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Abstract
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Integrating Battery Degradation in the Network Design for Electrical Buses with
Fast Charging Technology

by Jeroen VESTER

The reduction of greenhouse gas emissions is a major issue in worldwide govern-
mental policy making. The transportation industry is responsible for a considerable
part of greenhouse gas emissions. Electrification of the sector is a viable approach to
reduce these emissions, as even electric cars powered by coal-generated electricity
could cut emissions of the sector in half. In public transport electric transportation
is currently mainly implemented with visually polluting catenary-powered trams
or buses. Recent innovations in battery technology allow for public transport buses
to be battery-driven and recharged at distinguished stops, rather than powered by
catenary wires. Various trial projects have shown this technology is feasible for pub-
lic transport operations and the contribution to gas emission control in urban areas
is significant.

Creating a network for an electrical catenary-free public transport system is very
costly due to their battery usage and installing high-tech charging stations. Cost
optimization is therefore key for the promotion of battery-driven buses. In recent
years, several papers have addressed designing such networks from technological
as well as operational aspects. The operational decisions have a major impact on
battery degradation in such systems. In order to achieve accurate cost optimization
the maximization of battery life is crucial. In this paper, we introduce a linearized
battery degradation model incorporated in an MILP for the design of such electrical
public transport networks. Two commonly used approaches are applied for design-
ing a Multicriteria Optimization Problem, weighted sum and ε-constraint.

A case study with semi-real data is conducted to compare the impact of incorpo-
rating battery aging on the costs and battery life with the results of a model without
battery lifetime optimization.

Keywords: Public Transportation, Tactical Design, Facility Planning, Mixed-Integer
Programming, Mathematical Model, Network Design, Battery Degradation, Electric Bus,
Multicriteria Optimization, Discrete Optimization
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Chapter 1

Introduction

1.1 Introduction to the Topic

Sustainable and environmentally responsible investments have been of growing in-
terest over the past decades. As knowledge of the impact of consumer behavior
on global warming and the environment develops, citizens and companies alike are
changing their attitude towards their environmental engagement. Change towards
more environment-friendly behavior is stimulated by the right policies and policy-
makers are aware of this responsibility. In December 2015, 174 countries signed the
Paris climate agreement that aims at holding global warming at a maximum of 2 ◦C.
Since greenhouse gasses (GHGs) have a major impact on climate change via the
greenhouse effect, the governments involved have promised to build their policies
thus to reduce GHG emissions, focusing on CO2 emissions (Rogelj et al., 2016).

According to data of 2013 an estimated 74% of worldwide GHG emissions can
be attributed to the energy sector, of which 21% is due to the transportation indus-
try (World Resources Institute, 2013). A key and viable approach to reducing GHG
emissions of the transportation sector is replacing internal combustion engines of
transportation vehicles by alternative traction motors. In line with this insight, gov-
ernments are interested in replacing the conventional internal combustion engine
buses (CBs) in urban public transport by electric buses (EBs). Using renewable en-
ergy forces, such as solar, wind, geo-thermal etc., to generate the electricity is most
effective, but even electric cars recharged from coal-powered generators cut CO2
emission roughly in half (J. Chen et al., 2013). The technology of fuel cells is very
promising as well with regard to emissions reduction, efficiency, operability and
maintenance. However, a recent study shows that fuel cell buses are roughly twice
as expensive as EBs and therefore the current focus for the public transport sector
lies primarily in transition to EBs (Lajunen, 2014).

Generally, there are two options, EBs that draw electricity from overhead cate-
nary wires or EBs with an on-board energy storage system (ESS). The latter is com-
monly preferred, since the catenary-powered EBs require more maintenance, induce
visual pollution with the wires and are inflexible regarding re-routing in case of
disturbances. In the past, the energy storage has been a technological barrier for
employment of EBs for public transport, but with the development of lithium-ion
(Li-ion) batteries an adequate performance is achieved in terms of power and en-
ergy capacity (Scrosati and Garche, 2010; Burke and Miller, 2011).

The Li-ion batteries in EBs are capable of fast-charging, employing charging pow-
ers of hundreds of kilowatts. This enables batteries to be recharged at bus stops
while passengers board and disembark, decreasing required battery sizes and in-
creasing energy efficiency. However, it also demands for a more extensive charging
infrastructure in order to guarantee network-wide coverage, leading to an increase
in investment costs and making it the main cost driver (L. Wang et al., 2015).
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Approximating the lifetime of the batteries on board is crucial for cost optimiza-
tion but also quite complicated. Battery manufacturers typically define the lifetime
performance in deep discharge-charge cycles in constant and low current rate con-
ditions which may not correspond well to the real operating conditions (Lajunen,
2014). Existing network design models assume the battery lifetime as a predefined
constant, whilst charging patterns, defined by the solution of said models, directly
affect battery ageing and thus its lifetime. Therefore, the aim of this research is to in-
tegrate the lifetime approximation in a charging network design model to improve
the design of an electric urban transportation network.

This Chapter further includes the motivation and relevance of this research and
a review of the literature relevant to the subject. In Chapter 2 the framework of
the problem is described, including some technological background information on
batteries and a list of assumptions that define the problem. The methodology is dis-
cussed in Chapter 3, including the battery degradation modeling as well as methods
for multi-objective optimization modeling and the formulation of the resulting net-
work design model. In order to obtain results the model is tested on data based on
a bus line in Rotterdam. The methods for finding the required data are described in
Chapter 4. Various results are discussed in Chapter 5 and some concluding remarks
can be found in Chapter 6.

1.1.1 Motivation and relevance of research

Electrification of bus networks is an interesting option for improving environmen-
tal sustainability. However, the research in optimization of these networks is rather
scarce. In order to promote electrification of current bus networks, an optimal net-
work design is essential. With this research, I aim to integrate battery degradation
in a Mixed Integer Linear Programming (MILP) model for optimal network design
for EBs with on-board ESS.

In previous research, both charging infrastructure models for electric transporta-
tion networks and charging policies with the goal of retaining battery degradation
have been developed separately (i.a. Hoke et al., 2011; J. Chen et al., 2013; Wehres
et al., 2016; Pelletier et al., 2017). Although there is a trade-off between the battery
lifetime, battery size and the charging infrastructure, a network design model with
an integrated battery degradation model has not yet been developed. This gap is
filled with this research, enabling the design of a smarter electric urban transport
network. Since the trade-off between charging infrastructure and battery lifetime is
involved in the solutions, the total cost of ownership (TCO) estimation is improved.
An accurate TCO estimation is of great importance to public transportation compa-
nies and local and national governments. This model can serve as a tool to make an
informed decision about electrifying the public transport network.

1.2 Literature Review

The literature regarding urban electric buses powered by on-board batteries that is
relevant to this research is described per topic in this section.

1.2.1 Technical feasibility of bus network electrification

Before designing a charging infrastructure for EBs with on-board ESS it is important
to know whether the technology is sufficient to operate on a public transport net-
work and what the impact on the electrical grid is. One example of such research is
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the analysis of the bus network in Muenster, Germany (Rogge, Wollny, and Sauer,
2015). The feasibility of electrifying the bus network is assessed through simulation.
Energy consumptions for separate trips were obtained, trips were then combined in
individual vehicle schedules and the resulting power profiles were derived for every
charging station and the entire network. The required battery capacity for each bus
route is calculated under the various charging power conditions. Sufficient capac-
ity could be achieved for almost all routes with maximum charging power at 46%
of the charging opportunities. This can be quite strenuous for the electric grid, but
the authors argue that this can be smoothened with an intelligent control algorithm
that takes future charging possibilities in account. Also, the usual energy density of
batteries is likely to increase in the near future, leading to higher capacity on-board
ESS and lower demand for charging. This analysis proves the technical feasibility
of electrification of a large part of the bus network in Muenster without altering the
routes and schedule. Although this is very case-specific, it exemplifies the conditions
under which electrification of a bus network is realizable.

The strain on the electrical grid can be improved by smart charging policies
(Lyon et al., 2012). Electric vehicle charging can significantly increase demand and
strain the capacity of existent electricity grids during peak periods. Charging poli-
cies can help to shave peak demands by allocating charging opportunities. If fast
charging stations are employed with ESS as well, the peaks in electricity demand
can be smoothened further and the strain on the grid and even electricity purchase
cost can be reduced. This is shown in an analysis of an existing EB network in China
(Ding, Z. Hu, and Song, 2015). Installing ESSs in the charging stations and smooth-
ing the demand peaks decreased the annual electricity costs with 36% in this case,
implying a decrease in the strain on the grid. These results support the expectation
of technological feasibility.

1.2.2 Economic feasibility of bus network electrification

Next to the technical feasibility, the economic side of transition to an electrical bus
fleet is of great importance. Even though the capital costs of electric city buses are
high, they are generally more durable than CBs, decreasing maintenance and re-
placement costs, and the lower energy consumption significantly reduces the operat-
ing costs compared to conventional buses. An electric bus network therefore has the
potential to outperform an CB-operated network not only in CO2 emissions, but also
in lifetime costs. The on-board battery, including its management system, is the most
important factor affecting the lifetime and costs of EBs, but costs are expected to sig-
nificantly drop in the future (Lodi, Manzoni, and Crugnola, 2010; Santini, Gallagher,
and Nelson, 2010; Wood, Alexander, and Bradley, 2011). Also the maintenance costs
for an EB could be considerably lower than for a CB (Feng and Figliozzi, 2013). On
the other hand, EBs require charging equipment and infrastructure supporting their
operation, which increase initial costs. However, this kind of infrastructure is much
more durable than the EBs, and the eventual cost impact on the life cycle cost of the
bus fleet operation is not that significant (Lajunen, 2014).

Exact cost analysis of EBs is difficult, since its technology is fairly new and mass
production has not yet been initiated (Van Vliet et al., 2010). However, approxima-
tions of the costs involved can be obtained through simple analyses. Price forecasts
can be estimated based on technological learning rate, but research showed that tech-
nological development of battery electric vehicles is complicated to estimate, since
the production process is not as mature as with conventional cars (Weiss et al., 2012).
Some case studies can be found that apply various methods to approximate the costs



4 Chapter 1. Introduction

involved. An analysis of the bus network in Minneapolis, Minnesota assessed the
capital and operating costs for varying configurations of charging stations and bat-
tery sizes (L. Wang et al., 2015). No configuration could beat the CBs in terms of
costs, but for some bus lines the costs of EBs and CBs were similar. It is important to
note that this analysis did not involve cost-optimization. Another case study for six
different routes showed that there are likely scenarios in which the life cycle costs of
EBs beat those of CBs, such as when battery costs decrease and fuel costs increase
(Lajunen, 2014).

In summary, initial costs of a transportation network operated by EBs are rela-
tively high compared to conventional transportation systems, but are expected to
drop. Moreover, EBs generally have a longer lifetime and operation and mainte-
nance costs are significantly lower, making it a more durable investment. Therefore
electrification of a bus network can be a profitable investment when implementation
is optimized.

1.2.3 Charging network design

The difference between network design for regular buses and for EBs is that for a
regular bus network the social benefit is optimized with respect to budget or rolling
stock constraints whereas for an EB network the design resembles a facility location
problem with added complexity of hierarchical decisions for the battery size and
charging infrastructure. Optimization models for the design of a charging network
for electric vehicles for individual use, the so-called electric vehicle charging station
placement problem (EVCSPP), are well represented in literature, but specifically for
public transport the literature is rather scarce. Since in public transport buses travel
along predefined paths, another, more specific approach is necessary.

Two mathematical optimization models for a single electrical bus line can be
found in existing literature (J. Chen et al., 2013; Wehres et al., 2016). Both optimize
placement of the charging stations and battery configuration simultaneously, but
the approaches differ slightly in the assumptions that frame the problem. Different
constraints for the decision on configuring on-board batteries and charging station
types were used, employing binary or continuous variables. In one paper a method
for incorporating uncertainty in energy consumption is proposed by means of budget
of uncertainty (Wehres et al., 2016).

Battery lifetime is assumed as given in both papers. However, a suggestion was
made to add a battery temperature constraint, restricting the temperature of the bat-
tery and securing it’s lifespan (J. Chen et al., 2013). These models serve as basis
for the network design model that is presented in this thesis, incorporating battery
degradation to optimize the investment decision with dynamic battery lifespans.
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Chapter 2

Problem Framework

In this Chapter some background information regarding battery technology is pro-
vided in Section 2.1. The problem under consideration is described in detail in Sec-
tion 2.2. Together, this information will outline the framework in which the model
is developed.

2.1 Technological Background

Since the goal of this research is to incorporate battery behavior and degradation
in a charging station placement model, some technological background information
regarding these subjects is provided here.

2.1.1 Battery behavior

In order to evaluate battery degradation, it is important to model the behavior of
a battery as accurate as possible. Batteries are usually modelled as an equivalent
electrical circuit, as this provides a clear insight of the processes involved. Such
a circuit model, depicted in Figure 2.1, consists of an open-circuit voltage source
(VOC(SOC(t))) connected with an internal battery resistance R(SOC(t)) in series.
Here t indicates time and SOC(t) is the state of charge at time t, i.e., the relative
energy level in the battery. The open-circuit voltage of the battery corresponds to
when there is no current flowing through the battery, i.e., no external demand or
input of electricity is connected to the battery. The open-circuit voltage is increasing
in SOC, as can be seen in Figure 2.2.

The actual instantaneous voltage, or terminal voltage, of the battery itself (Vterm(t))
differs from the open-circuit voltage. When the battery is charged or discharged the

FIGURE 2.1: Simple battery equivalent circuit model, portrayed in state of
discharging
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FIGURE 2.2: The relation between state of charge and open-circuit voltage
within a battery, obtained from (Pelletier et al., 2017)

terminal voltage is respectively superior or inferior to the open-circuit voltage be-
cause then current flows into or out of the battery. The open-circuit voltage and in-
ternal resistance are directly mappable by SOC and can be used to determine Vterm(t)
(Marra et al., 2012; Pelletier et al., 2017). The parameters of the battery model can
be extracted from a discharge curve, by making some simplifying assumptions. It
is assumed that the internal resistance R is constant, temperature has no influence
on the parameters and parameters are equal for charging and discharging. For a
more extensive explanation of the method for extracting the parameters the reader
is referred to Tremblay, Dessaint, and Dekkiche (2007). The model can be described
by the following equation, i(t) denotes the current at time t, and is positive during
discharging and negative during charging.

Vterm(t) = VOC(SOC(t))− R · i(t) (2.1)

The resulting model describes an increase in terminal voltage when SOC is higher.
This model is fairly simple but sufficient for this research. Many different methods
for equivalent circuit battery modeling can be found in literature, varying in com-
plexity and accuracy (e.g. M. Chen and Rincon-Mora, 2006; Zheng, Qi, and Du, 2009;
Larminie and Lowry, 2012; Rahmoun and Biechl, 2012; Liu, 2013).

The equivalent electric circuit model equips us with a relation between voltage,
current and SOC. This enables the modeling of battery behavior during charging
and discharging. Generally one of two different charging modes is applied, con-
stant current-constant voltage (CC-CV) or constant power-constant voltage (CP-CV)
(Pelletier et al., 2017). Both are explained here.

In the CC-CV scheme, the battery is first charged with constant current, the CC-
phase. The rate of change in SOC can be found with

d
dt

SOC(t) = − i(t)
Q

,

with Q denoting the maximum capacity (Moura et al., 2011). The rate of change is
proportional to the current, so the SOC increases linearly in the CC-phase. As SOC
increases, terminal voltage of the battery increases. In order to avoid overcharging,
the terminal voltage can not exceed a specific maximum value. As the terminal volt-
age reaches this value, the charging continues in the CV-phase, where voltage is held
constant. The open-circuit voltage will continue to increase as SOC increases and to
ensure terminal voltage remains constant, the current has to decrease exponentially,
incurring an concavely increasing SOC.
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In the CP-CV scheme, the power is held constant in the first phase. The relation
between power, voltage and current is described with

Pcharge(t) = Vterm(t) · i(t),

with Pcharge(t) denoting the charging power. Since the open-circuit voltage increases
as SOC increases, consequently the terminal voltage increases as SOC increases and
the current has to decrease to maintain constant power. As the rate of change in SOC
is proportional to the current, SOC will increase with decreasing rate. When the
terminal voltage reaches its maximum, the voltage is held constant and CV-phase is
entered. Throughout both charging schemes, the battery’s SOC does not increase in
a linear fashion (Pelletier et al., 2017).

An explanation on battery behavior during discharging is omitted, since it is of
no further interest for this research.

2.1.2 Battery degradation

Before explaining the aspects of battery degradation, first some terminology is intro-
duced. We distinguish bus cycles and battery cycles. A bus cycle is defined as one
round trip of a bus, i.e. the sequence of stops a bus visits, starting and ending at the
same terminal after which the same sequence of visits is repeated. A battery cycle
is the time between two consecutive full recharges of a battery. Both are visualized
in Figure 2.3. One bus cycle could encompass several battery cycles, if an on-board
battery is at least once fully recharged on the route as in Figure 2.3, or vice versa, if
the on-board battery is only fully recharged after several round trips of a bus. An
important battery level measure for degradation is depth of discharge (DOD). DOD
is defined as the largest difference in SOC during a day of operation, visualized in
Figure 2.3 as well.

Batteries are subject to various internal and external factors that influence the
lifetime of a battery. Batteries are in essence a way to store electrical energy as chem-
ical energy and retrieve the electrical energy on a desired moment in time. This
process is dependent on chemical reactions, so-called redox reactions, but over time
the chemical components involved deteriorate and subsidiary products of the reac-
tion accumulate at the reaction surface, decreasing the efficiency of the reaction and
capacity of the battery. When the capacity is decreased to an end-of-life (EOL) level
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FIGURE 2.3: An example of the development of the SOC in a bus battery, three consecutive bus
cycles are depicted, the difference between a bus and a battery (batt.) cycle is emphasized as well as

the definition of DOD. In this example, one bus cycle encompasses four different battery cycles.
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the battery is insufficient for further use and must be replaced. This is due to natural
processes that happen over time, but external factors enhance these effects, such as
temperature, SOC, DOD, cycling rate and overcharging and -discharging (Ecker et
al., 2014; Pelletier et al., 2017). Overcharging and overdischarging happens when the
terminal voltage within the battery exceeds predefined bounds. Since the effects of
over(dis)charging on the battery aging are substantial and this is easily controllable
by limiting the usable voltage, in most literature the usable voltage is reasonably
assumed to be restricted and, consequently, overcharging and overdischarging are
assumed to never occur.

It is important to distinguish cycle lifetime from calendar lifetime in terms of
degradation. Cycle lifetime is a way to express performance, i.e., how many battery
cycles will a battery be able to complete before it reaches its EOL capacity, rather
than calendar lifetime, which is an expression of time until the battery reaches its
EOL capacity. Deterioration occurring during charging and discharging generally
corresponds to cycle aging and deterioration occurring during storage corresponds
to calendar aging. Cycle aging is affected by e.g. DOD and temperature fluctuations
due to (dis)charging, calendar aging by e.g. the SOC-level and the temperature a
battery is stored at. For this research we are interested in cycle aging that can be
attributed to the operation decisions.

Various battery degradation models have been described in existing literature
(e.g. Peterson, Apt, and Whitacre, 2010; J. Wang et al., 2011; Hoke et al., 2011; Xu,
2013; Omar et al., 2014; Sekyung Han, Soohee Han, and Aki, 2014; Sarasketa-Zabala
et al., 2015). The definite choice of modeling battery degradation is explained in
Chapter 3.

2.2 Problem Description

The considered problem involves placement of charging stations along a single bus
line. Charging network design models found in literature form the basis for the
model presented in this thesis, and a similar problem framework is used (J. Chen
et al., 2013; Wehres et al., 2016). The EB-industry demands a more accurate TCO
estimation and minimization to increase its attractiveness for investment and with
it its growth and development. To make investing in an EB transport system more
appealing not only the initial investment costs should be minimized, but also the
durability of the investment should be maximized. Therefore the problem has two
objectives, minimizing the investment costs and simultaneously maximizing the bat-
tery lifetime.

For simplification reasons and the completeness of the problem framework, the
problem is embedded in a number of assumptions. The setting and some of the
assumptions of the problem as are applied in the model are explained here and all

FIGURE 2.4: Example of interpretation of regular bus line as circle route,
same stops on back and forth direction are connected with dashed arrows
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of the assumptions are listed at the end of the Section for a clear overview of the
framework.

The bus line is assumed to be a circle route, starting and ending at the same
terminal stop. A regular bus line route (with different origin and destination) can
also be interpreted as a circle route by considering both the back and forth direction.
With this approach all stops between the two terminal stops are visited twice, with
potential exceptions for stops that are only visited in one of the directions. In Figure
2.4 this is visualized.

The only difference of a terminal compared to a regular bus stop from a mod-
eling perspective are the length of the dwell time, which is considerably longer at
terminal stations, and the fact that at a terminal station a charging facility is always
installed. Modeling charging station placement for a regular bus line is identical to
a circle route, if installing charging stations for both directions at the same stop is
not beneficial with regard to costs compared to installing them at different stops. In
this research, however, the possibility of saving expenses by installing charging sta-
tions at both directions of a stop compared to installing them at two different stops
is incorporated in the model.

Additionally, the setting of the bus line involves a depot at which the buses reside
during the night. Here the buses have the opportunity to fully recharge, thus up to
an SOC level of 100%. During operation buses can only attend the charging stations
installed along the bus line, which are all fast charging stations. These are unfit for a
full recharge up to 100% SOC, due to technical limitations of fast charging. The last
10% of SOC is assumed to be unfit for fast charging and as a consequence on-board
batteries can only be recharged up to a SOC of 90% during operation. Although
the charging stations at terminal stops might technologically be able to recharge the
batteries up to 100%, for ease of modeling the upper bound of SOC for recharging is
assumed to be 90% as well.

The end-of-life capacity of a battery is assumed to be 80% of its original capacity.
Therefore the first 20% of the battery capacity cannot be used for operation. This
means that the SOC during operation will always be bounded below by 20% and
above by 90%, in line with generally used cut-off values (Wehres et al., 2016). Only
at the depot, after operation has ended, is a battery able to be recharged fully to
100%.

Although the energy required for moving an electric bus is heavily dependent on
uncertain, external factors such as passenger load, weather, traffic congestion, aux-
iliary systems, it is assumed to be known and fixed. The uncertainties are handled
as deterministic, stochastically modeling the uncertainties is left out of the scope of
this analysis. Because energy-consumption along the route is assumed to be fixed,
an operation day can be described completely by a single bus cycle.

2.2.1 List of assumptions

Charging stations

• Two types of charging station are considered for installment along the route:
‘fast-feeding station’ (FFS), fast-charging at high power, with integrated ESS
and ‘standard feeding station’ (SFS), without integrated ESS, also fast-charging
but at lower power and lower capacity than FFS.

• Terminal stops are employed with a third type of charging stations. These are
referred to as terminal feeding stations (TFS) and charge at even slower rate.
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• Charging occurs at constant power at all charging stations, i.e., only the CP-
phase of CP-CV charging policy is performed. Although this involves a non-
linear pattern, it is assumed to be linear.

• The charging power is limited according to the type of station and is assumed
to be as low as possible, utilizing the available dwell time fully for recharge.

• Coupling and decoupling of the bus with the charger takes negligible amount
of time.

• A charging station is always able to recharge the built-in ES between two con-
secutive buses.

Fleet and on-board battery

• Only one type of bus is considered.

• The on-board ESS is chosen from a predefined set of battery configurations.
All buses in the fleet are employed with the same battery size, resulting in a
homogeneous fleet.

• The last 10% of the battery capacity is assumed not to be suitable for fast-
charging. For ease of modeling this bound for charging is imposed at all charg-
ing stations on the route, implying that during an operation day the SOC never
exceeds 90%.

• Overnight, on-board batteries are recharged up to 100% at the depot, implying
that the battery level starts operation at a SOC of 100% minus the required
energy to travel from the depot to the starting terminal stop.

• The end-of-life of a battery is when capacity is reduced to 80% of initial value,
making the first 20% of the battery capacity unusable.

• Only degradation due to operation is relevant. The degradation effect to cycle
life is isolated as much as possible by normalizing the calendar aging.

Bus line and daily operation

• The line consists of two terminal stations between which the buses alternate,
and is treated as a circle route as in Figure 2.4.

• All stops in the route are treated as separate, but a reduced tariff for installing
charging stations in both directions of the same stop can be applied. In total
there are A stops in the model.

• The energy consumption for traveling is assumed to be known and fixed, un-
certainty is left out of the scope of this research

• All operation days are assumed to be equal in charging decision and energy
consumption.

• Buses start their operation day at the depot, travel to the first terminal stop,
then operate the bus line for a number of bus cycles, after which they return
from the ending terminal to the depot.

• Discharging is assumed to happen linearly with respect to SOC.

• A bus should be able to return to the depot from any point in the route.

• The initial battery level and its development during a bus cycle is equivalent
for all bus cycles. Only the trips from and to the depot at the start and end of
the day are modeled separately.
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Chapter 3

Methodology

In this Chapter the charging station placement model is presented according to the
framework described in Chapter 2. The model described here is mainly based on the
charging station placement model presented in the research of Wehres et al. (2016).
In Section 3.1 the concept of multi-objective optimization is explained. The used no-
tation for the model is described in Section 3.2 and in Section 3.3 battery degradation
modeling is described. In Sections 3.4 and 3.5 the MILP is presented and in Section
3.6 two extensions to the basic model are proposed.

3.1 Multi-Objective Optimization

The problem has two different objectives: minimizing capital costs and maximizing
battery life. In order to incorporate both in a model, they must be expressed in a
comparable manner. Battery degradation is therefore expressed in relative loss in
lifetime, which is described in Section 3.3.

The two objectives are conflicting as improving one can have a negative impact
on the other. E.g. a solution with a few fast charging stations installed on the line
would have low investment costs, but can also diminish battery lifetime due to large
DODs. A mathematical problem with multiple conflicting objectives is referred to
as MOP (Multicriteria Optimization Problem) of the Pareto class (Ehrgott, 2006). An
MOP can be denoted as follows.

min
x∈X

( f1(x), . . . , fp(x)) (3.1)

Here X denotes the feasible space. Various methods for dealing with conflicting
objectives have been developed in the field of mathematical optimization. For this
research two of those methods are applied to design two different models, and the
results of both will be assessed and compared.

One of the methods is the weighted sum method. This involves an MOP being
solved by solving a single objective function problem. The involved objectives are
each weighed by a factor λk and aggregated in a sum. The weighted sum method
and the resulting model will be described in Section 3.4.

The other method is the ε-constraint method, which also reduces an MOP to a
single objective optimization problem. One of the objectives is optimized and the
rest of the objectives is restricted by a preset bound and incorporated in the con-
straints. Here the battery lifetime objective will be incorporated as ε-constraint. The
ε-constraint method and the resulting model will be described in Section 3.5.

Both of these models optimize the charging network under the assumption that
a full day of operation can be described by a single cycle. In Section 3.6 some ex-
tensions to the model are proposed for relaxing this assumption and allowing a
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more complex operation optimization, potentially more adequate in retaining bat-
tery degradation.

Since the charging stations are of the fast-charging type, they require an ESS as
well, which is required to be fully recharged in between consecutive buses that visit
the charging station. The charging decision of an ESS in a FFS would likewise have
an impact on its lifetime. However, the main focus of this thesis is the lifetime of the
on-board batteries. Therefore this charging behavior is irrelevant for our research
and for simplification reasons the time between consecutive buses, available for
recharging the FFS, is preconditioned to always be large enough for a full recharge.

3.2 Notation

The basis for the notation for the sets, parameters and variables used in the design of
the models is enlisted here, followed by a mathematical representation of the prob-
lem described in Chapter 2.

Sets

Station types: t ∈ T = {FFS, SFS, TFS}
Stops: s ∈ S = {1, . . . , A}
Unique stops: d ∈ D

Back-forth stop pairs: s ∈ Sd ⊂ S

Terminals: s ∈ STFS ⊂ S, {1, A} ⊆ STFS

Battery sizes: i ∈ I

Parameters

β number of buses in the fleet operated on the route

γbatt marginal cost of a battery (e/kWh)

κi capacity of battery configuration i (kWh)

Γbatt,i cost of battery configuration i, γbatt · κi (e)

Γt
s cost of installing charging station of type t at stop s (e)

αt
d savings of both way installing charging station of type t at stop d, αt

d ≤ 0 (e)

ζ lower bound on the usable SOC, the threshold for EOL capacity

ω upper bound on the SOC suited for fast-charging technology

ρ number of bus cycles each bus performs per day

νs the required energy to reach the depot from stop s (kWh)

µs energy consumption between stops s and s + 1 (kWh)

τs traveling time between stops s and s + 1 (s)

τdepot traveling time between depot and stop 1 or stop A (s)

δs available dwell time at stop s (s)

δdepot charging time at depot for full recharge for on-board battery (s)

πt
s maximum power applied by station of type t at stop s (kW)

πdepot minimum power required to fully recharge on-board battery (kW)
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φt
s maximum charged energy by station of type t at stop s (kWh)

ηbatt,i lifetime of battery size i in days, under optimal conditions

ηt lifetime of charging station of type t in days

θday number of seconds in a day, equal to 24× 60× 60 = 86, 400s

θyear number of seconds in a year, equal to 365× 24× 60× 60 = 31, 536, 000s

Variables

bi binary variable, indicating the choice of battery size installed in every bus

xt
s binary variable, indicating if a charging station of type t is build at stop s

xt
d binary variable, indicating if a charging station of type t is build in both

directions at stop d

ys charged energy at stop s

zs energy in battery when arriving at stop s

ws energy in battery when leaving stop s

v minimum energy level reached on a day

hdwell,s aux. variable for average SOC level during dwell time at stop s

htravel,s aux. variable for average SOC level during travel between stop s and s + 1

The bus line can be represented by a graph G = (V , E ) with for every stop on
the line a node, two nodes for the terminal station (node 1 and A, start and end of
the line resp.) and one node for the depot, denoted by 0. The set of nodes is thus
V = S ∪ {0}. All consecutive stops are connected by an edge which has a length of
the corresponding energy consumption µs. The same holds for the traveling time.
Furthermore, every stop s ∈ S is connected with the depot with an edge of length νs.

3.3 Degradation Functions

In Chapter 2 it was explained that several factors contribute to the battery degrada-
tion. In this research battery degradation is defined as the sum of degradation at-
tributable to single factors, splitting up the degradation for each factor involved. The
most significant factors that influence capacity degradation during a daily battery
cycle are DOD, temperature and open-circuit voltage, which is mappable by SOC
(Hoke et al., 2011). The degradation due to these factors can be expressed linearly
and therefore these are suitable for this research. In order to combine the objectives
of minimizing lifetime costs and maximizing battery lifetime, battery degradation
is expressed as relative lifetime loss, ∆L

L . All degradation functions adopted for this
model are based on the idea of determining the relative lifetime loss incurred by a
daily battery cycle for each factor separately, thus finding an expression for the con-
tribution to battery degradation (Hoke et al., 2011). Here ∆L describes the lifetime
degradation that can be attributed to the battery cycle that is evaluated and L is the
total battery lifetime if the evaluated battery cycle is repeated until EOL-capacity is
reached. For isolating degradation factors a battery degradation tool of the National
Renewable Energy Laboratory (NREL) is employed (Smith et al., 2010).

The approach of expressing battery degradation in relative lifetime loss is suit-
able for both MOP-methods. For the weighted sum method it is necessary to express
both objectives in a similar unit, and relative lifetime loss is easily transformed to
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degradation costs by multiplication with the battery costs. The relative lifetime loss
is also easily transformed to a total lifetime in operation days and vice versa, since
they are inversely related. For the ε-constraint method a bound can be chosen for
a minimum desired lifetime in operation days, which can be transformed to a max-
imum allowed relative lifetime loss per day. The degradation functions have the
following form, superscript λ for the weighted sum method, and superscript ε for
the ε-constraint method.

gλ,X
deg = Γbatt ·

∆LX

L
gε,X

deg =
∆LX

L
(3.2)

Three factors that have impact on the lifetime degradation are identified: DOD,
SOC and temperature. The superscript X indicates the degradation factor (‘DOD’,
‘SOC’ or ‘Temp’). In order to fit the linearity of the model, the lifetime loss should be
expressed linearly for the various factors and the rate of degradation should be in-
dependent of time and the amount of capacity left in the battery. In reality this might
not exactly be the case, but it is assumed that the impact on the rate of degradation
is negligible and the average rate of degradation is assumed to be sufficient. An ex-
ample of the decline in battery capacity is depicted in Figure 3.1. The degradation
functions are discussed per factor in the rest of this Section.

3.3.1 DOD-related degradation

First we discuss the degradation related to DOD. The corresponding degradation
function is based on a relation between the battery lifetime in battery cycles and
the DOD in all those battery cycles in its lifetime. Effects of cycle-frequency are not
captured with this function, but those are captured with the degradation function
related to temperature. The relation between DOD and battery lifetime in cycles N
is described by the following equation (Hoke et al., 2011).

N(DOD) =

(
DOD

d

) f

(3.3)

Here it was assumed that n battery cycles at a given DOD have the same effect on
the amount of life cycles as n battery cycles with an average DODavg over all n battery
cycles equal to that DOD. It is noted that the degree of validity of this approximation
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FIGURE 3.1: An example of the decline in battery capacity over time
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is difficult to assess from the available data. To determine the degradation costs,
the concept of energy throughput is employed (Marano et al., 2009). Lifetime energy
throughput (ETL) for a given average DODavg over all battery cycles in a battery
lifetime is defined as

ETL = N(DODavg) · DODavg · κbatt.

A battery cycle j with DOD of DODj changes the average DODavg slightly to DODavg,j
and also uses up an energy throughput of DODj · κbatt. The altered energy through-
put due to the battery cycle is then

ET,used = N(DODavg,j) · DODavg,j · κbatt + DODj · κbatt.

This used energy throughput is compared with a baseline energy throughput ET,base,
derived from a baseline DOD of DODbase (Hoke et al., 2011). It is, however, unclear
from the literature how the baseline DOD can be derived. We assumed here that it
is equal to the lifetime energy throughput, a reasonable assumption, regarding the
fact that we want to assess the relative loss in lifetime. The degradation is expressed
as relative loss in energy throughput due to the daily battery cycle compared to the
base line energy throughput as follows.

∆LDOD

L
=

ET,used − ETL

ETL
(3.4)

A similar approach uses a slightly different expression (Barco et al., 2017). The
relative lifetime loss due to DOD is described by the ratio between energy through-
put of one battery cycle and the total energy throughput throughout a battery life-
time. Energy throughput of one battery cycle is calculated as

ET,cycle = DODj · κbatt

and energy throughput of battery lifetime ETL similar as above, using the same for-
mula (3.3) to calculate battery lifetime in cycles. Then the degradation is expressed
as follows.

∆LDOD

L
=

ET,cycle

ETL
(3.5)

This seems somewhat more intuitive, since this results in ∆L
L lines that go through

the origin, i.e., if a battery cycle would have a DOD of 0, the relative lifetime loss is
also 0, whereas the function (3.4) results in ∆L

L lines where for a battery cycle of DOD
0, still a relative lifetime loss of larger than 0 would be attributed to it. This indi-
cates that it also accounts for calendar lifetime loss that would occur under storage
conditions, which is not of interest in this research.

An immediate issue arises regarding the functions usability in a linear optimiza-
tion problem, i.e., the non-linear nature of the relation. Therefore we need to find
a linear equivalent equation. We can evaluate the degradation functions for vari-
ous average DODs and find the relation between relative lifetime loss and DOD of
a battery cycle for the various average DODs separately. This is visualized in Figure
3.2. These are linear relations, and thus, an option for applying it in the optimization
problem would be to choose an average DOD beforehand, apply its corresponding
lifetime-loss-function in the optimization and evaluate after solving if the resulting
average DOD is close enough to the chosen value. The DOD resulting from the so-
lution would be equal to the average DOD over the lifetime of a battery, since it
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is assumed that the charging pattern is equal for all operation days. Choosing an
average DOD and optimizing can be done iteratively until an satisfactory result is
reached. The degradation function can now be rewritten.

∆LDOD

L
= m · DOD + n (3.6)

Here, m denotes the slope of the chosen lifetime-loss-function and n the correspond-
ing intercept (the intercept n is always 0 with the formulation (3.5)).

In Algorithm 1 the pseudocode is described for the iterative process of solving
the MILP with the correct parameters for the DOD-degradation. An average DOD
(and the corresponding parameters) is assumed before solving the MILP, denoted by
DODass,z. When a solution z is found, the battery degradation due to DOD needs to
be adjusted in the solution using the DOD degradation parameters corresponding to
the average DOD that belongs to the solution, DODtrue,z. Depending on the applied
MOP-solving method, this can either involve altering the objective value (weighted
sum method) or reevaluating the feasibility of the solution (ε-constraint method). As
can be seen in Figure 3.2, DOD degradation increases for larger average DOD. When
a solution has a lower value for DODtrue,z than the predefined average DOD value,
the true DOD-degradation will also be lower, and vice versa. After adding the ad-
justed solution to the set of solutions, a new value for assumed DOD is found with
the function fnextDOD. Examples of this function are to assume the last DODtrue,z,
to take the average between DODtrue,z and DODass,z or simply to go over a list of
predefined values. Since the found solution depends on the DOD-degradation func-
tion corresponding to the assumed DOD value, the new average DOD is compared
to all previous values for DODass,z. If the difference is small, it is likely to find the
same solution as before and no other solutions can be found. From the set of found
solutions, the (feasible) solution with lowest objective value is chosen as optimal.

Another option that would not require this iterative process of adjusting the pa-
rameters to match the solution DOD would be to approximate the curve of the mark-
ers in Figure 3.2 linearly. The markers indicate the points where the assumed aver-
age DOD aligns with the true value for average DOD. However, this would induce
an approximation of an already simplified degradation model, risking a decrease in
accuracy.

In this research equation (3.5) is used to describe the relation between a cycle
DOD and lifetimeloss. It is preferred over equation (3.4) based on the intuition that it
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FIGURE 3.2: The relative loss in lifetime due to the DOD of a battery cycle for various average
DODs. The red markers indicate where the DOD value corresponds to the average DOD.
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Algorithm 1 Iterative process for DOD-degradation function

Z := set of found optimal solutions
z∗ := best solution

v(z) := objective value of solution z
ϑ := threshold value for finding new solutions

DODass := current assumed average DOD for gλ,DOD
deg

DODass,z := assumed average DOD for finding solution z
DODtrue,z := true average DOD of solution z

fnextDOD := function to find next DODass

fm,n(DODavg) := function to find param m and n for gλ,DOD
deg

1: initialize ϑ, DODass
2: initialize (m, n)← fm,n(DODass)
3: while more solutions can be found do
4: solve MILP
5: z← solution MILP
6: (m, n)← fm,n(DODtrue,z)
7: adjust z with correct DOD degradation
8: add z to Z
9: DODass ← fnextDOD

10: for all z ∈ Z do
11: if |DODass − DODass,z| < ϑ then
12: no more solutions can be found
13: end if
14: end for
15: (m, n)← fm,n(DODass)
16: end while
17: z∗ ← argmin

z∈Z
v(z)

better represents cycle aging. Four methods are compared for dealing with the non-
linearity of DOD-degradation. Three of which employ the iterative algorithm with
following functions fnextDOD for finding the assumed DOD for each next iteration i.

(1) DODass,i+1 =DODtrue,i referred to as method ‘last’

(2) DODass,i+1 = 1
2 (DODtrue,i + DODass,i) referred to as method ‘ave’

(3) DODass,i+1 =DODlist(i + 1) referred to as method ‘list’

The vector DODlist contains a list of predefined values the algorithm iterates over.
Since the methods last and ave not necessarily employ the full range of possible DOD
values they can get stuck in a ‘local optimum’ and are therefore technically defined
as heuristic. For the list method this risk can be eliminated by choosing the list over
which is iterated such that it describes the full range of possible DOD values. The
fourth method is to apply the linear approximation of the red curve in Figure 3.2b,
referred to as method ‘lin’.

3.3.2 SOC-related degradation

Average SOC is the second factor we discuss. The degradation function that ac-
counts for the loss in capacity attributable to the average SOC-level is described by
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a linear fit on data of 15-year capacity versus average SOC (Markel, Smith, and Pe-
saran, 2009; Hoke et al., 2011). Various 24-hour battery data profiles were fed in the
NREL-model and data of relatively lost lifetimes versus average SOC during one
hour were obtained. The conditions and assumptions under which the data were
obtained are unknown, but they are assumed to sufficiently resemble the frame-
work of this research. It is imported to note that degradation due to SOC-level is
usually associated with calendar aging. However, as the authors recognize, the av-
erage SOC during a battery cycle, i.e. during operation, also has an impact on cycle
life degradation. All used battery profiles had constant low temperature (6 ◦C) to
diminish the temperature effect. The fitted formula for the degradation due to one
hour of average SOC equal to SOCavg has the following form.

∆LSOC

L
=

h · SOCavg − l
CFmax · 15 · 8760

(3.7)

CFmax denotes the maximum capacity fade at EOL (in this research denoted by ζ)
and 15 · 8760 is the amount of hours in 15 years. It is assumed that storing a battery
at an SOC-level of SOCavg has similar degradation effects as one hour of battery use
during which the average SOC-level is equal to SOCavg. Since this research focuses
on one day (or 24 hours) of operation, the degradation function (3.7) is multiplied
by 24, resulting in the following SOC-dependent degradation function.

∆LSOC

L
= 24 ·

(
h · SOCavg − l

ζ · 15 · 8760

)
(3.8)

3.3.3 Temperature-related degradation

Lastly the degradation related to battery temperature is explained. The internal tem-
perature of a battery varies with the power it is charged or discharged at. Only the
degradation during charging is considered, since the battery temperature during
discharging is independent of the decisions involved in the problem. Also only the
extra degradation due to fast-charging is considered, compared to the degradation
of charging at lowest possible power. This combined with the knowledge that tem-
perature mainly affects calendar aging the contribution of temperature to the total
degradation has the least contribution to total degradation (Hoke et al., 2011).

To correctly calculate the degradation, the lifetime loss attributed to charging
should be compensated for the loss that would have been generated by charging in
the least harmful way possible, since charging must happen anyhow. Charging in
the least harmful way possible is defined as a constant power charge at minimum
power Pmin required to fully charge the battery in the available time tmax. The rela-
tion between temperature and power during charging can be expressed linearly as
follows:

T = Tamb + Rth · P,

where Tamb is the ambient temperature, Rth the thermal resistance of the battery and
P is the applied power (Hoke et al., 2011). The relation between lifetime in years and
temperature at which a battery is stored can be expressed as follows.

L(T) = a · eb/T (3.9)

For temperature-related degradation it is complex to isolate the cycle aging. In
general is mostly associated with calendar aging, and is probably the least interest-
ing degradation factor for this research. We will discuss the method of determining
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degradation by temperature here, and apply it only to temperature changes due to
charging to approximately isolate the effect on cycle life. The relative lifetime loss
for one charging opportunity is calculated as follows (Hoke et al., 2011).

∆LTemp

L
=
∫

tch

1
8760 · L

(
Tamb + Rth · P(t)

)dt︸ ︷︷ ︸
∆L/L due to charging

+
tmax − tch

8760 · L
(
Tamb

)︸ ︷︷ ︸
∆L/L while plugged
in but not charging

− tmax

8760 · L
(
Tamb + Rth · Pmin

)︸ ︷︷ ︸
Baseline ∆L/L that would be
realized due to slow charging

(3.10)

The factor 8760 is the number of hours in a year and is needed to express the lifetime
(in years) in the used units for time t (hours). The used time for charging is expressed
by tch. The resulting cost function (3.10) is designed to only account for degradation
that could have been avoided if the least harmful procedure of charging had been
employed, i.e. charging at the lowest possible power. The first two parts calculate
the lifetime loss for charging at high power, during charging and the rest of the time
it would take at the minimum power level to recharge, and the lifetime loss in the
least harmful way possible, calculated in the last part of (3.10), is subtracted.

The equation is rather complicated and far from linear, but since the charging
profile is similar for all charging stations of the same type under current assump-
tions, the lifetime loss effect can be determined per type of charging station at every
stop. Note that the dwell time are assumed to be completely utilized for charging.
The corresponding degradation is only dependent on the installed charging stations
of each type. Because of the assumption of constant power during charging, the in-
tegral in equation (3.10) can be replaced by a simple expression. The lifetime loss
per type of station can now be calculated as follows, using the notation described in
Section 3.2.

∆LTemp,t,s

L
=

δs

θyear · L(Tamb + Rth · πt
s)

+
δdepot − δs

θyear · L(Tamb)
−

δdepot

θyear · L(Tamb + Rth · πdepot)
(3.11)

The total degradation related to temperature can now easily be obtained with the
information of what types of stations are installed at which stops. This simplification
is only possible because all charging stations are assumed to be equal.

∆LTemp

L
= ∑

t∈T
∑
s∈S

∆LTemp,t,s

L
· xt

s (3.12)

3.4 Model with Weighted Sum Method

The weighted sum method combines both objectives, minimizing costs as well as
battery degradation, in one single objective. Minimizing battery degradation is de-
fined in terms of battery degradation costs, for which we can use the functions de-
scribed in equation (3.2). The idea is to minimize daily costs, by dividing initial
investment cost by lifetime in days and calculating degradation costs per day.

3.4.1 The weighted sum method

The traditional approach to solving MOPs of the Pareto class is by scalarization and
formulating a single objective optimization problem that is related to the MOP. The
simplest method that is based on this idea is the weighted sum method, explained
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here in brief (Ehrgott, 2006, Chapter 3). In the weighted sum method, a solution is
found for a weighted sum scalarization of the MOP. Every involved objective function
fk(x) is appointed a weight λk. The resulting objective is of the form

min
x∈X

p

∑
k=1

λk fk(x).

For the application to this research, only the case of strictly positive weighting vec-
tors is relevant. The assumption of ∑

p
k=1 λk = 1 always holds, since this just normal-

izes the weights.
Assume we have an MOP with two objective functions y1 = f1(x) and y2 = f2(x)

and feasible region X . The set of feasible objective values is defined as

Y = {( f1(x), f2(x))|x ∈ X}.

The space of which X is a subset is referred to as the decision space and the space
of which Y is a subset is referred to as the objective space. In this case the objective
space is defined on R2 and Y can therefore be imaged in a two-dimensional graph.
In Figure 3.3 an illustrative example of the visualization of a set of feasible objective
values Y is depicted.

In this example the weighted sum results in the family of lines {y ∈ R2|λ1y1 +
λ2y2 = c, c ∈ R}. The new optimization problem is now defined by finding the min-
imum value for c = ĉ such that the intersection of the line with Y is nonempty. The
set of points on that intersection, ŷ, are the optimal points of Y with respect to λ. To
find ĉ graphically, we can start with a large value for c and move the line in parallel
towards the origin as much as possible while keeping a nonempty intersection with
Y . In the example we see that there exist two points that satisfy this requirement,
these points are also referred to as nondominated solutions. Adjusting the weights
will lead to relatively more emphasis on the ‘heaviest’ of the objectives and can be
applied to adjust the relative importance of the objectives to each other.

3.4.2 The MILP model

Employing the weighted sum method and applying the notation described in Sec-
tion 3.2 results in the following model. λinv and λdeg denote the weight for the in-
vestment and battery life objectives, resp. The weights are assumed to be normalized
and positive: λinv + λdeg = 1, λinv, λdeg > 0.

FIGURE 3.3: Visualization of the weighted sum method
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min λinv

(
β ∑

i∈I

Γbatt,i · bi

ηbatt,i
+ ∑

t∈T

[
∑s∈S xt

s · Γt
s + ∑d∈D xt

d · αt
d

ηt

])
+ λdeg · β · gλ

deg
(

DOD, SOCavg, b
)

(3.13)

s.t zs = ws−1 − µs−1 ∀s ∈ S\{1}, (3.14)
zs ≥ ∑i∈I bi · κi · ζ ∀s ∈ S, (3.15)
ys ≤ ∑t∈T xt

s · φt
s ∀s ∈ S, (3.16)

ys ≤ ∑t∈T xt
s · δs · πt

s ∀s ∈ S, (3.17)
w1 = ∑i∈I bi · κi ·ω , (3.18)
ws = zs + ys ∀s ∈ S, (3.19)
ws ≤ ∑i∈I bi · κi ·ω ∀s ∈ S, (3.20)
ws ≥ ∑i∈I bi · κi · ζ + νs ∀s ∈ S, (3.21)

wA = w1 , (3.22)
v ≤ zs ∀s ∈ S, (3.23)

∑i∈I bi = 1 , (3.24)

∑t∈T xt
s ≤ 1 ∀s ∈ S, (3.25)

xTFS
s = 1 ∀s ∈ STFS, (3.26)

xTFS
s = 0 ∀s ∈ S\STFS, (3.27)

xt
d ≤ 1

2 ∑s∈Sd
xt

s ∀t ∈ T, ∀d ∈ D, (3.28)

(PA.1) hdwell,1 = 1
2 (∑i∈I bi · κi + wA − νA) · δdepot , (3.29)

hdwell,s = 1
2 ρ(zs + ws) · δs ∀s ∈ S\{1}, (3.30)

htravel,s = 1
2 ρ(ws + zs+1) · τs ∀s ∈ S\{A}, (3.31)

htravel,A = (∑i∈I bi · κi + wA − νA) · τdepot , (3.32)

DODi ≥ bi −
v
κi

∀i ∈ I, (3.33)

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
κi · θday

∀i ∈ I, (3.34)

xt
s ∈ {0, 1} ∀t ∈ T, ∀s ∈ S, (3.35)

xt
d ∈ {0, 1} ∀t ∈ T, ∀d ∈ D, (3.36)

bi ∈ {0, 1} ∀i ∈ I, (3.37)
ws, ys, zs ≥ 0 ∀s ∈ S, (3.38)

v ≥ 0 , (3.39)
hj,s ≥ 0 ∀j ∈ {dwell, travel}, ∀s ∈ S, (3.40)

DODi ≥ 0 ∀i ∈ I, (3.41)
SOCavg,i ≥ 0 ∀i ∈ I. (3.42)

This formulation is further referred to as model A.1. The objective function (3.13)
consists of two parts, the capital investment for on-board batteries and charging
station installment and a battery lifetime part expressed by degradation costs. The
investment costs are divided by respective lifetime in days (under ideal conditions)
because the degradation is calculated as relative lifetime loss per operation days as
well. In that way both objectives are expressed in a comparable manner. The costs
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of buses are left out of scope, since they are independent of decisions made by the
model. The degradation costs can be viewed as a penalty incurred for extra lifetime
loss for less-than-ideal conditions. The degradation costs are expressed as follows.

gλ
deg
(

DOD, SOCavg, b
)
= gλ,SOC

deg

(
SOCavg, b

)
+ gλ,DOD

deg

(
DOD, b

)
(3.43)

gλ,SOC
deg (SOCavg, b) = 24 · γbatt ·

(
∑i∈I

[
κi · (h · SOCavg,i − l · bi)

]
ζ · 15 · 8760

)
(3.44)

gλ,DOD
deg (DOD, b) = γbatt ·∑

i∈I

[
κi · (m · DODi + n · bi)

]
(3.45)

Unfortunately, because the concept of degradation costs is applied, it is impos-
sible to incorporate temperature related degradation. The battery costs are directly
related to the battery size, which is a variable in the model. The outcome of multi-
plying the battery costs with temperature related degradation, which is a function
of variable xt

s, see equation (3.12), would be a non-linear function and is thus not
suited for an MILP. However, temperature degradation is of the least interest for
this research, as it is associated to calendar ageing, so the impact on the solutions
will be minor.

For SOC and DOD related degradation this problem does not arise, since DOD
and SOC are represented in the model for every possible battery size separately. This
was necessary because both are expressed as fraction of the battery capacity. Only
the variables corresponding to the battery size that is chosen in the model are set to
their true value, for other configurations the SOC and DOD variables are set to 0.

Constraints (3.14) describe the battery level upon arriving at a stop and con-
straints (3.15) ensure it is never inferior to the imposed lower bound. Constraints
(3.16) and (3.17) limit the energy that can be charged when a charging facility is
placed by its power and maximum available energy to charge at a time. Constraint
(3.18) initializes the energy level and (3.19)-(3.21) describe the energy in the battery
upon leaving a stop and bound it by the imposed upper bound and required energy
to reach the depot. Constraint (3.22) ensures that the energy level at the end of a
round trip equals the energy level at the start to satisfy the assumption that a full
operation day can be described by one bus cycle.

Constraints (3.23) represent the minimum battery level that is reached on a day,
which is required to determine the depth of discharge. Constraint (3.24) enforce
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FIGURE 3.4: An illustration of the auxiliary h variables for determining average SOC. The
points indicate events 1. arrival at bus stop s with charging facility, 2. departure from bus stop

s, 3. arrival at bus stop s + 1 without charging facility, 4. departure from bus stop s + 1.
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a single option of battery size and constraints (3.25)-(3.27) ascertain that at most
one charging facility is placed at every stop, enforcing TFS at all terminal stops.
Constraints (3.28) set the value of xt

d to 1 only if a station of type t is installed in both
directions of stop d.

Constraints (3.29)-(3.32) calculate the auxiliary variables required to determine
the average SOC. These variables represent the area under the energy level graph
over time, as is depicted in Figure 3.4. A more elaborate description and derivation
of these variables can be found in Appendix A.

Constraints (3.33) calculate the depth of discharge for every battery size. Only
for the battery size that is chosen, and bi = 1, will the DODi variable be equal to
the depth of discharge imposed by the solution. For all other battery sizes the right-
hand side of the equation will be less than 0 and corresponding DODi will be set to
0 since degradation, and thus the objective function, is increasing in DOD.

Constraints (3.34) calculate the average state of charge over a full day of opera-
tion (24 hours). Again the value is calculated for every battery size separately and
again only for the battery size that is chosen will the variable be equal to the aver-
age SOC corresponding to the solution. This expression appears to be unnecessarily
complicated, but is required to be of this form because of different possible battery
sizes. It is further explained in Appendix A. Constraints (3.35)-(3.42) represent the
domain constraints.

3.5 Model with ε-constraint Method

Another approach, using the ε-constraint method, is presented in this Section. Sim-
ilar to the weighted sum method, the problem is reduced to a single objective opti-
mization problem. However, it does not require to aggregate objectives in one ex-
pression and thus it is not necessary to translate battery degradation into costs. With
the ε-constraint method one of the involved objectives is optimized and the others
are introduced in the problem as a constraint. The idea is to minimize the invest-
ment costs, accounted to daily costs, and impose a restriction on the loss in battery
life.

FIGURE 3.5: Visualization of the ε-constraint method, with two examples of ε-constraints
for f1(x). The resulting sets of feasible objective values are represented by the areas marked

in the same color and the corresponding solutions are highlighted.
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3.5.1 The ε-constraint method

The ε-constraint method is a renowned technique in the field of multicriteria opti-
mization problems. Instead of aggregating the involved objectives, only one of them
is optimized and the others are moved to the constraints. The MOP defined in ex-
pression (3.1) is substituted by the ε-constraint problem (3.46).

min
x∈X

f j(x)

s.t. fk(x) ≤ εk k = 1, . . . , p k 6= j
(3.46)

For illustration, again consider an MOP with two objectives, f1(x) and f2(x) and
take j = 2, so an upper bound constraint is put on f1(x). A visualization of the
method can be seen in Figure 3.5. The feasible set of objective values Y is depicted
with two various values for ε1. As can be seen in the figure, each choice for ε1 re-
duces the area of Y , and thus affects the set of values that f2(x) can assume. The
resulting optimal values f̂2(x) are marked. Adjusting the ε-values for the objectives
in the constraints will thus result in a ‘tighter’ or a ‘looser’ set of feasible objective
values Y and is a tool for controlling the problem on hand. For a more elaborate
explanation on the ε-constraint method and further results and theory, the reader is
referred to further literature on the ε-constraint method (e.g. Haimes, Lasdon, and
Wismer, 1971; Chankong and Haimes, 1983; Ehrgott, 2006, Chapter 4.1).

3.5.2 The MILP model

As was mentioned above, the investment costs are handled as primary objective,
leaving the battery life objective represented in the constraints. The restriction on
the battery life degradation is denoted with εdeg. Apart from the adjustment of the
objective function and the addition of the ε-constraint the model is equal to model
A.1. The objective function and ε-constraint are as follows

min β ∑
i∈I

Γbatt,i · bi

ηbatt,i
+ ∑

t∈T

[
∑s∈S xt

s · Γt
s + ∑d∈D xt

d · αt
d

ηt

]
(3.47)

s.t εdeg ≥ β · gε
deg
(

DOD, SOCavg, x
)

(3.48)

This formulation is further referred to as model B.1. Including temperature degra-
dation is possible with this formulation, since the battery size is not involved. The
involved degradation functions are the expressed as follows.

gε
deg
(

DOD, SOCavg, x
)
= gε,SOC

deg

(
SOCavg

)
+ gε,DOD

deg

(
DOD

)
+ gε,Temp

deg

(
x
)

(3.49)

gε,SOC
deg (SOCavg) = 24 ·

(
h ·∑i∈I SOCavg,i − l

ζ · 15 · 8760

)
(3.50)

gε,DOD
deg (DOD) = m ·∑

i∈I
DODi + n (3.51)

gε,Temp
deg (x) = ∑

s∈S
∑
t∈T

∆LTemp,t,s

L
· xt

s (3.52)
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3.6 Extensions

To improve the solutions and better approximate real operating conditions a few
extensions to the model are proposed in this Section.

3.6.1 Possibility for energy depletion in every cycle

Although it was assumed that an operation day can be fully described by a single
bus cycle, there might be opportunities for a better solution if the SOC was able to
slowly decrease with every bus cycle, i.e. relaxing the assumption of equal battery
level at the start and end of each bus cycle. In models A.1 and B.1 the batteries are
forced to be fully recharged at the end of every bus cycle. It is valuable to research
the added value of allowing more freedom for the energy level development over
the day.

In order to model this freedom an extra variable is introduced ecycle, which de-
notes the used energy per bus cycle, and can be calculated as the difference between
the starting and ending energy level of one bus cycle.

ecycle = w1 − wA (3.53)

The constraints involved with lower bound on the energy level are reduced with
(ρ - 1) · energycycle to assure that these restrictions are also met during the last bus
cycle. An example of such a constraint:

zs ≥∑
i∈I

bi · κi · ζ + (ρ− 1) · ecycle (3.54)

The calculation of the average SOC needs to be adjusted to account for the gradual
decrease in battery level over the day. The total time to complete one bus cycle is
also required and will be denoted by θcycle. After incorporating the variable ecycle,
the SOC constraint is expressed as follows.

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
− 1

2 (ρ
2 − ρ)θcycleecycle

κi · θday
(3.55)

An explanation and derivation of this expression can be found in Appendix A. The
complete MILPs can be found in Appendix B. These models are further referred to
as A.2 and B.2, or in general as X.2.

3.6.2 Optimizing charging policy

The first proposed extension adds the possibility of a decrease in battery level after
every bus cycle. However, it has the limitation of imposing the same charging de-
cisions for every bus cycle, i.e., charging the same amount of energy every time the
same charging station is visited. With regard of battery degradation optimization it
might be beneficial to let these decisions differ for every charging opportunity, i.e.
relaxing the assumption that the daily operation can be described by one bus cycle.

The models A.1 and B.1 are the basis for this extension. In order to allow for
variations in charging decision it is necessary to create a copy for every stop for
every bus cycle. This significantly increases the number of nodes in the graph and
thus the size of the problem. The number of stops during one bus cycle is denoted
by N and the total number of nodes in the model is again denoted by A (note that
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A = ρ · N + 1). To ensure that the installment of stations along the route is the same
for all copies of the stops, the following constraint is added.

xt
s = xt

s−N , ∀t ∈ T, ∀s ∈ S, s > N (3.56)

Besides this addition and some minor adjustments, the formulations of the orig-
inal models support this extension sufficiently. The models with this extension are
referred to as A.3 and B.3, or in general as X.3. The complete MILPs can be found in
Appendix B.
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Data

In order to test the developed models input parameters for degradation functions
and technical features are required. Due to confidentiality of exact technological fea-
tures, for competition and pending patent reasons, parameters from a manufacturer
source were unavailable. Therefore the parameters were obtained from literature.
The applicability to the problem and the feasibility of the combination of the used
parameters might not be completely technically valid. Nevertheless, the main goal
of this thesis is the development of a universal model for the design of a charging
network and the chosen values of the parameters do not need to exactly describe
one type of scenario. It is assumed that these parameters are sufficient for a uni-
versal model. The used parameters and their source are described in Section 4.1.
Data for a bus line is synthesized based on an operated bus line in Rotterdam, using
distances between stops to calculate energy consumptions and travel times. This is
described in Section 4.2.

4.1 Parameters

First the source of the parameters per degradation function is described and the
conditions under which they hold are stated if they were reported. An overview of
the parameters can be found in Table 4.1.

DOD degradation For DOD degradation the required parameters are d and f for
the cycle lifetime equation (3.3). These values were obtained from Hoke et al. (2011),
that fitted the formula on data from Rosenkranz (2003) for lithium-ion battery tech-
nology. The data was unobtainable, so it remains unknown what the conditions of
the battery were. However, we do know that the assumed EOL capacity is 80%,
similar to the assumption in this research. Other conditions are assumed to be suffi-
ciently comparable, the provided parameter values are d = 145.71 and f = −1/0.6844.
The parameters for the degradation function, m and n, are iteratively obtained dur-
ing the optimization process described in Algorithm 1.

SOC degradation The required parameters for SOC degradation function (3.8) are
h and l and were obtained from Hoke et al. (2011). The coefficients were tuned
by fitting a linear function on data of average SOC vs. relative lifetime loss. This
means that the denominator of equation (3.8) already includes the reported coeffi-
cients. Only data points for which average SOC exceeded 0.6 were used for the fit
to eliminate effects of high DOD that generally coincide with low SOC averages.
They assumed a maximum capacity fade of CFmax = 0.20 and reported parameters
h∗ = 1.59 · 10−5 and l∗ = 6.41 · 10−6, which after adjustment for the denominator
take the values h = 0.4179 and l = 0.1685.
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Temperature degradation The parameters a and b for the temperature lifetime
equation (3.9) are determined by fitting the formula to data obtained from the NREL
battery degradation model (Hoke et al., 2011). The authors note that for different
DOD-profiles fed into the NREL model, different parameters for L(T) were found,
but none of them are reported. The exact same degradation function is used in Barco
et al. (2017), and they report parameters a = 3.73 · 10−4 and b = 636, but the cir-
cumstances and assumptions are not mentioned. Nevertheless, the conditions are
assumed to match the framework of this problem and these parameter values are
used to calculate L(T). Values Tamb = 25 ◦C and Rth = 4 · 10−5 were obtained from
Hoke et al. (2011).

Other parameters The rest of the parameters that can be found in Table 4.1 were
either based on the assumptions that frame the problem (e.g. ζ and ω values), or av-
eraged over publicly available information about running projects for fast-charging
electric buses (Pihlatie and Paakkinen, 2017). Information regarding price and life-
time of batteries and charging stations is dependent on the supplier chosen for the
batteries and charging equipment. For this research the used prices were obtained
from a paper that analyzed costs for various suppliers and averaged over them (La-
junen, 2014). The time (2014) and place (Western-Europe) that frame this research are
assumed to be sufficiently analogous to the setting of this research and adjustments
for inflation or location are unnecessary.

4.1.1 Values for λ and ε

The two different methods for solving MOPs require the parameters λinv and λdeg
for the weighted sum method, and ε for the ε-constraint method. The λ-values define
the relative dominance of the objectives and the tendency of the solution to prioritize
one over the other. At first both objectives will be set equally important (λinv =

Parameter Value Source
a 3.73 · 10−4 Barco et al. (2017)
b 636 Barco et al. (2017)
d 145.71 Hoke et al. (2011)
f −1/0.6844 Hoke et al. (2011)
h 0.4179 Hoke et al. (2011)
l 0.1685 Hoke et al. (2011)
Tamb 25 ◦C Hoke et al. (2011)
Rth 4 · 10−5 ◦C/W Hoke et al. (2011)
πFFS

s /πSFS
s /πTFS

s /πdepot 600/200/100/50 kW ∀s ∈ S Pihlatie and Paakkinen (2017)
φFFS

s /φSFS
s /φTFS

s 10.0/2.0/5.0 kWh ∀s ∈ S Pihlatie and Paakkinen (2017)
ζ 0.20 Assumptions (Section 2.2.1)
ω 0.90 Assumptions (Section 2.2.1)
κi i · 5 kWh, i = 1, . . . , 16 Assumptions (Section 2.2.1)
γbatt 1000 e/kWh Lajunen (2014)
ΓFFS

s /αFFS
d e200,000/-e100,000 ∀s ∈ S Lajunen (2014)

ΓSFS
s /αSFS

d e150,000/-e75,000 ∀s ∈ S Lajunen (2014)
ΓTFS

s /αTFS
d e120,000/-e120,000 ∀s ∈ S Lajunen (2014)

ηFFS/ηSFS/ηTFS/ηbatt 4,380/4,380/4,380/3,650 days Lajunen (2014)

TABLE 4.1: Overview of parameter values
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λdeg = 0.5). The impact of the parameter values on the solution is evaluated in
Chapter 5. The ε-value limits the battery degradation per day to a preset maximum
and the solutions obtained with various values are compared.

4.2 Synthesized Bus Line

The bus line data used to evaluate the performance of the model are synthesized
based on bus line 33 in Rotterdam which travels between the airport and the main
railway station, see Figures 4.1 and 4.2. This bus line is operated daily between 06:00
a.m. and midnight, 6 times per hour between 07:00 a.m. and 06:30 p.m. and 4 times
per hour outside said interval, summing to 96 round trips per day. One round trip
(back and forth) takes 51 minutes, so technically a fleet of 6 buses would suffice to
operate this bus line and the fleet size is therefore set at β = 6. In reality it is likely
a public transport company would have a slightly larger fleet in order to react to
possible defects and delays, but this would be of concern in a scenario of multi-line
network optimization. The round trips are assumed to be equally divided among
the fleet, resulting in a value for ρ = 16.

FIGURE 4.1: Graphical depiction of all the stops on bus line 33

FIGURE 4.2: Bus line 33 depicted on the map
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4.2.1 Energy consumption and travel time

The only information available to estimate energy consumption and travel time were
the distances between stops, obtained from Google Maps. To calculate power con-
sumption between consecutive stops i and j at a given time t, Pi,j(t), it was separated
in three different terms involved in the overall consumption (Barco et al., 2017).

Pi,j(t) =
Paerodynamic(t) + Prolling(t) + Paccelerate(t)

η̂
(4.1)

The terms in equation (4.1) respectively denote the power depleted by aerodynamic
drag, by rolling resistance between tires and asphalt and to overcome the vehicle
inertia for acceleration/deceleration. The terms are summed and divided by the
powertrain efficiency of the bus (η̂) to find the power consumption. A fourth pos-
sible term corresponds to power that is consumed or gained as a result of the road
grade (in other words, by driving up or down a hill). This term is omitted here
because the road grades are unknown. Generally the road grades are negligible in
the road network of Rotterdam, so this will not have great impact on the power
consumption calculation. If we substitute corresponding formula’s for the various
power consumptions in equation (4.1) we get the following equation.

Pi,j(t) =
1
2 ρair A f cd[sij(t)]3 + mvgcrsij(t) + mv

∣∣∣dsij(t)
dt

∣∣∣sij(t)

η̂
(4.2)

The vehicle characteristics required for this calculation are described in Table 4.2.
The speed at time t, denoted by sij(t) can be derived from the speed profile associ-
ated with the road sections between stops i and j. However, speed profiles between
consecutive stops are unknown. The associated speed profiles of the route sections
are simplistically derived by splitting them in three phases: acceleration, constant
speed and deceleration; referred to as phase I, phase II and phase III respectively.
In phase I the bus accelerates linearly up to an average velocity, during phase II it
retains that velocity and in phase III, starting from the moment it needs to brake in
order to stop in time at the next stop, it decelerates linearly to standstill.

The speed limit along the route is 50km/h, but it is unlikely that the average
speed during phase II is equal to the speed limit. Using the openly available speed
profile for roads in the Netherlands from Spotzi B.V. and TomTom, we see the aver-
age speeds of the sections along the route of bus line 33 lie between 30 and 50km/h
(Spotzi B.V. and TomTom, 2013). The assumed average speed during the constant
speed phase is therefore set at 40km/h, or v = 11.11m/s. The rate of acceleration is
assumed to be ra = 0.7m/s2 and the rate of deceleration/braking is assumed to be
rd = 1.0m/s2. Assuming t = 0 at the beginning of every phase, the corresponding
speed profiles can be expressed as follows.

sI
ij(t) = ra · t, sI I

ij (t) = v, sI I I
ij (t) = v− rd · t

The travel times τi between consecutive stops can now easily be derived. The
time spent in each phase is denoted by τ I

i , τ I I
i and τ I I I

i . The energy consumptions
between consecutive stops i and j can be found by integrating equation (4.2) over
time t (see Appendix C).

µi =
∫ τ I

i

0
Pi,j(t)dt +

∫ τ I I
i

0
Pi,j(t)dt +

∫ τ I I I
i

0
Pi,j(t)dt (4.3)
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Parameter Description Value Source
ρair Air density 1.184kg/m3 physical constant (for T =25 ◦C)
A f Frontal area 7.74m2 X. Hu et al. (2013)
cd Aerodynamic drag coeff. 0.7 X. Hu et al. (2013)

mv Vehicle mass 14.5 ton X. Hu et al. (2013)
g Gravitational acceleration 9.81m/s2 physical constant

cr Rolling resistance coeff. 0.007 X. Hu et al. (2013)
η̂ Powertrain efficiency 74% Pihlatie, Kukkonen, et al. (2014)

TABLE 4.2: Vehicle characteristics used to determine energy consumption

4.2.2 Dwell times

According to literature on dwell time modeling, dwell times can be described by a
‘dead time’, needed to open and close the door, plus a fixed time for every passenger
(dis)embarking. Tirachini (2013) provide an overview of literature describing such
dwell time models, reporting dead times ranging from 2-16s and additional times
per passenger ranging from 0.5-6.9s. The values for the dead time and time per
passenger depend on vehicle-, stop- and passengercharacteristics, e.g. door width,
number of doors, type of fare collection, relative platform height, passenger age,
sequential or simultaneous embarking and disembarking. (Dueker et al., 2004; Fer-
nández et al., 2010, i.a)

Unfortunately we do not have access to such data, so another approach is chosen.
The dwell times were obtained from a normal distribution. For terminal stops a
different normal distribution was used, since generally dwell times tend to be longer
at terminal stations. Using N(µ, σ) as notation for a normal distribution and its
average and standard deviation, the used distributions were N(15, 5) for dwell times
along the route and N(210, 70) for dwell times at terminal stations. The dwell time
at the terminal at the end of a bus cycle was set to be such that the total duration
of one bus cycle is exactly one hour. See Figure 4.3 for a visualization of the dwell
times.
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FIGURE 4.3: Visualization of the dwell times, the two peaks represent the
dwell times at terminal stations.
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Chapter 5

Results

In this Chapter the performance of the models will be evaluated. First the perfor-
mance of the various DOD degradation approximation methods is evaluated in Sec-
tion 5.1. The two methods for solving MOPs applied to this problem are evaluated
in Section 5.2. In Section 5.3 the obtained solutions are compared and the added
value of the model, compared to models without integrated battery degradation, is
quantified. The contribution of the different degradation factors to battery lifetime
is described in Section 5.4 and some sensitivity analysis on their relative influence
is performed. All results were obtained with IBM CPLEX-solver software on a Win-
dows computer with a 3.5 GHz processor with 2 CPU and 6 GPU cores, model type
‘AMD PRO A6-9500 R5’, and 16 GB of installed RAM memory.

5.1 DOD Degradation Approximation Methods

Since four different methods were used for the DOD degradation, i.e. ‘ave’, ‘last’, ‘list’
and ‘lin’, they are evaluated and compared here. The first three methods correspond
to the iterative solution algorithm. An overview of their performance for solving
model A.1 for various values of λinv can be found in Figure 5.1. In the running time
graph the method ‘lin’ is depicted as well to serve as benchmark.

From the Figures 5.1a-5.1c it is clear that in terms of solving speed the ‘last’
method outperforms the other two. This is in line with expectations because choos-
ing the last solution DOD in the next iteration is bound to converge quicker to a
solution. However, this also highlights the pitfall of this method. It might be sen-
sitive to the risk of jumping over the DOD-value of the optimal solution as it is
considerably greedy. This concern is confirmed by the fact that for one instance of
λinv, the ‘last’ method failed to find the optimal solution. This is visualized in Figure
5.1d, where the difference in objective values for ‘last’ and ‘list’ methods is depicted
(between objective values of ‘list’ and ‘ave’ method the difference was 0 for all λinv
values). Because the domain of DOD-values is closed and bounded (it always falls
between 0 and 1) this characteristic might not apply to the method ‘list’ if the values
in the list sufficiently represent the range of values for DOD, i.e. with small enough
difference between consecutive values. Therefore method ‘list’ is used for obtaining
further results with the iterative solution algorithm.

The fourth method employs a linear approximation of the degradation curve,
depicted in Figure 5.2. This is significantly faster than the iterative method (see Fig-
ure 5.1c), but has the disadvantage of lower accuracy of the true degradation. The
various formulas describing battery degradation due to DOD-cycles are already an
approximation of the degradation effect, and further simplification is questionable.
Although it is still an approximation, the DOD degradation calculated according to
the formulas derived from (3.5) are called ‘true degradation’ and the linear approxi-
mation will be referred to as ‘approximated degradation’.
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FIGURE 5.1: Comparison of solving performance for the A.1 model, utiliz-
ing the different iteration methods used to approximate DOD degradation

Table 5.1 displays the differences between solutions with true and approximated
degradation for A.1 models. In the instance for λinv = 0.25 both methods found a
different solution, and if the DOD-degradation of the ‘lin’ method is adjusted to its
true value in order to compare both objectives, there is a slight difference of 0.135%
in objective value in favor of the ‘list’ method. For all other instances both meth-
ods found the exact same solutions and the relative differences in DOD-degradation
seem to be minor.

However, it is difficult to determine the exact effect on lifetime estimation be-
cause lifetime is inversely related to degradation. Smaller degradation values imply
longer lifetimes, and therefore a small deviation when the degradation value is low
can have more extreme effects for the lifetime estimation in comparison to higher
degradation values. This is especially relevant for the ε-constraint method where the
degradation is bounded by a parameter in the model and choosing smaller values
for ε might induce larger inaccuracies of the model when the linear approximation
of DOD degradation is applied.

The overall solving speed of these models is remarkably fast (under 10 seconds
for all instances of A.1, regardless of the method) and applying a ‘quick fix’ such as
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FIGURE 5.2: Linear approximation of DOD degra-
dation, corresponding to ‘lin’ method

λinv degr. diff.
0.05 -3.695%
0.10 3.037%
0.15 -1.476%
0.20 -1.476%
0.25 9.812%
0.30 0.678%
0.35 0.678%
0.40 0.678%
0.45 0.678%
0.50 0.678%
0.55 0.678%
0.60 0.678%
0.65 0.678%
0.70 0.678%
0.75 0.678%
0.80 0.678%
0.85 0.678%
0.90 0.678%
0.95 0.678%
1.00 -0.413%

TABLE 5.1: Differences in DOD degrada-
tion and objective value of solutions found

using ‘list’ and ‘lin’ methods

the linear approximation might seem irrelevant. This fast solving speed, however,
is a result of the relative simplicity of the model in its current form. The only true
decisions the model is required to take are the size of the on-board batteries and the
placement of stations. All other variables in the model take on values as a conse-
quence of these decisions. Furthermore, the fleet was assumed to be homogeneous,
and the network only exists of one bus line. Since battery size is determined by
binary variables and only two types of stations for all non-terminal stops were in-
troduced, the number of possible solutions is relatively small.

For application to a real bus network design problem, the total number of pos-
sible solutions is bound to be significantly larger. It is likely it will involve multiple
bus lines, operated by a heterogeneous fleet, and a greater range of possible config-
urations for charging stations. This will significantly increase the time required to
solve the problem. The linear approximation method might be useful to find a solu-
tion in that case. For further results the ‘list’ method was used to obtain solutions,
unless stated otherwise.

5.2 MOP Methods

The results of the two different methods for solving MOPs are discussed here and
their performance is evaluated and compared.

5.2.1 Results with weighted sum method

First the results of the weighted sum method, i.e. the A.x models, are discussed. In
Figure 5.3 the solutions for various values of λinv are schematically depicted. The
graphs provide an overview of the solutions’ costs for the batteries and stations and
the expected lifetime of the batteries based on the degradation corresponding to
the solutions. Note that the lifetime is expressed in operation days since we are
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(A) Solutions for A.1 model
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(B) Solutions for A.2 model
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(C) Solutions for A.3 model

FIGURE 5.3: λ-graphs depicting the solutions for various values of λinv,
showing each solution’s battery costs, station costs and lifetime per battery
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only interested in cycle lifetime. The actual lifetime in years might deviate from
these numbers because of the calendar aging, i.e. the degradation due to storage
conditions. For the further interpretation of the results the storage conditions are
assumed to be optimal and degradation is fully described by cycle aging.

Some obvious observations that can be made from Figure 5.3 are that the station
costs, and thus the number of stations, decrease as the weight of the investment costs
in the objective function, λinv increases. To the contrary, the battery costs increase as
λinv increases. This is caused by a need for larger batteries as fewer stations are
installed. Since the total costs of all batteries is significantly less than the costs for
installing stations, decreasing the number of stations at the expense of increasing
battery sizes is optimal as the weight of investment is increased. This resul is fairly
intuitive and as expected.

Larger batteries have the advantage of attaining a larger lifetime in general. If a
large battery follows the same charging pattern as a smaller sized battery, daily DOD
would be lower as it is relative to the battery size. The induced DOD degradation
would be less and as DOD contributes the most to the degradation in total (this is
discussed in more detail in Section 5.4) the battery’s lifetime will likely increase. The
more striking observation to be made here is that total degradation is more or less
equal for every value of λinv. This can be explained by the form of degradation in
the objective function. Degradation is expressed as costs, which is directly related
to the size of the battery. Decreasing λinv (and thus increasing λdeg) does therefore
not induce an increase in battery life, rather does it maintain a somewhat constant
battery lifetime for decreasing battery sizes.

Another observation from Figure 5.3 is the differences between the solutions for
A.1, A.2 and A.3. Introducing the possibility of a decrease in energy level with ev-
ery bus cycle, which is done with the A.2 model, allows for a slight decrease in
station costs for values of λinv ≥ 0.55. The bus cycle can now be completed with less
recharges on the route and fewer stations need to be installed. This comes at a cost
of bigger sized batteries and a slightly higher degradation rate, resulting in higher
degradation costs, but the decrease in station costs dominates for larger λinv weights
and the overall objective values improve compared to A.1.

Further extending the model by introducing the possibility to have different
charging profiles for every bus cycle, which is done with the A.3 model, enables
the solver to find solutions with fewer stations for values λinv ≥ 0.45 and improves
battery lifetime for solutions with the same number of stations and size of on-board
battery.

5.2.2 Results with ε-constraint method

Here the results obtained with the ε-constraint method, i.e. the B.x models, are dis-
cussed. Figure 5.4 shows the solutions for various values of ε, similar to the graphs
in Figure 5.3. Alongside these graphs a second graph is depicted for all three mod-
els. This graph shows the progression of the objective value for the various values
of ε and shows the lifetime as is imposed by ε as well as the lifetime that is obtained
with the solution.

As expected the objective values increase as the maximum allowed degradation
ε decreases. We can see a pattern for decreasing battery degradation. The size of the
on-board battery is first increased in order to decrease degradation. Recall that as
DOD degradation is the most contributing factor to battery degradation and a larger
battery that follows a similar charging pattern will have lower DOD-degradation.
After a few increments in battery size it is more efficient to instead increase the
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(B) Lifetime compared to ε for B.1 model
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(C) Solutions for B.2 model
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(D) Lifetime compared to ε for B.2 model
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(E) Solutions for B.3 model
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(F) Lifetime compared to ε for B.3 model

FIGURE 5.4: Pareto graphs for ε-constraint method. For each model two graphs are displayed, one depicting the solutions’
battery costs, station costs, and lifetime per battery and the other providing insight in the progression of the objective value
for decreasing ε-values and the difference between the minimum lifetime imposed by ε and the actual achieved lifetime of

the solution
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number of charging stations. The smallest value of ε a solution was found for is
1.4× 10−3, corresponding to a battery lifetime of almost 4500 operation days.

Comparing models B.1 and B.2 we see that the possibility of energy degradation
with every bus cycle allows for finding solutions with fewer stations installed for
values ε ≥ 1.85× 10−3. However this comes at a cost of requiring larger on-board
batteries, but the overall objective value is improved. For smaller values of ε both
models find the same solutions. The B.3 model is able to find solutions with the
same number of stations as B.2 but with smaller on-board batteries for the complete
range of values for ε. The problem was solved with B.3 for fewer ε values as the
required time to find a solution was significantly more. The running time took 50
up to 150 times more time as for solving the B.1 and B.2 models and the maximum
solving time was set at 3600s, which was exceeded once.

Looking at Figures 5.4b, 5.4d and 5.4f the battery lifetime achieved with the solu-
tions often differs from the minimum lifetime that is imposed by ε. This seems coun-
terintuitive, because why was a lower cost solution not found as the ε-constraint is
not strictly met? It might exist but is perhaps not found due to the design of the
iterative method used to calculate DOD degradation. If in an iteration the used
parameters for DOD degradation correspond to a higher DOD than that of the op-
timal DOD, the degradation of the optimal solution is overestimated and does not
satisfy the ε-constraint. Also, if in an iteration the used parameters for DOD degra-
dation correspond to a lower DOD than that of the optimal DOD, a solution might
be found that is infeasible after adjusting the DOD degradation. This can probably
be improved by increasing the number of values in the list to iterate over.

The results obtained with the ‘lin’ method are presented in Figure 5.5 for com-
parison. Here the lifetime achieved in the solution does not deviate from the lifetime
corresponding to the ε-value as much. Furthermore, this method is able to find solu-
tions for even smaller values of ε, as low as 1.24× 10−3, corresponding to a lifetime
of over 4800 operation days. At first glance this method seems to outperform the
iterative method. However, if we adjust the lifetime by correcting the DOD degra-
dation to its true value, the solutions become infeasible for values ε < 1.5× 10−3.
This exemplifies the severity of lifetime overestimation caused by the deviation of
linear approximated DOD degradation to its true value. In this particular case the
most severe overestimation was 8.4%, or 373 operation days.
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FIGURE 5.5: Lifetime compared to ε for B.2, results obtained with ‘lin’
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5.2.3 Evaluation of MOP methods

The two applied MOP solving methods perform differently with regard of the opti-
mization of both objectives. The weighted sum method might be deemed more suit-
able to serve the problem posed in this research, i.e. optimizing TCO. However, the
objective function of the weighted sum method in its current form fails to improve
battery lifetime as the weight for the degradation part of the objective increases. This
is mainly because the degradation objective is directly related to battery size, con-
sequently preferring solutions with smaller battery size and thus shorter achievable
lifetimes. The concept of expressing degradation in costs is ineffective.

The ε-constraint method is better at optimizing battery lifetime but requires a
pre-solving decision for the minimum desired lifetime. Setting a minimum require-
ment for the lifetime might be complicated because the effect on the solution is
unknown beforehand. On the other hand, running the model for various values ε
would enable planners to choose the solution that fits best to specific requirements.

Given that this problem involves decisions for a long-term period and the plan-
ning will have sufficient amount of time (designing an electric bus network tends
not to be a critical decision that needs to be made overnight), using the ε-constraint
method for this type of problem is preferred over the the weighted sum method in
its current form. It is better at exposing the trade-off between the number of sta-
tions and battery size and the consequences for the battery lifetime which enable
planners to make an informed decision on the balance between network costs and
battery lifetime.

5.3 Value of the Model

In order to assess the value of incorporating battery degradation in the charging
network design the solutions with and without degradation are summarized in one
overview in Table 5.2. Models O.x denote the solutions without degradation, which
is similar to Models A.x with parameters λdeg = 0, λinv = 1. These will serve as a
benchmark. From this table the different effect of both MOP methods on battery size
are accentuated. As the emphasis on battery degradation increases (decreasing λinv
for A.x models, decreasing ε for B.x models) the weighted sum method decreases
the battery size whereas the ε-constraint method increases the battery size.

First we compare the solutions of the models with battery degradation to the
solution without degradation that possess similar characteristics. Solutions with the
same battery size, number of stations and station costs manage to improve battery
lifetime. This is summarized in Table 5.3. The improvement for the basic model X.1
is only 5% but for the extended models improvements of around 15% and 17% are
realized. This shows that integrating battery degradation in the charging network
design can lead to significant improvements in battery life, even without an increase
in costs, just by being smarter about where to install the charging facilities.

X.1 X.2 X.3
O.x 1931 1722 1785
A.x 2025 1977 2080

improvement 94 255 295
% improvement 4.87% 14.81% 16.53%

TABLE 5.3: Battery lifetime achieved with similar
solution characteristics
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Model Class of solutions λinv/ε
Battery
size

Battery
lifetime # FFS # SFS Station costs

O.1 - 15 kWh 1931 6 0 € 1,140,000

A.1

0.05 5 kWh 1784 10 2 € 1,965,000
0.10 10 kWh 2185 8 0 € 1,440,000

Same solutions 0.15-0.20 10 kWh 1866 6 0 € 1,340,000
Same solutions 0.25-0.95 15 kWh 2025 6 0 € 1,140,000

B.1

Same station costs,
small battery

4.11E-03 15 kWh 1929
6 0 € 1,140,000...

...
...

1.88E-03 40 kWh 3360

Same station costs,
large battery

1.83E-03 45 kWh 3490
6 0 € 1,140,000...

...
...

1.60E-03 70 kWh 3909

Large battery,
increasing station costs

1.57E-03 75 kWh 4047 6
0

€ 1,240,000
...

...
...

...
...

1.43E-03 80 kWh 4305 10 € 1,740,000
1.40E-03 80 kWh 4442 16 1 € 2,790,000

O.2 - 20 kWh 1722 5 0 € 1,040,000

A.2

0.05 5 kWh 1784 10 2 € 1,965,000
0.10 10 kWh 2185 8 0 € 1,440,000

Same solutions 0.15-0.20 10 kWh 1866 6 0 € 1,340,000
Same solutions 0.25-0.50 15 kWh 2025 6 0 € 1,140,000
Same solutions 0.55-0.95 20 kWh 1977 5 0 € 1,040,000

B.2

Same station costs,
small battery

4.11E-03 20 kWh 1713
5 0 € 1,040,000...

...
...

1.88E-03 50 kWh 3335

Same station costs,
large battery

1.83E-03 45 kWh 3564
6 0 € 1,140,000...

...
...

1.60E-03 70 kWh 3916

Large battery,
increasing station costs

1.57E-03 75 kWh 4047 6
0

€ 1,240,000
...

...
...

...
...

1.43E-03 80 kWh 4306 10 € 1,740,000
1.40E-03 80 kWh 4439 15 1 € 2,790,000

O.3 - 20 kWh 1785 5 0 € 1,040,000

A.3

0.05 5 kWh 1979 10 2 € 1,965,000
Same solutions 0.10-0.20 10 kWh 2061 6 0 € 1,340,000
Same solutions 0.25-0.40 15 kWh 2185 6 0 € 1,140,000
Same solutions 0.45-0.95 20 kWh 2080 5 0 € 1,040,000

B.3

Same station costs,
small battery

4.11E-03 20 kWh 1774
5 0 € 1,040,000...

...
...

1.93E-03 40 kWh 3108

Same station costs,
large battery

1.83E-03 50 kWh 3371
6 0 € 1,140,000...

...
...

1.64E-03 70 kWh 3978
1.57E-03 70 kWh 3952 6 0 € 1,240,000
1.49E-03 75 kWh 4267 10 0 € 1,740,000

TABLE 5.2: An overview of the solutions compared to the solutions without integrated battery degra-
dation. Solutions with similar characteristics are grouped together and for non-similar characteristics

the range of occurring values is given. The column ‘Class of solutions’ defines their connection.
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X.1 X.2 X.3
O.x
benchmark

Battery size 15kWh 20kWh 20kWh
Lifetime 1931 1722 1785

B.x
increase in:

Battery size ×1.7 (25kWh) ×1.5 (30kWh) ×1.5 (30kWh)
Lifetime 46.39% (2827) 52.41% (2625) 48.73% (2655)

B.x
increase in:

Battery size ×2.3 (35kWh) ×2.5 (50kWh) ×2.0 (40kWh)
Lifetime 66.08% (3207) 93.67% (3335) 74.12% (3108)

B.x
increase in:

Battery size ×5.0 (75kWh) ×2.8 (55kWh) ×2.5 (50kWh)
Station costs 8.77% 9.62% 9.62%
Lifetime 109.58% (4047) 117.73% (3749) 105.45% (3667)

TABLE 5.4: Achieved improvements in battery lifetime when larger batteries are installed. Three
solutions are presented for every model. The increase in costs, battery size and battery lifetime is
compared to the benchmark of the O.x model. The increase in station costs is 0% for the solutions

where it is omitted.

Next we look at the achieved improvements in battery life for similar station
costs but with larger batteries. This is depicted in Table 5.4. For every model three
solutions are presented; one with a slightly larger battery size (less than 2× the bat-
tery size in the benchmark solution), another with an even larger battery size (more
than 2×) and a third with slightly higher station costs (one extra station installed).
This shows that if battery size is increased by roughly 50%, its lifetime will increase
by around 50% as well. However, the increase in battery life does not follow the in-
crease in battery size exactly. More than doubling the battery size causes the battery
life to increase with roughly 66-94% and combining that with an installment of an
extra station ups the improvement only to 105-118%. Nevertheless, these can be cost
efficient solutions compared to the benchmark, depending on the costs for stations
and the marginal costs of increasing the fleet’s battery size.

In this model the increase in battery costs is directly linearly related to its size
and in that case choosing a larger battery might not be cost efficient financially if
the increase in lifetime is proportional to the increase in size and therefore in costs.
There is no gain in costs per operated time unit and most financial departments will
try to postpone capital investments to the latest possible moment. However, this
financial viewpoint does not include the extra replacements necessary with shorter
battery lifetimes, which induce extra maintenance costs and have a larger environ-
mental impact because of chemical waste, or the higher uncertainty due to more
frequent defects, affecting service rates and inducing ‘down-time’ costs. Especially
in the public sector aspects that affect the good-will under its users, such as service
rates, are generally more important. Choosing larger battery sizes with longer life-
times can in that case therefore be cost efficient as well. Moreover, it is likely that
battery costs will not be exactly linear in size, but that the average costs per kWh
will decrease as total size increases.

Furthermore, the added costs of installing one extra station probably cannot com-
pete with the benefits of longer battery lifetime for the fleet of a single-line network.
However, for a multiple-line network, installing an extra charging facility at a stop
that is serviced by several bus lines has an effect on a larger fleet and has a better
potential of being cost efficient.

5.3.1 Added value of charging policy optimization

The X.3 models manage to find solutions that slightly improve the battery lifetime
with smaller battery sizes for equal station costs. However, the required time to
obtain these solutions is disproportonially larger than for X.2 models, whilst the so-
lutions are equal in terms of where charging stations are installed. It is therefore
recommended that the extra charging pattern optimization is not incorporated in



5.4. Degradation Factors 43

the network design model. Rather the network is designed with a model that incor-
porates battery degradation and afterwards the charging policy can be optimized.
The charging optimization could even decrease battery costs without decreasing the
battery lifetime, as we saw from the results in Figure 5.4.

5.4 Degradation Factors

With the used parameters the contribution of the three different degradation factors
DOD, SOC and temperature was on average 56.6%, 43.3% and 0.1% resp. to the total
degradation. Temperature seems to be rather unimportant with regard to cycle ag-
ing, as was predicted in Chapter 3. The other two factors have similar contributions
to the total degradation, but in most cases DOD degradation had a larger contribu-
tion. The parameters of the degradation functions cause to prioritize reducing DOD
degradation over reducing SOC degradation, i.e. preferring small DOD over low
average SOC. A lower DOD generally coincides with a higher average SOC and vice
versa. Since the goal was to build an universal model it is necessary to analyze the
sensitivity of solutions to these parameters as the degradation parameters are likely
to be different for different types and brands of battery.

In order to analyze this sensitivity the following approach was used. The degra-
dation functions of DOD and SOC were multiplied with respective multipliers λDOD
and λSOC. These multipliers were adjusted to give more or less weight to their corre-
sponding degradation factor, maintaining the sum to be equal to 2 with benchmark
λSOC = λDOD = 1. In Table 5.5 the solutions for one instance of B.2 model for
various ratios of λSOC/λDOD exemplifies the changes. As can be expected the aver-
age SOC decreases and DOD increases as the ratio increases. The battery lifetime is
approximately constant because it is restricted by the ε-constraint. We see that the
station costs are constant as well, but battery size decreases.

However, caution needs to be taken when drawing conclusions from these num-
bers because this approach of analysis affects the absolute value of both degrada-
tion factors as well. Especially comparing solutions obtained with the ε-constraint
method is problematic since the absolute value of degradation is what is restricted
by ε. We cannot simply conclude that batteries with technologies that are more
vulnerable to SOC degradation tend to need smaller batteries to achieve the same
result, compared to batteries less vulnerable to SOC degradation. Nevertheless it
does show that the relative contribution of the different degradation factors can sig-
nificantly affect the optimal solution. An example of this is shown in Figure 5.6,
where more weight on the SOC degradation induces not only a smaller battery but a
charging profile with more (relative) energy depletion over the day opposed to little
depletion at high average energy level.

Ratio λSOC/λDOD 1 2 3 4

Battery size 45 40 30 20
Lifetime 3243.1 3138.8 3077.9 3010.3
Station costs € 1,040,000 € 1,040,000 € 1,040,000 € 1,040,000
DOD 0.372 0.396 0.494 0.800
SOC 0.805 0.795 0.755 0.620

TABLE 5.5: Different solutions when weight of SOC degradation is in-
creased for B.2 with ε = 0.00205
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FIGURE 5.6: Energy graphs for solutions obtained with B.2 model, ε = 0.00205, for different ratios
λSOC/λDOD
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Chapter 6

Conclusion and Further Research

In this Chapter the drawn conclusions are summarized in Section 6.1. The discussion
can be found in Section 6.2 and suggestions for further research in Section 6.3.

6.1 Conclusion

The aim of this research was to find a way to incorporate battery degradation in a
charging facility location problem in order to improve accuracy in TCO optimiza-
tion. This involved combining two objectives in one MILP, also known as a MOP.
Various methods exist for solving MOPs and two of those were applied to this prob-
lem, the weighted sum and ε-constraint methods, presented as models A.1 and B.1 in
Chapter 3. The solution space of the problem was broadened to better approximate
reality, first by adding the option of energy depletion with every buscycle (X.2), and
even further by also freeing the charging policy from the requirement to be equal
for every buscycle (X.3). The models were tested with semi-realistic data that was
synthesized based on data from a bus line operated in Rotterdam.

In Chapter 5 the results obtained with the various models were presented and
compared. Although weighted sum method might be the more intuitive approach
for TCO optimization, it failed to effectively increase the lifetime of on-board batter-
ies. The ε-constraint method proved better in revealing the trade-off between battery
lifetime and investment costs and is therefore more appropriate for this problem. Es-
pecially considering that with planning an electric bus network there is enough time
to solve the problem to optimality for varying ε values, it makes more sense to use
the ε-constraint approach to make an informed decision on the size of on-board bat-
teries and how to achieve a cost efficient network design.

For the case study of this research the incorporation of battery degradation in the
charging facility location problem improves the battery life even without increasing
the battery size or the number of stations installed. This alone shows the added value
of this model compared to facility location problems without an incorporated battery
degradation model, as it provides a ‘smarter’ network design with the same number
of stations. For this case the battery lifetime increased further with approximately
the same rate as for increasing the battery size. Although these results might be very
case-specific, they are promising for the goal of improving battery lifetime.

The proposed extensions for the model performed differently regarding solvabil-
ity and solution quality. Where the X.2 models are able to find better solutions with
regard to battery lifetime, battery size and the location of stations in approximately
the same amount of time, the X.3 models only improved those solutions slightly
further in significantly more time. For the case studied in this research a different
solution in terms of charging facility placement was never found. It is therefore
recommended to solve this problem with the extension of energy depletion, but im-
proving the charging policy per bus cycle afterwards.
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6.2 Discussion

During this research some issues arose that affect the validity of this model. These
issues are addressed here and some ideas for improvement are discussed here.

Some of the issues regard the battery degradation model. Firstly, the used param-
eters were obtained from literature and might differ significantly for various cases.
This is easily adjusted in the model obviously, but drawn conclusions might prove
incorrect for other types of battery (such as the temperature degradation being in-
significant). Since the model is aimed to be universal, it should be tested on various
battery technological configurations and their respective degradation parameters.
This requires data from different battery manufacturers, which was not available for
this research. The degradation parameter sensitivity analysis was conceived to re-
search the validity of the drawn conclusions, but it is difficult to isolate individual
effects. This sensitivity analysis can be improved by using realistic bounds on the pa-
rameters and comparing the solutions for various combinations of parameters. This
again requires data from different battery manufacturers, which was unavailable.

Moreover, it is assumed that the battery degradation model is able to describe
degradation for all battery technologies. However, most relations between degrada-
tion and operation were obtained from literature specifically for Lithium-ion batter-
ies. It is unknown if other contributing factors are involved for other technologies.
However, as long as a linear relation exists or can be approximated, it is easily added
to the model. This accentuates another potential weakness: the battery degradation
model being oversimplified. In reality it is a rather complex phenomenon and the
current linear approximation might not do it justice, diverging too far from reality.
Although simplicity is a requirement for this model, further tuning, e.g. with help
of advanced simulation models such as NREL, is necessary.

Furthermore, the incorporation of DOD degradation had its flaws. The iterative
method is not optimal, neither is the linear approximation method. The iterative
method might be improved by going over a larger list of DOD values, which would
increase solving speed. A better solution would be to improve the linear approxi-
mation of the DOD degradation such that the deviation from the true degradation
would be minimal, but this requires further research.

Lastly, since the battery size is involved in both the investment objective and
the degradation objective it is harder to achieve the goal of battery life optimiza-
tion with the weighted sum method. This was necessary because the concept of
degradation costs was adopted to incorporate degradation. Dropping this concept
might improve the performance of the weighted sum method. However, this re-
quires transforming one or both objectives such that they have comparable values.

6.3 Further research

Although the model provides useful insights and has the potential of increasing ac-
curacy of TCO estimation for EB networks, it has its limitations. To further advance
the field of electric public transport some suggestions:

The first obvious next step is to upscale the model to design a network for multi-
ple bus lines. A complete network has the potential advantage of installing charging
stations on crosspoints of bus lines and dispersing investment costs over multiple
operations. One rather simple idea is to identify these crosspoints as ‘loading hubs’
with lower installment costs for loading stations, depending on the number of lines
that the hub services. Then optimize bus lines separately with the current model and
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combine solutions of different lines to a complete network. The disadvantage of this
approach could be that the solutions of different bus lines create line-specific fleets,
obstructing the possibility of sharing rolling stock between different operations. This
might be solved by imposing extra restrictions in the model. Another approach is
to model the complete network and optimize the charging infrastructure simultane-
ously for all bus lines (e.g. Kunith, Mendelevitch, and Goehlich, 2017). Extending
this model with integrated battery degradation is likely to complicate the model sig-
nificantly, as the total fleet in the solution can be heterogeneous.

Secondly, the accuracy of battery lifetime/degradation estimation with linear
functions needs to be studied, hopefully improving this accuracy for the involved
degradation factors. Perhaps a single linear function that is sufficiently accurate can
be found for DOD degradation, discarding the need for the iterative method and
improving the solutions and solving speed of the model.

Another suggestion to improve TCO is to take into account the schedule and bus
stop network. This research showed that the operation decisions have impact on
the TCO via the battery degradation and rescheduling or rerouting the existing bus
lines might benefit battery lifetime. In the case of a multi-line network this could also
decrease the number of stations or the required charging power or size of ESS, which
reduces the investment costs. Scheduling models for conventional bus networks
seem to be insufficient for application in EB networks because waiting times can
vary due to varying charging needs (Kameda and Mukai, 2011; Chao and Xiaohong,
2013; Korsesthakarn and Sripakagorn, 2014).

Furthermore, the model could be improved by incorporating more accurate bat-
tery behavior models, such as better approximations of non-linear charging and dis-
charging behavior (Montoya et al., 2017). The battery lifetime could be further im-
proved with help of recharging optimization models for a given, predefined network
of charging opportunities, regarding the stress on the electrical grid of simultaneous
charging as well (Sweda, Dolinskaya, and Klabjan, 2017). In addition the configu-
ration of the charging facilities could be introduced as decision variable to facilitate
optimal recharging policies.

The last suggestion for further research is to efficiently incorporate uncertainties
of energy consumption and travel/dwell times in the network design. This can be
modeled by means of stochasticity or robust analysis, such as budget of uncertainty,
although this decreases the size of the problem that can be solved in an acceptable
amount of time significantly (Wehres et al., 2016). Another idea is to make use of
dynamic modeling for the charging decisions.
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Appendix A

Average SOC

Here the auxiliary variables, or h-variables, used to calculate the average SOC are
explained in more detail. Two types of h-variable were introduced, hdwell and htravel .
Both describe the area under the energy level graph over time, hdwell denotes the
graph area for time spent at a stop and htravel during traveltime between two stops.
The models contain four constraints calculating these variables, (3.29)-(3.32) in prob-
lem (PA.1), and their derivation is shown in this Appendix.

Variable hdwell,s The energy level in the battery upon arrival at the bus stop (zs),
the battery level at departure (ws) and the time spent at the stop (δs) are required
to determine the area underneath the energy level graph during dwell time. Since
every bus cycle is repeated ρ times, the same area appears ρ times as well under the
graph. Therefore a factor ρ is added to the expression. This is not the case for X.3
models, where every revisit of a stop is modeled with a separate node. This results
in the following expressions for the three different choices for modeling an operation
day.

(PX.1) : hdwell,s =
1
2 ρ(zs + ws) · δs

(PX.2) : hdwell,s =
1
2 ρ(zs + ws) · δs

(PX.3) : hdwell,s =
1
2 (zs + ws) · δs

Variable hdwell,1 The area under the graph during charging at the depot is a little
different and is included in the auxiliary variable for stop 1 (hdwell,1). The area under
the graph during charging at this terminal stop is included in the auxiliary variable
at the last stop (hdwell,A). Note that stop 1 and stop A are physically the same stop,
denoting the starting and ending point of the bus cycle. The energy level in the on-
board battery upon arrival at the depot is equal to the energy level at the end of
an operation day minus the energy required to reach the depot from the last stop
(wA− νA). The battery is assumed to be linearly recharged up to 100% of its capacity
at the lowest possible power and thus utilizing the available time (δdepot) for recharge
fully. For X.2 models the ending energy level needs to be corrected for the decline in
energy over the day. This results in the following expressions.

(PX.1) : hdwell,1 = 1
2 (∑i∈I bi · κi + wA − νA) · δdepot

(PX.2) : hdwell,1 = 1
2 (∑i∈I bi · κi + wA − (ρ− 1)ecycle − νA) · δdepot

(PX.3) : hdwell,1 = 1
2 (∑i∈I bi · κi + wA − νA) · δdepot
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Variable htravel,s Similar to the hdwell,s variable, to determine the area underneath
the energy level graph during travel the required data are the energy level in the
battery when leaving a stop (ws), the battery level upon arriving at the next stop
(zs+1) and the traveltime (τs). As the bus cycle is repeated ρ times, a factor ρ is
added, except for X.3 models.

(PX.1) : htravel,s =
1
2 ρ(ws + zs+1) · τs

(PX.2) : htravel,s =
1
2 ρ(ws + zs+1) · τs

(PX.3) : htravel,s =
1
2 (ws + zs+1) · τs

Variable htravel,A The area under the energy level graph for traveling from and to
the depot at the start and end of an operation day is denoted by the auxiliary variable
for the last stop (htravel,A). When calculating the area for travel from and to the depot
the required information is captured in the variables denoting energy level at the end
of the bus cycle (wA), energy required to travel from the first stop to the depot and
from the last stop to the depot (ν1 and νA) and the traveltime (τdepot). As mentioned
before, the battery level is assumed to be recharged up to 100% of its capacity. Using
that ν1 = νA we can simplify the expression as follows.

htravelA = 1
2 (∑i∈I bi · κi + ∑i∈I bi · κi − ν1) · τdepot +

1
2 (wA + wA − νA) · τdepot

= (∑i∈I bi · κi + wA − νA) · τdepot

For X.2 models the ending energy level needs to be corrected for the decline in en-
ergy over the day. The expressions for the three different models are as follows.

(PX.1) : htravel,A = (∑i∈I bi · κi + wA − νA) · τdepot

(PX.2) : htravel,A = (∑i∈I bi · κi + wA − (ρ− 1)ecycle − νA) · τdepot

(PX.3) : htravel,A = (∑i∈I bi · κi + wA − νA) · τdepot

average SOC The sum over all the h-variables is equal to the total area under the
energy level graph for a full day (24 hours). To express this in relative energy level,
or state of charge, this sum is divided by the battery capacity and to calculate the
average over time this value is then divided by the duration of one day in seconds.
However, since the size of the on-board battery is chosen from a set of values and
multiplication of variables is impossible due to the linearity principle of MILPs, sep-
arate variables for average SOC were introduced for every possible battery size. This
poses no problem as long as the SOCj-variable corresponding to the chosen battery
size captures the true average SOC and all other SOCi-variables take on value 0. The
following expression was obtained to meet that requirement.

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
κi · θday

∀i ∈ I

For the battery size k that is chosen in the solution the first term in the left-hand
side of the expression is equal to 1, as is the first term in the right-hand side of the
expression. The second term in the right-hand side of the expression is equal to the
average SOC and since the objective function is increasing in the value for SOCavg,k,
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FIGURE A.1: For X.2 models the sum of the h-variables needs to be cor-
rected for the decline in energy defined by ecycle. The gray vertical lines

indicate separate bus cycles, the red areas indicate the excess in the sum

it’s value will be set to the lowest value possible satisfying the inequality, which is
the value of the average SOC. For battery sizes l not chosen in the solution the first
term of the left-hand side is equal to 0. In order to satisfy that the right-hand side is
never less than 0 (otherwise we need SOCavg,l > 0 to satisfy the inequality), the first
term of the right-hand side is set to be the ratio of the chosen battery size k to battery
size l. This ratio will always be larger than the second term of the right-hand side,
since it corresponds to the value it will assume when the sum of the h-variables is as
large as possible for the chosen battery size k. Again, the value for SOCavg,l is set to
the lowest possible value satisfying the inequality, which is 0.

For X.2 models the sum of h-variables needs to be adjusted for the possible de-
cline in energy level with every buscycle. Without adjustment the sum would be
equal to ρ times the area under the first bus cycle. However, the other (ρ− 1) buscy-
cles correspond to a smaller area than their predecessor. To be exact, each buscycle’s
area diminishes with an area of ecycle × θcycle, i.e. the product of the loss in energy
over one buscycle and the duration of one buscycle. This is visualized in Figure A.1.
The sum of these excess areas must be subtracted from the sum of h-variables. The
total excess can be expressed as

(1 + 2 + 3 + . . . + ρ− 1)θcycleecycle =
1
2 (ρ

2 − ρ)θcycleecycle.

This results in the following constraint for the average SOC.

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
− 1

2 (ρ
2 − ρ)θcycleecycle

κi · θday
∀i ∈ I
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Appendix B

Extended Models

The models with extensions for decrease in energy level after every buscycle and
optimization of charging profile are printed here in full.

Extension for energy depletion per bus cycle The X.2 models are formulated as
follows, where the blue highlighted parts correspond only to the model with weighted
sum method and the green highlighted parts to the model with the ε-constraint
method.

min λinv

(
β ∑

i∈I

Γbatt,i · bi

ηbatt,i
+ ∑

t∈T

[
∑s∈S xt

s · Γt
s + ∑d∈D xt

d · αt
d

ηt

])
+ λdeg · β · gλ

deg
(

DOD, SOCavg, b
)

s.t εdeg ≥ β · gε
deg
(

DOD, SOCavg, x
)

,

zs = ws−1 − µs−1 ∀s ∈ S\{1},
zs ≥ ∑i∈I bi · κi · ζ + (ρ− 1) · ecycle ∀s ∈ S,

ys ≤ ∑t∈T xt
s · φt

s ∀s ∈ S,
ys ≤ ∑t∈T xt

s · δs · πt
s ∀s ∈ S,

w1 = ∑i∈I bi · κi ·ω ,
ws = zs + ys ∀s ∈ S,
ws ≤ ∑i∈I bi · κi ·ω ∀s ∈ S,
ws ≥ ∑i∈I bi · κi · ζ + νs + (ρ− 1) · ecycle ∀s ∈ S,

(PX.2) ecycle = w1 − wA ,

v ≤ zs − (ρ− 1) · ecycle ∀s ∈ S,

∑i∈I bi = 1 ,

∑t∈T xt
s ≤ 1 ∀s ∈ S,

xTFS
s = 1 ∀s ∈ STFS,

xTFS
s = 0 ∀s ∈ S\STFS,

xt
d ≤ 1

2 ∑s∈Sd
xt

s ∀t ∈ T, ∀d ∈ D,

hdwell,1 = 1
2 (∑i∈I bi · κi + wA − (ρ− 1)ecycle − νA) · δdepot ,

hdwell,s = 1
2 ρ(zs + ws) · δs ∀s ∈ S\{1},

htravel,s = 1
2 ρ(ws + zs+1) · τs ∀s ∈ S\{A},
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htravel,A = (∑i∈I bi · κi + wA − (ρ− 1)ecycle − νA) · τdepot ,

DODi ≥ bi −
v
κi

∀i ∈ I,

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
− 1

2 (ρ
2 − ρ)θcycleecycle

κi · θday
∀i ∈ I,

xt
s ∈ {0, 1} ∀t ∈ T, ∀s ∈ S,

xt
d ∈ {0, 1} ∀t ∈ T, ∀d ∈ D,

bi ∈ {0, 1} ∀i ∈ I,
(PX.2) ys ≥ 0 ∀s ∈ S,

zs ≥ 0 ∀s ∈ S,
ws ≥ 0 ∀s ∈ S,

v ≥ 0 ,
ecycle ≥ 0 ,

hj,s ≥ 0 ∀j ∈ {dwell, travel}, ∀s ∈ S,

DODi ≥ 0 ∀i ∈ I,
SOCavg,i ≥ 0 ∀i ∈ I.

Extension for optimizing charging policy The X.3 models are formulated as fol-
lows, where the blue highlighted parts correspond only to the model with weighted
sum method and the green highlighted parts to the model with the ε-constraint
method.

min λinv

(
β ∑

i∈I

Γbatt,i · bi

ηbatt,i
+ ∑

t∈T

[
∑s∈S xt

s · Γt
s + ∑d∈D xt

d · αt
d

ηt

])
+ λdeg · β · gλ

deg
(

DOD, SOCavg, b
)

s.t εdeg ≥ β · gε
deg
(

DOD, SOCavg, x
)

,

zs = ws−1 − µs−1 ∀s ∈ S\{1},
zs ≥ ∑i∈I bi · κi · ζ ∀s ∈ S,
ys ≤ ∑t∈T xt

s · φt
s ∀s ∈ S,

ys ≤ ∑t∈T xt
s · δs · πt

s ∀s ∈ S,
w1 = ∑i∈I bi · κi ·ω ,
ws = zs + ys ∀s ∈ S,

(PX.3) ws ≤ ∑i∈I bi · κi ·ω ∀s ∈ S,
ws ≥ ∑i∈I bi · κi · ζ + νs ∀s ∈ S,

v ≤ zs ∀s ∈ S,

∑i∈I bi = 1 ,

∑t∈T xt
s ≤ 1 ∀s ∈ S,

xt
s = xt

s−N ∀t ∈ T, ∀s ∈ S, s > N,

xTFS
s = 1 ∀s ∈ STFS,

xTFS
s = 0 ∀s ∈ S\STFS,
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xt
d ≤ 1

2 ∑s∈Sd
xt

s ∀t ∈ T, ∀d ∈ D,

hdwell,1 = 1
2 (∑i∈I bi · κi + wA − νA) · δdepot ,

hdwell,s = 1
2 (zs + ws) · δs ∀s ∈ S\{1},

htravel,s = 1
2 (ws + zs+1) · τs ∀s ∈ S\{A},

htravel,A = (∑i∈I bi · κi + wA − νA) · τdepot ,

DODi ≥ bi −
v
κi

∀i ∈ I,

bi − SOCavg,i ≤
∑j∈I bj · κj

κi
− ∑s∈S

[
hdwell,s + htravel,s

]
κi · θday

∀i ∈ I,

(PX.3) xt
s ∈ {0, 1} ∀t ∈ T, ∀s ∈ S,

xt
d ∈ {0, 1} ∀t ∈ T, ∀d ∈ D,

bi ∈ {0, 1} ∀i ∈ I,
ys ≥ 0 ∀s ∈ S,
zs ≥ 0 ∀s ∈ S,

ws ≥ 0 ∀s ∈ S,
v ≥ 0 ,

hj,s ≥ 0 ∀j ∈ {dwell, travel}, ∀s ∈ S,

DODi ≥ 0 ∀i ∈ I,
SOCavg,i ≥ 0 ∀i ∈ I.
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Appendix C

Calculus for Energy Consumption
Integral

The integration of the power consumption equation is shown here. It is required to
determine the energy consumption between two consecutive stops. The velocity of
a bus is set to follow a speed profile over three phases, acceleration, constant speed
and deceleration, expressed as follows.

sI
ij(t) = ra · t, sI I

ij (t) = v, sI I I
ij (t) = v− rd · t

The power consumption equation (4.2) is rewritten:

Pi,j(t) = A · [sij(t)]3 + B · [sij(t)] + C ·
∣∣∣dsij(t)

dt

∣∣∣sij(t),

with

A =
1
2 ρair A f cd

η̂

B =
mvgcr

η̂

C =
mv

η̂
.

The energy consumption integral is split in three separate integrals for the three
different velocity phases.

Phase I - acceleration If we substitute the speed profile for phase I in the power
consumption profile, we get the following.

PI
i,j(t) = Ar3

a · t3 + Bra · t + Cr2
a · t

Integrating over time gives us the following.

∫ τ I
i

0
PI

i,j(t)dt =
∫ τ I

i

0
Ar3

a · t3dt +
∫ τ I

i

0
Bra · tdt +

∫ τ I
i

0
Cr2

a · tdt

= [ 1
4 Ar3

a · t4]
τ I

i
0 + [ 1

2 Bra · t2]
τ I

i
0 + [ 1

2 Cr2
a · t2]

τ I
i

0

= 1
4 Ar3

a · (τ I
i )

4 + (B + Cra)(
1
2 ra · (τ I

i )
2) = µI

i
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Phase II - constant speed If we substitute the speed profile for phase II in the
power consumption profile, we get the following.

PI I
i,j (t) = A · v3 + B · v + C · 0

Integrating over time gives us the following.

∫ τ I I
i

0
PI I

i,j (t)dt =
∫ τ I I

i

0
Av3dt +

∫ τ I I
i

0
Bvdt

= [Av3 · t]τ
I I
i

0 + [Bv · t]τ
I I
i

0

= (Av2 + B)v · τ I I
i = µI I

i

Phase III - deceleration If we substitute the speed profile for phase III in the power
consumption profile, we get the following.

PI I I
i,j (t) = A · (v− rd · t)3 + B · (v− rd · t) + C · | − rd|(v− rd · t)

Integrating over time gives us the following.

∫ τ I I I
i

0
PI I I

i,j (t)dt =
∫ τ I I I

i

0
A(v− rd · t)3dt +

∫ τ I I I
i

0
B(v− rd · t)dt +

∫ τ I I I
i

0
C(vrd − r2

d · t)dt

=
[
− A

4rd
(v− rd · t)4

]τ I I I
i

0
+ [B(v− 1

2 rd · t)t]
τ I I I

i
0 + [C(vrd − 1

2 r2
d · t)t]

τ I I I
i

0

=
Av4

4rd
− A

4rd
(v− rd · τ I I I

i )4 + (B + Crd)((v− 1
2 rd · τ I I I

i )τ I I I
i ) = µI I I

i

Combining the three integrals we get the energy consumption for traveling from
stop i to stop j:

µi = µI
i + µI I

i + µI I I
i
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