impact studies help answer questions such as: “Should the height
of dikes be increased to account for more extreme water level fluctuations?”, and “Does
water reserve capacity need to be higher to be prepared for spells of draught?” From a
food production perspective, accurate local impact forecasts are especially important, as
operational and strategic decisions in the agricultural sector rely heavily on long range

weather forecasts (Calanca, Bolius, Weigel, & Liniger, 2011). Downscaling techniques are



considered as the most promising method to bridge the gap between GCMs and local
impacts. Another approach would be to extend the forecast horizon of weather prediction
models, which is infeasible with the current methods used for forecasting. In their study,
Kukkonen et al. (2012) compare different weather prediction methods used across Europe.
These methods give forecasts based on analysis of the physical processes in the atmosphere
and fall under the term chemical weather forecasting (CWF'). The current models combine
numerical weather prediction (NWP) and atmospheric chemistry simulations. Although
the accuracy of these models in day-to-day forecasting is high, they are heavily reliant on
high-resolution atmospheric observations. For example, the LOTOS-EUROS model, which
is used in the Netherlands, uses 3D fields for wind direction, wind speed, temperature,
and humidity (Schaap et al., 2008). Observation errors are therefore the main drawback
of CWF techniques. Furthermore, Kukkonen et al. (2012) remark the inability of NWP
models to incorporate all physical processes that determine weather changes, which makes
accurate long-range forecasting difficult.

Beckmann & Buishand (2002) provide the sole research to date on the application
of downscaling techniques in the Netherlands. Their paper shows the ability of a variety
of regression models to forecast rainfall occurrence at five measurement sites across the
Netherlands and Germany. However, Beckmann & Buishand (2002) remark that their
modelling framework works best when rainfall occurrence and rainfall on wet days are
analysed separately, which restricts the applicability of their forecasting methods. The
work of Beckmann & Buishand (2002) is included in the overview of downscaling techniques
comprised by Fowler et al. (2007). They summarise a wide variety of methods that have
been investigated, from multivariate linear regression to neural networks, that aim to
translate general circulation model predictions to local impacts. Across all research
cited by Fowler et al. (2007), a wide variety of predictors is identified. However, the
dynamic relation between dependent variables and predictors is a major hurdle for accurate
modelling and forecasting.

With a simulation study, I show that my research provides another step to accurate
forecasting with the linear mixed-effect state-space framework. I find that the variable
selection procedure based on the state-space model formulation by Chow (1984) shows
a model selection accuracy above 70%, where the method used by Kokic et al. (2011)

finds the correct model in at most 20% of simulated scenarios. Furthermore, my proposed



algorithm is robust under different parameter values in the data generating process, with
accuracy of at least 53% for a majority of different parameter scenarios. Adjusting the
variable selection algorithm proposed by Bondell et al. (2010) to incorporate the state-
space formulation does not consistently give the desired accuracy. The algorithm shows
selection accuracy of up to 76%, but fails to correctly identify a single model specification
across 100 simulated sets of data in a quarter of considered scenarios. Furthermore, my
results show that the linear mixed-effect state-space model forecasts are sensitive to wrong
model specifications. Across a variety of wrong model specifications, none can significantly
outperform the true model specification in forecast accuracy. I thus show the necessity
of an accurate variable selection algorithm when considering forecasting using the linear
mixed-effect state-space model.

Application of my methods to climate data in the Netherlands shows that the linear
mixed-effect state-space model can capture differences in time series dynamics between
weather stations. Furthermore, forecasting with the LMESS model can reduce the root
mean squared forecast error compared to a naive climatology forecast by up to 7% for
the proportion of rainy days per month in De Bilt. On the other hand, in case of the
mean rainfall, maximum temperature, and minimum temperature, the LMESS approach
does not significantly improve climatology forecasts. For weather stations in De Kooy,
Eelde, Vlissingen, and Beek, the linear mixed-effect state-space model does not improve on
climatology forecasts significantly. Compared to a multivariate linear regression approach,
the LMESS model does not significantly outperform the multivariate linear regression
model in terms of forecast accuracy for any dependent variable at any of the five considered
measurement sites.

The remainder of this thesis is organised as follows. In section 2 I introduce the linear
mixed-effect state-space model and the estimation of parameters in that framework, as
well as the variable selection methods examined in this study. I proceed in section 3 with a
simulation study on variable selection accuracy and the influence of wrong model selection
on forecast performance. Thereafter, I introduce the climate data used in this study in
section 4. The application of the proposed linear mixed-effect state-space algorithm in

the Netherlands is reported in section 5. Section 6 reports the conclusion of the research.



2 Methodology

This research aims to propose a linear mixed-effect state-space model (LMESS) estimation
algorithm. Until now, no method has been proven to accurately identify significant
explanatory covariates in case of the LMESS model. I propose such a method by extending
methods used in either a linear state-space or a mixed-effect model context. In this section
I introduce the formulation of the linear mixed-effect state-space model and the estimation
of model parameters as derived by Kokic et al. (2011). Thereafter, I propose three distinct
algorithms to identify fixed and random effects in the LMESS model. I end this section

with forecasting equations of the linear mixed-effect state-space framework.

2.1 The Linear Mixed-Effect State-Space Model

The linear mixed-effect state-space model described by Kokic et al. (2011) is a state-space
model where the observation equation is formulated as a linear mixed-effect model. In this
research the mixed-effect terminology refers to the inclusion of both fixed and time-varying
(random) coefficients in the observation equation. The state-space part of the model name
comes from the state equation that describes the temporal relation between the time-
varying coefficients. The representation of variables in a linear mixed-effect state-space
form is a generalisation of two models commonly used in time series analysis, namely the
multivariate linear regression model and the linear state-space model. Kokic et al. (2011)
combine both specifications to formulate the LMESS model, which circumvents the main
drawbacks of the individual models that limit applicability for climate forecasting.

Referring to time-varying model coefficients as random stems from the conventional
linear mixed-effect model without state equation. Research using this formulation assumes
there is a common fixed response coefficient for all research subjects. On the other hand,
the linear mixed-effect model allows other response parameters to vary between different
subjects. The between subject variation is assumed to follow a distribution from which
all subject responses are randomly drawn, hence the name random effect. Throughout
this research random and time-varying are used interchangeably.

Kokic et al. (2011) use the linear mixed-effect state-space model to forecast summary
statistics of climate variable distributions by using a number of explanatory covariates. Just

like the linear state-space model, the LMESS model is specified in terms of an observation



equation and a state equation. Suppose there are r climate variables observed at m
different measurement sites. We have observed related scalar covariates ug, w1y, tay, . . .
over a time period t € {1,...,T}. The covariate up; = 1 is an intercept covariate per
convention, included a priori to capture effects that the time-varying covariates can not

capture. Then at each time t, the observation and state equation of the LMESS model

for site j € {1,...,m} are written as
yjr = Xjibj + Zjeege + vt (1)
Qjp = AjOéjt_1 + Wi, (2)

where y;; is a column vector containing the r observed dependent variables at time ¢
for site j. The value corresponding to dependent variable ¢ in this notation is y;;;. The
dependent variables may be pre-transformed to improve model fit. Matrices X;; and Z,
are block diagonal matrices containing covariates ug, Uy, g, ... corresponding to the

fixed and random effects, respectively. These matrices can be written in full as

Xy 0 - 0 Zijg 0 - 0
0 Xof --- 0 0 Ty - 0
R B A R @
0 0 - Xy 0 0 - Zy

where X;j; is a row vector of p;; covariates included as fixed effects for observation y;;q.
The vector Z;;; a row vector of gj; covariates corresponding to the random effect on the
same observation. The numbers p;; and ¢;; are the optimal number of fixed and random
effect covariates for y;;;, respectively. These are not known a priori, but are found from
pi; and g;; initial candidate covariates out of the set of all covariates wo, w1, uat, . ... The
vector ay; has dimensions (), ¢j; X 1) and contains the unobserved state parameters
corresponding to the random effects. The matrix A; is a (3, ¢;; X >_; ¢j;) state transition
matrix. The vector 8; = (8,...,0,;)" represents a (3, pj; x 1) fixed effect coefficient
vector. The observation error v is a (r x 1) vector which is normally distributed with
mean zero and (r X r) covariance matrix R;. The error of the state equation wj, is a
normally distributed (}_; g; x 1) vector with mean zero and (}_; g; x ), ¢j;) covariance
matrix ;. The model formulation does not impose any assumptions other than the

normality of the errors. This means that parameter values and dynamics are allowed to

vary between the m different measurement sites.
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Let us consider an example to illustrate the formulation of the linear mixed-effect
state-space model. Suppose there are r = 4 dependent variables measured at j = De Bilt,
which result in observation vector y;;. In this example, y1;; corresponds to the number of
rainy days in a month and s, is the average rainfall on a rainy day. The variables y3;; and
Y4j¢ are the average maximum and minimum temperature per month, respectively. Besides
the constant intercept ug; = 1, there are four potential explanatory time-varying covariates
Uig, . . ., Uy corresponding to atmospheric CO, level, the NAO index, cyclone density and
anticyclone density, respectively. Suppose the model has the following relations: there
are no random effect terms for y;;, but CO;, level and the NAO index are fixed effects.
The variable y,;; has anticyclone density as random effect and a fixed intercept. The CO,
level and the cyclone density are fixed effects for ys;; and it has a random effect intercept.
Lastly, y4;; has the intercept and COs level as random effect terms, and the NAO index

and anticyclone density as fixed effects. Then the matrices Xj; and Z;; are

uye uy 0 0 0 0 O 0 00 O

O 0 1 0 0 0 O ugy 0 0 0
th = 5 and th =

0O 0 0 wuy wuyp 0 0 1 0 O

0 0 0 0 0 wugy ugy 0 0 1 wuy

Each covariate appears at most once in any row of X;; and Zj;, which is the most important
assumption in the formulation of Kokic et al. (2011): Any covariate represents either a
fixed or a random effect if it is included, so it can never be both fixed and random effect
for a dependent variable.

The LMESS formulation poses two challenges. First, an algorithm is needed to find
maximum likelihood estimates for all model parameters, as I need to account for the fixed
effect term when using existing methods for linear state-space models. Second, to reduce
the number of parameters to estimate, I need to find which explanatory covariates need
to be treated as random effects, which are best considered fixed effects, and which may

be excluded from the model.

2.2 Parameter estimation

In this section I outline the parameter estimation equations and an EM-algorithm that
incorporates the fixed effects term. This section is based on the appendix to the paper

of Kokic et al. (2011). The linear mixed-effect state-space model generalises the linear
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state-space model via the addition of the fixed effect term in the observation equation.
This means that the methods used for linear state-space parameter estimation can be
adjusted to allow parameter estimation in the LMESS framework. In this paper, I will
use an EM algorithm approach, iterating between a Kalman smoother to estimate the
unobserved state variable o, and analytically derived maximum likelihood estimates.
First, I explain the Kalman filter and smoother in the E-step detailing the difference with
the conventional filter and smoother. Thereafter, I give the explicit formulas derived from
the likelihood function used in the M-step. For notation convenience, the subscript j is
dropped in this section, as parameter estimation is done separately at each measurement
site j.

The parameters that provide the best model fit given the data are found by maximising
the likelihood function of the LMESS model. As maximising the likelihood is equivalent
to maximising the log-likelihood and the latter is computationally less intensive, the EM
algorithm aims to find parameters such that the log-likelihood is maximised. Suppose we
already know which covariates are fixed and random effects, so the matrices X; and Z;
are known for all ¢. If the initial state is assumed normally distributed with mean m; and

variance Y1, the joint log-likelihood of the observations y and states « is

[M] =

1 T
log L(a,y) = — (5(% — Zioy — Xtﬂ)/Rfl(yt — Zioy — Xtﬁ)) ) log |R|

t=1

Tz_ Log|Q) (4)

M-

<%(at ~ Ay ) O oy — Aat_l)) _

Il
)

DO = s+

1
(041 — 7T1>,21_1(O~/1 — ) — §log |Z1| - Tk log(27r).

The EM algorithm works via calculation of state estimates conditional on all data y in
the E-step. Then, estimates for A, (), R, and [ are given by analytical solutions to the
maximisation problem in the M-step, using the state estimates from the E-step. The E-

and M-step are iterated until convergence.

2.2.1 Filtering and smoothing the LMESS model

The E-step finds estimates for the unobserved state variables «a; based on the full set of
observations yr. Only estimating the states however does not suffice, as there are also

vector products to be considered in equation (4). For the full E-step we thus need to



estimate three sufficient statistics, given by
@t\T = E(atb’T); pt|T = E(OétOZHYT)a and pt,t—1|T = E(ata£71|YT)a

where &7 is the smoothed state vector. Both PHT and Pt,t_l‘;p are related to the smoothed
state variance and smoothed transition variance, but have no physical interpretation. From
these three statistics, I can also calculate the smoothed state variance 2” = pﬂT —dt‘T@QIT.

First, the Kalman filter uses observations up to time ¢ to give initial estimates for the
filtered states ay), and filtered covariance f]t“. The equations to find these estimates are
very similar to the equations for the linear state-space model, but there is an extra term
corresponding to the fixed effects added in the equations. The Kalman filter equations for

the LMESS model are then given by

Vi=AY 1A+ Q
Ay = Ady_1p—1 + Kyey
. K, =V,Z(R+ ZV,Z))~*
Yo = Vi — Ky 24V,
€t = Y — ZtAOAétthfl - X,

The matrix V; is the forecasted state covariance matrix for state «; based on the observa-
tions up to t — 1. The matrix K; is included to improve computational efficiency, but has
no interpretation. The error e; represents the deviation between the true observation
and the expected value based on the observations up to t — 1. The matrices A, @), and R,
as well as the vector § are maximum likelihood estimates from the previous M-step in the
algorithm.

When the filter has finished, the Kalman smoother gives estimates for the state based
on the full sample period. The Kalman smoother equations for the linear mixed-effect
state-space model are equal to the Kalman smoother equations for the linear state-space
model. We run the smoother backwards, initialising arir = Qrj—r, where d&;r is the
smoothed state at time ¢. Furthermore, this is also the step where I estimate the sufficient

statistics needed. The full set of smoother equations is
Qp1r = Qp_1p—1 + i375—1|t—1A/V;_1(CAth|T — Gyt
2t—1\T = 2t—1\t—1 - i75—1|15—1A/V15_1(V1t - 2t\T>‘/t—1Ait—1|t—1
pt\T = 2t|T + éét\Td;\T
fjt,tfl\T = it|T‘/;_1Ait71\t—1 + dt|Td;_1\T7

where ¢y, f]ﬂt, and V; are taken from the Kalman filter and A is the maximum likelihood

estimate from the previous M-step in the algorithm.
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2.2.2 Maximising the log-likelihood

In this research, I assume normality, which leads to the log-likelihood function in equation
(4). Maximisation equations for each of the model parameters are then found by calculating
the partial derivatives for the conditional log-likelihood on all observations. For example,
the partial derivative with respect to the transition matrix A is given by

0 E(log L(a, y)|yr
A

T T
) =— Z Q 'Pryr + Z Q 'AP .
=2 =2

At the value of maximum likelihood, the expression on the right hand side must equal
zero. After rewriting this equation by cancelling the inverted matrix () and isolating the

term A, the maximum likelihood estimate is given by

T T -1
A= ZPt,t_lT<ZPt_1|T> . (5)
=2 =2
Applying the same approach of analytical derivation to the other model parameters 5, R,

and @, gives us the following set of maximum likelihood estimates.

T -1 7
8= (Z X;R—lxt) > XIRN(y — Zibyr) (6)
t=1 t=1
R=T")" [(yt — Zibuyr — XiB) (v — Zetyr — XuB3) + ZtiﬂTZ;] (7)
t=1
A T A A A A A A A A~
Q=T-1)"> [Pt — AP}, | — Py A+ APtlA’l (8)

The set of estimates in equations (5) to (8) forms the M-step of the parameter estimation

procedure for the linear mixed-effect state-space model.

2.3 Variable selection

The second problem posed by the linear mixed-effect state-space model is the selection
of covariates to include as fixed or random effects for each dependent variable. In this
research, I investigate four dependent variables and six explanatory covariates. As each
covariate can be included as fixed or random effect or excluded, there are 354 possible
models in the setup of this thesis. Full estimation of over 280 billion possible models
would be highly inefficient, if not infeasible. In this section I introduce three methods

for variable selection, increasing in complexity and computational demand. Firstly, the
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manual stepwise selection procedure used by Kokic et al. (2011) is described. Secondly,
the joint Kalman smoother estimation with fixed parameters as described by Chow (1984)
and Durbin & Koopman (2012) is translated to application for variable selection in the
linear mixed-effect state-space model. Thirdly, the joint selection algorithm proposed by

Bondell et al. (2010) is translated to the context of the LMESS model.

2.3.1 Stepwise selection

Kokic et al. (2011) use a manual selection procedure to select which covariates are part
of fixed effects matrix X;;, and which are part of random effects matrix Z;;. A priori
I assume no knowledge on the true nature of each covariate, so all are included at first.
Each time the LMESS model is fitted to a certain set of covariates, I use the estimation
equations as detailed in section 2.2. For any dependent variable ¢ at any measurement

site j the following procedure is applied:

1. First a multivariate linear regression model is fitted to the time series via a backwards
elimination, or general-to-specific, procedure, which is initialised with all covariates
as possible explanatory variables. Only covariates with at least 10% significance are
retained (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004).

2. All retained covariates are modelled as random effect state-space terms. At each
time ¢, the 90% confidence interval is calculated using the smoothed state variance
estimate. If the minimum across the upper bounds is smaller than the maximum
across the lower bounds, I consider the coefficient to show significant dynamics.
Then the covariate is retained as a random effect. If all upper bounds are larger than
all lower bounds, the dynamics of the coefficient are not significant and I regard the
covariate as a fixed effect.

3. With the new distinction between fixed and random effects, the LMESS model is
refitted again and all fixed effects which are not significant at the 10% level are
removed.

4. The last step is to test each of the covariates removed in step 1 one-by-one as random
effects. Just as in step 2, if the minimum of the 90% confidence interval upper bounds
is smaller than the maximum of the lower bounds, I retain the covariate as random
effect. If all upper bounds are larger than all lower bounds, I refit the model to

include the covariate as a fixed effect. The covariate is retained in the model as fixed
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if the coefficient is significant at the 10% level.

Kokic et al. (2011) motivate their selection algorithm for its ability to include covariates
which are fixed in the multivariate linear regression model as random. Furthermore, all
covariates excluded by the multivariate linear regression in step 1 can still be included in
the LMESS model via step 4. The main advantage of this procedure is that there are no
restricting assumptions on model specifications. The same dependent variable at different
measurement sites can have different covariates as random and fixed effects. The resulting
downside is that the full procedure needs to be repeated r-m times. For larger datasets of
monthly or daily data, this can be computationally inefficient, as the LMESS model needs
to be fitted repeatedly in the algorithm of Kokic et al. (2011). Besides the computational
demand, Kokic et al. (2011) also state that their procedure might lead to suboptimal
models. This statement is supported by Bondell et al. (2010), who find stepwise algorithms
to be biased by the order of selection. Therefore, I consider two models that identify fixed
and random effects simultaneously. I include the selection method of Kokic et al. (2011)

to serve as a benchmark algorithm to improve upon.

2.3.2 Chow’s adjusted Kalman Smoother

The second selection algorithm is based on a state-space formulation first proposed by
Chow (1984). The rationale behind this procedure is to estimate all covariates as both
fixed and random at the same time and select which covariates to include in the model.
It has not yet been implemented in the context of linear mixed-effect variable selection.
In the model formulation of Chow (1984), the researcher would assume a subset
of explanatory variables to have a fixed effect. To lower the number of parameters to
estimate, the state vector and the corresponding transition matrix are restricted. Durbin
& Koopman (2012) specify the parameter estimation for this model formulation in more
detail. To use the same algorithm for variable selection, the linear mixed-effect state-
space model in equations (1) and (2) needs to be rewritten in a form coherent with the
formulation of Chow (1984). As I assume no a priori knowledge on the fixed and random
effects, I'set Z;;; = X, for all (4, j,t) and include all covariates in each row of both matrices.

For each dependent variable ¢ € {1,...,r} at each measurement site j € {1,...,m}, the

13



LMESS model can be written as

. | Bt
Yijt = Xij T+ Vijt (9)
iyt
ij ijt— 0
ﬁjt :Bij /B_]tl + ’ (10)
Qg Qt—1 Wi jt

where X, = (Xije, Xije) and B;; is a (2g;; X 2¢;5) block matrix containing the identity
matrix of size ¢;; in the top left and a (g;; X ¢;;) transition matrix in the bottom right.
vt and w;j; are normally distributed errors with mean zero and covariance R;; and );;
respectively. Just as Durbin & Koopman (2012), I attach subscript notation to f;j; for
convenience in the state-space formulation, but note that 3;;; = 8;;:—1 = 3;;. In equation
(9), the structure of the covariates matrix X, implies that each covariate is related to
both a coefficient in f3;;; and a component in «;j;.

Estimation of parameters in the model formulation of Chow can be done by restriction
of the standard EM-algorithm approach proposed by Shumway & Stoffer (1982). Both E-
and M-step are detailed in appendix A. For a given dependent variable ¢ at measurement

site 7, I use the following procedure to decide which variables to include as fixed and

random effects.

1. The state vector and transition matrices are jointly modelled via the Kalman
smoother EM algorithm from Shumway & Stoffer (1982). The algorithm is ad-
justed for notation, the result of which is detailed in appendix A.

2. As in step 2 of the algorithm of Kokic et al. (2011), the 90% confidence intervals
for cj;; are calculated for all times ¢. If the minimum across the upper bounds is
smaller than the maximum of the lower bounds, I consider the coefficient to show
significant dynamics. Then the covariate is considered a random effect.

3. If all upper bounds of the 90% confidence intervals are larger than all lower bounds,
the dynamics of the coefficient are not significant. Then I test whether the coefficient
in f3;; corresponding to the covariate is significant at the 10% level. If so, the covariate
is included as a fixed effect. A covariate is thus omitted from the model if the state-
space coefficient shows no significant dynamics and the corresponding coefficient in

f3;; is not significant at the 10% level.

This procedure needs to evaluate r - m EM-algorithms to find all models. So the number
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of EM-algorithms is lower compared to the method proposed by Kokic et al. (2011), but

the dimensionality for each algorithm is higher.

2.3.3 Joint selection of correlated data

The algorithm of Bondell et al. (2010) is based on the conventional linear mixed-effect
model form, which has T" rows corresponding to the observations of the dependent variable
and explanatory covariates. Therefore, the state-space formulation in equation (1) is not
suitable for their approach. Additionally, to apply the algorithm of Bondell et al. (2010)
to the LMESS model, it is assumed that the division of covariates into fixed and random
effects at all m measurement sites is the same and the fixed effect coefficient vector ; is

the same at all sites j. For variable ¢ at site j, the linear mixed-effect model is written as
Yij = XiiBi + Zijdfj + €ij, (11)

where yij = (yijla . 7yijT)/7 Xij = (Xz(jlﬁ . 7Xz{jT),7 and Zij = (Zz{jh'

assume no a priori knowledge on which covariates are fixed or random, I include all

covariates in both X;; and Z;;, which have p; and ¢; columns respectively. The vector a;

5
can be seen as a time average random effect, which is assumed to be normally distributed
as N(0,02%;). I may assume zero-mean, since covariates can be both fixed and random in
the formulation of Bondell et al. (2010). Therefore, any non-zero mean random effect will
be reflected by a significant coefficient in ;. The error ¢;; is assumed normal, satisfying
gij ~ N(0,02€;). As Pourahmadi & Daniels (2002) show, the implied relation between
consecutive measurements in equation (2) can be incorporated in the covariance structure
of €;;.

Durbin & Koopman (2012) provide a framework for estimation of the full covariance
matrix €2;;, which I adjust to fit with the model formulation as in equations (9) and (10).

Then I find

(YR
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in which

X7y 0 0 Ry 0
XZ; = E 9 R;k] - iR . )
L 0 X:;T 0 i 0 RU
Py 0 0 -~ 0 0 Ly 0 0 0
0 0 0 0 0 B Iy, 0 0
0 0 Qy 0 0 BZ  Bj 0 0
Q=1 @ ' ,and B, = | 7 T ,
0 0 0 0 0 Bt B Iy, 0
0 0 0 0 Qi | B, B! - By Iy,

where Pj;; is the smoothed covariance estimate for the initial state vector. As this
estimation of the variance is based on the formulation of Chow (1984), I use the same EM
algorithm of Shumway & Stoffer (1982) to estimate the parameters in the model.

In order to select which covariates to incorporate as fixed or random, Bondell et al.
(2010) factorise the matrix ¥; via a modified Cholesky decomposition first described by
Chen & Dunson (2003), namely ¥, = D;I';,I".D;, where D; is a diagonal matrix and I'; a
lower triangular matrix with ones on the diagonal. The model in equation (11) may be
rewritten as

Yij = XiiBi + Zi; Diliaj + €45, (13)
where a;; satisfies a;; ~ N(0,021,,). Now define the vectors d; = (d,...,d;,;)" and
Y= Vim:k=1,...,¢;: l =k+1,...,¢) containing the free elements of D; and I,
respectively. With this decomposition, if d;, = 0 for any n, this is equivalent to removing
the n'" row and column of the matrix ¥;, thus excluding covariate u,, as a random effect for
the time series of dependent variable i. Now define the variable ¢; = (5., d},~;) containing
all information on the inclusion of fixed and random effects for variable 7.

Conditional on X;; and Z;;, the distribution of y;; is normal with mean X;;3; and
variance V;; = Uf(ZijDiFiF;DiZ{j + Q;;). After dropping constants, the log-likelihood
function as a function of the parameter ¢; is written as

1

E((bi) = —% log |‘71| - 5(% - Xi@')/f/fl(yi - Xiﬁi); (14)

where V; = Diag(Vi1, . - ., Vim), a block diagonal matrix of Vi;, and y; = (yly, - - ., ¥hn)" and
X; = (X},...,X],) are the stacked y;; and X;; respectively. The optimal set of variables

16



¢; is found by maximising the conditional expectation of this log-likelihood along with a
penalty function on §; and d;. Bondell et al. (2010) proposed an EM-algorithm for this

procedure, the expectation step of which is given by
960" = Eatgnon {107 2y — 02X = 072 Zidiag(Tiae) (L © L, )i |

2 1Bl E [l (15)
“m(zmmﬁzw)’

n=1 n=1

in which fz =1,®I; 1, a (m x 1) vector of ones, and \,, represents the non-negative

regularisation parameter. The vector a; = (a};,...,a},,) is the stacked version of all

random effect parameters for all different sites. Matrix €; = Diag(1, ..., Qi) is the
block diagonal matrix of covariance matrices. The vector j3; is the GLS estimate for 3; and
d; is found by decomposition of the restricted maximum likelihood variance estimate for ;.
For the M-step, the expression in Equation (15) is minimised over ¢;. By iterating between
the quadratic programming problem for the vector (5., d})" and the closed form solution for
~; found by Bondell et al. (2010), we find an updated vector gbgwﬂ) upon convergence. The
algorithm is given in more detail in Appendix B. When ¢§w) has converged, the solution
gives the final parameter estimates.

This optimisation is performed for different values of the penalty parameter \,,. The

set of fixed and random effects included in the estimation model is given by the solution

that minimises the BIC), , criterion given by
BIC,, = —2L(¢;) + log (mT) - dfy,,, (16)

where £(¢;) is the log-likelihood function defined in equation (14) and dfy,, is the number
of non-zero elements of the vector ggl All g/ covariates corresponding to non-zero elements
in d; are included as random effects in Z;; in equation (3), and any covariate not included
in Zj; with a non-zero coefficient in j3; is regarded as a fixed effect.

A drawback of the method of Bondell et al. (2010) is that it assumes the same model
is true across all measurement sites, which may not be valid in all cases. Furthermore,
the estimation of the matrix §2;; relies on state-space estimates. The extra step taken to
find the covariance matrices adds another source of uncertainty in the model, which may

lead to wrong identification of random and fixed parameters.
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2.4 Forecasting

After obtaining the expectation maximisation estimates for the linear mixed-effect state-
space model parameters at any site j, I simulate forecasts as follows. For ¢t > T'| the
conditional distributions for the state variables and climate variables are (o|y;r) ~

N (&, f]jt) and (y;:|y;r) ~ N (9, Z]’-ti]jtht + Rj), respectively, in which

Qe = Ajle (17)
Bje 