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Abstract

Statistical downscaling techniques are used to translate global climate scenarios into

local impact forecasts. In this study, I propose a new algorithm for downscaling

by using a linear mixed-effect state-space model (LMESS). The rationale to use

this model in a climate data context is that it allows for both time-varying and

fixed relations between dependent and explanatory variables. My findings show the

importance of identifying the correct random and fixed effects. I develop a new

method for selection based on the state-space formulation with fixed parameters by

Chow (1984). I apply the proposed methods to climate data at five different weather

stations in the Netherlands. My findings show that the LMESS model is not able

to consistently outperform a multivariate linear regression forecast method.
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1 Introduction

Improving the ability to predict weather events becomes increasingly important, as the

coastal regions of Europe, and especially the Netherlands, are highly susceptible to extreme

weather events (Beniston et al., 2007). In this region, the occurrence of hurricanes

(Haarsma et al., 2013) and extreme heat waves (Beniston, 2004) is on the rise. These

events cause both natural and economic damage and will majorly impact billions of people

(Dorland, Tol, & Palutikof, 1999). Global Circulation Models (GCMs) are an important

tool in the assessment of climate change, but have low resolution, making them unable to

predict local impacts. A considerable amount of research has therefore gone into answering

the question: “How do we scale down global climate models to make local impact forecasts?”

The methods that provide an answer to this question are called downscaling methods.

Multiple downscaling techniques have been developed to bridge the gap between

global forecasts and local impacts. Most research has gone into linear regression methods,

as Fowler, Blenkinsop, & Tebaldi (2007) show. However, Kokic, Crimp, & Howden (2011)

show that a linear mixed-effect state-space (LMESS) approach provides better predictions

of rainfall and temperature than linear regression in Australia. The rationale behind

their results is that the LMESS model generalises the linear regression model by allowing

smooth time variation of regression coefficients. Furthermore, the LMESS model allows

for forecasting of non-stationary time series, which is a known feature of climate variables

(Tank, Zwiers, & Zhang, 2009). The LMESS model is also a generalisation of the linear

state-space model, but has less chance of over-fitting, because it allows for a subset of

parameters to remain fixed.

In this research, I build on the steps taken by Kokic et al. (2011) to propose an

algorithm to forecast climate variables using the linear mixed-effect state-space model.

The contributions made to the existing literature are threefold. Firstly, I investigate the

remark made by Kokic et al. (2011) that the manual variable selection procedure used

in their study is suboptimal and propose two variable selection algorithms never before

applied in the context of linear mixed-effect state-space models. One is based on the

state-space aspect of the LMESS model by adjusting the conventional linear state-space

model and using the estimation framework developed by Chow (1984) and Durbin &

Koopman (2012). From the mixed-effect aspect of the LMESS model stems the second

variable selection method I evaluate, which is an adjusted form of the variable selection
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algorithm proposed by Bondell, Krishna, & Ghosh (2010).

Secondly, I examine the influence of incorrect model selection on forecasting with

the linear mixed-effect state-space model. The susceptibility of forecast accuracy to

model specification has been studied in other contexts, such as auto-regressive conditional

heteroskedasticity (Nelson & Foster, 1995), standard volatility (Andersen & Bollerslev,

1998), and neural networks (Swanson & White, 1997), but not yet for the LMESS model.

Evaluating the forecasting performance of wrong model specifications relative to the true

model highlights the necessity of an accurate variable selection algorithm.

Thirdly, I study the application of the proposed linear mixed-effect state-space forecast

algorithm to a new selection of observations. In this research, I use data from five weather

stations in the Netherlands. This extends the research of Kokic et al. (2011) by studying

a different climate than the Australian climate considered in their study. For this reason,

I use a new selection of explanatory covariates. Furthermore, I shorten the temporal

distance between measurements to one month to investigate the capability of the linear

mixed-effect state-space model to forecast on a shorter time scale.

Research into climate change and its consequences is mainly focused on global or

continental scale. Wetherald & Manabe (1995) show the influence of rising CO2 levels on

lack of precipitation in summer under a variety of circumstances using an idealised model

for global geography. Another example is the research of Hoerling, Hurrell, & Xu (2001),

who identify the North Atlantic Oscillation to be a driving factor of climate change across

the North Atlantic region. A conclusion that was supported by later research of Cassou,

Terray, & Phillips (2005), who studied the influence of the tropical region of the Atlantic

ocean on climate regimes in Europe. Although these studies show a general long-term

climate trend, the translation to local impacts is not addressed. Convery & Wagner (2015)

argue that research on a local scale is at least as important, since improving forecasts

and reducing uncertainty helps policy makers to develop appropriate measures to reduce

climate risk. Local impact studies help answer questions such as: “Should the height

of dikes be increased to account for more extreme water level fluctuations?”, and “Does

water reserve capacity need to be higher to be prepared for spells of draught?” From a

food production perspective, accurate local impact forecasts are especially important, as

operational and strategic decisions in the agricultural sector rely heavily on long range

weather forecasts (Calanca, Bolius, Weigel, & Liniger, 2011). Downscaling techniques are
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considered as the most promising method to bridge the gap between GCMs and local

impacts. Another approach would be to extend the forecast horizon of weather prediction

models, which is infeasible with the current methods used for forecasting. In their study,

Kukkonen et al. (2012) compare different weather prediction methods used across Europe.

These methods give forecasts based on analysis of the physical processes in the atmosphere

and fall under the term chemical weather forecasting (CWF). The current models combine

numerical weather prediction (NWP) and atmospheric chemistry simulations. Although

the accuracy of these models in day-to-day forecasting is high, they are heavily reliant on

high-resolution atmospheric observations. For example, the LOTOS-EUROS model, which

is used in the Netherlands, uses 3D fields for wind direction, wind speed, temperature,

and humidity (Schaap et al., 2008). Observation errors are therefore the main drawback

of CWF techniques. Furthermore, Kukkonen et al. (2012) remark the inability of NWP

models to incorporate all physical processes that determine weather changes, which makes

accurate long-range forecasting difficult.

Beckmann & Buishand (2002) provide the sole research to date on the application

of downscaling techniques in the Netherlands. Their paper shows the ability of a variety

of regression models to forecast rainfall occurrence at five measurement sites across the

Netherlands and Germany. However, Beckmann & Buishand (2002) remark that their

modelling framework works best when rainfall occurrence and rainfall on wet days are

analysed separately, which restricts the applicability of their forecasting methods. The

work of Beckmann & Buishand (2002) is included in the overview of downscaling techniques

comprised by Fowler et al. (2007). They summarise a wide variety of methods that have

been investigated, from multivariate linear regression to neural networks, that aim to

translate general circulation model predictions to local impacts. Across all research

cited by Fowler et al. (2007), a wide variety of predictors is identified. However, the

dynamic relation between dependent variables and predictors is a major hurdle for accurate

modelling and forecasting.

With a simulation study, I show that my research provides another step to accurate

forecasting with the linear mixed-effect state-space framework. I find that the variable

selection procedure based on the state-space model formulation by Chow (1984) shows

a model selection accuracy above 70%, where the method used by Kokic et al. (2011)

finds the correct model in at most 20% of simulated scenarios. Furthermore, my proposed
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algorithm is robust under different parameter values in the data generating process, with

accuracy of at least 53% for a majority of different parameter scenarios. Adjusting the

variable selection algorithm proposed by Bondell et al. (2010) to incorporate the state-

space formulation does not consistently give the desired accuracy. The algorithm shows

selection accuracy of up to 76%, but fails to correctly identify a single model specification

across 100 simulated sets of data in a quarter of considered scenarios. Furthermore, my

results show that the linear mixed-effect state-space model forecasts are sensitive to wrong

model specifications. Across a variety of wrong model specifications, none can significantly

outperform the true model specification in forecast accuracy. I thus show the necessity

of an accurate variable selection algorithm when considering forecasting using the linear

mixed-effect state-space model.

Application of my methods to climate data in the Netherlands shows that the linear

mixed-effect state-space model can capture differences in time series dynamics between

weather stations. Furthermore, forecasting with the LMESS model can reduce the root

mean squared forecast error compared to a naive climatology forecast by up to 7% for

the proportion of rainy days per month in De Bilt. On the other hand, in case of the

mean rainfall, maximum temperature, and minimum temperature, the LMESS approach

does not significantly improve climatology forecasts. For weather stations in De Kooy,

Eelde, Vlissingen, and Beek, the linear mixed-effect state-space model does not improve on

climatology forecasts significantly. Compared to a multivariate linear regression approach,

the LMESS model does not significantly outperform the multivariate linear regression

model in terms of forecast accuracy for any dependent variable at any of the five considered

measurement sites.

The remainder of this thesis is organised as follows. In section 2 I introduce the linear

mixed-effect state-space model and the estimation of parameters in that framework, as

well as the variable selection methods examined in this study. I proceed in section 3 with a

simulation study on variable selection accuracy and the influence of wrong model selection

on forecast performance. Thereafter, I introduce the climate data used in this study in

section 4. The application of the proposed linear mixed-effect state-space algorithm in

the Netherlands is reported in section 5. Section 6 reports the conclusion of the research.
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2 Methodology

This research aims to propose a linear mixed-effect state-space model (LMESS) estimation

algorithm. Until now, no method has been proven to accurately identify significant

explanatory covariates in case of the LMESS model. I propose such a method by extending

methods used in either a linear state-space or a mixed-effect model context. In this section

I introduce the formulation of the linear mixed-effect state-space model and the estimation

of model parameters as derived by Kokic et al. (2011). Thereafter, I propose three distinct

algorithms to identify fixed and random effects in the LMESS model. I end this section

with forecasting equations of the linear mixed-effect state-space framework.

2.1 The Linear Mixed-Effect State-Space Model

The linear mixed-effect state-space model described by Kokic et al. (2011) is a state-space

model where the observation equation is formulated as a linear mixed-effect model. In this

research the mixed-effect terminology refers to the inclusion of both fixed and time-varying

(random) coefficients in the observation equation. The state-space part of the model name

comes from the state equation that describes the temporal relation between the time-

varying coefficients. The representation of variables in a linear mixed-effect state-space

form is a generalisation of two models commonly used in time series analysis, namely the

multivariate linear regression model and the linear state-space model. Kokic et al. (2011)

combine both specifications to formulate the LMESS model, which circumvents the main

drawbacks of the individual models that limit applicability for climate forecasting.

Referring to time-varying model coefficients as random stems from the conventional

linear mixed-effect model without state equation. Research using this formulation assumes

there is a common fixed response coefficient for all research subjects. On the other hand,

the linear mixed-effect model allows other response parameters to vary between different

subjects. The between subject variation is assumed to follow a distribution from which

all subject responses are randomly drawn, hence the name random effect. Throughout

this research random and time-varying are used interchangeably.

Kokic et al. (2011) use the linear mixed-effect state-space model to forecast summary

statistics of climate variable distributions by using a number of explanatory covariates. Just

like the linear state-space model, the LMESS model is specified in terms of an observation
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equation and a state equation. Suppose there are r climate variables observed at m

different measurement sites. We have observed related scalar covariates u0t, u1t, u2t, . . .

over a time period t ∈ {1, . . . , T}. The covariate u0t = 1 is an intercept covariate per

convention, included a priori to capture effects that the time-varying covariates can not

capture. Then at each time t, the observation and state equation of the LMESS model

for site j ∈ {1, . . . ,m} are written as

yjt = Xjtβj + Zjtαjt + vjt (1)

αjt = Ajαjt−1 + wjt, (2)

where yjt is a column vector containing the r observed dependent variables at time t

for site j. The value corresponding to dependent variable i in this notation is yijt. The

dependent variables may be pre-transformed to improve model fit. Matrices Xjt and Zjt

are block diagonal matrices containing covariates u0t, u1t, u2t, . . . corresponding to the

fixed and random effects, respectively. These matrices can be written in full as

Xjt =


X1jt 0 · · · 0

0 X2jt · · · 0
...

...
. . .

...

0 0 · · · Xrjt

 , and Zjt =


Z1jt 0 · · · 0

0 Z2jt · · · 0
...

...
. . .

...

0 0 · · · Zrjt

 , (3)

where Xijt is a row vector of p∗ij covariates included as fixed effects for observation yijt.

The vector Zijt a row vector of q∗ij covariates corresponding to the random effect on the

same observation. The numbers p∗ij and q∗ij are the optimal number of fixed and random

effect covariates for yijt, respectively. These are not known a priori, but are found from

pij and qij initial candidate covariates out of the set of all covariates u0t, u1t, u2t, . . . . The

vector αjt has dimensions (
∑

i q
∗
ij × 1) and contains the unobserved state parameters

corresponding to the random effects. The matrix Aj is a (
∑

i q
∗
ij ×

∑
i q
∗
ij) state transition

matrix. The vector βj = (β′1j, . . . , β
′
rj)
′ represents a (

∑
i p
∗
ij × 1) fixed effect coefficient

vector. The observation error vjt is a (r × 1) vector which is normally distributed with

mean zero and (r × r) covariance matrix Rj. The error of the state equation wjt is a

normally distributed (
∑

i q
∗
ij × 1) vector with mean zero and (

∑
i q
∗
ij ×

∑
i q
∗
ij) covariance

matrix Qj. The model formulation does not impose any assumptions other than the

normality of the errors. This means that parameter values and dynamics are allowed to

vary between the m different measurement sites.
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Let us consider an example to illustrate the formulation of the linear mixed-effect

state-space model. Suppose there are r = 4 dependent variables measured at j = DeBilt,

which result in observation vector yjt. In this example, y1jt corresponds to the number of

rainy days in a month and y2jt is the average rainfall on a rainy day. The variables y3jt and

y4jt are the average maximum and minimum temperature per month, respectively. Besides

the constant intercept u0t = 1, there are four potential explanatory time-varying covariates

u1t, . . . , u4t corresponding to atmospheric CO2 level, the NAO index, cyclone density and

anticyclone density, respectively. Suppose the model has the following relations: there

are no random effect terms for y1jt, but CO2 level and the NAO index are fixed effects.

The variable y2jt has anticyclone density as random effect and a fixed intercept. The CO2

level and the cyclone density are fixed effects for y3jt and it has a random effect intercept.

Lastly, y4jt has the intercept and CO2 level as random effect terms, and the NAO index

and anticyclone density as fixed effects. Then the matrices Xjt and Zjt are

Xjt =


u1t u2t 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 u1t u3t 0 0

0 0 0 0 0 u2t u4t

 , and Zjt =


0 0 0 0

u4t 0 0 0

0 1 0 0

0 0 1 u1t

 .

Each covariate appears at most once in any row of Xjt and Zjt, which is the most important

assumption in the formulation of Kokic et al. (2011): Any covariate represents either a

fixed or a random effect if it is included, so it can never be both fixed and random effect

for a dependent variable.

The LMESS formulation poses two challenges. First, an algorithm is needed to find

maximum likelihood estimates for all model parameters, as I need to account for the fixed

effect term when using existing methods for linear state-space models. Second, to reduce

the number of parameters to estimate, I need to find which explanatory covariates need

to be treated as random effects, which are best considered fixed effects, and which may

be excluded from the model.

2.2 Parameter estimation

In this section I outline the parameter estimation equations and an EM-algorithm that

incorporates the fixed effects term. This section is based on the appendix to the paper

of Kokic et al. (2011). The linear mixed-effect state-space model generalises the linear
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state-space model via the addition of the fixed effect term in the observation equation.

This means that the methods used for linear state-space parameter estimation can be

adjusted to allow parameter estimation in the LMESS framework. In this paper, I will

use an EM algorithm approach, iterating between a Kalman smoother to estimate the

unobserved state variable αjt and analytically derived maximum likelihood estimates.

First, I explain the Kalman filter and smoother in the E-step detailing the difference with

the conventional filter and smoother. Thereafter, I give the explicit formulas derived from

the likelihood function used in the M-step. For notation convenience, the subscript j is

dropped in this section, as parameter estimation is done separately at each measurement

site j.

The parameters that provide the best model fit given the data are found by maximising

the likelihood function of the LMESS model. As maximising the likelihood is equivalent

to maximising the log-likelihood and the latter is computationally less intensive, the EM

algorithm aims to find parameters such that the log-likelihood is maximised. Suppose we

already know which covariates are fixed and random effects, so the matrices Xt and Zt

are known for all t. If the initial state is assumed normally distributed with mean π1 and

variance Σ1, the joint log-likelihood of the observations y and states α is

logL(α, y) =−
T∑
t=1

(
1

2
(yt − Ztαt −Xtβ)′R−1(yt − Ztαt −Xtβ)

)
− T

2
log |R|

−
T∑
t=2

(
1

2
(αt − Aαt−1)′Q−1(αt − Aαt−1)

)
− T − 1

2
log |Q|

− 1

2
(α1 − π1)′Σ−1

1 (α1 − π1)− 1

2
log |Σ1| − Tk log(2π).

(4)

The EM algorithm works via calculation of state estimates conditional on all data y in

the E-step. Then, estimates for A, Q, R, and β are given by analytical solutions to the

maximisation problem in the M-step, using the state estimates from the E-step. The E-

and M-step are iterated until convergence.

2.2.1 Filtering and smoothing the LMESS model

The E-step finds estimates for the unobserved state variables αt based on the full set of

observations yT . Only estimating the states however does not suffice, as there are also

vector products to be considered in equation (4). For the full E-step we thus need to
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estimate three sufficient statistics, given by

α̂t|T = E(αt|yT ), P̂t|T = E(αtα
′
t|yT ), and P̂t,t−1|T = E(αtα

′
t−1|yT ),

where α̂t|T is the smoothed state vector. Both P̂t|T and P̂t,t−1|T are related to the smoothed

state variance and smoothed transition variance, but have no physical interpretation. From

these three statistics, I can also calculate the smoothed state variance Σ̂t|T = P̂t|T−α̂t|T α̂′t|T .

First, the Kalman filter uses observations up to time t to give initial estimates for the

filtered states α̂t|t and filtered covariance Σ̂t|t. The equations to find these estimates are

very similar to the equations for the linear state-space model, but there is an extra term

corresponding to the fixed effects added in the equations. The Kalman filter equations for

the LMESS model are then given by

α̂t|t = Aα̂t−1|t−1 +Ktet

Σ̂t|t = Vt −KtZtVt

Vt = AΣ̂t−1|t−1A
′ +Q

Kt = VtZ
′
t(R + ZtVtZ

′
t)
−1

et = yt − ZtAα̂t−1|t−1 −Xtβ.

The matrix Vt is the forecasted state covariance matrix for state αt based on the observa-

tions up to t− 1. The matrix Kt is included to improve computational efficiency, but has

no interpretation. The error et represents the deviation between the true observation yt

and the expected value based on the observations up to t− 1. The matrices A, Q, and R,

as well as the vector β are maximum likelihood estimates from the previous M-step in the

algorithm.

When the filter has finished, the Kalman smoother gives estimates for the state based

on the full sample period. The Kalman smoother equations for the linear mixed-effect

state-space model are equal to the Kalman smoother equations for the linear state-space

model. We run the smoother backwards, initialising α̂T |T = α̂T |t=T , where α̂t|T is the

smoothed state at time t. Furthermore, this is also the step where I estimate the sufficient

statistics needed. The full set of smoother equations is

α̂t−1|T = α̂t−1|t−1 + Σ̂t−1|t−1A
′V −1
t (α̂t|T − α̂t|t)

Σ̂t−1|T = Σ̂t−1|t−1 − Σ̂t−1|t−1A
′V −1
t (Vt − Σ̂t|T )V −1

t AΣ̂t−1|t−1

P̂t|T = Σ̂t|T + α̂t|T α̂
′
t|T

P̂t,t−1|T = Σ̂t|TV
−1
t AΣ̂t−1|t−1 + α̂t|T α̂

′
t−1|T ,

where α̂t|t, Σ̂t|t, and Vt are taken from the Kalman filter and A is the maximum likelihood

estimate from the previous M-step in the algorithm.
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2.2.2 Maximising the log-likelihood

In this research, I assume normality, which leads to the log-likelihood function in equation

(4). Maximisation equations for each of the model parameters are then found by calculating

the partial derivatives for the conditional log-likelihood on all observations. For example,

the partial derivative with respect to the transition matrix A is given by

∂ E(logL(α, y)|yT )

∂A
= −

T∑
t=2

Q−1P̂t,t−1|T +
T∑
t=2

Q−1AP̂t−1|T .

At the value of maximum likelihood, the expression on the right hand side must equal

zero. After rewriting this equation by cancelling the inverted matrix Q and isolating the

term A, the maximum likelihood estimate is given by

Â =
T∑
t=2

P̂t,t−1|T

(
T∑
t=2

P̂t−1|T

)−1

. (5)

Applying the same approach of analytical derivation to the other model parameters β, R,

and Q, gives us the following set of maximum likelihood estimates.

β̂ =

(
T∑
t=1

X ′tR̂
−1Xt

)−1 T∑
t=1

X ′tR̂
−1(yt − Ztα̂t|T ) (6)

R̂ = T−1

T∑
t=1

[
(yt − Ztα̂t|T −Xtβ̂)(yt − Ztα̂t|T −Xtβ̂)′ + ZtΣ̂t|TZ

′
t

]
(7)

Q̂ = (T − 1)−1

T∑
t=2

[
P̂t − ÂP̂ ′t,t−1 − P̂t,t−1Â

′ + ÂP̂t−1Â
′
]

(8)

The set of estimates in equations (5) to (8) forms the M-step of the parameter estimation

procedure for the linear mixed-effect state-space model.

2.3 Variable selection

The second problem posed by the linear mixed-effect state-space model is the selection

of covariates to include as fixed or random effects for each dependent variable. In this

research, I investigate four dependent variables and six explanatory covariates. As each

covariate can be included as fixed or random effect or excluded, there are 36·4 possible

models in the setup of this thesis. Full estimation of over 280 billion possible models

would be highly inefficient, if not infeasible. In this section I introduce three methods

for variable selection, increasing in complexity and computational demand. Firstly, the
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manual stepwise selection procedure used by Kokic et al. (2011) is described. Secondly,

the joint Kalman smoother estimation with fixed parameters as described by Chow (1984)

and Durbin & Koopman (2012) is translated to application for variable selection in the

linear mixed-effect state-space model. Thirdly, the joint selection algorithm proposed by

Bondell et al. (2010) is translated to the context of the LMESS model.

2.3.1 Stepwise selection

Kokic et al. (2011) use a manual selection procedure to select which covariates are part

of fixed effects matrix Xij, and which are part of random effects matrix Zij. A priori

I assume no knowledge on the true nature of each covariate, so all are included at first.

Each time the LMESS model is fitted to a certain set of covariates, I use the estimation

equations as detailed in section 2.2. For any dependent variable i at any measurement

site j the following procedure is applied:

1. First a multivariate linear regression model is fitted to the time series via a backwards

elimination, or general-to-specific, procedure, which is initialised with all covariates

as possible explanatory variables. Only covariates with at least 10% significance are

retained (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004).

2. All retained covariates are modelled as random effect state-space terms. At each

time t, the 90% confidence interval is calculated using the smoothed state variance

estimate. If the minimum across the upper bounds is smaller than the maximum

across the lower bounds, I consider the coefficient to show significant dynamics.

Then the covariate is retained as a random effect. If all upper bounds are larger than

all lower bounds, the dynamics of the coefficient are not significant and I regard the

covariate as a fixed effect.

3. With the new distinction between fixed and random effects, the LMESS model is

refitted again and all fixed effects which are not significant at the 10% level are

removed.

4. The last step is to test each of the covariates removed in step 1 one-by-one as random

effects. Just as in step 2, if the minimum of the 90% confidence interval upper bounds

is smaller than the maximum of the lower bounds, I retain the covariate as random

effect. If all upper bounds are larger than all lower bounds, I refit the model to

include the covariate as a fixed effect. The covariate is retained in the model as fixed
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if the coefficient is significant at the 10% level.

Kokic et al. (2011) motivate their selection algorithm for its ability to include covariates

which are fixed in the multivariate linear regression model as random. Furthermore, all

covariates excluded by the multivariate linear regression in step 1 can still be included in

the LMESS model via step 4. The main advantage of this procedure is that there are no

restricting assumptions on model specifications. The same dependent variable at different

measurement sites can have different covariates as random and fixed effects. The resulting

downside is that the full procedure needs to be repeated r ·m times. For larger datasets of

monthly or daily data, this can be computationally inefficient, as the LMESS model needs

to be fitted repeatedly in the algorithm of Kokic et al. (2011). Besides the computational

demand, Kokic et al. (2011) also state that their procedure might lead to suboptimal

models. This statement is supported by Bondell et al. (2010), who find stepwise algorithms

to be biased by the order of selection. Therefore, I consider two models that identify fixed

and random effects simultaneously. I include the selection method of Kokic et al. (2011)

to serve as a benchmark algorithm to improve upon.

2.3.2 Chow’s adjusted Kalman Smoother

The second selection algorithm is based on a state-space formulation first proposed by

Chow (1984). The rationale behind this procedure is to estimate all covariates as both

fixed and random at the same time and select which covariates to include in the model.

It has not yet been implemented in the context of linear mixed-effect variable selection.

In the model formulation of Chow (1984), the researcher would assume a subset

of explanatory variables to have a fixed effect. To lower the number of parameters to

estimate, the state vector and the corresponding transition matrix are restricted. Durbin

& Koopman (2012) specify the parameter estimation for this model formulation in more

detail. To use the same algorithm for variable selection, the linear mixed-effect state-

space model in equations (1) and (2) needs to be rewritten in a form coherent with the

formulation of Chow (1984). As I assume no a priori knowledge on the fixed and random

effects, I set Zijt = Xijt for all (i, j, t) and include all covariates in each row of both matrices.

For each dependent variable i ∈ {1, . . . , r} at each measurement site j ∈ {1, . . . ,m}, the
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LMESS model can be written as

yijt = X∗ijt

βijt
αijt

+ vijt (9)

βijt
αijt

 = Bij

βijt−1

αijt−1

+

 0

wijt

 , (10)

where X∗ijt = (Xijt, Xijt) and Bij is a (2qij × 2qij) block matrix containing the identity

matrix of size qij in the top left and a (qij × qij) transition matrix in the bottom right.

vijt and wijt are normally distributed errors with mean zero and covariance Rij and Qij

respectively. Just as Durbin & Koopman (2012), I attach subscript notation to βijt for

convenience in the state-space formulation, but note that βijt = βijt−1 = βij. In equation

(9), the structure of the covariates matrix X∗ijt implies that each covariate is related to

both a coefficient in βijt and a component in αijt.

Estimation of parameters in the model formulation of Chow can be done by restriction

of the standard EM-algorithm approach proposed by Shumway & Stoffer (1982). Both E-

and M-step are detailed in appendix A. For a given dependent variable i at measurement

site j, I use the following procedure to decide which variables to include as fixed and

random effects.

1. The state vector and transition matrices are jointly modelled via the Kalman

smoother EM algorithm from Shumway & Stoffer (1982). The algorithm is ad-

justed for notation, the result of which is detailed in appendix A.

2. As in step 2 of the algorithm of Kokic et al. (2011), the 90% confidence intervals

for αijt are calculated for all times t. If the minimum across the upper bounds is

smaller than the maximum of the lower bounds, I consider the coefficient to show

significant dynamics. Then the covariate is considered a random effect.

3. If all upper bounds of the 90% confidence intervals are larger than all lower bounds,

the dynamics of the coefficient are not significant. Then I test whether the coefficient

in βij corresponding to the covariate is significant at the 10% level. If so, the covariate

is included as a fixed effect. A covariate is thus omitted from the model if the state-

space coefficient shows no significant dynamics and the corresponding coefficient in

βij is not significant at the 10% level.

This procedure needs to evaluate r ·m EM-algorithms to find all models. So the number
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of EM-algorithms is lower compared to the method proposed by Kokic et al. (2011), but

the dimensionality for each algorithm is higher.

2.3.3 Joint selection of correlated data

The algorithm of Bondell et al. (2010) is based on the conventional linear mixed-effect

model form, which has T rows corresponding to the observations of the dependent variable

and explanatory covariates. Therefore, the state-space formulation in equation (1) is not

suitable for their approach. Additionally, to apply the algorithm of Bondell et al. (2010)

to the LMESS model, it is assumed that the division of covariates into fixed and random

effects at all m measurement sites is the same and the fixed effect coefficient vector βi is

the same at all sites j. For variable i at site j, the linear mixed-effect model is written as

yij = Xijβi + Zijᾱ
∗
ij + εij, (11)

where yij = (yij1, . . . , yijT )′, Xij = (X ′ij1, . . . , X
′
ijT )′, and Zij = (Z ′ij1, . . . , Z

′
ijT )′. As I

assume no a priori knowledge on which covariates are fixed or random, I include all

covariates in both Xij and Zij, which have pi and qi columns respectively. The vector ᾱ∗ij

can be seen as a time average random effect, which is assumed to be normally distributed

as N(0, σ2
i Ψi). I may assume zero-mean, since covariates can be both fixed and random in

the formulation of Bondell et al. (2010). Therefore, any non-zero mean random effect will

be reflected by a significant coefficient in βi. The error εij is assumed normal, satisfying

εij ∼ N(0, σ2
i Ωij). As Pourahmadi & Daniels (2002) show, the implied relation between

consecutive measurements in equation (2) can be incorporated in the covariance structure

of Ωij.

Durbin & Koopman (2012) provide a framework for estimation of the full covariance

matrix Ωij, which I adjust to fit with the model formulation as in equations (9) and (10).

Then I find

Var(yij) = Ωij = X∗ijB
∗
ijQ
∗
ijB
∗′
ijX

∗′
ij +R∗ij, (12)

15



in which

X∗ij =


X∗ij1 0 0

. . .
...

0 X∗ijT 0

 , R∗ij =


Rij 0

. . .

0 Rij

 ,

Q∗ij =



Pij1 0 0 · · · 0 0

0 0 0 0 0

0 0 Qij 0 0
...

. . .

0 0 0 0 0

0 0 0 0 Qij


, andB∗ij =



I2qi 0 · · · 0 0

Bij I2qi 0 0

B2
ij Bij 0 0
...

. . .

BT−1
ij BT−2

ij I2qi 0

BT
ij BT−1

ij · · · Bij I2qi


,

where Pij1 is the smoothed covariance estimate for the initial state vector. As this

estimation of the variance is based on the formulation of Chow (1984), I use the same EM

algorithm of Shumway & Stoffer (1982) to estimate the parameters in the model.

In order to select which covariates to incorporate as fixed or random, Bondell et al.

(2010) factorise the matrix Ψi via a modified Cholesky decomposition first described by

Chen & Dunson (2003), namely Ψi = DiΓiΓ
′
iDi, where Di is a diagonal matrix and Γi a

lower triangular matrix with ones on the diagonal. The model in equation (11) may be

rewritten as

yij = Xijβi + ZijDiΓiᾱij + εij, (13)

where ᾱij satisfies ᾱij ∼ N(0, σ2
i Iqi). Now define the vectors di = (di1, . . . , diqi)

′ and

γi = (γi,kl : k = 1, . . . , qi : l = k + 1, . . . , qi)
′ containing the free elements of Di and Γi,

respectively. With this decomposition, if din = 0 for any n, this is equivalent to removing

the nth row and column of the matrix Ψi, thus excluding covariate un as a random effect for

the time series of dependent variable i. Now define the variable φi = (β′i, d
′
i, γ
′
i)
′ containing

all information on the inclusion of fixed and random effects for variable i.

Conditional on Xij and Zij, the distribution of yij is normal with mean Xijβi and

variance Vij = σ2
i (ZijDiΓiΓ

′
iDiZ

′
ij + Ωij). After dropping constants, the log-likelihood

function as a function of the parameter φi is written as

L(φi) = −1

2
log |Ṽi| −

1

2
(yi −Xiβi)

′Ṽ −1
i (yi −Xiβi), (14)

where Ṽi = Diag(Vi1, . . . , Vim), a block diagonal matrix of Vij, and yi = (y′i1, . . . , y
′
im)′ and

Xi = (X ′i1, . . . , X
′
im)′ are the stacked yij and Xij respectively. The optimal set of variables
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φi is found by maximising the conditional expectation of this log-likelihood along with a

penalty function on βi and di. Bondell et al. (2010) proposed an EM-algorithm for this

procedure, the expectation step of which is given by

g(φi|φ(ω)
i ) = Eᾱi|yi,φi

{
||Ω̃−1/2

i yi − Ω̃
−1/2
i Xiβi − Ω̃

−1/2
i Zidiag(Γ̃iᾱi)(1m ⊗ Iqi)di||2

}
+ λm

( pi∑
n=1

|βin|
|β̄in|

+

qi∑
n=1

|din|
|d̄in|

)
,

(15)

in which Γ̃i = Im ⊗ Γi, 1m a (m× 1) vector of ones, and λm represents the non-negative

regularisation parameter. The vector ᾱi = (ᾱ′i1, . . . , ᾱ
′
im)′ is the stacked version of all

random effect parameters for all different sites. Matrix Ω̃i = Diag(Ωi1, . . . ,Ωim) is the

block diagonal matrix of covariance matrices. The vector β̄i is the GLS estimate for βi and

d̄i is found by decomposition of the restricted maximum likelihood variance estimate for Ψi.

For the M-step, the expression in Equation (15) is minimised over φi. By iterating between

the quadratic programming problem for the vector (β′i, d
′
i)
′ and the closed form solution for

γi found by Bondell et al. (2010), we find an updated vector φ
(ω+1)
i upon convergence. The

algorithm is given in more detail in Appendix B. When φ
(ω)
i has converged, the solution

gives the final parameter estimates.

This optimisation is performed for different values of the penalty parameter λm. The

set of fixed and random effects included in the estimation model is given by the solution

that minimises the BICλm criterion given by

BICλm = −2L(φ̂i) + log (mT ) · dfλm , (16)

where L(φ̂i) is the log-likelihood function defined in equation (14) and dfλm is the number

of non-zero elements of the vector φ̂i. All q∗i covariates corresponding to non-zero elements

in di are included as random effects in Zjt in equation (3), and any covariate not included

in Zjt with a non-zero coefficient in βi is regarded as a fixed effect.

A drawback of the method of Bondell et al. (2010) is that it assumes the same model

is true across all measurement sites, which may not be valid in all cases. Furthermore,

the estimation of the matrix Ωij relies on state-space estimates. The extra step taken to

find the covariance matrices adds another source of uncertainty in the model, which may

lead to wrong identification of random and fixed parameters.
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2.4 Forecasting

After obtaining the expectation maximisation estimates for the linear mixed-effect state-

space model parameters at any site j, I simulate forecasts as follows. For t > T , the

conditional distributions for the state variables and climate variables are (αjt|yjT ) ∼

N(α̂jt, Σ̂jt) and (yjt|yjT ) ∼ N(ŷt, Z
′
jtΣ̂jtZjt +Rj), respectively, in which

α̂jt = Ajα̂jt−1 (17)

Σ̂jt = AjΣ̂jt−1A
′
j +Qj (18)

ŷjt = Xjtβj + Zjtα̂jt. (19)

Since the LMESS is a generalisation of a multivariate linear regression model, the added

random effects should improve forecast accuracy. To compare the methods, I fit a multi-

variate linear regression model to the data series and only select covariate terms with at

least 10% statistical significance with the backward selection procedure described by Heij

et al. (2004). Both LMESS and MLR are compared to a naive long-term mean forecast

in terms of the root mean squared forecast error. When forecasting, we assume perfect

foresight on the covariates and therefore use the realised values since forecasting of the

covariates is beyond the scope of this research.
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3 Simulation Study

In this section, I examine the accuracy of the three variable selection algorithms in a

simulation study, wherein the ability to find the full correct model is evaluated in a variety

of scenarios. Thereafter, I study the influence of wrong model selection on predictive

accuracy.

3.1 Variable selection accuracy

The first subject I investigate is whether the three different proposed selection methods

in section 2.3 are able to select the correct model specification from simulated data. In

this section, I produce artificial data under distinct model assumptions to investigate how

different data characteristics influence the accuracy of the three proposed algorithms. The

data generating process is a simple linear mixed-effect state-space model, from which the

observation equation is given asy1jt

y2jt

 =

u1jt u2jt 0 0

0 0 u1jt u3jt

 β +

1 u3jt 0 0

0 0 1 u2jt

αjt + vjt. (20)

The number of covariates in this case is thus four including the intercept. The reason to

choose this model formulation is that it allows for investigation of data characteristics

while still having a low number of parameters to estimate. For both dependent variables

y1jt and y2jt, I choose a common random effect in the form of the intercept and a common

fixed effect in the form of u1jt. The covariate u2jt is included as a fixed effect for y1jt

and as a random effect for y2jt, whereas this is reversed for covariate u3jt. The last

two covariates are included to investigate the influence of data characteristics on model

selection accuracy. Suppose the covariate u3jt has a dominant seasonality component

which limits the accuracy of all three selection algorithms if it is included as random effect

but not if it is included as fixed. This would lead to a distinct difference between y1jt and

y2jt in terms of model selection accuracy. In theory, in my simulation study, this would

lead to a lower accuracy in y1jt compared to y2jt.

I investigate the influence of all model parameters on forecast accuracy as follows.

First, a baseline scenario is considered and all three proposed variable selection algorithms

are tested on their accuracy. After the initial analysis, I construct new data by changing one

model parameter ceteris paribus and apply all three selection algorithms. The baseline
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scenario considers a situation with m = 5 measurement sites, each having T = 100

observations yjt. The covariate u1jt is generated from a uniform (−1, 1) distribution. To

investigate the influence of a trending covariate by generating u2jt from the addition of

a linear trend 0.05t − 2.5 and a uniform (−0.5, 0.5) distribution. And to research the

influence of a seasonal covariate, I simulate u3jt from the addition of a cosine function

1.25 cos (π · t/6) and a uniform (−0.75, 0.75) distribution. The fixed effect coefficient in

the baseline scenario is a vector of ones, so β = (1, 1, 1, 1)′. The initial state vector αj1

determines how large the random effect coefficients are and in the baseline case is chosen

to give values of similar size to β. In this first scenario, I draw the initial state from

αj1 ∼ N




0

0

0

0

 , diag(σα1) ·


1 0.45 0 0

0.45 1 0 0

0 0 1 0.45

0 0 0.45 1

 · diag(σα1)

 ,

with σα1 = (1, 1, 1, 1)′ the vector of standard deviations. The state transition matrix Aj

is a diagonal matrix with non-zero elements drawn from a uniform (0.75, 1) distribution.

The observation equation error vjt is normally distributed with mean zero and variance

Rj = 0.4 · I2. Similarly, the state equation error wjt is normally distributed with mean

zero and variance Qj = 0.3 · I4.

To evaluate the model selection accuracy of each algorithm, I consider the following

other scenarios. I take a different number of observations per measurement site with

T = 50 and T = 200. I increase in the number of measurement sites to m = 10 and

m = 20. I also change the ratio between the fixed and random effect coefficients by

setting σα1 = (3, 2, 3, 2)′ or β = (5, 3, 2, 4)′. I also vary the signal-to-noise ratio in both the

observation and state equation by considering Rj = I2 and Qj = I4. Lastly, I evaluate how

well the algorithms perform if all covariates are randomly drawn from either a uniform

(−2, 2) or a standard normal distribution. In all scenarios, I generate 100 datasets, which

means there are 100m models for the algorithm of Kokic et al. (2011) and my proposed

method based on Chow (1984) to evaluate, as these algorithms allow for the fixed and

random effects to be different for different measurement sites. The algorithm by Bondell

et al. (2010) has 100 models to find the fixed and random effects for regardless of the

number of measurement sites, as it assumes all sites to have the same fixed and random

effects a priori.
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Table 1 presents the percentage of times the correct model is identified in 100 simulated

datasets for each of the three selection algorithms across eleven scenarios. Columns one

and four show that the algorithm of Kokic et al. (2011) is suboptimal in its selection

accuracy, resulting in correct identification percentages below 20% in all eleven scenarios

across both variables. The lowest percentage of correct identification for variable y1 for

the selection algorithm of Kokic et al. (2011) is observed in the second scenario, where

the number of observations is smallest. The small amount of observations may lead to

over-fitting of the LMESS model parameters in different stages of the selection algorithm.

This assumption is supported by the finding that the highest accuracy of 20% is reported

for the scenario where T = 200. As the number of observations per measurement site

increases, the algorithm of Kokic et al. (2011) performs better, but never exceeds 20%

accuracy. However, the findings for y2 don’t support this finding as both cases show equal

accuracy of 7.2%. Apart from the scenarios with a different number of observations, the

algorithm of Kokic et al. (2011) is consistent across different model parameters, both for y1

and y2. However, it is never the most accurate across all three selection algorithms. The

limited accuracy of their method is in line with the remarks of Kokic et al. (2011), who

stated that their method would likely be suboptimal. The findings of Bondell et al. (2010)

support this conclusion, as they also find step-wise selection methods to be suboptimal.

In all eleven scenarios, the algorithm based on the formulation of Chow (1984) is

most consistent across the variables y1 and y2. Table 1 shows that my proposed method

outperforms the other two algorithms in 20 out of 22 cases when looking at full model

selection. The accuracy for both variables is lowest in the second scenario, where the

accuracy drops to 31.6% and 25.8% for y1 and y2 respectively. This reduction is due to

the limited number of observations T , which leads to overfitting of model parameters,

resulting in wrong estimates. The other significant drop in model selection accuracy is

in the case where the observation equation covariance is increased. In this scenario, the

signal-to-noise ratio in the observation equation is lower than the baseline scenario, which

makes it harder for the algorithm to identify the underlying process. The accuracy of the

algorithm based on Chow (1984) significantly increases when the seasonality and trending

behaviour is removed from the covariates. In the last two scenarios, when all covariates

are drawn from standard distribution, the selection accuracy increases to around 70%.

Besides the four exceptions, the algorithm by Chow (1984) is consistent across all scenarios,
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Table 1

Selecting The Full Model

This table gives the number of times (in %) the covariates were correctly identified with each of the three

variable selection methods in 100 simulated datasets, with a data generating process as in equation (20).

Column one gives the variable that is changed compared to the baseline∗ scenario. Columns two to four

give the percentage of cases where the model was correctly identified for variable y1. Columns five to

seven give the percentage of cases where the model was correctly identified for variable y2. Across all

three model selection algorithms, the most accurate is marked in bold font.

y1 y2

Scenario Kokic Chow Bondell Kokic Chow Bondell

Baseline∗ 13.6 56.2 6.0 11.0 54.6 50.0

T = 50 3.2 31.6 12.0 7.2 25.8 32.0

T = 200 20.0 59.4 0.0 7.2 59.8 0.0

m = 10 13.7 54.4 0.0 9.4 52.9 0.0

m = 20 14.5 56.4 0.0 8.4 54.6 0.0

σα1 = (3, 2, 3, 2)′ 12.4 58.4 3.0 5.4 52.2 76.0

β = (5, 3, 2, 4)′ 10.0 60.0 0.0 9.0 56.4 23.0

Rj = I2 16.2 44.8 2.0 9.2 39.8 26.0

Qj = I4 10.2 53.6 6.0 9.4 63.6 41.0

ukt ∼ U(−2, 2) 10.8 68.0 9.0 11.6 70.6 19.0

ukt ∼ N(0, 1) 9.8 70.4 16.0 7.8 72.8 16.0

∗ The baseline scenario has the following model parameters: T = 100,

m = 5, σα = (1, 1, 1, 1)′, β = (1, 1, 1, 1)′, Rj = 0.4I2, Qj = 0.3I2. The

covariates are generated from u1t ∼ U(−1, 1), u2t ∼ (U(−0.5, 0.5) + 0.05 ·

(t− 0.5T )), and u3t ∼ (U(−0.75, 0.75) + 1.25 cos(πt/6)).

with accuracy between 50 and 60 percent. Furthermore, the simultaneous method based

on Chow (1984) consistently outperforms the stepwise procedure of Kokic et al. (2011)

in all eleven simulated scenarios. The algorithm of Bondell et al. (2010) proves to be

most accurate of all three model selection algorithms for variable y2 when T = 50 and

σα1 = (3, 2, 3, 2)′. However, in all other cases it is outperformed by the algorithm based

on the formulation of Chow (1984). Out of the three selection methods, the Bondell

et al. (2010) algorithm is the most inconsistent. In some cases, the correct model is never

identified, whereas the accuracy for variable y2 in the scenario with σα1 = (3, 2, 3, 2)′ is

76%. The accuracy only exceeds 40% in three cases for y2. For variable y1, on the other

hand, the largest accuracy observed is 16%, and only above ten percent in two out of

eleven scenarios.

In conclusion, with this simulation study I have confirmed the remarks of Kokic et al.
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(2011) that their variable selection procedure is suboptimal. Two proposed alternatives

show better accuracy in at least some cases, of which the algorithm based on the state-

space formulation of Chow (1984) is the most reliable across different model characteristics.

The only condition is that the number of observations T must be large enough to prevent

over-fitting of model parameters. Although the algorithm by Bondell et al. (2010) shows

the highest observed accuracy, it is not robust under different simulation setups. In the

application of my methods to real data, I will use the algorithm based on Chow (1984) to

identify fixed and random effects.

3.2 Influence on forecasting

In this section, I perform a second simulation study to demonstrate the need for an

accurate variable selection algorithm. I compare the forecast accuracy under different

variable selection outcomes based on three different measures, namely root mean squared

forecast error, mean absolute forecast error and a test proposed by Heij et al. (2004). The

data is generated via the same process as in the baseline scenario in section 3.1, apart

from that I only use m = 1 measurement site and change the total number of observations

to 200. So, the DGP in this simulation study is a linear mixed-effect state-space model

with the observation equationy1t

y2t

 =

u1t u2t 0 0

0 0 u1t u3t

 β +

1 u3t 0 0

0 0 1 u2t

αt + vt. (21)

In this section, the covariate u1t is generated from a uniform (−1, 1) distribution. The

covariate u2t serves as a linear trend variable and is obtained from the addition of a linear

trend 0.05t − 5 and random draws from a uniform (−0.5, 0.5) distribution. Lastly, the

covariate u3t is used as seasonal variable and is generated from the addition of cosine

function 1.25 cos (π · t/6) and draws from a uniform (−0.75, 0.75) distribution. The fixed

effects parameter β is set as a vector of ones and the initial state vector αj1 is drawn from

the distribution

αj1 ∼ N




0

0

0

0

 ,


1 0.45 0 0

0.45 1 0 0

0 0 1 0.45

0 0 0.45 1



 .
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The covariance of the observation and state equation of the simulated data are given by

R = 0.4 · I2 and Q = 0.3 · I4, respectively. Within the full time series of length 200, the

estimation period has length T = 150 and I create two forecast periods of length Tf = 10

and Tf = 50. I assume perfect foresight on the covariates when forecasting, so I use the

realised values for u1t, u2t, and u3t for t > 150.

In total, six different model specifications are evaluated on their forecast accuracy,

given in column 3 and 4 of table 2. All models are observed outcomes from the algorithms

in the simulation study in section 3.1, but do not span all observed outcomes. The first

specification represents the true model, where covariates are correctly specified as random

and fixed. The second specification is inverted, where the covariates that are random

in the DGP are regarded as fixed during estimation and vice versa. Third is a ‘wrong’

specification, where one random and one fixed effect are switched for each dependent

variable. I also examine a case where one covariate is missing from the fixed terms for y1

and one covariate is missing from the random effects for y2. Lastly, I examine cases where

either all covariates are regarded as fixed terms, which coincides with the multivariate

linear regression model, or all covariates are regarded as random, which resembles a

standard linear state-space model.

I measure forecast accuracy in three different ways, the root mean squared forecast

error (RMSFE), the mean absolute forecast error (MAFE) and a comparative test proposed

by Heij et al. (2004), among others. The first two methods are common forecast evaluation

methods, which for any variable yi are given by

RMSFEi =

(
1

Tf

Tf∑
h=1

(yi,T+h − ŷi,T+h)
2

)1/2

, and MAFEi =
1

Tf

Tf∑
h=1

|yi,T+h − ŷi,T+h|,

where ŷi,T+h is the h-step ahead forecast and yi,T+h is the actual observation at time T +h.

As Heij et al. (2004) propose, two different models can also be compared by the number of

times Nf that the absolute error |yi,T+h− ŷi,T+h| of one model is smaller than the absolute

error of another model. If the forecasts are equally good, then Nf should follow a binomial

distribution with Tf repetitions and probability 1
2
. If I find Nf to have a probability

significantly larger than 1
2
, then the first model is preferred, while a value smaller than 1

2

would indicate that the second model provides better forecasts. As Wackerly, Mendenhall,

& Scheaffer (2014) show, if Tf > 9, I can approximate the binomial distribution with

a normal distribution with mean 1
2
Tf and variance 1

4
Tf . From the approximate normal
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distribution I can derive a test statistic

B =
2 ·Nf − Tf√

Tf
∼ N(0, 1). (22)

The reasoning behind the construction of B is given in appendix C. In my simulation

study, the true model with the correct covariates is the baseline to which all other methods

are compared and I test the null hypothesis at the 95% confidence level, so I do not reject

the null hypothesis if B ∈ [−2, 2].

Table 2 shows the accuracy of all six covariate selection scenarios in terms of RMSFE,

MAFE and, for all but the true model, the performance relative to the true model

specification. Rows one to six report the results in forecasting variable y1, where the true

model specification yields the smallest RMSFE and MAFE at the short forecast horizon

Tf = 10. For a longer forecast period, the true model is not distinctly different from the

Table 2

Forecasting in wrong models

This table reports on the influence of different variable selection outcomes on forecasting accuracy. A 100

datasets are generated via the LMESS model in equation (21), with an estimation period of T = 150 and

forecasting period of Tf = 10 and Tf = 50. Columns 3 and 4 report the covariates associated with the

dependent variable in the estimation algorithm, where c denotes a constant. Columns 5 and 6 report the

average Root Mean Squared Forecast Error (RMSFE) in each specification and columns 7 and 8 report

the average Mean Absolute Forecast Error (MAFE) for different forecast horizons. Column 9 reports the

percentage of datasets wherein the forecasts by the model are significantly better than the forecasts of

the true model and column 10 shows the percentage of datasets wherein the true model forecasts are

significantly better.

Covariates RMSFE MAFE Test (%)

Fixed Random Tf = 10 Tf = 50 Tf = 10 Tf = 50 B < −2 B > 2

y1 True u1, u2 c, u3 1.87 3.20 1.58 2.70

Inverted c, u3 u1, u2 2.47 3.74 2.12 3.21 18 47

Wrong c, u1 u2, u3 2.02 3.19 1.75 2.69 31 41

Missing u1 c, u3 2.07 3.73 1.80 3.19 21 64

All fixed c, u1, u2, u3 1.96 2.65 1.66 2.19 36 28

All random c, u1, u2, u3 2.89 4.08 2.58 3.59 14 69

y2 True u1, u3 c, u2 3.05 4.86 2.61 3.97

Inverted c, u2 u1, u3 3.96 5.48 3.49 4.56 10 37

Wrong u1, u2 c, u3 4.64 8.71 4.07 7.43 7 52

Missing u1, u3 c 3.09 5.08 2.64 4.16 18 24

All fixed c, u1, u2, u3 3.81 5.37 3.37 4.48 17 40

All random c, u1, u2, u3 3.83 5.28 3.36 4.37 9 23
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‘Wrong’ specification, with both RMSFE and MAFE values only 0.01 apart. In terms of

test statistics, the ‘Wrong’ model is preferred over the true specification in 31 out of 100

datasets, compared to 41 cases where the true model provides significantly better forecasts.

The model with all covariates as fixed effects is the only model with a significantly lower

RMSFE and MAFE than the true model. The statistic test results in columns 9 and 10

support these findings, as the model with all covariates as fixed is preferred in 36 out of

100 datasets, whereas the true model is preferred in 28 of the datasets. The ‘Inverted’,

‘Missing’, and ‘All random’ model specifications are all outperformed by the true model,

mainly in terms of the statistical test, where the true model is preferred at least twice as

often in the 100 simulated datasets.

The results for variable y2 are reported in rows 7 to 12, and show that the true model

is preferred for forecasting relative to all other specifications. Both in terms of RMSFE

and MAFE, the true model shows the lowest values of all specifications, with the ‘Missing’

specification similar for the short forecast horizon. In terms of statistically significant

preference, the ‘Missing’ model is also closest to the true model, being preferred in 18

out of 100 datasets compared to 24 times for the true model. For the other four wrong

model forecasts, the results are more pronounced, with the true model being preferred at

least twice as often in 100 simulated datasets. The ’Wrong’ specification, which shows

similar RMSFE and MAFE for variable y1, shows the worst forecasts for variable y2 and

is least often preferred over the true model in terms of accuracy, only in 7 out of 100 cases

compared to 52 cases where the true model is significantly better than the ‘Wrong’ model.

Out of the five wrong model specifications, none consistently outperforms the true

model specification in forecast accuracy across both dependent variables in this simulation

study. This shows that selection of the true model influences forecast accuracy significantly.

Given the results in section 3.1, the implication of this finding is that forecasting of real

time series with the methods described is uncertain. The aggregate inaccuracies due to

the chance of wrong model specification and the influence of wrong model specification

on forecasting performance, might limit the applicability of my proposed method. These

findings are further explored in the next two sections where I apply my proposed variable

selection method on climate data in the Netherlands.
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4 Data

In this study I use historical monthly data of four dependent variables and five covariates

for five weather stations in the Netherlands. The sample period spans from January

1959 to December 2017, thus consisting of 708 monthly observations. The five weather

stations from where the data is retrieved are De Bilt, De Kooy, Eelde, Vlissingen and

Maastricht/Beek. Figure 1 shows the locations of all five stations within the Netherlands.

These five weather stations are used for two reasons. Firstly, they span most regions within

the country of the Netherlands, thus providing basis to test whether the assumption of

equal model between all measurements sites is valid. Secondly, the time series of these five

stations are homogeneously corrected by the KNMI for changing measurement techniques.

This correction makes them usable for time series analysis.

The dependent variables of interest are the proportion of days per month with at least

1 mm of rainfall prain, mean rainfall on wet days µrain, mean maximum daily temperature

Tempmax, and mean minimum daily temperature Tempmin. Time series for these four

variables were retrieved from Koninklijk Nederlands Meteorologisch Instituut (KNMI)

(2018). As I assume normality for the dependent variables, I transform the time series

to better fit the model specification. More precisely, I use the logit or log-odds function

from the proportion of rainy days and the logarithm of the mean rainfall. For both

temperature time series the 12-month difference of monthly averages is calculated to

Figure 1. Weather stations. This figure shows the locations of the five observatories in the Netherlands

used in this study.
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Table 3

Summary Statistics De Bilt

This table shows the summary statistics for the dependent and explanatory variables used in this study.

The values are reported for the weather station in De Bilt in the sample period January 1959 through

December 2017. Rows one to four show the pre-transformed dependent variables and rows five to nine

show the five explanatory variables considered in this study.

Mean Std. Dev. Min Max

Dependent variables

logit(prain) −0.654 0.753 −4.595 1.427

log(µrain) 5.916 2.105 0.000 16.167

∆12Tempmax 0.033 2.569 −8.300 8.200

∆12Tempmin 0.015 2.267 −9.600 8.800

Explanatory covariates

CO2 level 353.481 26.713 313.260 409.650

NAO index 0.013 1.020 −3.180 3.040

ρcyc 3.285 1.214 0.000 7.000

ρanti-cyc 3.480 1.186 1.000 7.000

RH 0.818 0.064 0.620 0.931

remove the dominant seasonality in these time series. Table 3 reports the summary

statistics of all four transformed time series for the weather station at De Bilt. Figure 2

shows the time series of the four pre-transformed dependent variables in De Bilt over the

full sample period from January 1959 to December 2017.

The drivers of weather in Western-Europe have been subject of much research. In

this research I investigate the influence of five factors. Two are large scale variables,

namely the North Atlantic Oscillation index and the atmospheric level of CO2. For each

measurement site, I also use local indicators, which are the cyclone density, anti-cyclone

density, and relative humidity. As the linear mixed-effect state-space model allows for

time-varying coefficients, the covariates need not be transformed. Figures 3, 4, and 5 show

all time series for the explanatory covariates.
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(a) logit(prain) (b) log(µrain)

(c) ∆12Tempmax (d) ∆12Tempmin

Figure 2. Dependent variables. This figure shows the pre-transformed dependent variables considered in this study at the weather station at De Bilt over the

sample period from January 1959 to December 2017.

(a) NAO Index (b) Relative Humidity (RH)

Figure 3. Covariates. This figure shows two explanatory covariates considered in this study over the sample period from January 1959 to December 2017, which

are (a) monthly North Atlantic Oscillation (NOA) as defined by the National Weather Service Climate Prediction Center and (b) Relative Humidity at De Bilt.
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Figure 4. Keeling Curve. This figure shows the monthly average atmospheric level of CO2 in parts per million (ppm) at the Mauna Loa Observatory in Hawaii

during the sample period from January 1959 to December 2017.

(a) Cyclone density (ρcyc) (b) Anti-cyclone density (ρanti-cyc)

Figure 5. Covariates. This figure shows two explanatory covariates considered in this study over the sample period from January 1959 to December 2017 at De

Bilt, which are (a) the cyclone density and (b) the anti-cyclone density.
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Kerr (1997), Hoerling et al. (2001), and Donat, Leckebusch, Pinto, & Ulbrich (2009),

among others, show the influence of the North Atlantic Oscillation (NAO) as a main

factor on precipitation, temperature and wind in the region. The NAO index depicted in

figure 3a is a measure based on the difference of normalised sea level pressure between

Lisbon, Portugal and Stykkisholmur/Reykjavik, Iceland (Hurrell, 1995). Although slightly

different definitions exist, I use the time-series defined by the National Weather Service

Climate Prediction Center in this study, as the difference between definitions is always

within 1%.

The atmospheric level of carbon dioxide is another factor widely associated with

weather systems across the world. Arrhenius (1896) demonstrates the physics under-

lying the relation between rising CO2 levels and increasing global temperatures. The

observed temperature development can not be explained without accounting for green-

house emissions (Pachauri et al., 2014). Figure 4 shows the time series from the Mauna

Loa Observatory in Hawaii, which is the longest continuous record of direct atmospheric

CO2 measurements. This time series representation is known as the Keeling Curve, named

after Charles David Keeling, who started the measurements in 1958. Not only does figure

4 show the upward trend in atmospheric CO2 levels, it also shows seasonal patterns,

resulting in a sawtooth pattern. Although geographic variations in atmospheric carbon

dioxide levels are common, the difference between Mauna Loa and the global average is

always within 0.5%, making it a representative time series.

Atmospheric pressure is generally used as indicator of the state of the weather

(Neiburger, Edinger, & Bonner, 1971). Low pressure can serve as a proxy for bad weather

with lower temperatures and more rainfall, whereas high pressure is associated with higher

temperatures and less rainfall. For each month, I calculate the cyclone density ρcyc by

counting the number of periods of at least one day during which the daily atmospheric

pressure is below 1013.5 hPa. The value of 1013.5 is chosen as it is the time series average

of the data used in the study. Similarly, the anti-cyclone density ρanti-cyc is calculated as

the number of periods of at least one day during which the daily atmospheric pressure

stays above 1013.5 hPa.

The relative humidity RH has also been identified as an important predictor of

precipitation in the Netherlands by Beckmann & Buishand (2002). Relative humidity is

defined as the partial pressure of water vapour in air divided by the vapour pressure of
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water at the ambient temperature (Perry, 1950). I take the monthly average from daily

data at each weather station and include it as a predictor. Figure 3b shows the seasonal

behaviour of the relative humidity. Each years peak occurs in the winter months between

January and March, as the cold air has a lower vapour pressure, thus the air is more

saturated. In summertime, when the ambient temperature is higher, the relative humidity

is lower due to warmer airs higher capacity to hold water vapour.
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5 Application in the Netherlands

In this section, I apply the linear mixed-effect state-space model approach to the data

described in section 4. In ten different estimation periods, I compare the forecast accuracy

of the LMESS model relative to a climatology forecast for each month. To place the

results into context, I calculate the same statistics for a backward selection multivariate

linear regression model. This MLR model is obtained by the procedure in step 1 in the

selection algorithm of Kokic et al. (2011), described in section 2.3.1.

The first step is to select the covariates to include as random and fixed effects for

each dependent variable in the LMESS model at each measurement site. Given the results

of the simulation study in section 3, I use the adjusted Chow algorithm for the selection of

variables. The estimation period is given by an expanding window starting at January 1959

and ending in December of 1998 for the first case. The estimation period is then extended

by 12 months for each new variable selection procedure, such that the last estimation

period spans from January 1959 to December 2007. This procedure gives me ten different

datasets to evaluate forecast performance. After identifying the random and fixed effects

for each dependent variable, I estimate the model parameters via the EM-algorithm of

Kokic et al. (2011) described in section 2.2. The next step is to produce monthly forecasts

over a 10-year period as described in section 2.4. I use the realised covariate data in the

forecast window as covariate estimation is outside of the scope of this research.

A second type of LMESS model forecasts is also considered. In section 3.1 I found

that the variable selection algorithm used to identify the LMESS model at each estimation

period does not have 100% accuracy. To investigate whether wrongly selected models affect

the forecast accuracy, I also test the most common linear mixed-effect state-space model

(MCLME) forecasts. For each dependent variable, I use the most commonly selected

model specification across the ten estimation periods. The assumption is thus imposed

that the optimal LMESS model specification does not change over time.

The multivariate linear regression (MLR) forecasts were constructed by using a

backward selection procedure. Starting with all covariates, I estimate the model and

exclude the covariate with the highest p-value which is insignificant at the 90% confidence

level. If all covariates in the model are significant, I proceed by estimating the least squares

coefficient vector β. The forecasts are calculated with the realised covariate values in the

forecast period.
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The benchmark forecasts more elaborate forecasting methods want to improve upon

is given by the long-term mean. When working with climate data, this long-term mean is

often referred to as the climatology forecast. In this study, I calculate the average value

of each dependent variable as follows. First, I split each variable in twelve distinct time

series, each corresponding to a different month of the year. For each month, I calculate

the average of the time series, which gives twelve values. Over the forecast period, the

forecast for each year is given by these twelve values.

5.1 Selected Variables

Table 4 shows which covariates are included in the most common linear mixed-effect

state-space model and the multivariate linear regression model. For both models, different

measurement sites show different dynamics. For the MCLME model, the inclusion of

covariates as fixed and random does not coincide between any of the five measurement

sites. However, the manner in which variables are included does show structure. For

example, all fixed effects that are included at any measurement site are significant at the

95% level. The intercept is always a fixed effect if it is included, except for logit(prain) in

De Kooy, where it is random. The level of CO2 is always included as a random effect for

all dependent variables except one case. Furthermore, the state-space coefficients tend to

be negative for the temperature time series, although this is not significant. For the rain

variable time series, the CO2 level is significantly negative in both De Kooy and Vlissingen

and is positively and negatively significant for log(µrain) in Beek and Eelde, respectively.

The NAO index is only significant for both temperature time series at all measurement

sites and is always significantly positive, not only if it is included as fixed, but also if the

NAO index is a random effect. If the cyclone density ρcyc and anti-cyclone density ρanti-cyc

are included, they are always included fixed effects. Furthermore, if both are included in

a model, which is the case in De Bilt, De Kooy, Eelde, and Beek, they have opposite sign

and are of roughly equal size. The relative humidity RH is included as a random effect

in all dependent time series at all measurement sites except for the log(µrain) in De Bilt,

Eelde, and Beek. The state-space terms tend to be negative, but the coefficients are only

significantly negative for the rain variable time series in De Bilt, De Kooy, Vlissingen, and

Beek.
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Table 4

Variables Included in LMESS and MLR

This table reports the coefficients that are used for forecasting for the dependent variables at all locations for the longest estimation period between January 1959

and December 2007. In column three to eight, the coefficients for the Most Common linear mixed-effect state-space model is given. Empty cells indicate the

covariate is not included. Covariates included as random are indicated by + or −, which indicates the sign of the majority of smoothed state coefficients. Fixed

effect coefficients are given as the LMESS model estimate. Columns nine to twelve report the coefficients as found by initial general multivariate linear regression.

Green cells indicate the covariates included in the final model used for forecasting.

Most Common LMESS model Multivariate Linear Regression

Location Variable Intercept CO2 NAO ρcyc ρanti-cyc RH Intercept CO2 NAO ρcyc ρanti-cyc RH

De Bilt logit(prain) −1.20∗ 0.18∗ −∗ −5.85∗∗ 0.00 −0.01 0.21∗∗ −0.01 5.07∗∗

log(µrain) 5.00∗ − 0.27∗ 2.24 0.01 −0.09 0.28∗∗ 0.02 0.85

∆12Tempmax 0.12∗ − 0.56∗ − 5.90∗∗ 0.00 0.62∗∗ 0.04 −0.12 −6.21∗∗

∆12Tempmin − +∗ 0.29∗ −0.25∗ − −0.85 0.00 0.40∗∗ 0.34∗∗ −0.22 0.32

De Kooy logit(prain) −∗ −∗ 0.21∗ −0.36∗ −∗ −6.32∗∗ 0.00 −0.05∗∗ 0.30∗∗ −0.12∗∗ 5.91∗∗

log(µrain) 4.63∗ −∗ 0.26∗ −∗ 7.70∗∗ 0.00 −0.16∗∗ 0.23∗∗ 0.08 −3.90∗∗

∆12Tempmax − 0.48∗ − 2.98 0.00 0.55∗∗ 0.10 −0.11 −3.51

∆12Tempmin − 0.39∗ − 0.53 0.00 0.47∗∗ 0.26∗∗ −0.21 −0.93

Eelde logit(prain) −1.10∗ + 0.17∗ + −5.53∗∗ 0.00 0.00 0.22∗∗ −0.04 5.04∗∗

log(µrain) +∗ 5.87∗∗ 0.00 −0.06 0.16 0.11 −2.53∗∗

∆12Tempmax − 0.57∗ + 5.71∗∗ 0.00 0.67∗∗ 0.12 −0.16 −6.13∗∗

∆12Tempmin − +∗ 0.41∗ −0.38∗ − −1.15 0.00 0.45∗∗ 0.37∗∗ −0.30∗∗ 0.72

Vlissingen logit(prain) −∗ −0.16∗ −∗ −6.13∗∗ 0.00 −0.05∗∗ 0.22∗∗ −0.03 5.24∗∗

log(µrain) 5.48∗ −∗ −∗ 6.71∗∗ 0.00 −0.20∗∗ 0.10 0.15 −2.22

∆12Tempmax − 0.48∗ − 4.53∗∗ 0.00 0.55∗∗ 0.08 −0.15 −5.05∗∗

∆12Tempmin − 0.33∗ + −0.20 0.00 0.44∗∗ 0.23∗∗ −0.19 −0.10

Beek logit(prain) −1.27∗ + 0.19∗ −∗ −5.13∗∗ 0.00 −0.02 0.21∗∗ −0.01 4.21∗∗

log(µrain) 5.03∗ −∗ 0.21∗ 4.95∗∗ 0.00 −0.06 −0.15 0.43∗∗ −0.33

∆12Tempmax 0.10∗ − 0.53∗ − 9.02∗∗ 0.00 0.58∗∗ 0.10 −0.22 −9.39∗∗

∆12Tempmin − +∗ 0.09∗ −0.06∗ − 0.80 0.00 0.37∗∗ 0.34∗∗ −0.19 −1.72

∗ Estimate is statistically significant at the 5%, or for state-space terms the sign is positive or negative in a significantly non-random number of cases.

∗∗ Linear regression coefficient is statistically significant at the 5% level.

35



For the multivariate linear regression model, table 4 shows both the results of a an

initial regression with all covariates as well as the final model after the general-to-specific

selection procedure. In the initial regression, the significant coefficient across different

measurement sites have different values. Also, the final multivariate linear regression

models used for forecasting, which are indicated by the coloured cells, show different

patterns at all five measurement sites. This affirms the finding of the MCLME model

that all measurement sites have different dynamics. An example is the NAO index, which

is significant for all four dependent time series in the initial regression in De Kooy and

Vlissingen, but only significant for the temperature time series in De Bilt, Eelde, and

Beek. The NAO index in De Kooy and Vlissingen is also the only variable to not be

included in the final multivariate linear regression forecast model if it was significant in

the general regression. In all other cases, the 95% significance is a reliable indicator that

the variable is important to forecasting. However, variables not significant at first are

included in the final model. The anti-cyclone density ρanti-cyc is only significant in the

general regression for three out of 20 cases, but is included in forecasting in nine cases.

The level of atmospheric CO2 is never significant in the initial regression and is included

only once in the final forecasts, namely for log(µrain) in Eelde. This is probably due to

the strong trending and seasonal behaviour of the CO2 level time series, given that the

dependent time series do not show these characteristics as strongly.

Table 4 also shows that the most common linear mixed-effect state-space and mul-

tivariate linear regression models use roughly the same covariates in De Bilt and Beek.

In De Bilt, the only differences are in the inclusion of CO2 level and relative humidity

RH for the minimum temperature series. For the other three measurement sites, the

NAO index also follows the same pattern of inclusion in both models. The most notable

exception is the CO2 level. This covariate is only once included as significant covariate

in the multivariate linear regression model, whereas it is included as random effect in the

most common linear mixed-effect state-space model in all but one case. Relative humidity,

on the other hand, is included as covariate for a majority of dependent time series in both

the LMESS and MLR model, apart from the minimum temperature. So although it is

never remarked as a fixed effect by the linear mixed-effect state-space model, it can still

be included as a covariate in linear regression, where the coefficient is fixed.
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5.2 Forecasting Results

Table 5 reports the average percentage reduction in root mean squared forecast error

relative to the climatology forecasts for the LMESS and MLR model. For both temperature

data series, both the LMESS and MLR model provide slightly better forecasts than

climatology in most cases across all five measurement locations. Comparing both models,

all values are within 5% of equal RMSFE, which leads to the conclusion that the models

are indistinguishable in terms of forecast improvement for temperature. In the case of

rainfall, a more pronounced difference between LMESS and MLR can be seen. Neither

method can improve on the long term mean to forecast the average rainfall on rainy days,

with RMSFE increasing by at least 5%. In Eelde, the RMSFE for the LMESS forecasts

is more than double that of the climatology forecasts. The reason for this inaccuracy

probably lies in the chaotic and complex nature of how rain clouds develop and the moment

at which it rains. Also, there can be high deviations in measured rainfall across only a

small area of land, whereas the covariates considered in this study have a more large

scale character. The MLR model does provide better forecasts than the LMESS model

for log(µrain) in all cases. For the number of rainy days, large differences are reported

between different weather stations. In De Bilt, LMESS and MLR both reduce the RMSFE

significantly, where the MLR model shows a higher reduction than LMESS. At De Kooy,

Eelde, Vlissingen, and Beek the multivariate regression forecasts show similar reductions

in RMSFE compared to the long-term mean forecasts as at De Bilt. The RMSFE of the

LMESS model at those four stations for logit(prain) is not significantly better than the

long-term mean RMSFE. The forecasting performance of the LMESS model at De Kooy

and Vlissingen is even significantly worse than climatology.

Furthermore, table 5 shows significant differences between the RMSFE reduction

of the linear mixed-effect state-space model and the RMSFE reduction of the MCLME

approach, where the same model is assumed for all estimation periods. Apart from the

proportion of rainy days in De Kooy and Vlissingen and mean rainfall in Eelde, the MCLME

model shows a similar or higher RMSFE reduction than the non-restricted LMESS model.

The main differences are seen in De Bilt, De Kooy, Vlissingen, and Beek, where a large

increase in RMSFE compared to climatology is observed from the LMESS model when

forecasting logit(prain). Imposing the most common model assumption improves the

RMSFE reduction value. In Eelde, the RMSFE for log(µrain) is more than double the

37



Table 5

RMSFE reduction results

This table shows the percentage RMSFE reduction in predictive accuracy compared to the long term

mean forecast for the linear mixed-effect state-space model (LMESS), the most common LMESS model

(MCLME), and multivariate linear regression model (MLR) for three forecast horizons. The reported

value is an average over ten forecast periods with the same length, where different forecasts are based

on an expanding window estimation period. Red and green cell colours indicate a RMSFE reduction

being smaller than −3% or bigger than 3% respectively, with darker shading for larger reduction absolute

values.

1 year 5 year 10 years

Variable LMESS MCLME MLR LMESS MCLME MLR LMESS MCLME MLR

De Bilt

logit(prain) 6.86 5.28 3.77 6.42 5.68 17.52 5.18 4.49 15.49

log(µrain) −26.36 −4.68 −5.13 −19.60 −4.68 −4.62 −16.64 −5.17 −5.02

∆12Tempmax −1.53 0.88 2.85 0.90 1.40 3.49 1.43 2.49 4.24

∆12Tempmin 0.61 0.61 −0.59 0.00 −0.03 −0.26 0.10 0.02 0.60

De Kooy

logit(prain) −7.28 −12.51 1.76 −5.26 −12.41 4.77 −10.79 −14.82 4.60

log(µrain) −30.91 −9.21 −9.82 −27.48 −6.14 −6.66 −34.61 −8.53 −8.66

∆12Tempmax 1.33 1.53 0.91 1.51 1.60 1.35 2.12 2.19 2.05

∆12Tempmin 0.79 2.02 1.57 1.30 1.46 1.34 1.21 1.67 1.23

Eelde

logit(prain) −0.88 −1.08 8.42 0.76 0.47 10.02 2.12 1.74 8.90

log(µrain) −192.87 −235.40 −5.86 −155.11 −194.96 −6.13 −150.50 −191.98 −9.77

∆12Tempmax 1.87 1.55 2.82 1.65 2.08 3.76 1.94 3.06 4.66

∆12Tempmin 1.63 2.04 1.83 0.75 1.04 2.18 0.45 0.13 2.09

Vlissingen

logit(prain) −5.97 −14.09 5.76 −6.02 −18.30 14.63 −7.35 −18.67 14.08

log(µrain) −33.73 −12.95 −12.35 −24.31 −9.81 −8.06 −28.27 −11.20 −9.26

∆12Tempmax 1.28 0.61 0.86 1.09 1.02 1.74 1.95 2.16 2.97

∆12Tempmin 0.60 0.75 −0.08 0.17 0.68 0.30 0.44 1.73 1.61

Beek

logit(prain) −1.61 −0.03 11.87 −0.68 6.30 18.11 0.17 7.31 18.73

log(µrain) −19.98 −7.42 −7.28 −15.40 −8.73 −8.67 −13.41 −8.25 −7.91

∆12Tempmax −0.03 −0.01 3.81 0.54 0.51 3.80 1.94 1.93 4.99

∆12Tempmin −0.12 1.10 −1.16 0.23 0.21 −0.57 0.26 0.28 0.55

climatology RMSFE for both for the LMESS model and MCLME model. This increase

in forecast error is most likely due to the limited number of included covariates. Table 4

shows that for this time series, the most common model only includes the CO2 level as a

random effect. These findings indicate the LMESS model is susceptible to wrong model
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specifications. If covariates are wrongly identified as fixed or random effects, or excluded

when they should not be, the root mean squared forecast error grows large compared to

climatalogy, influencing the average forecast accuracy.

Table 5 also shows that the RMSFE reduction compared to the long-term mean

forecast increases for larger forecast periods in most cases. This can be the result of either

a changing climate, where the estimation period average is no longer representative at 10

years beyond the estimation period. But it can also be caused by the assumption of perfect

foresight in the forecast, where realised covariate data was used to calculate the forecast.

The last assumption eliminates a source of forecast noise which can not be eliminated in

real life applications.

Figures 6a and 6b show how the root mean squared forecast error behaves during a ten-

year forecast period between January 2003 and December 2012 for the linear mixed-effect

state-space and multivariate linear regression models. The figures support the findings in

Table 5, as the RMSFE of the LMESS forecasts is consistently larger than the equivalent

MLR forecasts for the rain related forecasts and the maximum temperature times series.

Only for minimum temperature time series, does the LMESS model notably outperform

the MLR model. For all four dependent variables, the behaviour of the RMSFE as a

function of forecast horizon is very similar between both considered models. For the

proportion of rainy days and the minimum temperature, the RMSFE only moves within

a small window, and is close to constant between five- and ten-year forecast horizons.

The RMSFE for mean rainfall does show more variability in the shorter forecast period,

(a) RMSFE of forecasts rainfall (b) RMSFE of forecasts temperature

Figure 6. This figure shows the comparison between the LMESS and MLR model RMSFE as a function

of forecast horizon for the weather station in De Bilt between January 2003 and December 2012. The

forecast period spans between January 1959 and December 2002. The two figures show graphs of both

models for (a) the logit proportion of rainy days and log mean rainfall and (b) 12-month difference in

maximum and minimum temperature.
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but stabilises after three years, after which it remains close to constant. The maximum

temperature forecast RMSFE shows an upward slope between one- and five-year forecasts.

This increase in RMSFE for larger forecast periods is in line with normal behaviour of

RMSFE as a function of forecast horizon. Both lines do however flatten after the 5-year

forecasts and decrease for longer forecast horizons.

A comparison between forecasts by the linear mixed-effect state-space model, multi-

variate linear regression, climatology, and realised values is shown in figures 7a and 7b for

two dependent variables in De Bilt. The observed data is shown for the period between

January 2003 and December 2012 together with five year forecasts. So, for 2003, the

forecasts are based on the estimation period ending in 1998. For the proportion of rainy

days in figure 7a, both the LMESS and MLR show better ability to capture the real data

dynamics that climatology, which supports the findings in table 5. In general, the MLR

forecasts do more closely resemble the realised data, but the LMESS forecasts follow the

dynamics of the MLR forecasts closely across the ten years. As expected, the climatology

forecasts do not reflect the realised data as well as the two models using covariate data.

(a) Five year forecast logit(prain) (b) Five year forecast ∆12Tempmax

Figure 7. This figure shows the accuracy of 5-year forecasts made using the linear mixed-effect state-

space model, multivariate linear regression, and climatology compared to the realised values at De Bilt

in the period between January 2003 and December 2012. The two dependent variables are (a) logit

proportion of rainy days per month and (b) twelve month difference in average maximum temperature.

The time series forecast for maximum temperature in figure 7b shows an even closer

match between the LMESS and MLR forecasts. Both show more dynamics than the

climatology forecasts, but fail to forecast the dynamics of the yearly temperature change.

As climatology forecasts only seem to predict a mean close to zero, one would expect the

more elaborate models like LMESS and MLR to improve forecast accuracy, especially

considering the assumed perfect foresight on covariates. But figure 7b supports the results
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in table 5 that the forecasts are improved, but not with a significant percentage reduction

in RMSFE. These findings show that the covariates included in this study do not span all

explanatory factors on changing temperature in the Netherlands, which is a more random

process than can be captured by any of the models considered in this study.
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6 Conclusion

The study of Kokic et al. (2011) was a first step to a new way of forecasting climate

variables. They identified two possibilities of further research that are addressed in this

thesis. Firstly, I build on the work of Kokic et al. (2011) to propose an algorithm that

identifies explanatory covariates to use in their linear mixed-effect state-space model

formulation. And secondly, I explore the ability of the LMESS model to forecast in

monthly average climate data in the Netherlands.

By means of a simulation study I find that the algorithm originally used by Kokic et al.

(2011) to identify covariates as fixed and random effects is suboptimal and leads to wrong

model specifications in at least 80% of cases. To improve selection accuracy, I propose

a new selection algorithm based on a state-space formulation with fixed parameters as

first described by Chow (1984). This new algorithm significantly improves the variable

selection accuracy to at least 50% if enough observations are present and over 70% under

certain data assumptions. I find that the variable selection algorithm proposed by Bondell

et al. (2010) does not consistently achieve its original accuracy when the observation

covariance is adjusted for serial correlation imposed by the linear mixed-effect state-space

model’s state equation. Although it identifies the correct model in 76% of simulations for

one case, it fails to select the correct model even once in other scenarios.

In a second simulation study, I demonstrate the importance of selection of the correct

model on forecast accuracy. I find that the forecasts of a correct model specification

are significantly better than forecasts based on wrong model specifications. Out of the

considered wrong specifications, none could outperform the true model at short forecast

horizons and only one wrong specification could improve significantly on the forecasts by

the true model at the longest horizon, but not consistently across two dependent variables.

Applying the new methods to climate data in the Netherlands, I find that the linear

mixed-effect state-space model does not consistently give better forecasts than a multivari-

ate linear regression model or climatology. For changes in temperature, all three methods

yield similar results in terms of root mean forecast squared error, all within 5% of one

another across horizons of one, five, and ten years. For all measurement sites considered

in this study, not once are the linear mixed-effect state-space model and multivariate

linear regression model able to improve on climatology forecasts for the average rain on

rainy days. For the proportion of rainy days, I find the linear mixed-effect state-space
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forecast to be sensitive to wrong model specification, only significantly outperforming the

climatology benchmark in De Bilt.

The models presented in this research can be build upon by further research to improve

applicability on real climate forecasts. Although the variable selection method based on the

state-space formulation by Chow (1984) does improve model selection accuracy, it is not

perfect. The algorithm proposed by Bondell et al. (2010) should increase the identification

accuracy if the longitudinal covariance matrix can be identified correctly. However, the

state estimation algorithms used in this study might not be sufficient to address this issue.

The influence of covariate prediction uncertainty on the forecast accuracy by the linear

mixed-effect state-space model also needs to be addressed before definitive conclusions

can be drawn on applicability. Forecasts across different methods may be more accurately

compared by the general matrix of the forecast-error second-moment approach proposed

by Hendry & Martinez (2017). Their method yields an invariant measure of forecast

accuracy that results in more robust conclusions on model preference than the average

root mean squared forecast error reduction used in this study.
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Appendices

A EM-algorithm Chow

In this section I outline the E- and M-step of the algorithm used for parameter es-

timation in the mixed-effect model formulation of Chow (1984) in equations (9) and

(10). Firstly, the E-step is used to find estimates of the underlying states and state

covariance conditional on all observations. Despite the extensions to the state vec-

tor, there is no change in the filter and smoother equations compared to the linear

state-space model equations. Thus, the E-step is given by the following equations.

 βi|t
αijt|t

 = Bij

 βi|t−1

αijt−1|t−1

+K∗t e
∗
t

Σ̂∗t|t = V ∗t −K∗tX∗ijtV ∗t

V ∗t = BijΣ̂
∗
t−1|t−1B

′
ij +

0 0

0 Qij


K∗t = VtX

∗′
ijt(Rij +X∗ijtVtX

∗′
ijt)
−1

e∗t = yijt −X∗ijtBij

 βi|t−1

αijt−1|t−1



Using these estimates, the smoothed estimates based on the full data set of all observations.

There is no difference between these estimates and the standard linear state-space model.

Thus the smoothed estimates for the smoothed states, smoothed covariance and transition

covariance are given by βi|T

αijt−1|T

 =

 βi|T
αijt|T

+ Σ̂∗t−1|t−1B
′
ijV
∗−1
t

( βi|T
αijt|T

−
 βi|t
αijt|t

)

Σ̂∗t−1|T = Σ̂∗t−1|t−1 − Σ̂∗t−1|t−1B
′
ijV
∗−1
t (V ∗t − Σ̂∗t|T )V ∗−1

t BijΣ̂
∗
t−1|t−1

+

0 0

0 αijt−1|Tα
′
ijt−1|T


Σ̂∗t,t−1|T = Σ̂∗t|TV

∗−1
t BijΣ̂

∗
t−1|t−1 +

0 0

0 αijt|Tα
′
ijt−1|T


With these estimated matrices, I can now find the maximum likelihood estimates for this

model. The M-step is equivalent to the M-step in the standard linear state-space model,
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with some restrictions imposed by the inclusion of constant parameters.

B̂ij =


I 0

0

((∑T
t=2 Σ̂∗t,t−1|T

)(∑T
t=2 Σ̂∗t−1|T

)−1
)

(qi+1,2qi;qi+1,2qi)


R̂ij = T−1

T∑
t=1

(
yt −X∗ijt

 βi|T
αijt|T

)(yt −X∗ijt
 βi|T
αijt|T

)′

Q̂ij =

(
(T − 1)−1

T∑
t=2

[
Σ̂∗t|T − B̂ijΣ̂

∗′
t,t−1|T − Σ̂∗t,t−1|T B̂

′
ij + B̂ijΣ̂

∗
t−1|T B̂

′
ij

])
(qi+1,2qi;qi+1,2qi)

The most important restriction is to set the top left of B̂ij as identity matrix.
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B Bondell’s M-step

This section is based on web appendix B from the paper of Bondell et al. (2010). For

notation convenience, we remove the subscript i, as the procedure is the same for all

dependent variables. First, based on the likelihood function in Equation (15), we define

(y∗, X∗, Z∗) = (Ω̃−1/2y, Ω̃−1/2X, Ω̃−1/2Z). At each iteration we first update three additional

variables related to the distribution of the mean random effects. Given the likelihood

function in Equation (14), the conditional distribution ᾱ|y, φ ∼ N( ˆ̄α, U), with

ˆ̄α(ω) =
(
Γ̃′(ω)D̃(ω)Z∗′Z∗i D̃

(ω)Γ̃(ω) + Im·q
)−1(

Z∗D̃(ω)Γ̃(ω)
)′(
y∗ −X∗β(ω)

)
, (23)

and U (ω) = σ2(ω)
(
Γ̃′(ω)D̃(ω)Z∗′Z∗D̃(ω)Γ̃(ω) + Im·q

)−1
, (24)

where ω indicates the iterations of the EM algorithm. The starting values for ω = 0 are

set as the restricted maximum likelihood estimates for the model in Equation (11). The

estimate for σ2(ω) at iteration ω is updated as

σ2(ω) =
(
y∗ −X∗β(ω)

)′(
Z∗D̃(ω)Γ̃(ω)Γ̃′(ω)D̃(ω)Z∗′ + Im·T

)−1(
y∗ −X∗β(ω)

)
/(m · T ). (25)

We regard these three variables as constant when performing the optimisation over φ.

Omitting terms that do not involve the variable φ, we can rewrite the estimation step in

Equation (15) as

g(β, d|φ(ω)) =β
d

′  X∗′X∗ X∗′Z∗diag(Γ̃ ˆ̄α(ω))(1m ⊗ Iq)

(1m ⊗ Iq)′diag(Γ̃ ˆ̄α(ω))Z∗′X∗ (1m ⊗ Iq)′
(
W • Γ̃G̃(ω)Γ̃′

)
(1m ⊗ Iq)

β
d


− 2y∗′

[
X∗ Z∗diag(Γ̃ ˆ̄α(ω))(1m ⊗ Iq)

]β
d

+ λm

( p∑
n=1

|βn|
|β̄n|

+

q∑
n=1

|dn|
|d̄n|

)
,

(26)

where • is the Hadamard product operator, W = Z∗′Z∗ a symmetric block matrix, and

G̃(ω) = U (ω) + ˆ̄α(ω) ˆ̄α(ω)′. However, due to the absolute element-wise sum in the penalty

term, this is a non-standard optimisation problem. If we write β = β+ − β−, where β+

and β− are non-negative and only one non-zero, and |β| = β+ + β−, the optimisation

becomes a quadratic programming problem.
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minimise


β+

β−

d


′  X∗′† X

∗
† X∗′† Z

∗diag(Γ̃ ˆ̄α(ω))(1m ⊗ Iq)

(1m ⊗ Iq)′diag(Γ̃ ˆ̄α(ω))Z∗′X∗† (1m ⊗ Iq)′
(
W • Γ̃G̃(ω)Γ̃′

)
(1m ⊗ Iq)



β+

β−

d



− 2

(
y∗′
[
X∗† Z∗diag(Γ̃ ˆ̄α(ω))(1m ⊗ Iq)

]
+ λm

[
1
|β1| , · · · ,

1
|βp| ,

1
|β1| , · · · ,

1
|βp| ,

1
|d1| , · · · ,

1
|dq|

])
β+

β−

d


subject to: β+ ≥ 0, β− ≥ 0, d ≥ 0,

(27)

where the matrix X∗† = [X∗ −X∗].

With a solution for (β′, d′)′, the new optimal value for γ has a closed form solution

given by

γ∗ =
(
P (ω)

)−[
R′(ω)(y∗ −X∗β)− T (ω)

]
, (28)

where P (ω) = Eb|y∗,φ(ω)(B′B), R(ω) = Eb|y∗,φ(ω)(B′Z∗D̃b), and T (ω) = Eb|y,φ(ω)(B). The

matrix B is a stacked matrix of Bi, with each Bi a T × q(q− 1)/2 matrix, whose elements

in each row are defined as Bij = (bjldrzijr : l = 1, . . . , (q − 1), r = (l + 1), . . . , q), where

Bij denotes row j of the ith matrix. P− represents the Moore-Penrose inverse of P .
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C Normal approximation test statistic

The test statistic B used to evaluate is derived as follows. The number of times Nf that

the absolute forecast error of model one is smaller than a second model is a priori assumed

to be binomial distributed with Tf repetitions and probability pbin = 1
2
. Wackerly et al.

(2014) state that a normal approximation for this distribution is valid if

Tf > 9 ·max

(
pbin

1− pbin
,
1− pbin
pbin

)
.

As the simulation study considers Tf = 50 and pbin
1−pbin

= 1−pbin
pbin

= 1, the minimum condition

is satisfied. This implies that I can assume Nf to be normally distributed with

E(Nf ) = pbinTf , and V ar(Nf ) = pbin(1− pbin)Tf .

However, to make testing more convenient, I introduce the test statistic B. This statistic

is the standardised version of Nf and thus defined as

B =
Nf − E(Nf )√
V ar(Nf )

=
Nf − pbinTf√
pbin(1− pbin)Tf

.

Filling in the a priori probability pbin = 1
2

gives

B =
Nf − 1

2
Tf√

1
4
Tf

=
2Nf − Tf√

Tf

As the condition of Nf to be approximately normally distributed is Tf > 9 and B is Nf

standardised and rewritten, I can take Tf > 9 as sufficient to assume B ∼ N(0, 1).
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D Tables

Table 6

Selecting Fixed and Random Effects

This table gives the number of times (in %) the covariates were correctly identified with each of the three

variable selection methods in 100 simulated datasets, with a data generating process as in equation 20.

Column one gives the variable that is changed compared to the baseline∗ scenario. Columns two to four

give the percentage of cases where the model was correctly identified for variable y1. Columns five to

seven give the percentage of cases where the model was correctly identified for variable y2.

Fixed Effects y1 y2

Scenario Kokic Chow Bondell Kokic Chow Bondell

Baseline∗ 16.6 59.8 39.0 11.2 61.0 69.0

T = 50 9.8 42.2 33.0 7.6 47.4 61.0

T = 200 20.4 59.4 0.0 7.2 67.4 0.0

m = 10 16.9 58.7 0.0 9.4 61.0 0.0

m = 20 18.1 59.3 0.0 8.5 62.6 0.0

σα = (3, 2, 3, 2)′ 16.0 60.8 8.0 5.6 59.2 78.0

β = (5, 3, 2, 4)′ 14.2 61.8 2.0 9.0 63.4 28.0

Rj = I2 22.2 56.4 56.0 9.4 56.2 63.0

Qj = I4 10.8 54.6 58.0 9.6 67.6 64.0

ukt ∼ U(−2, 2) 18.6 69.6 28.0 11.8 71.6 44.0

ukt ∼ N(0, 1) 19.6 73.0 44.0 7.8 73.8 39.0

Random Effects

Baseline 13.8 57.8 6.0 11.0 54.8 50.0

T = 50 5.0 41.4 13.0 7.2 26.0 32.0

T = 200 20.0 59.4 0.0 7.2 59.8 0.0

m = 10 4.0 54.8 0.0 9.4 52.9 0.0

m = 20 15.0 57.6 0.0 8.4 54.6 0.0

σα = (3, 2, 3, 2)′ 12.4 58.6 3.0 5.4 52.2 76.0

β = (5, 3, 2, 4)′ 10.0 60.0 0.0 9.0 56.4 23.0

Rj = I2 17.6 46.8 2.0 9.2 40.4 26.0

Qj = I4 11.8 62.4 6.0 9.6 64.8 41.0

ukt ∼ U(−2, 2) 10.8 68.0 9.0 10.8 70.6 19.0

ukt ∼ N(0, 1) 9.8 70.4 16.0 7.8 72.8 16.0

∗ The baseline scenario has the following model parameters: T = 100,

m = 5, σα = (1, 1, 1, 1)′, β = (1, 1, 1, 1)′, Rj = 0.4I2, Qj = 0.3I2. The

covariates are generated from u1t ∼ U(−1, 1), u2t ∼ U(−0.5, 0.5)+0.05(t−

0.5T ), and u3t ∼ U(−0.75, 0.75) + 1.25 cos(πt/6).
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Table 7

Summary Statistics De Kooy

This table shows the summary statistics for the dependent and explanatory variables used in this study. The values are

reported for the weather station in De Kooy in the sample period January 1959 through December 2017. Rows one to four

show the pre-transformed dependent variables and rows five to nine show the five explanatory variables.

Variable Mean Std. Dev. Min Max

logit(prain) −0.677 0.800 −4.595 1.872

log(µrain) 5.457 2.134 0.000 14.862

∆12Tempmax 0.034 2.249 −8.100 7.000

∆12Tempmin 0.028 2.168 −9.400 8.400

CO2 level 353.481 26.713 313.260 409.650

NAO index 0.013 1.020 −3.180 3.040

ρcyc 3.284 1.219 0.000 7.000

ρanti-cyc 3.439 1.222 0.000 7.000

RH 0.833 0.043 0.714 0.948

Table 8

Summary Statistics Eelde

This table shows the summary statistics for the dependent and explanatory variables used in this study. The values are

reported for the weather station in Eelde in the sample period January 1959 through December 2017. Rows one to four

show the pre-transformed dependent variables and rows five to nine show the five explanatory variables.

Variable Mean Std. Dev. Min Max

logit(prain) −0.588 0.765 −4.595 1.427

log(µrain) 5.491 1.951 0.000 15.800

∆12Tempmax 0.031 2.623 −8.600 8.600

∆12Tempmin 0.011 2.389 −10.400 10.100

CO2 level 353.481 26.713 313.260 409.650

NAO index 0.013 1.020 −3.180 3.040

ρcyc 3.295 1.204 0.000 7.000

ρanti-cyc 3.448 1.196 1.000 7.000

RH 0.849 0.057 0.683 0.959
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Table 9

Summary Statistics Vlissingen

This table shows the summary statistics for the dependent and explanatory variables used in this study. The values are

reported for the weather station in Vlissingen in the sample period January 1959 through December 2017. Rows one to

four show the pre-transformed dependent variables and rows five to nine show the five explanatory variables.

Variable Mean Std. Dev. Min Max

logit(prain) −0.707 0.746 −4.595 1.649

log(µrain) 5.487 2.116 0.000 17.814

∆12Tempmax 0.030 2.272 −7.800 7.500

∆12Tempmin 0.026 1.958 −8.600 8.100

CO2 level 353.481 26.713 313.260 409.650

NAO index 0.013 1.020 −3.180 3.040

ρcyc 3.274 1.286 0.000 7.000

ρanti-cyc 3.475 1.261 1.000 7.000

RH 0.818 0.049 0.668 0.939

Table 10

Summary Statistics Beek

This table shows the summary statistics for the dependent and explanatory variables used in this study. The values are

reported for the weather station in Beek in the sample period January 1959 through December 2017. Rows one to four

show the pre-transformed dependent variables and rows five to nine show the five explanatory variables.

Variable Mean Std. Dev. Min Max

logit(prain) −0.692 0.718 −4.595 1.056

log(µrain) 5.660 2.115 0.000 17.873

∆12Tempmax 0.034 2.778 −8.800 10.000

∆12Tempmin 0.013 2.304 −9.600 9.300

CO2 level 353.481 26.713 313.260 409.650

NAO index 0.013 1.020 −3.180 3.040

ρcyc 3.274 1.314 0.000 7.000

ρanti-cyc 3.544 1.260 1.000 8.000

RH 0.804 0.068 0.598 0.948
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