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Abstract

In this paper, we introduce an individual claim reserving model that uses policy character-

istics and information on the claim process to estimate the reserves of the Incurred But Not

Reported and Reported But Not Settled claims of a non-life insurer. First, we analyse the

optimal model specification for the claim process. We use mixture distributions to model

the level of the payments and introduce zero adjusted distributions to model claim payments

of zero. Second, we study the effect of creating dependence between parts of our model on

the respective fit. In addition, we examine whether including policy characteristics increases

our model fit. We find that the inclusion of both policy characteristics and claim process

characteristics improve the fit of our individual claim reserving model. Based on simulations,

we examine the effect of incorporating covariates in the model on the prediction of IBNR

and RBNS reserves. We conclude that the inclusion of covariates increases the accuracy of

our individual claim reserving model. Our model can be used by insurance companies to

coherently estimate their reserves.
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Chapter 1

Introduction

Insurers face unknown future cash flows. As such, one of the most important tasks of a

non-life insurer is managing its reserves. An insurer reserves the amount that is expected to

be paid out to policyholders based on estimates of future claims. The frequency and severity

of the insurance claims are not known with certainty. Moreover, the frequency and the value

of expected future claims can differ for policies with different characteristics.

The widely accepted approaches for modelling insurance claims in non-life insurance make

use of aggregated data. The models aggregate for each year the amount that is paid out due

to claims in a specific year. An important drawback of such aggregated models is that the

differences between the individual policies are lost due to the aggregation. This drawback

can be overcome by using an individual claim reserving model. Individual claim reserving

models aim to model the occurrence of a claim and its process to settlement on an individual

level. By incorporating policy characteristics in the individual claim reserving model, the

insurer can adjust the claim process per policy characteristic. Furthermore, an individual

claim reserving model allows the insurer to model the claim process in parts. In such a

way, the insurer can analyze each part separately. This gives insight into the dynamics of

the claim process and the accuracy of the model for the different parts. Finally, with the

individual claim reserving model, the insurer can allow for dependence across different parts

of the model, such as the time of occurrence and the level and timing of the payments. With

all the information of the individual policy characteristics and the different parts of the claim

process, the estimation of the reserves of a non-life insurer could be improved.
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To summarize, our main research question is: Does a structural model based on individual

claim reserving techniques improve the estimation of reserves for a non-life insurer?

To answer this question, we first clarify the different stages in the claim process. First,

the policyholder buys an insurance. In this stage, the future claims are unknown. The

future claims are estimated in order to determine the premium applicable for that policy-

holder. Thereafter, the claim occurs and the policyholder reports the claim to the insurer.

The time between the occurrence time and the time of reporting is defined as the reporting

delay. If the claim is reported to the insurer, the claim is processed and there might be

several payments before the claim is finally settled. The information of the insurer about

the state of the claim differs throughout this process. To distinguish between claims based

on this information, we identify the claims as being Incurred But Not Reported (IBNR)

and Reported But Not Settled (RBNS), following the literature on claim reserve modelling.

Additionally, we introduce an additional category for the claims in the first stage of the claim

process. We name the claims that have been estimated in the premium calculation but have

not yet incurred the Not Incurred Not Reported (NINR) claims. This terminology allows

us to connect the premium reserve to the claim reserves. Namely, the unearned premium

reserve is the reserve that an insurer holds based on the premium of a policyholder. This

reserve is based on modelling NINR claims using the policy characteristics. In this paper,

we estimate the IBNR and RBNS reserves based on policy characteristics as well. Therefore,

estimating the reserves for both the NINR claims and the other two types of claims at an

individual level can lead to more coherency within the insurance company, as all reserves

are now based on the same characteristics and calculated with the same method. We focus

on estimating the reserves from the claim process, which are the IBNR and RBNS reserves.

However, the model used in this paper can be used to estimate the NINR reserve and links

the NINR reserve to the IBNR and RBNS reserves, since every type of reserves is now esti-

mated on an individual level.

We model the claim process in five parts. First, we model the occurrence of the claims

by a Poisson Process. We will model the intensity of the Poisson Process to be dependent

on covariates. In such a way, we incorporate policy characteristics and external risk char-

acteristics into the process of claim occurrences. Second, we model the distribution of the

reporting delay. Hesselager and Witting (1988) show that the number of claims is negatively

correlated between early and late policy years. This indicates that the reporting delay of the

claims depends on the time of occurrence of the claim.
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We take this dependency into account in our model. We define the last part of the claim

process as the development process. The development process consists of possible payments

and a settlement.We divide the development process into three parts. The third part of our

model consists of modelling the occurrence of events in the development process. The fourth

part models the type of the events. The fifth and last part of our model is regarding the

level of the payments. We will model the distribution of the level of the payments depending

on the covariates. In particular, we incorporate policy information as well as information on

the claim process as an indicator for the level of the payments.

First, we analyse the optimal model specification for each part of the claim process. Second,

we study the effect of creating dependence between parts of our model and the inclusion

of covariates on the fit of our model. Lastly, in order to evaluate our model, we perform

simulations and compare our findings with the observed data. We examine the value of

including covariates to each building block of our model separately.

We find that the time of occurrence of a claim and the reporting delay can be best specified

in a piece-wise constant way. The time between events in the development process can be

best modelled with a Weibull hazard rate as opposed to a piece-wise constant hazard rate.

To capture the different shapes of the distributions of the payments in the development

process, a mixture distribution of three Log-Normal distributions is optimal. For modelling

the settlement payments, in addition to using a mixture distribution of three Log-Normal

distributions, it is optimal to account for the probability of a zero payment at the moment

of settlement.

We use the age of the car and the catalog value of the car as policy characteristics. We

find that the inclusion of the age of the car as a covariate improves the fit of all parts of the

model. Besides, the catalog value of the car is included as a covariate for the reporting delay

and the level of the payments. Furthermore, the inclusion of the time of occurrence does not

lead to a better fit in any of the other parts of the model. By contrast, we find that incor-

porating dependence between the other four parts of the model increases the fit of our model.

Lastly, we find that the mean of the simulations using our model with covariates is closer

to the actual data than the simulations results using our model without covariates. We

conclude that incorporating covariates increases the ability of our individual claim reserving

model to accurately predict the IBNR and RBNS reserves.
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Chapter 2

Literature Review

In this paper, we focus on an individual claim reserving model which differs from the

literature on aggregated models. Within the current literature on individual claim reserv-

ing our model is positioned as follows. Our main framework is an extension of the Marked

Poisson Process of Arjas (1989), which we use for modelling the occurrence of claims and

the reporting delay. Furthermore, we use the framework for the payment process of Norberg

(1993). In this section, we first discuss the literature on aggregated models, after which we

will discuss the current literature on individual claim reserving and how this relates to our

model.

England and Verrall (2002) gives an overview of different aggregated models. The mod-

els have several drawbacks, as discussed by Taylor et al. (2008). They argue that a large

part of relevant information that can be found in the data of individual claims is lost by using

aggregate data. Moreover, aggregating data is only valid for a portfolio that is homogeneous

with respect to risk characteristics, as shown by Norberg and Sundt (1985). For a portfolio

of insurances, this is a strong assumption. Furthermore, a change in the composition of the

portfolio causes a change in the claims process, which is not captured by the aggregated

models (Norberg, 1993). The use of run-off triangles has several other problems, such as the

possibility of negative or zero-value cells (Kunkler, 2004), problems with robustness of the

model and outliers in the data (Verdonck et al., 2009) and over-parametrization of the model

due to lower amount of observations for recent accident years (Wright, 1990) and (Renshaw,

1994).
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The above mentioned drawbacks can be overcome by using individual claim reserving meth-

ods. The individual claim reserving model was first introduced by Norberg (1986), Jewell

(1989) and Arjas (1989). Arjas (1989) introduces the concept by using theory on point pro-

cesses and martingales to model IBNR claims. They model the claims process as a Marked

Point Process, which is a process that models points in time together with associated marks.

As an example, in the case of individual claim reserving, these points in time can be seen

as the occurrence times of claims, whereas the marks can be thought of as the develop-

ment of those claims. Norberg (1993) uses this model specification whereby the points and

their marks are represented by the occurrence times and their development, respectively.

Furthermore, they propose that a Marked Poisson Process can be defined for groups with

different observable risk characteristics. Compared with Norberg (1993), we implement the

idea of using covariates. Instead of specifying a different model for every group, we make

each part of the process dependent on covariates and allow for dependence across the differ-

ent parts of the process. Furthermore, Norberg (1993) discusses the payment process. We

adapt their framework of the payment process and adjust it to account for different events.

Moreover, we compare the fit of different distributions for modelling the level of the pay-

ments and use zero adjusted distributions to account for the probability of a payment of zero.

In a follow-up paper, Norberg (1999) extends their work by discussing how the model pro-

posed by Norberg (1993) can be applied in various situations. Haastrup and Arias (1997)

introduces a model that is similar to that of Norberg (1993). They adjust it by using a non-

parametric Bayesian approach for the estimation and prediction of claims, both for IBNR

and RBNS claims. They argue that some parts of the model could be better estimated para-

metrically, such that structure is added and the computations are less time-consuming. For

model estimation, the use of Bayesian methods has already been suggested by Arjas (1989),

who states that the need for the conditional distribution of the occurrence process (reporting

times) and the claim sizes on the available information at time t strongly support the use

of Bayesian statistics. We compare the use of non-parametric and parametric approaches,

such that we are able to allow for flexibility to some parts of the model and use parametric

distributions that are known to perform well in the other parts.
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In recent years, multiple papers have been written that extend the literature on individual

claim reserving, for example by adding dependence between different types of claims by

means of a copula (Maciak et al. (2018)), or by using the Marked Point Process framework

for performing a case-study (Larsen (2007), and Plat and Antonio (2014)). In our model, we

do not consider dependence between different types of claims. Alternatively, we add depen-

dence between different parts of our model. For some parts of our model, we use survival

theory, following Zhao et al. (2009) and Zhao and Zhou (2010).

Compared to the existing models for individual claim reserving, this paper extends these

models by introducing dependence across different components in the model. Moreover,

in previous literature, either a non-parametric or a parametric approach has been used for

model estimation. We investigate in which part of the model a parametric or non-parametric

approach fits better. Eventually, we use the appropriate methods in each part of the model.

Third, we compare multiple ways of modelling the payment process by means of mixture

distributions and introduce zero adjusted distributions to model claim payments of zero.

Lastly, we introduce the link between the unearned premium reserve and the claim reserves,

such that insurers are able to use our model as one coherent framework to estimate these

reserves.
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Chapter 3

Claim Reserving

In this chapter, we discuss the development of a claim from the moment it occurs until the

moment at which the insurer handled the claim. Moreover, we discuss the types of reserves

an insurer holds according to the different stages of a claim.

3.1 Claim Process

In this section, we discuss the process of a claim. We first introduce the characteristics of a

claim. Then, we discuss how the characteristics of a claim fit into our model and how they

are related. Every claim i consists of

(i) an occurrence time Ti: the moment at which the event that leads to the claim takes

place;

(ii) a reporting delay Ui: the time between occurrence of the claim and the time of report-

ing;

(iii) a development process Di: the collection of events j, j = 1, 2, . . . Ni with the total

number of events for claim i given by Ni, between the moment of reporting and set-

tlement, which is denoted as Di = {(Vij, Kij, Yij) : j = 1, 2, . . . Ni}, where we define

Vij as the time between the (j − 1)-th and the j-th event, Kij as the type of event j,

with Kij = 1 indicating a payment and Kij = 0 indicating a settlement, and where we

define the payment process as

Yi(v) =

{
Yij for v = Vi1 + · · ·+ Vij

0 otherwise
(3.1)
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where v ∈ [0, Vi] indicates the place in time in the development process and Vi =∑Ni
j=1 Vij is the time it takes for claim i to settle from the moment of reporting;

(iv) and covariates Ci: the set of n policy characteristics known at the start of the policy,

Ci = (Ci1, Ci2, . . . Cin).

Figure 3.1 shows the process of a claim from occurrence until settlement. We will explain

every part of the figure hereafter.

0 Ti︸ ︷︷ ︸
Ti|Ci

︸ ︷︷ ︸
Ui|Ti, Ci

Ti+Ui
v

Y (v)

Vi1|
Yi1|V −i1 , Ui, Ti, Ci

Vi2|

Yi2|V −i2 , Ui, Ti, Ci

Vi3|
Vi

︸ ︷︷ ︸
Di

This figure displays the process of a claim from the start of the policy until the settlement of

the claim. Note that Vij| indicates Vij|V −ij , Ui, Ti, Ci.

Figure 3.1: A visual representation of the claim process

The first part of our model consists of modelling the occurrence times Ti, i ≥ 1. We model

the time at which the claim occurs as depending on characteristics of the policyholders Ci,

i.e. Ti|Ci. We incorporate these characteristics into the claim occurrence process to account

for groups with different characteristics. For example, we could argue that a man who has

just obtained his drivers license is expected to be more likely to have an accident and to

make a claim than someone who has had his drivers license for over ten years.

After the claim has occurred, there is a reporting delay before the claim is notified to the

insurer, which we denote by Ui. We model the reporting delay as depending on the covariates

Ci and the time of occurrence Ti, i.e. Ui|Ti, Ci. We do this, since there could be a difference

in the time it takes for someone to report a claim between, for example, women and men.
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The development process, Di, is the third part of the claim process and starts when the claim

is reported. As discussed before, the development process consists of different events. Each

claim can have multiple payments during its development process. The claim process ends

when the claim is settled, which can happen either with or without an associated payment.

We model the development process in two steps. First, we model the time until an event and

the probability of the event being a payment or a settlement. The second step is determining

the level of the payment. The level of the payment accompanying a settlement can take a

value of zero, indicating that there was no payment. The timing of the payments and the

levels of the payments could be different for claims with different characteristics. Moreover,

the reporting delay and the time of occurrence of the claim could have an effect on the

development process. For example, when it takes a while for the claim to be reported, it

could indicate that it is a complicated claim. This could lead to larger gap times or higher

payments due to the complexity of the claim. Therefore, we take the time of occurrence Ti,

the reporting delay Ui and the covariates Ci associated with the claim into account for the

development process part of our model. Furthermore, for the moment in time of the j-th

event in the development process of claim i, we take into account the development process

preceding the j-th event. The reason for this is that the number of previous payments or

the total amount paid could have an impact on the timing and level of the payments. We

denote the history of the development process of claim i up to the j-th event as V −ij , with

V −ij = (j − 1,
∑j−1

b=1 Vib,
∑j−1

b=1 Yib). So, the history of the development period that we include

consists of the number of previous payments (j−1), the time the claim has been in the devel-

opment process,
∑j−1

b=1 Vib, and the total payout up to the j-th event
∑j−1

b=1 Yib. Information

on the type of prior events Kij is not included in the history of the development process, as

they are always a payment. This is true since if the type of the previous event would have

been a settlement, the development period would have ended.

Our model thus consists of five parts. We model

(i) time of occurrence Ti|Ci,

(ii) reporting delay Ui|Ti, Ci,

(iii) the time between events Vij|V −ij , Ui, Ti, Ci,

(iv) the type of the events Kij|V −ij , Ui, Ti, Ci,

(v) and the level of the payments Yij|V −ij , Ui, Ti, Ci.

in Di
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3.2 Reserves

The aim of our model is to accurately predict the reserves that are needed to account

for the claims of an insurer. We have three types of claims for reserve modelling, namely

NINR, IBNR and RBNS claims. In the introduction of this paper, we discussed that the

reserve based on NINR claims is given by the unearned premium reserve. The unearned pre-

mium reserve is determined by the premium and is therefore based on the individual policy

characteristics. The estimation of the NINR claim reserve is outside the scope of this pa-

per. However, it is notable that this study provides for the link between the reserve based on

NINR claims and the reserves based on IBNR and RBNS claims, since the latter are now also

based on the individual claims. Our framework can therefore be used to estimate the NINR

reserves. In this section, we examine the differences between NINR, IBNR and RBNS claims.

At time τ , the time for which the reserves have to be estimated, we can distinguish be-

tween NINR, IBNR and RBNS claims. Figure 3.2 illustrates this distinction. If the claim

has not yet occurred, i.e. τ < Ti, it is a NINR claim. If the claim has occurred, but it

has not yet been reported, i.e., Ti < τ < Ti + Ui, it is an IBNR claim. In the case of

a RBNS claim, the claim has been reported and there has not been a settlement yet, i.e.

Ti + Ui < τ < Ti + Ui + Vi.

Claim
No

Delay
Reporting

Development Period

t=0 Ti︸ ︷︷ ︸
NINR

︸ ︷︷ ︸
IBNR

Ti+Ui Ti+Ui+Vi1 Ti+Ui+Vi1+Vi2 Ti+Ui+Vi︸ ︷︷ ︸
RBNS

This figure illustrates the way in which the different types of claims are defined.

Figure 3.2: Types of claim reserves

Let Bτ = {i|Ti < τ < Ti + Ui} and Sτ = {i|Ti + Ui < τ < Ti + Ui + Vi} be the sets of

indices corresponding to the IBNR and RBNS claims, respectively. Moreover, let Pi,τ =

{k|τ < Ti +Ui +
∑k

j=1 Vij < Ti +Ui +Vi} be the set of indices corresponding to events in the

development process from moment τ until the end of the development process for claim i.

The total reserves of IBNR claims, XIBNR, and RBNS claims, XRBNS, at time τ are given

by

XIBNR(τ) =
∑
i∈Bτ

∑
j∈Pi,τ

E(Yij), XRBNS(τ) =
∑
i∈Sτ

∑
j∈Pi,τ

E(Yij). (3.2)
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Chapter 4

Methodology

In this chapter, we introduce the methodology used to estimate our model. This chapter

consists of three sections. First, we discuss the building blocks that are used to estimate

the different parts of the claim process. In the section thereafter, we discuss the simulation

procedure used to simulate the reserves. In the last section, we discuss the criteria that we

use to choose an optimal model.

4.1 Building Blocks

In this section, we discuss the different building blocks of our model. As discussed before,

our model consists of four building blocks. In Section 4.1.1, we discuss the model for the

occurrence times of the claims conditional on the covariates, Ti|Ci. Thereafter, in Section

4.1.2, we introduce the model of the reporting delay of the claims conditional on the co-

variates and the time of occurrence of the claim, Ui|Ti, Ci. The third part of our model is

modelling the event times in the payment process and the probability that an event is a

payment or a settlement, which we discuss in Section 4.1.3. We introduce the model for our

final building block, the level of the payments, in Section 4.1.4.

In each part of this section, we discuss the distribution of the building blocks. The building

blocks of our model are conditionally independent. As a result, we are able to estimate the

four parts separately. Therefore, in each part of this section, we discuss the likelihood of one

specific building block and how we optimize the likelihood to find the right estimates.
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4.1.1 Rate of Occurrence

The first part of our model is the occurrence of claims. The total number of claim occur-

rences N(t) in time interval [0, t), t ∈ [0,∞), follows a Poisson distribution. The intensity of

the Poisson Process is modelled by a function λ(t). In the case of a non-constant intensity,

we call the process {N(t) : t ∈ [0,∞)} an inhomogeneous Poisson Process.

The number of occurrences in the time interval [0, t) for an inhomogeneous Poisson Pro-

cess follows a Poisson distribution as

N(t) ∼ Poisson

(∫ t

0

λ(u)du

)
, where N(0) = 0. (4.1)

To estimate the intensity in our model, we need to take into account two different aspects.

First, we incorporate information on the car insurance policies into the occurrence intensity.

We consider intensity λ(t|Ci), where Ci indicates the policy characteristics of claim i. The

intensity is given by

λ(t|Ci) = λ0(t) exp(x′iβ) (4.2)

where xi = Ci = (Ci1, . . . Cin) are the covariates included in the model and β is a vector of

length n indicating the effect of the covariates on the intensity. The density function of the

occurrence time of a claim, following Cook and Lawless (2007), is given by

fT (t|Ci) = λ0(t) exp(x′iβ) exp

(
−
∫ t

0

λ0(s) exp(x′iβ)ds

)
. (4.3)

Second, we account for the number of policies that are in the portfolio at time t. Instead

of solely using the policies that experienced a claim, we take all policies into account when

estimating the rate of occurrence. We do this for two reasons. First, an insurer always

takes the total number of active policies in his portfolio into consideration in order to get an

overview of the total risk. Therefore, we consider it useful to use all available information

to estimate the number of occurrences. Second, using this approach to estimate the rate

of occurrence makes it possible to estimate the number of occurrences for NINR claims by

using the estimated rate of occurrence and applying it to a specific (future) time period.

Earlier we discussed that we do not estimate the reserves for the NINR claims in this paper.

However, insurers now have the possibility to use this framework for estimating all three

types of reserves.
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An insurer has multiple policies in its portfolio, indexed by p = 1, 2, . . . P , such that P is

the total number of policies of the insurer. To account for the number of active policies in

the portfolio of an insurer, we define Ip(t) = I(Start date policy p ≤ t ≤ τ) as an indication

of whether policy p was active at time t. As a result,
∫ τ
0
Ip(s)ds indicates the total amount

of time that policy p was active from 0 to τ , which we define as the exposure of portfolio

p from time 0 to τ . The total exposure of the insurer in the period [0, τ) is defined as∑P
p=1

∫ τ
0
Ip(s)ds. For example, if we take τ = 30, then if policy p was active for 20 days

between [0, 30),
∫ τ
0
Ip(s)ds is given by 20.

The likelihood of the occurrence process for the observed claims with intensity λ(t|Ci) is

given by

L(λ0, β) =
∏
i≥1

(
λ0(ti) exp(x′iβ)

)

×
∏
p≥1

exp

(
−
∫ τ

0

Ip(s)λ0(s) exp(x′pβ)ds

))
,

(4.4)

where ti is the time of occurrence of the i-th claim, and xi = Ci and xp = Cp are the vectors

of covariates of the i-th claim and the p-th policy, respectively. The two terms are similar

to (4.3), where the second term is corrected for the time that the policies were active. The

derivation of the likelihood is given in the Appendix, Section 8.2.

In our model, we estimate λ0(t) in a piece-wise constant way. Hence, we model λ0 as

λ0(t) =
∑
l≥1

I(al−1≤t<al)λl,0, (4.5)

where [al−1, al) for each l = 1, 2, . . . indicates a monthly interval. This means that we define

an occurrence rate for each month such that we are able to capture differences between

months. Now, we adjust (4.4) to construct the likelihood of the claim occurrence process

with a piece-wise constant intensity.

L(λ1,0, . . . λl,0, β) =
∏
l≥0

((∏
i≥1

λl,0 exp(x′iβ)I(al−1<ti<al)

)

×

(∏
p≥1

exp−

(
λl,0 exp(x′pβ)

∫ al

al−1

Ip(s)ds

)))
,

(4.6)

where everything is as in (4.4) and I(al−1≤ti<al) indicates whether claim i occurred between

al−1 and al.
∫ al
al−1

Ip(s)ds is similar as before, indicating the exposure of portfolio p in [al−1, al).
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We optimize the likelihood given in (4.6) with respect to λl,0 by taking

λ̂l,0(β) =

∑
i≥1 I(al−1≤ti<al)∑

p≥1 exp(x′pβ)
∫ al
al−1

Ip(s)ds
for each l = 1, 2, . . . (4.7)

We learn from this equation that the maximum likelihood estimator for λl,0 is the total

number of occurrences from al−1 to al divided by the exposure. Furthermore, we need to

find estimates for β. We find the MLE for β by solving (4.8) for β. Then, we use it in the

definition of λ̂l,0(β) as in (4.7) to find λ̂l,0.

∂ logL(β)

∂β
=
∑
i≥1

(
x′i −

∑
l≥0 I(al−1≤ti<al)

∑
p≥1 exp(x′pβ)x′p

∫ al
al−1

Ip(s)ds∑
l≥0 I(al−1≤ti<al)

∑
p≥1 exp(x′pβ)

∫ al
al−1

Ip(s)ds

)
= 0. (4.8)

The proof of the optimization is given in the Appendix, Section 8.3.1.

4.1.2 Reporting Delay

The second part of our model concerns the reporting delay. The reporting delay of a

claim is defined as the time between the time of occurrence and the moment of reporting.

The reporting of a claim occurs only once in a claim process. Therefore, we model the delays

using survival theory.

The distribution of the reporting delay, FU(u|Ti, Ci), is characterized by a hazard rate

γU(u|Ti, Ci), which is defined as the instantaneous rate of occurrence of the event at time

t. The hazard rate γU is formally defined as γU = fU(u)/(1 − FU(u)), where FU(u) =

1 − exp(−
∫ u
0
γU(t)dt). Hence, we obtain the density by multiplying the hazard rate with

one minus the distribution function. The distribution of the reporting delay is dependent on

the time of occurrence of the claim Ti and the covariates Ci. To be able to incorporate the

covariates in the hazard rate of the reporting delay, we write it as follows:

γU(u|Ti, Ci) = γ0(u) exp(x′iβ). (4.9)

Here, γ0(u) is known as the baseline hazard rate, xi = (Ti, Ci), and β is a vector of length

n+ 1 indicating the effect of the covariates on the hazard rate. The baseline hazard rate can

be specified either in a parametric or in a non-parametric way. We use and compare the fit

of the different approaches in our model. First, we discuss the piece-wise constant hazard

rate, after which we discuss the parametric hazard rate.

18



Piece-wise Constant

A piece-wise constant baseline hazard rate can be seen as a non-parametric model. We

consider a baseline hazard rate that is fixed for small intervals and define it by

γ0(u) =
∑
w≥1

1(qw−1≤u<qw)γw,0. (4.10)

For each w, 1 ≤ w ≤ W , [qw−1, qw) is the interval on which the hazard rates are assumed to

be constant with W indicating the total number of intervals. We incorporate covariates in

the hazard specification as in (4.9). The likelihood is given by

L(γ1,0, . . . γw,0, β) =
∏
w≥1

(∏
i≥1

(γw,0 exp(x′iβ))I(qw−1≤ui<qw) exp

(
− γw,0 exp(x′iβ)

∫ qw

qw−1

Ii(s)ds

))
(4.11)

We can optimize the likelihood in (4.11) with respect to γw,0 given β by taking

γ̂w,0(β) =

∑
i≥1 I(qw−1≤ui<qw)∑

i≥1 exp(x′iβ)
∫ qw
qw−1

Ii(s)ds
for each w = 1, 2, . . . (4.12)

We get the MLE’s for β and γw,0 by solving (4.13) for β to obtain β̂ and use this in (4.12)

to obtain γ̂w,0.

∂ logL(β)

∂β
=
∑
i≥1

(
x′i −

∑
w≥1 I(qw−1≤ui<qw)

∑
i′≥1 exp(x′i′β)x′i′

∫ qw
qw−1

Ii′(s)ds∑
w≥1 I(qw−1≤ui<qw)

∑
i′≥1 exp(x′i′β)

∫ qw
qw−1

Ii′(s)ds

)
= 0. (4.13)

The proof of the optimization is given in the Appendix, Section 8.3.2.

Weibull

In a parametric approach, we fit the distribution of ui of a Weibull distribution. The

specification of the Weibull distribution with covariates can be seen as both an accelerated

failure time model, which assumes that the covariates accelerates or decelerates the time

by some constant, and a proportional hazards model, which assumes that covariates have

a multiplicative effect on the hazard. This is useful for our analysis, since now we do not

have to make the distinction between those two types of models. Therefore, we model the

reporting delay with a Weibull distribution. The Weibull baseline hazard rate is given by

γ0(u) = ρζ(ζu)ρ−1, ρ ≥ 0, ζ ≥ 0 (4.14)
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where ζ and p are the parameters that should be estimated. By combining (4.9) and (4.14),

we obtain the hazard rate of the waiting time

γ(u|Ti, Ci) = ρζ(ζu)ρ−1 exp(x′iβ) (4.15)

= ρζ∗(ζ∗u)ρ−1, (4.16)

where ζ∗ = ζ exp(x′iβ/ρ), with xi = (Ti, Ci), and β is a vector of length n+ 1 indicating the

effect of the covariates on the hazard rate. The density of the reporting delay with a Weibull

hazard rate is given by

fU(u|Ti, Ci) = ρζ∗(ζ∗u)ρ−1 exp

(
− (ζ∗u)ρ

)
. (4.17)

The likelihood is given by

L(ρ, ζ, β) =
∏
i≥1

ρζ(ζui)
ρ−1 exp(x′iβ) exp

(
− (ζui)

ρ exp(x′iβ)

)
. (4.18)

The likelihood is optimized by a Newton Raphson algorithm. First, the Weibull distribution

without covariates is fitted to the data. The ρ and ζ obtained from this optimization are

iteratively updated by the Newton Raphson method. The algorithm stops when the likeli-

hood has converged. The optimal ρ and ζ are stored. Then, we perform a linear regression

of the ui’s on the covariates to find the starting values for β. The values of β, ρ and ζ are

used as the starting values for the next Newton Raphson algorithm. After the algorithm

converges, we find our optimal estimates for ρ, ζ and β. The optimization algorithm can be

found in the Appendix, Section 8.3.4.

4.1.3 Event Rate and Event Probability

The third part of our model regards the events in the development process. First, we

discuss how we model the event rate in the development period. Thereafter, we discuss how

we model the probability of an event.

Event Rate

To model the events in the development process, we use theory on recurrent events. As

discussed in Section 3, we denote the gap time between the (j − 1)-th and the j-th event as

Vij. Theory on recurrent events assumes independence between the gap times of the events.

In our model, this is a strong assumption, since the events correspond to the same claim

with the same characteristics.
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In other words, the claim process does not restart after a payment. Therefore, the gaps

between the events can not be seen as independent, since they are influenced by the same

claim and its characteristics. One possible solution to this issue is to add covariates of the

claim and assume that the gaps are conditionally independent when taking into account

those covariates. However, conditional on the covariates of the claims, the gaps between

payments could still be dependent, since the payment structure can not be fully attributed

to those covariates.

Another option is to include information on the prior events in the hazard rate specification.

We use this method for controlling for the dependency between the gaps for two reasons.

First, all the information that is needed is available, such that we can fully control for the

dependency between the gaps. Furthermore, we want to include this information to study

the relation between the events in a development process. We denote the information on the

development process of a claim prior to an event with V −ij . The history of the development

period that we include consists of the number of previous payments, total payout and the

time the claim has been in the development process. In addition, we include the reporting

delay Ui, time of occurrence Ti and the covariates Ci in the hazard rate specification.

We denote the hazard rate as φ(v|V −ij , Ui, Ti, Ci) and model it as

φ(v|V −ij , Ui, Ti, Ci) = φ0(v) exp(x′ijβ). (4.19)

with xij = (V −ij , Ui, Ti, Ci) and β is a vector of length n + 5 indicating the effect of the co-

variates on the hazard rate. The vector xij differs for the different gap times between events,

but is by definition constant within a gap time.

The baseline hazard rate of the events in the payment process, φ0, is modelled both paramet-

rically and non-parametrically. As for the reporting delay, we consider two types of specifi-

cations for the hazard rate; the non-parametric approach and the parametric approach using

the Weibull distribution.

The likelihoods of the non-parametric and parametric approach are similar to those in (4.11)

and (4.18). The main difference is that some of the observations for vij are censored. This

means that we have two types of observations: one where vij is the time between two events

and one where vij is the time between the last event and τ , the end of the observation period.

Therefore, we introduce the variable δij = 1− I(vij is censored), such that δij = 1 indicates

a non-censored observation, whereas δij = 0 indicates a censored observation.
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The likelihood of the non-parametric, i.e. the piece-wise constant, approach is given by

L(φ1,0, . . . φz,0, β) =
∏
z≥1

∏
i≥1

(∏
j≥1

(φz,0 exp(x′ijβ))
I(rz−1≤vij<rz)δij (4.20)

× exp

(
− φz,0 exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds

))
, (4.21)

where
∫ rz
rz−1

Ii(s)ds indicates the exposure of claim i in the development process between rz−1

and rz, xij = (V −ij , Ui, Ti, Ci), and β indicates the effect of the covariates on the hazard rate.

Furthermore, for each z, 1 ≤ z ≤ Z, [rz−1, rz) is the interval on which the hazard rates are

assumed to be constant, with Z indicating the total number of intervals. The likelihood in

(4.21) can be optimized with respect to to φz,0 given β by taking

φ̂z,0(β) =

∑
i≥1
∑

j≥1 δijI(rz−1≤vij<rz)∑
i≥1 exp(x′ijβ)

∫ rz
rz−1

Ii(s)ds
for each z = 1, 2, . . . (4.22)

We get the MLE’s for β and φz,0 by solving (4.23) for β to obtain β̂ and using this in (4.22)

to obtain φ̂z,0.

∂ logL(β)

∂β
=
∑
i≥1

∑
j≥1

(
δijx

′
ij −

∑
z≥1 I(rz−1≤vij<rz)

∑
i′≥1 exp(x′i′j′β)x′i′j′

∫ rz
rz−1

Ii′(s)ds∑
z≥1 I(rz−1≤vij<rz)

∑
i′≥1 exp(x′i′j′β)

∫ rz
rz−1

Ii′(s)ds

)
= 0.

(4.23)

The proof of the optimization is given in Section 8.3.3 of the Appendix.

The likelihood of the parametric approach is given by

L(ρ, ζ, β) =
∏
i≥1

∏
j≥1

(
ρζ(ζvij)

ρ−1 exp(x′ijβ)

)δij
exp

(
− (ζvij)

ρ exp(x′ijβ)

)
, (4.24)

where ζ and ρ are parameters of the distribution to be estimated, xij = (V −ij , Ui, Ti, Ci), δij

indicates whether an observation is censored, and β is a vector of length n+ 5 indicating the

effect of the covariates on the hazard rate. The likelihood is optimized in the same way as

the likelihood in (4.18).
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Event Probability

After modelling the occurrence of an event in the development process, we need to de-

termine whether it is a payment or a settlement. Let κij ∈ 0, 1 indicate the type of event

of the j-th event of claim i, with κij = 1 indicating a payment and κij = 0 indicating a

settlement. As for the event hazard rates, we take into account the reporting delay Ui, time

of occurrence Ti, covariates Ci, and the history of the development process V −ij . We use

a logistic regression to compute the probability of the event being either a payment or a

settlement. There are only two types of events, such that we have P (κ = 0|V −ij , Ui, Ti, Ci) =

1− P (κ = 1|V −ij , Ui, Ti, Ci). The probabilities obtained from the regression are given by

P (κ = 1|V −ij , Ui, Ti, Ci) =
exp(x′ijβ)

1 + exp(x′ijβ)
, (4.25)

P (κ = 0|V −ij , Ui, Ti, Ci) = 1− P (κ = 1|V −ij , Ui, Ti, Ci), (4.26)

where xij = (1, V −ij , Ui, Ti, Ci) and β is a vector of length n + 6 indicating the effect of

the covariates on the event probability. Furthermore, we perform the regression without

covariates, such that we obtain the probability of a payment without the effect of covariates.

This way, we are able to compare the fit with and without covariates. The density of the

type of events is given by

fκ(κ|V −ij , Ui, Ti, Ci) = P (κ = 1|V −ij , Ui, Ti, Ci)κ(1− P (κ = 1|V −ij , Ui, Ti, Ci))1−κ, (4.27)

where κ ∈ {0, 1}. The likelihood is given by

L(β) =
∏
i≥1

∏
j≥1

(
exp(x′ijβ)

1 + exp(x′ijβ)

)κij( 1

1 + exp(x′ijβ)

)1−κij
. (4.28)

The values for β that maximize (4.28) are found by performing a logistic regression.
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4.1.4 Payment Distribution

The last part of our model is modelling the level of the payments. Similarly to the previous

parts of the claim process, we use covariates in the payment distribution. As before, the

reporting delay Ui, time of occurrence Ti, covariates Ci, and the history of the development

process V −ij are included. We denote the payment after gap time Vij as Yij. First, we discuss

the regular payments. In the second section, we discuss how we model the payments that

are associated with settlements.

Payments

To account for the various shapes of our payment distributions, we use mixture distribu-

tions. Moreover, we add covariates to the payment distribution. We do this by introducing

link functions, which map the parameters of a distribution to the covariates. We combine

the use of the mixture distribution and the link function. In this section, we first shortly

introduce the concept of mixture distributions, after which we discuss how to make the pa-

rameters of the distributions in the mixture distribution covariate dependent.

We start by introducing the mixture distribution. The two distributions that we use for

the different combinations of distributions are the Log Normal distribution and the Gamma

distribution. The distribution of a mixture distribution consisting of K different distributions

is given by

FY,MX(y|θ) =
K∑
k=1

πkFY,k(y|θk) (4.29)

where πk is the weight assigned to the k-th distribution in the mixture distribution, with∑K
k=1 πk = 1, and θk are the parameters of the k-th distribution.

We add covariates to the mixture distribution, i.e. we make the parameters of the density

functions fY,k dependent on xij, where xij are the covariates corresponding to the payment

Yij. In our mixture model, we have K distributions, where each of the K distributions has

its own parameters. Both of the distributions we use are two parameter distributions. We

denote the parameters as θk = (µk, σk), indicating the first and second parameter of the k-th

distribution, respectively.
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We use link functions to create the relation between the parameters and the covariates.

Link functions are functions that map a parameter of the distribution to a function of the

covariates. Let gµ,k(·) and gσ,k(·) be link functions of parameters µk and σk of the k-th

distribution in the mixture distribution. The link function of the distribution is linearly

linked to the covariates, which means that the link function of the parameter is equal to

product of the covariates and the coefficient, namely

gµ,k(µij,k) = x′ijβµ,k, (4.30)

gσ,k(σij,k) = x′ijβσ,k, (4.31)

where xij = (V −ij , Ui, Ti, Ci), the parameters µij,k and σij,k are the first and second parameter

of distribution k for claim i and event j, and βµ,k and βσ,k are the vectors of length n + 5

indicating the effect of the covariates on the link functions of µij,k and σij,k, respectively.

In (4.30) and (4.31) we observe that it is possible to specify a separate link function for

each parameter and for each distribution. In Table 4.1, we give an overview of the link

functions used. The link function for µ in the Log Normal distribution is the identity link

function, whereas for the Gamma distribution it is a log link. The link function for σ is the

same for both distributions. By inverting the link functions, we obtain the relation between

the parameters of the distribution and the covariates, which are given in the last column of

Table 4.1.

Table 4.1: Link Functions

This table shows for each parameter which type of link function is used to relate the

covariates to that specific parameter. The last column indicates the direct relation between

the covariates and the parameters.

Parameter Link Function Inverse of Link Function

Log Normal µk g(µij,k) = µij,k = x′ijβµ,k µij,k = x′ijβµ,k

σk g(σij,k) = log(σij,k) = x′ijβσ,k σij,k = exp(x′ijβσ,k)

Gamma µk g(µij,k) = log(µij,k) = x′ijβµ,k µij = exp(x′ijβµ,k)

σk g(σij,k) = log(σij,k) = x′ijβσ,k σij,k = exp(x′ijβσ,k)

Furthermore, since we use a mixture distribution, we need to estimate the values for πk in

(4.29) as well. To make it covariate dependent, we specify the following link function

gπ,k(πij,k) = x′ijβπ,k, (4.32)
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where xij = (V −ij , Ui, Ti, Ci), πij,k is the weighting of distribution k for claim i and event j,

and βπ,k are vectors of length n+5 indicating the effects of the covariates on the link function

of πij,k.

We use a logit link to relate the parameter πk to the covariates. We need
∑K

k=1 πk = 1.

Therefore, we use a multinominal logistic regression, such that we have

πk =


exp(x′ijβπ,k)

1 +
∑K−1

k′=1 exp(x′ijβπ,k′)
for k = 1, . . . , K − 1

1

1 +
∑K−1

k′=1 exp(x′ijβπ,k′)
for k = K

(4.33)

We can use the above mentioned link functions to construct the likelihood for the mixture

distribution with covariates. Let Ik(Yij) indicate whether payment Yij belongs to distribu-

tion k for each k, 1 ≤ k ≤ K. The likelihood for the payments in our model is given by

L(µ, σ, π) =
∏
i≥1

∏
j≥1

(π1fY,1(yij|µ1, σ1, xij))
I1(yij)

· (π2fY,2(yij|µ2, σ2, xij))
I2(yij) · · · (πKfY,K(yij|µK , σK , xij))IK(yij)

(4.34)

In order to determine the values for the parameters of the payment distribution, we need

to find the values of βπ,k, βσ,k, βµ,k for each k that optimize the likelihood given in (4.34).

We do this by performing an EM algorithm. The EM algorithm finds optimal values for

the parameters of the k distributions and the weights that need to be assigned to each

distribution in the mixed distribution by iteratively optimizing the likelihood. In our case, in

each iteration, instead of using a normal maximization of the likelihood to find the parameters

of the distribution, we perform a weighted likelihood optimization to find each of the βk,j by

using a Newton Raphson algorithm. Using this approach, instead of finding the value of the

parameters σ, µ, π, we find the βk,j’s that link the covariates to the values of the parameters.

A more detailed overview of the algorithm can be found in the Appendix, Section 8.4.1.

26



Settlements

The payments during the development process, i.e. not at the settlement date, are always

positive. Contrarily, a settlement can occur either with or without a payment, which implies

that there is a positive probability that the level of the payment is zero. In order to model

the levels of the payments associated with settlements, we need to take into account the

probability of a zero payment. The Log-Normal and Gamma distribution do not have a

mass at zero. Therefore, to model the settlement payments, we add a point probability at

zero. First, let us define ξ0 as the probability that a payment Yij is zero, 0 ≤ ξ0 ≤ 1. The

probability of a zero-payment is estimated as covariate dependent. Therefore, we use a logit

link function to map ξ0 to the covariates xij,

gξ0(ξ0) = logit(ξ0) = x′ijβξ0 . (4.35)

where xij = (V −ij , Ui, Ti, Ci), ξ0 is the probability of a zero payment, and βξ0 is the vector of

length n+ 5 indicating the effect of the covariates on the link function of ξ0. The inverse of

the link function is given by

g−1ξ0 (x′ijβξ0) = ξ0 =
exp(x′ijβξ0)

1 + exp(x′ijβξ0)
. (4.36)

Let I0(Yij) indicate whether payment Yij is a zero payment. The likelihood of the zero

adjusted model is given by

L(µ, σ, π, ξ0) =
∏
i≥1

∏
j≥1

ξ
I0(yij)
0 ·

(
(1− ξ0)(π1fY,1(yij|µ1, σ1, xij))

I1(yij)

· (π2fY,2(yij|µ2, σ2, xij))
I2(yij) · · · (πKfY,K(yij|µK , σK , xij))IK(yij)

)1−I0(yij)

(4.37)

where xij = (V −ij , Ui, Ti, Ci) are the covariates corresponding to payment Yij and the addi-

tional parameter ξ0 allows for the probability mass at zero.

To estimate the parameters of the payment distributions of settlements, we introduce a

new step in the algorithm to calculate the value for βξ0 that optimizes the likelihood in

(4.37). We first divide the payments into zero and non-zero payments. We estimate the

value of ξ0 based on the probability of the payment being a zero payment or a non-zero

payment. Thereafter, as before, we use the Newton Raphson algorithm to find the values

for βξ0 . The analysis continues as in 4.1.4, where the zero-payments are assigned a weight 0

for all iterations. The complete step can be found in the Appendix, Section 8.4.2.
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4.2 Simulation

In the previous section, we discussed how the parameters of our model are estimated. In

this section, we discuss how we simulate the IBNR and RBNS reserves at time τ using. We

simulate the reserves for one year, using covariates for all parts of the model. The simulation

procedure for the reserves without taking into account the covariates can be found in the

Appendix.

First, since the time of occurrence, the covariates and the reporting delay of the IBNR

claims are not known to the insurer at time τ , we need to simulate these variables. We

will discuss how we simulate these first. Then, we discuss the way in which we simulate the

development period for each IBNR and RBNS claim, as the simulation procedure is the same

for both types of reserves. In the last section we discuss how the reserves are calculated based

on the simulated claim processes for both types of reserves. Every simulation is performed

M times, such that we have M reserves at the end of the simulation.

4.2.1 Time of Occurrence and Reporting Delay

We start the simulation of the IBNR claims by first simulating the time of occurrence,

after which we simulate the corresponding covariates. Based on these covariates and time of

occurrence, we simulate the reporting delay. The complete simulation is displayed in Algo-

rithm 1.

We simulate the number of IBNR claims originated in month l. We first determine the ex-

posure in month l for each combination of covariates xi. We multiply this with λl,0 exp(x′iβ),

which is the intensity in month l with covariates xi. We do this for every combination of

covariates and then add it to get the total for month l. The resulting number is the expected

number of occurrences for month l based on λ̂l,0(β), which we indicate with Nl.
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The rate of occurrence λ̂l,0(β) that we estimated, is the rate based on the claims that have

been reported. However, for each month l, there is a positive probability that there are

claims that have occurred, but have not yet been reported. To obtain the number of claims

that have occurred in month l, but have not yet been reported at time τ , denoted with

N IBNR
l , we need to correct Nl as

N IBNR
l = Nl

∫ al
al−1

(1− FU(τ − s))ds∫ al
al−1

FU(τ − s)ds

= Nl

( ∫ al
al−1

1ds∫ al
al−1

FU(τ − s)ds
− 1

)

= Nl

∫ al
al−1

1ds∫ al
al−1

FU(τ − s)ds
−Nl. (4.38)

Hence, we multiply the number of occurrences based on the observed occurrence rate with a

factor to obtain the real number of occurrences in month l and subtract the observed number

of occurrences to obtain the number of IBNR claims, i.e. the claims that occurred in month l

but have not yet been reported at time τ . We need FU(τ − t) to correct for the right amount

of claims. Here, we use a simplistic version of the reporting delay distribution: we use the

Weibull hazard rate without any covariates. This reporting delay distribution is only used

for this calculation and is not consistent with the rest of the paper. We choose to do it this

way, to make this part somewhat more simplistic.

From our simulation it follows that for each simulated claim, we also know the covariates

of that claim, i.e. xi. Hence, these do not have to be simulated separately. To determine

the day of occurrence, we draw a random uniform distributed number between 1 and the

number of days in that month for each claim. We use this number as the occurrence date of

the IBNR claim in month l.

We continue our simulation by simulating the reporting delay for each of the simulated

IBNR claims. To obtain the reporting delays, we simulate from the distribution function of

the reporting delay, FU(u|Ti, Ci). First, we simulate a random variable from the Uniform

distribution, which we use to compute the reporting delay. In Section 8.5, the simulation

procedure using a hazard rate is explained in more detail.
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After simulating the three variables, time of occurrence, reporting delay and the covari-

ates, we have the same information of the IBNR claims as we do of the RBNS claims.

Accordingly, in our next step, we continue with simulating the development process for both

the IBNR and RBNS claims.

Algorithm 1 IBNR Claims With Covariates

1: for m = 1 : M do

2: procedure Occurrence Time and Covariates

3: for Each Month l do

4: Number of IBNR claims ← RPoisson(N IBNR
l )

5: Day in month ← RUnif(1, Number of days in month l)

6: N ← Sum of simulated IBNR claims over all months l = 1, 2, . . .

7: for i = 1 : N do

8: procedure Reporting Delay

9: xi ← (Ti, Ci)

10: Y ← Draw a randomly distributed U(0,1) variable

11: Weibull:

12:

13: Ui ←
(−ζ log(Y ))1/ρ

exp(x′iβ)
14: Piece-wise Constant:

15:

16: Ui ←
H−1(− log(Y ))

exp(x′iβ)
with H−1 as in (8.39) of the Appendix

4.2.2 Development Process

The development process simulation is the same for IBNR claims as for RBNS claims.

First, we determine the number of claims and simulate the event time and event type of the

first event j = 1 for each claim i. Then, we simulate the payments Yi1 for that event for

each claim i. The covariates are updated and the claims for which a settlement took place

are closed. This simulation step is repeated until all claims have been settled. Algorithm 2

displays the simulation in more detail.
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Algorithm 2 Development Process With Covariates

1: for m = 1 : M do

2: j ← 0

3: Open Claims ← All Claims i

4: while There are Open Claims do

5: for i in Open Claims do

6: j ← j + 1

7: procedure Event

8: Y ← Draw a randomly distributed U(0,1) variable

9: Vij ←
H−1(− log(Y ))

exp(x′ijβ)
(See Appendix Section 8.5)

10: Kij ← RBernoulli with probability
1

1 + exp(xiβ)

11: if Kij = 1 then

12: procedure Payment

13: Compute value for µij,k, σij,k and πij,k for each k with covariates xij

and βµ,k, βσ,k and βπ,k

14: U ← Draw a randomly distributed U(0,1) variable

15: Payment Yij ← F−1Y,MX(U |µij, σij, πij)

16: if Kij = 0 then

17: procedure Settlement

18: Compute value for µij,k, σij,k, πij,k, ξ0 for each k with covariates xij and

βµ,k, βσ,k, βπ,k and βξ0
19: U ← Draw a randomly distributed U(0,1) variable

20: Payment Yij ← F−1Y,0(U |µij, σij, πij, ξ0)
21: Close claim i

22: procedure Update Covariates

23: Total Payout = Total Payout + Yij

24: Time in Development = Time in Development + Vij
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4.2.3 Reserves

To estimate the reserves, we add all the payments Yij for each month. Through this

way, we get a prediction of the losses for each month. To obtain the total reserve amount,

we add all the monthly losses, such that we have a total value for the losses of the coming

year. We calculate it for one year ahead, as this is the period for which we have the actual

payments. This way, we can compare the our simulated reserves with the actual values. The

total simulation is performed M times, so that we have M estimates of the total reserve that

should be held for both claims.

Algorithm 3 Reserve Calculation

1: for m = 1 : M do

2: procedure Reserves

3: for Each month l do

4: XIBNR(l)← Sum of Yij of IBNR claims made in month l

5: XRBNS(l)← Sum of Yij of RBNS claims made in month l

6: X
(m)
IBNR ←

∑
l≥1XIBNR(l)

7: X
(m)
RBNS ←

∑
l≥1XRBNS(l)
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4.3 Methods of Comparison

In our analysis, we need to compare the different models. In this section, we introduce

three methods of comparison that we use to compare (parts of) our models: the Kaplan-

Meier estimate, the AIC and the VaR.

First, in order to compare the fit of the hazard rates, we use the Kaplan-Meier estimate.

The Kaplan-Meier estimate is an estimate that can be used to check the fit of a hazard rate,

which we use for both the reporting delay and the gap times of the events.

Second, we need to determine which covariates add value to the estimation of our parame-

ters, i.e., we need to select the model that fits our data best. We have multiple covariates

that we include in our analysis and therefore have many possible combinations of those co-

variates that we can include in our final model. One possibility is to consider the p-values of

the covariates and select the significant covariates. A drawback of this approach is that p-

values are only valid for comparing nested models. Therefore, we can not use this approach

to compare non-nested models. To compare the different models, we will use the Akaike

Information Criterion, or AIC.

Third, after performing our simulations, we want to determine whether incorporating covari-

ates in all parts of the model, i.e. the occurrence process, reporting delay and development

process, adds value. We want to compare the different models based on their accuracy of

predicting the reserves. The reserves that an insurer holds are the expected total loss arising

from payments of a specific type of claim. Therefore, we consider if including covariates

improves the estimation of the reserves by considering the expected loss from our simula-

tions, which is given by the mean of our simulations. Furthermore, we examine the standard

deviation of the simulations for each model as an indication of the confidence interval of our

simulations. Lastly, we examine the Value at Risk in order to have an indication of the tail

of the distribution of our simulations. We will use the Monte Carlo method for estimating

the Value at Risk.
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4.3.1 Kaplan-Meier

The Kaplan-Meier estimator is a non-parametric estimator for the survival function

(Kaplan and Meier, 1958). A survival function is a function S(u), which is defined as

S(u) = Pr[U > u], i.e. S(u) = 1 − F (u), where F (u) is the distribution function of u. The

hazard rate γU(u) can be linked to the survival function as γU(u) = fU(u)/(1 − FU(u)),

where we now have FU(u) = 1−SU(u). The Kaplan-Meier estimator for the reporting delay

is given by

Ŝ(u) =

∑
i≥1 I(ui > u)∑

i≥1 1
, (4.39)

which is a step function that decreases each time a claim is reported.

A similar approach can be used to find the Kaplan-Meier estimate for the survival function

of the gap times between events vij. A part of observations of the gap times are censored,

which implies that we do not know exactly what the value of I(vij > v) is. As before, we

let δij = (1− I(vij is censored)) indicate whether event j of claim i is observed (δij = 1) or

censored (δij = 0). The Kaplan-Meier estimate for the gap times is given by

Ŝ(v) =
∏
o:v∗o≤v

(
1−

∑
i≥1
∑

j≥1 I(vij = v∗o)δij∑
i≥1
∑

j≥1 I(vij ≥ v∗o)

)
(4.40)

where v∗o are the distinct values among all vij, i ≥ 1,
∑

i≥1
∑

j≥1 I(vij = v∗o)δij is the number

of uncensored events with a gap time equal to v∗o and
∑

i≥1
∑

j≥1 I(vij ≥ v∗o) is the number

of events with a gap time greater than or equal to v∗o for both uncensored and censored

observations. In the calculation of the Kaplan-Meier estimator, we allow for more than one

value being equal to v∗o .

We use the Kaplan-Meier estimate to check whether the Weibull distribution has a good

fit to the data. To do this, we make use of a property of the Weibull distribution. The

Weibull survival function for the reporting delay is given by

S(u) = exp(−(ζu)ρ). (4.41)

By taking the log of the negative log of the survival function, we get

log[− log(S(ui))] = ρ log(ζ) + ρ log(ui). (4.42)

We observe that the log of the negative log plotted against the log of the time between events

should have a linear relationship in order for the Weibull to have a good fit to the data.
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Moreover, it is possible to compare the fit of the Weibull distribution with covariates for

the reporting delay and the gap times by checking whether the linear relations in (4.43) and

(4.44) hold.

log[− log(S(ui|Ti, Ci))] = ρ log(ζ) + ρ log(ui) + x′iβ, (4.43)

log[− log(S(vij|V −ij , Ui, Ti, Ci))] = ρ log(ζ) + ρ log(ui) + x′iβ, (4.44)

where Ŝ(ui|Ti, Ci)) and Ŝ(vij|V −ij , Ui, Ti, Ci) are defined as the Kaplan-Meier estimate based

on the covariates for the reporting delay and the gap times, respectively. The proof of this

relation can be found in the Appendix, Section 8.6. However, as the number of covariates n

becomes larger, the total number of combinations of covariates becomes larger. This implies

that we need to check a large number of plots to verify the fit of the Weibull distribution. As

this is not optimal, we choose to use the Kaplan-Meier estimate to check the fit of the Weibull

distribution without covariates. Afterwards, we check the added value of the covariates, as

explained in the next section.

4.3.2 Akaike Information Criterion

The Akaike Information Criterion, AIC, is often used for comparing models. One of its

advantages is that it penalizes the use of too many parameters, such that overparameteri-

zation is avoided. This is especially useful for our analysis, as we want to examine whether

including additional covariates improves our model. The AIC is given by

AIC = −2l(θ̂) + 2η, (4.45)

where l(θ̂) denotes the value of the partial log likelihood at the maximum partial likelihood

estimate for a model, θ̂, and η denotes the number of parameters in the model. The first term

indicates the goodness of fit of the model, whereas the second term penalizes complexity due

to a larger number of parameters. A low AIC indicates that a model fits the data well with

few parameters. Therefore, we select the model that has the lowest AIC.
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4.3.3 Mean, Standard Deviation and VaR

The values for the mean and standard deviation of our simulations are simply given

by the average and the standard deviation of the M simulated losses for each type of re-

serve. We compare our expected value of the losses for the next year, which is given by

the mean of our simulations, with the actual payments that have been made in that year.

This way, we can examine whether incorporating covariates improves the reserve calculation.

Furthermore, we compute the Value at Risk. Value at Risk, VaRα, is often used for mea-

suring risk and is included in the Solvency framework used by insurance companies. It is

defined as the minimum loss χ such that the probability of a larger loss than χ is smaller than

1 − α, where α ∈ (0, 1). The loss is estimated over a specified time period. In accordance

with the Solvency II framework, we use α = 0.995(99.5%) and estimate VaRα over one year.

Formally, we define VaRα as

VaRα = inf{χ ∈ R : Pr(X > χ) ≤ 1− α} (4.46)

= inf{χ ∈ R : F(χ) ≥ α}. (4.47)

The Monte Carlo method is an approach that estimates the VaRα by simulating losses from

their parametric distribution. First, we use the M simulated losses for each type of reserve.

Then, we order the losses from small to large and take the α-th quantile of the ordered losses

to obtain VaRα. The computation of the expected value, standard deviation and the VaR is

given in the Algorithm below.

Algorithm 4 Expected Value, Standard Deviation and VaRα Calculation

1: procedure Mean and Standard Deviation

2: Expected Loss IBNR ←
∑M

m=1X
(m)
IBNR

3: Standard Deviation IBNR ←

√∑M
m=1(X

(m)
IBNR −XIBNR)2

M − 1

4: Expected Loss RBNS ←
∑M

m=1X
(m)
RBNS

5: Standard Deviation RBNS ←

√∑M
m=1(X

(m)
RBNS −XRBNS)2

M − 1

6: procedure VaR

7: X
(+)
IBNR ← Ordered X

(m)
IBNR

8: VaR99.5%(IBNR)← 99.5% Quantile of X
(+)
IBNR

9: X
(+)
RBNS ← Ordered X

(m)
RBNS

10: VaR99.5%(RBNS)← 99.5% Quantile of X
(+)
RBNS
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Chapter 5

Data

In this paper, we use data from a car insurer from January 2011 until December 2016.

We use the first five years of the data set, i.e. from 2011 until 2015, to estimate our model.

We simulate the reserves based on payments for 2016 and compare the reserves with the

actual payment data of 2016. Our data consists of two data sets: one data set with policy

information of the 5,025,658 policies that were in the portfolio of the insurer and one data set

with information on 319,640 claims that have been reported by the policyholders. Therefore,

on average, we have 1 claim per 16 policies over the last five years.

The first data set contains information on the development of a claim from the moment

of occurrence until a settlement. Therefore, we have information on the date of occurrence,

date of reporting, and dates and heights of the payments and settlement for each claim.

There are 385,728 payments associated with the claims, of which 198,387 belong to regular

payments and 187,341 are payments accompanying a settlement. This indicates that there

are 121,297 settlements with a zero payment. Furthermore, we are able to calculate the ex-

posure of the insurer for each month, which is defined as the total number of active policies

weighted by the number of days that they were active in that month. In Table 5.1 we give

a more detailed overview of the data.

Figure 5.1 displays histograms of the reporting delay and the total payout. We observe

that the reporting delay differs for the first 15 days, after which it gradually declines. More-

over, the total payout has a long tail.
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Table 5.1: Summary Statistics

This table reports summary statistics of the variables used in our analysis.

Min Mean Max Count

Time of Occurrence 0 161 524 319,640

Reporting Delay 0 25 1,475 319,640

Time between Events 0 24 2,037 868,330

Time to Settlement 0 70 2,120 6,831

Payments 0 1,582 901,233 198,387

Settlement Payments 0 423 77,850 308,638

Total Payout 0 890 1,040,159 308,638

Exposure per Month 35,790 67,595 86,480 -
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Panel (a) and Panel (b) of this figure show the histograms of the reporting delay data and

the total payout data for 2011-2015, respectively.

Figure 5.1: Histograms of the data
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The second data set contains information on the policy for different versions of the insurance

for each policyholder. For example, when a policyholder buys a different car, the policy is

updated and a new version is reported in the data set. The start and end date of every ver-

sion is known, so we link a claim to the right version based on the time of occurrence of the

claim. Information about the policies consists of demographic statistics of the policyholder,

information on the car that is insured and information on the type of insurance.

In our model, we only use the all-risk insurance car policies. We do this to avoid a bias

for a specific type of insurance. The demographic statistics and information on the car can

be found in Table 5.2. The information on the car consists of the catalog value of the car and

an indicator that specifies whether the car is an old car. These two variables are available for

the large majority of the policies. However, the data about the demographic statistics of the

policyholder is not complete. Unfortunately, the majority of the claims, 88%, do not have in-

formation on the sex of the policyholder and from 20% of the claims it is not known what the

age of the policyholder is. Therefore, we choose to not include these variables in our analysis.

We choose to include the catalog value of the car as a categorical variable for computa-

tional reasons. The out of sample simulations take a long time. Therefore, to make the

simulation faster, we choose to use a categorical variable such that the number of possible

distributions is limited.

Table 5.2: Policy Characteristics

This table provides descriptions for the four available policy characteristics in the data set.

The number of NA’s indicate the number of missing values of each variable.

Variable Description NA’s

Catalog Value Car Categorical variable for the catalog value of the car, 1 (0%)

1 = Low, 2 = Intermediate and 3 = High

Old Car Indicator variable on whether the car is an old car, 127 (0%)

1 = Yes and 0 = No

Gender Policyholder Indicator variable for the gender of the policyholder, 281,838 (88%)

1 = Male and 0 = Female

Age Policyholder Continuous variable for the age of the policyholder 63,992 (20%)
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Chapter 6

Results

In this chapter, we discuss the results of our analysis. First, we discuss the empirical

results of fitting our model. Thereafter, we compare the results of our simulations.

6.1 Empirical results

In this section, we discuss the empirical results of our analysis on the development of a

claim and compare which model specification fits our data best.

6.1.1 Rate of Occurrence

The time of occurrence is modelled as a Poisson process with rate λ̂l,0. The values for

λ̂l,0 for every month in the last years are displayed in Figure 6.1. We display the rate of

occurrence by using calendar time instead of time passed since the start of the policy as this

is standard practice for car insurers. One of the reasons for using calendar time is that the

policies often change over time, due to changes in the terms and conditions of the policies.

Therefore, there are many versions of the same policy of the same policyholder. It is critical

to assess which change in the policy brings about a new policy in order to obtain the time

that has passed since the start of the policy. It is more objective to use calendar time instead

of time passed since the start of the policy, as this does not require an assessment of the

terms and conditions. Therefore, in this part of our analysis, we obtain the occurrence rate

per calendar month. We observe that the occurrence rate has declined over the past years.

Furthermore, the occurrence rate differs for each month of each year, indicating that there

is an added value for modelling the occurrence rate per month instead of per year or per

season.
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This figure displays the rate of occurrence for each month of the years 2011-2015.

Figure 6.1: Occurrence Rate

In order to check which covariates improve the fit of our model, we use a backwards step-wise

analysis based on the AIC of the models. In this analysis, we first include all covariates and

compute the AIC. Then, for each covariate, we compute the AIC of the model without that

covariate. We select the model with the lowest AIC and perform the second step again. We

do this iteratively until the AIC of the model without deleting a covariate is the lowest. The

model specification of the rate of occurrence with the lowest AIC contains only the coefficient

for the age of the car. The full model and the AIC of all models can be found in Table 8.2

and Table 8.3 of the Appendix, respectively. The coefficient of the covariate of the age of the

car in Table 6.1 indicates that the rate of occurrence increases for old cars. An explanation

is that an old car is more likely to have a failure of (a part of) the car, which causes a higher

occurrence of a claim.
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Table 6.1: Rate of Occurrence Coefficient

This table reports the coefficient estimate (standard deviation) for the variables in the

optimal model for the rate of occurrence.

Estimate

Old Car 0.051**

(0.017)

Note: ** p<.05

6.1.2 Reporting Delay

The hazard rate of the reporting delay of the claims is modelled both parametrically and

non-parametrically. To explore the fit of the Weibull hazard rate, we examine the plot of the

log of the log of the survival function against the log of the reporting delay. If the Weibull

hazard rate is a proper hazard for the data, the relation between these two variables should

be linear. In Figure 6.2, we observe that the observations do not follow the straight line.

As the Weibull distributions does not have a good fit with the data, we choose to model

the reporting delay with a piece-wise constant baseline hazard. We inspect the histogram

of the reporting delays to determine the intervals for which the hazard rates are assumed

to be constant. The number of claims with a reporting delay within the first 15 days differ

substantially. Therefore, we choose a daily interval for the first 15 days. Thereafter, we keep

the hazard rate constant over a ten day interval.
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This figure plots log[− log[Ŝ(ui)]] versus the log of the reporting delays log(ui). A linear

line indicates a good fit of the Weibull specification for the hazard rate.

Figure 6.2: Visual inspection of the fit of the Weibull hazard rate for the reporting delay

On top of the piece-wise constant hazard rate, we add covariates to the hazard rate to check

whether this improves the fit of our model. We do this with the backwards step-wise anal-

ysis. The full model, including the covariates for time of occurrence, the age of the car and

the catalog value of the car, has the lowest AIC and is shown in Table 6.2. The AIC values

of the different models considered in the backwards analysis can be found in Table 8.4 in the

Appendix.

First, we observe that the effect of the time of occurrence on the reporting delay is sig-

nificant, but small. An increase in the time of occurrence of 6 months increases the hazard

rate with 0.01%. As the effect on the hazard rate is small, there does not seem to be a

relation between the reporting delay and the time of occurrence. The coefficients of the

policy characteristics are significant. This implies that the inclusion of policy characteristics

contributes to the fit of the model, whereas incorporating dependency between the reporting

delay and the time of occurrence has no added value for this part of the model.
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As an example, the coefficient of the variable old car is given by -0.041, which indicates

that the hazard is a factor exp(−0.041) = 0.960 smaller. Therefore, the time to reporting is

longer. This could be due to the fact that it takes longer to determine the damage to an old

car, which leads to a longer time to reporting in case of an old car.

Table 6.2: Reporting Delay Coefficients

This table reports the coefficient estimates (standard deviation) for the variables in the

optimal model for the reporting delay. The last column indicates the change in the hazard

rate corresponding to the coefficient estimate of each variable.

Change

Estimate in Hazard Rate

Old Car -0.041* -4.017%

(0.017)

Catalog Value ”Intermediate” -0.046*** -4.496%

(0.004)

Catalog Value ”High” -0.140*** -13.064%

(0.007)

Time of Occurrence 6.01E-7*** +6.01E-7%

(0.000)

Note: * p<.10, ** p<.05, *** p<0.01

6.1.3 Event Rate

The time between events in the development process is estimated with a piecewise con-

stant and a Weibull hazard rate. First, we examine the fit of the Weibull model. Figure

6.3 shows that the observations closely follow the straight line of the double log of the

Kaplan-Meier survival function. Therefore, the Weibull distribution is able to model the

time between events in the development process accurately.
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This figure plots log[− log[Ŝ(vij)]] versus the log of the event gap times log(vij). A linear

line indicates a good fit of the Weibull specification for the hazard rate.

Figure 6.3: Visual inspection of the fit of the Weibull hazard rate for the event rate

We estimate the Weibull hazard rate with and without covariates. The estimates of the

model without covariates are given in the second column of Table 6.3. The shape and scale,

ρ and ζ, of the Weibull distribution, are given by 0.625 and 27.33, respectively. Further-

more, we estimate the model with covariates. We again use the backwards step-wise analysis

to check which covariates add value to our model. The results of the backwards step-wise

analysis can be found in the Appendix, Table 8.5.

The optimal model following from the backwards step-wise analysis consists of the num-

ber of payments, the age of the car, the reporting delay, the time in the development process

and the total payout as covariates. This implies that creating dependency between the model

components, i.e. the reporting delay and the event hazard, as well as including the history

of the development process improves the fit of our model. To further asses our model, we

inspect the deviance residuals. Panel (a) in Figure 6.4 shows the deviance residuals of the

data when we use the Weibull hazard rate without covariates. Each plot in the panel shows
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the results for observations with a specific value of a covariate. The first, second, and third

figure show the deviance results of the data with different values of the time in the develop-

ment process, the age of the car, and the total payout, respectively. The lower panel, Panel

(b), displays the deviance residuals of the data for different covariate values when we use a

Weibull hazard rate with covariates. We observe that the deviance residuals are more evenly

distributed in the lower plots than in the upper plots. This implies that the model with

covariates has a better fit with our data.
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(a) Residuals using a hazard rate without covariates
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(b) Residuals using a hazard rate with covariates

Panel (a) and Panel (b) show the deviance residuals of the data after using a hazard rate

without and with covariates, respectively. Each of the three plots in each panel displays the

deviance residuals of the data for a specific covariate, where each bar in the plot respresents

the deviance residuals of the data for a specific value of that covariate

Figure 6.4: Plots of the deviance residuals of the event gap times
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Next, we examine the coefficients of the covariates, which are given in Table 6.3. First,

we explore the relation of the event hazard rate with the other parts of the claim process,

namely the time of occurrence and the reporting delay. The time of occurrence does not

have a significant impact on the tap time, as it is not included in the optimal model.

Table 6.3: Event Gap Times Coefficients

This table reports the coefficient estimates (standard deviation) of the covariates included

in the null model, the full model and the optimal model. The null model and the full model

indicate the models with no and all covariates, respectively. The optimal model is the model

with the lowest AIC.

Null Model Full Model Optimal Model

2 Years in Development -1.232*** -1.234***

(0.014) (0.014)

3 Years in Development -1.377*** -1.380***

(0.026) (0.026)

4 Years in Development -1.490*** -1.491***

(0.041) (0.041)

5 Years in Development -1.709*** -1.707***

(0.058) (0.058)

Old Car -0.291*** -0.297***

(0.020) (0.020)

Number of Payments 0.033*** 0.036***

(0.020) (0.001)

Catalog Value ”Intermediate” 0.053***

(0.004)

Catalog Value ”High” 0.007

(0.008)

Total Payout > AC2000 0.033*** 0.035***

(0.008) (0.008)

Total Payout < AC500 0.331*** 0.330***

(0.006) (0.006)

Occurrence 0.000

(0.001)

Reporting Delay -0.001*** -0.001***

(0.000) (0.000)

Shape (ρ) 0.625 0.662 0.662

Scale (ζ) 27.331 33.115 31.817

AIC 4,510,262 4,448,090 4,436,905

Note: * p<.10, ** p<.05, *** p<0.01

48



By contrast, the effect of the reporting delay on the event hazard rate is significant. When

the reporting delay becomes larger, the time to the next event also becomes larger. For

each day the insurer takes to report a claim, the hazard rate is multiplied with factor

exp(−0.001) = 0.999, i.e. decreases with 0.1%. A one standard deviation increase in the

reporting delay decreases the hazard rate with 4.8%, which is a notable effect. The decrease

in the hazard rate for larger reporting delays could be due to the fact that claims that are

complicated take a while to report, resulting in a larger reporting delay. These claims lead

to larger gap times, since they are also more complicated to handle by the insurer.

Among the other covariates, we observe that the history of the development process has

a significant effect on the time until the next event. For claims that have been longer in the

development process, the time to the next event is longer. This effect is large: a claim that

has been in the development process for 5 years has a hazard rate that is 82% smaller than

the hazard rate of a claim that has been in the development process for less than a year. A

large proportion of the claim that have just been reported can be handled quickly, leading

to a short time to the next event. The fact that the claims have been in the development

period for a long time implies that some aspects of the claim make it a difficult claim to

handle. Therefore, the expected time to the next event is longer than claims that have been

in the development process for a short period of time.

Lastly, the coefficient of the old car indicator indicates that the time to the next event

in the development process for an old car is longer than for a new car. The effect on the

hazard rate for an old car is a decrease of 26%. Claims of regular cars are more likely to

be similar than claims of old cars, as the repairs of old cars are more difficult. This makes

handling a claim of an old car more complicated, which can lead to longer gap times between

events.

6.1.4 Event Probability

The probability that an event is a payment or a settlement is determined in a specifi-

cation with and without covariates. Table 6.4 shows the results of three different logistic

regressions. The first model estimates the probability of a payment without covariates. The

coefficient of our first model of -0.276 indicates that the probability of a payment is 43%.

The second model contains all our covariates, whereas the third model shows the optimal

model after using the backwards step-wise procedure. A comparison of the AIC of the first

model, 657,364, and the AIC of the third model, 657,328, indicates that the inclusion of
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covariates is useful for predicting the type of event.

The time of occurrence is not included in the optimal model, indicating that there is no

significant relation between the time of occurrence and the probability of an event. By con-

trast, the reporting delay does have a significant impact. The probability of a settlement

increases with 4% as a result of a one standard deviation increase in the reporting delay.

Moreover, the dependency of the event probability on the history of the development pro-

cess is significant, since the coefficients for the years in the development period and the

total payout are significant. Thus, including dependence between the parts of our model im-

proves the fit of our model. A previous total payout which is larger than AC 2000 or smaller

than AC 500 leads to an increase of the probability of a payment from 24% to 45% and 44%,

respectively. Thus, the effect of the previous payout on the probability of a payment is

economically significant. Furthermore, incorporating the policy characteristic of the age of

the car improves the fit of our model as well. Claims arising from policies with an old car

have a lower probability of a payment, indicating that there are on average less payments for

those claims. This could be due to the fact that claims of old cars are not standard claims,

such that someone needs to review the claim in person and thereby minimizes the number

of payments. However, the effect on the probability is small, as it decreases the probability

of a payment with 2 percentage points.
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Table 6.4: Event Probability Coefficients

This table reports the coefficient estimates (standard deviation) of the covariates included

in the null model, the full model and the optimal model. The null model and the full model

indicate the models with no and all covariates, respectively. The optimal model is the model

with the lowest AIC.

Null Model Full Model Optimal Model

(Intercept) -0.276*** -1.142*** -1.142***

(0.002) (0.009) (0.009)

2 Years in Development 0.744*** 0.744***

(0.019) (0.019)

3 Years in Development 1.208*** 1.208***

(0.036) (0.036)

4 Years in Development 1.531*** 1.532***

(0.062) (0.062)

5 Years in Development 1.449*** 1.450***

(0.081) (0.081)

Old Car -0.092*** -0.089***

(0.011) (0.011)

Number of Payments 0.001

(0.001)

Catalog Value ”Intermediate” -0.023**

(0.006)

Catalog Value ”High” 0.010

(0.011)

Total Payout > AC2000 0.960*** 0.960***

(0.012) (0.011)

Total Payout < AC500 0.898*** 0.898***

(0.009) (0.008)

Time of Occurrence 0.000

(0.001)

Reporting Delay -0.005*** -0.005***

(0.000) (0.000)

AIC 678,722 657,364 657,328

Note: * p<.10, ** p<.05, *** p<0.01
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6.1.5 Payment Distribution

To model the payments during the development period, we make a distinction between

payments that have been paid out during the development period and payments that have

been paid out together with a settlement. In the first part of this section, we first discuss

the payments model. Thereafter we discuss the settlement payments. For both types of

payments, we first find the optimal model for modelling the payments without covariates.

After we have found the optimal model without covariates, we will compare the fit of models

with different combinations of covariates.

Payments

We compare the fit of multiple combinations of distributions to find the optimal model

for the payments without covariates. In order to find the optimal model, we need to find the

optimal number of distributions K and the optimal mix of the type of the K distributions.

To do this, we compare the AIC of the different models after running the EM algorithm. We

compare the AIC of a the mixture distributions for K = 2, 3, 4 and use different combina-

tions of the Normal and Gamma distributions. The optimal model is given by a mixture of

three Log Normal distributions, with an AIC of 533,686. The AIC of the optimal model for

each K can be found in Table 8.6 of the Appendix.

The parameter estimates of the model can be found in Table 6.5. To check whether our

EM algorithm has found a local or a global maximum, we run the EM algorithm ten times

with different starting values. We find the normal mixture model as displayed in Table 6.5

for each iteration. Hence, without taking covariates into account, we can best model the

payments with the mixture distribution displayed in Table 6.5.

Table 6.5: Payments Mixture Model Parameter Estimates

This table reports the parameter estimates for the optimal mixture model, which consists of

three Log-Normal distributions. The πk’s indicate the probability weights that are given to

the distributions in the mixed distribution.

µk σk πk

k = 1 6.648 0.603 0.363

k = 2 6.555 1.545 0.312

k = 3 7.278 0.837 0.325
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We can construct the mixture distribution arising from the coefficients in Table 6.5. In

Figure 6.5, we observe that the mixture distribution closely follows the observed payments.
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This figure displays the histogram of the payments during the development period together

with the fitted mixture distribution consisting of three Log-Normal distributions given by the

blue line.

Figure 6.5: Histogram and fitted mixture distribution of the payments

Now that we have found the optimal model without covariates, we examine whether in-

corporating covariates improves the fit of our model. For each distribution in the mixture

model, we have three parameters to estimate, i.e. µk, σk and πk, k = 1, 2, 3. We consider

eight different specifications of the model: one model for each combination of µk, σk and

πk modelled either with or without covariates. An optimal solution would be to compare

all specifications with all different combinations of covariates. However, due to the large

amount of options that results, we choose to make two separate selections. We choose to

first select which parameters should be modelled with covariates and afterwards determine

the right covariates. We do this because the optimal set of covariates for one specification

does not need to be the optimal set of covariates for the other specification, which leaves us

with the problem on which model we should select our optimal set of covariates. To avoid
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this problem, we choose to first select parameters. The model where only µk is estimated

with covariates for each k = 1, 2, 3 has the lowest AIC. The AIC of all the models are given

in Table 8.7.

Next, we use the backwards step-wise algorithm to determine our optimal set of covari-

ates. The final parameter estimates for our model can be found in Table 6.6. The covariates

that are in the model with the lowest AIC are the years in development, the total payout,

the age of the car and the reporting delay. The full model can be found in the Appendix,

Table 8.9.

Table 6.6: Payments Mixture Model with Covariates Coefficients

This table reports the coefficient estimates (standard deviation) obtained from the EM

algorithm. The µk’s are modelled with covariates, whereas σk and πk are modelled without

covariates for each k. The values for πk are given in the lowest row as ’Probability’.

µ1 µ2 µ3 σ1 σ2 σ3

(Intercept) 5.481*** 7.353*** 6.133*** 0.315*** 0.406*** 0.281***

(0.023) (0.010) (0.012) (0.003) (0.003) (0.003)

2 Years in Development 0.065*** 0.301*** 0.491***

(0.033) (0.015) (0.018)

3 Years in Development 0.496*** 2.119*** -0.829***

(0.049) (0.024) (0.025)

4 Years in Development 0.740*** 0.783*** 1.552***

(0.074) (0.031) (0.044)

5 Years in Development 1.161*** 0.603*** 1.527***

(0.098) (0.043) (0.055)

Total Payout > AC2000 -0.020 0.436*** 2.054***

(0.028) (0.012) (0.015)

Total Payout < AC500 1.09*** 0.606*** 0.942***

(0.023) (0.010) (0.012)

Old Car 0.593*** -0.032 0.489***

(0.054) (0.025) (0.029)

Reporting Delay -0.002*** -0.001*** -0.006***

(0.000) (0.000) (0.000)

Catalog Value ”Intermediate” 0.154*** -0.011* 0.065***

(0.013) (0.005) (0.006)

Catalog Value ”High” 0.577*** -0.020* 0.310***

(0.022) (0.010) (0.011)

Probability (πk) 0.288 0.380 0.332

Note: * p<.10, ** p<.05, *** p<0.01
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First, the time the claim has spend in the development process has a positive effect on the

mean of the distribution. So, a payment that takes place later in the development period is,

on average, a larger payment. This could be explained by the fact that an insurer takes some

time to verify large claims, therefore taking longer to pay out a large amount. For example,

a claim reported in 2012 that is still open in 2015 indicates that there is a high probability

that it is a complicated or large claim. Therefore, the average payments for that claim are

expected to be higher. The mean of the mixture distribution for claims that have been in the

development period for four years is 1,607 higher than the mean of the mixture distributions

for claims that have been in the development process for less than one year. The effect of

the covariates is calculated by taking the coefficients of the covariates into account when

determining the mean of the mixture distribution, which is given by the weighted average of

the means of the three Log-Normal distribution. The average payment is given by AC 1,582,

which implies that the effect of the time the claim has spend in the development process has

a large effect on the level of the payment.

Second, an old car has a higher average payment of AC 153 than a newer car. This could

be caused by the fact that damage on an old car is more expensive to repair because of ex-

pensive parts. Third, the higher the catalog value of the car, the higher the average payment

of a claim, which can be explained similarly. The effect of a car with an intermediate and

high catalog value is small, increasing the mean of the mixture distribution with 17 and 113,

respectively. Fourth, the total amount paid up to the moment of payment also has a signif-

icant impact on the average payment. If the total amount paid is above AC 2,000 or below

AC 500, the average payment is AC 1592 and AC 1040 higher, respectively. This effect is large

and could be explained by the fact that when that total amount paid is above AC 2,000, it is

a large claim compared to the average total payout, AC 890. Therefore, following payments

could on average also be higher. Furthermore, if the total payment is lower than AC 500, the

payout is lower than average, indicating that the average next payment is probably higher

than when the total payout is between AC 500 - 2000.

Lastly, the reporting delay is significant in the model. If the claim is reported early, the

average payment is higher than when it is reported late. The effect is relatively small, as

a one standard deviation decrease in the reporting delay increases the mean of the mixture

distribution with 90. This could imply that if the claim concerns a larger amount of money,

the policyholder is more likely to report sooner. Since he is willing to put in more effort in
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order to get the money sooner compared to when it is a small claim. Based on these results,

we conclude that incorporating dependency between the parts of our model, including the

dependency within the development process, leads to a better fit of the mixture model for

the payments.

Settlement Payments

For the settlement payments, we have the same approach as for the payments. How-

ever, we use the parameter ξ0 to account for the probability that a payment is zero. We

compare the fit of different values of K and different combinations of distributions for each

k = 1, 2, . . . K together with the parameter ξ0. Based on the AIC of these models, the

optimal model for the settlement payments is given by the parameter ξ0 for the zero proba-

bility together with a mixture of three Log-Normal distributions for the non-zero payments,

similar to the regular payments. The AIC of the different models can be found in the Ap-

pendix, Table 8.8. The parameter estimates and probabilities of the different distributions

are displayed in Table 6.7.

Table 6.7: Settlement Payments Mixture Model Parameter Estimates

This table reports the parameter estimates for the optimal mixture model, which consists of

three Log-Normal distributions and an extra parameter for the probability at zero. The πk’s

indicate the probability weights that are given to the distributions in the mixed distribution.

µk σk πk

ξ0 - - 0.393

k = 1 4.109 0.200 0.150

k = 2 6.401 1.139 0.318

k = 3 6.040 0.432 0.138

We compare the fit of the model without covariates to a model with covariates. In our

mixture distribution, we have 10 parameters consisting of the µk, σk and πk for each of the

three normal distributions and ξ0 to account for the probability of a zero payment. Each of

the parameters can be chosen to be estimated with- or without covariates. Comparing the

AIC of the different models, we find that the model that estimates µk for each k and ξ0 all

based on covariates has the best fit to our data. Hence, we take this model for modelling

the settlement payments.
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The model parameters of the optimal model can be found in Table 6.8. First, we anal-

yse the effects of the history of the development period on the height of the settlement

payment. The time in the development process and the total payout in the development

period have a positive effect on the probability of a zero settlement, whereas the number of

previous payments has a diminishing effect. The probability of a payment during settlement

increases from 18% to 74% if the total payout is less than AC 500 compared to a total payout

of AC 500-2000, which is a significant increase. A lower total payout before the settlement

could indicate that there still needs to be paid out an amount of money, which leads to a

higher probability of a payment during the settlement. Furthermore, the longer a claim has

been in the development process, the higher the probability of a settlement without payment.

Specifically, for claims that have been in the development process for 5 years, the probability

of a zero payment is very high (99%). This indicates that these claims have been fully paid

out before the settlement occurs. One explanation for this might be that the insurer wants

to make sure everything is handled correctly and is fully paid before giving the order to

settle the claim. The policyholder has already waited a long time for the claim to be settled,

such that the insurer might want to make sure that it does not have to be reopened after

settlement. The last result of the development process history is that the probability of a pay-

ment at the settlement date increases with the number of previous payments. A one standard

deviation increase in the total number of previous payments at the moment of settlement

increases the probability of a payment from 18% to 38%, which is a significant increase. This

indicates that if a claim has experienced more payments, this process is expected to continue.

Second, the results of the reporting delay are consistent with our previous findings. We

found that claims with a short reporting delay have a higher average height of the payments,

which could be explained by the willingness of a policyholder to put in extra effort to re-

port a claim with a large payout sooner. For a small claim, there might be less urgency for

the policyholder to get his money back soon. This is consistent with the findings in this

section, which indicate that claims with a short reporting delay have a lower probability of

a zero payment at the settlement date and a higher average payment. The probability of

a zero payment decreases with 1 percentage point as a result of a one standard deviation

decrease in the reporting delay. Furthermore, the mean of the mixture distribution, given

by the weighted average of the means of the three Log Normal distributions, increases with

AC 34 in the case of a reporting delay that is one standard deviation smaller. As the average

settlement payment is AC 432, these results indicate that the effect of the reporting delay on

the settlement payment of a claim is small.
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Third, an old car and a car with a higher catalog value have a higher average payment

at settlement than a regular car and a car with a low catalog value, respectively. These

results are consistent with our findings on the height of the regular payments. The effect of

the old car is large, as the mean of the mixture distribution increases with AC 228 for an old

car, which is an increase of more than 50% of the average settlement payment.

Table 6.8: Settlement Payments Mixture Model with Covariates Coefficients

This table reports the coefficient estimates (standard deviation) obtained from the EM

algorithm. The µk’s and ξ0 are modelled with covariates, whereas σk and πk are modelled

without covariates for each k. The values for πk are given in the lowest row as ’Probability’.

ξ0 µ1 µ2 µ3 σ1 σ2 σ3

(Intercept) 1.522*** 4.287*** 5.598*** 7.102*** 2.159*** 0.2393*** 2.405***

(0.014) ( 0.003) (0.014) (0.003) (0.004) (0.002) (0.005)

2 Years in Development 1.198*** 0.033*** 0.047*** 0.007

(0.036) ( 0.008) (0.031) (0.008)

3 Years in Development 3.235*** 2.066 1.237*** 0.526***

(0.109) (0.020) (0.069) (0.020)

4 Years in Development 5.847*** 1.222*** 1.759*** -0.887***

(0.257) (0.033) (0.132) (0.030)

5 Years in Development 12.480*** 1.385*** 2.635*** 4.373***

(0.425) (0.053) (0.183) (0.087)

Old Car -0.014* 0.705*** 0.582*** 0.039***

(0.007) (0.007) (0.031) (0.008)

Number of Payments -1.217*** -0.003 -0.102*** -0.329***

(0.104) (0.002) (0.006) (0.002)

Catalog Value ”Intermediate” -0.137*** 0.086*** 0.470*** -3.111***

(0.009) (0.001) (0.007) (0.002)

Catalog Value ”High” -0.251*** 0.666*** 0.081*** -0.942***

(0.016) (0.003) (0.012) (0.003)

Total Payout > AC2000 0.563*** 0.005 0.514*** 0.008

(0.017) (0.004) (0.073) (0.004)

Total Payout < AC500 -2.579*** 1.542*** 0.094*** -0.006*

(0.012) (0.003) (0.013) (0.003)

Reporting Delay 0.001*** -0.001*** -0.001*** -0.001****

(0.000) (0.000) (0.000) (0.000)

Probability (πk) 0.146 0.740 0.114

Note: * p<.10, ** p<.05, *** p<0.01
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Figure 6.6 shows the fit of different distributions based on covariates. We use three covariate

groups for this figure, which are explained in the table below the figure. The value for the

age of the car and the catalog value are kept constant. We choose these three covariate

groups in order to examine the effects of small changes in the mean of the distribution.

For example, the diminishing effect of the number of payments is one of the smaller effects

compared to the other covariates. However, Figure 6.6(a) and 6.6(b) make it clear that there

is a substantial difference between the two distributions and that it has added value to use a

different distribution for these two groups. We learn from the three plots in Figure 6.6 that

the distribution is able to adjust to the different payment patterns for the different covariate

groups.
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This figure displays the histograms of the settlement payments for three different groups of

payments with specific covariate values, as explained in the table below, together with the

fitted mixture distribution.

Figure 6.6: Histogram and fitted mixture distribution of the settlement payments
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Table 6.9: Covariate Groups

This table explains the three groups of payments used in Figure (6.6)

Number of Development Total Reporting

Payments Process Payout Delay

Group 1 1 1 <AC500 >5

Group 2 2 1 <AC500 >5

Group 3 2 1 >AC2000 <5
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6.2 Simulation

In this section, we discuss the simulation results for the reserves. First, we analyze the

results for the time of occurrence and the reporting delay for the IBNR claims. In the

previous section, we concluded that covariates have an added value to the fit of our model.

In this section, we explore the effect of the covariates on the simulations. First, we determine

whether covariates add value to the time of occurrence and reporting delay simulations for

IBNR claims. Thereafter, we inspect the simulation results of the development period for

both IBNR and RBNS claims. We compare the mean, standard deviation and VaR of all

simulations to check which parts of the model should be modelled with covariates.

6.2.1 Time of Occurrence

We simulate the number of IBNR claims that have occurred up until 2016. In Figure 6.7, the

histograms of the simulated number of IBNR claims are shown. We observe that the model

with covariates predicts the number of IBNR claims more accurately, as the simulations are

more centered around the actual number of IBNR claims, given by the black line.
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This figure displays the simulated number of IBNR claims with (pink) and without (blue) covariates.

Figure 6.7: Histograms of the simulated number of IBNR claims
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Furthermore, the number IBNR claims can be determined for each month in which they

occurred. In Figure 6.8, we observe that the model with covariates is more accurate in

determining in which months the IBNR claims have occurred.
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(b)With Covariates

Panel (a) and Panel (b) of this figure show the estimated number of IBNR claims (red

blocks) that originated in a specific month for each month of 2015 without and with

covariates, respectively, together with the true number of IBNR claims incurred in each

month (blue line).

Figure 6.8: Simulated monthly number of IBNR claims

Reporting Delay

The results of the simulation of the reporting delay with and without covariates are

displayed in Table 6.10. We observe that both models underestimate the length of the

reporting delay. The means of the models with and without covariates are respectively 7%

and 26% less than the observed reporting delay. Moreover, the maximum observed reporting

delay is significantly larger than that predicted by either model. Furthermore, the minimum

reporting delay is underestimated as well. One potential explanation is that our model does

not take into account New Year’s Eve and New Year’s Day. In reality, the probability of

reporting a claim on these days is small, which leads to a longer reporting delay for the

claims incurred on the last days of a year. Therefore, this might be the reason why the
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observed minimum reporting delay is three days, whereas our model’s is lower as it does not

take into account these two days. Though both models underestimate the reporting delay,

the model with covariates is more accurate than the model without covariates.

Table 6.10: Simulation Results Reporting Delay

This table provides the simulation results of the reporting delay with and without covariates.

The columns ’Min’, ’Mean’, and ’Max’ indicate the average of the minimum, mean and

maximum simulated reporting delay over all simulations, respectively.

Min Mean Max

Without Covariates 1.2 97 818

With Covariates 1.5 118 1195

Observed 3 131 1475

Development Process

We simulate the different elements of the development process with and without covari-

ates to check whether incorporating covariates in all parts of the model adds value. Moreover,

we compare the effects of including covariates for the different parts. First, we discuss the

IBNR claims, followed by discussing the RBNS results.

The simulation results of the total payout from IBNR claims of the different models is dis-

played in Table 6.11. The first column reports the means of the different models. Compared

to the observed IBNR payout in 2016, the worst performing model is the model without

covariates, whereas the best performing model is the model with all parts of the model esti-

mated and simulated with covariates. Besides the full model, the next three best models are

models in which the event probability and the event hazard are estimated with covariates.

This indicates that for IBNR claims, it is important to add covariates to the estimation of

the probability of the event being a payment or a settlement.

The results of the standard deviation are similar across all models. The standard deviation

seems to decline with the number of covariates added. For the models in which payments are

modelled with covariates, the standard deviation is relatively lower than the other models.

One explanation for this as follows. There is a large difference between the average payout

of claims that have been in the development process for multiple years and claims that have

just been reported. IBNR claims are by construction less than a year in the development

process if we only consider payments in 2016. Therefore, there is a smaller variety in the
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payment heights, as they all come from the same time in the development process. This leads

to a smaller standard deviation for the IBNR reserves when the payments are modelled with

covariates. Lastly, we observe that the VaR declines as more covariates are added to the

model.

Table 6.11: Simulation Results for IBNR Reserve

This table reports the mean, standard deviation and VaR0.995 of the sum of the simulated

payments arising from IBNR claims in 2016. Each row represents a different combination

of parts of the model that are simulated with covariates, where the last row indicates the

actual total loss arising from IBNR claims in 2016.

Mean St. Dev. VaR0.995

No Covariates 2,087,156 196,322 3,834,995

Event Hazard 2,081,919 191,595 3,878,373

Settlement 2,068,084 199,043 3,777,222

Payments + Settlement 2,062,134 127,806 2,881,739

Event Probability 2,051,659 161,074 2,861,443

Payments 2,050,803 111,793 2,727,802

Event Hazard + Probability 2,044,655 133,556 2,681,421

Settlement + Event 1,995,968 134,943 2,638,207

Payment + Event 1,984,435 89,617 2,141,827

All Covariates 1,968,537 108,603 2,111,473

Actual 1,963,686

To make the distinction between models without and with covariates more clear, we plot the

simulation results of these two models in Figure 6.9. We observe that for the total reserve

and the reserve coming from regular payments, incorporating covariates improves the mean

estimation of the reserves as well as the standard deviation. For settlements, the added value

is less significant. This coincides with the standard deviation results in Table 6.11.
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The first, second and third plot in this figure exhibit the histograms of simulations of the

sum of all the payments, the sum of the regular payments, and the sum of the settlement

payments in 2016 arising from IBNR claims, respectively. The pink histogram in each plot

is given by simulations in which all parts of the claim process are modelled with covariates,

whereas for the blue histogram every part is modelled without covariates.

Figure 6.9: Simulated total payout for IBNR claims

Next, we examine the results of the simulation of the RBNS reserve. First, we observe

from the simulation results in Table 6.12 that the covariates add value in the estimation

of reserves when considering the mean. Namely, the mean of the simulations of the model

with no covariates is the furthest away from the actual RBNS reserve, whereas the model

with all covariates has a mean closest to the actual loss in 2016. All four models in which

the payments are estimated with covariates is closer to the mean than the models in which

payments are not simulated with covariates. An explanation can be found when we consider

the time the claim spend in the development period. For the RBNS claims, the amount

of claims that have been in the development process for longer than a year is significantly

larger than for IBNR claims. The average payment for IBNR payments in 2016 is 1,209,

whereas the average payment of all payments in 2016 is 1,937. The last is significantly higher

than the first, indicating that claims that are paid out in 2016 which are reported before
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2016, i.e. the RBNS claims, have a higher average payout. The models without covari-

ates for payments underestimate the RBNS payout, since they do not take into account the

significantly higher payment level for claims that have been longer in the development period.

Second, the models in which the events are simulated with covariates have the lowest stan-

dard deviation. RBNS claims differ in the histories of their development processes: some

claims have had multiple payments and have been in the development process a long time,

whereas other claims await their first payment. These differences have an important impact

on the probability of a settlement, since it might be that the former group of claims has a

higher probability of a settlement than the latter. Therefore, incorporating covariates will

give a higher probability of a settlement to the first group. By not including covariates, all

claims are treated as equal and are thereby treated as if they just entered the development

process. If covariates are incorporated, there thus is a larger variety in the events of the

claims and thereby a larger standard deviation of the reserves. As opposed to the IBNR

simulation results, the VaR increases as more covariates are added to the model.

Table 6.12: Simulation Results for RBNS Reserve

This table reports the mean, standard deviation and VaR0.995 of the sum of the simulated

payments in 2016 arising from RBNS claims. Each row represents a different combination

of parts of the model that are simulated with covariates, where the last row indicates the

actual total loss arising from RBNS claims in 2016.

Mean St. Dev. VaR0.995

No 21,789,969 417,191 22,694,731

Event Hazard 21,881,263 352,592 22,831,306

Event Probability 21,906,653 305,067 22,915,875

Event Hazard + Probability 21,945,462 387,995 23,071,588

Settlement + Event 22,075,386 400,512 23,176,598

Settlement 22,244,367 381,428 23,243,362

Payments 22,462,854 472,017 23,640,038

Payments + Settlement 22,525,988 446,815 23,872,620

Payments + Event 22,551,426 537,804 24,038,638

All 22,760,946 583,188 24,257,041

Actual 22,912,495
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In Figure 6.10, we observe the difference between the model with and without covariates

clearly. Although the standard deviation of the model with covariates is larger than that of

the model without covariates, the actual payout is located in the center of the distribution

as opposed to the tail. Therefore, we conclude that including covariates adds value to our

RBNS reserve estimation.
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The first, second and third plot in this figure exhibit the histograms of simulations of the

sum of all the payments, the sum of the regular payments, and the sum of the settlement

payments arising from RBNS claims in 2016, respectively. The pink histogram in each plot

is given by simulations in which all parts of the claim process are modelled with covariates,

whereas for the blue histogram every part is modelled without covariates.

Figure 6.10: Simulated total payout for RBNS claims

A main advantage of our model over the models currently used by insurance companies is the

possibility of estimating the reserves for each month of the year as opposed to one reserve for

the entire year. Figure 6.11 shows the cash flow for 2016 based on our simulations for both

the RBNS and IBNR claims. For the IBNR reserves, we observe the added value of covariates

for the reserve estimation, even on a monthly level. However, for the RBNS reserves, there

is no added value to the monthly distribution of the payments by incorporating covariates.
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(d) RBNS with Covariates

Panel (a) (Panel (c)) and Panel (b) (Panel(d)) display the sum of all payments arising

from IBNR (RBNS) claims simulated without and with covariates, respectively, for each

month in 2016 as indicated by the red blocks. The blue line in each plot indicates the

observed total monthly payout arising from IBNR (RBNS) claims in 2016.

Figure 6.11: Comparison of the total monthly payout per claim type
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Chapter 7

Final Remarks

7.1 Conclusion

In this paper, we compare different model specifications for an individual claim reserving

model. First, we analyse the optimal model for the different parts of the claim process. We

find that the time of occurrence of a claim and the reporting delay can be best specified in

a piece-wise constant way. The time between events in the development process can be best

modelled with a Weibull hazard rate as opposed to a piece-wise constant hazard rate. This

allows for more simplicity in the model. To capture the different shapes of the distributions

of the payments in the development process, a mixture distribution of three Log-Normal dis-

tributions is optimal. For modelling the settlement payments, in addition to using a mixture

distribution of three Log-Normal distributions, it is optimal to account for the probability

of a zero payment at the moment of settlement.

Second, we examine the impact of creating dependence between the different parts of our

model. We create this dependence by including information about the claim process as

covariates. Using this approach, more information of the claim is used in all parts of the

process. First, we find that the inclusion of the time of occurrence does not lead to a better

fit in any of the other parts of the model. Second, incorporating the reporting delay as a

covariate in all following parts of the model leads to a better fit. The time between events

increases for a larger reporting delay, whereas the average level of a payment, both with and

without a settlement, decreases as the reporting delay increases. Third, the history of the

development process has a significant effect on the timing and probability of events and the

level of the accompanying payments. Therefore, we conclude that introducing dependence

between different parts of the model improves its respective fit.
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Lastly, we analyse whether incorporating policy characteristics leads to a better fit of the

individual claim reserving model. We use two policy characteristics: the age of the car and

the catalog value of the car. We find that the inclusion of the age of the car as a covariate

improves the fit of all parts of the model. Besides, the catalog value of the car is included

as a covariate for the reporting delay and the level of the payments.

We conclude that the inclusion of both policy characteristics and claim process charac-

teristics improves the fit of our individual claim reserving model.

After analysing the optimal model specification for each part of the claim process, we per-

form simulations in order to examine whether incorporating covariates in each part of the

model results in a higher accuracy of the prediction of IBNR and RBNS reserves. We find

that incorporating covariates increases the ability of our individual claim reserving model to

accurately predict the IBNR and RBNS reserves. Additionally, for IBNR claims we observe

that the standard deviations of the models with covariates are lower and that accuracy of

the monthly estimation of the reserves improves when using covariates. We conclude that

the inclusion of covariates to all parts of our model increases the ability of our individual

claim reserving model to accurately predict the IBNR and RBNS reserves.

One application of our model and findings is the application on current literature on in-

dividual claim reserving in a Bayesian setting. Arjas (1989) shows that a Bayesian approach

can be used for individual claim reserving. However, a serious limitation of their approach

is the usage of a non-parametric estimator for each part of their model, as this increases the

computation time. They argue that some parts of the model could be better modelled using

a parametric specification. Our results provide information on which parts of the model

can be modelled parametrically in order to reduce the computation time of the Bayesian

model. Furthermore, our paper can be extended in multiple ways. One example is to use

more complicated structures for modelling the dependencies between the different parts of

the model, such as copulas.

For insurance companies, the applications of this paper are threefold. First, the models

that are currently used by insurance companies, which are based on aggregate data, are

outdated as they are not aligned with the current data rich environment. Insurance com-

panies do not use the enormous amount of data that is available to them for estimating
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their reserves. Our paper provides evidence that the inclusion of policy characteristics and

information on the claim process is useful for the reserve calculation by insurance companies.

Second, our model introduces the link between the premium reserve and the claim reserve.

An insurance company can use our findings to estimate both reserves in one model. This

increases the coherency within their reserve calculations. Third, by modelling the reserves

on an individual level, the reserve calculation becomes variable over time: the added value

to the reserve can be estimated for each new policy in the portfolio of the insurer. This way,

the reserves change over time as opposed to being constant for the time for which the reserve

is estimated.

7.2 Limitations

Besides the advantages of our model discussed in the previous section, there are three

important limitations that apply to our results.

The first limitation of our model is the absence of characteristics of the policy holders.

Ideally, these covariates would have been included in our model. However, it is not feasible

due to the limited amount of policies with such covariates. In practice, incorporating these

characteristics can easily be implemented by including them in the original set of covariates.

A different limitation concerns selecting the optimal model among all possible specifica-

tions of the different parts of our model. For example, the time between events can be

modelled with a parametric or a non-parametric specification, and both these specifications

can be modelled with and without covariates. This leads to multiple model specifications.

The number of possible models further increases as we incorporate more covariates, since

there are multiple combinations of included covariates. In order to compare all possible

options, we need to compute all models and afterwards compare their results. Performing

these comparisons for all parts of our model would take a very long time. Therefore, we

chose to make some of the decisions sequentially, such as first determining whether to use a

parametric or non-parametric approach before checking which covariates improve the fit of

the model. It would be optimal to compare all possible models instead of having multiple

selection procedures sequentially. Due to the large amount of possible models, this is not

feasible.
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A final limitation of our model is the computation time of the simulations. By incorporating

covariates in a part of the model, we increase the computation time of our simulations

increases significantly. An insurance company needs to take the computation time into

account when using this model.
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Chapter 8

Appendix

8.1 Weibull Hazard Rate Proof

The Weibull hazard rate with covariates has the same form as the Weibull hazard rate

without covariates,

γ(u|Ti, Ci) = ρζ(ζu)ρ−1 exp{x′iβ} (8.1)

= ρζ(ζu)ρ−1 exp{x′iβ(ρ− 1)/(ρ)} · exp{x′iβ/ρ} (8.2)

= ρζ exp{x′iβ/ρ}(ζ exp{x′iβ/p}u)ρ−1 (8.3)

= ρζ∗(ζ∗u)ρ−1, (8.4)

where ζ∗ = ζ exp{x′iβ/ρ}.
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8.2 Occurrence Likelihood

In this section, we derive the likelihood of the claim occurrence process. Let the first P ∗

policies be policies that experience a claim and let the policies P ∗+ 1, . . . , P be policies that

did not experience a claim from 0 to τ . For each i = 1, . . . P ∗, the probability density of

policy i experiencing a claim at time ti is given by

λ0(ti) exp(x′iβ) exp

(
−
∫ ti

0

exp(x′iβ)Ii(s)ds

)
, (8.5)

where Ii(s) indicates whether policy i was active at time s. The complete derivation of this

density can be found in Cook and Lawless (2007). Additional to policy i observing a claim

at time ti, it does not observe a claim from ti to τ . The probability of policy i not observing

a claim from ti until τ is

P (N(τ)−N(ti) = 0|Ci) = exp

(
−
∫ τ

ti

exp(x′iβ)Ii(s)ds

)
. (8.6)

We consider this probability since if policy i would experience a claim after ti, it is considered

as a new policy. In car insurance, this is considered standard practice, as a claim alters the

terms of the policy. Therefore, if there is a claim with occurrence time ti, there is no claim

between ti and τ for policy i. Furthermore, for policies p = P ∗+ 1, . . . , P , the probability of

not experiencing a claim from 0 to τ is given by

P (N(τ)−N(0) = 0|Cp) = exp

(
−
∫ τ

0

exp(x′pβ)Ip(s)ds

)
, (8.7)

where xp = Cp indicate the covariates of policy p.
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The joint likelihood of (1) P ∗ claims occurring at times ti, i = 1, . . . , P ∗, (2) the same P ∗

claims having no claim between ti until τ and (3) the other policies P ∗+1, . . . , P experiencing

no claim between 0 and τ , is given by

L(λ0, β) =
P ∗∏
i=1

(
λ0(ti) exp(x′iβ) exp

(
−
∫ ti

0

λ0(s) exp(x′iβ)Ii(s)ds

)

× exp

(
−
∫ τ

ti

λ0(s) exp(x′iβ)Ii(s)ds

)) P∏
p=P ∗+1

(
exp

(
−
∫ τ

0

λ0(s) exp(x′pβ)Ip(s)ds

))

=
P ∗∏
i=1

(
λ0(ti) exp(x′iβ) exp

(
−
∫ τ

0

λ0(s) exp(x′iβ)Ii(s)ds

))

×
P∏

p=P ∗+1

(
exp

(
−
∫ τ

0

λ0(s) exp(x′pβ)Ip(s)ds

))

=
P ∗∏
i=1

(
λ0(ti) exp(x′iβ)

)

×

(
P ∗∏
i=1

exp

(
−
∫ τ

0

λ0(s) exp(x′iβ)Ii(s)ds

))( P∏
p=P ∗+1

exp

(
−
∫ τ

0

λ0(s) exp(x′pβ)Ip(s)ds

))

=
∏
i≥1

(
λ0(ti) exp(x′iβ)

)
P∏
p=1

exp

(
−
∫ τ

0

Ip(s)λ0(s) exp(x′pβ)ds

)
, (8.8)

where p = 1, . . . P indicate all policies in the portfolio of the insurer.
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8.3 Optimization Likelihood

8.3.1 Occurrence Rate

The likelihood of the time of occurrence is given by

L(λ1,0, . . . λl,0, β) =
∏
l≥1

((∏
i≥1

(
λl,0 exp(x′iβ)

)I(al−1≤<ti<al)

)

×

(∏
p≥1

exp

(
− λl,0

∫ al

al−1

Ip(s) exp(x′pβ)ds

))) (8.9)

In order to find the values of λl,0 and β that optimize (8.9), we first rewrite (8.9) to a log

likelihood as

logL(λ1,0, . . . λl,0, β) =
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log(λl,0) +
∑
l≥1

∑
i≥1

I(al−1≤ti<al)x
′
iβ

+
∑
l≥1

∑
p≥1

(
− λl,0

∫ al

al−1

Ip(s) exp(x′pβ)ds

)

=
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log(λl,0) +
∑
i≥1

x′iβ

−
∑
l≥1

λl,0
∑
p≥1

(∫ al

al−1

Ip(s) exp(x′pβ)ds

)
.

(8.10)

For each l, we take the derivative with respect to λl,0 and set it equal to zero. We get

∂ logL(λ1,0, . . . λl,0, β)

∂λl,0
=

∑
i≥1 I(al−1≤ti<al)

λl,0
−
∑
p≥1

∫ al

al−1

Ip(s) exp(x′pβ)ds = 0. (8.11)

Solving (8.11) for λl,0 gives the MLE of λl,0 given β, which is given by

λ̂l,0(β) =

∑
i≥1 I(al−1≤ti<al)∑

p≥1
∫ al
al−1

Ip(s) exp(x′pβ)ds
for each l = 1, 2, . . . (8.12)

Now, we use the value for λ̂l,0(β) in the log likelihood of (8.10) such that it is not a function

of λl,0. We use i′ instead of i to indicate the claims in λ̂l,0(β) to avoid confusion of the

summations. This gives
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logL(β) =
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log

( ∑
i′≥1 I(al−1≤ti′<al)∑

p≥1
∫ al
al−1

Ip(s) exp(x′pβ)ds

)
+
∑
i≥1

x′iβ

−
∑
l≥1

∑
i′≥1 I(al−1≤ti′<al)∑

p≥1
∫ al
al−1

Ip(s) exp(x′pβ)ds

∑
p≥1

(∫ al

al−1

Ip(s) exp(x′pβ)ds

)

=
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log
∑
i′≥1

I(al−1<ti′<al)

−
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log

(∑
p≥1

∫ al

al−1

Ip(s) exp(x′pβ)ds

)
+
∑
i≥1

x′iβ −
∑
l≥1

∑
i′≥1

I(al−1≤ti′<al)

∝
∑
i≥1

x′iβ −
∑
l≥1

∑
i≥1

I(al−1≤ti<al) log

(∑
p≥1

∫ al

al−1

Ip(s) exp(x′pβ)ds

)

=
∑
i≥1

x′iβ −
∑
i≥1

log

(∑
l≥0

I(al−1≤ti<al)
∑
p≥1

∫ al

al−1

Ip(s) exp(x′pβ)ds

)
(8.13)

Taking the first derivative with respect to β and setting it equal to zero yields

∂ logL(β)

∂β
=
∑
i≥1

(
x′i −

∑
l≥1 I(al−1≤ti<al)

∑
p≥1
∫ al
al−1

Ip(s) exp(x′pβ)x′pds∑
l≥1 I(al−1≤ti<al)

∑
p≥1
∫ al
al−1

Ip(s) exp(x′pβ)ds

)
= 0. (8.14)

We find the MLE for β and λl,0 by solving (8.14) for β and using it in the definition of λ̂l,0(β)

as in (8.11) to find λ̂l,0.

8.3.2 Reporting Delay Hazard

The likelihood of the reporting delay is given by

L(γ1,0, . . . γw,0, β) =
∏
w≥1

∏
i≥1

((
γw,0 exp(x′iβ)

)I(qw−1≤ui<qw)

× exp

(
− γw,0

∫ qw

qw−1

Ii(s) exp(x′iβ)ds

)) (8.15)
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In order to find the values of λl,0 and β that optimize (8.9), we first rewrite (8.15) to a log

likelihood as

logL(θ) =
∑
w≥1

∑
i≥1

I(qw−1≤ui<qw) log(γw,0) +
∑
w≥1

∑
i≥1

I(qw−1≤ui<qw)x
′
iβ

−
∑
w≥1

∑
i≥1

(
γw,0

∫ qw

qw−1

Ii(s) exp(x′iβ)ds

)

=
∑
w≥1

∑
i≥1

I(qw−1≤ui<qw) log(γw,0) +
∑
i≥1

x′iβ

−
∑
w≥1

γw,0
∑
i≥1

(∫ qw

qw−1

Ii(s) exp(x′iβ)ds

)
(8.16)

For each w, we take the derivative with respect to γw,0,

∂ logL(γ1,0, . . . γw,0, β)

∂γw,0
=

∑
i≥1 I(qw−1≤ui<qw)

γw,0
−
∑
i≥1

exp(x′iβ)

∫ qw

qw−1

Ii(s)ds = 0. (8.17)

Solving (8.17) for γw,0 gives

γ̂w,0(β) =

∑
i≥1 I(qw−1≤ui<qw)∑

i≥1 exp(x′iβ)
∫ qw
qw−1

Ii(s)ds
for each w = 1, 2, . . . (8.18)

We plug the value of γ̂w,0 as in (8.18), with i′ instead of i to indicate the claims to avoid

confusion in the summations, in the log likelihood of (8.16) to obtain logL(β)

logL(β) =
∑
w≥1

∑
i≥1

I(qw−1≤ui<qw) log

( ∑
i′≥1 I(qw−1≤ui′<qw)∑

i′≥1 exp(x′i′β)
∫ qw
qw−1

Ii′(s)ds

)
+
∑
i≥1

x′iβ

−
∑
w≥1

∑
i′≥1 I(qw−1≤ui′<qw)∑

i′≥1 exp(x′i′β)
∫ qw
qw−1

Ii′(s)ds

∑
i≥1

exp(x′iβ)

∫ qw

qw−1

Ii(s)ds

∝
∑
i≥1

x′iβ −
∑
w≥1

∑
i≥1

I(qw−1≤ui<qw) log

(∑
i′≥1

exp(x′i′β)

∫ qw

qw−1

Ii′(s)ds

)

=
∑
i≥1

(
x′iβ − log

(∑
w≥1

I(qw−1≤ui<qw)
∑
i′≥1

exp(x′i′β)

∫ qw

qw−1

Ii′(s)ds

))

(8.19)
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Taking the derivative with respect to β and setting it equal to zero gives

∂ logL(β)

∂β
=
∑
i≥1

(
x′i −

∑
w≥1 I(qw−1≤ui<qw)

∑
i′≥1
∫ qw
qw−1

Ii′(s) exp(x′i′β)x′i′ds∑
w≥1 I(qw−1≤ui<qw)

∑
i′≥1
∫ qw
qw−1

Ii′(s) exp(x′i′β)ds

)
= 0. (8.20)

We get the MLE’s for β and γw,0 by solving (8.20) for β to obtain β̂ and use β̂ in (8.18) to

obtain γ̂w,0.

8.3.3 Event Hazard

The likelihood of the event gap times is defined as

L(φ1,0, . . . φz,0, β) =
∏
z≥1

∏
i≥1

(∏
j≥1

(φz,0 exp(x′ijβ))
I(rz−1≤vij<rz)δij

× exp

(
− φz,0 exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds

))
.

(8.21)

Then, we can write the log likelihood as

logL(φ1,0, . . . φz,0, β) =
∑
z≥1

∑
i≥1

∑
j≥1

δijI(rz−1≤vij<rz) log(φz,0)

+
∑
z≥1

∑
i≥1

∑
j≥1

δijI(rz−1≤vij<rz)x
′
ijβ

−
∑
z≥1

∑
i≥1

∑
j≥1

(
φz,0 exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds

)

=
∑
z≥1

∑
i≥1

∑
j≥1

δijI(rz−1≤vij<rz) log(φz,0) +
∑
i≥1

∑
j≥1

δijx
′
ijβ

−
∑
z≥1

φz,0

(∑
i≥1

exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds

))
.

(8.22)

Then, for each l, we take the derivative with respect to φz,0,

∂ logL(φ1,0, . . . φz,0, β)

∂φz,0
=

∑
i≥1
∑

j≥1 δijI(rz−1≤vij<rz)

φz,0
−
∑
i≥1

exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds = 0.

(8.23)

Solving (8.11) for φz,0 gives

φ̂z,0(β) =

∑
i≥1
∑

j≥1 δijI(rz−1≤vij<rz)∑
i≥1 exp(x′ijβ)

∫ rz
rz−1

Ii(s)ds
for each z = 1, 2, . . . (8.24)

79



Then, we plug in the value of φ̂z,0 as in (8.24), with i′ instead of i and j′ instead of j to

indicate the claims and events to avoid confusion in the summations, in the log likelihood in

(8.22) to obtain logL(β),

logL(β) =
∑
z≥1

∑
i≥1

∑
j≥1

δijI(rz−1≤vij<rz) log

(∑
i′≥1
∑

j′≥1 δi′j′I(rz−1≤vij′<rz)∑
i′≥1 exp(x′i′j′β)

∫ rz
rz−1

Ii′(s)ds

)
+
∑
i≥1

∑
j≥1

δijx
′
ijβ

−
∑
z≥1

∑
i′≥1
∑

j′≥1 δi′j′I(rz−1≤vi′j′<rz)∑
i′≥1 exp(x′i′j′β)

∫ rz
rz−1

Ii′(s)ds

(∑
i≥1

exp(x′ijβ)

∫ rz

rz−1

Ii(s)ds

))

∝
∑
i≥1

∑
j≥1

δijx
′
ijβ −

∑
z≥1

∑
i≥1

∑
j≥1

δijI(rz−1≤vij<rz) log

(∑
i′≥1

exp(x′i′j′β)

∫ rz

rz−1

Ii′(s)ds

)

=
∑
i≥1

∑
j≥1

(
δijx

′
ijβ − log

(∑
z≥1

δijI(rz−1≤vij<rz)
∑
i′≥1

exp(x′i′j′β)

∫ rz

rz−1

Ii′(s)ds

))
.

(8.25)

Taking the derivative with respect to β and setting it equal to zero gives

∂ logL(β)

∂β
=
∑
i≥1

∑
j≥1

(
δijx

′
ij −

∑
z≥1 I(rz−1≤vij<rz)

∑
i′≥1
∫ rz
rz−1

Ii′(s) exp(x′i′j′β)x′i′j′ds∑
z≥1 I(rz−1≤vij<rz)

∑
i′≥1
∫ rz
rz−1

Ii′(s) exp(x′i′j′β)ds

)
= 0.

(8.26)

We get the MLE’s for β and φz,0 by solving (8.26) for β to obtain β̂ and using this in (8.24)

to obtain φ̂z,0.
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8.3.4 Weibull Hazard Rate

Algorithm 5 Weibull Hazard Rate

1: procedure Initialization

2: ρ(0), ζ(0) ← MLE of Weibull distribution

3: Old Likelihood ← Log Likelihood of Weibull distribution with ρ(0) and ζ(0)

4: ρ(1), ζ(1) ← Update ρ(0), ζ(0) with Newton Raphson

5: New Likelihood ← Log Likelihood of Weibull distribution with ρ(1) and ζ(1)

6: b← 1

7: procedure Newton Raphson Algorithm 1

8: while |New Likelihood - Old Likelihood| > ε do

9: b = b+ 1

10: Old Likelihood ← New Likelihood

11: ρ(b), ζ(b) ←Update ρ(b−1), ζ(b−1) with Newton Raphson

12: New Likelihood ← Log Likelihood evaluated with ρ(b) and ζ(b)

13: procedure Initialization 2

14: ρ(0) ← ρ(b)

15: β(0) ← Coefficients of linear regression of dependent variable on xi

16: ζ(0) ← Intercept of linear regression of dependent variable on xi

17: Old Likelihood← Log of the Likelihood of Weibull distribution with covariates as in

(4.18) with ρ(0), ζ(0) and β(0)

18: Update ρ(0), ζ(0) and β(0) with Newton Raphson

19: New Likelihood ← Log Likelihood of Weibull distribution with ρ(1), ζ(1) and β(1)

20: b← 1

21: procedure Newton Raphson Algorithm 2

22: while |New Likelihood - Old Likelihood| > ε do

23: b = b+ 1

24: Old Likelihood ← New Likelihood

25: Update ρ(b), ζ(b) and β(b) with Newton Raphson

26: New Likelihood ← Likelihood evaluated ρ(b), ζ(b) and β(b)

27: Final values are given by ρ(b), ζ(b) and β(b)
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8.3.5 Event Probability

The values for β in that optimize the likelihood in (4.28) are found by iteratively reweighted

least squares. The algorihtm is shown below.

Algorithm 6 Iteratively Reweighted Least Squares

1: procedure Initialization

2: n← Total number of events

3: ψ(0) ← Vector with weights of length n with 1’s

4: β(0) ← Coefficients from weighted regression with ψ(0) as weights

5: Old Likelihood ← Log Likelihood of (4.28) with β(0)

6: ψ(1) ← Update ψ(0) with Newton Raphson

7: β(1) ← Coefficients from weighted regression with ψ(1) as weights

8: New Likelihood ← Log Likelihood of (4.28) with β(1)

9: b← 1

10: procedure Newton Raphson Algorithm 1

11: while |New Likelihood - Old Likelihood| > ε do

12: b = b+ 1

13: Old Likelihood ← New Likelihood

14: ψ(b) ← Update ψ(b−1) with Newton Raphson

15: β(b) ← Coefficients from weighted regression with ψ(b) as weights

16: New Likelihood ← Log Likelihood of (4.28) with β(b)

17: Final values are given by β(b)

8.4 EM Algorithm Payments

8.4.1 Payments

The algorithm used for payments is given by
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Algorithm 7 Payment Distribution

The following EM algorithm is used to find βµ,k, βσ,kandβπ,k for each distribution k.

1: procedure Initialization

2: π
(0)
k ←

1

K
for each k

3: N ←
∑

i,j Yij (total number of payments)

4: ψ
(0)
k ← RBinominal(N , π

(1)
k , 1− π(1)

k ) for each k

5: b← 0

6: while |New Likelihood - Old Likelihood| > ε do

7: b = b+ 1

8: Old Likelihood ← New Likelihood

9: procedure Estimation of Distribution Parameters

10: for k = 1 : K do

11: Set starting values:

12: µk,NR ← MLE for µk of distribution k with weights ψ
(b−1)
k

13: σk,NR ← MLE for σk of distribution k with weights ψ
(b−1)
k

14: NL ← Log Likelihood of distribution k evaluated with µk,NR and σk,NR

15: OL ← 0

16: while |NL - OL| > ε do

17: OL ← NL

18: Update µk,NR and σk,NR with Newton Raphson

19: Evaluate βµ,k and βσ,k in (4.31) by a GAM model with weights ψ
(b−1)
k

20: Store fitted values µ̂k,NR = g−1(x′ijβµ,k) and σ̂k,NR = g−1(x′ijβσ,k)

21: NL ← Log Likelihood of distribution k evaluated with µ̂k,NR and σ̂k,NR

22: µ̂
(b)
k ← µ̂k,NR

23: σ̂
(b)
k ← σ̂k,NR

24: β
(b)
µ,k ← βµ,k

25: β
(b)
σ,k ← βσ,k

26: logLk ← NL

27: procedure Maximize Likelihood for Probabilities

28: ψ
(b)
k ←

(
πkfk(x1)∑K
k′=1 π

′
kfk′(x1)

, . . .
πkfk(xN)∑K
k′=1 π

′
kfk′(xN)

)
for each k

29: Evaluate β
(b)
π,k in (4.32) by performing a multinominal logistic regression with

weights ψ(b) = (ψ
(b)
1 , . . . , ψ

(b)
k )

30: Store fitted values π̂
(b+1)
k from the multinominal logistic regression

31: New Likelihood ← Log of Likelihood in (4.34) evaluated with µ̂
(b)
k , σ̂

(b)
k , and π̂

(b)
k

32: βµ,k ← β
(b)
µ,k

33: βσ,k ← β
(b)
σ,k

34: βπ,k ← β
(b)
π,k
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8.4.2 Settlement

The following EM algorithm is used to find βµ,k, βσ,k and βπ,k for each distribution k.

Algorithm 8 Settlement Distribution

1: procedure Initialization

2: N ←
∑

i,j Yij (total number of payments)

3: ψ0 ← Vector of length N

4: ψ0 ← ifelse(Yij = 0, 1, 0) for each i, j

5: ξ
(1)
0 ← MLE of Binominal Distribution with weights ψ0

6: b← 0

7: while |New Likelihood - Old Likelihood| > ε do

8: b = b+ 1

9: Old Likelihood ← New Likelihood

10: Update ξ
(b)
0 with Newton Raphson

11: Evaluate βξ0 in (4.35) by a GAM model

12: New Likelihood ← Log Likelihood evaluated with fitted values ξ̂
(b)
0 = g−1(x′ijβξ0)

13: βξ0 ← β
(b)
ξ0

14: ψ
(b)
k [ψ0 = 1]← 0 for all b

15: Continue with Algorithm 7
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8.5 Simulation of Hazard Rate

In this section, we discuss how we can simulate the reporting delay with a piece-wise

constant and a Weibull hazard rate. We will only discuss simulating the reporting delay

here, however, the same methods are applied for simulating the time until a next event.

First, we discuss how we can simulate from a general hazard rate. Thereafter, we will apply

the found simulation equations to the piece-wise constant and Weibull hazard rate.

The hazard rate γ(u) is related to F(u) as

F (u) = 1− exp(−
∫ u

0

γ(s)ds) (8.27)

Let Y ∼ Uni(0,1) be a randomly drawn variable. We have

Y = F (u) (8.28)

= 1− exp
(
−
∫ u

0

γ(s)ds
)

(8.29)

= 1− exp(−H(u)). (8.30)

Inversing the equation gives

u = H−1(− log(1− Y )). (8.31)

Hence, by using Y in (8.31), we obtain the value for the reporting delay u. Equivalently, we

can draw a random Uniform variable and use this in H−1(− log(Y )) to obtain an estimate

for the reporting delay.

In the case of a model with covariates, we need to incorporate the covariates into the simu-

lation. The hazard rate is then written as

F (u) = 1− exp

(∫ u

0

γ(s) exp(x′iβ)ds

)
(8.32)

= 1− exp

(
exp(x′iβ)

∫ u

0

h(s)ds

)
(8.33)

= 1− exp

(
exp(x′iβ)H(u)

)
(8.34)

We can rewrite F (u) = Y with the above found relation to obtain

u =
H−1(− log(Y ))

exp(x′iβ)
. (8.35)
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We have found the general simulation equations for a hazard rate γ(u). Next, we consider

the two hazard rates that we apply: the piece-wise constant hazard rate and the Weibull

hazard rate. To obtain the simulation equations for these two hazard rates, we need to find

H−1, such that we can use it in the simulation equations (8.31) and (8.35).

For the Weibull distribution, the hazard function without covariates is given by γ(u) =

ρζ(ζu)ρ−1. The cumulative hazard and its inverse are computed as

H(u) =

∫ u

0

ρζ(ζs)ρ−1ds (8.36)

= (ζu)ρ (8.37)

H−1 = (ζu)1/ρ (8.38)

The hazard rate and the cumulative hazard with a piece-wise constant specification are given

by

γ(u) =


γ1

γ2
...

γW

H(u) =


γ1u for 0 ≤ u < q1

γ1q1 + γ2(u− q1) for q1 ≤ u < q2
...

γ1q1 + γ2(q2 − q1) + · · ·+ γW (u− qW ) for qW−1 ≤ u < qW )

By inverting the cumulative hazard function, we get

H−1(u) =



u/γ1 for 0 ≤ u < γ1q1

q1 + (u− γ1q1)/γ2 for γ1q1 ≤ u < γ1q1 + γ2(q2 − q1)
...

qk + (u− γ1q1 −
∑W−1

w=2 γw(qw − qw−1))/γW for γW−1qW−1 ≤ u < ...

...γW−1qW−1 + γk(qW − qW−1)
(8.39)

We use the values of the inverse hazard in the equations (8.31) and (8.35) to obtain the

simulation equations given in Table 8.1.
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Table 8.1: Simulation Equations

Without Covariates With Covariates

Weibull (−ζ log(Y ))1/ρ
(−ζ log(Y ))1/ρ

exp(x′iβ)

Piece-wise Constant H−1(− log(Y ))
H−1(− log(Y )

exp(x′iβ)

Note: Y ∼ U(0, 1) and H−1 is as in (8.39)

8.6 Kaplan-Meier with Covariates

The survival function of the Weibull distribution with covariates is given by

S(u|Ti, Ci) = S0(u)exp(x
′
iβ) (8.40)

where S0(u) is the baseline survival function, xi = (Ti, Ci) and β indicates the effect of the

covariates on the hazard rate. We rewrite this by using (4.41) as

log[− log(Ŝ(ui|Ti, Ci))] = log[− log(S0(ui))] + x′iβ, (8.41)

= ρ log(ζ) + ρ log(ui) + x′iβ. (8.42)

This indicates that for groups for which x′iβ is constant, we again have a linear relation

between the log of the reporting delay and the double log of the Kaplan-Meier survival func-

tion. To check whether the linear relation holds, we first compute the Kaplan-Meier estimate

of the survival function, Ŝ(ui) for each group of claims that have the same covariates. Then,

we compute yi = log[− log[Ŝ(ui)]] for each i and plot it against ui. We fit a straight line

through these points, y = b + m log(u). Here, we should approximately have b = ρ log(ζ)

and m = ρ.

The same procedure can be performed for the gap times vij, where Ŝ(ui|Ti, Ci) in (8.42)

is replaced by Ŝ(vij|V −ij , Ui, Ti, Ci), the Kaplan-Meier estimate of the gap times as given in

(4.40).

8.7 Tables

Here, the tables of the results are given.
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Estimate Estimate

Old Car 0.051** Catalog Value 3 0.410***

(0.017) (0.007)

Catalog Value 2 0.010*

(0.004)

Table 8.2: Covariate Estimates of Full Model Rate of Occurrence

Delete Variable AIC

None 1886453

Old Car 1887000

Catalog Value 1886000

Both 1887000

Table 8.3: AIC of Different Models Rate of Occurrence

Delete Covariate AIC

None 2,141,013

Old Car 2,141,908

Catalog Value 2,141,512

Time of Occurrence 2,141,113

Table 8.4: AIC Different Models Reporting Delay

Delete Covariate AIC

None 4,436,905

Number of Payments 4,436,907

Old Car 4,439,044

Reporting Delay 4,440,105

Total Payout 4,458,003

Years in Development 4,470,850

Table 8.5: Backwards Analysis: AIC after deleting Covariates

AIC Optimal Model

K = 2 534,414 Log Normal, Log Normal

K = 3 533,686 Log Normal, Log Normal, Log Normal

K = 4 533,694 Gamma, Log Normal, Log Normal, Log Normal

Table 8.6: AIC of Payment Mixture Models
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Parameters

with Covariates AIC

None 533,686

µk 518,608

µk, σk 519,674

µk, σk, πk 519,673

σk 518,900

σk, πk 519,886

µk, πk 518,711

pik 523,670

Table 8.7: AIC of Different Covariate Models for Payments

AIC Optimal Model

K = 2 559,384 ξ0, Log Normal, Log Normal

K = 3 553,666 ξ0, Log Normal, Log Normal, Log Normal

K = 4 553,700 ξ0, Gamma, Gamma, Log Normal, Log Normal

Table 8.8: AIC of Settlement Mixture Models
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µ1 µ2 µ3 σ1 σ2 σ3

(Intercept) 6.940*** 5.292*** 7.464*** 0.230*** 0.232*** 0.282***

(0.010) (0.022) (0.024) (0.002) (0.003) ( 0.003)

2 Years in Development 0.334*** 0.106** 3.676***

(0.015) (0.030) (0.043)

3 Years in Development 0.670*** 0.343*** 0.1759***

(0.023) (0.046) (0.182)

4 Years in Development 0.816*** 3.341*** -0.458***

(0.036) (0.066) (0.138)

5 Years in Development 0.761*** 3.449*** 0.465***

(0.049) (0.090) (0.869)

Old Car 0.148*** 0.331*** 2.373***

(0.023) (0.048) (0.047)

Total Payout > AC2000 0.701*** 0.335*** -0.096***

(0.012) (0.024) (0.027)

Total Payout < AC500 0.279*** 1.286*** -0.569***

(0.009) (0.020) (0.022)

Reporting Delay -0.002*** -0.002*** -0.019***

(0.000) (0.000) (0.000)

Number of Payments 0.004* 0.002 -0.612*

(0.001) (0.002) (0.007)

Time of Occurrence -0.000 0.000* -0.000**

(0.000) (0.000) (0.000)

Catalog Value ”Intermediate” 0.026*** 0.139*** 0.044***

(0.005) (0.011) (0.011)

Catalog Value ”High” 0.112*** 0.266*** 2.657***

(0.009) (0.019) (0.022)

Probability 0.630 0.322 0.047

Note: * p<.10, ** p<.05, *** p<0.01

Table 8.9: Parameter Estimates Payments Mixture Model with Covariates
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ξ0 µ1 µ2 µ3 σ1 σ2 σ3

(Intercept) 1.522*** 4.287*** 5.598*** 7.102*** 2.159*** 0.2393*** 2.405***

(0.014) ( 0.003) (0.014) (0.003) (0.004) (0.002) (0.005)

2 Years in Development 1.198*** 0.033*** 0.047*** 0.007

(0.036) ( 0.008) (0.031) (0.008)

3 Years in Development 3.235*** 2.066 1.237*** 0.526***

(0.109) (0.020) (0.069) (0.020)

4 Years in Development 5.847*** 1.222*** 1.759*** -0.887***

(0.257) (0.033) (0.132) (0.030)

5 Years in Development 12.480*** 1.385*** 2.635*** 4.373***

(0.425) (0.053) (0.183) (0.087)

Old Car -0.014* 0.705*** 0.582*** 0.039***

(0.007) (0.007) (0.031) (0.008)

Number of Payments -1.217*** -0.003 -0.102*** -0.329***

(0.104) (0.002) (0.006) (0.002)

Catalog Value ”Intermediate” -0.137*** 0.086*** 0.470*** -3.111***

(0.009) (0.001) (0.007) (0.002)

Catalog Value ”High” -0.251*** 0.666*** 0.081*** -0.942***

(0.016) (0.003) (0.012) (0.003)

Total Payout > AC2000 0.563*** 0.005 0.514*** 0.008

(0.017) (0.004) (0.073) (0.004)

Total Payout < AC500 -2.579*** 1.542*** 0.094*** -0.006*

(0.012) (0.003) (0.013) (0.003)

Time of Occurrence 0.000 0.000 0.000*** -0.000**

(0.000) (0.000) (0.000) (0.000)

Reporting Delay 0.001*** -0.001*** -0.001*** -0.001****

(0.000) (0.000) (0.000) (0.000)

Probability 0.146 0.740 0.114

Table 8.10: Parameter Estimates Model
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