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ABSTRACT

In this thesis we investigate the potential benefit of applying resource aggregation strategies
in a column generation algorithm used to solve a set-covering problem (SCP) with additional
constraints. The corresponding pricing problem is mathematically formulated as a resource
constrained shortest path problem (SPPRC) and solved by a dynamic programming approach.
The additional resource constraints are incorporated in the problem to take the preferences of
the employees into consideration such that a fair distribution of the workload is obtained. We
exploit the idea of resource correlation to develop aggregation strategies instead of consider-
ing the individual resources in the SPPRC.

We develop a framework to solve the pricing problem arising from the application of column
generation. The framework consists of a sequence of dynamic programming algorithms based
on a generic version of a label-correcting algorithm for solving a shortest path problem. The
basic algorithm is adapted such that we can incorporate each of the developed resource aggre-
gation strategies. The proposed resource aggregation strategies are tested on three simulated
data instances with a varying degree of correlation, deducted from a part of the actual rail
transit network in The Netherlands.

The computational results show that some of the developed aggregation strategies perform
well for the dataset with medium correlated resources. A reduction of the computation time
up to approximately 36% is achieved using a well-chosen parameter setting. Results show that
the same parameter setting results in a minimal fairness error according to the used fairness
criterion. The use of an aggregation strategy with the well-chosen parameter settings in a col-
umn generation context may result in a more efficient approach to incorporate the preferences
of employees and increase their happiness and welfare.
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1 Introduction
Technology is all around us and is developing continuously. This also causes the world around
us to change all the time. Scientist believe that because of the recent technological trends such
as machine learning techniques and data-driven decision making, very soon robots will take
over many basic activities like as driving a car. These developments can be very beneficial
for numerous companies. In contrast to regular personnel, robots basically do not have any
preferences and there are no labor regulations an employer should cope with.

However, the technological development has not come this far yet and currently human beings
are necessary for most of the labor. This also means that the focus of the organization should
not be solely on the economic aspect, but also on the happiness and welfare of the employees.
We have seen that in case the welfare aspect is neglected by the organization, dissatisfaction oc-
curs among the employees which results in poor execution of tasks or in a worst-case scenario
employees going on strike (Abbink et al., 2005). However, especially in case of scheduling
crew in large organizations, the main focus often lies on the economic aspect. That is minimiz-
ing the total sum of costs such that all necessary tasks can be completed and labor regulations
are satisfied. The preferences of employees are rarely taken into account despite the fact that
multiple studies have shown a positive relation between employee happiness and the quality
of work they deliver (Alexander and Ruderman, 1987; Colquitt et al., 2001).

In crew scheduling problems, the objective is to allocate employees to (different) working shifts
such that enough personnel is scheduled to perform all tasks. However, the tasks could differ
in labor intensity, working environment, etc. Each task can be preferred differently by the em-
ployees. For example, in Abbink et al. (2005) it is stated that the personnel of the Netherlands
Railways (NS) is more frequently confronted with aggression when performing a duty in the
Randstad 1 and therefore they prefer duties outside of the Randstad. They also tend to prefer
working on a long distance train because, it is typically used in duties with relatively less in-
termediate stops and larger travel distances.

The crew scheduling problem can be mathematically formulated as a set-covering problem
(SCP). The SCP is one of the oldest and most studied topics in the field of combinatorial op-
timization. A large variety of well-know real world problems (such as scheduling, routing,
stock cutting and facility location-allocation) can be formulated mathematically using the SCP
formulation (Balas, 1982). Crew scheduling can be seen as one of the most important and com-
monly used applications formulated as SCP.

Relatively much literature is published in which methods are presented to solve the SCP effi-

1The Randstad is an area in the western part of the Netherlands. It consists of a large rural area surrounded by
the four largest cities of the country.
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ciently. However, just a few authors considered the SCP together with additional constraints
in order to incorporate the preferences of the employees. This is mainly because solving the
SCP becomes in general computationally more difficult when these additional constraints are
taken into account. A common (and efficient) method to solve the SCP is applying a column
generation approach. The column generation approach considers a master problem and the
corresponding subproblem which are solved sequentially. The subproblem can be formulated
as a shortest path problem with resource constraints (SPPRC) (Desrochers and Soumis, 1988).

The resources considered in a SPPRC can be of various types such as time, fuel consumption or
distance, but one may also consider non-material resources related to the duty preferences of
employees. Often resources have similarities and are correlated to some extent. The previous
mentioned preferences of the personnel at NS are correlated as well. Namely, long distance
trains will be used more often in rural areas as the distances between cities/villages are longer
and the NS personnel is also less likely to be confronted with aggression in these rural ar-
eas. We can take into account the preferences in order to increase the fairness of the solution,
however increasing the number of resources typically makes it more difficult to solve the sub-
problem as mentioned before.

In this thesis, we investigate the possibility of solving the pricing problem more efficiently
by considering the correlation between resources. The idea is to (partially) aggregate the re-
sources using a specific technique instead of taking the resources into account individually. We
consider three different strategies for the aggregation of the resources. We develop a frame-
work to solve the pricing problem which is embedded in the column generation algorithm.
The framework is a sequence of dynamic programming algorithms which will be executed in
a specific order depending on the status of the program. The pricing problem framework is
based on a generic version of a label-correcting algorithm for solving a shortest path problem.
The basic algorithm is adapted such that we can incorporate (aggregated) resources and solve
the SPPRC. The framework is evaluated on a simulated dataset. The dataset is based on the
actual transit network in the region of Amsterdam, however some adaptations are made in
order to obtain the desired characteristics. In this way, it is possible to test the aggregation
strategies for different degrees of correlation between the resources.

The remainder of this thesis is organized as follows: in Chapter 2 a formal description of the
problem is given. Chapter 3 presents a brief overview of the existing literature on this topic and
the relevance of this research. In Chapter 4, we give the methodology used to solve the problem
and we also provide a brief explanation of algorithms incorporated in the pricing problem
framework. The different features of the simulated dataset are presented in Chapter 5. In
Chapter 6, the computational results for different data instances are given and the effectiveness
of the aggregation strategies is evaluated. Finally, the research is discussed and concluded in
Chapter 7.
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2 Problem Description
In this thesis, we consider the problem of scheduling crew for the public transport by train. The
aim is to schedule the crew such that we obtain a fair solution with respect to the preferences
of the crew. In this chapter, we will provide a brief explanation of the problem from both a
practical and mathematical point of view. In Section 2.1, we introduce the problem considered
in this thesis by defining some terminology and concepts such as the resources (Section 2.1.1)
and the definition of a feasible shift (Section 2.1.2). The notation and the mathematical formu-
lation of the problem will be given in Section 2.2. Here, we also elaborate on the adaptation of
the standard SCP formulation by introducing additional constraints (Section 2.2.3).

2.1 Terminology
We need to clearly introduce the problem considered in this thesis and explain some concepts
and terminology. First of all, the basic idea of the problem considered in this thesis, is the
problem of scheduling crew such that all the tasks are performed. In our case the crew consists
of train drivers and conductors and a task represents a trip: a train traversing from station
i to station j. A shift is defined as a set of trips which are performed in consecutive order.
We consider a rail transit network consisting of 5 stations which is based on (a part of) the
actual transit network in the Netherlands. We consider n trips in total which should be per-
formed by the corresponding train type for each trip respectively. The trips with larger travel
distances are in general performed by long distance trains which are called ‘Intercity’ trains
in the Netherlands. The regional trains which perform most of the short distance trips (often
in urban area) are called ‘Sprinter’ trains. In the remainder of this research, the long distance
trains and regional trains are referred to as Intercity and Sprinter trains respectively. In this
research, we focus on a particular aspect of the mathematical model used to solve the crew
scheduling problem. In order to perform this research it is not of any importance to consider
a detailed and comprehensive test case. Therefore, we do not distinguish between different
types of personnel or a varying amount of required personnel per trip for example.

2.1.1 Resources

As mentioned before, the basic idea of the problem considered in this thesis, is the problem of
scheduling crew such that all the tasks are performed. Furthermore, we also aim to find a solu-
tion for the CSP which satisfies certain fairness requirements. The fairness of a certain solution
is measured by the allocation of the resources k ∈ {1, 2, ..., K}. Each trip j will have certain
characteristics and we model these characteristics in our problem formulation as resources de-
noted by rk

j . Fuel is a typical example of a resource in case of a vehicle routing problem. The
vehicle is restricted by the total fuel capacity of the fuel tank. Each trip accounts for a certain
fuel consumption and the vehicle cannot perform a shift which requires more fuel than its ca-
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pacity. In our case we consider 4 trip characteristics which are related to the preferences of the
NS personnel:

r1
j ∈ {I, S} - The type of train used to perform the trip (Intercity (I) or a Sprinter (S) train),

r2
j ∈ N - The number of stops during a trip,

r3
j ∈ {HR, LR} - If there is a high or low risk (HR or LR) of aggressive passengers for a trip,

r4
j ∈ {DD, SD} - If the trip is performed by a double-decker (DD) or single-decker (SD) train.

Different from the fuel consumption example, we do not have a specific capacity for any of the
resources listed above. Instead, we consider a weighted fraction of the resource contribution
in a shift to which we refer to as the resource consumption.

2.1.2 Feasible shift

The feasibility of a shift is assessed by a number of restrictions. We distinguish between the
general restrictions which ensure that each shift has the correct structural elements and the
restrictions which ensure a minimum fairness requirement. The feasibility of a shift will be
explained with the help of Figure 2.2. The figure consists of a number of blocks where each
of the blocks represents a trip. Let us for example consider the block shown in Figure 2.1.
The width of a block depends on the trip duration. As explained earlier, a trip is defined as
a train traversing from one station to another. The two stations which are connected by a
particular trip are displayed in the center of a block. The characters each stand for a specific
station. The train starts at station D and arrives at station B in 20 minutes. The departure and
arrival time are displayed just below the block near the left and right corner respectively. The
characteristics which are applicable for a trip are indicated in the corners of the block. Each
of the corners represent a resource. The resources (see Section 2.1.1) are assigned clockwise to
the corners starting at the upper left corner. It can be observed that the trip shown in Figure
2.1, is performed by a Sprinter and during the trip the train should make 6 intermediate stops.
Furthermore, there is a high risk of encountering aggressive passengers for the NS personnel
and it is a single-decker train.

D - B

09:31 09:51

S 6

HRSD

Figure 2.1: An example of a block representing a particular trip between two stations D and B. Fur-
thermore, the departure and arrival time are displayed just below the block and each of the corners
represent a characteristic of the trip.
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As the interpretation of a block is now clearly defined, let us consider Figure 2.2 in order to
explain the definition of resource feasibility. First of all, the figure shows an example of a
feasible shift by the sequence of connected blue colored blocks. Furthermore, white colored
blocks are connected by dashed lines to show other configurations of the block sequences.
These configurations result in infeasible shifts due to certain restrictions.

4 4

21

3

B - C

08:49 09:04

S 3

HRSD

C - D

09:06 09:21

S 3

HRSD

D - E

09:29 10:04

I 1

LRSD

E - F

10:07 10:22

I 0

HRSD

F - B

10:26 10:51

I 1

LRDD

D - F

09:23 10:23

S 11

HRSD

D - F

09:55 10:15

I 1

HRDD

F - B

10:18 10:43

I 1

LRDD

≥ 15 min

D - C

08:50 09:05

S 3

HRSD

D - B

09:31 09:51

S 6

HRSD

B - E

09:56 10:31

I 1

LRSD

t09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45

Figure 2.2: The block scheme is used to explain the definition of a feasible shift. The sequence of blue
colored blocks represent a feasible shift. The other configurations of blocks connected by dashed lines
represent infeasible shifts due to some restrictions.

We constructed four examples indicated by the dashed circles in order to provide an interpre-
tation of the feasibility of a shift. The four examples are listed below.

1 A feasible shift should start at one of the depot stations. Only a few of the stations con-
sidered in the transit rail network are depot stations (see Section 5.1). In Figure 2.2, it can
be observed that the feasible shift starts at station B which is a depot station. However,
the adjusted configuration of the shift results in a shift starting at station D. The latter
station is not considered to be a depot station and thus the adjusted configuration results
in an infeasible shift.

2 Besides the requirement of starting a shift at a depot station, another important require-
ment is that an employee should end at the same station the shift starts at. In case of the
feasible shift (the sequence of blue blocks shown in Figure 2.2), it can be observed that
the shift starts and ends at station B whereas the shift indicated by the second dashed
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line ends at station E. This also happens to be a depot station. However, the shift did not
start at station E and therefore the shift is infeasible.

3 A shift is basically a sequence of trips tied together. Preferably, we have shifts with mini-
mum time between two consecutive trips as the goal is to find the least cost combination
of feasible shifts such that all trips are covered at least once. The time in between the
trips have a significant contribution to the total cost of a shift. We added a restriction on
the time in between two trips to be 15 minutes at maximum. We can observe that the
feasible shift indeed satisfies this restriction. The third dashed line however results in
an infeasible shift configuration because, there is more than 30 minutes in between two
consecutive trips. Furthermore, the total duration of a shift should not exceed 8 hours.

4 We also set restrictions on the total resource consumption of a shift in order to meet the
fairness requirement. The resources are examined by a weighted fraction of the resource
consumption which should be smaller than some upper bound UBk. The fourth dashed
line shows a shift configuration in which two trips of the feasible shift are replaced by the
trip D− F. Let us solely focus on the first resource r1

j (the type of train) in this example.
The shift should satisfy the following restriction:

∑n
j=1 r1

j Tj

∑n
j=1 Tj

≤ UB1,

where n is the number of trips in the considered shift and Tj is the duration of trip j. With
an upper bound UB1 = 0.5, we find for the feasible shift:

TB−C + TC−D

TB−C + TC−D + TD−E + TE−F + TF−B
≤ 0.5,

while for the shift constructed by the fourth dashed line we find:

TB−C + TC−D + TD−F

TB−C + TC−D + TD−F + TF−B
> 0.5.

The feasible shift satisfies the resource restriction and is considered to be a fair shift if
and only if it also satisfies the other three resource restrictions. The latter shift is unfair
and therefore considered to be infeasible based on the first resource restriction.

2.1.3 Objective

The objective is to obtain a least cost solution consisting of shifts which are equally fair. The
fairness is taken care of in the definition of a feasible shift. We want to construct a least cost set
of feasible shifts such that all trips are covered at least once. The objective of the optimization
would be minimizing the total cost for a fixed fairness criterion. That is, we set a fairness
criterion and a shift can either be considered fair or not fair. The fairness criterion is based on
the weighted resource averages of the instance and is explained in Section 6.2.5.
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2.2 Crew Scheduling as a Set Covering Problem
The Crew Scheduling Problem (CSP) is formally described as follows: given a set of tasks and
a group of available crew, determine a set of shifts such that all tasks are performed. The
objective is to minimize the total costs corresponding to the performed shifts. This naturally
leads to a set covering formulation (SCP) in which the columns aj for all j ∈ N of matrix A
correspond to feasible shifts and the rows i ∈ M correspond to tasks. A solution of the CSP
then consists of a set of shifts (columns) such that all performed shifts together perform all
tasks (rows) at least once.

2.2.1 Formal Description of the SCP

The SCP can formally be described by considering a set S = {1, 2, ..., m}. The data of the SCP
consists out of finite sets P1, P2, ..., Pn and positive numbers c1, c2, ..., cn. Here each finite set Pj

only contains elements of set S for all j ∈ J where J = {1, 2, ..., n}. The positive numbers cj rep-
resent the cost corresponding to finite set Pj. The objective is to find a minimum-cost selection
J∗ such that all elements in S are covered. We call subset J∗ ⊆ J a cover when

⋃
j∈J∗

Pj = S. Note

that in order to find a feasible solution, it must hold that S =
n⋃

j=1
Pj.

2.2.2 Mathematical Formulation of the SCP

In order to give a mathematical formulation of the SCP, we slightly reformulate the problem.
Let A be a m x n matrix, where aij ∈ {0, 1} for all i ∈ M and j ∈ N where M = {1, 2, ..., m}
and N = {1, 2, ..., n}. We say that a column j ∈ N covers a row i ∈ M if aij = 1. In relation
to Section 2.2.1, we define aij = 1 if i ∈ Pj and we cover a row i ∈ M instead of an element of
set S. Furthermore, we have an n-dimensional vector c where cj > 0 for j ∈ N. The value cj

represents the cost of column j. The objective is to find a minimum-cost selection of columns
such that all rows are covered at least once. A mathematical formulation of the SCP is given
by

min ∑
j∈N

cjxj (2.1)

s.t. ∑
j∈N

aijxj ≥ 1 ∀i ∈ M (2.2)

xj ∈ {0, 1} ∀j ∈ N (2.3)

where the decision variable xj indicates whether column j ∈ N is selected or not. That is

xj =

1 if column j ∈ N is selected

0 otherwise.
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The first set of constraints (2.2) make sure that every row is covered by the selected columns
at least once. Constraints (2.3) ensure that the decision variable is binary. Finally, the objective
(2.1) minimizes the total sum of costs corresponding to the selected columns.

2.2.3 Additional Constraints of Modeling Resources

In the introduction of this chapter, it is explained how the CSP can be modeled as SCP and
how the formulation should be interpreted. An important detail is that the columns aj are
considered to be feasible shifts. The shifts are feasible in the sense that they satisfy a set of rules
and regulations depending on the application. The set of rules and regulations which are ap-
plicable in the case considered in this research are explained in Section 2.1.2. These constraints
must hold for each feasible column of the problem. One of the advantages of a SCP is that
the formulation implicitly takes care of the constraints concerning the feasibility of the shifts
and it prevents the mathematical program to become highly complex. We introduce the set of
feasible columns Ω = {aj : D1aj ≤ C1, aj ∈ Bm} 2 where aj represents a shift in which trip i
is included as aij = 1. D1 is the coefficient matrix and C1 denotes the bound on a particular
aspect of the problem. It should be noted however, that it strongly depends on the way the
problem is modeled whether the constraints are taken into account implicitly or as additional
constraints incorporated in the classic SCP formulation (or both). For example, we can ensure
that the duration of each shift does not exceed the maximum shift duration of 8 hours by the
following constraint Tjxj ≤ 8 for all shifts j ∈ N in which Tj denotes the duration of shift j. We
can also achieve this by only considering shifts which satisfy this constraint by definition. The
later is preferred as it is stricter and the resulting problem is less complicated.
Thereby, we can also have additional constraints which are not column specific. For example,
there could be a restriction on the maximum number of shifts. This kind of additional con-
straints are not column specific and have to be incorporated in the original SCP program. The
latter results in the following extended mathematical formulation of the SCP

min ∑
j∈N

cjxj

s.t. ∑
j∈N

aijxj ≥ 1 ∀i ∈ M

∑
j∈N

d2
ejxj ≤ C2

e ∀e ∈ E (2.4)

xj ∈ {0, 1} ∀j ∈ N

in which set E denotes the additional constraints to be satisfied. The additional constraints
(2.4) can be interpreted as restrictions on specific resources such as the total used workforce
(which is not column specific). Parameter C2

e represents the availability of each resource and
d2

ej denotes the amount of resource that is used by shift j.

2There may be restrictions which can not be formulated as a linear combination so easily. An example would
be the incorporation of a break in shifts. However, for sake of simplicity we use the notation above.
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Numerous relevant aspects for the CSP could be modeled as resources. The resulting con-
straints can be subdivided into two categories: the hard and soft constraints. Typically, the
constraints deduced from labor regulations from the government are for example considered
to be hard constraints. Constraints concerning the fairness of shifts and equal distribution of
the workload can be seen as soft constraints. The soft constraints are in practice often con-
sidered to be of minor importance compared to the hard constraints. A few examples of the
aspects which result in hard and soft constraints, are listed below. We distinguish between col-
umn specific aspects (◦) and aspects which are not column specific (•).

Hard aspects in CSP: Soft aspects in CSP:
◦ Max. shift duration, ◦ Preferred train types,
◦ A shift should include a break, ◦ Preferred working times (during day-
◦ A break should have a min. duration, time/nighttime),
◦ In case of scheduling crew for trains; ◦ Work on routes for which there is a high

the station at which the shifts start probability of encountering aggressive
should be the same as at which it ends, passengers,
• A max. number of weekly shifts, • Non-repetitive work,
• A max. percentage of night shifts, • Fair allocation of the workload among
• A max. percentage of short/long shifts, different stations or groups of crew for
• A max. percentage of weekend shifts. example.

In this research, we will mainly focus on the soft constraints and how to efficiently incorpo-
rate these aspects in the problem. The resources considered in the problem (see Section 2.1.1)
are modeled as column specific constraints. In this way, each feasible shift (column) is a fair
combination of trips. A combination of fair shifts is also considered to be fair such that we au-
tomatically satisfy the constraint of a fair allocation of the workload among different stations.
Since we want to focus on the soft aspects in this research, we do not include many hard as-
pects in the CSP as it will not be of any added value in this case. In order to properly perform
the research, we discard constraints on the number of available crew members at each depot
station for example. In this way, we avoid the problem to become unnecessarily complex and
keep the solutions easy to interpret.

Next, we evaluate literature about (sub)topics of the problem considered in this research before
we are going to describe the methodology used to solve the described problem.
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3 Literature Review
In this chapter relevant literature on different subjects related to the research topic will be dis-
cussed and evaluated. In Section 3.1 a few papers are evaluated that discuss methods and
algorithms used to solve the SCP. Furthermore in Section 3.2 literature is reviewed in which
column generation is used to solve the SCP. Different applications of the SPPRC will be dis-
cussed in Section 3.2.1. In Section 3.3, we evaluate papers which present theories on distribu-
tive justice and how to incorporate this as an organization. Finally in Section 3.4, we conclude
with the relevance of this research.

3.1 Set-Covering Problem (SCP)
The Set-Covering Problem (SCP) is an important formulation as it can be used to model and
solve a large variety of real world problems such as scheduling, manufacturing and service
planning. Balas (1982) contains a broad survey on the application of the SCP. The SCP is known
to be NP-complete shown by Karp (1972) and difficult to solve especially when we are dealing
with large scale instances.

3.1.1 Heuristics Approaches

Over the years researchers have been studying heuristics and exact approaches in order to ob-
tain high quality solutions for the SCP. Since the SCP is considered to be hard to solve exactly
and in general rather time consuming, many heuristics have been developed in order to obtain
near-optimal solutions in less computational time. One of the most basic heuristics for the SCP
is the greedy heuristic proposed by Chvatal (1979). This greedy algorithm basically selects the
column with largest ratio, which is the number of rows covered, divided by the costs of that
particular column. The algorithm continues selecting the columns with the largest ratio until
all rows are covered. The greedy approach is easy to implement and has minor computation
time, however it rarely creates high quality solutions.

The idea of Lagrangian Relaxation is basically to relax some of the more difficult constraints.
Violations of these constraints are incorporated as penalties in the objective function. In his
research (Beasley, 1990), Beasley discovered that the Lagrangian based heuristic outperformed
the greedy algorithms known at that moment in time. Shortly thereafter, numerous heuristics
are developed based on Lagrangian relaxation in combination with sub-gradient optimization
(Ceria et al., 1998; Lorena and Lopes, 1994; Caprara et al., 1999).
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Also some research has been done on the development of more randomized heuristics, the
so-called meta-heuristics. The papers by Jacobs and Brusco (1995) and Beasley and Chu (1996)
propose a genetic algorithm and an algorithm based on simulated annealing respectively to
solve the SCP. These meta-heuristics have shown to be able to obtain high quality results com-
pared to the Lagrangian-based heuristics.

3.1.2 Exact Approaches

Brand-and-bound algorithms in which the lower bounds are in general obtained by the LP
relaxation of the SCP, can be seen as the most effective exact approaches to solve the SCP. The
exact algorithms presented in the papers (Balas and Carrera, 1996; Beasley, 1987; Beasley and
Jörnsten, 1992; Fisher and Kedia, 1990) are based on this idea. Caprara et al. (2000) compared
multiple algorithms on the SCP and it appeared that among the exact algorithms CPLEX per-
forms the best. The CPLEX solver uses a branch-and-cut method to find optimal solution for
mixed integer programs. Branch-and-cut is a well-known combinatorial optimization method
which uses a combination of branch-and-bound and cutting planes methods (Mitchell, 2011).
The integer programming problem is solved by solving a series of subproblems. The subprob-
lems are LP relaxations which are improved using the cutting planes.

3.1.3 Common Applications of the SCP

Scheduling and vehicle routing can be considered as one of the most common large-scale inte-
ger problems. Much literature exists in which various scheduling and vehicle routing related
applications modeled as a SCP often in combination with column generation based algorithms
as proposed solution method. It is beyond the scope of this research to evaluate these papers
here in much detail. We refer the interested reader to the following literature on crew schedul-
ing applications; (Desrochers and Soumis, 1989; Desaulniers et al., 2002; Grötschel et al., 2003;
Huisman, 2007; Abbink et al., 2011) and for vehicle routing applications; (Desaulniers et al.,
2002; Desrochers et al., 1992; Löbel, 1998; Toth and Vigo, 2002; Ceselli et al., 2009).

3.2 Column Generation
The column generation technique basically considers a subset of all feasible columns when
solving the LP relaxation of the original problem. Now a subproblem, called the pricing prob-
lem, is solved in order to determine promising columns to enter the basis. The new column
is then added to the LP relaxation after which the LP-relaxation is solved again. This process
is repeated until no promising columns can be added anymore. Column generation can be
very efficient for large-scale problems in particular since not all columns have to be taken into
account explicitly.

In Desrosiers et al. (1984) an approach is introduced in which column generation techniques
are used into a linear program based brand-and-bound framework for solving a vehicle rout-

11



ing problem with time window constraints. This can be seen as an important step in the de-
sign and development of exact algorithms to solve large integer programs. Shortly thereafter,
Lavoie et al. (1988) proposed a column generation based algorithm for efficiently solving a
crew pairing problem formulated as SCP. The foundations of the column generation technique
have been laid around 60 years ago (Ford Jr and Fulkerson, 1958; Dantzig and Wolfe, 1960).
However, some time was needed to develop improved methods as well as improved com-
puters in order to realize the usefulness of the technique. Especially for large-scale integer
problems it has been proven to be a successful approach as shown in Barnhart et al. (1998)
where column generation is used in Branch-and-Cut and Branch-and-Price methods.

3.2.1 Shortest Path Problem with Resource Constraints (SPPRC)

The SCP has various applications as mentioned before, but the most common and widely
used applications can be considered to be crew scheduling and vehicle routing. Typically
these problems can be of enormous scale and therefore column generation is often used to
solve problems like this (Barnhart et al., 1998). An important part of the column generation
approach is solving the pricing problem which in case of a SCP, can be formulated as a SPPRC
for all well-known applications (Dror, 1994).
The SPPRC was first presented in Desrochers and Soumis (1988) as subproblem of a bus driver
scheduling problem. The classical shortest path problem (SPP) is modeled such that each path
from the source to the sink represents for example a feasible workday or route. The goal is
to find the shortest (cheapest) path possible. In case of the extended classical shortest path
problem, i.e. the classical SPP with additional resource constraints, the optimal path does
not only depend on the costs but also multiple resources should be taken into account. This
causes the problem complexity to change from a polynomially solvable problem to aNP-hard
problem (Dror, 1994).

3.3 Incorporation of Fairness
The resources considered in a SPPRC can be of various types such as time, fuel consumption
or distance. In certain applications one may also consider resources related to the shift speci-
fications as some shifts may be preferred over others. This relates to allocation of duties such
that equal fairness is perceived among all employees. Relatively little literature appears to be
available concerning the incorporation of social aspects in duty allocation. In Breugem et al.
(2017), the authors made an explicit trade-off between the attractiveness and the fairness in the
construction of cyclic crew rosters for the Netherlands Railways. The Fairness-oriented Crew
Rostering Problem (FCRP) is introduced and based on this formulation a Branch-Price-and-Cut
solution method is developed. In Freling et al. (2004) a branch-and-price based decision sup-
port system for crew planning in passenger transportation is presented which creates rosters
that satisfies both economic and social criteria. They introduced the so-called welfare objec-
tives which enhance an equally spread workload among the crew for example, but they do not

12



exactly show how the trade-off between the social and economic aspects is made. The down-
side is that unless the size of the problem was moderate, it is still a complex problem which
the authors concluded to be a consequence of the highly complex objectives and constraints. A
similar approach with multiple classes of objectives is presented in Maenhout and Vanhoucke
(2010), however here a hybrid scatter search heuristic is proposed to solve the (personalized)
rostering problem.

In Hartog et al. (2009) a method to solve the cyclic crew rostering problem is proposed. The
problem is modeled as a set partitioning model with additional constraints. The fairness of
the duty allocation is taken into account by penalizing an unfavorable sequence of duties. The
objective is to minimize the total sum of the penalties. A similar approach is presented in
Borndörfer et al. (2015), in which the authors distinguish both hard rules (labor regulations)
and soft rules (preferences). The soft rules, e.g., minimizing unfavorable sequences of duties,
are enforced by penalties. Nishi et al. (2014) proposed a decomposition method for crew ros-
tering which incorporates the fairness. This approach is based on the observation that the
implementation of fair working conditions by min-max type problems, cannot be applied eas-
ily. However, this study only considers the distribution of the workload whereas Hartog et al.
(2009) and Borndörfer et al. (2015) also considered other duty specifications.

In social psychology, distributive justice is basically the perceived fairness of how rewards and
costs are shared among group members (Forsyth, 2018). For example, when employees per-
form the same job and get paid a different salary, some employees may feel like that there is
no distributive justice. Fairness is seen as a important issue recognized by organizations. It
is not surprising that theories of social and interpersonal justice have been applied to under-
stand behavior of employees in organizations. However, the first presented theories of social
justice such as equity theory (Adams, 1963), were not focused on organizations in particular,
but at justice in general social interaction. Thereafter, literature is published in which the role
of fairness in a workplace environment is described (Goodman and Friedman, 1971; Green-
berg, 1987; Weick and Nesset, 1968). The distribution of organizational rewards such as salary,
promotion or performance evaluations can have powerful effects on the job satisfaction, orga-
nizational effectiveness and quality of work life (Lawler, 1977). Similar relations are described
in Alexander and Ruderman (1987) and Colquitt et al. (2001), which indicates the importance
of organizational justice.

3.4 Relevance
In summary, over the years much research has been done on the SCP and its applications.
Various heuristics and exact methods have been developed in order to obtain high quality so-
lutions for large-scale problems such as CSP and VRP. Literature shows that column generation
in particular is very suitable for solving this kind of problems. Also relatively much literature
has shown the importance of fairness and distributive justice in organizations. Surprisingly,
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literature on the incorporation of fairness in crew scheduling problems seems to be scarce. The
constraints concerning the fairness of the solution are typically described as ‘soft’ constraints
and adding these additional constraints may increase the complexity of the initial problem.
This may be one of the reasons it is not a ‘popular’ action to incorporate the soft constraints
concerning the fairness for example. However, in order to avoid incidents like the strike of
the NS personnel (Abbink et al., 2005) and to make sure the employees are satisfied with their
job, it can be very beneficial to incorporate these aspects in your problem. In this research,
we investigate the possibility of efficiently taking into account the fairness in crew scheduling
problems such that a fair solution is obtained.
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4 Methodology
In this chapter, we elaborate on the methodology which is used to solve the SCP and we also
explain the methods used to aggregate the resources. In Section 4.1, we first explain the funda-
mentals of the solution method used in this research namely the column generation method.
The associated pricing problem is commonly modeled as a shortest path problem with re-
source constraints (SPPRC) which is explained in Section 4.2. We propose a framework for the
pricing problem based on a dynamic programming approach in order to solve the SPPRC. In
Section 4.3, we evaluate the pricing framework and we explain the underlying idea. Finally,
we present the different aggregation strategies used to aggregate the resources in Section 4.4.

4.1 Column Generation
The simplex method is a classic method for solving the LP relaxation of linear integer programs
such as the mathematical formulation of a SCP given in Section 2.2.2. However, the complete
enumeration of all feasible shifts is computationally intractable for large problem instances.
Column generation is a frequently used method for successfully solving a wide variety of
problems (such as vehicle routing and crew scheduling problems see Section 3).

4.1.1 The Idea of Column Generation

As mentioned above, column generation is a commonly applied technique to solve large (in-
teger) linear problems which are too large to consider all variables explicitly. The method
exploits the idea that many variables will have a corresponding value of zero in most of the
feasible solutions, that is, the corresponding columns (shifts) will not be used frequently in the
construction of feasible solutions. Therefore, they are excluded in the original master problem
formulation. The resulting problem is in fact the original master problem in which only a sub-
set N′ ⊆ N of the variables is taken into account. We refer to this problem as the restricted
master problem (RMP).
The column generation method decomposes the problem into the RMP and the pricing prob-
lem. The subset N′ ⊆ N of columns is extended with columns j ∈ N\N′ generated by solving
the pricing problem. The idea is that only columns (and the corresponding variables) are
added to the RMP which improve the objective function. This procedure is repeated until no
such columns can be determined anymore. The benefit of this method is that we take into ac-
count a (much) smaller subset of columns N′ which makes it computationally more tractable.
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Algorithm 1.1 shows the pseudocode of the column generation method implemented in this
research. One can observe that the RMP and the pricing problem are solved in step 2.1 and 2.2
respectively. The pricing problem is solved using a pricing framework which is indicated by
the rectangle in 1.1. The pricing framework is explained in Section 4.3.

Algorithm 1.1 Column Generation Algorithm
Input : A dataset containing a number of n tasks which should be performed.
Output : A least cost set of shifts such that each task is performed at least once.

1: Step 1 : Initialization
2: Initialize the master problem by adding a couple of feasible shifts such that a feasible solu-

tion can be found and initialize objpricing = −1.
3:

4: Step 2 : Generate columns (shifts)
5: while objpricing < 0 do
6: Step 2.1 : Solve RMP
7: Solve the RMP and update the value of the dual variables on the corresponding arcs.
8: Step 2.2 : Solve Pricing Problem
9: sol ← Algorithm 1

10: if NotFeasible(sol) then
11: sol ← Algorithm 2
12: if NotFeasible(sol) then
13: sol ← Algorithm 3

14: end if
15: end if
16: if objpricing < 0 then
17: Add new column to the RMP.
18: else
19: break
20: end if
21: end while
22:

23: Step 3 : Solution
24: We obtain the LP relaxation of the original problem consisting of a set of shifts which

together cover the tasks at least once.
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4.1.2 Restricted Master Problem

The RMP is basically the same as the original problem (see Section 2.2.2) but, the integrality
constraints (2.3) are relaxed and a restricted set of columns N′ ⊆ N is taken into account.
The purpose of the RMP is to provide a vector of dual variables u which is passed on to the
subproblem. A mathematical formulation of the RMP corresponding to the original problem
is given by

min ∑
j∈N′

cjxj (4.1)

s.t. ∑
j∈N′

aijxj ≥ 1 ∀i ∈ M (4.2)

0 ≤ xj ≤ 1 ∀j ∈ N′ (4.3)

The column generation method solves the LP relaxation of the original problem. Integer solu-
tions are obtained by combining column generation with a Branch-and-Bound approach which
is also known as Branch-and-Price.

4.1.3 Pricing Problem

The subproblem of the column generation method is of great importance as it generates possi-
bly promising variables. In case the newly generated variable has negative reduced costs (for
a minimization problem), it will be added to the RMP. The pricing problem can be mathemat-
ically formulated by

c̄∗ := min{c(a)− uTa|a ∈ A} (4.4)

in which c(a) is a function to calculate the cost corresponding to column a and A 6= ∅ is a set
consisting of feasible columns aj for all j ∈ N. Furthermore, u represents the dual variables
corresponding to constraints (4.2). The resulting pricing problem for the particular problem
considered in this research can be formulated as a SPPRC which will be explained in Section
4.2.

4.2 Shortest Path Problem with Resource Constraints
The shortest path problem (SPP) corresponds to the problem in which one should find a path
between two nodes such that the associated costs are minimized. In case of a resource con-
strained shortest path problem (SPPRC), the path must also satisfy a set of constraints related
to a set of resources. A resource corresponds to quantities such as fuel and time for example.
In case the original problem corresponds to a crew scheduling problem (vehicle routing prob-
lem), a feasible path represents a set of tasks (vehicle route).
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The SPPRC can be formally described using graph theory. We consider a directed graph G =

(V, A) where V and A corresponds to a set of |V| = n nodes and |A| = m arcs respectively.
Furthermore, we introduce a source node s and target node t. Each arc a ∈ A has costs ca and
uses rk

a units of resource k for all k ∈ {1, 2, ..., K}. The maximum capacity of each resource k is
defined as Ck. Costs and resources are assumed to be non-negative. The objective of the SPPRC
is to find a least cost shortest path from the source to the target. A mathematical formulation
of the SPPRC is given by

min ∑
i∈V

∑
j∈V

cijxij (4.5)

s.t. ∑
i∈V

∑
j∈V

rk
ijxij ≤ Ck ∀k ∈ {1, 2, ..., K} (4.6)

∑
i∈V

xij = ∑
i∈V

xji ∀j ∈ V\{s, t} (4.7)

∑
j∈V

xsj = 1 (4.8)

∑
i∈V

xit = 1 (4.9)

xij ∈ {0, 1} ∀i, j ∈ V (4.10)

where the decision variable xij indicates whether arc (i, j) ∈ A is selected or not. That is

xij =

1 if arc (i, j) belongs to an optimal path,

0 otherwise.

Constraints (4.6) ensure that the total resource consumption of a path does not exceed the
maximum resource capacity. Constraints (4.7) make sure that for every node j ∈ V\{s, t} the
indegree equals the outdegree. Furthermore, constraints (4.8) and (4.9) ensure that the inde-
gree and outdegree for the source and target node respectively equals one. Finally, constraints
(4.10) make sure that the solution is binary.

Numerous exact and non-exact solution methods for the SPPRC have been described in the
literature over the past few years. An overview of these methods is given in Appendix A.
After studying the various methods to solve the SPPRC, it has been determined to implement
a labeling algorithm to solve the SPPRC in a column generation context. An advantage of the
labeling algorithm is the fact that it is clearly interpretable and therefore, it is a suitable method
for the insertion of potential resource aggregation extensions. In Section 4.3, we focus on the
implementation of a solution method for the SPPRC, but we first give some more context on
how we define the associated graph used to solve the pricing problem.
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4.2.1 Graph Formulation

In this research the pricing problem contains trips which both have a fixed starting and a fixed
ending time. Arcs are only constructed when trips are compatible. In this way, it is ensured
that there cannot exist any cycles in the constructed graph. In our case, the graph consists of
the following characteristics:

• Directed graph,

• The graph is acyclic,

• The graph is incomplete,

• The ‘costs’ for each arc can either be positive or negative.

We consider a graph G = (V, A) with source node s ∈ V and target node t ∈ V. Node
i ∈ V\{s, t} represents a trip i which has a departure time td

i from departure station Sd
i and

an arrival time ta
i at arrival station Sa

i . We connect node i with node j if it holds that ta
i ≤ td

j

and Sa
i = Sd

j . This automatically ensures that it is a directed graph since the trips will only be
connected if they are compatible with respect to the arrival and departure times. It also guar-
antees that no cycles will occur in the graph. The connection between two nodes is called an
arc which we denote by xij. We introduce arcs xsi for all nodes i ∈ V\{s, t} for which it holds
that the departure station Sd

i ∈ D where D represents a set with all the depot stations. Every
shift must start at a depot station as all the trains will be shunted at the depot stations. This
also holds for ending a shift which means that we introduce an arc xit for all i ∈ V\{s, t} for
which it holds that Sa

i ∈ D. The cost cij on arc xij are determined using the following relation
in which Cinit denotes the initial costs accounted for a shift, Clabor denotes the labor costs and
uj denotes the dual variable corresponding to node j.

cij =


Cinit + 2Clabor(ta

j − td
j )− uj if node i = s and j 6= t

Clabor(td
j − ta

i ) + 2Clabor(ta
j − td

j )− uj if node i 6= s and j 6= t

0 otherwise.

It can be observed that the personnel is twice as expensive during working time compared to
time in between two trips. We pre-process the graph by eliminating all arcs for which td

j − ta
i >

15. This means that it is not allowed to have more than 15 minutes in between two tasks
which is not desirable anyway since we consider a cost Clabor per minute waiting time. By
eliminating these arcs, we reduce the number of potential paths and the complexity of the
problem instance.

4.2.2 Multiple Pricing Problems

In the constructed network, we are dealing with multiple depot stations. The NS personnel
must end a shift at the same station as where the shift started. The pricing problem becomes
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more complicated if we adapt the generic version of the labeling algorithm such that it is ap-
plicable for a problem in which we consider multiple depot stations. Therefore, we choose
to split the pricing problem into multiple pricing problems corresponding to each depot. We
construct a new graph every time we switch from depot station in which we only consider arcs
between the source/sink node and this particular depot station. This means that it holds that
|D| = 1 for the graph considered in each pricing problem. The algorithm changes from depot
station if no more paths with negative reduced costs can be found.

4.3 The Pricing Framework
In this section, we elaborate on the implementation of the algorithm to solve the SPPRC. The
implementation can be described as a framework in which we can distinguish three algo-
rithms. The algorithms are based on a class of dynamic programming algorithms namely
the labeling algorithm. We provide a generic labeling algorithm and the adaptations we made
concerning the incorporation of the resources. In this section, we explain the pricing frame-
work by first considering the individual elements of the framework after which we connect
the elements and explain the underlying idea.

4.3.1 Basis: A Generic Labeling Algorithm

The idea of the dynamic programming approach is to create labels at each node for all feasi-
ble partial paths consisting of the associated costs and resource consumption. Labels can be
eliminated using dominance rules. We distinguish between two types of labeling algorithms:
label-correcting and label-setting. In label-correcting methods nodes can be treated more than
once contrary to label-setting algorithms nodes will be treated at most once. The label-setting
algorithm uses a Best-Search-First rule and is basically an extension of Dijkstra’s algorithm (Di-
jkstra, 1959). A requirement for the application of Dijkstra’s algorithm is to have only positive
costs on the arcs. As mentioned in Section 4.2.1, we consider a graph in which the arcs can also
have negative costs so this means that it is not possible to apply a label-setting algorithm.

Algorithm 1.2 shows a generic version of the label-correcting algorithm. Note, that this algo-
rithm only considers the costs and not any of the resources. The labels consist of two elements:
Li = (di, parenti) where parenti is the parent node and di the total costs to reach node i. Step
1 basically consists of the initialization of all the labels Li and the NodeList. The NodeList is
initialized by adding the source node s with corresponding label Ls = (0, s) since the starting
cost of an optimal path is set to zero. The label for each of the other nodes are initialized by
Li = (∞, i). Note, that each node has only a single label and the labels are (possibly) updated
throughout the course of the algorithm. The fact that we chose to consider one label for each
node has to do with the difficulty of applying dominance rules explained in Section 4.3.4.
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The next step can be seen as the core of the algorithm in which the labels of the nodes are
updated sequentially following a certain procedure. At the start of each iteration a node is
selected from the NodeList following some selection rule. A well known selection rule is the
FIFO rule for example. The selected rule could be of great impact on the performance of the
algorithm. In Section 4.3.2, several rules are discussed. The NodeList should be updated after
a node is selected. We look for adjacent nodes and determine if a new path connecting the
adjacent node results in a better solution (cheaper path) than we found so far. If this is the
case, we say that the new path dominates the previous found path. Only if this is the case,
the label of the adjacent node is updated and the adjacent node is added to the NodeList if
and only if it is not already in there. This procedure is repeated until the NodeList is empty.
The optimal path can then be obtained by backtracking the parent nodes starting from the sink
node t. The label of the sink node contains the objective value corresponding to the obtained
s− t path denoted by dt.

4.3.2 Node Selection Rules

The labeling algorithm considers a single node in each iteration. It looks for possible extensions
of the path from the current node i to its adjacent nodes. If a cheaper path is determined
for one of its adjacent nodes, the corresponding label is updated and the path is extended.
The considered selection rule might have some impact in the performance of the algorithm.
Certain selection rules tend to select nodes which result in poor solutions (expensive paths)
and typically more computation time is needed until the cheaper paths are determined as
well. Other selection rules tend to select interesting nodes much faster.
Line number 8 of Algorithm 1.2 shows the selection of a node. The generic labeling algorithm
uses the FIFO rule as can be observed in the pseudocode. Several possibilities concerning a
node selection rule are listed below:

• FIFO - First In First Out
The FIFO rule is probably the most common selection rule and simply selects the node
which has been in the Nodelist the longest.

• LSFO - Latest Start time First out
The LSFO rule selects the node from the Nodelist with the latest start time. This rule is
quite similar to a Depth-First search in which nodes further in the graph will be selected
first. This is a good selection rule if it is required to find a path very quickly, however it
might be not the most efficient way to find good solutions.

• BSFO - Best Search First Out
This selection rule is also known as Dijkstra’s method. The rule selects the node with the
best (partial) solution found so far. Note that this rule is only applicable in case you have
nonnegative arc lengths.
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Algorithm 1.2 Label-Correcting Algorithm
Input : A directed graph G = (V, A) with source node s ∈ V and target node t ∈ V.
The cost of the arc cij can be either positive and negative. Set V−i contains all the
outgoing arcs of node i.
Output : The shortest path from s to t.

1: Step 1 : Initialization
2: Set NodeList = {s} and corresponding label Ls = (0, s)
3: For each node i ∈ V\{s}: set label Li = (di, parenti) = (∞, i).
4:

5: Step 2 : Labeling
6: while NodeList 6= ∅ do
7: Step 2.1 : Node Selection
8: Select a node i from NodeList according to the FIFO rule.
9: NodeList← NodeList\{i}

10:

11: Step 2.2 : Update labels
12: for all j ∈ V−i do . Evaluate all outgoing arcs
13: if dj > di + cij then
14: parentj ← i
15: dj ← di + cij

16: Set label Lj ← (dj, parentj)

17:

18: Step 2.3 : Update NodeList
19: if j /∈ NodeList and j 6= t then
20: NodeList← NodeList ∪ {j} . Nodes cannot enter the list if already listed

21: end if
22: end if
23: end for
24: end while
25:

26: Step 3 : Solution
27: Total cost of the (optimal) shortest s− t path← dt

28: The nodes in the optimal path can be obtained by backtracking starting from parentt

We explained the basis of the pricing framework and provided a generic label-correcting algo-
rithm (see Algorithm 1.2). In the following sections (Section 4.3.3, 4.3.4 and 4.3.5), we elaborate
more on the details of the adjusted versions of the basis algorithm such that we can incorporate
resources for example.
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4.3.3 A Cost Based Labeling Algorithm

The generic label-correcting algorithm 1.2 is in fact based on costs. The FIFO selection rule is
used and the algorithm continues iterating until the NodeList is empty. The algorithm solves
the pricing problem and obtains the cheapest path among all feasible paths. The labels Li con-
sist of two elements namely, the total costs to reach node i and the parent node. The resources
are not taken into account in this algorithm.

4.3.4 A Resource Based Labeling Algorithm

We adjusted Algorithm 1.2 such that besides the costs, we can also take into account the
resources (see Algorithm 1.3). The labels are extended and contain the resource informa-
tion of the corresponding path. In this case the labels consist of the following elements:
Li = (di, parenti, ~R, T). The resource ‘consumption’ ~R = (R1, R2, ..., RK) and the total dura-
tion T of the corresponding path are now to be updated as well.

The algorithm is used to find resource feasible paths with a corresponding negative reduced
cost. The considered resources are not the typical type of resources such as time or fuel, but
they are related to the preferences of the NS personnel (see Section 2.1.1). In the end we aim
to generate shifts with an equally fair distribution of the resources. The difficulty that comes
with the considered problem and the type of resources is that we are not able to consider a
maximum capacity of a particular resource. For example, we do not have a maximum capacity
of Intercity trains in each shift. Instead, we want to generate shifts which have a particular
fraction of working hours on an Intercity train. The resource consumption ~R and the shift
duration T can be used to determine the fraction of each resource for the associated path. The
desirable fraction of each resource is determined by the instance average which is calculated
by

Rk
=

∑i∈M rk
i Ti

∑i∈M Ti
, ∀k ∈ {1, 2, ..., K},

where Ti is the duration of trip i ∈ M and rk
i is the value of resource k corresponding to trip

i. The resources are modeled in such a way that they are not preferred by the NS personnel
which results in an upper bound UBk

r for every resource k when assessing the resource feasi-
bility.

23



In Figure 4.1, we illustrated a small example concerning the assessment of resource feasibility.
The numbered nodes each denote a specific trip which we consider to have an equal trip dura-
tion for sake of simplicity. In this example, we only take into account one of the resources such
that the gray (white) colored nodes correspond to trips performed by an Sprinter (Intercity)
train.

s 2 t1

Path A

1s t32 4

Path B

Figure 4.1: Two possible path configurations are displayed with four and six nodes respectively. The
gray nodes correspond to Sprinter trips whereas the white (numbered) nodes are considered to be
Intercity trips. Node s and t denote the source and sink node respectively.

In case we assess the resource feasibility for the paths in this example, we find the Train Type
resource fraction for both path A and B to be:

RType
A =

RType
A
TA

= 0.5,

RType
B =

RType
B
TB

= 0.75.

Let us consider to have a desired resource fraction UBType
r = 0.6, it means that path A is con-

sidered to be resource feasible whereas path B is not.

The consequences of the dominance rules are important in the implementation of this algo-
rithm. In case we use dominance rules based on either costs or resources, this results in losing
a lot of high potential paths. For example, if we solely focus on costs, the cheapest path might
be resource infeasible while there could be resource feasible paths which are a bit more ex-
pensive. On the other hand, if we focus on the dominance of paths based on the resources, we
may find a path with the smallest resource fractions. However, it is possible that this particular
path has positive reduced costs while there might exist many paths which do have negative
reduced costs and also satisfy the resource bounds. In order to avoid losing resource feasible
paths with negative reduced costs, we implemented the LFSO selection rule in combination
with no dominance rules. We simply always consider the current path to dominate the path
corresponding to an adjacent node such that the label is updated in all cases. In combination
with the LSFO rule, which considers the node with the latest start times first, it can be deter-
mined that in this way no feasible path is excluded. The algorithm continues iterating until we
find the first resource feasible path with negative reduced cost.
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In theory all paths will be enumerated until a resource feasible path with negative reduced
costs is generated and the path (column) and the associated variable will be added to the RMP.
The bounds on the resource fractions cannot be used straight away to eliminate certain (par-
tial) paths. We refer to Figure 4.1 to illustrate what happens in case we prune (partial) paths
based on the bounds. When generating path A, we find that after a single node the resource
fraction of the Train Type resource is 1 (Sprinter) which means that the path is pruned straight
away since UBType

r < 1. However, path A appears to become resource feasible when adding
the second node. The opposite is observed for path B and we conclude that this is not an effi-
cient pruning strategy.

We should focus on the possibility that a resource infeasible partial path becomes resource
feasible within a certain time period. We developed a pruning strategy such that the complete
enumeration of all possible paths is avoided. Paths will be pruned if at time ta

i the resource
consumption does not meet the resource constraints and if there is no possibility to satisfy the
constraints in the remaining time tend − ta

i by extending the path. The path will be pruned if
for one of the resources, the following inequality does not hold:

Rk

T + (tend − ta
i )
≤UBk

r , ∀k ∈ {1, 2, ..., K}.

The best case scenario for the resource fraction at time ta
i is calculated by dividing the weighted

resource Rk by the maximum shift duration. The latest ending time of a duty tend can be de-
termined beforehand and may differ among the depot stations. We can prune the path in case
the fraction is larger than the upper bound UBk

r . Furthermore, paths will be pruned in case the
maximum duration (8 hours) of a shift will be exceeded.

4.3.5 An Aggregation Based Labeling Algorithm

The aim of aggregating resources is to obtain less criteria which should be taken into account
when determining the feasibility of a path which makes it computationally more tractable. The
adaptation of Algorithm 1.2 such that we are able to incorporate the aggregated resources is
similar as explained in Section 4.3.4. The main difference is that we update the aggregated
resource consumption instead of the regular resource consumption. A label looks as follows:
Li = (di, parenti, ~Rar, T) where Rar = (R1

ar, R2
ar, ..., RK̂

ar). Another difference is the fact that the
domain of the aggregated resources rk

ar differs compared to the regular resources rk due to
the aggregation methods (see Section 4.4). The regular resources are binary or integer valued
whereas the aggregated resources are real numbers, rk

ar ∈ [rar
k, rar

k]. The minimum value of
every regular resource is zero, but this might not be the case for the aggregated resources.
Therefore, we adapted the pruning strategy as follows:

Rk
ar + rar

k(tend − ti)

T + (tend − ti)
≤UBk

ar, ∀k ∈ {1, 2, ..., K̂}.

The upper bound on the aggregated resource k is denoted by UBk
ar. Note, that in this case we

consider K̂ aggregated resources for which it holds that K̂ < K.
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Algorithm 1.3 Label-Correcting algorithm based on resources
Input : A directed graph G = (V, A) with source node s ∈ V and target node t ∈ V.
Output : A resource feasible path from s to t with negative costs.

1: Step 1 : Initialization
2: Set NodeList = {s} and corresponding label Ls = (0, s, 0, 0, 0, 0, 0)
3: For each node i ∈ V\{s}: set label Li = (di, parenti, R1

i , R2
i , R3

i , R4
i , Ti) = (∞, i, 0, 0, 0, 0, 0).

4: Initialize a boolean variable Feas = f alse.
5: Step 2 : Labeling
6: while NodeList 6= ∅ & Feas = f alse do
7: Step 2.1 : Node Selection
8: Select a node i from NodeList according to the LSFO rule.
9: NodeList← NodeList\{i}

10: Step 2.2 : Update labels
11: for all j ∈ V−i do . Evaluate all outgoing arcs
12: parentj ← i
13: dj ← di + cij

14: Rk
j ← Rk

i + (ta
j − td

j )r
k
j ∀k ∈ {1, 2, 3, 4}

15: Tj ← Ti + (ta
j − td

j )

16: Step 2.3 : Pruning
17: if isPruned(R1

j , R2
j , R3

j , R4
j , Tj) then . Some pruning function

18: Path is eliminated→ continue with next outgoing arc
19: else
20: Set label Lj ← (dj, parentj, R1

j , R2
j , R3

j , R4
j , Tj)

21: Step 2.4 : Update NodeList
22: if j /∈ NodeList and j 6= t then
23: NodeList← NodeList ∪ {j}
24: end if
25: Step 2.5 : Check feasibility
26: if j = t then
27: if ResourceFeasible(R1

j , R2
j , R3

j , R4
j ) & dj < 0 then . Evaluate feasibility

28: Feas← true
29: end if
30: end if
31: end if
32: end for
33: end while
34:

35: Step 3 : Solution
36: The cost corresponding to the resource feasible s− t path← dt

37: The nodes in the optimal path can be obtained by backtracking starting with parentt

38: The fraction of each resource ( R1
t

Tt
, R2

t
Tt

, R3
t

Tt
, R4

t
Tt

).
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4.3.6 The Idea of the Framework

The subproblem of the column generation method is solved using the pricing framework
which consists of 3 different labeling algorithms. The pseudocode from Algorithm 1.1 cor-
responding to the pricing framework is shown in Figure 4.2 from which it can be observed
that the algorithms are executed in a specific order.

The pseudocode corresponds to the following labeling algorithms discussed in the previous
sections:

1. Algorithm 1 : a cost based labeling algorithm (see Section 4.3.3),

2. Algorithm 2 : an aggregation based labeling algorithm (see Section 4.3.5),

3. Algorithm 3 : a resource based labeling algorithm (see Section 4.3.4).

7: ...
8: Step 2.2 : Solve Pricing Problem
9: sol ← Algorithm 1

10: if NotFeasible(sol) then
11: sol ← Algorithm 2
12: if NotFeasible(sol) then
13: sol ← Algorithm 3

14: end if
15: end if
16: ...

Figure 4.2: The pseudocode for the pricing framework obtained from Algorithm 1.1.

The algorithms are executed in a specific order until a feasible path is found for each column
generation iteration. The corresponding variable is added to the restricted master problem if
and only if the path improves the objective function of the RMP. Let us exclude the second al-
gorithm from the pricing framework for now. The third algorithm results in resource feasible
paths with negative reduced costs, but it may take relatively much iterations of the column
generation method to solve the RMP to optimality since the algorithm mainly focuses on the
resource feasibility in the sense that it stops when it finds the first resource feasible path. The
first algorithm results relatively fast in the cheapest path possible, however very often this will
not result in a resource feasible path. The pricing framework first starts with the labeling algo-
rithm based on costs as it is relatively fast and produces high quality paths. It can be seen as a
bonus if the path appears to be resource feasible and otherwise we invoke algorithm 3.
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The idea of adding algorithm 2 in between these two algorithms is to find resource feasible
paths making use of a resource aggregation strategy. Typically when resources are aggregated,
less criteria should be taken into account when determining the feasibility of a path which
makes it computationally more tractable compared to algorithm 3. Algorithm 2 results in
resource feasible paths if the aggregation strategy appears to be successful. In this way the
insertion of algorithm 2 could have positive impact on the overall performance of the SPPRC
solution method. We use a benchmark which is obtained by solving the instance while exclud-
ing algorithm 2 in order to compare and measure the impact of algorithm 2.

4.4 Aggregation strategies
Algorithm 2 of the pricing framework is used to incorporate a resource aggregation strategy
when solving the pricing problem. The theory behind the different resource aggregation strate-
gies is evaluated in this section.

4.4.1 Principal Component Analysis (PCA)

A principal component analysis is a statistical procedure which transforms a dataset consist-
ing of (correlated) variables into a set of principal components. The principal components are
uncorrelated linear combinations. The idea is that the first component summarizes the largest
amount of variability in the dataset. The main objective for a principal component analysis is
to reduce the number of variables in your dataset and to improve the interpretation. In this
case we consider a dataset X′ = [X1, X2, X3, X4] consisting of four resources. We denote the co-
variance matrix of the data by Σ with eigenvector and eigenvalue pairs (e1, λ1), (e2, λ2),(e3, λ3)

and (e4, λ4) where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0. The principal components are constructed by a
linear combination of the data X′ = [X1, X2, X3, X4] and the eigenvectors e1, e2, e3 and e4:

Yi = e′iX = ei1X1 + ei2X2 + ei3X3 + ei4X4, i = {1, 2, 3, 4}.

We can write the first principal component as Y1 = e′1X. The eigenvectors are obtained from
the covariance matrix of the dataset. This method is sensitive for scaling. Since the variables
in our dataset have different domains, we first standardize the data as follows:

Zi =
Xi − X̄i

si
,

where si is an approximation of the standard deviation and X̄i is the mean of variable i. The
eigenvalues can be used to determine the appropriate number of principal components to rep-
resent the variance of the dataset. When we sort the eigenvalues in descending order and plot
the magnitude of the eigenvalue against the number, we obtain a so-called scree plot. Typically
in a scree plot an elbow is observed at some eigenvalue number i. This is an indication that
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i principal component(s) will approximately summarize the total variance of the dataset. An
example of such a scree plot is given in Figure 4.3 (left hand side). The figure also contains
a graph (right hand side) which shows the cumulative proportion of variance explained by i
principal components.

Figure 4.3: Left: an example of a scree plot in which we clearly observe the elbow. Right: the corre-
sponding graph of the cumulative proportion of variance explained by i principal components.

The bounds used in the resource based labeling algorithm are the weighted resource averages
of the instance. Due to scaling, it is not possible to obtain new bounds on the aggregated re-
sources by simply using the same linear combination used for the aggregation of the resources.
Instead, the desired fraction of the aggregated resource Y1 is obtained in similar fashion as for
the regular resources:

Y1
=

∑i∈M Y1
i Ti

∑i∈M Ti
,

in which Y1
i represents the aggregated resource (first principal component) and Ti represents

the duration of trip i ∈ M. The desired fraction of the aggregated resource Y1
is comparable to

Rk, but the interpretation disappeared due to the aggregation method.
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4.4.2 Ad-hoc Method

The ad-hoc aggregation method uses the correlation coefficients in the calculation of the weights.
The weights determine the importance of each resource and in which degree it should be
present in the aggregated resource. Firstly, we calculate the correlation matrix for the resources
X. The resource which has the strongest correlation with the other resources is called the
dominant resource. The correlation coefficients of the dominant resource are used to obtain an
aggregated resource.

Table 4.1: Correlation matrix

Type Decker Stops Aggression
Type 1 0.54 -0.70 -0.41
Decker 0.54 1 -0.41 -0.22
Stops -0.70 -0.41 1 -0.18
Aggression -0.41 -0.22 -0.18 1

For example, in Table 4.1 a correlation matrix given and the Type row is highlighted since it is
the dominant resource kd in this case (it has the highest correlation coefficients ∑k∈{1,2,...,K} |ρkd,k|).
We define a weight vk for each resource as follows

vk =
wk

wt
∀k ∈ {1, 2, ..., K}

where

wk = (1− |ρkd,k|)n,

wt =1 + ∑
k∈K

wk.

Now the aggregated resource rar is obtained by:

rar = ∑
k∈{1,2,...,K}

vkrk

where rk represents the original resource k. The underlying idea of this aggregation strategy
is that the resources which are strongly correlated with the dominant resource, will have a
less significant contribution to the obtained aggregated resource since they will be more or
less represented by the dominant resource. The resources with minor correlation have a larger
weight and in this way they have a slightly larger contribution to the aggregated resource.
Different values of the power n result in a different distribution of the weights. In Figure 4.4,
the weight distribution is given for different values of n in case we have two original resources.
It can be observed that the resources which are slightly correlated become more ‘important’ for
higher values of n compared to the stronger correlated resources.
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Figure 4.4: The relation is shown of the dependence of the weights vk vs. the correlation coefficient ρk

for different values of n

4.4.3 Basic Method

The third (aggregation) strategy is very straight forward. The idea is to simply consider only
one or a selection of the original resources and still obtain a fair distribution for all of the
resources. If two resources are strongly correlated, |ρ| ≥ 0.7, one could for example choose
to only focus on a single resource. This strategy will probably be most successful when some
resources are strongly correlated.
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5 Data Description
In order to evaluate the performance of the proposed algorithms and aggregation strategies,
it is preferred to apply the algorithm to multiple data instances. Furthermore, to investigate
the influence of certain data characteristics, such as the inter-correlation of resources, we create
data instances for which these characteristics differ. Simulating the data enables us to carefully
study the effects on the performance of the algorithm. The simulated data is based on a transit
rail network which will be analyzed in Section 5.1. In Section 5.2, we will elaborate on the data
features which will be taken into account as resources in the column generation algorithm.
Section 5.3 briefly explains how the dataset is structured and in Section 5.4, we elaborate on
the correlation among the resources in the datasets.

5.1 The Network
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Figure 5.1: It shows the configuration of the stations and how they are connected with each other. The
depot stations are indicated by the gray colored circles. Two different type of arcs can be distinguished
in the figure which indicate different type of trains. The travel time corresponding to each arc in the
network is given in minutes. The dashed ellipsoids indicate the type of area in which the stations are
located.

We consider the following rail transit network (see Figure 5.1) for the construction of our sim-
ulated data. The selected network is a small part of the entire rail network of the Netherlands.
We tried to make the case as illustrative as possible by using the actual traveling times, number
of intermediate stops and frequencies as performed by the Netherlands Railways (NS). How-

32



ever, we simplified the network a bit and adjusted some features of the network in order to
emphasize on certain characteristics.

We distinguish two different areas in the network. First of all, we consider the area of Am-
sterdam Central Station, Schiphol and Amsterdam Zuid as the urban area which has large
commuter flows with relatively short distances. The fact that Schiphol is located in this area
means that often trains are packed with tourists and they are in general not familiar with the
Dutch railway system. This possibly results in more intensive work shifts for the NS personnel
in this specific area. Furthermore, when traveling from Amsterdam Zuid to Utrecht, the train
also stops at the station near the stadium of football club Ajax. Typically, these trips have a
relative high risk of encountering aggressive passengers during match days. The other area
we distinguish, is located between Amsterdam and Utrecht. This is mostly rural area in the
sense that a large part of the area is used for agricultural purposes. The travel distances are
somewhat larger and there are not many intermediate stops. The trips with larger travel dis-
tances are in general performed by an Intercity train (long distance train). The Sprinter train
(regional train) performs most of the short distance trips (often in urban area).

The following tables show the travel distances in minutes, the number of intermediate stops
between the stations and the frequency of each trip. The tables present the information for
both the Intercity and Sprinter trains. Note that ‘−’ means that there is no connection between
these stations for that specific train type.

Table 5.1: Travel distances (min) for Intercity (left) and Sprinter (right) trains.

B C D E F
B x x x x x
C 10 x x x x
D – 10 x x x
E 35 – 35 x x
F 25 – 20 15 x

B C D E F
B x x x x x
C 15 x x x x
D 20 15 x x x
E 50 – – x x
F – – 60 20 x

Table 5.2: Number of intermediate stops for Intercity (left) and Sprinter (right) trains.

B C D E F
B x x x x x
C 0 x x x x
D – 0 x x x
E 1 – 1 x x
F 1 – 1 0 x

B C D E F
B x x x x x
C 3 x x x x
D 6 3 x x x
E 10 – – x x
F – – 11 4 x
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Table 5.3: The frequency of each trip (per hour) for Intercity (left) and Sprinter (right) trains.

B C D E F
B x x x x x
C 1 x x x x
D – 2 x x x
E 2 – 2 x x
F 4 – 2 4 x

B C D E F
B x x x x x
C 4 x x x x
D 2 5 x x x
E 2 – – x x
F – – 2 3 x

The dataset is in principle obtained by using (a part of) the actual passenger railway schedule
performed by the NS. However, we made some adaptations which also involve adding or
removing certain connections. In case we added a connection, we used the distribution of the
number of stops shown in Table 5.4. It is observed from the actual railway schedule, that on
average an Intercity train stops every 10 minutes when it performs a shift in the Randstad and
it stops every 20 minutes in the areas outside of the Randstad. Therefore, we use 15 minutes
for the average travel time between two consecutive stops for Intercity trains in our simulated
dataset.

Table 5.4: Distribution of the number of stops

Duration (min) 0 5 10 15 20 25 30 35 40 45 50 55 60

Intercity 0 0 0 1 1 1 2 2 2 3 3 3 4
Sprinter 0 1 2 3 4 5 6 7 8 9 10 11 12

5.2 Resources
In the previous section, we described the network used for the construction of our dataset. An
important aspect of our dataset are the resources. The features of the data which we consider
to be the resources are listed below:

• Type of train (Intercity / Sprinter),

• Number of stops,

• The risk of encountering any aggression,

• Double-decker vs single-decker train.

We already elaborated on the first two resources in Section 5.1. The possibility of encountering
aggression is another important feature of our data. Unfortunately, we do not have the per-
mission to access the exact data from NS concerning aggression related incidents. Therefore,
we simulated this data based on the information we could find about the different regions.
For each trip, we assign a value of 1 in case it has a relative high risk for the NS personnel to
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encounter any aggression and we assign a value of 0 in case the trip has a relative low risk. The
possibility of encountering aggression during a duty is specified based on the overall probabil-
ity which can be calculated by the total time of a duty in which a high risk is measured divided
by the total time of the duty.

Table 5.5: Trips with high risk of aggression (1) and low risk (0) for Intercity trains (left) and Sprinter
trains (right).

B C D E F
B x x x x x
C 1 x x x x
D – 1 x x x
E 0 – 0 x x
F 0 – 1 1 x

B C D E F
B x x x x x
C 1 x x x x
D 1 1 x x x
E 0 – – x x
F – – 0 1 x

Table 5.5 gives the risk of encountering aggression during each trip. The trips with a start-
station and end-station located in the region of Amsterdam or in the urban area in general, are
considered to be trips with a relative high risk of aggression. Furthermore, the intercity trip
between Amsterdam Zuid and Utrecht is also considered to be a trip of high risk as it has an
intermediate stop at Amsterdam Bijlmer-Arena (the station located near the stadium of foot-
ball club Ajax). The equivalent sprinter trip does not stop at Amsterdam Bijlmer-Arena station
and is therefore not considered to be a high risk trip.

The final feature of the dataset which we take into account as a resource, is the type of train. A
trip can be performed by either a double-decker train or a single-decker train. This is simply
copied from the actual NS schedule as it is at the moment of writing this thesis. The table for
sprinter trains consists of zeros as all Sprinter trains are built with a single deck, see Table 5.6.

Table 5.6: Trips which are performed by a double-decker train (1) or single-decker train (0) for Intercity
trains (left) and Sprinter trains (right).

B C D E F
B x x x x x
C 1 x x x x
D – 1 x x x
E 0 – 0 x x
F 1 – 1 0 x

B C D E F
B x x x x x
C 0 x x x x
D 0 0 x x x
E 0 – – x x
F – – 0 0 x
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5.3 Dataset
In the proposed network, we consider three different depot stations: Amsterdam Central,
Amersfoort and Utrecht Central Station. The NS personnel should start at one of the depot
stations and also end at the depot station from which it started. Based on the given frequency
of each trip, a list can be constructed consisting of all the trips which should be performed
within one hour. The final dataset is basically a list of trips including all of the corresponding
resource information. The size of the dataset can be changed into a two hour dataset by simply
copying this list and adjusting the starting and ending time. Table 5.7 displays a few lines of
the dataset.

Table 5.7: An example of how the dataset looks like.

Trip nr. Start time End time Start-station End-station Sprinter Decker Stops Aggression
...

...
...

...
...

...
...

...
...

23 07:26 07:41 F E 0 0 0 1
24 07:48 08:03 F E 0 0 0 1
25 07:21 07:36 B C 1 0 3 1
26 07:51 08:06 B C 1 0 3 1
27 07:01 07:16 C B 1 0 3 1
28 07:31 07:46 C B 1 0 3 1
29 07:17 07:32 C D 1 0 3 1
...

...
...

...
...

...
...

...
...

However, it will not be possible to find a feasible solution which covers all trips if we simply
consider the complete list (or multiple copies of the schedule) as mentioned above. In Table 5.7,
one could observe that trip 27 consists of a Sprinter train which should depart from Schiphol
at 7:01 and arrive 15 minutes later at Amsterdam Central station. In case our time horizon
starts at 7:00, we have a problem as Schiphol is not a depot station and no train could be at
Schiphol within 1 minute. Therefore, the dataset is extended with an initialization phase at the
start and a finalizing phase at the end of the dataset. This is basically a list of trips (a subset of
the complete list mentioned above) which makes sure that there are enough trains departing
at the depot stations and also enough trips which will end at the depot stations. In case we
consider a three hour time horizon from 7:00 until 10:00, the initialization phase ensures that
from 7:00 until 7:30 only the trips are included which depart from a depot station and the
finalizing phase ensures from 9:30 until 10:00 only trips are included which end at one of the
depot stations.
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5.4 Correlation
In this research, we develop a resource aggregation based heuristic for the SPPRC. The ag-
gregation of the resources can be based on the correlation of the resources and therefore, we
evaluate the correlation of the resources in the dataset. The correlation matrix of the dataset
based on the actual traveling schedule of NS is given in Table 5.8. This dataset has a medium
overall correlation of the resources. A dataset with minimal correlated resources is obtained
by a random permutation of the resources in the original dataset. Furthermore, a dataset is
constructed in which the resources are strongly related. This is done by manually adjusting
the trips such that the dataset contains a lot similar trips with respect to the resources. The
correlation matrices of the datasets with minimal and maximal correlated resources are given
in Tables 5.9 and 5.10.

Table 5.8: Correlation matrix (med)

Type Decker Stops Aggression
Type 1.0000 -0.5461 0.9607 0.3039
Decker -0.5461 1.0000 -0.4558 -0.3199
Stops 0.9607 -0.4558 1.0000 0.2550
Aggression 0.3039 -0.3199 0.2550 1.0000

Table 5.9: Correlation matrix (min)

Type Decker Stops Aggression
Type 1.0000 -0.0157 0.0437 0.1071
Decker -0.0157 1.0000 -0.0583 0.0747
Stops 0.0437 -0.0583 1.0000 0.0309
Aggression 0.1071 0.0747 0.0309 1.0000

Table 5.10: Correlation matrix (max)

Type Decker Stops Aggression
Type 1.0000 -0.9079 0.8777 1.0000
Decker -0.9079 1.0000 -0.7938 -0.9079
Stops 0.8777 -0.7938 1.0000 0.8777
Aggression 1.0000 -0.9079 0.8777 1.0000
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6 Computational Results
In this chapter, we present the computational results of this research. We apply the algorithms
and aggregation strategies to the different datasets. All algorithms have been implemented in
Java using Eclipse version 4.5.3 and IBM ILOG CPLEX 12.8.0 as LP solver. A HP EliteDesk
705 G3 SFF desktop with a 3.5 GHz AMD PRO A6-9500 R5 processor with 16.0 GB RAM is
used to perform the computational experiments. The Java program is initialized at the start of
each experiment and no other programs or non-standard background processes were running
during the course of the experiments.
The remainder of this chapter is organized as follows. In Section 6.1, the experiment setup is
discussed. We present and analyze the results of the experiments in Section 6.2. Finally, we
analyze the results of the experiments in a bit more detail by evaluating the performance of the
aggregation strategies in Section 6.3.

6.1 Experiment Setup
Before we are able to present and analyze the results of the experiments, it is necessary to
elaborate on the different settings and parameters. We want to evaluate the effect of the aggre-
gation strategies for each instance using different combinations of parameters. The parameter
settings depend on the considered instance and will be discussed in more detail in Section
6.1.2 and 6.1.3. First in Section 6.1.1, we create some structure by introducing a five-character
codename for each experiment.

6.1.1 Instances

We use ‘XYZ’ to denote the instances used in the experiments in order to be able to easily
distinguish the differences between the various instances. Each character points out a certain
specification of the experiment.

X =


P in case we aggregate resources using PCA,

A if the resources are aggregated by ad-hoc method,

R in case we simply take into account the original resources.

The second character, Y, represents the number of ’aggregated’ resources. For example, P2
denotes for two aggregated resources constructed by PCA (two principal components) and R2
means that we consider two of the original resources. The third character, Z, indicates the type
of the dataset used. Here, we refer to the degree of resource correlation for which we have
three options: min, med or max.
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6.1.2 Upper Bound on Regular Resources and Optimality Tolerance

The goal of the experiments is to evaluate the performance of the algorithm and the applied
aggregation strategy. We introduce an upper bound on the resources in order to influence the
weighted resource averages of the generated shifts. In this way, we can force to generate shifts
which have comparable averages such that we obtain fair solutions concerning the workload
distribution. The bound on a particular resource is determined by the weighted instance av-
erage and some constant α. The constant α is multiplied by an estimate of the standard error
corresponding to the mean of the weighted resource. In this way, we account for the different
degrees of variation and we make sure the upper bounds on the resources are proportionally
adjusted. The upper bound on the regular resources is defined as

UBk
r = Rk

+ αsk
r =

∑i∈M rk
i Ti

∑i∈M Ti
+ αsk

r , k ∈ {1, 2, ..., K},

with sk
r = sk

√
n where sk

r is the approximation of the standard deviation of the k-th resource

mean. Furthermore, sk is the standard deviation of resource k and n is the number of observa-
tions (trips in the dataset). If we decrease α, the bounds will become tighter and the feasible
region is likely to shrink. This possibly causes the optimal objective value to increase, but on
the other hand an improvement of the fairness of the solution is expected. A trade off can be
made between the improvement of the fairness and the increase of the total costs. The percent-
age of increase in the optimal objective value is called the optimality tolerance. The optimality
tolerance is expressed by ε and is calculated as follows:

ε =
zr − zopt

zopt
,

where zopt is the optimal objective value in case we do not consider any bounds UBk
r on the

resources and zr is the optimal objective value of the restricted problem. Notice the relation
between the parameter α and the optimality tolerance ε. When we use a relatively small value
of α, we typically observe a large optimality tolerance. We have evaluated the impact of the
aggregation strategies for six different tolerance values: ε ∈ {0.03, 0.1, 0.5, 1.0, 2.0, 5.0}.

6.1.3 Upper Bound on Aggregated Resources

Similar to the previous section (see Section 6.1.2), we introduce an upper bound but this time
on the aggregated resource(s). The domain of the upper bound UBk

ar ∈ [ν, ν] for which the
aggregation algorithm has any impact on the performance, is determined by trial and error.
We keep reducing the upper bound such that at some point all of the generated shifts will be
infeasible with respect to the aggregated resource consumption. On the other hand, we keep
increasing the upper bound until all possible shifts satisfy the upper bound and the feasibility
of a shift solely depends on the ‘general’ resource constraints. In other words, if the upper
bound on the aggregated resource is below a certain threshold ν and above a certain threshold
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ν where ν < ν, the aggregated resource algorithm is of no added value (might only increase
the computation time). These thresholds are determined for all k aggregated resources.

6.1.4 Benchmark Computation Time

The performance of the algorithm and aggregation strategy are compared with the benchmark
computation time which is obtained by excluding the aggregated resource algorithm from
the pricing framework. We observe that the computation time can differ among multiple runs
despite the fact that we use the same settings and have similar conditions every run. Especially
in the first few iterations, we observe some significant volatility (see Figure 6.1). The figure
shows the runtime for 100 runs for the medium correlated dataset and Table 6.1 contains some
statistics concerning the volatility of these benchmark runs. The observed volatility is probably
due to the fact that Java has to complete some initialization processes at the beginning such
as loading certain libraries and packages. Therefore, we decided to start each experiment
with an arbitrary 20 ‘warming-up’ runs. The mean value b̄ of the last 80 benchmark runs will
be used when comparing and evaluating the performance of an aggregation strategy for the
experiments.

Figure 6.1: It shows 100 observations for the benchmark computation time for different values of the
optimality tolerance ε. We observe that the first runs have a larger computation time due to the initial-
ization processes of Java.
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b b sb sb min{b} min{b} max{b} max{b} size n size n

ε = 0.03 34.31 34.19 0.83 0.43 33.31 33.31 41.33 36.23 100 80
ε = 0.1 37.87 37.79 0.82 0.46 36.97 36.97 44.74 39.52 100 80
ε = 0.5 34.14 34.18 0.58 0.38 29.91 33.38 35.72 35.34 100 80
ε = 1.0 24.61 24.54 0.61 0.25 23.84 23.84 30.05 25.22 100 80
ε = 2.0 17.75 17.70 0.47 0.22 17.19 17.19 21.68 18.19 100 80
ε = 5.0 13.74 13.73 0.33 0.27 13.25 13.25 15.79 14.67 100 80

Table 6.1: The statistics correspond to the benchmark runs performed with the dataset with maximum
correlation. The statistics in the white columns corresponds to all 100 observations and the statistics in
the gray colored columns correspond to the last 80 observations.

It can be observed that the mean and standard deviation of the computation time in general de-
crease when we exclude the warming up runs. Furthermore, the absolute difference between
the minimum and maximum value of the runtime decreases as well. The tables and figures
with information on the benchmark runs of the other datasets are given in Appendix B.

6.2 Results of the Experiments
In this section, we will present and analyze the results of the experiments.

6.2.1 P1 Experiments

We use the first (most important) principal component for the construction of the aggregated
resource in case of the P1 experiments. Figures 6.2, 6.3 and 6.4 show the performance of the
algorithm for different values of the upper bound UBar and the optimality tolerance ε. The red
area represents the benchmark computation time. In Figure 6.2, it is observed that in general
the aggregation algorithm does not outperform the benchmark algorithm for the dataset with
minimum correlation. The surface plot can be described as a ‘hill’ parallel to the ε-axis. The
upper bound thresholds v and v are located on the downsides of the hill. At the left hand side
of the hill, the computation time approaches the benchmark running time which is explained
by the fact that the upper bound is very tight at this point and it will not be possible to generate
a shift which satisfies the aggregated resource constraints. Therefore, the pricing framework
can be considered to be applied without the aggregation algorithm which is the same setup
used for the benchmark computation times. For the right hand side of the hill it holds that ev-
ery shift is feasible according to the aggregated resource constraints. Therefore, the algorithm
is not of any added value in this case and it only causes the computation time to increase. In
between the thresholds, we observe an increase of computation time as expected since we use
a method based on the correlation of the resources for an instance with minimum correlation.
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Figure 6.2: The results of experiment P1min. We observe that the aggregation algorithm does not
outperform the benchmark algorithm.

Figure 6.3: The results of experiment P1med. We observe that the aggregation algorithm does outper-
form the benchmark algorithm for ε ∈ [0.1, 0.5] and UBar ∈ [−0.8,−0.4].

The results of experiment P1med are displayed in Figure 6.3. It appears that the aggregation
strategy has a positive impact on the computation time only for relatively small values of the
upper bound UBar in combination with small values of the optimality tolerance ε. Interestingly,
we only observe the left hand side of the ‘hill’ compared to Figure 6.2. For large values of the
upper bound UBar, the aggregation algorithm considers all shifts to be feasible. When lower-
ing the upper bound UBar, the aggregation algorithm becomes relevant as it actually starts to
reject shifts based on their feasibility. At this point, we consider the aggregation algorithm and
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the standard labeling algorithm to be ‘working together’. Apparently, the computation time
does not increase when this happens in case of the medium correlated instance in contrast to
the minimum (and maximum) correlated instance. This is an indication that both algorithms
work well together for the medium correlated instance. For the medium correlated instance,
we achieve a reduction in computation time up to 34% for a parameter setting with ε ∈ [0.1, 0.5]
and UBar ∈ [−0.8,−0.4] 3. Note, the red surface on the left hand side of the hill does not in-
dicate a positive impact by the aggregation strategy. Both algorithms have approximately the
same results, but we observe that the benchmark algorithm has slightly larger computation
times due to some volatility in the experiment. This also holds for the P1max experiment (see
Figure 6.4).

Figure 6.4, corresponding to experiment P1max, is quite similar to Figure 6.2. We again recog-
nize the typical ‘hill’ shape in the surface plot which is comparable to the results of the P1min
experiment. However, we observe a much more flat surface in the direction of the ε-axis for
this instance. Furthermore, the left and right hand side of the hill are much steeper in the di-
rection of the UBar-axis. These differences can be explained by the high degree of correlation
between the resources. Consider for example an instance consisting of 4 unique trips with
respect to the distribution of resources. The instance contains many copies of these trips, but
each trip has a different starting and ending time. The possible combinations of trips which
result in a feasible shift concerning the resource feasibility, is now relatively limited. Therefore,
the solution space is smaller compared to the other instances.

Figure 6.4: The results of experiment P1max. We observe that the aggregation algorithm does not
outperform the benchmark algorithm.

3Note, that we only evaluated the computation time for certain combinations of parameters. However, because
the intervals are rather closely positioned, interpolation of these values will give a good representation of its true
value.
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6.2.2 P2 Experiments

In the P2 experiments, we also include a second aggregated resource using the second princi-
pal component. We investigate the performance for different values of the upper bounds UB1

ar

and UB2
ar. Figure 6.5 shows the results of experiment P2med using 6 subplots corresponding to

different values of ε. We observe that the aggregated resource corresponding to the first prin-
cipal component has positive impact on the computation time for small optimality tolerances
(ε ∈ [0.03, 0.5]), but this effect diminishes as ε increases. It seems like the aggregated resources
corresponding to the second principal component does not have an additional impact in case
of the medium correlated instance.

Figure 6.5: The 6 subplots display the result of experiment P2med. Each subplot shows the performance
of the algorithm for different values of the upper bounds UB1

ar and UB2
ar.

We also evaluated the results of experiments P2min and P2max, but both experiments do not
have a positive impact on the computation time. The Figures C.1 and C.2 can be found in
Appendix C. For most of the sub figures, we observe similar aspects as described for the P1
experiments. We again observe a ‘hill’, however for experiment P2min and P2max the hill has
got a 90 degree turn due to the second aggregated resource (see Figure C.1 and C.2).

In case of the PCA aggregation strategy, we aim to select an appropriate number of principal
components such that most of the variance is explained. A scree plot and/or a plot with the
proportion of variance explained using i components, can be used to evaluate the appropriate
number of components (see Figure 6.6). It can be observed that in case of the instances with
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medium and maximum correlation, the relative difference between the first and second most
important component is quite large. Furthermore, the cumulative proportion of variance ex-
plained by the first principal component is already reasonably large. This possibly explains
the fact that we do not observe an additional impact when we incorporate the aggregated re-
sources corresponding to the second principal component as a large proportion of the data
variance is represented by the first component.

Figure 6.6: Left: a combined scree plot for the associated instances. Right: the corresponding distribu-
tions of the cumulative proportion of variance explained by i principal components.
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6.2.3 A1 experiments

We analyze the performance of the ad-hoc aggregation strategy using the results of the A1
experiments. In the analysis, we only considered the medium correlated dataset based on
previous experiments. We aggregated the resources using a weighting function specified in
Section 4.4.2. The function can be applied with different values of n which has influence on
the size of the weights. Figure 6.7 shows the results obtained for experiment A1med. The
subplots each correspond to a different value n. It can be observed that the proposed aggre-
gation strategy has a positive impact on the computation time in case we set UBar ∈ [0, 0.4] in
combination with an optimality tolerance of ε ∈ [0.03, 1.0]. Apparently, the parameter n does
not have a exceptional influence on the results. Based on these experiments, the aggregation
strategy performs best for n ≥ 1.5 which can result in a reduction of the computation time up
to 36%.

Figure 6.7: The 5 subplots display the result of experiment A1med. Each subplot shows the perfor-
mance of the algorithm for different values of the power n used to determine the weights in the ad-hoc
aggregation strategy.
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6.2.4 R1 Experiments

In the R1 experiments, we consider a single (non-aggregated) resource. The idea is that if the
considered resources in a certain data instance are related, it might be that in case we only
set a restriction on one of the resources it automatically ensures that the other resources will
be distributed proportionally. The resource which is most related to the other resources will
be the most likely resource for these experiments. We did not consider the data instance with
minimum correlation since such a resource does not exist for the considered instance. Figure
6.8 shows the results if we only take into account the resource Train Type for both the medium
and maximum correlated instance.

Figure 6.8: The computational results for the R1med experiment (left) and the R1max experiment (right)
in case we only take into account the Train Type resource.

It can be observed in Figure 6.8 that for the medium correlated instance, we in fact find im-
proved results with respect to the computation time. We find that a reduction of the computa-
tion time up to 28% is achieved for an optimality tolerance ε ∈ [0.1, 0.5] and the upper bound
UBar ∈ [0, 0.35]. Surprisingly, it appears that this strategy does not have any positive impact
for the maximum correlated instance.
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6.2.5 Fairness of the Results

The aim is to generate resource feasible shifts such that the NS personnel at each depot station
has an equally fair set of shifts to perform. The fairness is an important feature of the obtained
solution. We measure the fairness of a solution by a criterion based on the average resource
consumption of the particular instance. We determine the error by means of the squared ab-
solute difference between the instance average and the average resource consumption of all
shifts assigned to a specific depot station. We define the following fairness criterion:

δerror = ∑
d∈D

γd ∑
k∈K
|Rd

k − Rk|2, (6.1)

in which

Rk
= 100

∑i∈M rk
i Ti

∑i∈M Ti
,

and

Rd
k
= 100 ∑

j∈Nd

xj

(
∑i∈Mj

rk
i Ti

∑i∈Mj
Ti

)
.

The set Nd contains all shifts assigned to a particular depot station d and the set N is defined
as N =

⋃
d∈D

Nd which contains all the shifts considered in the obtained solution. xj denotes the

amount of shift j considered in the solution. The set Mj contains all the trips corresponding to
the shift j. Furthermore, γd is a multiplication factor to correct for the unbalanced distribution
of shifts among the depot stations. The values of γd are the percentages of the total contribu-
tion of each depot with respect to the total number of shifts and these values vary depending
on the instance and the parameter setting. Finally, we consider resources k ∈ {1, 2, .., K} and Ti

represents the duration of trip i.

It is interesting to investigate what happens when we increase the value of ε with respect to
the fairness. In Table 6.2, it is shown that at some point the solution averages are getting
close to the instance average. However, further increasing the value of ε causes the solution
averages to reduce even more and start to deviate again from the instance averages. It becomes
clear that in case we increase ε too much, the algorithm generates shifts which combined have
a weighted resource average which is less than the instance average. This means that certain
trips are used more than once in the final solution which result in extra costs. In practice it is up
to the employer to decide how much to invest in the fair distribution of the work with respect
to the preferences of the employees. It appears that in this case, we can already achieve our
target relatively fast and large optimality tolerances are not prerequisite. This is also observed
in Figure 6.9 in which the error distribution of all three instances is given. We prefer values of
the optimality tolerance on the interval [0.1, 2] in order to have a minimal fairness error. We
observe large errors for a small optimality tolerance (ε = 0.03) which are reduced significantly
after slightly increasing ε. However, for approximately ε = 2 the error starts increasing again.
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The latter is not observed for the maximum correlated instance, but instead we observe the
opposite behavior of the error. This can be explained by the fact that for this instance the trips
all have different durations, but are very similar with respect to the corresponding resources.
Therefore, it is apparently still possible to generate shifts which have a corresponding resource
consumption which is close to the instance average in case we set the upper bounds very tight.
For the other instances, the diversity of the trips (with respect to the associated resources)
makes it more complicated to find feasible shifts when tightening the upper bounds on the
constraints. Ultimately, for these instances it appears to be necessary to perform certain trips
more than once in order to cover all trips.

Sprinter Decker Stops Aggression

Instance average 0.52 0.22 0.12 0.4
ε = 0.03 0.55 0.16 0.13 0.39
ε = 0.1 0.53 0.2 0.12 0.41
ε = 0.5 0.54 0.21 0.13 0.41
ε = 1.0 0.51 0.22 0.12 0.4
ε = 2.0 0.5 0.22 0.12 0.4
ε = 5.0 0.47 0.21 0.11 0.39
ε = 10.0 0.45 0.21 0.11 0.37

Table 6.2: The resource averages of the medium correlated instance for depot station B. Similar behavior
is observed for the other depot stations.

Figure 6.9: The fairness error determined with the fairness criterion (6.1) for different values of ε. The
error is evaluated for all three instances.
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6.3 Algorithm Performance
In this section, we evaluate the performance of the aggregation algorithm by looking into some
of the details of the obtained results.

6.3.1 Tail-off Effect

Another remarkable observation which is observed in the figures corresponding to most of the
experiments described above (Figures 6.2, 6.3, 6.4, 6.7 and 6.8), is the increase in computation
time for ε = 0.1 compared to results for ε = 0.03. This is probably due to the fact that an
optimality tolerance of 0.03 is very small and the corresponding bounds on the resources do
not affect the original feasible region that much. If we choose ε = 0.1, it becomes slightly more
difficult to find feasible shifts since the bounds become tighter. However, there are still many
feasible shifts left, of which the majority has a comparable quality. This causes the computation
time to increase as relatively a large number of iterations are necessary to obtain only a small
improvement of the objective value, the so-called tail-off effect. This is confirmed if we have
a closer look at objective value over the course of the column generation algorithm. In Figure
6.10, we show two examples in which we compare the behavior of the objective values over
time for ε = 0.03 and ε = 0.1. If we consider example 1, it can be observed that at first both
red lines approximately follow a similar path. However, it can be seen that the red dotted line
has a much longer horizontal timespan compared to the red dashed line. The vertical sections
in between the horizontal sections are caused by the switch of the depot station (pricing prob-
lem). The second subplot shows a similar example for UBar = −0.4. We noticed this behavior
in most of the experiments.

Figure 6.10: Two examples of the observed tail-off effect in case of the medium correlated instance.
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6.3.2 Type I & II Errors

The aggregation algorithm should generate shifts which are feasible with respect to the con-
straints on the aggregated resources. If the aggregated resource is a good representation of
the original resource, it also means that the shifts satisfy the (regular) resource constraints. An
interesting output statistic is to what degree these constraints (on both types of resources) lead
to similar outcomes. We distinguish between four different possibilities.

• The shift is feasible for both cases,

• The shift is feasible, however it is not feasible according to the aggregated resource con-
straints (type I error),

• The shift is not feasible, however it is feasible according to the aggregated resource con-
straints (type II error),

• The shift is not feasible for both cases.

Ideally, you would like to have the amount of type I and II errors as low as possible. Note, that
we also want to find a minimal number of shifts which are infeasible according to both set of
constraints, however we want to focus on the imparities between the aggregated resources and
the regular resources for now. Each iteration (except the last) of the pricing framework results
in a shift which is feasible according to both sets of resource constraints. Prior to the gener-
ation of this feasible shift, the algorithm possibly generated a number of shifts which have
been rejected because of one of the reasons listed above. We generated a couple of figures in
order to provide some insight in the performance of the aggregation algorithm for the P1med
experiment and we especially emphasize on the reason of rejection. The Figures 6.11, 6.12 and
6.13 are generated using the dataset with medium correlated resources, a fixed optimality tol-
erance (ε = 0.5) and different values for the upper bound UBar (UBar ∈ [−0.6,−0.3,−0.1]). A
few additional figures can be found in Appendix D.
Let us consider Figure 6.11. The figure is a stacked bar plot in which the vertical axis gives the
number of shifts and the horizontal axis displays the corresponding iteration number. Only
the relevant iterations of the pricing framework are included in this analysis, that is, the it-
erations for which the aggregation algorithm ultimately generated a feasible shift. The total
height of the stacked bars for iteration i corresponds to the total number of shifts which have
been generated until a feasible shift is found. Note that there are two moments at which a sud-
den ‘drop’ is observed in the stacked bar plot due to the fact that we chose to split the pricing
problems into multiple pricing problems each with a different depot station.
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Figure 6.11: A stacked bar plot of the error types for ε = 0.5 and UBar = −0.1.

Figure 6.12: A stacked bar plot of the error types for ε = 0.5 and UBar = −0.3.

When comparing the figures, we notice a couple of interesting features. First of all if we com-
pare Figures 6.11 and 6.12, we observe that the total number of shifts as well as the maximum
number of shifts generated in a single iteration are somewhat reduced for Figure 6.12. Figures
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in the Appendix D show the number of errors made for each iteration. However, we standard-
ized it in order to visualize the distribution of the cumulative proportion of the errors. The
percentage of the type II errors is reduced significantly when decreasing the value of UBar, see
Figure D.1 and D.2. Furthermore, it appears that the computation time decreases together with
the decrease of the type II errors, see Figure D.4.

Figure 6.13: A stacked bar plot of the error types for ε = 0.5 and UBar = −0.6.

Secondly, if we study the differences between Figure 6.12 and 6.13 (using an even stricter up-
per bound UBar = −0.6), we observe the opposite effect of previous comparison. Obviously,
the total number of generated shifts as well as the maximum number of shifts generated in a
single iteration is not of similar proportions. Furthermore, the average percentage of type II
errors for each iteration is comparable for both upper bounds, see Figure D.3. We also observe
an increase in the percentage of type I errors compared to the previous figures. A interesting
observation is the reasonably small percentage of type I errors among all three figures. When
lowering the upper bound, it is apparently more likely a shift becomes infeasible for both sets
of constraints instead of the occurrence of a type I error.
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Figure 6.14: It shows the average percentage of the error types including the corresponding confidence
intervals. The left (right) hand side of the vertical black line shows for which values of UBar the com-
putation time of the aggregation algorithm RTar is smaller (larger) than the computation time of the
benchmark algorithm RTbench. The blue dashed line indicates the share (%) of the total number of shifts
generated by the aggregation algorithm. The figure is generated for an optimality tolerance ε = 0.5.

In Figure 6.14, the percentage of the error types are displayed for different values of the upper
bound. The confidence intervals are included since we are dealing with a different number
of observations (generated shifts by the aggregation algorithm) for each value of UBar. The
figure shows that the percentage of type I errors appears to reduce when increasing the upper
bound, but remains fairly constant for UBar ∈ [−0.4, 0.6]. It is clearly visible that lowering the
upper bound causes the percentage of the type II errors to reduce. The percentage of shifts
being infeasible in both cases shows exactly the opposite behavior. The figure also includes a
vertical black line which indicates for which values of the upper bound the aggregation algo-
rithm performs better compared to the benchmark algorithm. Furthermore, the blue dashed
line represents the percentage of shifts generated by the aggregation algorithm. We also eval-
uated this figure for other values of the optimality tolerance (see Figures D.5 and D.6) and we
noticed that the vertical black line is located at the point where the type II errors and the ‘both
infeasible’ line starts to increase and decrease respectively. At this point, it appears that the
percentage of shifts which are ‘both infeasible’ is minimal 70%.

We want to emphasize on the fact that in general it becomes harder to find shifts which satisfy
the aggregated resource constraints if we choose a smaller value for the upper bound UBar.
Typically, the share of the aggregation algorithm in the generation of feasible shifts decreases
when a stricter upper bound on the aggregated resource is used. Based on the insights in the
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performance of the aggregation algorithm, we distinguish a positive effect in case the percent-
age of type I and II errors is reasonably small and a negative effect otherwise. The share of the
algorithm influences whether these effects become visible. The observed reduction in compu-
tation time is caused by a conjunction of both the effects and the total share of the algorithm. If
a specific setting of the parameters leads to mostly positive effects for example, it is preferable
to have a large share in the total number of generated shifts and vice versa.
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7 Conclusions
This thesis addresses resource aggregation strategies and their implementation in a column
generation framework used to solve a set-covering problem (SCP) with additional constraints.
The corresponding pricing problem is mathematically formulated as a SPPRC and solved by
a dynamic programming approach. Instead of considering the individual resources in the
SPPRC, we developed resource aggregation strategies based on the correlation between the
resources in order to investigate the possibility of solving the pricing problem more efficiently.
A pricing framework consisting of multiple dynamic programming algorithms is proposed
in which we can incorporate each of the developed resource aggregation strategies. The first
strategy makes use of a principal component analysis whereas another strategy is described
as an ad-hoc method. Lastly, we apply a basic strategy which simply considers a single (or
multiple) non-aggregated resource(s).

A large variety of well-known real world problems such as scheduling or vehicle routing, can
be formulated and solved mathematically using the SCP formulation. In literature the SCP
is sparsely considered together with additional constraints in order to incorporate the prefer-
ences of the employees. The incorporation of the preferences enables us to obtain equally fair
solutions which can be of major importance when preventing the occurrence of dissatisfaction
among employees for example. The proposed resource aggregation strategies are tested on
three simulated data instances deducted from a part of the actual rail transit network in the
region of Amsterdam. The distribution of the resources among the tasks has been manipulated
to some extent in order to generate instances with a varying degree of resource correlation.

The computational results show that some of the developed aggregation strategies are able to
have a positive impact on the performance of the algorithm. A reduction of the computation
time up to approximately 36% is achieved for both the PCA and the ad-hoc aggregation strat-
egy when applied to the medium correlated instance using a parameter setting with an opti-
mality tolerance ε ∈ {0.1, 0.5} and relatively small values of the upper bound UBar. Moreover,
the ad-hoc aggregation strategy shows similar results for different values of the parameter n.
Simply considering a single original resource appears to be a slightly less effective strategy,
but still can achieve a reduction up to approximately 28%. In general, we have noticed that the
aggregation strategies do not have a positive impact for the data instances with minimum and
maximum correlation of the resources. Furthermore, including a second principal component
in case of the PCA aggregation strategy also does not have a positive impact. For all strategies,
it holds that we should determine the parameter setting for which the best result are obtained.
Preferably, we should set the parameters such that the occurrence of type I and type II errors
are minimized.

We are able to obtain equally fair solutions with a relatively small optimality tolerance accord-
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ing to the used fairness criterion. We prefer values of the optimality tolerance on the interval
[0.1, 2] in order to minimize the fairness error. This interval partially coincides with the in-
teresting tolerance region with respect to the reduction of the overall computation time. The
use of an aggregation strategy with the correct parameter settings in a column generation con-
text may result in a more efficient approach to incorporate the preferences of employees and
increase their happiness and welfare. The fact that we obtained the best results for the data in-
stance which is a close representation of a real world situation using only a single (aggregated)
resource instead of four, is promising for applying the aggregation strategies to problems with
comparable properties such as vehicle routing.

7.1 Future Research
Whether we are able to take advantage of the positive effects of the aggregation algorithm,
depends on multiple aspects such as the total share of generated shifts by the algorithm and
the percentage of type I and II errors. There appears to be some relation between these aspects
and the moment for which we observe a positive impact of the aggregation strategy. It would
be very interesting to investigate whether it is possible to derive an explicit relation such that
we are able to make a good first guess for the parameter setting. It would be interesting to test
this approach on other data instances.

The characteristics of our problem made it difficult to use certain pruning strategies. In partic-
ular, because of the fact that we had to consider restrictions on the associated resource fractions
of a shift. Therefore, further research on additional, preferable more efficient, pruning strate-
gies and further development of the labeling algorithm is recommended in order to increase
the impact of the aggregation strategies.

In this thesis, we investigated the possibility of obtaining fair solutions more efficiently by
making use of the resource correlations. The fairness of a solution is defined by an equal dis-
tribution of the resources among the depot stations. In the proposed pricing framework, we
tried to achieve this by assessing the fairness of each shift. Alternatively, further research can
be done on the possibilities of assessing the fairness differently such as measuring the overall
fairness of the shifts assigned to a depot station for each iteration of the column generation
method.

Lastly, the SPPRC can be solved by numerous exact and non-exact solution methods. In this
thesis, a dynamic programming approach is chosen mainly because of the fact that the idea
is clearly interpretable and therefore, it was valued as a suitable method for the insertion of
resource aggregation extensions. However, additional research can be done on alternative so-
lution methods or adaptations of the current dynamic programming approach such as a bidi-
rectional labeling algorithm.
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Appendices
A. Solution Methods of the SPPRC

Several methodologies have been developed in order to solve the SPPRC such as heuristics,
Lagrangian relaxation and dynamic programming. The SPPRC can be very time consuming
to solve even with sophisticated algorithms. In the column generation approach, the subprob-
lem does not necessarily need to be solved to optimality every single iteration. In general it is
sufficient to only solve it to optimality in order to show that there does not exist a path with
negative reduced costs. That is, in the last pricing step of the column generation algorithm.
This implies that it is sufficient to find near-optimal solutions of the SPPRC in precedent it-
erations i.e., heuristics can be applied to find feasible paths with negative reduced costs. It is
possible to distinguish different types of heuristics by looking at the different areas of applica-
tion such as: pre-processing, direct search and dynamic programming.

When considering methods to solve the SPPRC, we can distinguish between exact methods
and non-exact methods:

• Exact

1. Constraint programming
Whereas the unconstrained shortest path problem can be efficiently solved in poly-
nomial time, adding a single constraint makes the problem NP-complete. There-
fore constraint programming is not considered to be efficient as it is time costly and
as explained before, it is not necessary to solve the subproblem to optimality in ev-
ery iteration.

2. Lagrangian relaxation
Lagrangian relaxation is often applied to the resource constraints. LR is a well-
known method to obtain upper and lower bounds for the problem. Afterwards,
branch-and-bound based algorithms are applied to close the gap between the bounds.
Also the bounds can be used in the pre-processing phase in which arcs and nodes
are removed because they are only used in solutions which are considered to be
infeasible (based on the bounds).

3. Dynamic programming
Dynamic programming is considered to be the standard approach for solving the
SPPRC with pseudo polynomial complexity. A well known dynamic programming
approach is the labeling algorithm. This method basically uses a certain data struc-
ture to label the nodes in a graph. A node v can have multiple labels. Each label
corresponds to a certain path from node s to node v which stores the costs and re-
source usage corresponding to the s − v path. The algorithm uses two sets with
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labeled nodes and unlabeled nodes respectively. There exists different rules for se-
lecting the next node to label such as Breadth-First (FIFO), Depth-First (LIFO) and
Best-First-Search. Dijkstra’s algorithm (Dijkstra, 1959) is a good example of a label-
setting algorithm in which a Best-First-Search strategy is applied. Important to note
here is that the Dijkstra’s algorithm is not applicable for graphs with both positive
and negative costs on the arcs.

In (Pugliese and Guerriero, 2013) several methods for solving some extension of
the SPP are evaluated. In case of the SPPRC in combination with an acyclic graph,
the authors point out a solution approach proposed by Zhu and Wilhelm (Zhu and
Wilhelm, 2012). They propose a 3-stage approach to solve the SPPRC to optimal-
ity in a column generation context. In the first stage they pre-process the original
graph by reducing and removing nodes and arcs which are part of infeasible paths.
The second stage converts the resulting graph into an enlarged graph by consid-
ering several copies of each node and in the third stage they apply a label-setting
approach for solving the problem.

4. Path Ranking / k-shortest paths
This method basically enumerates k solutions and ranks them in non-decreasing
cost order. The first path which satisfies the resource constraints then is considered
to be the optimal solution (with respect to the costs). Simply enumerating a number
of solutions is usually not very efficient and furthermore it is known that the number
of paths to be ranked before finding a feasible path may be exponential in size of
the graph (Ziegelmann, 2001).

• Non-exact

1. Heuristics
Heuristics are based on the following three topics:

– Pre-processing: that is simplifying the actual instance such that it is easier to
solve. For example solving a series of restricted networks which only have a
limited number arcs.

– Dynamic programming heuristics: techniques which basically try to speed up
the dynamic programming algorithms as described before. This can be done by
implementing rules such as only allowing a max number of labels or stronger
dominance rules etc.

– Local search: start from a feasible path and add, switch or delete a node or arc
in order to find an improving feasible path.
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B. Benchmark Computation Time

Besides the fact that we observe volatility in the first few iterations, we also observe some
deviations in general. Especially for smaller values of ε it might be that the algorithm is less
stable. This is in accordance with our observation of erratic surfaces for smaller values of ε in
the surface plots.

B.0.1 Benchmark computation time for the minimum correlated dataset

Figure B.1: It shows 100 observations for the benchmark computation time for multiple values of ε.

Table B.1: The statistics correspond to the benchmark runs performed with the dataset with minimum
correlation. The statistics in the white columns corresponds to all 100 observations and the statistics in
the gray colored columns correspond to the last 80 observations.

b b sb sb min{b} min{b} max{b} max{b} size n size n

ε = 0.03 39.35 39.34 0.42 0.42 38.55 38.55 40.73 40.73 100 80
ε = 0.1 52.10 52.13 0.53 0.54 50.96 50.96 54.21 54.21 100 80
ε = 0.5 40.64 40.57 0.72 0.44 39.57 39.57 46.48 41.6 100 80
ε = 1.0 32.55 32.50 0.57 0.39 31.80 31.80 36.49 34.06 100 80
ε = 2.0 26.24 26.27 0.77 0.81 25.19 25.37 30.59 30.59 100 80
ε = 5.0 17.96 17.97 0.83 0.79 17.15 17.20 22.44 22.44 100 80
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B.0.2 Benchmark computation time for the medium correlated dataset

Figure B.2: It shows the 100 of runs for all values of ε. Clearly in the first run some variation in the
computation time is observed.

Table B.2: The statistics correspond to the benchmark runs performed with the dataset with medium
correlation. The statistics in the white columns corresponds to all 100 observations and the statistics in
the gray colored columns correspond to the last 80 observations.

b b sb sb min{b} min{b} max{b} max{b} size n size n

ε = 0.03 38.64 38.57 0.80 0.50 37.71 37.71 44.69 40.76 100 80
ε = 0.1 49.18 49.15 0.89 0.44 41.84 48.27 50.48 50.39 100 80
ε = 0.5 31.62 31.44 1.96 0.38 30.64 30.64 50.59 33.09 100 80
ε = 1.0 23.30 23.26 0.63 0.31 22.65 22.75 28.73 24.6 100 80
ε = 2.0 18.74 18.70 0.41 0.28 18.10 18.1 21.81 19.37 100 80
ε = 5.0 12.48 12.44 0.38 0.22 11.92 11.97 15.45 13.15 100 80
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B.0.3 Benchmark computation time for the maximum correlated dataset

Figure B.3: It shows 100 observations for the benchmark computation time for different values of ε.

b b sb sb min{b} min{b} max{b} max{b} size n size n

ε = 0.03 34.31 34.19 0.83 0.43 33.31 33.31 41.33 36.23 100 80
ε = 0.1 37.87 37.79 0.82 0.46 36.97 36.97 44.74 39.52 100 80
ε = 0.5 34.14 34.18 0.58 0.38 29.91 33.38 35.72 35.34 100 80
ε = 1.0 24.61 24.54 0.61 0.25 23.84 23.84 30.05 25.22 100 80
ε = 2.0 17.75 17.70 0.47 0.22 17.19 17.19 21.68 18.19 100 80
ε = 5.0 13.74 13.73 0.33 0.27 13.25 13.25 15.79 14.67 100 80

Table B.3: The statistics correspond to the benchmark runs performed with the dataset with maximum
correlation. The statistics in the white columns corresponds to all 100 observations and the statistics in
the gray colored columns correspond to the last 80 observations.
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C. Results Experiments P2min and P2max

Figure C.1: The 6 subplots display the result of experiment P2min. Each subplot shows the performance
of the algorithm for different values of the upper bounds UB1

ar and UB2
ar.

Figure C.2: The 6 subplots display the result of experiment P2max. Each subplot shows the performance
of the algorithm for different values of the upper bounds UB1

ar and UB2
ar.
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D. Additional Figures for the Algorithm Performance

This appendix contains a few additional figures for the aggregation algorithm performance
evaluated in Section 6.3.

Figures D.1, D.2 and D.3 show the cumulative proportion of the errors for different values of
UBar. Note, that in order to generate these figures we excluded the column generation itera-
tions in which only a small number of shifts are generated. The cumulative proportions of the
errors corresponding to these iterations are considered to be inaccurate since they are based on
only a few shifts and typically a large volatility in the proportions is observed. We use those
iterations in which the number of shifts generated, is larger than 10% of the maximum number
of shifts generated in a single iteration for that particular instance.

In Figures D.5 and Figure D.6, the distribution of the error proportions is evaluated for ε = 0.03
and ε = 0.1 respectively. The error distribution is not evaluated for ε ≥ 1 since the aggregation
algorithm does not have a positive impact on the computation time for these values of ε.

Figure D.1: It shows the cumulative proportion of the errors for UBar = −0.1.
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Figure D.2: It shows the cumulative proportion of the errors for UBar = −0.3.

Figure D.3: It shows the cumulative proportion of the errors for UBar = −0.6.

70



Figure D.4: The three black dots correspond to the three stacked bar plots (see Figures 6.11, 6.12 and
6.13). The black dot at the right-hand side correspond to Figure 6.11 and Figure 6.13 correspond to the
black dot at the left-hand side.

Figure D.5: It shows the average percentage of the error types including the corresponding confidence
intervals. The left (right) hand side of the vertical black line shows for which values of UBar the com-
putation time of the aggregation algorithm RTar is smaller (larger) than the computation time of the
benchmark algorithm RTbench. The blue dashed line indicates the share (%) of the total number of shifts
generated by the aggregation algorithm. The figure is generated for an optimality tolerance ε = 0.03.
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Figure D.6: It shows the average percentage of the error types including the corresponding confidence
intervals. The left (right) hand side of the vertical black line shows for which values of UBar the com-
putation time of the aggregation algorithm RTar is smaller (larger) than the computation time of the
benchmark algorithm RTbench. The blue dashed line indicates the share (%) of the total number of shifts
generated by the aggregation algorithm. The figure is generated for an optimality tolerance ε = 0.1.
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