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ABSTRACT

In this thesis we have formulated a method to solve the Multi-
Depot Vehicle Scheduling Problem with a bus-fleet which is par-
tially electrically fuelled. This method incorporates a Column
Generation process and a dedicated heuristic to solve the Pricing
Problem. The Truncated Column Generation heuristic provides
integer solutions in reasonable time for large instances of the MD-
VSP. Two additional challenges surface with the introduction of
electric vehicles: The limited action radius of the batteries, re-
sulting in a more challenging Pricing Problem. Secondly, electric
vehicles are smaller than diesel vehicles in terms of passenger ca-
pacity. To incorporate the electric fleet, we have introduced a new
set of arcs to the network for which a bus can be recharged. Addi-
tionally, we have determined the demand per trip and removed
arcs for which a bus as insufficient capacity. The algorithm used
to solve the Pricing Problem is similar to any shortest path algo-
rithm. We introduced one additional update-condition to ensure
there is always sufficient charge left in battery to continue and
return to the depot to recharge. The heuristic is used to solve the
vehicle scheduling problem based on historical data for trip de-
mand. We have compared the results of these schedules to the
schedules we have solved for each weekday for two test weeks.
We conclude that the on average the operational costs using day-
specific schedules are reduced by 9.3%.
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1 introduction
Over the past few decades, much effort has been put into investigating
methods to solve large Vehicle Scheduling Problems. Currently large
problems for aircraft-carriers, train-transportation and bus-transit have
to be solved in order to remain economically viable. Bus-transit com-
panies in the Netherlands are contractually bounded to provide public
transportation for certain regions or concessions. However, acquiring
these contracts is competitive. Therefore, to remain competitive it is
necessary for those companies to be as cost efficient as possible. The
focus of this thesis is specifically on public bus transportation.

The planning process for public transportation consists of four steps.
In step one, the timetables consisting of all trips has to be made. This
task, while maximizing customer satisfaction and minimizing costs, is
a very complex problem. Secondly, the public transport company has
to schedule which bus is going to perform which trip. With various
types of buses, route- and time-constraints minimizing costs becomes
increasingly difficult. Next, anonymous duties are scheduled specifi-
cally stating at which time on which bus line(s) someone is going to
work. Lastly the company has to determine who is going to perform a
specific duty: assigning a bus driver to each duty.

While every step in the planning process is an interesting problem
by itself, this thesis will exclusively focus on step 2: scheduling the
available bus-fleet optimally to a given timetable for region Noord-
Holland Noord which is carried out by bus transit company Connexxion.
For the past few decades the Vehicle Scheduling Problem has been re-
searched intensively. The problems become larger and larger, there-
fore using the available resources efficiently becomes ever so impor-
tant. The latest developments in the field of Vehicle Scheduling are
focused on solving the instances faster using heuristics and simultane-
ously solving the scheduling problem for both the vehicles and crews.

Another subject of interest is the deployment of electric vehicles.
Based on international regulations, transportation companies are obliged
to reduce carbon emissions. Therefore the bus-fleet of public transit
companies is slowly becoming more and more electric. Contrary to
the conventional bus, the batteries of an electric bus have a limited
range before it has to return to a depot or charging station to recharge.
In large cities, diesel engines are prohibited to enter city centres, which
imposes a restriction on which type of bus to use. In addition to having
a smaller action-radius compared to the conventional bus, the electric
vehicles are often smaller in terms of passenger capacity.

A recent solution to deploy buses efficiently in terms of capacity is
of a more practical nature: public transportation companies have intro-
duced demand-driven transportation. This means a bus will only be
deployed when customers make their demand known. However, this
only happens for low-demand trips - trips which are likely to have
zero demand. Having multiple types of buses with a different capac-
ity, range and cost and not knowing the demand for a trip, the choice
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for a type of bus is relevant for all trips. A bus transit company cannot
leave anyone behind at a bus-stop. Therefore it needs sufficient capac-
ity at all times. Using smaller buses is cheaper, but bears the risk that
the total demand for a trip exceeds its capacity. The new challenge is
to schedule as efficiently as possible, while satisfying all demand.

The main purpose of this thesis is to formulate a method to find an
optimal schedule for a given timetable using a fleet which is predom-
inantly electric. In this optimal schedule we want to guarantee that
there is sufficient capacity at any point of time. To do so, the following
research questions are defined:

• How to incorporate the passenger demand in the network?

• How to incorporate the range limitation of the electric vehicles
in the heuristic?

The public transport company is currently using historical demand
to decide whether using a small or larger bus. A particularly interest-
ing question to ask is what value a forecasting tool has, which can pre-
dict the maximum occupancy rate of a trip. We are interested in what
the benefits are of a proper forecasting model to predict the number
of passengers on a certain trip. Therefore we define the final research
question:

• What is the benefit of making a vehicle schedule every day using
the forecasts for trip occupancy?

To be able to answer these questions, we start with an outline of
this thesis. In chapter 2 we will elaborate on the relevant literature
for Vehicle Scheduling Problem (VSP), with special attention for the
Multi-Depot Vehicle Scheduling Problem (MDVSP) and Electric Vehi-
cle Scheduling Problem (E-VSP). With this review, a clear set of ap-
proaches to evaluate this problem becomes available. In chapter 3 the
case provided by Connexxion is introduced and described in detail.
We will introduce the mathematical formulation and define the net-
work in chapter 4. In chapter 5, we will discuss the solution approach.
Chapter 6 is dedicated to the occupancy rate for all trips which have
to be performed. The results are shown and discussed in chapter 7.
Finally, in chapter 8 this thesis will provide a conclusion based on its
findings.
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2 literature review
In this chapter we review the literature considering the Vehicle Schedul-
ing Problem. First we elaborate on the Vehicle Scheduling Problem in
general. To continue, an explanation is given for two approaches to
solve the Multi-Depot Vehicle Scheduling Problem. Lastly we summa-
rize the literature on the Electric Vehicle Scheduling Problem and the
Vehicle Schedule Problem with stochastic elements.

2.1 Vehicle Scheduling Problem

Due to the complexity and the large instances which have to be solved
in the real world, there is a lot of literature available for solving the
MDVSP. Surveys on the VSP (Daduna and Paixão 1995, Kliewer and
Bunte 2009) provide several variations and special cases of VSP which
makes for an excellent starting point for this thesis.

The aim of the Vehicle Scheduling Problem can be narrowed down
to three characteristics:

• Each trip is covered exactly once

• Each vehicle performs a path from depot to depot

• Vehicle cost is minimized

A ’trip’ is defined as a route from a start location to an end location
covering all intermediate stops. Each trip is defined in a timetable,
stating a starting location ls, end location le and starting time ts and
ending time te. Besides the scheduled trips, there are several types of
trips to link depots to trips which do not carry any passengers. Trav-
elling from a depot to a scheduled trip is called a ’pull-out trip’ and
travelling from a scheduled trip to a depot is called a ’pull-in trip’.
’Dead-heading’ or a ’dead-head trip’ is sending a bus from location
A to location B without it being in service. Define τij the dead-head
(travel) time from end-location trip i to start-location trip j. Trip j is
’compatible’ with trip i, when ts

j ≥ te
i and ls

j = le
i holds, or ts

j ≥ te
i + τij

where ls
i 6= le

j . Stating that trip j is compatible with trip i the notation
i α j is used. A ’path’ is defined as a sequence of compatible trips per-
formed consecutively starting from the depot and ending at the depot.

The objective function generally consists of two parts. The fixed costs
of using a bus and the operational or variable costs. The fixed costs
mostly consists of investment costs and maintenance of buses. Opera-
tional costs often consists of fuel-costs and maintenance costs, which
may simply be expressed as cost per kilometer travelled. Typically,
the combination of vehicles used and total (dead-head) distance trav-
elled is minimized. Though, the objective function may serve many
purposes.

The most prominent difference in literature among instances of VSP
is the number of depots present in the network. In particular whether
there is a single depot or multiple depots. It is well-known that the
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VSP with a single depot is equivalent to the Min-Cost-Flow-Problem,
which is solvable in polynomial time. Formulations with multiple
depots (MDVSP) require an additional set of constraints to cover all
trips exactly once. MDVSP is NP-hard: a formal proof is shown in
(Bertossi, Carraresi, and Gallo 1987). The complexity of each instance
depends on the number of trips to be performed, the number of depots
and vehicle types available and the number of arcs in the network.

Predominantly, optimization models are based on the Network Flow
Problem as it is the more intuitive way to solve the MDVSP. There
are two approaches using the Network Flow Problem which we will
investigate in this thesis:

• connection-based approach

• path-based approach

Both approaches will be treated and evaluated separately. Starting
with the connection based approach and finishing with the path-based
approach. Both approaches will emphasize on the Multi-Depot Vehicle
Scheduling Problem.

2.2 Connection-based Formulation

There are several different formulations for the MDVSP, though the
most straightforward formulation is given in formulation (M1). The
following notation is introduced: When speaking of a graph or net-
work we will use the notation G = (V, A), where V is the set of all
vertices and A the set of all arcs in the network. Furthermore, let the
following sets be defined such that:

• N: the set of all timetabled trips to be performed

• D: is the set of all depots

• D(i): the set of depots from which trip i ∈ N can be performed

• N(d): The set of trips that can be performed by vehicles from
depot d ∈ D

Introduce the following variables and parameters: Denote xd
ij the

flow of vehicles from depot d over arc (i, j) ∈ A. Let yd
i = 1 if trip i is

assigned to a vehicle from depot d, 0 otherwise. Denote cd
ij the cost per

vehicle from depot d of using arc (i, j) ∈ A and lastly ud the number
of vehicles present at depot d.

(M1) : min ∑
d∈D

∑
(i,j)∈A

cd
ijx

d
ij (2.1)

s.t ∑
j:(i,j)∈A

xd
ij = yd

i ∀d ∈ D, i ∈ N(d) (2.2)

∑
i:(i,j)∈A

xd
ij = yd

j ∀d ∈ D, j ∈ N(d) (2.3)
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∑
d∈D(i)

yd
i = 1 ∀i ∈ N (2.4)

∑
i∈N

yd
i ≤ ud ∀d ∈ D (2.5)

yd
ij ∈ {0, 1} ∀d ∈ D, (i, j) ∈ A (2.6)

xd
i ∈ {0, 1} ∀d ∈ D, i ∈ N (2.7)

Constraint sets (2.2) and (2.3) ensure that the flow is conserved and
feasible. Constraints (2.4) make sure that each trip is assigned to a
vehicle from depot d exactly once. With constraint set (2.5) the number
of vehicles present in the network cannot be exceeded. Constraints
(2.6) and (2.7) are domain constraints.

As stated before, the real-life instances of the VSP can be extremely
large and therefore are too time-consuming to solve to optimality with
’weak’ formulations. Therefore, there is a need to reformulate the prob-
lem. The Multi Depot Vehicle Scheduling Problem is equivalent to the
Multi-Commodity Flow Problem. To illustrate, a Single-Commodity
Flow Problem is shown in Figure 1.

Figure 1: Single-Depot VSP network with dual nodes

Note that for each trip the nodes are duplicated, a departure-node
and an arrival-node are explicitly defined for each trip. Resulting in an
additional set of arcs AT between departure-nodes and arrival-nodes.
Also, a circulation arc is included in the network, from the end de-
pot to the start depot. To continue to reformulate the MDVSP into a
Multi-Commodity Flow Problem a network-layer similarly to Figure
1 is defined per depot/vehicle type: Gd = (Vd, Ad), where Vd are all
the nodes in the network layer and Ad are all the arcs in the network-
layer. This results in a multi-graph network as shown in Figure 2. Let
ATn ⊆ AT be the set of all arcs corresponding to trip n ∈ N and let
AC be the set of circulation arcs of G, where ACd ⊆ AC is the set of
circulation arcs for each network layer. Which, in this case, is just one
arc for each depot.
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Figure 2: MDVSP network

Given this new notation for the Multi-Commodity Flow Problem,
we also have to rewrite the formulation. The corresponding formula-
tion is stated below:

(M2) : min ∑
d∈D

∑
(i,j)∈Ad

cd
ijx

d
ij (2.8)

s.t. ∑
j∈Vd :(i,j)∈Ad

xd
ij − ∑

j∈Vd :(j,i)∈Ad

xd
ji = 0 ∀i ∈ Vd, d ∈ D

(2.9)

∑
d∈D

∑
(i,j)∈ATn

xd
ij = 1 ∀n ∈ N

(2.10)

∑
(i,j)∈ACd

xd
ij ≤ ud ∀d ∈ D

(2.11)

xd
ij ∈ {0, 1} ∀(i, j) ∈ Ad\ACd, ∀d ∈ D

(2.12)

xd
ij ∈N+ ∀(i, j) ∈ ACd, ∀d ∈ D

(2.13)

Constraint (2.9) is the flow conservation constraint. Constraint (2.10)
ensures each trip is covered exactly once. Constraint (2.11) makes sure
the solution found satisfies the capacity constraint for each depot d.

As stated before, the Multi-Commodity Flow problem is equivalent
to the Multi-Depot Vehicle Scheduling problem. However, for formula-
tion (M1) we had to introduce a second set of decision variables while
the formulation (M2) only needs one set of decision variables.

Keeping in mind that the formulation only considers either depots
or vehicle types (Ferland and Michelon 1988). Therefore, the idea of
creating a network layer for each vehicle type/depot combination, re-
sulting in |D| · |T | network-layers, as displayed in (Gintner, Kliewer,
and Suhl 2005) can be used to solve the Multiple Vehicle Types MDVSP
(MVT-MDVSP).

The connection-based formulation determines the flow of each type
of vehicle over an arc. Solving this problem generates flows over arcs,
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denoting the number of vehicles using this arc, implicitly creating paths
for a vehicle. Typically, each arc incorporates a cost corresponding to
an activity. For example, an arc from a depot to a trip contains the start-
up cost, while an arc from a trip to another trip incorporates trip-cost
and dead-head cost. The objective of the VSP is to minimize the total
cost incurred.

The main disadvantage of using the arc-based formulation is the
number of arcs growing quadratically when the number of trips in-
creases. In general, unrestricted dead-heading is allowed for public
bus transportation as opposed to aircraft scheduling. Since the in-
stances grow quadratically with the number of trips, several papers
are dedicated to reduce the number of dead-head arcs. Assuming
that morning-trips will not be followed up with either midday-trips
and night-trips, will reduce the number of variables needed by 40%
(Haghani and Banihashemi 2002).

The time-space formulation as described in (Kliewer, Mellouli, and
Suhl 2006), aggregates the group of compatible arcs into a single arc,
drastically reducing the number of arcs by 97%.

2.3 Path-based Formulation

Let Pd be the set of all feasible paths departing from depot d. Let
zp ∈ B be the choice whether the path p is being used or not. Define
parameters ajp whether trip j is included in path p. Define parameter
rd being the maximum capacity of depot d. State cp the costs included
to use path p. This results in formulation (M3) as stated below:

(M3) : min ∑
d∈D

∑
p∈Pd

cpzp (2.14)

s.t. ∑
d∈D

∑
p∈Pd

ajpzp = 1, ∀j ∈ N (2.15)

∑
p∈Pd

zp ≤ rd ∀d ∈ D (2.16)

zp ∈ {0, 1} ∀d ∈ D, ∀p ∈ Pd (2.17)

Constraints (2.15) ensure every trip is performed exactly once. Con-
straint set (2.16) makes sure that the number of buses used per depot
does not exceed the capacity of each depot. Concluding with the in-
tegrality constraint (2.17). The objective function minimizes the total
costs. In this case, all costs corresponding to path p are implied in cp
and may have various goals. For example, setting cp = 1, ∀p ∈ P
would minimize the number of paths used and therefore minimizing
the fleet-size required to solve the problem.

The main advantage of using the path-based formulation is that the
notation is intuitively easy to grasp. A further advantage is that fuel-
constraints or time-constraints for vehicles or corresponding duties are
easily recognized for paths compared to the connection-based models.
However, the number of feasible paths grows exponentially when an
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instance increases in size, making it highly inefficient/impossible to
enumerate every single possible path. Nonetheless, starting with a
primal feasible set of circuits in combination with column generation
(as shown in Ribeiro and Soumis 1994) is a strong approach to solving
the MDVSP.

Column Generation

Starting with the set-covering formulation (M3), column generation is
applied to solve the MDVSP to optimality. For an in-depth overview
of the derivation of the Column Generation formulation, we refer to
(Desrosiers and Lübbecke 2005). Introducing dual variables µj for all
j ∈ N and λd for all d ∈ D associated to the set of constraints (2.15) and
(2.16), respectively. The corresponding pricing problem for column
generation is a Shortest Path Problem as shown in formulation (M4)
for each depot d:

(M4) : min− λd + ∑
(i,j)∈Ad

(cij − µj)xd
ij (2.18)

s.t. ∑
i∈Vd

xd
ij − ∑

i∈Vd

xd
ji = 0 ∀j ∈ N (2.19)

∑
i∈N

xd
n+d,i = 1 (2.20)

∑
i∈N

xd
i,n+d = 1 (2.21)

xd
ij ∈ {0, 1} ∀(i, j) ∈ Ad (2.22)

An optimal solution for the Shortest Path Problem: x̄d
ij for all (i, j) ∈

Ad, is a feasible path from depot to depot. To translate this solution to a
path which can be incorporated in the set covering formulation, we use
cp = ∑(i,j)∈Ad cij x̄ij and ajp = ∑i∈Vd x̄d

ij for all j ∈ N. When the solution
value corresponding to x̄ij is less than 0, there are reduced costs. Imply-
ing when this path is added toP a better solution may be found. When
there are no reduced costs, no improvement can be found. Therefore,
the problem is solved to optimality. (Oukil, Amor, and Desaulniers
2006) proposed a stabilized column generation method which handles
highly degenerate instances of Vehicle Scheduling Problems efficiently.

There are several heuristics to find a proper initial solution which
provides the primal base set of paths to perform column generation.
There is a trade-off between computation-time and optimality-gap us-
ing a heuristic to find a feasible solution. The faster an initial feasi-
ble solution is found, the earlier we can start the column generation
process. However, starting with a better initial feasible solution, the
column generation process may find the optimal solution faster. Since
the MDVSP has been investigated for over 30 years, many heuristics
have been developed. Simple ideas such as creating disjoint subsets
of trips which are to be covered by a single depot, creates several SD-
VSP problems which can be solved in polynomial time. (Carrareri and
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Gallo 1984). More sophisticated heuristics are compared in (Pepin et al.
2009) including Lagrangian heuristics and Tabu-Search among others.

2.4 Electric Vehicle Scheduling Problem

The introduction of full-electric vehicles has led to a new challenge
for public transit companies. Due to the battery capacity the range
of an electric vehicle is severely limited compared to the conventional
diesel buses. Therefore, there is a need to incorporate these limita-
tions in our formulation for electric vehicles. Recent efforts to solve
the VSP with range constraints are discussed in (Haghani and Bani-
hashemi 2002). (Wang and Shen 2007) propose a heuristic based on
an Ant Colony Optimization method (ACO). Though, both methods
require to recharge at a depot. There are many assumptions made to
reduce the complexity, especially for the charging method and recharg-
ing of a battery. (Chao and Xiaohong 2013) allow for swapping batter-
ies at depot which would imply a constant recharging-time. However,
swapping batteries is not applicable for many types of buses. Similar
to the assumption of constant recharging time is when the infrastruc-
ture present in the network allows for fast-recharging. Slow recharg-
ing is much more complicated, as it requires you to explicitly keep
track of the battery charge. The time required to recharge the battery
cannot be ignored. Also the decision to what extend the battery has to
be recharged is important. (Kooten-Niekerk, Akker, and Hoogeveen
2017) provide two methods to solve the E-VSP with continuous and
discrete states of battery charge. Taking continuous state of charge
into account is only applicable for small instances of E-VSP (< 10 ve-
hicles). For discrete state of charge, each trip-node is duplicated for
various values of battery-charge. The results shown are solved for
problems with less than 800 trips using column generation. (Adler
and Mirchandania 2017) proposes a Concurrent Scheduling heuristic
solving the E-VSP, introducing nodes in the network representing fuel-
stations. While this heuristic does not provide an optimal solution, it
returns a solution very quickly.

Closely related to the E-VSP is the Electric Vehicle Routing Problem
(VRP). (Schneider, Stenger, and Goeke 2014) and (Bruglieri et al. 2015)
propose a method to solve the VRP problem with Time Windows and
Route Constraints.

2.5 Stochastic/Dynamic VSP

So far, we have assumed that every parameter in the formulation is de-
terministic. However several elements in our model are stochastic in
nature such as demand for a trip or natural events such as traffic jams
or the breakdown of a bus during its path. Most research has been ded-
icated to the fluctuation of actual trip times. (Huisman, Freling, and
Wagelmans 2004) provide a robust solution taking several scenarios
for trip times into account. (Naumann, Suhl, and Kramkowski 2011)
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introduce a penalty for waiting times in a system with disruptions us-
ing stochastic programming.
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3 problem description
In this chapter we will elaborate on the problem and explain its specifics.
First we will discuss the concession, followed by the fleet and capac-
ity regulations. Lastly we will discuss the restrictions specifically for
electric vehicles.

3.1 Concession

The concession Noord-Holland Noord consists of 4 regions defined
by depots located in Alkmaar, Hoorn, Den Helder and Texel. Since
Texel is a small island with only a ferry as a connection to the main con-
cession, it can be treated as a separate region. All trips to be performed
on Texel are being outsourced to a third party in the new concession.

For this thesis, we will be concerned with the ’old’ concession (dis-
regarding Texel). Since we are interested in the historic demand of all
trips for the past 2 years. We want to develop a schedule based on
the historic demand using the new fleet. To evaluate the potential of
a forecasting tool, we will compare the performance of the schedule
based on historic demand - which can be used every day - with the
well-tailored schedule for that day given a realization of demand for
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all trips. If it is beneficial using the forecasting model, it is useful to
develop a model using this forecasting tool for the new concession.

Every week thousands of trips have to performed. Since there are
no trips during the night and each vehicle returns to depot at the end
of the day, the problem resets itself at night. Thus, 7 large MDVSP-
instances have to be solved for each week.

3.2 Fleet

The new fleet of Connexxion consists of several types of buses. There
are 3 ’Articulated’ buses with a length of 18 meters with a total capac-
ity of 100 passengers. An articulated bus has 48 seats. There are 35
’Standard’ buses with a length of 12 meters with each a capacity to-
tal capacity of 80 of which 42 seatings. The electric 12 meter bus BYD
Midi, ’Electric Long’, has a total capacity of 56, of which 26 are seats.
For this type there are 19 buses present in the network. There are 54
VDL Midi ’Electric Small’ full-electric buses with a capacity of 19 pas-
sengers. Standing in these buses is prohibited. Lastly there are ’Taxi
Buses’ with a capacity of 8 passengers which are deployed for special
purposes.

Buses starting from a depot do have to return to that specific depot.
It is possible for a bus to break down, which would result in that bus
being returned to the maintenance station. In this thesis it is assumed
that each depot has a fixed set of buses at the beginning of a workday.
This is validated since there is a ’technical’ reserve present for each
type of bus at every single depot. In case of a break-down a bus from
the technical reserve can be deployed. For the scheduling procedure
however, we do not take break-downs during trips into account. In
Table 1, the number of buses stationed at each depot is shown.

Table 1: Number of Buses per Depot
Alkmaar Hoorn Den Helder

Electric Small 30 16 4
Electric Long 14 5 0
Standard 18 11 6
Articulated 0 0 3

It may be the case there are not enough vehicles available to drive
the entire schedule. For example, there are more than 3 large buses
required at the same time during the morning peak-hours. In such
case, Connexxion can hire additional vehicles from a third-party for a
fixed fee.

The costs for each trip is dependent of which type of bus is being
deployed. The operational costs depend on the type of fuel used, the
maintenance costs per vehicle type and lastly the anticipated damage
costs. These costs vary during the lifetime of a bus. For convenience
and without loss of generality, the average cost per kilometer is taken
over the past 10 years. It is assumed that for all types of vehicles the



3 problem description 15

driving-style for each bus-driver is homogeneous, such that the cost
per kilometer is independent of the driver. Buses are linearly depreci-
ated, independently of how many kilometers it has travelled during
the year. Therefore, it is not included in either the cost per kilometer
or the model itself.

An overview of the bus-fleet can be found in Table 2. Taxi Buses are
not considered an option to deploy on trips. In this thesis, these buses
are used for alternative transportation when customers are left behind.

Table 2: Overview Fleet Information
Type Fuel Seats Capacity Costs per KM
Articulated Diesel 48 100 0.74
Standard Diesel 42 80 0.43
Electric Long Full-Electric 26 56 0.28
Electric Small Full-Electric 19 19 0.18
Taxi Bus Diesel 8 8 0.18

It is obvious that deploying small (electric) vehicles is beneficial as
shown in Table 2. Though there are regulations for sufficient capacity
to keep in mind. These regulations will be discussed hereafter.

3.3 Regulations for Capacity

A weekday is divided into separate distinct intervals (see Table 3). Dur-
ing each time-interval different rules are applicable for which type of
bus can be deployed during a specific trip. During peak-hours for ex-
ample, it is tolerated not being able to provide a seat to a customer. If
a customer is required to stand in a bus, it is not permitted to let the
customer stand for more than 30 minutes. Off peak hours, the com-
pany needs to provide a seat for each customer arriving. To determine
which bus needs to be deployed the capacity of the bus is at least 5

7 the
monthly statistical occupancy rate of the busiest months. This regula-
tion does not apply to trips frequented by students. For trips during
peak-hours, the occupancy-rate may not exceed the number of seat-
ings + 50 percent of places to stand.

Due to some reason it may happen that it is not possible to provide
service to each customer at the stop. When it takes longer than 30
minutes for the next bus to arrive, Connexxion itself has to provide
alternative transportation method on its own expenses. Otherwise, the
customer may wait for the next bus to arrive. Besides the expenses of
alternative transportation, a customer may file an official complaint
to a governmental body. In case there are too many complaints, the
governmental body may fine Connexxion.

In case of foreseeable increase in demand, such as public holidays
or notifications of group-demand to the concession-holder earlier than
48 hours, the transportation company is required to deploy a larger or
an additional vehicle.
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Table 3: Overview Time Blocks
Weekdays Saturdays Sundays
Early Morning:
Start Deployment - 7:00

Midday:
Start Deployment - 18:00

Midday:
Start Deployment - 18:00

Morning Peak-Hours:
7:00 - 9:00
Midday:
9:00 - 16:00
Afternoon Peak Hours:
16:00 - 18:00
Early Evening:
18:00 - 21:00

Early Evening:
18:00 - 21:00

Early Evening:
18:00 - 21:00

Late Evening
21:00 - End Deployment

Late Evening:
21:00 - End Deployment

Late Evening:
21:00 - End Deployment

3.4 Restrictions for Electric Vehicles

Since diesel- and gas-buses are not limited by the action radius, they
do not have to be refuelled during the day. Currently the battery, when
fully charged, allows us to drive an electric bus for 250 kilometers be-
fore it needs to be recharged. The recharge-stations are located at every
depot (Alkmaar, Den Helder and Hoorn). For every single bus there is
a slow-charging recharge point. This way every single electric vehicle
can start the day fully charged. Moreover, when a bus returns to its
depot there is always a recharge point available.

3.4.1 Assumptions

The batteries used in electric vehicles are complicated. The chemistry
used in the battery results in certain characteristics for recharging-speed,
lifetime of the battery and efficiency of the battery in different seasons.
To illustrate, recharging the battery from 0 to 80 percent takes about
the same time as completely recharging the battery from 80 percent.
The performance of a battery is season dependent. Especially in win-
ter, when it is cold, the battery performs at about 70 to 80 percent effi-
ciency.

In this thesis it is assumed that the recharge costs are incorporated
in the costs per kilometer, such that the price per kWh is independent
of the time of the day. For simplicity it is assumed that the lifetime of
the battery does not depend on the depth of discharge, such that the
costs are independent of the path a bus is deployed on. Moreover, it is
assumed that for every single bus the battery has the same properties.

3.4.2 Recharge-function

Naturally the amount recharged is dependent of the time available to
recharge and the current state of charge. If we were to assume a linear
recharge-function the amount recharged would be independent of the
current state of charge. To keep track of the state of charge would be
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a lot more simplified. However the recharge-function for each battery
is far from linear. In Figure 3 three possible recharge-functions are
shown. The black line is a representation of how a battery recharge-
function could look like. The exact function is not known, thus we
have to estimate the amount recharged. The blue line is the piece-wise
linear approximation. Lastly the red line is a linear recharge function.

Figure 3: Recharge functions: State of Charge = 0

An important implication when assuming the recharge-function to
be the red line, given that the battery is fully depleted, is that the
amount recharged in one hour is severely underestimated. Similarly,
given a state of charge of 200km, the red line would severely over-
estimate the amount recharged. The dangers of when the amount
recharged is overestimated, is that we do allow for paths which in re-
ality would result in a bus at the side of the road. Underestimating the
amount recharged would result in fewer options to go to after a trip
has been performed, limiting the number of feasible paths. The blue
line (piecewise-linear estimation) will be used for the remainder of this
thesis.
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4 mathematical formulations
In this chapter we will elaborate on the notation used in the formu-
lations. First we introduce the general notation for all sets, followed
by a notation specifically used for this case. We will go into detail
for recharge arcs and occupancy rates. Lastly we will introduce a set-
covering formulation for which Column Generation will be applied.

4.1 General Notation

Denote the following sets: D the set of depots in the concession. Let
N = {1, ..., n} be the set of trips to be performed. Let T be the set
of all vehicle types, each with a specific cost per kilometer kmck, num-
ber of seats sk and a total capacity mk. Let K be the set of all depot-
s/vehicle combinations. The graph G = (V, A) consists of a number
of network-layers, each representing a sub-graph for a depot/vehicle
combination. Since there are |D| · |T | = |K| possible combinations, we
need to make |K| network-layers. For each network-layer, there are rk
vehicles present. Each network-layer has its own specific set of nodes
and arcs. Let Vk be the set of nodes corresponding to network-layer k.
Let Ak be the set of all arcs in network-layer k.

The corresponding costs for each arc (i, j) ∈ Ak depends on the type
of vehicle and the distance travelled over arc (i,j), which is denoted
by ck

ij. There are no fixed costs available, since depreciation of buses
is independent of whether it is being deployed or not. We define the
cost for each arc (i,j) ∈ Ak : ck

ij = kmck · (dij + tdj) where dij is the
dead-head distance travelled from trip i to trip j and tdj is the distance
travelled during trip j.

4.2 The Network

For each network-layer, the depot is represented by a source node
(n+k) and a sink node (n+k’). Provided for each trip is a starting loca-
tion ls, end location le and starting time ts and ending time te. Each trip
is represented by a single node in every single network-layer. There-
fore, the set of nodes for network-layer k: Vk = {(n + k) ∪ N ∪ (n +
k′)}.

The set of arcs in network-layer k Ak consists of arcs from the source
node and trips, arcs between trips and arcs from trip to depot. A con-
nection between trips can be made when ts

j ≥ te
i and ls

j = le
i holds, or

ts
j ≥ te

i + τij where ls
i 6= le

j .
After a bus finishes a trip, it has to go somewhere. It is either parked

at the end station for some time, or it has to be returned to the depot.
Most end stations have limited (if any) parking space, such that when
a bus finishes a trip it quickly proceeds with a new trip or it should
return to depot. We do not have information for parking space at sta-
tions, therefore let us assume that when a bus finishes a trip it should
leave that station within 1 hour. In other words, it should continue
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with the next trip within 2 hours (allowing the bus to park 1 hour at
both the end station of trip i and start station of trip j). Therefore, let
trip j be compatible with trip i, i α j, if and only if:

ts
j ≥ te

i + τij (4.1)

ts
j ≤ te

i + τij + 120 (4.2)

The resulting set of arcs Ak is the union of pull-out arcs, compatible
trips and pull-in arcs:

Ak = {(n + k, i) : i ∈ N} ∪ {(i, j) ∈ N2 : i α j} ∪ {(i, n + k) : i ∈ N}
(4.3)

4.2.1 Recharge Arcs

To incorporate the action radius for electric vehicles, we need to keep
track of the battery charge during the day. After a trip is finished,
we should know whether an electric vehicle should return to depot
to recharge or the vehicle can proceed with a new trip.

In order to create feasible paths for electric vehicles, we first need
to identify opportunities to recharge. Whether there is a possibility
to recharge is dependent of the time-to-recharge from trip i to trip j
denoted by γij. After trip i we would need to travel back to depot and
proceed from depot to trip j. Therefore,

γij = ts
j − te

i − τi,Depot − τDepot,j (4.4)

For simplicity, let us assume that when the time-to-recharge is more
than half an hour (γij ≥ 30) it may be worthwhile to recharge. Recharg-
ing for i.e. 5 minutes is pointless as we need to cover additional dis-
tance to depot and it is harmful to the battery.

Given the opportunity to recharge, the network needs to accommo-
date for the decision to recharge or to proceed with a new trip. There-
fore we introduce recharge arcs. A recharge arc exists when γij ≥ 30.
Let us use the notation i β j if trip j is recharge compatible with trip i.
The set of arcs in network layer k becomes:

ARk = {(i, j) ∈ N2 : i β j} (4.5)

Note that the possible connections we have removed from {(i, j) ∈
N2 : i α j} are being replaced by the recharge arcs. For diesel buses
in particular recharge arcs are simply depot arcs. Another note is that
some trips may both be compatible and recharge-compatible with an-
other trips.

4.2.2 Occupancy rate

For each trip a certain maximum occupancy rate (or demand) is given.
Denote Dj the demand of trip j and Capj the appropriate capacity nec-
essary for trip j. To incorporate the occupancy rate in the network, we
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can either program it as a hard constraint in our formulation or adjust
the set of nodes such that vehicles with insufficient capacity cannot
reach trips with high demand. The latter has the advantage of decreas-
ing the number of nodes (and number of arcs) present in a network
layer. To exclude those specific nodes from our network, we redefine
the set of nodes:

Vk = {(n + k)} ∪ {j ∈ N : Capj ≥ Dj} ∪ {(n + k′)} (4.6)

Given the regulations described in section 3.3, we need to consider
whether we need capacity in terms of seats or seats plus standing
places. For trips during peak hours, the occupancy rate may not ex-
ceed the number of seats + 50% of the standing places of the bus. Dur-
ing off-peak hours the appropriate capacity to use is the number of
seats of the bus, since we need to be able to provide a seat to each
customer. Therefore, the appropriate capacity for trip j used for trips
is:

Capj =


sk + 1

2(m
k − sk) if trip j is performed during peak hours

sk if trip j is performed during off-peak hours
mk if trip j is a trip frequented by students

We have completed the network where we take both trip occupancy
and recharging for electric vehicles into account. By removing arcs
for which a bus has insufficient capacity, we ensure that in the final
solution every passenger always has a seat in the off-peak hours and
that no bus driver has to deny passengers at a bus stop.

4.3 Set-Covering Formulation

To conclude this chapter we will finish with the formulation.
We will use a similar formulation as described in section 2.3, where

we define set P ′ the (restricted) set of feasible paths. Let the cost co-
efficient cp = ∑(i,j)∈Ak ck

ijx
k
ij the cost of a path p in network layer k.

For each path in P ′, we define parameters aip = 1 if trip i is included
in path p, 0 otherwise. For each network layer k there are rk vehicles
present. Last but not least we introduce decision variable θp = 1 if
path p is used, 0 otherwise.

We also have to introduce an additional feature: Given the number
of buses in each depot, there may not be a feasible solution at all due
to a shortage of buses. Connexxion still has an option to rent buses at a
third-party, such that each trip can be covered. To incorporate the deci-
sion variable of renting additional vehicles, we denote yk the number
of rented vehicles for network layer k. Denote crent

k the costs of renting
an additional vehicle in network layer k. The resulting formulation is
stated below:
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min ∑
k∈K

∑
p∈P k

cpθp + ∑
k∈K

crent
k yk (4.7)

s.t. ∑
k∈K

∑
p∈P k

aipθp ≥ 1 ∀i ∈ N (4.8)

∑
p∈P k

θp ≤ rk + yk ∀k ∈ K (4.9)

θp ∈ B ∀p ∈ P ′ (4.10)
yk ∈N ∀k ∈ K (4.11)

The objective function is the sum of the operational costs of using
paths and the rental costs. The two main constraints are that every
single trip has to be performed at least once (4.8) and that we cannot
exceed the amount of vehicles that we have at our disposal (4.9). In
order to get a proper solution, the solution has to be integer. Constraint
sets (4.10) and (4.11) are the integrality constraints.

In this formulation we require for each trip to be covered at least
once. For the column generation approach (or any heuristic in general)
to find a solution where each trip is covered exactly once takes more
time.

We do not have to incorporate both the occupancy rate and action
radius for electric vehicles in this formulation. First, the occupancy
rate has been included in the network, such that sufficient capacity
is being deployed for every trip. Secondly, the paths we choose are
feasible in terms of action radius.
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5 solution approach
In this chapter we will discuss the heuristic we have constructed. In
short, we have constructed a Truncated Column Generation heuristic
to solve the VSP as described in the previous chapters. We have pro-
posed a formulation for the Pricing Problem which we solve heuristi-
cally. We continue elaborating the heuristic used to solve the pricing
problem for both the conventional diesel buses and electric vehicles.

This chapter will start with the Restricted Master Problem and its
LP-relaxation. Secondly, we will discuss the corresponding pricing-
problem for both conventional diesel buses and electric vehicles. We
will elaborate on the dedicated heuristic which is used to solve the
Pricing Problem. We conclude this chapter with the description of the
overall heuristic.

5.1 Restricted Master Problem

For the Restricted Master Problem we use the formulation (4.7)-(4.11)
from the previous chapter. In order to apply Column Generation, we
need to solve the LP-Relaxation:

min ∑
k∈K

∑
p∈P k

cpθp + ∑
k∈K

crent
k yk (5.1)

s.t. ∑
k∈K

∑
p∈P k

aipθp ≥ 1 ∀i ∈ N (5.2)

∑
p∈P k

θp ≤ rk + yk ∀k ∈ K (5.3)

0 ≤ θp ≤ 1 ∀p ∈ P ′ (5.4)
yk ≥ 0 ∀k ∈ K (5.5)

Introducing the dual variables µj for each cover constraint in con-
straint set (5.2) and dual variables λk for each vehicle constraint in con-
straint set (5.3). We use this formulation to get the LP lower-bound.
We are interested in this value as it indicates the quality of the integer
solution.

5.2 The Pricing Problem

Given the dual variables of the RMP, the objective is to find new paths
with negative reduce costs. λk and µj are the dual variables resulting
from the Restricted Master Problem. Let xk

ij be the decision variable
for arc (i,j) in network layer k. Note that we are solving the pricing
problem for every depot/vehicle type combination. Let parameter mij
be the amount of charge used (or gained in case of a recharge arc) on
arc (i,j) and let Rk be the action radius for vehicles in network layer
k. For each network layer k the pricing problem can be formulated as
follows:
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SPk : min− λk + ∑
(i,j)∈Ak

(cij − µj)xk
ij (5.6)

s.t. ∑
i∈Vk

xk
ij − ∑

i∈Vk

xk
ji = 0 ∀j ∈ N (5.7)

∑
i∈N

xk
n+k,i = 1 (5.8)

∑
i∈N

xk
i,n+k = 1 (5.9)

∑
i:(i,j)∈Ak

mij · xk
ij ≤ Rk ∀j ∈ N (5.10)

xk
ij ∈ {0, 1} ∀(i, j) ∈ Vk (5.11)

We define this formulation as the Fuel Constrained Shortest Path
Problem. The objective function (5.6) is the length of the path. Con-
straints (5.7) are the ’continuation’ constraints: when a trip is finished,
the bus will proceed from this node. The vehicle starts from the depot
and it ends at the depot where it has started from by using constraints
(5.8) and (5.9).

For any type of vehicle we cannot exceed its action radius. Con-
straint set (5.10) implies this range constraint. However, by adding
this set of constraints the pricing problem becomes a lot more compli-
cated. Therefore, we need a heuristic which can take the action radius
into account. In the next section we elaborate on a dedicated heuristic
incorporating the action radius of electric vehicles in order to find a
feasible path.

For diesel vehicles constraint set (5.10) is redundant. Therefore, for
diesel vehicles this formulation boils down to a regular Shortest Path
Problem. By incorporating the action radius of vehicles into an algo-
rithm, we will be able to use the same algorithm for diesel vehicles and
electric vehicles as well.

5.3 Dedicated Algorithm for Pricing Problem

The Pricing Problem can be solved using this IP-formulation, though
due to the complexity of the problem we have chosen to solve it heuris-
tically. For any Shortest Path Problem algorithms like Dijkstra or the
Bellman-Ford algorithm can be used. However, given the additional
constraint of a limited action radius, we have to develop a dedicated
heuristic.

Network

First notice that each network-layer is a directed acyclic graph (DAG).
Intuitively, we cannot find a path which leaves a node and eventually
return to the same node. This would mean a bus is deployed on a trip
and a successive trip is scheduled earlier that day. We cannot travel
back in time. Using this property, we can sort the nodes in each net-
work layer such that all edges are pointed in the same direction. To
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visualize this new representation of the network, a topological sorted
network is shown in Figure 4.

Figure 4: Topological Sorting

This allows us to search for any shortest path through the network
more efficiently. By representing the network in this manner, we can
work from left to right through the network. In each iteration the short-
est path for the next node is found. This algorithm results in a shortest
path from depot to depot.

Main Idea

Similar to the Bellman-Ford and Dijkstra algorithm, the main idea of
the algorithm is to update the shortest paths to nodes only when it
results in a new shortest path. In this case we want to incorporate the
additional constraint. To do so, we only update the shortest path when
there is a better result and there is still sufficient battery left to return
to the depot. We keep track of the remaining charge left in battery
and update the shortest paths only when there is sufficient charge left.
When there is insufficient charge, the vehicle cannot proceed with a
new trip. Instead, it has to return to the depot to recharge.

Update Criteria

For each arc between the current node v and the neighbouring node u,
we check whether a new shortest path to node u has been found and
whether it is feasible in terms of charge using the following require-
ments:

Dist[u] > Dist[v] + ck
vu (5.12)

and
SoC[v]− tdu − duv − du,depot > 0 (5.13)

We define Dist[u] as the current length of the shortest path to node
u and ck

vu the cost of the arc (v,u) in network layer k. Let SoC[v] be the
remaining charge in battery at node v, tdu the distance covered during
trip u and duv the deadhead-distance from node u to node v.

Equation (5.12) states that the new path to node u is the shortest path
in terms of reduced costs. For the new shortest path to node u to be
feasible, the state of charge at node v needs to exceed the trip distance
of node u and dead-head distance of arc (v,u) travelled and still have
enough charge left to reach the depot before running out of charge. As
stated in equation (5.13). Note that for diesel vehicles equation (5.13) is
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always satisfied as we assumed diesel vehicles can be used the entire
day without refuelling.

When using a recharge arc, we need to update the current state of
charge according to the recharge function (Appendix B) resulting in
the updated state of charge SoC+. The requirements become:

Dist[u] > Dist[v] + ck
v,depot + ck

depot,u (5.14)

and
SoC+ − tdu − du,depot > 0 (5.15)

For equation (5.14), we have to consider both routes the bus needs to
drive. First, the vehicle has to go from the end-station of the last trip to
the depot and from the depot to the start-station of the successive trip.
Equation (5.15) is similar to the corresponding equation for regular
arcs. We still have to consider the two routes which are being covered:
for node v to the depot and from the depot to node u. However, we
do not explicitly state the distance travelled from node v to the depot.
This is already included in the calculations of SoC+.

Overview Algorithm

An overview of the algorithm is given in Algorithm 1. We initialize the
algorithm with the path distances to each node equal to ∞. Where the
predecessor of node v is undefined. To keep track of the state of charge
we denote SoC[v] the state of charge after performing trip v. Lastly, we
introduce Recharge[v], which denotes whether we are using a recharge
arc to node v or not.

Introducing two depot nodes results in a total of |N|+ 2 nodes in the
network. Thus we need to perform |N|+ 2 iterations per sub-problem
to find the shortest path in that network-layer. For each iteration we
get the next node in the topological order and determine the set of
neighbouring nodes through compatible arcs and recharge compatible
arcs.

Per iteration we determine for the current node the set of compatible
arcs and the set of recharge compatible arcs. We determine for each
arc in these two sets whether it results in a new shortest path to node
u using the update-criteria as discussed before.

Finally, in order to retrieve the shortest path for network Gk, we need
to back-track using Pred[v] and Recharge[v]. Starting with the ending
depot node, we obtain the predecessor and add this node to the list.
When a recharge arc has been used, the depot node is also added to
the list. We continue this process until we end up with the starting
depot node.

The complexity of this algorithm is O(|Ak|) since we are only evalu-
ating the arcs. Essentially it runs in linear time considering the number
of arcs (which is quadratically related to the number of nodes present).
So overall, we have an algorithm which performs quite efficiently. In
section 5.4 we will go into detail whether the path found is indeed the
shortest path in the network.
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Algorithm 1: Shortest Path Algorithm

Data: Topological Ordering of Gk : Lk

Action radius R of the bus type in network layer k
Result: Shortest Path p̂
Initialization:
foreach v ∈ Vk do

Set distance to node v: Dist[v]→ ∞
Set predecessor for node v: Pred[v] = ∅
Set State of Charge at node: SoC[v] = R
Set Recharge at node: Recharge[v] = 0

end
Set distance source node: Dist[s] = 0
Set count = 0;
while count < |N| + 2 do

Get next node v in the topological order
Determine the set of all compatible trips for trip v := S(v)
Determine the set of all recharge compatible trips for trip v
:=R(v) foreach u ∈ R(v) do

Update State of Charge: SoC+;
if Dist[u] > Dist[v] + ck

v,depot + ck
depot,u and

SoC+ − du − ddepot,u − du,depot > 0 then
Dist[u] = Dist[v] + ck

v,depot + ck
depot,u

Pred[u] = v
SoC[u] = SoC+ − ddepot,u − du
Recharge[u] = 1

end
end
foreach u ∈ S(v) do

if Dist[u] > Dist[v] + ck
vu and

SoC[v]− du − dvu − du,depot > 0 then
Dist[u] = Dist[v] + ck

uv
Pred[u] = v
SoC[u] = SoC[v]− du − dvu
Recharge[u] = 0

end
end

end
Back-tracking:
value = depot
while value 6= StartDepot do

add value to p̂
if Recharge[value] == 1 then

add depot to p̂
end
value = Pred[value];

end
add depot to p̂
Return: p̂
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5.4 Proof of Correctness

Proposition 1: The algorithm to solve the pricing problem, as described
above, results in an optimal solution for diesel buses.

We are proving this statement using Dynamic Programming and
the topological sorting of the network-layer. We can show that this
method indeed results in the shortest path, at least for diesel fuelled
vehicles. For dynamic programming, denote f (k) the cost of the short-
est path from the source node to node k in the topological sorting and
initialize with:

f (s) = 0 (5.16)
f (k) = ∞ ∀ k ∈ N/s (5.17)

Where s is the source (depot) node. Naturally, we start with the
current cost equal to 0 to the source node. We define the current cost to
every other node in the network equal to ∞. The objective is to find the
shortest path from the depot node s to depot node t. For each iteration
in the Dynamic Programming algorithm we are using the induction
step:

f (k) = mini∈{s,...,k−1}
{

f (i) + c(i, k)
}

(5.18)

Does the induction step result in the shortest path to node k? Given
the topological sorting, the first iteration results in the shortest path
to the first scheduled trip in the schedule. Since the only incoming
arc for trip 1 is coming from the depot, we know for sure that f (1) =
f (0) + c(0, 1) = c(0, 1) is the minimum cost for reaching trip 1.

So if we were to assume after k iterations we know all shortest path
to nodes {s, 1, ..., k} where f (i) is the cost of the shortest path to node
i in the topological sorting. The shortest path to node (k+1) is found
through all incoming arcs from node i to node (k+1). Therefore, the
cost of shortest path for node (k+1) is denoted by:

f (k + 1) = mini∈{s,1,...,k}
{

f (i) + c(i, k + 1)
}

(5.19)

Since the path found using dynamic programming is always feasible
for diesel vehicles, we know by mathematical induction it results in a
shortest path for diesel vehicles.

We have shown the algorithm does provide an optimal solution for
diesel vehicles. However, is this statement also valid for electric vehi-
cles? It is likely that an electric vehicle will run out of charge when
deployed on that specific path. To prevent any unwanted stops at the
side of road, we have introduced an additional criterion such that there
will always be sufficient charge. But will the algorithm still return the
optimal path?
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Proposition 2: The algorithm to solve the pricing problem for elec-
tric vehicles does not result in an optimal solution.

Let us consider the following example as shown in Figure 5. We
have three trips: trip i, j and k. From trip i we can either use a recharge
arc (the dotted arc) or a regular arc to get to trip j, and from trip j we
can only use a regular arc to get to trip k.

Figure 5: Recharge arc example

Let us assume that there is enough charge left in the battery such
that both trip i and j can be completed when we are using the regular
arc, but not enough in that case to also continue with trip k. If we
were to choose the recharge arc instead, we do have enough charge to
complete all three trips in this example.

In such a case, the algorithm fails in terms of optimality. Since the
regular arc is the cheapest to use, the algorithm will use this arc to
reach trip j. However, it will not evaluate the recharge arc one step
further. Therefore, the algorithm is a bit short-sighted. Next, we will
provide a scenario where it goes wrong:

Let the current shortest path to node k be through node j. Such that
f (k) = f (j) + c(j, k). Node k cannot be reached through node i due to
the remaining charge left in battery, as visualized in Figure 6. Notice
the differences in arcs for trips i,j and k compared to Figure 5.

Figure 6: Example Pathing Electric Vehicle

Now consider the following: when we are using a recharge arc to
node i, which results in a sub-optimal path with cost f (i)′ > f (i), but
allows us to travel through node i to node k. Is it possible that for any
combination of nodes i, j and k that f (k) = f (j) + c(j, k) > f (i)′ +
c(i, k) - such that we are using a sub-optimal path to find a ’better’
shortest path?

Provided that we are dealing with large (in absolute terms) negative
dual variables that are incorporated in the cost of each arc, it is indeed
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possible that a sub-optimal path may lead to a shortest path. Especially
in the first iterations of the heuristic, where the reduced costs for each
trip equals −M. Therefore, the difference between f (i) and f (i)′ is
negligible, while the difference between f (j) and f (i)′ may be larger
than M. Resulting in the ’sub-optimal’ path through node i being better
than the ’shortest path’ through node j. Therefore, we conclude the
resulting path for electric vehicles is not optimal.

5.5 Truncated Column Generation Heuristic

The algorithm is similar to the truncated column generation algorithm
described in (Pepin et al. 2009). Similar to any column generation
heuristic, a starting solution Λ is introduced. This starting solution is
a feasible solution which covers each trip at the cost of big M. The only
purpose of this solution is to provide a starting point for the heuris-
tic. The next step is solving the RMP, followed by solving the sub-
problems which results in new paths.

One of the inevitable disadvantages of any column generation heuris-
tic is the tail-off effect. The improvements in objective values become
smaller and smaller, but still keeps improving nonetheless. In order to
speed up the process and, more importantly, achieve an integer solu-
tion, we need to interfere during the column generation process. This
will, however, result in the fact that we will not achieve the optimal
solution.

One important deviation from (Pepin et al. 2009) is the early termi-
nation criterion. The paper states an early termination criterion of a
minimum number of iterations without exceeding the minimum abso-
lute decrease. In our algorithm we will be using a relative decrease of
the objective value compared to the previous iteration. We think that
the relative decrease is much more informative than absolute decrease.
When the improvement of the next iteration is less than ZMIN−% com-
pared to the previous solution, we are fixing variables.

When the early termination criterion is met, such that the iteration
does not result in sufficient decrease, we are going to fix variables. For
each variable θp exceeding θMIN we set the lower-bound of this vari-
able to 1. If no such variable exists, we set the variable with the highest
value to 1. One possible interpretation of θMIN is the minimum poten-
tial of a path. In other words, the relevant path would at least be used
in (θMIN · 100)% of all solutions.

The heuristic may provide us a solution where trips are performed
multiple times. To remove these duplicate trips, we are interested in
which path is assigned to the smallest bus. Using this path and remov-
ing all others will result in the cheapest solution. When there are still
multiple paths left, for example three paths are driven by the standard
diesel bus, we keep the trips in the first path and eliminate the remain-
ing duplicates. An overview of the process is described in Algorithm
2.
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Algorithm 2: Truncated Column Generation Heuristic
Data: Network
Result: Integer Solution
Step 0: Initialization

Starting solution Λ
Choose parameters Zmin, θmin

Step 1: Solve the RMP
Denote primal solution (θn, Λn) and dual solution (µn, λn).
Define objective value ZRMP

n
n← n + 1

Step 2: Early Termination Test

if
ZRMP

n−1 −ZRMP
n

ZRMP
n−1

· 100 < Zmin then
Go to Step 5

end
Step 3: Solve Sub-Problems
foreach Sub-problem SPk : k ∈ K do

Update the cost of arcs in Ak given the dual-variables
Solve the Shortest Path Problem on GK

Denote solution values ZSP,k
n

end
Step 4: Update Restricted Master Problem

Given any shortest paths with reduced costs: ZSP,k
n < 0

Update the set of paths P ′
Go to step 1.

Step 5: Feasibility Test
if Λn 6= 0 then

Stop: No feasible solution has been found
end
Step 6: Integrability Test
if Solution is integer then

A solution has been found!
Go to Step 8

end
Step 7: Rounding
foreach p ∈ P ′ do

if θp > θmin then
θp ← 1

end
if no such variable exists then

set θ∗p ← 1, where θ∗p is the maximum value found.
end

end
Go to Step 1

Step 8: Remove duplicate trips
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6 data
In this chapter we will elaborate on the data itself and the alterations
being made. Next, we need to determine which bus can be deployed
on a each trip in the timetable. To do so, the distribution of the oc-
cupancy per trip is derived and a confidence value can be calculated.
Lastly, we introduce two test-weeks for real-life instances. The data set
includes all scheduled trips from 1 January 2016 to 31 March 2018.

6.1 Alterations to the data-set

In Appendix A the buslines for each region within the concession is
shown. There are six types of buslines:

• The regular lines: 001-399

• The neighbourhood-lines: 401-499

• The student-lines: 601-699

• On-demand-lines: 701-799

• Beach-lines: 801-899

• Night-buses: N60 and N69

For the On-demand buslines ( buslines 701-799) every registered trip
in the data-set has been flagged as ’cancelled’.

Since there has not been a trip for any of these bus-lines there is no
reason to keep them in the data set. Therefore these trips have been
removed.

Trips performed in the middle of the night, or night-buses, are only
scheduled in weekends (Friday night and Saturday night) and are only
available between Alkmaar - Heerhugowaard and Alkmaar - Ams-
terdam. On Friday night it is only bus-line N60: Alkmaar - Heer-
hugowaard, for which only 7 trips have to be driven. On Saturday
night 15 trips have to be performed. Since this part of the solution is
trivial, it has been excluded from the data set. Neighbourhood-lines,
student-lines and beach-lines will be treated like regular lines, with the
regulations described in Section 3.3 still applicable.

6.2 Occupancy Rate

In Table 4 an example of available data is shown. This example is an
overview of all the trips made on a specific date for a specific bus-
line in a certain direction. We are interested in how many passengers
were on the bus at the busiest moments of a specific trip. Data of the
occupancy rate is known for each trip for every single day for the past
2 years. The customer demand for a trip is non-fractional. Therefore,
the occupancy rate follows a discrete distribution.
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Table 4: Data Example Busline 1
Date Busline Direction Trip Starting time End time Occupancy Start Location End Location
1-2-2018 M001 2 2 06:33:00 06:50:00 6 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 4 07:33:00 07:50:00 5 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 6 08:33:00 08:50:00 4 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 8 09:23:00 09:50:00 7 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 10 10:23:00 10:50:00 2 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 12 11:23:00 11:50:00 5 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 14 12:23:00 12:50:00 6 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 16 13:23:00 13:50:00 5 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 18 14:23:00 14:50:00 9 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 20 15:23:00 15:50:00 10 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 22 16:23:00 16:50:00 12 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 24 17:23:00 17:50:00 6 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 26 18:23:00 18:47:00 4 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 28 19:23:00 19:41:00 5 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 30 20:23:00 20:41:00 5 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 32 21:23:00 21:41:00 3 Alkmaar Station Alkmaar Station
1-2-2018 M001 2 34 22:23:00 22:41:00 3 Alkmaar Station Alkmaar Station

In order to derive a distribution for the occupancy rate for each trip,
we first need to sort by ’comparable’ trips. Which means, trips which
are performed on the same weekday, with the same starting- and end-
ing location and the same starting time and ending time. Through-
out the period from 1-1-2016 to 31-3-2018 various minor changes have
been made to the schedule. Those changes typically are trips starting a
few minutes earlier or later than before, generally to ensure a customer
can catch a train or a different bus.

To bypass this problem, we can pick a week in 2017, since there are
sufficient ’comparable’ trips for each trip in the given timetable. Given
these comparable trips, a distribution can be derived for the maximum
occupancy rate of a specific trip.

6.3 Fitting Distributions

Let’s discuss one trip that is performed every weekday. The start loca-
tion is Heerhugowaard Crematorium starting at 07:50:00 and ends in
Alkmaar Station at 08:21:00. For this trip a bar plot of comparable trips
is shown and a histogram based on the occupancy rates. Using this
histogram, we can make a guess of a distribution which fits the shape
best.

Since the occupancy rate for trips follow a discrete distribution we
will estimate the parameters for the uniform distribution, negative bi-
nomial distribution, the geometric distribution and poisson distribu-
tion. Based on the Akaike Information Criterion (AIC) we will decide
which distribution fits best. In Table 5 the results are shown for this
particular trip.

Table 5: Fitting Distributions
Distribution Parameter 1 Parameter 2 Log-Likelihood AIC
Uniform 66.0 -276.5 555.0
Negative Binomial 5.792 0.1296 -284.3 572.7
Geometric 0.0251 -313.1 628.3
Poisson 38.90 -401.5 805.0
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Figure 7: Busline 4: Heerhugowaard Crematorium - Alkmaar Station :
07:50:00 - 08:21:00

Based on this table we can conclude the uniform distribution fits
’best’ for the occupancy rate of comparable trips. The parameter pro-
vided from this table is the maximum value of occupancy rates of the
comparable trips. For negative binomial the parameters

[
r, p
]

are es-
timated, where r is the number of successes and p the probability of
success. For the geometric distribution the method returns an esti-
mated value p̂ for p, the probability for success. Lastly, the poisson-
distribution parameter λ is estimated.

Given the fitted distributions we can easily determine the value of
occupancy rate for which we, when there is sufficient capacity de-
ployed given that occupancy rate, we have sufficient capacity with at
least 95% confidence.

P[N ≤ n] ≥ 0.95

=
n

∑
k=0

1
a− b

=
n
66

= 0.95

→ n = 63

Provided that this trip is performed during peak hours, the bus de-
ployed for this trip does not necessarily need to provide a seat to each
passenger, therefore a bus with total capacity exceeding n is allowed.
Therefore, in the yearly schedule, this trip should be driven by a stan-
dard diesel bus. However, for many day-specific instances, where the
trip occupancy is lower than n, a large electric vehicle could be de-
ployed.
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6.4 Test Weeks

Since the number of trips to be performed in a week is inconsistent
over time, we chose a week starting in September 2017 and a week
starting in January 2017 to use as a test week: Sunday 17 September
2017 - Saturday 23 September 2017 and Sunday 29 January - Saturday
5 February. After the alterations discussed above, there are 2241 trips
to be performed on weekdays, 1595 trips on Saturday and 963 trips on
Sunday.

These two test weeks result in 10 instances of the problem, exclud-
ing the weekends. We will use these instances to compare the solu-
tions using different values of the minimum relative decrease parame-
ter ZMIN, such that we can say something more about the trade-off in
quality of the final solution and the time necessary for the heuristic to
solve these instances. The two test weeks also allow us to compare the
current method of solving the instances using historical data, with the
new proposed method of solving the vehicle scheduling problem on a
daily basis.
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7 results & discussion
In this chapter we report the results found using the method described
in the previous chapter. Starting with the problem as described in
chapter 3, the problem will be solved using the heuristic we have intro-
duced in chapter 5. The trip occupancy we are using are determined
as described in chapter 6.

For this thesis we are interested in the performance of the heuristic
and the developments during the process. In order to find an answer
of how well (or bad) the heuristic is performing, the final result will be
compared with the approximation of the LP lower bound.

For the case study itself we are particularly interested in the influ-
ence of parameter ZMIN on the time required for the heuristic to find
a solution and the quality of the solution. Especially since there is lim-
ited time available to solve a day-specific problem. The second point
of interest is whether additional vehicles are needed to solve the prob-
lems.

7.1 Computer Specifications

We are solving the problems using two different sets of computers. The
first being a personal computer, equipped with an Intel Core i7 4510U
processor clocked at 2.00 GHz and 8 GB RAM. The second being the
computers available at the university, equipped with an AMD A4 PRO-
7300B APU clocked at 3.80 GHz and 16 GB RAM. The first computer
is used for solving the problems for schedules based on historical de-
mand and the day-specific problems are solved using the computers
available at the university.

To put this into perspective: the personal computer took 29997 sec-
onds to solve the robust problem, while a computer on campus took
48219 seconds to solve the same problem which is an increase of 60.7%
compared to my PC. As a rule-of-thumb, the configuration of the per-
sonal computer is a factor 1.6 faster than the computers on campus. To
provide a clear overview of results, we divide the computation times
for problems solved by the computers on campus by 1.6.

7.2 Initialization

We initialize the heuristic with the following parameters:

• ZMIN = 0.01

• θMIN = 0.70

• crent = 500

By setting ZMIN = 0.01, we will stop the column generation process
for a moment when the relative decrease comparing to the previous
iteration becomes smaller than 0.01%. We will evaluate our choice of
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ZMIN in the following sections and provide a sensitivity analysis for
different values of ZMIN.

The choice of θMIN is arbitrary. Though, in literature θMIN = 0.70
seems to be the norm.

Setting crent = 500 implies that we are using the buses that are still at
the depot first. We will only rent additional buses when it is absolutely
necessary as crent is more expensive than any path resulting from the
sub-problems. Of course, in reality the costs of renting a bus for a day
may be lower (or higher). However, we prefer to use every single bus
in the initial bus-fleet before we start renting additional buses.

7.3 Schedules Based on Historic Demand

The first problem we will solve using the heuristic is the ’robust’ sched-
ule, which can be deployed every day. We have determined the 95%
confidence values for the trip occupancy for every single trip using
the observations of all weekdays. Thus, the resulting schedule can be
deployed each weekday for the duration of the concession.

We will focus on the performance of the heuristic, as we are par-
ticularly interested in how the solution develops over time, given the
parameters used in the initialization. We solve the LP-relaxation of the
RMP to get a theoretical lower bound. Any column generation heuris-
tic is notorious for the tail-off effect. Therefore, we set a time limit of
10 hours for the LP-relaxation to solve.

Since our algorithm to solve the pricing problem does not find the
optimal solution for electric vehicles, we only find an approximation
of the LP-lower bound. Besides, setting a time limit for solving time
results in an overestimation of the lower bound.

7.3.1 Heuristic Performance

In Figure 8 the progression of the objective value is shown for both the
heuristic and the LP-relaxation. For every iteration the current objec-
tive value is shown - only after the final iteration of the heuristic do we
have a feasible integer solution. Due to the initial solution, the objec-
tive value after the first few iterations is very large. The tail-off effect
is clear to see when the heuristic is running for some time: The heuris-
tic is still improving the objective value, although the improvement is
minimal. Therefore, we suggested a minimal relative decrease. When
the improvement is smaller than ZMIN −% compared to the previous
iteration, the heuristic will fix variables and continue the process.

In Figure 9 the objective value of the final 1000 iterations are shown.
This is especially interesting, as the heuristic is ’rapidly’ fixing vari-
ables. After every few iterations, a peak in objective value is shown.
These peaks naturally occur after a variable has been fixed. In the last
few iterations we see the peaks being larger and occurring in a more
rapid succession than previous peaks.

At the end of the process - when the integer solution is almost com-
plete as most paths have been chosen - we have that most trips are
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Figure 8: Heuristic - LP progress over time

driven at least once. Therefore, the improvement that can be achieved
through the last trips is very much limited, which results in faster vari-
able fixing. Since the renting costs of an additional bus are sufficiently
high, the heuristic only hires those when absolutely needed at the end
of the process. This explains the larger peaks at the end.

Using the value of θMIN = 0.70, we see during the process only one
variable at the time is being fixed. This result is an indication for the
problem being highly degenerate. The variable (path) being fixed has
the highest value, though it may not differ that much compared to
other viable paths.

Figure 9: Progress over Time - Final Iterations

Given the initialization, the heuristic takes 29997 seconds (which is
about 8 hours and 20 minutes) to find an integer solution with objec-
tive value equal to 30471. During this process, the heuristic spends
the most time solving the RMP: 29386 seconds. About 2 percent of
the time is spent solving the sub-problems. We know that 606 seconds
were spend solving the sub-problems and more than 3000 iterations
were needed to get an integer solution. During each iteration for each
vehicle/depot combination a shortest path is found, therefore during
each 12 sub-problems are being solved. Thus, each sub-problem takes
about 0.01 seconds to solve. After 12 hours we find the approximation
of the lower bound zLP = 27507. Therefore, we conclude that the gap
between the objective value of the integer solution and the approxi-
mated LP-lower bound is 10.6%.
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7.3.2 The Solution

Figure 10: Part of the final schedule
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To visualize the solutions resulting from the heuristic we have de-
veloped a tool which prints the results. In Figure 10 we show a part
of the schedule based on historic data using 95% confidence values.
Each row in this schedule represents a path which is driven by one
single bus. We have made a distinction between diesel buses (black
boxes) and electric vehicles (blue boxes). There are two observations
to be made: there are only a few ’large’ gaps between trips (besides
recharging) for electric vehicles, which indicates that the vehicles are
used efficiently. Secondly there are larger gaps between trips for diesel
vehicles. This indicates that when a trip can be driven by a smaller
(cheaper) bus, it will be driven by a smaller bus.

A large proportion of the total costs is due to renting additional ve-
hicles, which are required to make a feasible solution. In Alkmaar we
have to rent 13 large diesel buses, 1 standard diesel bus and 1 large
electric bus. For the depot in Den Helder, 4 additional large diesel
buses were necessary. Lastly, for the depot in Hoorn 13 large diesel
buses had been rented.

Thus, the total number of additional buses rented is 32 - which costs
16.000 euros in this model. This number is due to the morning peak-
hours for which all the large diesel buses are needed at the same time.
This result is exaggerated when we are using the 95% confidence val-
ues for trip occupancy rates. However, we are using the schedules
based on historic demand for each day of the week throughout the
year, hence it is necessary to have a sufficient number of buses avail-
able.

In Table 6 the results are shown for different percentages of confi-
dence. In this table, the objective values (Cost) and the total solving
time in seconds are shown. Also the number of additional vehicles
rented is viewed in this table. Additionally, we have stated the to-
tal time spent in the master problem and sub-problems (in seconds).
Lastly, the approximation of the LP-lower bound (zLP) is shown.

Naturally, we expect to see the number of additional vehicles needed
drop for lower values of confidence. Though, we are interested in the
trade-off. We have used the same initialization as described earlier.

Table 6: Results: Schedules using various confidence values
Confidence Cost Total Time # Buses Time in RMP Time in SP zLP

97.5 33824 20490 38 20020 464 30503
95 30471 29997 32 29386 606 27507*
90 28019 24716 28 24094 619 25754
80 23109 35601 20 34887 710 22229

The most striking conclusion from these schedules is the amount of
buses which are required to solve the problem. Even with 80% con-
fidence values for trip occupancy. Again, this is due to the morning
peak hours where almost all these large buses are needed simultane-
ously. The main factor to take into account is the capacity which can
be deployed for trips during peak-hours.
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Currently, the trip occupancy cannot exceed the number of seats +
50% of places to stand. What would happen if we were allowed to
use the full capacity of the bus for trips in peak hours, instead of the
number of seats + 50% of the places to stand?

In Table 7 the results are shown for different confidence values. Each
problem has the same initialization as described earlier, using ZMIN =
0.01 and θMIN = 0.70.

Table 7: Full Capacity for trips in peak-hours
Confidence Cost Total Time # Buses Time in RMP Time in SP zLP

97.5 20144 33912 15 32513 1393 18922
95 18904 41293 11 40408 881 16853
90 17904 46063 9 45175 884 15448
80 15726 64183 6 63066 1067 13544

In this case we see a sharp decrease in additional buses required,
which is of course desirable. There are still some additional buses re-
quired to solve the problem. However, we think that the capacity re-
striction for trips in peak-hours should be revisited. It makes quite a
difference whether you need 32 additional vehicles for the schedule
with 95% confidence values or 11 additional vehicles.

7.4 Day-specific Schedules

In this section we will evaluate the performance of the heuristic using
the two test-weeks as described in chapter 6. We want to emphasize
on the choice of parameter ZMIN and the trade-off in computation time
and quality of the final solution.

For both weeks, we are solving the problem with the day-specific
trip occupancy. Since the time available to solve the problem is an
important aspect to keep in mind (when using forecasts, which are
usually available one day earlier) we have less than a day to solve the
problem. Therefore, the choice of ZMIN is important! Thus, we will
use 3 different values for ZMIN. The results are shown in Tables 8 and
9. In these tables we show the total cost of the final schedule using our
heuristic, the total computation times and the number of additional
buses required to solve the problem.

Table 8: Results January 2017
January

ZMIN 0.05 0.025 0.01
Weekday Cost Time #Buses Cost Time #Buses Cost Time #Buses
Monday 18367 20408 6 17517 33414 5 — — —
Tuesday 21308 14929 9 19249 22871 11 15632 53884 5
Wednesday 18269 16287 7 17334 29619 7 — — —
Thursday 18463 3231 5 16511 27073 5 14054 52922 7
Friday 17998 19168 8 14891 45961 3 — — —
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Table 9: Results September 2017
September

ZMIN 0.05 0.025 0.01
Weekday Cost Time #Buses Cost Time #Buses Cost Time #Buses
Monday 27968 5511 23 26637 12296 23 24511 33140 22
Tuesday 22287 10931 14 21376 19242 14 19876 42809 13
Wednesday 21258 12806 12 19919 25180 12 18738 49446 12
Thursday 22978 10373 15 21448 21304 15 19956 45211 14
Friday 21694 13874 13 20696 19168 13 19461 52652 13

Again, we see that quite a few additional large diesel buses are re-
quired for each weekday, especially for September. This result is a bit
surprising, we would expect that the bus-fleet presented in Table 3
would be sufficient in the first place. But then again this result is due
to the early peak hours. We cannot fully deploy the capacity of the
vehicles. Therefore, all large vehicles are needed at the same time.

The costs for each day are significantly smaller when using day-
specific trip occupancy rates than the results found for the schedules
based on historical demand. This is mostly due to the costs of renting
additional buses. The second explanation is that there are less large
diesel vehicles required. Thus, less distance is covered by these vehi-
cles which results in a decrease in operational costs.

New fleet

To make the decrease in operational costs more insightful we make the
decision of ’buying’ all additional buses required for the 95%-schedule
which we have discussed in the last section and solve the problems
again. These results are shown in Tables 10 and 11.

Table 10: Results New Fleet: January 2017
January

ZMIN 0.05 0.025 0.01
Weekday Cost Time #Buses Cost Time #Buses Cost Time #Buses
Monday 15631 11703 0 14245 25681 0 12484 59639 0
Tuesday 15587 21532 0 13743 44819 0 12517 57353 0
Wednesday 15621 12031 0 13937 26739 0 12552 58102 0
Thursday 15581 20033 0 13914 45668 0 — — —
Friday 15466 10612 0 13890 26073 0 12424 62612 0

The heuristic - using ZMIN as minimum relative decrease compared
to the previous iteration - seems to be unstable for larger values of
ZMIN. The early termination criterion may be ’accidentally’ reached
with a relatively small decrease in objective value. This results in fixing
the variables too fast and we will end up with a bad solution. This
explains the outlier of Friday with ZMIN = 0.05 in Table 11. This also
explains the pattern of significantly lower running times in Table 10
for Monday, Wednesday and Friday.
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Table 11: Results New Fleet: September 2017
September

ZMIN 0.05 0.025 0.01
Weekday Cost Time #Buses Cost Time #Buses Cost Time #Buses
Monday — — — — — — 13178 54013 1
Tuesday 14667 19916 0 13304 43816 0 12512 56616 0
Wednesday 14896 20476 0 13422 45554 0 12234 56784 0
Thursday 14965 11773 0 13614 22286 0 12461 59824 0
Friday 18403 2419 4 13398 45236 0 12176 58703 0

Setting the parameter ZMIN low enough seemingly prevents this
problem. The computation time and end-results are similar for each
weekday for both test-weeks using ZMIN = 0.01. A different way to
(partially) overcome this problem is to compare the relative decrease
to I iterations ago. Lastly, we could use the absolute decrease similar
to (Pepin et al. 2009), though as described earlier we think it is much
less informative.

7.5 Discussion of the Results

We have shown that solving the problem on a daily basis - resulting in
a day-specific schedule - leads to a significant reduction in operational
costs (solely for operating buses). The heuristic provides stable results
for parameter value ZMIN ≤ 0.01 in terms of quality and computation
times.

We have consistently used parameter θMIN = 0.7. Rarely we have
seen multiple paths being fixed at the same time. And if it did, it has
happened - without exception - in the first time we have fixed the re-
sults. Therefore, we would recommend looking only at lower values
for θMIN for future research.

The computation times in Tables 10 and 11 are significantly higher
for every single instance compared to the same problems in Tables 8
and 9. The increase in total running time is due to a significant drop
in total costs. Since we are having a smaller objective value during the
heuristic, the minimum required relative decrease is smaller than for
larger objective values. This results in the early termination criterion
not being met as soon as before. If we are using a stopping criterion
similar to (Pepin et al. 2009) - using a minimum absolute decrease - the
computation times would be more stable.

To conclude this chapter, we want to answer our research question:
"What is the benefit of making a vehicle schedule every day using the forecasts
for trip occupancy?" We are comparing the schedule based on historic
data discussed in 7.3 with the day-specific schedules we have found in
this section.

We want to emphasize on the fact that this is not really a fair compar-
ison. The schedules based on historic demand can be deployed every
day and have uncertain trip occupancy for each trip. This may lead to
passengers having to stay behind at the bus-stops. For the day-specific
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schedules we have assumed that we know beforehand how many pas-
sengers will be travelling for each trip - and these schedules are made
every day. However, this gives insight about the potential of the new
method of Connexxion compared to the old method.

The schedule based on historic demand with 95% confidence values
using ZMIN = 0.005 resulted in a solution with objective value 29996.
By subtracting the costs of renting additional buses, the resulting oper-
ational cost is 29996− 32 · 500 = 13996. We compare the results using
ZMIN = 0.01 from Tables 10 and 11. We find for using ZMIN = 0.01
or lower, the total costs of operating the same bus-fleet can be signifi-
cantly reduced. On average we find a reduction of 9.3% in operational
costs compared to the schedule based on historic demand.
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8 conclusion & future research
In this thesis we have formulated a column generation heuristic to
solve large instances of the Multi-Depot Vehicles Scheduling Problem
with electric vehicles.

The introduction of the electric fleet has let to one major challenge:
Every electric vehicle has a limited action radius due to the battery. We
want to make sure every vehicle makes a feasible path - without fully
depleting the batteries and have a tow-truck to return the vehicle to
the depot.

Additionally, for a path to be feasible we have had to make sure
that every passenger can travel with the bus being deployed. Since the
electric vehicles are smaller in terms of passenger capacity this prob-
lem has become more relevant.

To incorporate these additional problems in the vehicle schedule
problem, we have proposed a capacity restriction on arcs in the net-
work. Given the number of passengers present at the busiest moment
during a specific trip, we can determine which types of buses can be
deployed. We have also introduced the set of recharge arcs to facilitate
recharging for electric vehicles. The heuristic uses this new network
and provides stable results within a day for large instances of the MD-
VSP using a partially electric fleet.

However, while the heuristic provides useful solutions, it leaves
room for improvement. The algorithm used to solve the pricing prob-
lem for instance. As for now we have an algorithm which finds a path
in less than 0.01 seconds, but it is not the optimal path for electric ve-
hicles.

Furthermore, we have chosen not to include the additional costs
which arise from using batteries as it is outside the scope of this the-
sis. The first issue is the lifespan of a battery. By completely draining
a fully charged battery will result in a shorter lifespan of the battery,
opposed to partially draining the battery and recharge it for a while.
Therefore, the battery has to be replace it sooner. The second issue is
that the costs of electricity can vary during the day. Therefore, recharg-
ing batteries may be cheaper in the night than during the day.

Lastly, we have seen large differences in the time spent solving the
Restriced Master Problem and time spent solving the Pricing Problems.
Even when the Restricted Master Problem is a relatively easy problem,
a lot of time consumed solving it. This means that we are solving the
Master Problem rather inefficiently, starting from scratch every single
iteration. Providing a warm-start solution from the previous iteration
to the new Restricted Master Problem may reduce the time needed to
solve the RMP significantly.
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We have a few interesting conclusions for the case study presented
in this thesis. In the first place, we have shown that using the new
bus-fleet for the old concession results in a lot of additional vehicles
required to make sure every trip in the timetable can be driven. If we
were able to fully use the passenger capacity of each bus during the
morning peak hours, the number of additional buses is significantly
reduced.

Secondly, we have shown that there is quite some potential for re-
ducing the operational costs by making a new vehicle schedule every
day rather than solving a schedule based on historical data. However,
the next problem is how to realize this potential. The most important
question would be "how to deploy a new vehicle schedule every day"?

By solving a vehicle schedule every day, we also have to assign per-
sonnel to duties to drive these buses around. Having a different route
schedule every day means different duties for personnel every day.
Planning new duties every day would make this problem much more
complicated due to labour agreements and additional constraints in
shifts. So, there is quite a lot to think about before we can use the new
method.

There are several other uses for the heuristic we have developed. It
can be used to calculate operational costs of timetables (and compare
differences made in timetables) and calculate the amount of buses re-
quired to execute this timetable within reasonable time - and can be
even faster than it is now.

To conclude this thesis: the way to proceed at this point of time is to
develop a vehicle schedule using the forecasting method for specific
scenarios. Having a schedule for a rainy day in summer or a day with
snow in winter would incorporate the most important findings of any
forecasting tool. The personnel planning problem is not as pressing as
when we are solving a vehicle schedule every single day.
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9 appendix

9.1 A: Buslines
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9.2 B: Recharge Function

Let us define the following parameters:

• SoC[v] the state of charge at node v

• dv,depot the distance travelled from node v to the depot

• γvu the total recharge time available using arc (v,u)

• R the action radius

Algorithm 3: Calculating SoC+

Data: SoC[v], dv,depot, γvu, R
Result: SoC+

if SoC[v]− dv,depot < R · 0.8 then

t80 =
R·0.8−SoC[v]−dv,depot

R·0.8 · 60;
t100 = t80 + 60;
if γvu < t80 then

SoC+ =
R·0.8−SoC[v]−dv,depot

R·0.8 · γvu
end
if t80 ≤ γvu ≤ t100 then

SoC+ =
R·0.8−SoC[v]−dv,depot

R·0.8 · t80 +
R·0.2

60 · (γvu − t80)
end
if γvu > t100 then

SoC+ = R
end

else

t100 =
R−SoC[v]−dv,depot

R·0.2 · 60;
if γvu < t100 then

SoC+ = R·0.2
60 · γvu

end
if γvu ≥ t100 then

SoC+ = R
end

end
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