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1. Introduction   

Smart specialisation is the magic word in contemporary European regional policies. It refers to 

a regional innovation strategy that prioritizes research and innovation investment in the areas 

for which the region possesses a competitive advantage. As part of the European Commission’s 

Cohesion Policy, regions must develop a Research and Innovation strategy for Smart 

Specialisation in order to receive structural funding. The aim of the European Commission’s 

Cohesion Policy is to reduce differences between regions and to ensure growth across Europe 

(European Commission, 2018). 

Whether regional specialisation is indeed more beneficial for regional economic growth, 

innovation and stability compared to regional diversification, is the central question in the well-

known Marshall vs. Jacobs debate. In so far as innovation is a process of recombining existing 

knowledge into new ideas, knowledge spillovers constitute an important input for innovative 

activity. The question is whether spillovers between firms in the same industry (specialisation) 

or between firms in different industries (diversification) are a more important driver of regional 

innovative performance.  

Castaldi, Frenken and Los (2015) examines how the variety of economic activities in a 

region affects its inventive performance. The authors expect that knowledge spillovers between 

firms operating in closely related sectors result in a high number of innovations, most of which 

will be incremental or process innovations. On the other hand, radical innovations that 

represent important technological breakthroughs are expected to arise from the recombination 

of knowledge from unrelated industries. Castaldi et al. (2015) confirms the hypotheses using 

patent data for U.S. states in the period 1977 to 1999. 

The study presented in this paper is a scientific replication of Castaldi et al. (2015, hereafter: 

CF&L). The hypotheses of CF&L are tested using patent data for 266 European NUTS-2 

regions between 2007 and 2013. The results support both hypotheses, confirming that for 

European regions, related variety is most strongly associated with a high number of 

innovations, while unrelated variety is associated with the ability to produce radical 

innovations. Furthermore, this study adds to the related-unrelated variety literature by 

explicitly considering the difference between technological and industrial variety, which stems 

from choices in variable definition.  

The remainder of this paper is structured as follows: section 2 briefly discusses the related 

literature; section 3 reviews the measurement and methodology used in this study; section 4 

discusses the descriptive statistics; section 5 presents the results of the main analysis; section 

6 considers the difference between technological and industrial variety and introduces two 
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additional hypotheses; section 7 provides the robustness checks; finally, the paper is concluded 

in section 8 with a short discussion and some final remarks.   

 

 

2. Related literature 

Throughout history, economic activities have clustered geographically and by now it is well-

accepted in economics that firms benefit from locating near one another, although the 

mechanisms through which they do so remain at least partly unknown. Agglomeration 

economics deals with the spatial co-location patterns of firms and industries. As summarized 

by Frenken, Van Oort and Verburg (2007), firms may benefit from a large shared market and 

availability of suppliers (localization economies), from locating in large and dense urban areas 

(urbanization economies) or from locating in regions with a variety of sectors (Jacobs 

externalities). Localization economies are also known as Marshall or Marshall-Arrow-Romer 

(MAR) externalities, after Marshall (1890). 

Jacobs externalities are named after Jane Jacobs, who introduced the concept in her 

influential book The Economy of Cities (Jacobs, 1969). She argued that urban economies, 

which are more diverse than average, are particularly supportive of competition and knowledge 

spillovers between industries (Desrochers & Hospers, 2007). Jacob’s ideas were picked up by 

Lucas (1988) and gained popularity following a seminal paper by Glaeser, Kallal, Scheinkman 

and Shleif (1992) in which Jacobs externalities are contrasted to Marshall-Arrow-Romer and 

Porter externalities. The findings suggest that local competition and urban variety drive 

employment growth, thus supporting the concept of Jacobs externalities (Glaeser et al., 1992).  

The impact of different types of agglomeration economies has been a much-debated topic 

in the years following Glaeser et al. (1992), and so far, the evidence in the literature has been 

unable to settle the Marshall vs. Jacobs debate (Beaudry & Schiffauerova, 2009; Melo, Graham 

& Noland, 2009). In a recent meta-analysis, De Groot, Poot and Smit (2016) find that the 

evidence points most strongly towards Jacob’s theory of agglomeration externalities, thus 

confirming the initial findings of Glaeser et al. (1992). However, in Glaeser et al. (1992) a 

considerable number of the studies under investigation did report either insignificant results or 

results in favour of Marshall externalities.  

Frenken et al. (2007) proposes an extension to the concept of Jacobs externalities by 

introducing the related variety hypothesis. A differentiation is made between related and 

unrelated variety and different effects on regional economies are expected for both types. 

Frenken et al. (2007) argues that knowledge can only spill over from one sector to the next 
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when there are at least some complementarities in the capabilities of those sectors. Therefore, 

regions home to firms that operate primarily in closely related sectors (related variety) are 

expected to be especially conductive of Jacobs externalities, promoting knowledge spillovers 

and innovation. On the other hand, a broad variety of firms operating in unrelated sectors 

(unrelated variety) is expected to act as a portfolio that shields regions from sector-specific 

unemployment shocks. Finally, regional specialisation is expected to promote incremental 

product and process innovations, resulting in productivity growth. Frenken et al. (2007) 

assumes that related variety promotes knowledge spillovers and innovation, which result in 

employment growth. It is hypothesized that related variety is positively related to employment 

growth, that unrelated variety is negatively related to unemployment growth, and that regional 

specialisation is positively related to productivity growth. Using a data set on Dutch NUTS-3 

regions spanning the years 1998-2006, Frenken et al. (2009) finds evidence to support the 

hypotheses. 

Since its introduction, the related variety hypothesis has been tested by different authors, 

most of whom focus on the effects on employment and productivity growth (Content & 

Frenken, 2016). Summarizing 16 papers that follow the original related variety hypothesis, 

Content and Frenken (2016) concludes that most empirical evidence confirms the theory that 

related variety is positively related to employment growth, although the effects may be sector 

specific. The papers considered in Content and Frenken (2016) focus on some measure of 

economic growth as dependent variable. A surprisingly small number of papers examines the 

effect of related variety on innovation, the hypothesized linking mechanism between variety 

and economic performance.  

To the best of my knowledge, there are only three studies that directly test how variety 

affects the innovative performance of regions. First, Tavassoli and Carbonara (2014) uses data 

on 81 Swedish functional regions to test the effect of internal and external knowledge intensity 

and variety on regional innovation output, as measured by patent application counts. The 

results suggest that related variety is positively related to the innovativeness of regions, while 

such an effect is not found for unrelated variety. Furthermore, the innovation output of regions 

increases with the intensity of external knowledge flowing to the region (Tavassoli & 

Carbonara, 2014). 

Second, CF&L expands the related variety hypothesis further by arguing that both related 

and unrelated variety foster innovation, though the type of innovation created is expected to 

differ. Knowledge from related sectors is expected to be recombined easily and it is 

hypothesized that related variety increases the number of innovations in a region. Furthermore, 
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it is hypothesized that while knowledge spillovers between unrelated sectors is less likely, 

successful recombination of unrelated knowledge results in more radical, breakthrough 

innovations. The hypotheses are tested and confirmed using patent data for U.S. states between 

1977 and 1999.  

Third, Miguelez and Moreno (2018) follows CF&L and examines the effect of related and 

unrelated variety on the number of patents and the quality of patents, respectively. As an 

extension, the paper examines how the inflow of related knowledge into the region affects 

innovative output. Different to CF&L, Miguelez and Moreno (2018) focusses on patent-

intensive sectors only. Using data on 255 European NUTS-2 regions, the results confirm the 

hypotheses concerning related and unrelated variety, also in accordance with both Tavasolli 

and Carbonara (2013) and CF&L. Moreover, Miguelez and Moreno (2018) finds that the 

inflow of similar external knowledge and not the inflow of related external knowledge in to the 

region affects regional innovativeness.  

Scientific replications of non-experimental studies are useful in economics because the 

results found for a particular time period or region do not necessarily transfer to other time 

periods or regions (Hamermesh, 2007). Until now, the linking mechanism of the related variety 

hypothesis, the effect of variety on innovative performance which in turn affects economic 

growth, has only been tested for Sweden (Tavassoli & Carbonara, 2014), the United States 

(CF&L) and a small number of patent-intensive industries in Europe (Miguelez & Moreno, 

2018). This paper presents a replication of CF&L, testing the same hypotheses using a similar 

research design, but for a different time period and region. CF&L test their hypotheses for 51 

U.S. states for the years 1977 to 1999, while this study uses data on 266 European NUTS-2 

regions between 2007 and 2013. The patent data used in this study includes all sectors that 

produced at least one patent in the time period, and represents a much broader variety of 

industries compared to the five patent-intensive industries in Miguelez and Moreno (2018).  

The hypotheses tested are identical to that of CF&L (p. 770):  

 

• Hypothesis 1: Regional related variety is positively associated with regional inventive 

performance.  

• Hypothesis 2: Regional unrelated variety is positively associated with the regional 

ability to produce breakthrough innovations.  
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3. Measurement and methodology 

Patent data is used to capture both innovative output and variety in regions. Patents are a useful 

proxy for innovative output because inventions have to meet certain standards in terms of 

novelty, originality and usefulness before a patent is granted; an important drawback from 

using patent data is that not all inventions are patented (Bottazzi & Peri, 2003).  

The original patent data used in this study was kindly provided by dr. N. Cortinovis from 

Erasmus University Rotterdam and is appended with data on regional R&D expenses and 

employment of researchers, taken from the Eurostat regional database. The patent data is 

collected from the OECD REGPAT database and spans the years 2007 to 2013. This dataset 

provides information on individual patents, including the regions and inventors to which they 

are assigned, the year in which they were applied and the technological sections, classes and 

subclasses to which they are assigned. Patents are classified according to the International 

Patent Classification of the WIPO and assigned to one or more of 8 broad sections, 122 classes 

and 629 subclasses. Patents are not uniquely assigned to regions, inventors and classifications 

and are therefore weighted across regions and technological classifications when calculating 

the dependent and independent variables. The study is carried out for 266 European NUTS-2 

regions, a list of which is included in Appendix I.  

The first dependent variable is a measure of the inventive performance of regions, 

approximated by the number of innovations. Following CF&L, this is measured by a count of 

patents assigned to the region. Patents are weighted across regions according to the number of 

researchers to which a patent is assigned in each region. The resulting continuous variable is 

rounded to integer values to arrive at a count variable that is similar to that of CF&L.  

The second dependent variable measures the capability of regions to produce breakthrough 

innovations. Breakthrough innovations result in high-value patents which are sometimes 

referred to as superstar patents. The value of patents can be approximated by measures based 

on forward citations. The most-cited patents within a cohort are usually considered to represent 

breakthrough innovations, with a cut-off point defined at 95% or 99% (see in example Ahuja 

& Lampert, 2001 and Zheng & Yang, 2014). CF&L uses a more refined methodology and 

endogenously derives the share of superstar patents by exploiting the statistical properties of 

the frequency distribution of forward citation numbers (CF&L, p. 770). Taking in to account 

that superstar patents continue to receive significant amounts of citations many years after 

filing while regular patents do not, the authors are able to identify superstar patents and predict 

which recent patents will likely be superstar patents. Due to the short time period of the present 

dataset, this measure is not feasible here and a simpler method is used. Comparing patents 
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applied in the same year and assigned to the same technological class, the top 5% most-cited 

patents are identified as superstar patents. As before, patents are weighted according to the 

number of regions and inventors to which they are assigned before calculating the share of 

superstar patents for each region.  

Next, the main independent variables are measures of regional variety. Information on the 

classification of patents is exploited to calculate the related and unrelated variety of regions 

using entropy statistics. Over the past decades, entropy measures have been applied in the 

context of regional variety (see in example Frenken et al., 2007; Miguelez & Moreno, 2018). 

It is a measure of uncertainty and when applied to a regional context, it provides information 

on the diversification or specialisation of regions, for example in terms of employment patterns 

across sectors or innovative activity across technological classes. An important advantage of 

the entropy measure is that it can be decomposed at different levels of aggregation, so that 

variety at different levels can be included in a single model without necessarily causing 

collinearity (Frenken et al., 2007). The following paragraphs provide a brief summary of the 

entropy measure, more detailed accounts are found in Frenken et al. (2007) and CF&L. Since 

entropy statistics require units to be uniquely assigned to classifications at different levels of 

hierarchy (Frenken et al., 2007), patents are weighted according to the number of regions, 

sections and subclasses before aggregating to regional level and calculating the measures of 

variety. 

The weighted patents are uniquely assigned to four-digit subclasses, which fall exclusively 

within two-digit classes, which in turn are assigned to one of eight one-digit sectors. As patents 

in a region are more equally distributed among broadly defined one-digit sections, the stock of 

patents in this region is more diversified across a highly diverse portfolio of industries. This is 

unrelated variety (UV), which is measured by entropy at the one-digit level. Formally, 

 

𝑈𝑉#$ = 	 𝑠(,#$

*

(+,

ln	(
1
𝑠(,#$

) (1) 

 

where sk,it is the probability that a weighted patent, assigned to region i and applied in year t, 

falls in one-digit section k. As in CF&L, an intermediate level of variety is introduced here. 

This intermediate level of variety is called semi-related variety and is the weighted average of 

variety between two-digit sectors within each broadly defined one-digit section. Formally, 
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semi-related variety is defined as entropy at the two-digit class level minus entropy at one-digit 

section level:  
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where sl,it is the probability of a weighted patent being assigned to one of 122 classes. Related 

variety is constructed in a similar manner, where sm,it is the probability that a weighted patent 

is assigned to one of 629 subclasses. Formally,  
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Finally, as in CF&L, one control variable is included in the base model. R&D expenditures are 

a proxy of investment in innovation. R&D expenditures are measured in million purchasing 

power standards (PPS) at 2005 prices, to facilitate comparison between European regions. 

Missing values are filled in using linear interpolation to limit the loss of observations. 

Following CF&L, the regression equations are estimated using generalized linear models 

(GLM). Observations are pooled across states and years; all variables except the number of 

patents (a count) are standardized; one-year lags of independent variables are included because 

innovative output is related primarily to efforts made in the past; and a year variable is included 

to account for time trends. The hypotheses are tested using the following equations, which 

mirror equations (8) and (9) in CF&L: 

 

𝑁𝑈𝑀𝑃𝐴𝑇𝐸𝑁𝑇𝑆#$ = 𝛼A + 𝛽,A𝑈𝑉#,$D, + 𝛽5A𝑆𝑅𝑉#,$D,	+	𝛽EA𝑅𝑉#,$D, +	𝛾A𝑅𝐷#,$D,
+ 𝛿A𝒅 + 𝑣#$ 

(4) 

  

𝑆𝐻𝐴𝑅𝐸𝑆𝑈𝑃𝐸𝑅#$ = 𝛼L + 𝛽,L𝑈𝑉#,$D, + 𝛽5L𝑆𝑅𝑉#,$D,	+	𝛽EL𝑅𝑉#,$D, +	𝛾L𝑅𝐷#,$D,
+ 𝛿L𝒅 + 𝑣#$ 

(5) 

 

in which d is a vector containing country dummies and a time variable. Instead of country 

dummies, CF&L include individual dummy variables for each region to account for region-

specific time-invariant effects. Therefore 51 additional parameters, one for each state, have to 

be estimated. To apply the same method in this study would increase the number of dummy 
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variables to 266, one for each NUTS-2 region. This greatly reduces the efficiency of the model, 

causing what is known as the incidental parameters problem (Lancaster, 2000; Greene, 2002). 

To mitigate this problem, country dummies are included in place of individual region dummies. 

Regions within a single country are part of the same institutional context and laws and will 

generally be characterised by a similar culture and attitude towards innovation. 

A negative binomial model is estimated for (4) since the number of patents is a count 

variable, and a linear model is estimated for equation (5). Finally, the models are estimated 

using robust standard errors.  

 

 

4. Descriptive statistics 

The following paragraphs discuss the descriptive statistics and how they compare to CF&L. 

Descriptions of the variables and the main statistics are presented in Table 1 on the next page, 

which compares to Table 1 in CF&L (p. 773). The analysis is carried out for 266 European 

NUTS-2 regions for the period of 2007 to 2013. Isolated overseas regions of Spain, France and 

Portugal are treated as outliers and are consequently dropped. In some cases, shares of superstar 

patents of 50% or higher are observed, resulting from regions producing only one or two 

patents in a given year, one of which is highly successful. These cases are Åland (Finland) in 

2013, Podlaskie (Poland) in 2009 and Sud-Muntenia (Romania) in 2007, and these 

observations are dropped. Finally, all observations with missing values for the number of 

patents were also dropped.  

The first dependent variable is the number of patents, which differs considerably between 

regions. There are regions which produce very few patents, such as Molise (Italy) and 

Yugoiztochen (Bulgaria). In other regions, many patents are applied each year. Top-patenting 

regions include the Parisian Region (France), Upper Bavaria (Germany) and Stuttgart 

(Germany). The number of patent applications varies from 0 in several years and regions to 

3278 in the Parisian Region in 2008. In CF&L, the difference between regions is larger, ranging 

from 12 to 15 404 patent applications. The top five patenting states in CF&L produce around 

45% of all patents in both 1977 and 1999. The top five patenting NUTS-2 regions in this study 

account for around 19% of all patents applied each year. Patent applications are more evenly 

spread across the 266 NUTS-2 regions compared to the 51 U.S. states in CF&L. Figure 1 on 

the next page maps the distribution of patent applications across the NUTS-2 regions in 2007. 
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A clear pattern emerges, with the highest number of patents concentrating in the Netherlands, 

Germany, Austria, Switzerland and Northern Italy. 

The share of superstar patents in 2007 is mapped in Figure 2 below. Comparing Figure 1 

and 2, regions with a high share of superstar patents do not correspond one-to-one with those 

with a high number of patents. Regions in Eastern Europe and Southern Italy that do not 

produce many patents, are among the regions that produce relatively most superstar patents. 

There are also regions, in example in the south east of Great Britain and in Belgium, that 

produce both a high number of patents and relatively many superstar patens. With the share of 

superstar patents ranging between 0% and 33.33%, differences between regions are larger 

compared to CF&L, where the share of superstar patents ranges from 2% to 7%.  

 

 

 

Variable Min Max Mean SD 

Number 
of patents 

Total number of patents applied in year t assigned 
to inventors located in the region 0 3278 229.60 390.31 

Share of 
superstar patents 

Share (%) of superstar patents in total patents in 
the region 0 33.33 3.31 3.51 

UV Entropy at the section (1-digit) level of the 
International Patent Classification (IPC) 0 2.06 1.68 0.33 

SRV Entropy at the class (3-digit) level of the IPC 
minus entropy at the section (1-digit) level 0 2.09 1.28 0.50 

RV Entropy at the subclass (4-digit) level of the IPC 
minus entropy at the class (3-digit) level 0 1.50 0.76 0.38 

RD Total R&D expenditures (in million PPS at 2005 
prices) 1444 15 568 883 1435 

Table 1: Variables (NUTS-2) 

  
Figure 1: Number of patents (NUTS-2, 2007)	 Figure 2: Share of superstar patens (NUTS-2, 2007) 
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For all three measures of variety, the minimum value of 0 is found for regions where few 

patents are applied, in which case all patents belong to the same section, class or subclass. 

Examples are Sud-Est (Romania), Extremadura (Spain) and Algarve (Portugal). The upper 

panel of Figure 3 on the next page maps unrelated variety in 2007. The maximum attainable 

value of UV is ln(8) = 2.08, so with a mean of 1.68, regions’ portfolio of patents were quite 

diversified across the broadly defined sections. The average unrelated variety shows a small 

increase over time, from 1.64 in 2007 to 1.68 in 2007. With respect to unrelated variety, the 

patterns identified here are similar to that of CF&L, with most regions being quite diversified 

across broadly defined categories. 

A map of semi-related variety is given in the middle panel of Figure 3. The pattern looks 

similar to that of unrelated variety, with the highest values in North West and Central Europe, 

intermediate values in North and South Europe and the lowest values in Eastern Europe. 

Between 2007 and 2013, the average semi-related variety increased slightly from 1.24 to 1.26. 

The maximum attainable value for semi-related variety is ln(122)-ln(8) = 2.72. With an average 

value of 1.28, variety at the class level is well below the maximum value. Patents seem to be 

concentrated in a number of technological classes within each section. 

Related variety decreased slightly from 0.77 in 2007 to 0.73 in 2013. The maximum 

attainable value for related variety is ln(629)-ln(122) = 1.64, and with an average of 0.76, 

patens are fairly unevenly spread across the 629 subclasses. A map is given in the lower panel 

Figure 3, and the pattern is similar to that of both unrelated and semi-related variety.  

As in CF&L, the coefficient of variation (the ratio of the standard deviation to the mean) 

increases with the level of detail at which variety is measured, indicating that there is more 

variation in the level of related variety between regions, than in the level of unrelated variety.  

The average R&D expenditures rose from 818 million PPS in 2007 to 941 million PPS in 

2013. Regions that spent most on R&D are located in North West and Central Europe, and 

along the Mediterranean coastlines of Italy, France and Spain. Regions in Eastern Europe have 

the lowest R&D expenditures. The Parisian Region in France invested most in R&D, with an 

average of 14 891 million PPS per year, more than 6000 million PPS more than the runner-up, 

the German region Stuttgart (on average 8704 million PPS per year). Regions with lowest R&D 

expenditures include Åland (Finland, 2.48 million PPS per year) and Severen Tsentralen 

(Bulgaria, 7.50 million PPS per year).  As in CF&L, large differences exist between the regions 

and average R&D spending grew over time.  
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Figure 3: Unrelated, semi-related and related variety (NUTS-2, 2007) 
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Table 2 above presents the correlation matrix (compare to Table 2 in CF&L, p. 775). In Figure 

1 and 2 the observed patterns for the number of patents and the measures of variety were 

similar. This is confirmed in the correlation matrix: the number of patents is positively and 

significantly related to R&D expenditures and all measures of variety. The number of patents 

and the share of superstar patents are not correlated, confirming the observation from Figures 

1 and 2 that they do not follow a similar pattern. The share of superstar patents in positively 

and significantly related to all three measures of variety, but not to R&D expenditures. The 

different measures of variety are positively and significantly correlated, in line with the 

observed patterns in Figure 3. 

Finally, the scatterplot in Figure 4 on the right shows how region averages of related and 

unrelated variety are positively related. This is line with CF&L, who find that an increase of 

0.1 in unrelated variety results in an average increase of 0.22 in related variety (see Figure 1 in 

CF&L, p. 774). The relationship does not appear to be linear here. High related variety is only 

observed in conjunction with high unrelated variety. Apparently, there are no regions which 

are specialized in one or few broadly 

defined sections and highly diversified 

within those sections. On the other hand, 

low related variety is found for both high 

and low values of unrelated variety, 

indicating that specialisation at subclass 

level is common for both regions highly 

diversified at the level of broadly 

defined sections, and regions which are 

specialized in one or few sections. 

 
 
 

 Number 
of patents 

Share of 
superstar patents RDt-1 UVt-1 SRVt-1 

Share of superstar patents -0.001     
RDt-1 0.877** 0.038    
UVt-1 0.262** 0.130** 0.254**   
SRVt-1 0.439** 0.070** 0.371** 0.716**  
RVt-1 0.606** 0.087** 0.0567** 0.558** 0.764** 

Table 2: Correlation matrix (NUTS-2) 
** significant at 5%  

 
Figure 4: Related vs. unrelated variety 
Dots represent year averages for each NUTS-2 region 
between 2007 and 2013.  
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5. Results  

The regression results for (4) and (5) are given in Table 3 below. Following CF&L, four nested 

models are estimated: the first includes only R&D expenditures; the second also incorporates 

the cluster dummies and time trend variable; the third is the full model and the fourth excludes 

semi-related variety. For ease of comparison, the results of CF&L are repeated in italics. Wald 

tests indicate that including the measures of variety in the third model significantly improves 

the fit of the model for both dependent variables. 

  

5.1 Number of patents 

The results for equation (4) are presented in the upper panel of Table 3. R&D expenditures 

have a positive and significant effect on the number of patents. Different to CF&L, the effect 

of R&D spending is robust to adding more explanatory variables to the model, although its 

magnitude decreases. At least between 2007 and 2013, higher spending on R&D increased the 

number of patents in the NUTS-2 regions. The coefficient for the time trend is negative and 

significant, indicating that in general, the number of patents decreased over time.  

The full model is represented by Model 3. The effects of the different types of variety are  

 Model 1  Model 2  Model 3  Model 4  

 CF&L NUTS-2  CF&L NUTS-2  CF&L NUTS-2  CF&L NUTS-2  

Dependent variable: number of patents    

RDt-1 0.910*** 1.334***  0.068 0.976***  0.087 0.496***  0.093 0.478***  

Country dummies    Yes Yes  Yes Yes  Yes Yes  

Time trend    0.301*** -0.028***  0.298*** -0.130***  0.303*** -0.117***  

UVt-1       -0.084 0.173***  -0.086 0.291***  

SRVt-1       -0.046 0.338***     

RVt-1       0.325** 0.480***  0.322** 0.624***  

N 877 1734  877 1734  877 1716  877 1716  

             

Dependent variable: share of superstar patents    

RDt-1 0.216*** 0.024**  0.167*** 0.051***  0.197*** 0.018*  0.210*** 0.019*  

Country dummies    Yes Yes  Yes Yes  Yes Yes  

Time trend    0.378*** 0.035***  0.334*** 0.018**  0.345*** 0.018**  

UVt-1       0.118*** 0.090***  0.117*** 0.088***  

SRVt-1       -0.103*** -0.006     

RVt-1       0.085 0.060*  0.078 0.057**  

N 877 1723  877 1723  877 1707  877 1707  

Table 3: Regression results (NUTS-2) 
* significant at 10%, ** significant at 5%, *** significant at 1% 
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all positive and significant at 1%. The hypothesis that related variety is positively associated 

with innovative output is therefore confirmed. Additionally, semi-related and unrelated variety 

are also positively associated with the number of patents. Since all variables are standardized, 

the magnitude of the effects can be compared easily. The effect of related variety is strongest, 

and the effect of semi-related variety is almost equally strong. The effect of unrelated variety 

is smaller: a coefficient of 0.173 compared to 0.480 for related variety. The results indicate that 

variety at all levels is related to a higher number of patents but that the effect is strongest for 

related and semi-related variety. If low variety at all levels is equated to strong specialisation 

(Aarstad, Kvitastein, & Jakobsen, 2016), then specialisation is negatively associated with 

innovative output. These results differ from CF&L, which only finds a positive and significant 

result for related variety. CF&L estimates a fourth model excluding semi-related variety to 

check the robustness of the results for related and unrelated variety. The same is done here and 

the results are presented in the last column of Table 3. Excluding semi-related variety does not 

affect the results for the other variables. 

 

5.2 Share of superstar patents 

The lower panel of Table 3 presents the results for equation (5). The effect of R&D 

expenditures on the share of superstar patents is positive and significant in all specifications, 

suggesting that R&D expenditures have a positive effect on the ability to produce radical 

innovations. The estimated effect of the time trend is also positive and significant in all 

specifications: the average share of superstar patents increased between 2007 and 2013. The 

coefficient for unrelated variety is positively related to the share of superstar patents, and highly 

significant at 1%, thereby confirming hypothesis 2. Additionally, an increase in related variety 

is associated with an increase in the share of superstar patents, while no significant effect is 

found for semi-related variety. The fourth model shows that when semi-related variety is left 

out of the equation, the results for the other variables are not affected. The results for the share 

of superstar patents are different from those of CF&L, which finds a negative and significant 

effect for semi-related variety, but none for related variety. The results suggest that in Europe, 

both related and unrelated variety contribute to the creation of breakthrough innovations, 

though the effect seems to be stronger for unrelated variety. 

 

6. Industrial versus technological variety  

So far, the measures of variety have been calculated using patent data. However, patent data 

only provides information on patentable, economically valuable inventions. Any variety 
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measure derived from patent data actually measures the variety of technologies. An alternative 

way to measure variety is to calculate it using the industrial classification of employment data. 

If variety based on patent data represents technological variety, then variety based on 

employment is the industrial variety. Intuitively, variety based on employment provides a more 

complete representation of the economic variety within regions, as it incorporates all economic 

activities present in the region and not just those industries that produce patentable 

technologies. Industrial variety measures not only the diversity of technologies, but also the 

variety of applied knowledge and skills in the region.  

The distinction between technological and industrial variety is not made explicitly in the 

related and unrelated variety literature. Most studies that examine the effects of variety on 

regional economies use industrial variety as explanatory variable, including Frenken et al. 

(2007), Bishop and Gripaios (2010) and Hartog, Boschma and Sotarauta (2012). In contrast, 

Tavassoli and Carbonara (2014), CF&L and Miguelez and Moreno (2018) use technological 

variety to study the effect of variety on regional innovative performance. 

To consider only technological variety as determinant of the innovative performance of 

regions underestimates the importance of applied skills and knowledge. By focussing solely on 

technological variety, implicitly it is assumed that only knowledge spillovers between 

patenting industries are relevant for innovation. The definition of Jacobs externalities, however, 

does not limit knowledge spillovers to high-patenting sectors. As defined in Frenken et al. 

(2007, p. 687), Jacobs externalities are external economies which are available to all firms in 

the region and arise from a diversity of sectors within the region. Indeed, as quoted in CF&L, 

Jacobs (1969, p. 59) notes that: 

 
“the greater the sheer numbers and varieties of divisions of labor already achieved in an economy, the 

greater the economy’s inherent capacity for adding still more kinds of goods and services. Also the 

possibilities increase for combining the existing divisions of labor in new ways.” 

 

Jacobs does not make a distinction between high-patenting, technology-intense sectors and 

other sectors. Instead, she views the variety of employment as an important driver of 

innovation. As innovation is conceptualized here as the recombination of existing technologies, 

the availability of technologies from related and unrelated sectors can be considered a 

prerequisite for innovation. This availability is captured by technological variety. However, to 

test whether Jacobs externalities are indeed positively associated with the number of patents 



17	
	

and the ability to produce superstar patents, it is more appropriate to use variety measures based 

on employment. In the remainder of this section, two additional hypotheses are tested: 

 

• Hypothesis 3: Regional related industrial variety is positively associated with regional 

inventive performance.  

• Hypothesis 4: Regional unrelated industrial variety is positively associated with the 

regional ability to produce breakthrough innovations.  

 

The measures of industrial variety used to test hypotheses 3 and 4 are provided by dr. N. 

Cortinovis. The measures are calculated using entropy statistics and the data is retrieved from 

the ORBIS database (for details, see Cortinovis & Van Oort, 2015). Unrelated industrial variety 

is defined as the variety between 21 broadly defined sections of the NACE industrial 

classification, while related industrial variety is defined as variety within those sections. This 

provides a strict definition of unrelated variety, as only sectors belonging to different broadly 

defined sections are considered unrelated. The definition of industrial related variety makes no 

distinction between semi-related and related variety, as was the case with technological variety. 

Both types of related variety are captured by the measure of industrial related variety. 

Correlation analysis reveals that the measures of technological and industrial variety are not 

strongly correlated, which confirms that they measure different underlying regional structures. 

The highest correlation (0.061) is found for technological and industrial unrelated variety. 

That technological and industrial variety are indeed different phenomena, can also be 

observed from the scatterplots presented in Figure 5 and 6 below. In both figures, the average 

technological variety is plotted on the y-axis and the industrial variety on the x-axis. In Figure 

5, high technological UV is matched by high industrial UV in a majority of the observations.  

  

Figure 5: Technological vs. industrial UV (NUTS-2)	 Figure 6: Technological vs. industrial RV (NUTS-2) 
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However, there are also observations with low technological UV and high industrial UV, or 

vice versa. The correlation between the two is 0.061 and significant at 5%. Figure 6 shows no 

clear pattern in the relationship between technological and industrial related variety, for which 

the correlation is -0.056 and significant at 5%. 

 The results for hypothesis 3 and 4 are presented in Model 5 in Table 4 below. For the 

number of patents, the estimated effects for R&D expenditures, the time trend and 

technological UV, SRV and RV do not differ considerably from those reported in Table 3. 

Additionally, the estimated coefficient for industrial related variety is positive and significant 

at 1%, thus confirming hypothesis 3. The magnitude of the effect is comparable to that of 

technological variety, indicating that both measures of variety are equally relevant for the 

number of patents. The results for hypothesis 4 are reported in the right column of Model 5. 

Again, the estimated coefficients for the time trend and technological UV, SRV and RV do not 

change when industrial unrelated variety is included in the model. However, the effect of R&D 

expenditures on the ability to produce breakthrough innovations is no longer significant when 

industrial unrelated variety is included in the model. The estimated effect of industrial unrelated 

variety is positive and significant at 5%, thus providing evidence to support hypothesis 4. The 

results suggest that not only a variety of related and unrelated technologies is relevant for 

innovation, but also a variety of applied skills and knowledge.  

 

 

 

 

 

 

 Model 5  

Dependent variable: Number of patents Share of superstar patents  

RDt-1 0.550*** 0.012  

Country dummies Yes Yes  

Time trend -0.109*** 0.016*  

UVt-1 0.170*** 0.086***  

SRVt-1 0.251*** 0.000  

RVt-1 0.430*** 0.060*  

Industrial UVt-1  0.056**  

Industrial RVt-1 0.410***   

N 1716 1707  

Table 4: Technological VS. industrial variety (NUTS-2) 
* significant at 10%, ** significant at 5%, *** significant at 1% 
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7. Robustness checks 
 

6.1 Spatial effects 

One concern with the analysis so far, and one that is also addressed in CF&L, is that the analysis 

does not account for spillover effects between regions. However, as with other economic 

activities, the innovation climate in one region is affected by that of its neighbours. As a 

robustness check, CF&L accounts for R&D expenditure spillovers. For each state, the sum the 

R&D efforts of neighbouring states is calculated and included as an additional explanatory 

variable in the model. A similar procedure is followed here. The R&D efforts of nearby regions 

are weighted using an inverse distance matrix, with a cut-off point at 300 km from the centre 

of the region. In previous research, R&D knowledge spillovers were found to occur within a 

300km radius (Bottazzi & Peri, 2003). Therefore, only regions within a 300km radius should 

be considered as neighbours (Cortinovis & Van Oort, 2015). The inverse of the distance 

between regions is taken to allow the strength of spillovers to decrease with distance. Finally, 

the matrix is row-standardized. The use of an inverse distance matrix is preferred over the 

contingency-based spatial weighting method used in CF&L, because European regions can 

differ substantially in terms of geographic size. At some places, knowledge may spill over 

several regional borders, while at others, it will not even be able to cross one region border. 

Furthermore, the presence of islands within the dataset limits the feasibility of contingency-

based spatial weighting. 

Model 6 in Table 5 on the next page presents the results for this first robustness check. 

The estimated coefficients for the number of patents do not differ strongly from those estimated 

in Models 3 and 5. R&D efforts in nearby regions is positively related to the number of patents, 

and the effect is highly significant at 1%. In terms of magnitude, the effect of own-region R&D 

expenditure is stronger compared to that of R&D expenditures of neighbouring regions: a 

coefficient of 0.551 compared to 0.107 for RD(neighbours). No significant effect was found 

for the R&D expenditures of neighbouring regions on the share of superstar patents, while the 

effects for the other variables remain comparable to those of Models 3 and 5. Apparently, 

investments in innovation made in neighbouring regions do not affect the own region’s ability 

to produce radical innovations.   
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 Model 6 Model 7 Model 8 

Dependent variable: number of patents 

RDt-1 0.551*** 0.536***  

RD(neighbours)t-1 0.107*** 0.114***  

Researcherst-1   0.579*** 

Res(neighbours)t-1   0.109*** 

Pop. Densityt-1  0.083*** 0.058*** 

Country dummies Yes Yes Yes 

Time trend -0.116*** -0.114*** -0.110*** 

UVt-1 0.177*** 0.175*** 0.124*** 

SRVt-1 0.249*** 0.246*** 0.249*** 

RVt-1 0.425*** 0.421*** 0.408*** 

Industrial RVt-1 0.395*** 0.406*** 0.484*** 

N 1716 1710 1686 

    

Dependent variable: share of superstar patents  

RDt-1 0.012 0.011  

RD(neighbours)t-1 0.005 0.005  

Researcherst-1   0.027** 

Res(neighbours)t-1   0.014 

Pop. Densityt-1  0.009 0.003 

Country dummies Yes Yes Yes 

Time trend 0.016* 0.017* 0.016* 

UVt-1 0.086*** 0.086*** 0.085*** 

SRVt-1 0.000 -0.001 0.008 

RVt-1 0.059* 0.059** 0.049 

Industrial UVt-1 0.057** 0.057* 0.056* 

N 1707 1701 1677 

Table 5: Robustness checks (NUTS-2): spatial effects, 
urbanization economies, inputs for innovation. 
* significant at 10%, ** significant at 5%, *** significant at 1% 

 

 

6.2 Urbanization economies 

A second potential issue concerns the effect of urbanization economies, which has thus far 

been omitted from the analysis. Densely populated urban areas provide additional benefits to 

firms because cities are home to universities, research laboratories, trade associations and other 

knowledge generating institutions, which in turn give rise to a social, political and cultural 

environment that facilitates knowledge spillovers (Frenken et al., 2007). Moreover, the cultural 

and creative sectors which are present primarily in urban areas, might accelerate the generation 
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of breakthrough innovations, as the creative atmosphere facilitates the recombination of 

previously unrelated technologies. Therefore, urbanization economies likely affect the 

innovation output of regions, in terms of the number of patents but especially concerning the 

share of superstar patents. As a second robustness check, a measure of urbanization economies 

is included in the model. Urbanization economies are approximated by population density, 

measured as inhabitants per square kilometre. The data is collected from the Eurostat regional 

database. 

The results are presented in Model 7 of Table 5. Population density is positively and 

significantly associated with the number of patents but not to the share of superstar patents. 

The results for the other variables do not change in sign, significance or relative magnitude. 

The conclusions with respect to hypotheses 1-4 drawn earlier are robust to including 

urbanization effects and additionally it is found that urbanization economies are conductive of 

incremental innovation. 

 

6.3 Inputs for innovation  

A third way to test the robustness of the results is to define the main input for innovation 

differently. In the models estimated above, this input is defined as R&D expenditures in million 

PPS at 2005 prices. An alternative is to define it in terms of human capital. The employment 

of researchers in the region, measured in full-time equivalents (FTEs) is used as alternative 

measure in Model 8 in Table 5. The data is also from the Eurostat regional database. The 

employment of researchers in the own region has a positive and significant effect on both the 

number of patents and the share of superstar patents, though the effect is stronger for the first. 

The employment of researchers in neighbouring regions also positively affects the number of 

patents in the own region, though own-region employment is more important. In comparison 

to earlier models, the effect of related variety on the share of superstar patents turns 

insignificant when replacing R&D expenditures by the employment of researchers. This 

somewhat weakens the evidence that related variety is also relevant for breakthrough 

innovations, which was concluded earlier.  The main conclusions regarding the hypotheses do 

remain valid.  

 

6.4 NUTS-1 regions 

As a fourth and final robustness check, the analysis is repeated almost completely at a larger 

geographical unit of analysis. So far, the analysis in this paper was carried out at NUTS-2 level. 

The NUTS classification is a hierarchical system that divides the economic territory of the 
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European Union in comparable regions, with the purpose of facilitating socio-economic 

analysis. At NUTS-1 level, the population size of regions is between 3 and 7 million and at 

NUTS-2 between 800 000 and 3 million. For the analysis of regions, NUTS-1 correspond to 

major socio-economic regions, while NUTS-2 regions are the basic regions for the application 

of regional policies (Eurostat, sd). This provides the rationale for using NUTS-2 regions for 

the main analysis in this paper. However, which level is most relevant for regional innovation 

strategies differs per country. In any case, even if regional policies are applied at NUTS-2 level, 

harmonising strategies at over a larger area is likely to improve their effectiveness. The analysis 

is repeated at NUTS-1 level to check whether the conclusions also hold at a larger geographical 

scale. 

The results for the full model at NUTS-1 are presented in Model 9 in Table 6 on the next 

page, while Models 10-12 present several robustness checks. Due to data limitations, industrial 

variety is not included at NUTS-1 level. Descriptive statistics are presented in Appendix II. 

The results of the analysis at NUTS-1 level do not change the conclusions regarding hypotheses 

1 and 2, while hypotheses 3 and 4 are not tested here. For larger geographical regions, related 

variety is also positively and significantly associated with a higher number of patents and 

unrelated variety to the share of superstar patents. As before, R&D expenditures in the own 

region is positively related to the number of patents, but not to breakthrough innovations. In 

contrast to NUTS-2 regions, the R&D expenditures in neighbouring NUTS-1 regions do not 

affect the number of patents in the own region. Perhaps this can be explained by the 

geographical size of NUTS-1 regions, which may generally be too large to facilitate meaningful 

knowledge spillovers across borders. Urbanization economies, as approximated by population 

density, have a significant positive effect on the share of superstar patents, but not on the 

number of patents. When the main input for innovation is defined in terms of the employment 

of researchers in Model 12, the estimated effect for population density on the number of patents 

turns significant, therefore no definitive conclusions can be drawn with respect to population 

density and the number of patents. 
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 Model 9 Model 10 Model 11 Model 12 

Dependent variable: number of patents 

RDt-1 0.589*** 0.592*** 0.591***  

RD(neighbours)t-1  -0.015 -0.016  

Researcherst-1    0.657*** 

Res(neighbours)t-1    -0.020 

Pop. Densityt-1   -0.016 -0.052*** 

Country dummies Yes Yes Yes Yes 

Time trend -0.132*** -0.131*** -0.131*** -0.128*** 

UVt-1 0.118** 0.118** 0.119** 0.090*** 

SRVt-1 0.344*** 0.345*** 0.338*** 0.339*** 

RVt-1 0.566*** 0.566*** 0.571*** 0.513*** 

N 660 660 660 660 

     

Dependent variable: share of superstar patents 

RDt-1 -0.009 -0.013 -0.012  

RD(neighbours)t-1  0.017 0.019  

Researcherst-1    0.017 

Res(neighbours)t-1    0.009 

Pop. Densityt-1   0.050*** 0.049*** 

Country dummies Yes Yes Yes Yes 

Time trend 0.037* 0.036* 0.035* 0.036* 

UVt-1 0.137*** 0.138*** 0.135*** 0.137*** 

SRVt-1 -0.199 -0.201 -0.181 -0.179 

RVt-1 0.144* 0.144** 0.130** 0.105 

N 657 657 657 657 

Table 6: Full model and robustness checks (NUTS-1) 
* significant at 10%, ** significant at 5%, *** significant at 1% 

 

 

6. Final remarks 

The analysis in this paper confirms the findings of CF&L for a different geographical area and 

time period. For European regions, related variety is found to be positively associated with 

innovative output and unrelated variety with the ability to produce breakthrough innovations. 

While the focus of CF&L and the first part of this paper is on technological variety, the second 

part of this paper highlights the difference between technological and industrial variety. Not 

only a variety of patentable technologies, but also variety in a broader sense – including applied 

skills and knowledge – is found to be relevant for the innovativeness of regions. Future research 
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might try to disentangle the effects of technological and industrial variety and examine more 

closely how variety and knowledge spillovers affect innovation. 

While the previous section addresses several concerns with the analysis presented in this 

paper, other issues are not tackled. First, even though some spatial effects were considered in 

section 7, the analysis does not constitute a true spatial model. Important spatial 

interdependencies might therefore be overlooked, while these may be highly relevant for 

regions in a globalised world, perhaps even more so for smaller European regions than for large 

U.S. states. Second, endogeneity issues likely occur because the main dependent and 

independent variables are calculated from the same patent data. As a related issue, a selection 

bias occurs since only regions with at least one patent application are included in the analysis. 

Consequently, the estimated coefficients are conditional upon regions producing at least one 

patent in a given time period. Third, the measurement of superstar patents in this paper differs 

from that used in CF&L. While the two methods of identifying superstar patents are not likely 

to result in highly divergent sets of superstar patents, this does somewhat limit the 

comparability of the results. Finally, reverse causality may occur because patent-intensive 

regions might be more attractive for locating new businesses and institutions in related fields, 

so that a high number of patents may increase the relayed variety in a region. The same holds 

for regions with a high number of superstar patents, which may increase the attractiveness of 

regions to such an extent that even completely unrelated industries settle in the region, thus 

increasing unrelated variety.  

As for regional innovation strategies, the results suggest that not specialisation, but 

diversification is key to improving innovative performance. Under mild specialisation policies, 

innovative activity might be sustained in the short term as related variety stimulates 

incremental and process innovations. However, in the long term, breakthrough innovations are 

necessary to prevent regional lock-in in old industries, which tend to be replaced by new 

industries over time. These breakthrough innovations are strongly associated with unrelated 

variety. The results provide clear policy recommendations. A national strategy of 

diversification with regional specialisation might be feasible for smaller countries such as the 

Netherlands, as knowledge spills over only within a 300km radius. On the other hand, larger 

countries should guard a minimum level of diversification within regions to ensure sufficient 

levels of knowledge spillovers between related and unrelated industries. 
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Appendix I: List of NUST-2 regions 

 

Regions are classified according to the 2013 NUTS classification. As described in the main 

body of the text, outlier observations were dropped, as well as observations with missing values 

for the dependent variables, and the isolated overseas regions of Portugal, Spain and France.  

 

Country NUTS-2 regions 

Austria AT11, AT12, AT13, AT21, AT22, AT31, AT32, AT33, AT34 

Belgium BE10, BE21, BE22, BE23, BE24, BE25, BE31, BE32, BE33, BE34, BE35 

Bulgaria BG31, BG32, BG33, BG34, BG41, BG42 

Croatia HR03, HR04 

Cyprus CY00, CY01 

Czech Republic CZ01, CZ02, CZ03, CZ04, CZ05, CZ06, CZ07, CZ08 

Denmark  DK01, DK02, DK03, DK04, DK05 

Estonia EE00 

Finland FI19, FI1B, FI1C, FI1D, FI20 

France FR10, FR21, FR22, FR23, FR24, FR25, FR26, FR30, FR41, FR42, FR43, 

FR51, FR52, FR53, FR61, FR62, FR63, FR71, FR72, FR81, FR82, FR83 

Germany DE11, DE12, DE13, DE14, DE21, DE22, DE23, DE24, DE25, DE26, DE27, 

DE30, DE40, DE50, DE60, DE71, DE72, DE73, DE80, DE91, DE92, DE93, 

DE94, DEA1, DEA2, DEA3, DEA4, DEA5, DEB1, DEB2, DEB3, DEC0, 

DED2, DED4, DED5, DEE0, DEF0, DEG0 

Greece EL30, EL42, EL43 

Hungary HU10, HU21, HU22, HU23, HU31, HU32, HU33 

Ireland IE01, IE02 

Italy ITC1, ITC2, ITC3, ITC4, ITF1, ITF2, ITF3, ITF4, ITF5, ITF6, ITG1, ITG2, 

ITH1, ITH2, ITH3, ITH4, ITH5, ITI1, ITI2, ITI3, ITI4 

Latvia LV00 

Lithuania LT00 

Luxembourg LU00 

Malta MT00 
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Netherlands NL11, NL12, NL13, NL21, NL22, NL23, NL31, NL32, NL33, NL34, NL41, 

NL42 

Norway NO01, NO02, NO03, NO04, NO05, NO06, NO07 

Poland PL11, PL12, PL21, PL22, PL31, PL32, PL33, PL34, PL41, PL42, PL43, PL51, 

PL52, PL61, PL62, PL63 

Portugal PT11, PT15, PT16, PT17, PT18  

Romania RO11, RO12, RO21, RO22, RO31, RO32, RO41, RO42 

Slovakia SK01, SK02, SK03, SK04 

Spain ES11, ES12, ES13, ES21, ES22, ES23, ES24, ES30, ES41, ES42, ES43, ES51, 

ES52, ES53, ES61, ES62 

Sweden  SE11, SE12, SE21, SE22, SE23, SE31, SE32, SE33 

Switzerland CH01, CH02, CH03, CH04, CH05, H06, CH07 

United Kingdom UKC1, UKC2, UKD1, UKD2, UKD3, UKD4, UKD5, UKD6, UKD7, UKE1, 

UKE2, UKE3, UKE4, UKF1, UKF2, UKF3, UKG1, UKG2, UKG3, UKH1, 

UKH2, UKH3, UKJ1, UKJ2, UKJ3, UKJ4, UKK1, UKK2, UKK3, UKK4, 

UKL1, UKL2, UKM2, UKM3, UKM5, UKM6, UKN0 
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Appendix II: Descriptive statistics at NUTS-1 	

 

The main analysis in this paper is carried out for NUTS-2 regions. According to Eurostat, 

NUTS-2 regions are the basic regions for the application of regional policies, while NUTS-1 

regions constitute major socio-economic regions (Eurostat). Given the wide variety of 

institutional structures in Europe, the relevant region size for regional policies might vary per 

country. Therefore, the analysis is repeated in total at NUTS-1 level. The results of are 

discussed in the main body of the text. Table II-1 summarize the descriptive statistics; Table 

II-2 presents the correlation matrix; Figures II-1 to II-5 present maps of the dependent and main 

independent variables; Figure II-6 presents a scatterplot of region averages of related and 

unrelated variety.  

 
 

 
 
 

 Number 
of patents 

Share of 
superstar patents RDt-1 UVt-1 SRVt-1 

Share of superstar patents -0.026     
RDt-1 0.900** 0.000    
UVt-1 0.237** 0.083** 0.299**   
SRVt-1 0.445** 0.015 0.476** 0.748**  
RVt-1 0.585** 0.092 0.656** 0.609** 0.809** 

Table II-2: Correlation matrix at NUTS-1 
* significant at 5%  

 
 

Variable Min Max Mean SD 

Number 
of patents 

Total number of patents applied in year t assigned 
to inventors located in the region 0 6548 630.25 1052.47 

Share of 
superstar patents 

Share (%) of superstar patents in total patents in 
the region 0 100 3.57 5.03 

UV Entropy at the section (1-digit) level of the 
International Patent Classification (IPC) 0 2.01 1.77 0.27 

SRV Entropy at the class (3-digit) level of the IPC 
minus entropy at the section (1-digit) level 0 2.10 1.44 0.46 

RV Entropy at the subclass (4-digit) level of the IPC 
minus entropy at the class (3-digit) level 0 1.57 0.94 0.39 

RD Total R&D expenditures (per million euros) 1 17 813 2314 2913 

Table II-1: Descriptive statistics at NUTS-1 (N=669) 
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Figure II-1: Number of patents (NUTS-1, 2007) 
 
 

Figure II-2: Share of superstar patents (NUTS-1, 2007) 

  
Figure II-3: Unrelated variety (NUTS-1, 2007) 
 
 

Figure II-4: Semi-related variety (NUTS-1, 2007) 

  
Figure II-5: Related variety (NUTS-1, 2007) Figure II-6: Related (RV) versus unrelated (UV) variety.  

Dots represent year averages for each NUTS-1 region 
between 2007 and 2013. 

 


