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Abstract

Recently, promising new methods based on Machine Learning (ML) have been introduced to
conduct causal inference, see for an overview Section 4 of Athey (2017). These methods can pick
up complex and high-dimensional nuisance relationships such that they improve plausibility of the
widely used unconfoundedness and IV assumptions that identify causal effects. Accordingly, causal
inference might become more credible than with established methods like difference-in-difference,
OLS, fixed effects or two stage least squares estimation. However, the merits of these new methods
in empirical applications have not been studied yet. The purpose of this paper is therefore to em-
ploy ML-based methods to conduct causal inference on the Average Treatment Effect (ATE) and on
Heterogeneous Treatment Effects (HTEs) by revisiting two well-known and well-cited applied papers.
We compare to the original results the new results from different ML-based causal inference methods
for the ATE (Double Machine Learning and Approximate Residual Balancing). We find that our
ML-based methods for the ATE give estimates that deviate from original ones. This implies that
these methods might improve causal inference from established methods to a great extent. Then, we
extend the original papers by applying different ML-based methods for HTEs (heterogeneous DML
and Causal Forests). This gives us additional relevant findings which could not have been obtained
with established causal inference techniques.

Keywords: Causal Inference, Machine Learning, Average Treatment Effect, Heterogeneous Treat-
ment Effects, Unconfoundedness, IV



1 Introduction

Causal inference has long been a challenging task in the economic literature. This stems from the limited
possibilities to conduct randomized controlled experiments, partly due to political or ethical reasons.
Hence, the applied economist has to rely mostly on observational data. Causal effect estimates can
still be obtained from observational data if we are willing to make identifying assumptions. For the
relationship between education and earnings, this is illustrated nicely by the famous study of Angrist
and Krueger (1991). They argue that variation in school start age due to season of birth together with
fixed compulsory schooling age by law generates a natural experiment. This natural experiment can in
turn be exploited to estimate the causal effect of education on earnings. Two widely used identifying
assumptions for causal inference are unconfoundedness and valid instrumental variables (IVs). Both
assumptions involve the relationships between other variables on the one hand and the causal variable
of interest and outcome variable on the other hand, which make causal effect estimates invalid if they
are not taken into account. These relationships are called nuisance or confounding relationships and the
invalidating effects on the causal effect estimate nuisance or confounding effects. Unconfoundedness states
that, when taking into account observed covariates by using a control specification of some functional
form, all confounding effects are captured. This basically means that there are only confounding effects
from observed variables. IVs capture possible confounding effects from unobserved variables as well when
they are valid, which mainly requires that they satisfy the exclusion assumption. This assumption states
that the IVs cannot determine the outcome other than through the causal variable, again after controlling
for observed covariates in some functional form.

Since the identifying assumptions cannot be tested empirically, their credibility in practice often
remains debatable. Recently, however, there has been considerable interest in applying Machine Learning
(ML) methods to causal inference, see Section 4 of Athey (2017). ML methods excel at using data to
select functional forms flexibly, by trading off regularization against overfitting. This enables them
to pick up arbitrary complex, possibly nonlinear nuisance relationships. ML methods can also handle
large amounts of covariates in an efficient manner, allowing the researcher to correct efficiently for high-
dimensional nuisance relationships. Therefore, in a setting where these complex or high-dimensional
nuisance relationships might be present, ML methods could be employed to improve credibility of the
unconfoundedness and exclusion assumptions, because they allow for fully flexible control specifications
instead of simple, linear control specifications.

However, directly applying ML in this complex or high-dimensional setting leads to biased causal effect
estimates with a slower than n−1/2 rate of convergence, where n denotes the sample size, as a result of
regularization and overfitting. For that reason, it is necessary to adapt ML methods to the particular
goal of causal inference. Different methods have been proposed recently depending on the target causal
parameter and identifying assumption. In this study, we focus on the average treatment effect (ATE)
and heterogeneous treatment effects (HTEs). The ATE gives the average causal effect of a treatment
over all observations. In contrast, HTEs indicate how the treatment effect varies across the covariates.
Hence, it provides more detailed information on the efficacy of the treatment for specific observations.

When estimating the ATE in the complex or high-dimensional setting, some ML-based methods seem
very promising (Athey et al., 2017). One of these methods is Double Machine Learning (DML; Cher-
nozhukov et al., 2016). DML allows the use of any consistent ML method with n−1/4 rate of convergence1

to estimate nuisance relationships and subsequently causal effects, under both unconfoundedness and IV-
identification. DML estimators have good statistical properties: they are asymptotically unbiased and
normally distributed with n−1/2 rate of convergence, enabling valid ATE inference. Another method
is Approximate Residual Balancing (ARB; Athey et al., 2016a), which offers a competitive alternative.
Contrary to DML, while showing similar statistical properties, ARB does not impose the need to estimate
conditional treatment probabilities consistently, implying that it performs well in situations with complex
treatment assignment relationships. This comes however at the cost of additional linearity assumptions
of which the most important is a linear, sparse relationship between covariates and the outcome. Primar-
ily regularized regression methods are suitable to estimate such an outcome model. Moreover, ARB is
customized to ATE estimation of a binary treatment under unconfoundedness, indicating that it cannot
be applied as widely as DML.

1Examples of ML methods that can be used are random forests, neural networks and the LASSO
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When estimating HTEs in the complex or high-dimensional setting, Chernozhukov et al. (2017) ad-
vocate to adjust DML by replacing OLS with the LASSO for final causal effect estimation. This enables
estimation of a larger amount of heterogeneous treatment variables, while the use of any well-performing
ML method to estimate the nuisance relationships remains possible. They derive new statistical proper-
ties that enable valid HTE inference, under the assumption of sparsity of the HTEs. The heterogeneous
DML method is suitable for HTE inference under unconfoundedness, excluding identification via IVs. As
opposed to heterogeneous DML, the Causal Forest (Wager and Athey, 2017) does not rely on any form
of sparsity of the HTEs. Generic statistical properties from the generalized random forest framework
(Athey et al., 2016b) permit valid HTE inference, under both unconfoundedness and IV-identification.
Causal Forests build on the traditional random forests, but interpret them as nearest neighbor estimator
instead and use different trees that are specifically designed for causal effect heterogeneity.

By applying these new methods instead of established methods such as difference-in-difference, OLS,
fixed effect or two stage least squares estimation, we expect to improve causal estimates. Nevertheless,
to the best of our knowledge, there are not many economic studies examining the merits of these new
approaches in empirical applications. For the ATE, we found only the short estimation exercise on heart
catherization data from Athey et al. (2017) that involves both DML and ARB. Separate applications of
DML and ARB are presented in the original papers, where Chernozhukov et al. (2016) revisit three empir-
ical applications, for instance IV-estimation of the causal effect of institutions on economic performance,
following Acemoglu et al. (2001). Athey et al. (2016a) reexamine the efficacy of a welfare-to-work pro-
gram, following Hotz et al. (2006). For HTEs, there do not exist any joint applications of heterogeneous
DML and the Causal Forest at all. Again, we do find some separate applications, with Chernozhukov
et al. (2017) applying heterogeneous DML to estimate demand elasticities for a major wholesale food
distributor. Athey et al. (2016b) apply Causal Forests to see how the treatment effect of women’s child-
rearing on labor market participation varies with selected covariates, including the mother’s age and the
father’s income.

Thus, in this study, we examine what modified and extra insights we can get from applying the
ML-based causal inference methods instead of established methods in empirical applications. In order
to achieve that, we revisit two applied papers from the literature that match the complex or high-
dimensional setting. The first paper from DellaVigna and Kaplan (2007) estimates the causal effect of
the introduction of the Fox News channel on the Republican vote share in the 2000 U.S. presidential
elections by assuming unconfoundedness. The second paper from Nunn (2007) estimates the causal effect
of contract enforcement quality on trade flows by using IVs. Both papers focus primarily on estimation
of the ATE. In the context of these papers, we implement the ML-based causal inference methods from
Chernozhukov et al. (2016; DML), Athey et al. (2016a; ARB), Chernozhukov et al. (2017; heterogeneous
DML) and Athey et al. (2016b; Causal Forests) using the original ML methods proposed in these four
papers, but also an additional established ML method: Support Vector Machines. Our purpose is fourfold:
firstly we assess whether DML and/or ARB change substantive conclusions from the original papers and
if yes what the implications of these changes are. Secondly, we inspect if DML and ARB agree and
if not what factors explain the difference. Thirdly, we investigate what additional substantive insights
we get by applying heterogeneous DML and Causal Forests to find HTEs. Fourthly, we examine if the
heterogeneous DML and Causal Forest produce similar estimates and if not what the source of differences
is.

For ATE estimation under unconfoundedness, we find that DML estimates exceed the original OLS
estimates, with both our main and dynamic specification controls. Further inspection suggests that this
increase could be due to nonlinear confounding relationships that happen to be present and are captured
with DML. The DML estimates are in line with original estimates that use controls and employ fixed
effects and/or data weighting in the main specification, but they are larger than most of these estimates in
the dynamic specification. DML seems to strengthen the original results for a significant positive causal
effect here. Under IV-identification, we find that DML estimates correspond to a positive reverse causal
effect for the relationship between contract enforcement and trade flows. This agrees with intuition, in
contrast to the negative reverse causal effect from original IV estimates. DML possibly makes the exclu-
sion assumption more plausible here. Next, for ATE estimation under unconfoundedness with ARB, we
also find larger estimates than original OLS in some cases, suggesting that taking into account nonlinear
confounding indeed increases the estimates. DML and ARB agree in the main specification but disagree
in the dynamic specification. The latter might reflect the difference between finite sample and asymptotic
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optimality when controlling for confounding. For HTE estimation under unconfoundedness, we find some
similarities between heterogeneous DML and the Causal Forest. Extra substantive findings agreed upon
by both methods are that the largest effects of Fox News channel availability on the Republican vote
share in 2000 occur in New York (0.8− 1.1%), Michigan (0.7− 0.8%) and Wyoming, while in Wisconsin
there is a small effect. For HTE estimation with IVs, we conclude from Causal Forest estimates that the
influence of vertical integration on the relationship between contract enforcement and trade flows might
not be as strong as originally thought.

This paper is organized as follows. In Section 2, we give an overview of the literature on causal
inference on the ATE and HTEs, under unconfoundedness and IV-identification. Readers already familiar
with this well-known literature could skip this section. In Section 3, we start with discussing the DML
and ARB methods, after which we elaborate on heterogeneous DML and the Causal Forest. In Section
4, we present the revisited papers and their data. We also motivate why specifically for these papers
ML-based methods might be useful and could give additional insights for causal inference. In Section 5,
we present our results for ATE estimation with DML and ARB. We also compare our results across DML
and ARB as well as to the original results here. In Section 6, we discuss our additional findings from
HTE estimation with heterogeneous DML and Causal Forests and compare them. We also motivate the
relevance of the HTE estimates there. Finally, in Section 7, we conclude the research.

2 Literature review

For ATE estimation under unconfoundedness, the generally accepted framework is the potential outcomes
model (Neyman, 1923; Rubin, 1974) postulating the potential outcomes Yi(1) and Yi(0) which represent
the outcomes for observation i if treated or not treated, respectively. Only one of these outcomes is
observed in practice. An additional important concept is the conditional probability of treatment given
the covariates, or propensity score e(Xi). Furthermore, the traditional literature not involving ML
focuses on semiparametric or even nonparametric models for these quantities, although parametric models
were considered in earlier work. This is partly due to the groundbreaking paper of LaLonde (1986),
who concludes that parametric econometric estimates do not replicate experimental findings, implying
substantial specification error in more complex settings.

Traditional estimators for the ATE under unconfoundedness can be divided into several classes (Im-
bens and Wooldridge, 2009), each controlling differently for covariates. Regression methods estimate
regression functions for the conditional expectations of the potential outcomes E[Y (1)|Xi = x] and
E[Y (0)|Xi = x], see for instance the global smoothing method of Hahn (1998). Next, propensity score
methods build on a result of Rosenbaum and Rubin (1983) suggesting that under unconfoundedness,
it is sufficient to correct solely for differences in propensity scores instead of differences in all the co-
variates. An example is Inverse Probability Weighting (IPW; Hirano et al., 2003), where propensity
scores serve as weights when estimating E[Y (1)|Xi = x] and E[Y (0)|Xi = x] as weighted average of the
treatment and control group observations. Further, matching methods estimate the missing potential
outcomes using observed outcomes of a few nearest neighbors of the opposite treatment group, where
distance is measured as similarity in terms of the covariates. See for instance Abadie and Imbens (2006),
who propose a matching estimator and derive its large sample properties. From all previously discussed
classes of methods, we obtain estimators that are asymptotically efficient. Therefore, if we have a large
sample size relative to the number of covariates and we apply suitable nonparametric estimators, they
theoretically perform well. However, a consistent finding from the literature is that the best methods in
practice involve both conditional expectation and propensity score estimation (Athey et al., 2017). Such
doubly robust methods rely only on consistent estimation of either the conditional expectations or the
propensity scores, hence removing sensitivity to misspecification. A fundamental doubly robust method
is Augmented Inverse Propensity Weighting (AIPW; Robins et al., 1994).

The previous methods all assume that we have a small, fixed number of covariates. Conversely, the
targeted maximum likelihood methods as described by Van Der Laan and Rubin (2006) estimate a low-
dimensional parameter, in our case the ATE, when nuisance parameters that are used to control for
covariates are high-dimensional. The methods (iteratively) perform maximum likelihood estimation in
a least favorable direction, leading to a locally efficient estimator of the parameter of interest. One of
the advantages is that likelihood cross-validation can be used to estimate the nuisance parameters. This
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allows the use of flexible methods with less well established properties for nuisance parameter estimation.
Recent advances show that ML methods also yield great improvement compared to traditional meth-

ods, when covariates are high-dimensional (Athey, 2017). Early cases used ML in a sparse setting: a lot
of covariates are included but only a small number of them are relevant. An often used ML method in
this setting is the LASSO (a form of regularized regression). However, if the LASSO is used directly in a
regression of the outcome on both the treatment variable and covariates, it produces a biased estimate of
the treatment effect (regularization bias, see Belloni et al., 2014). The reason is that the LASSO tends to
drop covariates with a small effect on the outcome but a large effect on the treatment, because it focuses
completely on prediction. Modifications are necessary here, such as the use of Neyman orthogonality as
proposed by Chernozhukov et al. (2015).

Modified methods along these lines do however all limit nuisance parameter complexity (as measured
by entropy growth), thereby placing strong restrictions on our models. Now, DML pragmatically avoids
these strong complexity restrictions by means of cross-fitting, following among others Belloni et al. (2012),
who use sample splitting to weaken sparsity conditions. Moreover, DML also uses Neyman orthogonality
to remove regularization bias. DML generalizes the method of Robinson (1988) to be able to apply any

consistent ML method with n−
1
4 rate of converge as estimator of the nuisance parameter. The reason

for this is that Robinson’s kernel regression breaks down in high-dimensional settings. Finally, DML is
doubly robust, hence it builds on ideas from the traditional literature as well.

The previously discussed ML-based methods all require estimation of the propensity score to elim-
inate regularization bias. However, in situations where we are willing to rely on linearity and sparsity
of the outcome model, we can circumvent this step. Accurately balancing the moments of the covariate
distributions across the treatment and control group is namely more important for finite sample perfor-
mance than modeling the propensity score well. For example, methods like IPW and AIPW can perform
poorly in finite samples if the propensity score comes very close to the boundaries of 0 and 1. Zubizarreta
(2015) points out that exact balance of the covariates is in general not possible in high dimensions, but
extends the idea to approximate balance. Next, the ARB method goes a step further by allowing for
valid inference on the ATE in high dimensions as well. ARB resembles AIPW computationally, but the
used weights and motivation for them are very different.

Next, for HTE estimation under unconfoundedness, only since recently data sets have been informative
enough for exploring heterogeneity in treatment effects. Early approaches employ for example matching
(see Lee, 2009), but analogous to traditional methods for inference on the ATE, these break down in
settings with high-dimensional covariates. As a consequence, ML based methods are proposed increasingly
for HTE estimation, too2. In the linear, sparse setting, Imai et al. (2013) and Tian et al. (2014) propose
LASSO-based methods. The heterogeneous DML method is derived in a general framework of high-
dimensional treatment variable estimation in a setting with high-dimensional nuisance parameters. The
framework lends itself perfectly to HTE estimation under sparsity, applying a version of the LASSO, too.

Other ML methods also give promising results in the context of HTEs. A simple approach is to
transform the data in order to apply standard ML methods, a path taken by many researchers in this
area (e.g. Dud́ık et al., 2011). There are however also adjustments to standard ML methods in order to
accommodate HTE estimation. Tree-based methods are for instance a natural means to divide treatment
effects in heterogeneous subgroups. Zeileis et al. (2008) develop a generic framework for estimating models
at the leaves of a tree. It incorporates HTE estimation, which uses a linear model with an intercept and
treatment indicator as leaf model. They also suggest to apply statistical tests instead of cross-validation
to decide when to prune the tree. In line with this, Su et al. (2009) propose to use a squared t-statistic to
test whether the ATE is equal in two potential leaves. However, Athey and Imbens (2016) argue that both
methods do not effectively combine goodness-of-fit improvement and the particular purpose of finding
heterogeneous treatment subgroups, hence they introduce causal trees. Causal trees can data-adaptively
determine heterogeneous subgroups without giving up on valid confidence intervals. This is achieved via
an honest approach that implements sample splitting. Causal trees compare favorably to other tree-based
methods; the only drawback is a loss of efficiency.

While causal trees provide subgroups with different treatment effects, they do not offer full non-
parametric specification of treatment heterogeneity. For this, forest-based algorithms seem to be most
suitable. Foster et al. (2011) apply standard regression forests to predict unobserved potential outcomes

2There is also research on targeted learning in this area, see for instance Rosenblum and van der Laan (2011)
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for HTE estimation. Additionally, Bayesian additive regression trees have been applied successfully to
obtain HTE estimates and posterior credible intervals via MCMC sampling (e.g. Green and Kern, 2012).
Nonetheless, although vital in practice, valid statistical results for inference are not given in these pa-
pers, as indicated by Wager and Athey (2017). This motivates them to develop Causal Forests and their
asymptotic theory, finding that Causal Forests dominate other forest-based methods in terms of bias
and variance. Athey et al. (2016b) reconsider Causal Forests in the generalized random forest frame-
work, thereby finding improved HTE estimation accuracy compared to the standard Causal Forest when
applying a preliminary orthogonalization step in the spirit of Robinson (1988).

Finally, for estimation of the ATE or HTEs with IVs, there are some semiparametric and nonpara-
metric methods that extend the traditional two-stage least squares (2SLS) estimator for more complex
settings. For example, Abadie (2003) consider semiparametric IV-estimation using kernel estimation.
Darolles et al. (2011) derive a nonparametric IV-estimator based on ridge regression. However, ap-
proaches based on ML often handle high-dimensional settings better, where dimensionality refers to the
control functions3; in contrast to the number of instruments. Gautier and Tsybakov (2011) consider
IV-estimation of the outcome equation in very high-dimensional sparse settings, where their motivational
examples of rich heterogeneity, many exogenous covariates due to nonlinearities and many control vari-
ables to justify the use of an instrument particularly resemble our setup. They propose the self tuning
instrumental variables estimator, which is related to versions of the LASSO. Valid confidence intervals
on endogenous variables, in our case the causal variable, can be obtained in this way if we assume
some upper bound on the number of controls with nonzero effect. Furthermore, in a similar setting but
without assuming sparsity, Hartford et al. (2017) propose DeepIV, applying deep neural networks for
IV-estimation. They decompose the analysis into a first step of modeling the conditional distribution
of the causal variable given the instruments and covariates, followed by minimization of a loss function
that is based on the first step conditional distribution. They also present a method for out of sample
causal validation of hyperparameters. DeepIV performs well relative to 2SLS and standard ML methods.
Obtaining valid confidence intervals is however more challenging with this method. Next, due to their
generality, i.e. they are specified in a GMM framework, we can apply DML and Causal Forests as well
for IV-estimation in this setting, without relying on sparsity.

3 Methodology

3.1 Average Treatment Effect

3.1.1 Double Machine Learning

Consider the setting with complex, that is nonlinear, and high-dimensional nuisance relationships. For-
mally, these relationships are modeled using so-called highly-complex nuisance parameters/functions,
which are functions of the covariates having an entropy that increases with the sample size. Here, ML
methods often do well in practice by striking a balance between regularization and overfitting. Regu-
larization reduces estimation variance in order to learn from the data in this setting, but it necessarily
induces a bias. Furthermore, data-driven model and parameter selection brings about overfitting with
respect to the particular data sample, resulting in bias as well. In a pure prediction context, these biases
do not matter because the one and only priority is out-of-sample predictive quality; which is optimized
by ML methods.

However, in the causal inference context, one does care about these biases because target treatment
parameters cannot be observed directly. In this context, one relies crucially on statistical properties of
the used estimator. Thus, the estimator obtained by directly plugging ML estimates for the nuisance
parameters into the estimating equations does not suffice here, because according to Chernozhukov et al.
(2016) it is biased and fails to be n−1/2 consistent.

DML removes the negative impact of ML on statistical properties of the causal effect estimator by
means of two ingredients: Neyman orthogonality and cross fitting. Firstly, Neyman orthogonality is a
property that is imposed on the moment conditions that are used for estimation, in order to reduce
their sensitivity to noisy nuisance parameter estimates. This in turn leads to removal of regularization

3Control functions are used here to correct for factors that relate to the instrument, treatment and outcome.
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bias. Secondly, sample splitting eliminates overfitting bias and ensures a favorable rate of convergence,
without requiring strong entropy growth restrictions. Cross fitting adds a follow up step in which the
roles of the splitted samples are swapped and the results averaged in order to regain efficiency. In turn,
we discuss both ingredients followed by the implied statistical properties, adopting the original notation
of Chernozhukov et al. (2016).

Before elaborating on Neyman orthogonality, we explain the DML estimation strategy and introduce
necessary concepts. The causal parameter of interest is θ0 ∈ Θ, which is assumed to satisfy the following
population moment conditions:

E[φ(Wi; θ0, η0)] = 0, (1)

where Wi is a random variable vector, η0 the true value of the highly-complex nuisance parameter η ∈ T
and φ = (φ1, . . . , φdθ )

′ a vector of known score functions φj : W × Θ × T → R, to be specified later
in this section. dθ denotes the fixed, low dimension of the causal variable of interest. A random data
sample {Wi}ni=1 is available. In the GMM framework, the sample analog of (1) is used for estimation.
For T̃ = {η − η0, η ∈ T}, the Gateaux derivative map Dr : T̃ → Rdθ is defined as follows:

Dr[η − η0] = ∂r

{
E
[
φ(Wi; θ0, η0 + r(η − η0)

]}
, η ∈ T,

for all r ∈ [0, 1). The Gateaux derivative indicates the change in value of the moment conditions due
to a size r deviation from the true nuisance function towards η. Furthermore, a nuisance realization
set Tn ⊆ T holds the nuisance parameters that are taken with high probability by estimators η̂0 of η0.
It is used to model that ML nuisance parameter estimates are approximately correct, but noisy due to
regularization.

Neyman orthogonality is defined as follows. The score φ is Neyman orthogonal at (θ0, η0) with respect
to Tn if (1) holds, the Gateaux derivative Dr[η − η0] exists for all r ∈ [0, 1) and η ∈ Tn and

D0[η − η0] = 0, for r = 0 and all η ∈ Tn. (2)

Intuitively, Neyman orthogonality means that the moment conditions for estimating θ0 are insensitive to
the value of the nuisance parameters in a small neighborhood around η0. This ensures that the moment
conditions continue to be valid if noisy ML estimates for the nuisance parameters are plugged in. Validity
of the moment conditions is key for obtaining desirable statistical properties for the GMM estimator.

Next, to reduce sensitivity to the particular estimation sample used for ML and overcome overfitting
bias, cross fitting is implemented with the following algorithm. The first step is to split the full sample by
taking a K-fold random partition {Ik}Kk=1 of the observation indices. For each fold k ∈ [K] = {1, . . . ,K},
let Ick = {1, . . . , n} \ Ik indicate the corresponding ML estimation sample. Then, in the second step, for
each k ∈ [K] a ML estimator of η0 is constructed based on different estimation samples:

η̂0,k = η̂0((Wi)i∈Ick). (3)

In the last step, the target parameter estimate θ̂0 is computed by solving the equation that follows from
the Neyman orthogonal score:

θ̂0 = arg minθ0

{∣∣∣∣∣
∣∣∣∣∣ 1n

K∑
k=1

∑
i∈Ik

φ(Wi; θ0, η̂0,k)

∣∣∣∣∣
∣∣∣∣∣
2

}
.

We directly pool the sample moment conditions over all folds here. There is also a version of DML where
the moment conditions are solved for each fold and aggregation is performed afterwards. The current
version is however more stable according to Chernozhukov et al. (2016). Finally, note that for larger
values of K, more observations are put in Ick and less in Ik such that there is more data to estimate the
nuisance parameters with ML but less data to estimate the causal effect with GMM. Since the first part
appears to be most difficult, we partly follow the recommendation of Chernozhukov et al. (2016) to use
a moderate value of K = 5. However, because higher K increases computation time and because the
estimates differ only slightly for different K in the empirical applications of Chernozhukov et al. (2016),
we mostly stick with the simple case of K = 2. We examine the impact of K in a sensitivity check.
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Chernozhukov et al. (2016) assume that certain regularity conditions regarding identification, the
score function and the quality of nuisance parameter estimates hold, including those requiring a crude
rate of convergence of n−1/4 for the ML methods. They then derive that:

√
nΣ−1/2(θ̂0 − θ0)→ N(0, Idθ ),

where the approximate variance Σ = (J−10 )E[φ(Wi; θ0, η0)φ(Wi; θ0, η0)′](J−10 )′. Hence, the desired n−1/2

rate of convergence is achieved and valid confidence intervals can be obtained if we have a consistent
variance estimate.

Under the previously discussed regularity conditions, there are variance estimates available that con-
centrate around the true variance. For that, we write the score functions as a linear function in θ:

φ(w; θ, η) = φ(w; η)aθ + φ(w; η)b

The expression for the variance estimates is in that case:

Σ̂ = (Ĵ−10 )
1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ̂0, η̂0,k)φ(Wi; θ̂0, η̂0,k)′(Ĵ−10 )′, (4)

with

Ĵ0 =
1

n

K∑
k=1

∑
i∈Ik

φ(Wi; η̂0,k)a.

To reduce the impact of random sample splits, the estimation procedure is repeated S times, obtaining
θ̂s0 and Σ̂s for s = 1, . . . , S. These are then aggregated to get point and variance estimates. In addition,
an estimate of the variance which includes variation induced by sample splitting can be computed. To be
more robust against outliers, we use the median for aggregation, which leads to the following expressions
for the point and variance estimates, respectively:

θ̂med0 = median{θ̂s0}Ss=1, Σ̂conv = median{Σ̂s}, Σ̂med = median{Σ̂s+(θ̂s0− θ̂med0 )(θ̂s0− θ̂med0 )′}Ss=1,

where the median is applied coordinatewise for θ̂med0 and where median corresponds to the matrix with

median operator norm for Σ̂conv and Σ̂med, which ensures non-negative definiteness. We refer to Σ̂conv

as conventional variance estimates and to Σ̂med as median variance estimates, where only the latter
incorporate variability induced by sample splitting. Due to computational limitations, we take half the
amount of random data splits from Chernozhukov et al. (2016), i.e. S = 50.

DML can be used in conjunction with several causal effect models. The implementation in each model
is characterized by a specific Neyman orthogonal score function. Firstly, we consider the Partially Linear
Regression (PLR) model (Robinson, 1988):

Yi = Diβ0 + g0(Xi) + Ui, E[Ui|Di, Xi] = 0 (5)

Di = m0(Xi) + Vi, E[Vi|Xi] = 0 (6)

where Yi is the scalar outcome variable, Di the scalar causal variable of interest, Xi = (Xi1, . . . , Xip)
′

a vector of covariates and Ui, Vi disturbances. The outcome equation (5) is the main equation and the
ATE equals β0 in this model. The treatment assignment equation (6) keeps track of confounding, with
the highly-complex nuisance function m0 : supp(Xi)→ (0, 1) denoting the influence of the covariates on
Di. The highly-complex nuisance function g0 : supp(Xi)→ R denotes the influence of the covariates on
Yi. For the PLR model, Chernozhukov et al. (2016) propose a Robinson (1988) style score function:

φ(Wi; θ0, η0) = {Yi − l0(Xi)− β0(Di −m0(Xi))}{Di −m0(Xi)},

where Wi = (Yi, Di, Xi), θ0 = β0 and η0 = (l0,m0). In addition, l0 = E[Y |X] and g0 = l0 − β0m0,
parametrizing g0 differently because l0 can be learned directly with ML, in contrast to g0. Solving the

implied moment conditions boils down to OLS of ̂̃Y i = Yi − l̂0(Xi) on ̂̃Di = Di − m̂0(Xi), i.e. OLS of

residualized Yi on residualized Di, to get the estimate β̂DML
0 in the PLR model. Calculating standard
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errors σ̂DML via (4) is in this model equivalent to calculating heteroscedasticity-consistent standard errors
with the residualized variables. Our derivations for these simpler forms are given in Section A.4 of the
Appendix.

Secondly, we examine the interactive regression model with fully heterogeneous causal effects:

Yi = g0(Di, Xi) + Ui, E[Ui|Di, Xi] = 0

Di = m0(Xi) + Vi, E[Vi|Xi] = 0

where Di ∈ {0, 1} now and where the highly-complex function g0 : (0, 1)× supp(Xi)→ R denotes the
joint influence of the causal variable and the covariates on Yi. The ATE is in this model defined by:

β0 = E[g0(1, Xi)− g0(0, Xi)].

For the interactive regression model, Chernozhukov et al. (2016) follow Robins and Rotnitzky (1995) by
suggesting the score function:

φ(Wi; θ0, η0) = ψ(Wi; η0)− β0
with

ψ(Wi; η0) = g0(1, Xi)− g0(0, Xi) +
Di{Yi − g0(1, Xi)}

m0(Xi)
− (1−Di){Yi − g0(0, Xi)}

1−m0(Xi)
,

and where Wi = (Yi, Di, Xi), θ0 = β0 and η0 = (g0,m0). Solving the associated moment conditions

yields β̂DML
0 equal to the mean of ψ(Wi; η0) over all observations, after trimming the propensity score

weights 1/m0(Xi) and 1/(1 − m0(Xi)) at (0.01, 0.99) to reduce their extreme impact on the estimate
(Chernozhukov et al., 2016). Computing the standard errors σ̂DML via (4) is in this model equivalent
to taking the standard deviation of ψ(Wi; η0) over all observations and dividing by

√
n. Our derivations

for these simpler forms are given in Section A.4 of the Appendix. In both the PLR and the interactive
regression model, DML relies on the unconfoundedness assumption to identify the ATE. This assumption
corresponds to the combination of E[Ui|Di, Xi] = 0 and E[Vi|Xi] = 0 in these models.

Thirdly, we consider the Partially Linear Instrumental Variable (PLIV) model:

Yi = Diβ0 + g0(Xi) + Ui, E[Ui|Zi, Xi] = 0

Zi = m0(Xi) + Vi, E[Vi|Xi] = 0

with Di the scalar causal variable, Zi a scalar instrumental variable and β0 the structural parameter of
interest. For the PLIV model, again a Robinson (1988) style score function is proposed:

φ(Wi; θ0, η0) = {Yi − l0(Xi)− β0(Di − r0(Xi))}{Zi −m0(Xi)},

where Wi = (Yi, Di, Xi), θ0 = β0 and η0 = (l0, r0,m0). Additionally, l0 = E[Y |X], r0 = E[D|X] and
g0 = l0 − β0r0, parametrizing g0 differently because l0 and r0 can be learned directly with ML. Solving
the corresponding moment conditions to compute β̂DML

0 boils down in this model to IV estimation of

Yi− l̂0(Xi) on Di−r̂0(Xi) using as instruments Zi−m̂0(Xi). That is, two stage least squares estimation of
residualized Yi on residualized Di using as instruments residualized Zi. Computing standard errors σ̂DML

via (4) is equivalent to computing heteroscedasticity-consistent IV standard errors with the residualized
variables. Our derivations for these simple forms are given in Section A.4 of the Appendix. DML relies
on IV to identify the causal parameter in the PLIV model. The exclusion restriction is imposed via the
combination E[Ui|Zi, Xi] = 0 and E[Vi|Xi] = 0 in this model. Finally, it can be verified for each of the
score functions that the moment conditions (1) and the Neyman orthogonality conditions (2) hold, see
Chernozhukov et al. (2016).

Regarding the ML submethods that are used to obtain the ML estimator η̂0,k in (3), we apply the
same methods as Chernozhukov et al. (2016): a regression tree, random forest, boosted regression tree,
neural network, the LASSO and the hybrid Best method. We do not consider the ensemble method
from Chernozhukov et al. (2016) because initial runs show that it greatly increases computation time.
Moreover, Chernozhukov et al. (2016) choose to use the LASSO, boosting, random forest and neural
network for the ensemble, but without clear motivation for these. Furthermore, we opt for the support
vector machine (SVM) as alternative ML submethod, since Smola and Schölkopf (2004) argue that
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excellent performance has been obtained in several empirical applications with SVMs, including some in
the context of regression and time-series analysis. By adding another ML submethod, we are able to test
the theory of Chernozhukov et al. (2016) stating that DML estimates from every sensible ML method of
estimating the nuisance function should be similar. In Section A.3 of the Appendix, we shortly discuss
each of these ML methods and the associated choice of tuning parameters.

3.1.2 Approximate Residual Balancing

Assuming unconfoundedness requires that we balance covariate distributions between the treatment and
control group in order to obtain valid causal effect estimates. Two distinct balancing approaches are
regression adjustments and weighting with weights based on the covariates. Either of the two gives
estimators with favorable properties in a low-dimensional setting. However, a consistent finding from the
literature is that both are required for n−1/2 consistency of the estimator in the high-dimensional setting.
The recurring issue is that ML, or more specifically regularized regression methods in this case, produce
regularization bias. Weighting then acts in the process of removing this bias; in other words, debiasing.

Doubly robust methods like DML implement the combination of regression adjustments and weighting
by using inverse propensity scores as weights. This builds on the early result of Rosenbaum and Rubin
(1983), who find that under unconfoundedness, controlling for the propensity score is asymptotically
sufficient to remove biases of any functional form related to observed covariates. Hence, these methods
always require a consistent propensity score model that converges fast enough to the truth. One might
wonder whether it is always possible to construct an accurate enough propensity score model and if yes
whether it is worth the effort, given that there is no guarantee that an accurate propensity score model
also yields good debiasing weights in finite samples.

Athey et al. (2016a) therefore intend to circumvent any propensity score modeling at all with ARB.
This comes at the cost of two additional linearity assumptions: a sparse, linear outcome model and
linear debiasing via weights. The key implication of using the linear outcome model is that we only
have to remove linear biases. Propensity score based weighting methods solve an unnecessary difficult
problem here by trying to remove biases of any functional form. Instead, ARB fully exploits the linearity
assumptions in order to derive weights that optimally trade off the implied balance and variance, achieving
at least approximate balance of the covariate distributions between the treatment and control group. This
turns out to be exactly sufficient to remove only the linear biases in the high-dimensional setting. All
in all, ARB consists of three steps. Firstly, a regularized regression model is fitted in the treatment and
control group separately, to capture strong causal effects. Secondly, the approximate balancing weights are
computed. Thirdly, the regularized regression results are debiased by adding their reweighted residuals,
using the approximate balancing weights. This ensures that remaining, small causal effects are captured.
Next, we discuss the linear outcome model assumption, the three steps of ARB and finally the statistical
properties.

Consider the outcome equation of the fully heterogeneous interactive regression model:

Yi = g0(Di, Xi) + Ui, E[Ui|Di, Xi] = 0

with ATE target parameter:

β0 = E[g0(1, Xi)− g0(0, Xi)].

In this model, the linear outcome equation assumption can be stated as follows:

µt(Xi) = g0(1, Xi) = X ′iβt

µc(Xi) = g0(0, Xi) = X ′iβc.

The ARB estimation strategy is to use an estimator of the form:

β̂0 = µ̂t − µ̂c =
(
X
′
β̂t +

∑
{i:Di=1}

γt,i(Yi −X ′iβ̂t)
)
−
(
X
′
β̂c +

∑
{i:Di=0}

γc,i(Yi −X ′iβ̂c)
)
, (7)

where X denotes the mean of Xi over all observations and where β̂t, β̂c denote coefficient estimates for the
linear regression of Yi on Xi for the treatment and control group separately, respectively. Furthermore,
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γt,i, γc,i correspond to the balancing weights for observation i for the treatment and control group,
respectively. In the first step of ARB, ML or more precisely regularized regression methods are used
to compute β̂t and β̂c, obtaining β̂Regt and β̂Regc . Regularized regression methods are suitable in the
high-dimensional setting due to their optimal tradeoff of regularization and overfitting.

In the second step, the vector of approximate balancing weights is calculated by using:

γAproxt = arg minγ̃

{
(1− ζ)||γ̃||22 + ζ||X −X ′tγ̃||2∞, s.t.

∑
{i:Di=1}

γ̃i = 1 and 0 ≤ γ̃i ≤ n−2/3t

}
,

with Xt the covariate matrix for the nt treatment group observations and ζ ∈ (0, 1) a tuning parameter
stating the importance of bias and variance. The expression for the control group weights γApproxc is
similar but with X ′c, nc substituted for X ′t, nt and summing over observations with Di = 0 instead of 1.
Here, Xc is the covariate matrix for the nc control group observations. The first term of the objective
function reflects the implied variance of estimators of the form (7), whereas the second term reflects
the implied covariate balance achieved by such estimators. Intuitively, the weights are constructed in
such a way that the mean of the reweighted treatment or control group observations X ′tγ̃ ,X ′cγ̃ match
the overall sample mean X as closely as possible, implying balanced covariate distributions between the
treatment and control group. The difference with the estimator of Zubizarreta (2015) is that ARB does
not constrain the implied balance term to be practically small, because this leads in general to infeasibility
in the high-dimensional setting. In the third step, the ARB estimate β̂ARB0 is computed by filling in the

abstract form (7), setting β̂t = β̂Regt , β̂c = β̂Regc and γt,i = γAproxt,i , γc,i = γAproxc,i .
For the statistical properties of the ARB estimator, Athey et al. (2016a) make the often used as-

sumptions of sparsity of the parameter vectors βt, βc and overlap, i.e. the treatment and control group
cannot be too dissimilar with respect to the covariate distribution. Under these assumptions, they derive
asymptotic distributions for µ̂t and µ̂c:

(µ̂t − µt)
/√

σ̂2
t → N(0, 1), with σ̂2

t =
∑

{i:Di=1}

(γAproxt,i )2(Yi −X ′iβ̂
Reg
t )2

(µ̂c − µc)
/√

σ̂2
c → N(0, 1), with σ̂2

c =
∑

{i:Di=0}

(γAproxc,i )2(Yi −X ′iβ̂Regc )2,

where σ̂2
t , σ̂

2
c are consistent variance estimates for µ̂t and µ̂c, respectively. In addition, conditional on Xi

and Di, µ̂t and µ̂c are independent. This suggests that (β̂ARB0 − β0)/σ̂ARB → N(0, 1), where (σ̂ARB)2 =
σ̂2
c + σ̂2

t . In the end, this result can be used to conduct inference on the ATE in the interactive regression
model using ARB. The achieved rate of convergence is n−1/2.

We adopt the suggestion of Athey et al. (2016a) to apply the LASSO and the elastic net as regularized
regression methods in step one. The elastic net offers additional stability compared to the LASSO with
respect to small changes in the data and is therefore suitable here. To be able to examine the impact
of using the elastic net instead of the LASSO well, we assign equal importance to ridge regression and
the LASSO within the elastic net. In Section A.3 of the Appendix, we describe our implementation of
the LASSO and elastic net for ARB in more detail. Further, we follow the recommendation of Athey
et al. (2016a) to set ζ = 0.5. We however also investigate the impact of a larger and smaller ζ by setting
ζ = 0.3 and ζ = 0.7.

A final note is that in practice, high-dimensionality of the covariate vector could occur for two reasons:
there is either a large number of covariates from the start or a small number of covariates but due to
including first, second and higher order interactions of the original covariates the dimensionality gets high.
In the latter case, the linear outcome model assumption is substituted for the assumption of a quadratic,
cubic, and higher order smooth outcome model4, as indicated by Athey et al. (2016a). This implies that
we can make the ARB estimates less sensitive to linearity by including higher order interactions. Due
to the sharp increase in computation time when including higher-order terms, we only add interactions
up to the first order (including squares) in our applications. We also discuss the difference between ARB
estimates that do not add any extra higher order terms (fully linear) and ARB estimates that do add
those terms (quadratic).

4Hirshberg and Wager (2017) show that the approximate balancing weights converge to the true inverse propensity
weights in that situation, indicating that there is an explicit connection with doubly robust methods like DML.
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3.2 Heterogeneous Treatment Effects

3.2.1 Heterogeneous Double Machine Learning

When estimating HTEs, the dimension of the treatment variable vector typically grows very large. Due
to the assumption of fixed treatment dimensionality dθ, original DML does not suffice here. Hence,
Chernozhukov et al. (2017) modify it to be applicable in situations with high-dimensional treatments,
assuming sparsity of the HTEs. Firstly, instead of residualizing each of the heterogeneous treatment
variables separately, they build on affine transformations of a single residualized base treatment variable,
to improve precision and save computation time. Secondly, where original DML applies OLS, they apply
the LASSO or a debiased version of the LASSO on the residualized variables to estimate the causal
parameters in the second stage. The LASSO is suitable for estimation, while the debiased LASSO also
enables asymptotically valid inference. We discuss the modifications in turn, followed by statistical
properties of the resulting estimators.

Consider the HTE model with modeled heterogeneity, which adjusts the PLR model in order to allow
for a vector causal variable of interest:

Yi = F ′iβ0 + g0(Xi, Hi) + Ui, E[Ui|Di, Xi, Hi] = 0

Fi = DiHi

Di = m0(Xi, Hi) + Vi, E[Vi|Xi, Hi] = 0

where β0 is a d×1 parameter vector holding HTEs and Hi ∈ {h1, . . . , hk} a d×1 vector of characteristics
that induces treatment heterogeneity by taking one of k prespecified values. The highly-complex nuisance
functions g0 : supp(Hi,Xi)→ R and m0 : supp(Hi,Xi)→ (0, 1) specify the joint influence of the covariates
and heterogeneity variables on Yi and Di, respectively.

There is a base treatment variable Di, but the final treatment is equal to Fi = DiHi. Chernozhukov
et al. (2017) show that in this case, the estimated base treatment variable can be used directly to construct

estimated final treatment. More specifically, F̂i = E[Fi|Xi, Hi] = Him̂0(Xi, Hi), so that ML methods
only need to be applied once to estimate the nuisance parameter, for Di, and not for all heterogeneous
treatments individually.

Given the estimated residuals ̂̃Y i = Yi− ĝ0(Xi) and ̂̃F i = Fi− F̂i, original DML applies OLS of ˆ̃Yi on
ˆ̃Fi in the second stage to estimate the causal parameter. However, when the dimension of the treatment
variable vector increases due to heterogeneity, one may improve on this orthogonal least squares by
using ML. Here, the same logic as for estimation of high-dimensional nuisance parameters is followed.
Chernozhukov et al. (2017) opt for the LASSO and refer to it as the orthogonal LASSO:

β̂OL0 = arg minθ0

{ n∑
i=1

( ̂̃Y i − ̂̃F ′iθ0)2 + λ||θ0||1
}
,

where λ > 0 is a penalty parameter. The value of λ cannot be determined with cross-validation,
because true causal effects are not observed. Chernozhukov et al. (2017) suggest however to choose
λ = c ·max{lnmn, sm

2
n, λn}. Here, c > 1, s is the sparsity level which Chernozhukov et al. (2017) assume

to be equal to
√
n/log(#Controls). ln, mn are the rates of convergence for ML estimation of the out-

come and treatment assignment equation, respectively, which lie between n−1/4 and n−3/4 according to
Chernozhukov et al. (2017). λn is another rate of convergence which is smaller than n−1/2 according to
Chernozhukov et al. (2017). All in all, we deduce that this leads to λ ≥ n−3/2

√
n/log(#Controls). We

take a shrinkage level λ around this lower bound because d is not very large in our applications, suggesting
that we do not need very much regularization. Along these lines, we also use a higher shrinkage level for
larger d.

Since the LASSO produces ML bias, it has to be debiased in order to be suitable for inference. For
simplicity, we explain the debiasing strategy of Chernozhukov et al. (2017) for the case where there is no

first stage ML estimation error. The true residuals are denoted Ỹi = Yi−g0(Xi), F̃i = Fi−E[Fi|Xi, Hi] and

the treatment variable covariance matrix is denoted Q = E[F̃iF̃
′
i ] ≈ 1

n

∑n
i=1 F̃iF̃

′
i . A sparsity assumption

on Q−1 is further made, which we satisfy because Q is diagonal in our case5. Then, Q−1 can be estimated

5see Assumption 3.8 of Chernozhukov et al. (2017)
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reliably by using the Constrained Linear Inverse Matrix Estimation (CLIME) matrix M = [m1, . . . ,md]:

mj = arg minm

{
||m||1 s.t.

∣∣∣∣∣∣Qm− ej∣∣∣∣∣∣
∞
< a

√
log(d)

n

}
, j = 1, . . . , d

with a a suitably large constant for which we use a grid of values and ej the unit vector in dimension j.

Let Ũi = Ỹi − F̃iβ̂OL0 further be the LASSO residual. This residual can be decomposed into a true

disturbance and estimation error: Ũi = Ui + F̃ ′i (β0 − β̂OL0 ). Next, consider the following correction term
and its decomposition implied by the decomposition of the LASSO residual:

√
nm′j

1

n

n∑
i=1

F̃iŨi = m′j
1√
n

n∑
i=1

F̃iUi +
√
nm′jQ(β0 − β̂OL0 ) j = 1, . . . , d (8)

According to the central limit theorem, the first term is normally distributed with mean zero and certain
variance (σDOLj )2. The second term is approximately equal to

√
n(β0,j−β̂OL0,j ) by definition of the CLIME

matrix M (that is m′jQ ≈ e′j). Therefore, adding the correction term to the jth LASSO estimate gives
the asymptotic distribution:

√
n(β̂OL0,j +m′j

1

n

n∑
i=1

F̃iŨi − β0,j) ≈ m′j
1√
n

n∑
i=1

F̃iUi ≈ N(0, (σDOLj )2) j = 1, . . . , d (9)

Result (9) indicates that adding the correction term (8) to β̂OL0 leads to successful debiasing. This
continues to be the case if one takes into account first stage ML estimation error, see Chernozhukov et al.
(2017). Thus, the debiased LASSO estimator is defined as follows:

β̂DOL0 = M̂ ′
1

n

n∑
i=1

̂̃F i( ̂̃Y i − ̂̃F ′iβ̂OL0 ) + β̂OL0 ,

where the CLIME matrix M̂ is now computed using Q̂ = 1
n

∑n
i=1

̂̃F i ̂̃F ′i instead of Q. Under certain

regularity conditions, β̂DOL0 is asymptotically normally distributed with covariance matrix ΣDOL that

can be estimated consistently by Σ̂DOL = M̂ ′( 1
n

∑n
i=1

̂̃F iÛiÛ ′i ̂̃F ′i)M̂ , where Ûi = ̂̃Y i − ̂̃F ′iβ̂OL0 . Thus,
asymptotic standard errors are available and we can conduct inference.

3.2.2 Causal Forest

Tree-based ML methods partition the data in heterogeneous subgroups, after which each subgroup gets
a different target parameter estimate. They are therefore a natural starting point to derive methods that
discover heterogeneity in causal effects, which in practice translates into minimizing the mean squared
error of causal effects. However, since one does not observe the ground truth for causal effects, applying
standard regression tree methodology directly with this new target quantity is not possible. Athey and
Imbens (2016) overcome this with their causal trees by deriving an unbiased estimate of the mean squared
error of causal effects that can be used instead, enabling estimation of HTEs. Furthermore, to ensure
valid causal inference on HTEs as well, they suggest to impose honesty on the trees. Honesty states that
the same observation cannot be used for both selecting a model and estimating the model afterwards.
For trees, this boils down to not using the same data for determining the tree splits and estimating the
HTEs for each subgroup identified by the tree. Honesty comes at the cost of inefficiency for causal trees,
because it requires sample splitting.

HTE estimates for each of the subgroups of observations that the causal tree identifies can thus be
obtained. Yet, causal trees do not produce a causal effect estimate for each specific observation, as
identified by its particular covariate values. It follows that we do not necessarily find treatment effect
heterogeneity for the covariates that we are interested in. To be able to at least examine treatment effect
heterogeneity for our covariates of interest, we resort to Causal Forests (Wager and Athey, 2017). Causal
Forests produce ATE estimates conditional on the covariate values of an individual, called Conditional
Average Treatment Effects (CATE), which allow us to estimates HTEs across our covariates of interest.

12



Causal Forests also enable valid causal inference on these HTEs. Moreover, considering that Causal
Forests aggregate estimates of multiple causal trees, they reduce the loss of efficiency from honesty,
because different trees use different data splits such that all observations typically get involved in both
determining the tree splits and estimating final HTEs.

To apply Causal Forests, as originally introduced by Wager and Athey (2017), the researcher must
choose between two procedures to realize honesty. Both procedures have their strengths: either doing well
in correcting for confounding or being able to pick up heterogeneity in causal effects. Having to make this
choice is therefore rather unfortunate, given that we ideally enjoy both of the strengths. The generalized
random forests framework (Athey et al., 2016b) offers the solution by deriving Causal Forest estimation
anew but now via moment conditions. Both strengths can then be combined by using an orthogonalized
version of these moment conditions, analogous to being able to combine biased ML estimation with valid
causal inference for DML by means of orthogonalization.

Thus, Causal Forests in the generalized random forest framework seem to suit the purpose of esti-
mating HTEs in our applications best. The generalized random forest framework implements a couple
of key ideas. Firstly, to remove regularization bias, it departs from the perspective that random forests
aggregate estimates from regression trees. Instead, the framework casts random forests as weighted near-
est neighbor estimator, producing forest weights that can be used for valid causal inference with moment
conditions. Secondly, the framework speeds up the process of discovering heterogeneity in causal effects
by using a linear, gradient-based approximation of the moment conditions rather than the nonlinear
moment conditions themselves. Next, we discuss the generalized random forest algorithm, afterwards the
gradient approximation of our moment conditions and finally some statistical properties.

Similar to DML, the estimation strategy of Causal Forests is to find a solution to moment conditions,
which in this case have the form:

E[ψ(Oi; θ0(x∗), η0(x∗))|X∗i = x∗] = 0,

where Oi is random variable vector, X∗i ∈ X an auxiliary covariate vector, x∗ ∈ X an input test point
specifying covariate values for which we intend to compute the causal effect, θ0(x∗) the target parameter
and η0(x∗) a nuisance parameter. Note that the parameters specifically belong to the input test point.
However, to simplify notation, we do not explicitly write this if unnecessary and use θ0 and η0 instead.
θ0 is estimated by solving the weighted sample analog:

(θ̂0, η̂0) = arg minθ0,η0
{∣∣∣∣Ψ(θ0, η0)

∣∣∣∣
2

}
, Ψ(θ0, η0) =

n∑
i=1

αi(x
∗)ψ(Oi; θ0, η0). (10)

The forest weight αi(x
∗) equals the frequency with which X∗i falls into the same tree subgroup (or leaf)

as x∗, across all grown trees b = 1, . . . , B. For tree b, let Lb(x
∗) denote the subset of covariate values of

observations in the leaf corresponding to x∗. Then, formally the weights are calculated via:

αi(x
∗) =

1

B

B∑
b=1

αib(x
∗), αib(x

∗) =
I[X∗i ∈ Lb(x∗)]
|Lb(x∗)|

. (11)

To guarantee plenty of tree variation in order to control overfitting, tree construction is preceded by
sampling a fraction s from the full sample without replacement, obtaining an estimation sample Ib. Next,
to ensure honesty, Ib is divided into two evenly sized samples J1b and J2b. J1b is used to build the tree,
whereas J2b is employed to determine αib(x

∗) with (11) after the tree has been built. After the complete
forest has been constructed, the forest weights αi(x

∗) are obtained from (11) for i in J2b after which θ0
is estimated using (10).

Next, for tree construction, note that every tree split starts with a parent node P ⊆ X . Causal
Forests split P into two nonoverlapping children C1, C2 ⊆ X such as to maximize heterogeneity of the
target parameter, using only the randomly chosen variables tried at that split. For that, the solution of
the estimating equation at a node C ⊆ X is defined by:

(θ̂C , η̂C) = arg minθ,η

{∣∣∣∣∣∣ ∑
{i∈J1b:X∗

i ∈N}

ψ(Oi; θ, η)
∣∣∣∣∣∣
2

}
. (12)
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We denote nC the number of observations from J1b in node C. Then, heterogeneity is maximized with
the criterion:

∆̂(C1, C2) =
nC1nC2

n2P
(θ̂C1

− θ̂C2
)2, (13)

where θ̂C1
, θ̂C2

follow from (12), and nC1
, nC2

, nP denote the number of observations from J1b in C1, C2

and P .
Since directly optimizing (13) turns out to be computationally intensive, an approximate criterion is

used instead. For a node C ⊆ X , the gradient approximation of θ̂C in the parent node is given by:

θ̃C = θ̂P −
1

nC

∑
{i∈J1b:X∗

i ∈C}

ξ′A−1P ψ(Oi; θ̂P , η̂P ), (14)

where θ̂P , η̂P follow from solving (12) once in the parent node, ξ denotes a vector picking out the θ
coordinates of (θ, η), and AP denotes a consistent estimate of the gradient of the expectation of the

moment function, i.e. ∇E[ψ(Oi; θ̂P , η̂P )|X∗i ∈ P ]. We follow Athey et al. (2016b) by using

AP =
1

nP

∑
{i∈J1b:X∗

i ∈P}

∇ψ(Oi; θ̂P , η̂P ). (15)

Inserting the gradient approximation (14) for C1 and C2 into the criterion (13) and simplifying yields

the following steps to compute an approximate criterion. Firstly, the parent node estimates θ̂P , η̂P and
AP are calculated by using (12) and (15), after which the pseudo outcomes are determined:

ρi = −ξ′A−1P ψ(Oi; θ̂P , η̂P ) ∈ R.

Secondly, the following expression for the approximate criterion is filled in:

∆̃(C1, C2) =

2∑
j=1

1

nCj

( ∑
{i∈J1b:X∗

i ∈Cj}

ρi

)2

(16)

Hence, the optimal split into children C1, C2 is determined by maximizing (16). This procedure is
recursively repeated by relabeling the obtained children as parent node. We stop when a minimum
number of observations in the node has been reached. In contrast to the exact criterion (13), it is
possible with the approximate criterion (16) to evaluate all split points for a given covariate in a single
pass through the data. This highlights the advantage of Causal Forests in the generalized random forest
framework over standard Causal Forests, given that the former uses (13), whereas the latter uses (16).

Under weak assumptions, Athey et al. (2016b) derive that (θ̂0− θ0)/(σCF )2 → N(0, 1), where (σCF )2

is a scale parameter related to the variance of θ̂0. Moreover, (σCF )2 can be estimated consistently via
the Delta method, which states that (σCF )2 ≈ ξ′(V −1)H(V −1)′ξ. V is a problem specific curvature
parameter that can be estimated using separate standard random forests, see Athey et al. (2016b). In
order to estimate H, the subsampling scheme needs to be altered slightly. Instead of random sampling
B times a fraction s of the full sample, only g = 1, . . . , B/` random half samples Hb are drawn, where `
denotes little bag size. Next, the estimation samples Ib used to build the forest are generated such that
Ib ⊆ Hdb/`e, i.e. the forest is constructed using little bags of ` trees, where trees in the same bag use the

same half sample. Then, by using the forest score Ψ̂ = Ψ(Oi; θ̂, η̂) from (10) and a similar forest score

Ψ̂(Hg)b which only uses tree b from little bag g, Ĥ is computed via:

Ĥ =

B/`∑
g=1

(1

`

∑̀
b=1

Ψ̂(Hg)b − Ψ̂
)2
− 1

`− 1

B/`∑
g=1

(1

`

∑̀
b=1

(
Ψ̂(Hg)b −

1

`

∑̀
b=1

Ψ̂(Hg)b
)2)

,

such that asymptotic confidence intervals can be constructed.
The previously discussed generalized random forest framework enables HTE estimation in several

models. The implementation in each model is characterized by the score function. Firstly, we consider
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the Conditional Average Treatment Effect (CATE) model:

Yi = Diβ(Xi, Hi) + g0(Xi, Hi) + Ui, E[Ui|Di, Xi, Hi] = 0

β0 =
[
β(median(Xi), Hi = h1), . . . , β(median(Xi), Hi = hk)

]′
where β(Xi, Hi) is an estimable function giving the covariate specific treatment effect and β0 a k × 1
parameter vector holding HTEs. We follow (Athey et al., 2016b) by setting covariates Xi that we do
not inspect for heterogeneity to their median values. To estimate β(Xi, Hi) for the CATE model, the
following score function is used:

ψ(Oi; θ0(x∗), η0(x∗)) = (Yi − θ0(x∗)Di − η0(x∗))(1 Di)
′,

where Oi = (Yi, Di), x
∗ = (x, h) ∈ {(median(Xi), hj)}kj=1, θ0(x∗) = β0(x, h) and η0(x∗) = g0(x, h). This

yields the closed form expression β̂(x, h)CF =
(∑

i αi(x)(Di −Dα)2
)−1(∑

i αi(x)(Di −Dα)(Yi − Y α)
)

by solving the moment conditions, where Dα =
∑
i αi(x)Di and Y α =

∑
i αi(x)Yi. A derivation for this

closed form is given in Section A.4 of the Appendix. After having constructed the forest for the first test
point, it is sufficient to keep the forest and compute αi(x

∗) anew for each next test point j = 2, . . . , k.
Obtaining HTEs via the CATE is also possible for IV-identification. We use the CATE IV model

then:

Yi = Diβ(Xi, Hi) + g0(Xi, Hi) + Ui, E[Ui|Zi, Xi, Hi] = 0

β0 =
[
β(median(Xi), Hi = h1), . . . , β(median(Xi), Hi = hk)

]′
To estimate β(Xi, Hi) in the CATE IV model, a slightly different score function is used:

ψ(Oi; θ0(x∗), η0(x∗)) = (Yi − θ0(x∗)Di − η0(x∗))(1 Zi)
′,

where Oi = (Yi, Di, Zi) and from which we calculate β̂(x, h)CF using (10).
Although asymptotically valid inference on β0 is possible, finite sample performance of generalized

random forests can still be improved by using an initial orthogonalization step. For that, consider
the conditional expectations E[Qi|X∗i = x∗] for each Qi ∈ Oi. The idea is then to apply preliminary

steps Q̃i = Qi − q̂(−i)(X∗i ) before estimating the forest, where q̂(−i)(X∗i ) correspond to leave-one-out-
estimates of the conditional expectations, computed with separate standard random forests. In fact, any
residualization scheme that does not depend on the data would work, including cross-fitting. However,
leave-one-out-estimation is much more practical in the forest context (Athey et al., 2016b). Finally, we
use standard choices of B = 10, 000 and ` = 2, whereas the sampling fraction s, the minimum node size,
the number of variables tried at each split and other parameters are tuned using cross-validation.

4 Revisited Papers and Data

In this section, we introduce the two revisited papers: their goal, data, data preparation, specifications and
causal effect identification strategy. Furthermore, we motivate the use of ML, explain our modifications
to the original methodology and describe how and why we introduce heterogeneity. A comprehensive
overview is given in Table 1.

4.1 Fox News

The revisited paper from DellaVigna and Kaplan (2007) has a twofold purpose. The first is to estimate the
causal effect of Fox News channel availability on the Republican vote share in the 2000 U.S. presidential
elections, called the Fox News effect. The second is to quantify the media persuasion rate of watching
the Fox News channel, since it is a commonly targeted quantity in media studies such that it can be used
to compare the persuasive effect of Fox News to other media forms. For the first purpose, a combined
data set with information about cable companies, elections and demographics is available. For the second
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purpose, there is another data set with household viewing behavior data including Fox News watching,
in addition to the first data set. Next, we discuss both data sets in more detail.

The first data set combines data from three main sources. The first source is the Television and Cable
Factbook (Warren, 2001), giving information about local cable companies including channel availability.
It contains information as of November 2000, i.e. right before the 2000 presidential elections. The second
source is the Election Division of the Secretary of State of each state, offering local election data for the
years 2000, 1996, 1992 and 1988. The third source is Census, making available demographics from 1990
and 2000 which have been aggregated to the town level. This gives 10,126 towns.

The second data set is from Scarborough research. Scarborough collects demographics and calculates
the so-called diary and recall audience measure for TV channels using household panels. The recall
audience measure indicates the share of panel respondents who confirm that they watched a channel
the past week, while the diary audience measure indicates the share of panel respondents who watched
a channel for at least a full half hour block the past week according to their TV diary. The available
sample of 11,388 respondents includes the diary audience measure and was recorded between February
2000 and August 2001. It has already been aggregated to the town level via zip codes and matched to
the first data set afterwards. This gives 568 towns.

Regarding data preparation for the first data set we follow DellaVigna and Kaplan (2007). We drop
289 towns for which we do not know Fox News availability. Also, we exclude 324 towns that do not have
CNN as part of the cable package, because the cable offerings only rebroadcast local cable channels and
hence they differ too much from other offerings in terms of content. Finally, we drop 257 towns where
the pattern of voting data is problematic, i.e. unrealistic changes between 1996 and 2000 such as a voter
turnout difference of more than 100%. A final sample of 9,256 towns for 28 states remains. The second
data set is used without preparation, giving us a final sample of 568 towns for 7 states.

To achieve the two purposes of the paper, two specifications are used. The outcome variable in the
first specification is the Republican vote share for the 2000 U.S. presidential election on the town level,
vRepk,2000. The binary treatment variable is dFOXk,2000, valued one if all cable systems in a town offer Fox
News in 2000 and zero if no cable system offers Fox News. In addition, there is a large set of control
variables available. For the main specification, we firstly have cable system characteristics Ck,2000 for the
year 2000. These are nine dummy variables indicating decile 2 until 10 in the number of channels across
towns6 and another nine indicating decile 2 until 10 in the potential subscribers (i.e. the total voting-age
population covered by a cable system) across towns. Secondly, we have the lagged vote share for the 1996

U.S. presidential election, denoted vRepk,1996. Thirdly, we possess twelve town-level demographic summary
statistics for both 1990 and 2000, including gender, race, education, income and marital status. We
include the demographics for 2000, Xk,2000, and the difference between 2000 and 1990, Xk,00−90. The
number of controls equals 43 in the main specification of the first model (898 including squares and first
order interactions, for methods relying on sparsity). For the dynamic specification, extra lagged vote

shares for the 1992 and 1988 U.S. presidential elections are added, which are denoted vRepk,1992 and vRepk,1988.
The number of controls rises to 45 in that case (985 for methods relying on sparsity) and the number of
observations decreases to 3, 722. Finally, in the second specification the diary audience measure eFOXk is
used as outcome variable, while the control set consists of Ck,2000, Xk,2000 and Xk,00−90. The number of
controls in the main specification of the second model is 42 (590 for methods relying on sparsity).

We rely on the unconfoundedness assumption to identify causal effects. In a preliminary selection
regression, DellaVigna and Kaplan (2007) investigate the plausibility of this assumption. It becomes clear
that conditional on the demographic controls Xk,2000, Xk,00−90, cable controls Ck,2000 and geographical
differences, the treatment variable dFOXk,2000 is uncorrelated with political outcomes, including the outcome

variable vRepk,2000. Hence, they argue that unconfoundedness does not seem to be unrealistic. However,
considering that a fairly large number of controls are included, we might improve credibility of the
unconfoundedness assumption even further by applying ML in order to handle the high-dimensional
controls adequately. An additional advantage is that we are able to control for nonlinear confounding
relationships as well with ML. We thus argue that DML and ARB match perfectly with the particular
purpose and situation of this paper and we apply both to estimate the ATE.

Methodologically, we follow the same estimation procedure for the ATE as DellaVigna and Kaplan
(2007), with a few exceptions. Originally, the observations are weighted with turnout data and the model

6Decile 1 is omitted in order to circumvent multicollinearity problems with constant terms.
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includes U.S. district or county fixed effects, with county being the smaller geographical level. Weighting
is done to improve accuracy of the causal effect estimate. In particular, it ensures that we control for
differences in town populations. Moreover, the vote share variables are more accurately measured for
larger turnout values, such that weighting with turnout incorporates data quality information. Weighting
is however not possible when adopting the interactive model. Apart from weighting the outcome variable
and controls, it namely also requires that we weight the treatment variable; that is we multiply the binary
treatment values with the turnout for each town. Hence, we obtain a nonbinary treatment variable after
weighting, which cannot be used with the interactive model. Thus, for consistency, we decide to leave
weights out in all of our models. Taking into account fixed effects is relatively a lot more complicated
with our (partially) nonlinear models than in the original linear models. In the linear models, we simply
apply within estimation to control for fixed effects. However, this does not work in (partially) nonlinear
models and a general method to incorporate fixed effects in these models has not been devised (yet).
Therefore, we are forced to leave out fixed effects.

Furthermore, the standard errors are originally clustered because the Fox News availability treatment
is assigned per local cable company, which can supply multiple towns, and not per individual town.
However, incorporating standard errors that vary across clusters of towns instead of individual towns
requires modifications in each of the ML-based causal inference methods. Moreover, we do not expect
clustering to lead to very different standard errors because there are only roughly three towns per local
cable company. Preliminary checks with the original methods support this. We thus decide to leave
out clustering of the standard errors. Finally, the original specification uses as outcome the differenced
variable vRepk,2000− v

Rep
k,1996 to control for the vote share in 1996. Instead, we argue that including vRepk,1996 as

an additional control variable is preferred here, since it allows to capture possible nonlinearities involving
this lagged vote share for 1996 if we apply ML. To include the vote shares in a consistent manner into the
model, we also use the extra lagged control variables vRepk,1992 and vRepk,1988 separately instead of differenced.

Beside using the original procedure to estimate the ATE, we introduce HTEs across geographical
Census regions that are organized in a hierarchy, see Figure 13 in Section A.2 of the Appendix. We
use three levels with increasing degree of heterogeneity, named level 1, level 2 and level 3. This setup
extends the research of DellaVigna and Kaplan (2007), since they only examined broad differences of
the Fox News effect between Democratic and Republican states. In practice, one way in which these
regional estimates of the Fox News effect are relevant is to make a valid comparison with the findings
from other media studies. Many media studies are based on field and laboratory experiments, but these
are most often conducted in only a small geographical region due to cost constraints, for example. Then,
it would be fairer to compare the findings from such an experiment in a particular region to the regional
heterogeneous Fox News effect there, instead of the average Fox News effect. Accordingly, HTEs allow
us to compare accurately the persuasive effect of watching the Fox News channel to among others door-
to-door canvassing, direct phone calls and watching political ads. We demonstrate the consequences of
using HTEs instead of the ATE in the comparison of media persuasion rates when we discuss our results
for HTEs.

4.2 Contracts and Trade

In the revisited paper from Nunn (2007), the goal is to estimate the causal effect of contract enforcement
on trade flows. The following channel is considered. Bad contract enforcement leads to under-investment,
when investments are relationship-specific. Under-investment then induces a cost disadvantage, which
in turn leads to less export. The point of departure from other studies that examine the relationship
between contract enforcement and trade is that the effect of contract enforcement on the levels of trade
is excluded. A data set with several production factor variables for countries and industries is available
here, which we discuss more thoroughly in the following.

Firstly, there is export data on the country industry pair level from Feenstra (1996). The primary
measure of contract enforcement quality at the country level is the rule of law from Kaufmann et al.
(2004), computed as weighted average of several variables indicating perceptions of the effectiveness
and predictability of contract enforcement. Nunn (2007) construct a variable indicating the importance
of relationship-specific investments across industries based on U.S. IO Tables and data from Rauch
(1999) on the need of relationship-specific investments to produce goods. The final variable is given by
zrsi =

∑
j θijRj , where θij = uij/ui with uij the value of input j in industry i and ui =

∑
j uij the total
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value of all inputs in industry i. Rj indicates what proportion of input j is sold neither on an organized
exchange nor reference priced, indicating relationship-specificity of the input. The previously discussed
variables give 32,426 country variable pairs. Secondly, there is industry level data on the skill and capital
intensities of production from Bartlesman and Gray (1996), but only for manufacturing industries. Skill
and capital stock data is also available from Antweiler and Trefler (2002). They measure capital stock
as the log of the average capital stock per worker and labor stock as the log of the ratio of workers
completing high school to those not completing it. Thirdly, we possess country level log income per
capita and log private credit to GDP ratio variables and industry level share of value added in shipments,
amount of intra-industry trade, TFP growth in the previous twenty years and Herfindahl index of input
concentration variables. Finally, we have countries’ legal origins from La Porta et al. (1999), being one
of British common law, French civil law, German civil law, Scandinavian civil law or Socialist.

Again, we follow the original paper for data preprocessing. Potentially, there are 32,426 observations
available. However, 1,396 observations have missing values and 8,418 observations are valued zero, hence
we drop them. Next, for factor endowments and intensities, we only have 12,740 observations. Everything
combined, we arrive at a sample of 10,976 observations for nc = 70 countries and ni = 128 industries.

The outcome variable is the log export per industry country pair, ln(xic). The continuous treat-
ment variable is the interaction of the contract enforcement quality variable Qc with the importance of
relationship-specific investments zrsi . Furthermore, in the main specification, we use two variables to
control for the possibility that labor or capital rich countries export more in labor or capital intensive
industries. These are the interaction of the skill intensity hi and skill stock Hc and the interaction of the
capital intensity ki and capital stock Kc. The number of controls equals five in the main specification (20
for methods based on sparsity). For the extended specification, another five variables are constructed to
control for a possible higher export of high-income or financially developed countries in certain industries.
Firstly, interactions of the log income per capita ln(yc) with the share of value added vai, intra-industry
trade iiti, TFP technology growth ∆tfpi, and one minus the Herfindahl index of input concentration
1 − hfi and secondly the interaction of the log of private bank credit to GDP ratio CRc with the capi-
tal intensity. The number of controls rises to 9 in the extended specification (54 for methods based on
sparsity) and the number of observations decreases to 10, 816.

We turn to instrumental variables to identify the causal effect since Nunn (2007) argues that there
might be reverse causality between trade flows and contract enforcement. This essentially means that
high exports in a contract intensive industry improve the quality of contract enforcement in a country.
The causal effect of interest can then be isolated by using legal origins as instrumental variable. This
is motivated by noticing that legal origins do affect contract enforcement quality and hence trade flows
indirectly, but possibly do not affect trade flows directly. The latter becomes invalid if there are other
factors that are associated to legal origins, contract enforcement and trade flows. The previously intro-
duced controls may be such factors, if for example certain legal origins also induced high labor or capital
endowments. Hence, it is vital to control adequately for the confounding effects from the controls.

The counterintuitive increase of estimates from original IV compared to OLS suggests however that
the original linear control function might not capture all confounding effects. Nunn (2007) point out
that this might be because it is difficult to capture the effect of country level variables on trade flows
since it requires to identify the correct industry level variable for specialization. Given the complexity of
relationships here, we might be able to execute this task much better by using flexible controlling with
ML. We therefore argue that ML could improve the results here. It is however not possible to adopt the
interactive model because this model is restricted to binary treatment variables. Thus, we can only apply
DML in the partially linear model, but not ARB and DML in the interactive model.

For estimating the ATE, we remain with the original methodology from Nunn (2007) but with a
single modification. As discussed before, allowing for fixed effects in our (partially) nonlinear models
is much less straightforward than in the original linear models. Nonetheless, contrary to the Fox News
application, we do not think it is a good idea to simply drop the industry and country fixed effects here.
To be specific, these fixed effects are primarily used to control for the effect of contract enforcement on
the levels of trade. This ensures that we focus on trade flows instead of levels, which is a vital part of
the study of Nunn (2007). Consequently, we want to keep the focus on trade flows but we cannot apply
within estimation in our nonlinear models to take into account fixed effects, as explained before. Hence,
we apply an ad hoc procedure to still incorporate them. Consider a variant of the original linear model
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in this application:
Yic = µ+ αi + αc +Xicβlin + Uic, (17)

where Yic = ln(xic) is the outcome, Xic = (Dic Cic) a vector consisting of the treatment Dic = zrsi Qc
and control variable vector Cic and Uic an unobserved error term for industry i in country c. µ and
βlin are unknown parameters and αi, αc correspond to industry and country fixed effects. Then, we can
estimate the fixed effects as follows (Greene, 2002, Section 13.3.3):

α̂i = (Y i. − Y )− (Xi. −X)β̂Wlin i = 1, . . . , ni

α̂c = (Y .c − Y )− (X .c −X)β̂Wlin c = 1, . . . , nc

where Yi. is the average of Yic over countries, Y.c the average of Yic over industries, Y the overall average
and similarly so for Xic. β̂

W
lin is the two way fixed effects within estimator in the linear model (17). Hence,

we can still take into account fixed effects by adding these estimated fixed effects from the linear model as
control variables in our nonlinear models. We call them the industry and country level variables. The 4
and 9 controls in the main and extended specification include these country and industry level variables.

Next, we introduce HTEs across the number of inputs in the production process, because it serves as
measure of the difficulty of vertical integration, assuming that there are fixed costs associated with
the production of each input. As such, we build on the insight that under-investment due to bad
contract enforcement might be reduced by means of vertical integration. It enables us to investigate
the degree to which vertical integration affects the relationship between contract enforcement and trade
flows. This setup extends the results of Nunn (2007), who only investigates broad differences in the
causal effect between industries with a number of inputs above or below the median. Since heterogeneous
DML has been designed for causal effect identification via unconfoundedness, we cannot apply it here
without rigorous modifications. Thus, we only apply the Causal Forest in the generalized random forest
framework, which does include IV-identification.

Table 1: Summary of the revisited applied papers’ specifications

Fox News Contracts and Trade
Vote share Audience Export
Main Dynamic Main Main Extended

# Obs. 9,256 3,722 568 10,976 10,816
# Controls (43, 898) (45, 985) (42, 590) (4, 20) (9, 54)

Yi vRepk,2000 vRepk,2000 eFOXk ln(xic) ln(xic)

Di dFOXk,2000 dFOXk,2000 dFOXk,2000 zrsi Qc zrsi Qc
Xi vRepk,1996 vRepk,1996 Xk,2000 Country lvl Country lvl

Xk,2000 Xk,2000 Xk,90−00 Industry lvl Industry lvl
Xk,90−00 Xk,90−00 Ck,2000 kiKc kiKc

Ck,2000 Ck,2000 - hiHc hiHc

- vRepk,1992 - - vailn(yc)

- vRepk,1988 - - iitiln(yc)

- - - - ∆tfpiln(yc)
- - - - (1− hfi)ln(yc)
- - - - kiCRc

Small Hi Regions (4) - - # Inputs (c) -
Medium Hi Divisions (9) - - - -
Large Hi States (28) - - - -
Zi - - - Legal origins Legal origins
Note: the number of controls is denoted (s, l), with s the actual amount and l the amount
including all first order interactions and squares, used for methods relying on sparsity. Hi

is accompanied by the amount of variables in parentheses, which needs to be added to
# Controls to get the total number of controls for HTE estimation. For example, the
total number of controls in the main specification with a small degree of heterogeneity is
43 + 4 = 47. (c) for contracts and trade heterogeneity denotes that Hi is a count variable
instead of a binary variable.
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5 Results Average Treatment Effect

5.1 Double Machine Learning: Fox News

5.1.1 Vote share regression

We apply DML to estimate the ATE of Fox News availability on the Republican vote share in 2000. We
start with the main specification which includes the demographic controls, cable controls and the lagged
Republican vote share for 1996. The results are presented in Table 2, where double asterisks indicate
significance of the DML estimate at the 5% level, assessed with median standard errors. A description
of each of the ML submethods can be found in Section A.3 of the Appendix. Fraction best ML method
denotes the fraction of nuisance function estimation problems in which the ML submethod outperforms
all the other ML submethods in terms of out-of-sample MSE, over the folds and S replications. It reflects
relative performance of the ML submethods and provides more information on which ML submethods
are combined into the hybrid Best ML submethod.

In the PLR model, we obtain DML estimates of roughly 0.2 to 0.6%. With the median standard errors,
the DML estimates are significant at the 5% level7 for the tree-based ML submethods regression tree,
boosting and random forest. With the conventional standard errors, we find significant DML estimates
for the LASSO and neural network as well, in addition to those from the tree-based ML submethods.
The qualitative difference is due to the fact that the two kinds of standard errors differ noticeably
sometimes, which is in line with the results from several empirical applications of Chernozhukov et al.
(2016). It shows the enlarging effect on the standard errors of incorporating variation from random
sample splitting. Overall, the DML estimates in the PLR model suggest a positive Fox News effect, that
is Fox News availability led to a higher Republican vote share in 2000.

Table 2: DML estimates for the Fox News vote share ATE using the main specification, S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML submethod 0.50 0.00 0.00 0.00 0.50 0.00 −
Median ATE (2 fold) 0.0018 0.0034∗ 0.0059∗∗ 0.0054∗∗ 0.0044∗∗ 0.0037∗ 0.0020

[0.0022] [0.0019] [0.0028] [0.0023] [0.0019] [0.0020] [0.0022]
(0.0013) (0.0013) (0.0018) (0.0016) (0.0014) (0.0013) (0.0013)

B. Interactive Regression Model

Fraction best ML submethod 0.67 0.00 0.00 0.00 0.33 0.00 −
Median ATE (2 fold) 0.0014 0.0031 0.0073 0.0054∗∗ 0.0074∗ 0.0040 0.0015

[0.0027] [0.0024] [0.0046] [0.0025] [0.0039] [0.0038] [0.0033]
(0.0015) (0.0014) (0.0023) (0.0015) (0.0020) (0.0032) (0.0014)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.

In the interactive regression model, we do not make any functional form assumption with respect to
the joint effect of Fox News availability and the controls on the Republican vote share in 2000. The
DML estimates range from approximately 0.1 to 0.7% here. With median standard errors, we find a
significant DML estimate only for boosting. With conventional standard errors, we obtain a significant
DML estimate for all tree-based ML submethods and the LASSO. Again, we there is some discrepancy

7In the following, we use the 5% level to assess statistical significance.
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between the two standard errors. The DML estimates in the interactive model also indicate a positive
Fox News effect, but the insignificance of many estimates suggests that we cannot rule out that there is
no Fox News effect. The DML estimates in the interactive model are not consistently smaller or larger
than in the PLR. However, we observe a wider range of ATE estimates across the ML submethods in the
interactive model compared to the PLR model. Moreover, the standard errors in the interactive model
are larger than in the PLR model in 13 out of 14 cases. The wider range and larger standard errors
reflect a larger uncertainty around the estimates when allowing for fully heterogeneous treatment effects.
Preciseness of the DML estimates depends thus highly on the model assumptions.

Table 3: Original ATE estimates with corresponding table numbers and columns from DellaVigna and
Kaplan (2007)

Vote share
Unweighted Weighted

No controls
Diff-in-diff −0.0124∗∗∗ Earlier results −0.0025 Table IV column (1)

Main specification
No f.e. (LS) 0.0027∗∗ Earlier results 0.0080∗∗∗ Table IV column (3)
District f.e. 0.0014 Table A.III column (1) 0.0042∗∗∗ Table IV column (4)
County f.e. 0.0040∗∗∗ Table A.III column (2) 0.0069∗∗∗ Table IV column (5)

Note: Unweighted and weighted estimation corresponds to using the observations directly and after weighting
them by the amount of votes cast in 1996, respectively. Diff-in-diff denotes the simple difference-in-difference
estimator computed with only the 2000 and 1996 vote shares. No f.e. (LS), district f.e. and county f.e. add
controls from the main specification, see Table 1. No f.e. (LS) denotes the least squares estimator without fixed
effects, while district f.e. and county f.e. denote different fixed effect estimators. The symbols ∗, ∗∗ and ∗ ∗ ∗
denote significance at the 10, 5 and 1% level, respectively. Earlier results indicates an estimate that belongs to
earlier original methodology, but where originally a different estimation sample was used. We computed new
values by using the final instead of the earlier estimation sample to exclude sample effects from comparisons.

For comparison, we present the original results in Table 3. In contrast to the difference-in-difference
estimators, we do not find any counterintuitive negative Fox News effect estimates with DML, neither in
the PLR nor in the interactive model. This indicates that DML can have an advantage over prevailing
simple causal effect estimation methods. Furthermore, the DML estimates in either of the models are
larger than the original unweighted least squares (OLS) estimate8. The estimate may increase here due
to adequate controlling for high-dimensional and nonlinear confounding relationships via ML.

To examine the importance of nonlinear confounding further, we use the LASSO since it is the only
ML submethod that produces readily comparable estimates of the nuisance effects of different nonlinear
transformations of the controls. For the LASSO, these nonlinear transformations are interactions and
squared terms. The LASSO thus estimates coefficient sizes for the controls, their interaction terms and
their squared terms. The mean LASSO coefficient sizes over DML folds and replications then indicate
which of these terms have the largest nuisance effect. The mean LASSO coefficient estimates for the
main specification are plotted in Figure 1. We observe many interaction terms with a relatively large
coefficient size in the flexible control functions, for the Republican vote share in 2000 (Y ) and for Fox News
availability (D). This suggests that nonlinear confounding indeed plays a role here, possibly explaining
part of the increased coefficient estimate compared to original OLS, which employs a fully linear control
specification. To illustrate, we consider the dynamic effect of the lagged Republican vote share of 1996
(reppresfv2p1996) on that of 2000 (Y ). The interactions suggest that this dynamic effect depends on the
percentage of town inhabitants in 2000 that are college educated (hsp2000), male (male2000) and married
(married2000). In other words, nonlinear political trends exist. Furthermore, the probability that Fox
News is available in a town (D) when there are relatively many channels (noch2000d8, noch2000d9,
noch2000d10) is higher for a greater percentage of inhabitants in 2000 with lower education (only high

8This does not hold for DML with the SVM and Best ML submethods. Given the high fraction of prediction problems
in which the SVM tops the ML submethods in terms of out-of-sample MSE (fraction best ML method), it follows that
the Best ML submethod depends highly on the SVM and thus shows very similar estimates. The smaller size of the DML
estimate due to SVM could relate to improper tuning, since SVMs need to be tuned in order to work well.
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school, hs2000; some college, hsp2000). This possibly reflects the (complex) business strategy of Fox
News to introduce their channel sooner to lower educated people in competitive markets. Both of these
nonlinear nuisance effects cannot be fully captured with a linear control specification.
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Figure 1: Fox News LASSO terms with the largest absolute mean coefficient size over the folds and S replications,
in the PLR using the main specification. * in the name of the term denotes an interaction. The abbreviations for
the control variables are explained in Table 27 in Section A.2 of the Appendix.

Next, we return to our comparison with the original estimates in Table 3, but concentrate on the more
advanced original estimates, i.e. those that use controls and apply weighting and/or fixed effects. We see
that the DML estimates in both the PLR and interactive model are slightly attenuated relative to the
weighted least squares (WLS) estimate. However, they are similar to the unweighted original estimate
with either of the fixed effects and the weighted original estimate with district fixed effects. Although
being insignificant, some of the DML estimates in the interactive model are also in line with the weighted
original estimate with county fixed effects. We observe fairly much similarity overall, indicating that
DML and these more advanced original methods capture roughly the same causal effects here. Both
types of methods correct for confounding in a very different way, however, such that DML strengthens
the original results. Thus, DML might be a valuable alternative to established advanced causal effect
estimation methods.

Credibility of the unconfoundedness assumption might be improved further by using more historical
vote shares, since it increases the variety of political trends that we are able to capture. Hence, we add the
lagged Republican vote shares for 1992 and 1988 to the controls, leading to the dynamic specification.
The downside of this specification is that the sample size reduces to 3,722 towns. We present DML
estimates of the ATE of Fox News availability on the Republican vote share in 2000 in Table 4. In the
PLR model, we get estimates of roughly 0.7 to 1.2%. All of them are significant regardless of whether
we use median or conventional standard errors. In the interactive model, we find values ranging from
approximately 0.6 to 1.2%. All estimates except the one for the neural network are significant with both
median and conventional standard errors. DML estimates are insignificant for the neural network due to
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very large standard errors. Further inspection suggests that this is caused by propensity score weights
close to 0, even after trimming them at 0.01. This motivates substituting the propensity score weights
with other weights using ARB empirically as well. We also observe once more a wider range of estimates
and larger standard errors (in 10 out of 14 cases) in the interactive model compared to the PLR model.
All in all, the DML estimates for the dynamic specification strongly indicate a fairly large positive Fox
News effect, in both models.

Table 4: DML estimates for the Fox News vote share ATE using the dynamic specification, S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML method 0.41 0.00 0.00 0.00 0.54 0.05 −
Median ATE (2 fold) 0.0073∗∗∗ 0.0083∗∗∗ 0.0115∗∗∗ 0.0109∗∗∗ 0.0082∗∗∗ 0.0077∗∗∗ 0.0075∗∗∗

[0.0022] [0.0019] [0.0035] [0.0035] [0.0021] [0.0022] [0.0020]
(0.0019) (0.0018) (0.0024) (0.0021) (0.0019) (0.0019) (0.0018)

B. Interactive Regression Model

Fraction best ML method 0.60 0.00 0.00 0.00 0.37 0.03 −
Median ATE (2 fold) 0.0075∗∗ 0.0064∗∗ 0.0092∗∗∗ 0.0102∗∗∗ 0.0117∗∗∗ 0.0083 0.0071∗∗

[0.0036] [0.0025] [0.0035] [0.0028] [0.0037] [0.0079] [0.0036]
(0.0026) (0.0017) (0.0029) (0.0020) (0.0022) (0.0059) (0.0026)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.

A higher number of folds in the DML procedure ensures a larger amount of observations to be used
for learning the control functions with ML. Considering that the latter seems to be the most difficult
task within the DML procedure, we might improve DML estimates by using more folds. We therefore
report the DML estimates in the dynamic specification with 5 instead of 2 folds in Table 20 in Section
A.1 of the Appendix. In the PLR and interactive model, we find values of 0.7 − 1.2% and 0.6 − 1.1%,
respectively. With median standard errors, all DML estimates are significant in the PLR model and all
except the ones for the neural network and Best ML submethod are significant in the interactive model.
Furthermore, we point out that the standard errors from DML with 5 folds are greater or equal than
those from DML with 2 folds in the PLR. This was also found by Chernozhukov et al. (2016), when
estimating the effect of institutions on economic growth using DML under IV-identification. All in all,
we conclude that the DML estimates with 5 folds resemble those with 2 folds. The amount of folds used
within DML does not seem to be very important.

We provide the original results for the dynamic specification in Table 5. The DML estimates from
Table 4 in either of the models are all greater than the original unweighted least squares (OLS) estimate.
Capturing high-dimensional, possibly nonlinear confounding relationships via ML could have increased
the estimates once again. To gain further understanding in these relationships, we plot the mean coeffi-
cient estimates of the LASSO terms for the dynamic specification in Figure 2. We find a lot of interactions
among the terms with relatively large coefficient size in the flexible control functions, for the Republican
vote share in 2000 (Y ) and Fox News availability (D). This indicates the importance of controlling for
nonlinear nuisance effects. To give an example, we consider the dynamic effect of the lagged Republican
vote share controls for 1996 (reppresfv2p1996), 1992 (reppresfv2p1992) and 1988 (reppresfv2p1988) on
the Republican vote share in 2000 (Y ). There are many interactions involving these lagged controls
and for 1992 the interactions rank even higher than the lagged variable itself. This indicates again that
nonlinearities happen to be important for political trends, also over a longer time period. Additionally,
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the probability that Fox News is available (D) when the cable company in a town reaches a percentage of
voting age inhabitants below average in 2000 (poptot2000d4) is higher in towns with more unemployment
(unempl2000). This possibly reflects the business strategy of the Fox News channel to introduce sooner in
rural areas with more unemployment. We highlight once again that trends like these cannot be captured
with a fully linear control specification.

Table 5: Original ATE estimates with corresponding table numbers and columns from DellaVigna and
Kaplan (2007)

Vote share
Unweighted Weighted

Dynamic specification
No f.e. (LS) 0.0055∗∗∗ Earlier results 0.0090∗∗∗ Earlier results
District f.e. 0.0024 Earlier results 0.0037∗ Table IV column (6)
County f.e. 0.0055∗∗ Earlier results 0.0048∗∗ Table IV column (7)

Note: Unweighted and weighted estimation correspond to using the observations directly and after weighting
them by the amount of votes cast in 1996, respectively. Diff-in-diff denotes the simple difference-in-difference
estimator computed with only the 2000 and 1996 vote shares. No f.e. (LS), district f.e. and county f.e. add
controls from the dynamic specification, see Table 1. No f.e. (LS) denotes the least squares estimator without
fixed effects, while district f.e. and county f.e. denote different fixed effect estimators. The symbols ∗, ∗∗ and
∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. Earlier results indicates an estimate that belongs
to earlier original methodology, but where originally a different estimation sample was used. We computed new
values by using the final instead of the earlier estimation sample to exclude sample effects from comparisons.
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Figure 2: Fox News LASSO terms with the largest absolute mean coefficient size over the folds and S replications,
in the PLR using the main specification. * in the name of the term denotes an interaction. The abbreviations for
the control variables are explained in Table 27 in Section A.2 of the Appendix.
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We move back to Table 5 now to compare DML to the more advanced original estimates in the
dynamic specification. In both the PLR and the interactive model, the DML estimates are comparable
to the original weighted least squares estimate, but they exceed the unweighted and weighted original
estimates with either of the fixed effects. Moreover, the DML estimates are generally significant whereas
the original unweighted and weighted district fixed effect estimates are not. DML and the more advanced
original methods shows overall a lot of difference; they capture other causal effects. A possible explanation
is that DML modifies the advanced original estimates in order to strengthen them, since DML is able
to correct adequately for nonlinear nuisance effects such as nonlinear political trends. The difference
between DML and the advanced original estimates in the dynamic specification contrasts with findings
in the main specification. The extra dynamic controls may play a role in this, but we should keep in
mind that a different sample is used in both specifications, which could also have an influence.

5.1.2 Audience regression and persuasion rates

Next, we compute what fraction of viewers actually got persuaded by the Fox News channel to vote
Republican in 2000, i.e. the Fox News persuasion rate. DellaVigna and Kaplan (2007) determine the
persuasion rate for the in Section 4.2 described recall audience and compute it as follows:

f =
β̂0,V oteShare

β̂0,Audience

tCtT
cRecalld

, (18)

where tC = tT = 0.560 corresponds to the turnout fraction for control and treatment group, d = 0.306 to
the share of Democratic voters and cRecall = 3.43 to a constant converting the diary audience to the recall
audience. tC and tT are used here to correct for turnout effects, whereas d is used to differentiate between
convincing a Democrat or a nonvoter to vote Republican. In addition, β̂0,V oteShare is an estimate for

the effect of Fox News availability on the Republican vote share in 2000, while β̂0,Audience is an estimate
of the effect of Fox News availability on Fox News watching. Since we obtain main specification ATE
estimates β̂0,V oteShare from Section 5.1.1, we only need to run a second regression of Fox News watching

on Fox News availability in order to obtain β̂0,Audience and compute the persuasion rate. We refer to this
regression as the audience regression.

We apply DML in the audience regression to estimate the ATE of Fox News availability on Fox
News watching. Our specification includes the demographic and cable controls that were used before.
The results are given in Table 21 in Section A.1 of the Appendix. In the PLR model, we get DML
estimates ranging approximately from 1.9 to 2.7% and being significant for 5 out of 7 ML submethods
with median standard errors. In the interactive model, we find a range of 2.1 to 2.9% with significant
effects for only 3 out of 7 ML submethods with median standard errors. Thus, Fox News availability
led to Fox News watching for 2 − 3% of the households, but preciseness of the estimates depends again
highly on the model assumptions. Comparing with the original estimates in Table 19 in Section A.1
of the Appendix, we observe that most DML estimates in the PLR model are broadly consistent with
the original difference-in-difference and unweighted least squares estimates. Firstly, this indicates that
prevailing simple causal effect estimation methods still suffice in this case. Secondly, it follows that
controlling for high-dimensional and nonlinear confounding via ML has a smaller impact than in the
vote share regression. The lack of dynamics in the audience regression possibly explains this, given our
previous finding that nonlinearities are particularly important for dynamic trends. The smaller sample
size could also have an influence, since ML methods often require more observations than linear methods
to perform optimally, due to their flexibility.

After having estimated the audience regression, we compute Fox News persuasion rates from DML
using (18) and plot them in Figure 3 together with the original persuasion rate estimates. We also present
corresponding confidence intervals for median and conventional standard errors. Median standard errors
always produce wider confidence intervals since they incorporate an extra source of uncertainty: random
sample splitting. In the PLR, the DML estimates for the SVM, LASSO and Best ML submethods lie
close to the original district fixed effect estimate, while those for the regression tree and boosting ML
submethods lie close to the original county fixed effect estimate. Note however that the confidence
intervals are a lot wider in both cases for median and conventional standard errors. Not clustering the
standard errors for towns with the same local cable company with DML could partly explain this result.
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In the interactive model, the DML estimates for the tree-based ML submethods (regression tree, boosting,
random forest) approach the original county fixed effect estimate, whereas those for the LASSO and neural
network approach the original district fixed estimate. Yet again, we see much wider confidence intervals,
but this is partly the consequence of adopting the interactive model as well now. The extreme widths
for the regression tree and neural network9 ML submethods follow from the large audience regression
standard errors and relate possibly to the small sample size there. Hence, DML produces persuasion
rate estimates similar to the original estimates, but we obtain larger standard errors such that we cannot
exclude that Fox News watching did not actually persuade people to vote Republican.
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Figure 3: DML estimates and 95% confidence intervals for persuasion rates. Standard errors are computed via
the Delta method10, following DellaVigna and Kaplan (2007). Confidence intervals computed with conventional
standard errors are presented in black, while those computed with median standard errors are given in red. The
original weighted district and county fixed effect persuasion rate estimates are denoted Orig. District and Orig.
County, respectively.

5.2 Double Machine Learning: Contracts and Trade

Next, we employ DML to estimate the effect of contract enforcement quality on trade flows. We begin
with the main specification including the labor and capital interactions as controls, in addition to the
country and industry level variables. The results are presented in Table 6. Firstly, without turning to
instrumental variables yet, we observe estimates of roughly 0.29 − 0.38 in the PLR model, all of them
significant with either of the standard errors. The two standard errors differ however still noticeably, with
even a different order of magnitude here. Without incorporating potential reverse causality, we find that
countries with better contract enforcement export relatively more in relationship important industries.

When using instrumental variables by adopting the PLIV model, we obtain estimates of approximately
0.17 − 0.37. All of them except those for the LASSO and regression tree are significant with median
standard errors. The DML estimate for the LASSO becomes significant with conventional standard
errors. The large difference between the two standard errors from the PLR is maintained. After correcting
for potential reverse causality, we continue to find a positive effect of contract enforcement quality on
comparative advantage in contract intensive industries. However, most importantly, we notice that for
each of the ML submethods, the estimate is reduced compared to the PLR. This decrease from IV is
largest for the tree-based ML submethods11 and only small for the LASSO and neural network. The
decrease suggests possibly that reverse causality exists. In this case, reverse causality would be a positive
effect of comparative advantage in contract intensive industries on contract enforcement quality, which
is in line with our intuition.

9The median standard error confidence interval is too wide for the neural network to represent it completely in the
Figure.

10The Delta method computes first order approximate standard errors for any function of available estimates, which in
our case given by (18), by using the corresponding estimated covariance matrix.

11We also count the Best ML submethod as part of the tree-based ML submethods in this subsection because it is
essentially equal to the random forest, as follows from the fact that fraction best ML method for the latter is equal to 1.
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Table 6: DML estimates for the contracts and trade ATE using the main specification, S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (2 fold) 0.3683∗∗∗ 0.3795∗∗∗ 0.2870∗∗∗ 0.3245∗∗∗ 0.3194∗∗∗ 0.3640∗∗∗ 0.3194∗∗∗

[0.0444] [0.0550] [0.0405] [0.0381] [0.0318] [0.0393] [0.0313]
(0.0070) (0.0071) (0.0084) (0.0080) (0.0087) (0.0071) (0.0087)

B. Partially Linear IV Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (2 fold) 0.2472∗∗∗ 0.3720∗ 0.1653 0.1661∗∗∗ 0.1791∗∗ 0.3408∗∗∗ 0.1791∗∗

[0.0839] [0.1938] [0.1258] [0.0476] [0.0908] [0.1314] [0.0904]
(0.0271) (0.0269) (0.0881) (0.0437) (0.0772) (0.0342) (0.0772)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.

Table 7: Original ATE estimates with corresponding table numbers and columns from Nunn (2007)

Export
No Instrumental Variables Instrumental Variables

Main specification 0.3260∗∗∗ Table VII column (3) 0.5390∗∗∗ Table VII column (4)
Extended specification 0.2960∗∗∗ Table VII column (5) 0.5200∗∗∗ Table VII column (6)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. Components of
the main and extended specification are given in Table 1.

Comparing the DML estimates to the original results in Table 7, it becomes clear that DML in the
PLR model produces estimates similar to the original estimate using the main specification. Especially
DML with tree-based ML submethods seems to come very close to this estimate, while DML with the
other ML submethods gives slightly larger estimates. Hence, there does not seem to be much nonlinear
confounding. Further, we find that the DML estimates in the PLIV model are attenuated compared to
the original IV estimate using the main specification. The original IV estimate is larger than the original
estimate without IVs and hence indicates a counterintuitive negative reverse causal effect, stating that
more export in relationship important industries would lead to reduced contract enforcement quality. In
contrast, our DML estimates in the PLIV model are smaller than the DML estimates in the PLR model
and for most ML submethods also smaller than the original estimate without IVs. Therefore, DML
suggests a more plausible positive reverse causal effect, which agrees with the positive reverse causal
effect that was found by Nunn (2007) by using propensity score matching. A possible explanation is
that we more successfully control for alternative ways in which the legal origin instruments affect trade
flows by using ML, instead of the original simple linear method. The key advantage of ML might be that
it enables to pick up complex patterns of industry specialization for country controls that could not be
identified before.

To inspect the importance of nonlinearities further, we plot the mean LASSO coefficient sizes in
Figure 10 in Section A.1 of the Appendix. We find a few interactions and a squared term with relatively
large LASSO coefficient, suggesting that nonlinear nuisance effects may play a role here. This could
possibly explain the positive reverse causal effects from DML. For example, we find a squared term
in the relationship between the labor variable (skill1 times at hk) and legal origins (Z). This suggest
decreasing marginal returns to better legal origins here, which cannot be incorporated with fully linear
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controlling. Note however that the LASSO might not be the best method to reveal important nonlinear
terms here, since the found positive reverse causal effect is only small for the LASSO relative to the other
ML submethods. This perhaps implies that nonlinearities other than first order interactions and squared
terms are important here.

There are economic consequences from the positive reverse causal effect belonging to the attenuation
of the DML estimate with IVs compared to the original or DML estimate without IVs. Nunn (2007)
concludes that the effect of contract enforcement quality on trade flows is much larger than the effect of
capital and labor interactions combined (the latter effect being equal to 0.19, see Table IV column (3)).
This follows indeed from the original estimates with or without IVs in the main specification. Conversely,
our DML estimates in the PLIV model range from 0.17 − 0.18 for 4 out of 7 ML submethods, possibly
suggesting that the effect of contract enforcement quality on trade flows is more or less equal to the
combined effect of the capital and labor variables. Thus, the effect of contract enforcement might have
been overstated originally due to inadequate removal of reverse causal effects.

Subsequently, we try to make the IV exclusion restriction of no alternative channel through which legal
origins affect trade flows other than contract enforcement even more plausible by including additional
control variables. More specifically, we control for a possible comparative advantage of high income
countries in certain industries12 and a possible effect of financial development on trade flows. This gives
us the extended specification, with a decreased sample size of 10, 816 observations. We present DML
estimates for the effect of contract enforcement quality on trade flows in Table 8. To start with, we
inspect DML in the PLR model, which does not employ the instrumental variables. The estimates
range from 0.10 − 0.30 and are significant except for the regression tree. It seems that the tree-based
ML submethods produce substantially smaller DML estimates than the other ML submethods. Overall,
without taking into account reverse causality, we still find that countries with better contract enforcement
export relatively more in relationship important industries.

Table 8: DML estimates for the contracts and trade ATE using the extended specification, S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (2 fold) 0.2993∗∗∗ 0.2950∗∗∗ 0.1021 0.1470∗∗∗ 0.1993∗∗ 0.2959∗∗∗ 0.1993∗∗

[0.0999] [0.0955] [0.1017] [0.0538] [0.0916] [0.0937] [0.0929]
(0.0075) (0.0076) (0.0102) (0.0099) (0.0142) (0.0074) (0.0142)

B. Partially Linear IV Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (2 fold) 0.2165∗∗∗ 0.4975∗∗ 0.2907 0.3061∗∗∗ 0.2305 0.2687∗∗∗ 0.2305∗

[0.0667] [0.2316] [0.3860] [0.0985] [0.1406] [0.0570] [0.1282]
(0.0415) (0.0477) (0.2820) (0.0723) (0.1203) (0.0471) (0.1203)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.

Next, for the PLIV model, we observe DML estimates of 0.22− 0.50, being significant with either of
the two standard errors except for the regression tree, random forest and Best ML submethods. After
correcting for potential reverse causality, we still have a significant positive effect of contract enforcement
quality on trade flows for DML with the SVM, LASSO, neural network and boosting. Furthermore,

12These are industries with high value added, fragmentation of the production, rapid technological development and high
product complexity.
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like in the main specification, the estimates decrease compared to the PLR model for the SVM and
neural network. They become even smaller than the DML estimate in the PLIV model using the main
specification. This might indicate that we capture an even larger positive reverse causal effect now.
Evidence for a positive reverse causal effect is however much less convincing in this specification, given
that we only find it for two ML submethods.

Comparing the DML estimates to the original results in Table 7, we notice that DML in the PLR model
generates estimates very close to the original estimate in the extended specification for the SVM, LASSO
and neural network, but relatively smaller estimates for the tree-based ML submethods. This might
suggest that nonlinear confounding exists but that it can only be picked up by DML with the tree-based
ML submethods. Next, we find again that the DML estimates in the PLIV model are attenuated compared
to the original IV estimate, except for the LASSO. The LASSO does not seem to give much difference
compared to a simple linear control specification, possibly again indicating that the LASSO might not
be the best method to pick up nonlinearities here. The original results in the extended specification
suggest again a negative reverse causal effect. Conversely, for the SVM and neural network, the DML
estimates in the PLIV model are smaller than the DML estimates in the PLR model and the original
estimate without IVs. This indicates a positive reverse causal effect. For the tree-based ML submethods,
the DML estimate in the PLIV model is either larger than in the PLR model or insignificant. When
significant, it is broadly in line with the original estimate without IVs. Evidence for a reverse causal effect
is mixed here: either it is negative or there is none. All in all, it appears that controlling for alternative
effects of legal origins on trade flows not via contract enforcement is still more effective by using ML.
However, evidence is weaker given that we only find positive reverse causal effects for 2 out of 7 ML
submethods.

Terms with the largest mean LASSO coefficient in Figure 11 in Section A.1 of the Appendix include
only a single nonlinear term here; an interaction. This probably explains why DML with the LASSO
does not deviate much from original IV with linear controlling. Unfortunately, the LASSO coefficients
do not very much improve our understanding of possibly important nonlinearities here.

Finally, we increase the number of folds from 2 to 5 in order to check sensitivity of the results to
the number of folds. The DML estimates with 5 folds are presented in Table 22 in Section A.1 of the
Appendix. We find estimates of 0.11− 0.31 in the PLR, being significant except for the regression tree.
The DML with 5 folds estimates resemble the DML with 2 folds estimates closely, both qualitatively and
quantitatively. In the PLIV model, we obtain estimates in the range of 0.10− 0.47, being significant for
all ML submethods excluding the regression tree; including the random forest and Best method, however,
in contrast to DML estimates with 2 folds for these ML submethods. The DML estimates with the two
amounts of folds are again very similar and previous interpretations do not change. Moreover, standard
errors for DML do not consistently grow or shrink due to using more folds. Hence, it becomes clear that
the number of folds does not have a large influence on any estimation results in this application.

5.3 Approximate Residual Balancing: Fox News

5.3.1 Vote share regression

We also apply ARB to estimate the ATE of Fox News availability on the Republican vote share in
2000. We adopt the main specification with the demographic controls, cable controls and the lagged
Republican vote share for 1996. Firstly, we consider a fully linear version of ARB where we do not take
into account nonlinearities. We present the results in Table 9. The ARB estimates show little dispersion
and concentrate around 0.3%, but none of them are significant. This implies again a positive Fox News
effect, although we cannot exclude that the Fox News effect does not exist. Secondly, we consider a
quadratic version by adding to the controls all first order interactions and squares of the census controls,
cable controls and the lagged Republican vote share for 1996. The results are presented in Table 10. The
ARB estimates range from 0.2 to 0.5% now but we still do not find any significant effects. Most estimates
appear to increase by adding nonlinearities, but the standard errors grow as well. Even when taking into
account some nonlinear confounding, we cannot rule out that that there is no Fox News effect. Again
but now for ARB instead of DML, we find that there is a lot of uncertainty around the estimates when
allowing for fully heterogeneous causal effects by using the interactive model. This supports the previous
claim that preciseness of the Fox News effect estimates depends highly on the model assumptions.
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Comparing both versions of the ARB estimates to the original estimates in Table 3, we notice that
ARB produces, even though insignificant, positive Fox News effects that are in line with intuition, in
contrast to the difference-in-difference estimators. This suggests that ARB can have an advantage over
prevailing simple causal effect estimation methods. The fully linear ARB estimates are similar to the
original unweighted least squares (OLS) estimate, whereas the quadratic ARB estimates are slightly
larger, except for ζ = 0.7. This increase is consistent with the findings from DML and is possibly the
consequence of adequately taking into account nonlinear confounding. The ARB estimates are smaller
than the original weighted least squares (WLS) estimates. However, they fall within the range of values
from the unweighted original estimate with either of the fixed effects and the weighted original estimate
with district fixed effects. ARB gives estimates similar to the more advanced original estimates, but it
addresses confounding very differently. ARB might thus be another valuable alternative to established
advanced causal effect estimation methods. Given the larger uncertainty around the estimates from
having to use the interactive model, ARB seems to be a more conservative method than DML.

Table 9: Fully linear ARB estimates for the Fox News vote share ATE using the main specification

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0029 0.0025 0.0026 0.0033 0.0026 0.0025
(0.0020) (0.0021) (0.0023) (0.0021) (0.0021) (0.0023)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Table 10: Quadratic ARB estimates for the Fox News vote share ATE using the main specification

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0034 0.0031 0.0025 0.0045∗ 0.0032 0.0022
(0.0021) (0.0023) (0.0027) (0.0023) (0.0024) (0.0029)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Next, we turn to the dynamic specification by adding the lagged Republican vote share for 1992 and
1988 to the controls. We begin with a fully linear version of ARB, with the results given in Table 11.
The ARB estimates range from approximately 0.5 to 0.7%, being significant in all cases. This strongly
indicates a positive Fox News effect. Subsequently, we examine the quadratic version of ARB with all
squares and first order interactions, including those involving the lagged vote shares for 1992 and 1988.
We present the results in Table 12. The ARB estimates go from roughly 0.4 to 0.8% and half of them are
significant. The majority of ARB estimates increase by adding nonlinearities, but the standard errors
grow even more. Hence, we still obtain a positive Fox News effect when we account for some nonlinear
confounding, but we cannot exclude anymore that there is no Fox News effect. ARB produces mostly
significant positive estimates when using the dynamic specification, even though we adopt the interactive
model. This is in line with DML in the interactive model for the dynamic specification. However, both
versions of the ARB estimates lie on the low side of the DML estimates in the interactive model (compare
to Table 4). The ARB estimates only resemble these DML estimates for the LASSO, SVM or Best ML
submethods. The difference in size between the DML and ARB estimates possibly reflects two factors:
the ability to handle nonlinear confounding and properties of the balancing weights. ARB might not be
able to deal with nonlinear confounding as efficiently as DML with ML submethods other than those
based on linear combinations, which could lead to smaller estimates. Simultaneously, using finite sample
optimal ARB balancing weights instead of asymptotically optimal DML propensity score weights might
also adjust estimates downwards.
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Table 11: Fully linear ARB estimates for the Fox News vote share ATE using the dynamic specification

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0061∗∗∗ 0.0054∗∗ 0.0052∗∗ 0.0067∗∗∗ 0.0060∗∗∗ 0.0056∗∗

(0.0020) (0.0022) (0.0024) (0.0021) (0.0023) (0.0025)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Table 12: Quadratic ARB estimates for the Fox News vote share ATE using the dynamic specification

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0057∗∗ 0.0056∗ 0.0042 0.0076∗∗ 0.0065∗∗ 0.0062∗

(0.0028) (0.0032) (0.0030) (0.0031) (0.0030) (0.0033)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Comparing the ARB estimates to the original estimates for the dynamic specification in Table 5, it
follows that there is a lot of similarity between the fully linear ARB estimates and the original unweighted
least squares (OLS) estimate. The quadratic ARB estimates are also broadly consistent with this original
estimate for the LASSO, but seem slightly larger for the elastic net. Quadratic ARB with the elastic net
thus adjust the estimates from OLS upwards, which is consistent with the results from DML. It could
be due to controlling for nonlinear confounding again. Further, most of the ARB estimates resemble
the unweighted and weighted original county fixed effect estimates and some of them come close to the
original weighted least squares or weighted district fixed effect estimates. In contrast to DML, ARB seems
to give estimates in the neighborhood of the more advanced original estimates, even though ARB and
these estimators capture confounding very differently. Hence, ARB might be another useful alternative
to established advanced causal effect estimation methods, although it may not be as effective as DML
when it comes to handling nonlinearity.

Finally, we point out that a higher value for the tuning parameter ζ almost every time leads to smaller
ATE estimates and larger standard errors, regardless of the specification or whether we incorporate
nonlinearities or not. This means that less bias and more variance leads to smaller estimates, often moving
away from more advanced original or DML estimates towards the original OLS estimates. Although this
does not provide direct guidance on choosing ζ (an important open issue with respect to ARB; Athey
et al., 2016a), it helps to further understand the influence of this tuning parameter in practice.

5.3.2 Audience regression and persuasion rates

In the following, we compute Fox News persuasion rates for ARB by using (18). For that, we use the

main specification ATE estimates β̂0,V oteShare from Section 5.3.1. Next, we need to run the audience

regression of Fox News watching on Fox News availability to get β̂0,Audience and compute the persuasion
rate. We present fully linear and quadratic audience regression ARB estimates in Table 23 and 24 in
Section A.1 of the Appendix, respectively. The fully linear ARB estimates lie around 2.1− 2.2% and are
all significant. The quadratic ARB estimates range from 1.9− 2.2% and are all significant as well. Thus,
ARB strongly suggests that Fox News availability led to Fox News watching, for approximately 2% of the
households. We can reject that the entry of Fox News did not induce Fox News watching. This stands
in contrast with the audience regression DML estimates in the interactive model. Next, we notice that
the LASSO and elastic net ARB estimates become exactly identical, which could indicate that ML does
not perform optimally here due to the smaller sample size. Comparing to the original estimates in Table
19 in Section A.1 of the Appendix, it becomes clear that the fully linear and quadratic ARB estimates
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resemble the original difference-in-difference and unweighted least squares (OLS) estimates. We conclude
once again that in this regression, prevailing simple causal effect estimation methods cannot be rejected
and that nonlinear controlling does not have a very large impact.
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Figure 4: ARB estimates and 95% confidence intervals for persuasion rates. Standard errors are computed via
the Delta method, following DellaVigna and Kaplan (2007). The original weighted district and county fixed effect
persuasion rate estimates are denoted Orig. District and Orig. County, respectively.

Afterwards, we calculate the ARB persuasion rates and plot them in Figure 4. The fully linear ARB
rate estimates show little difference across the LASSO, elastic net and their tuning parameter values and
lie around the original district fixed effect rate estimate. However, the confidence intervals become a lot
wider. The quadratic ARB rate estimates show more dispersion, while those using ζ = 0.7 come very
close to the original district fixed effect rate. The confidence intervals become even wider than for the
fully linear version. The increase in confidence interval width for ARB compared to the original methods
is partly the consequence of using the interactive model, which brings more uncertainty. It could be due
to omitting the clustering of standard errors for towns with the same local cable company with ARB as
well. All in all, the ARB persuasion rate estimates are in line with the original estimates, but the larger
standard errors render them insignificant such that we cannot rule out that Fox News watching did not
actually persuade viewers to vote Republican.

6 Results Heterogeneous Treatment Effects

6.1 Heterogeneous Double Machine Learning: Fox News

6.1.1 Vote share regression

Now that we have established that ML-based causal inference methods can be used successfully to obtain
the Fox News ATE, we extend the original analysis by estimating HTEs. We look at geographical
heterogeneity, as described schematically in Figure 13 in Section A.2 of the Appendix. We use three
levels of heterogeneity: level 1 corresponds to Census regions, level 2 splits these regions to obtain
Census divisions and level 3 indicates the highest degree of heterogeneity by using individual states. We
apply the main specification because this gives us the larger sample, which leads to better estimation
accuracy. Due to limited computational resources, we choose to restrict the set of ML submethods for
heterogeneous DML in this section to the random forest, SVM, neural net and Best. We also restrict
ourselves to conventional standard errors due to the large impact of sample splitting on the median
standard errors for HTEs, as a result of smaller sample sizes. In particular, the median standard errors
for all HTEs grow very large, rendering all estimates insignificant. Before we discuss heterogeneous DML
estimates, we have to make a choice between orthogonal least squares (LS), orthogonal debiased LASSO
and orthogonal LASSO for each level of heterogeneity. Since the dimension of the treatment vector
remains low (d = 4) for level 1 HTEs, we expect that estimation variance of OLS does not get too large.
Hence, we do not have to apply regularization yet such that we can use orthogonal LS for level 1.
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In order to choose between methods for level 2 and 3, we plot their estimates in Figure 5 and 6,
respectively. From the left histograms, we obtain already much dispersion of the orthogonal LS estimates
for level 2 HTEs (d = 9), but even more for level 3 HTEs (d = 28). This pattern reflects the explosion
of OLS estimation variance when the treatment dimension d rises. The variance explosion results in
increasingly more negative Fox News effect estimates, which seems to be intuitively implausible as it
corresponds to a decrease in the Republican vote share due to Fox News availability. The orthogonal
LASSO applies shrinkage to restrict estimation variance, at the cost of estimation bias. From the right
figures, we observe that this leads to a smaller, more credible HTE range. For level 3 HTEs, we do not
even get any negative estimates anymore. The introduced bias does however not allow for valid inference.
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Figure 5: Histograms of estimates from different versions of heterogeneous DML for level 2 Fox News vote share
HTEs (see Figure 13). We use a level of shrinkage of λ = 0.00004 ≈ n−3/2

√
n/log(#Controls) and set a = 25

based on a grid search. We represent groups of estimates for 4 ML submethods: random forest, neural net, SVM
and Best.
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Figure 6: Histograms of estimates from different versions of heterogeneous DML for level 3 Fox News vote share
HTEs (see Figure 13). We use a level of shrinkage of λ = 0.00008, such that it is roughly twice as large as for level
2 heterogeneity, following Chernozhukov et al. (2017). Also, we set a = 25 based on a grid search. We represent
groups of estimates for 4 ML submethods: random forest, neural net, SVM and Best.

From the middle figures we see that the orthogonal debiased LASSO strikes a middle ground: it
produces a slightly wider but still credible range of HTEs with the majority being positive. Meanwhile,
it limits the amount of shrinkage and therefore estimation bias, such that it can still be used to conduct
inference on the HTEs. The difference in pattern of the HTE estimates across the methods resembles
that of Chernozhukov et al. (2017) for heterogeneous DML, but the differences across methods are a bit
larger. The latter could relate to the fact that our sample size is only small compared to theirs. Moreover,
it depends on our choice for the shrinkage and mixing parameters λ and a. It is not fully clear which
particular value should be used in practice. Altogether, we conclude that the debiased LASSO is the
preferred option to conduct inference on level 2 and 3 HTEs.
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Heterogeneous DML orthogonal LS estimates for level 1 HTEs of Fox News availability on the Re-
publican vote share in 2000 are presented in Table 13. For the Northeast region, we obtain a significant
estimate for all ML submethods. The size of the Fox News effect ranges from 0.4 − 0.6% here. This
corresponds roughly with the size of the ATE from the more advanced original estimates and from DML
for several ML submethods, using the main specification. For the South, Midwest and West regions, we
get insignificant estimates with much variation across ML submethods. For the West, the estimates are
positive and for the Midwest and South they are close to zero or even negative. Accordingly, we find
that the significant positive Fox News ATE is driven in particular by the Northeast region and perhaps
the West region, but not the South and Midwest regions. This indicates that geographical heterogeneity
of the Fox News effect indeed exists.

Next, heterogeneous DML orthogonal debiased LASSO estimates for level 2 HTEs are given in Table
14. The Middle Atlantic division gets for all ML submethods a significant Fox News effect estimate of
around 0.4−0.6%. Simultaneously, we notice from Figure 12 and 13 in Section A.2 of the Appendix that
all member states of this division are Democratic states. Furthermore, we find for some ML submethods
significant positive Fox News effect estimates for the divisions New England (0.1− 0.7%), Pacific (0.2−
0.6%) and East North Central (0 − 0.4%). Again, it follows that these generally consist of Democratic
towns, considering that 2/3, 5/6 and 2/3 of their member states had a Democratic victory in 2000,
respectively. The divisions West North Central and South Atlantic get (partly) significant negative Fox
News effect estimates, while East South Central, Mountain and West South Central show insignificant
estimates close to zero. In contrast, they mainly consist of Republican towns. For all divisions except
West North Central, the Republican party had a victory in all of the member states. For the West North
Central division, it won in half of the member states. The remaining two states were swing states given
the small margin of victory, especially for Iowa. Thus, the Fox News effect appears to be stronger in
more Democratic divisions, which is in line with the estimate of DellaVigna and Kaplan (2007) (Table
VI column (1)). This makes intuitive sense as well because the share of people that can possibly be
convinced to vote Republican is larger in these divisions.

The advantage of more detailed heterogeneity in the Fox News effect can now also be seen from the
estimates. The results for level 1 HTEs suggest an insignificant Fox News effect close to zero for the
Midwest region, perhaps making us believe that the Fox News effect does not exist in each of the member
divisions of the Midwest. The results for level 2 HTEs tell us however that there might be a small but
significant positive Fox News effect for the East North Central division. This effect is however masked
when including the West North Central division, since the latter shows a negative Fox News effect.

Finally, heterogeneous DML orthogonal debiased LASSO estimates for level 3 HTEs are given in
Table 15, but only for states with a significant Fox News effect estimate for at least one ML submethod
at the 10% level. Results for the remaining states with insignificant estimates are presented in Table 25
in Section A.1 of the Appendix. We find significant positive estimates for the Democratic states Michigan
(0.7− 0.8%), New York (0.8− 1.1%) for all ML submethods, and for Hawaii (0.1− 0.7%), Massachusetts
(0.1 − 0.8%), Connecticut (0.2 − 0.6%) for some ML submethods. Hence, it becomes again clear that
geographical heterogeneity exists. More importantly, however, is that our results extend the original
insight of a larger Fox News effect in Democratic states compared to Republican states, in the sense that
we also obtain clear heterogeneity within the group of Democratic states now.

In addition to these Democratic states, we also obtain a significant positive Fox News effect estimate
for the Republican states Alabama (0.5 − 0.9%) and Wyoming (0.5 − 1.5%). Furthermore, we find
significant negative Fox News effect estimates for Wisconsin and Rhode Island and insignificant slightly
negative estimates for Iowa and Minnesota, which are all four Democratic. We do not observe a larger Fox
News effect in Democratic states compared to Republican states here. This illustrates that the previously
discussed original insight is a bit too simplistic to describe geographical heterogeneity in the Fox News
effect. On a more detailed level, geographical differences with respect to the Fox News effect go beyond
the distinction between states with another winning party.
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Table 13: Orthogonal LS estimates for level 1 Fox News vote share HTEs, S = 50

Random Forest Neural Net. SVM Best
Median HTE se Median HTE se Median HTE se Median HTE se

HTE Model with Modeled Heterogeneity

Northeast 0.0062∗∗∗ (0.0017) 0.0053∗∗∗ (0.0016) 0.0040∗∗ (0.0016) 0.0039∗∗ (0.0017)
South −0.0069 (0.0064) −0.0065 (0.0059) −0.0092∗ (0.0055) −0.0087 (0.0062)
West 0.0115∗ (0.0060) 0.0074 (0.0051) 0.0048 (0.0049) 0.0077 (0.0055)
Midwest 0.0000 (0.0022) −0.0025 (0.0020) −0.0017 (0.0020) −0.0022 (0.0021)
Note: Heterogeneity levels are from the hierarchy outlined in Figure 13. Conventional standard errors are given in parentheses. The
symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. The regions are ordered according to significance
strength, i.e. the total amount of asterisks over all ML submethods.

Table 14: Orthogonal debiased LASSO estimates for level 2 Fox News vote share HTEs, S = 50

Random Forest Neural Net. SVM Best
Median HTE se Median HTE se Median HTE se Median HTE se

HTE Model with Modeled Heterogeneity

Middle Atlantic 0.0048∗∗∗ (0.0010) 0.0057∗∗∗ (0.0009) 0.0047∗∗∗ (0.0009) 0.0044∗∗∗ (0.0010)
West North Central −0.0155∗∗∗ (0.0022) −0.0106∗∗∗ (0.0020) −0.0063∗∗∗ (0.0020) −0.0086∗∗∗ (0.0020)
New England 0.0072∗∗∗ (0.0012) 0.0013 (0.0013) 0.0015 (0.0011) 0.0034∗∗∗ (0.0012)
South Atlantic −0.0077∗∗∗ (0.0020) −0.0007 (0.0011) −0.0036∗∗ (0.0017) −0.0035∗ (0.0019)
Pacific 0.0057∗∗ (0.0024) 0.0017 (0.0017) 0.0027 (0.0019) 0.0053∗∗ (0.0022)
East North Central 0.0038∗∗∗ (0.0011) 0.0001 (0.0009) 0.0003 (0.0010) 0.0003 (0.0010)
East South Central −0.0001 (0.0027) −0.0010 (0.0022) −0.0011 (0.0022) −0.0015 (0.0023)
Mountain 0.0002 (0.0026) −0.0025 (0.0023) −0.0002 (0.0021) −0.0013 (0.0022)
West South Central −0.0002 (0.0038) 0.0009 (0.0027) −0.0013 (0.0027) 0.0003 (0.0029)
Note: Heterogeneity levels are from the hierarchy outlined in Figure 13. Conventional standard errors are given in parentheses. The
symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. The regions are ordered according to significance
strength, i.e. the total amount of asterisks over all ML submethods.

Table 15: Significant orthogonal debiased LASSO estimates for level 3 Fox News vote share HTEs,
S = 50

Random Forest Neural Net. SVM Best
Median HTE se Median HTE se Median HTE se Median HTE se

HTE Model with Modeled Heterogeneity

Michigan 0.0079∗∗∗ (0.0014) 0.0074∗∗∗ (0.0012) 0.0078∗∗∗ (0.0015) 0.0066∗∗∗ (0.0013)
New York 0.0102∗∗∗ (0.0010) 0.0082∗∗∗ (0.0009) 0.0110∗∗∗ (0.0009) 0.0096∗∗∗ (0.0010)
Wisconsin 0.0020 (0.0045) −0.0049∗∗ (0.0021) −0.0053∗∗∗ (0.0019) −0.0047∗∗ (0.0024)
Alabama 0.0092∗∗ (0.0037) 0.0071∗∗ (0.0035) 0.0051∗ (0.0028) 0.0055∗ (0.0031)
Wyoming 0.0148∗∗ (0.0064) 0.0046 (0.0031) 0.0073∗∗ (0.0035) 0.0061∗ (0.0037)
Hawaii 0.0074∗∗ (0.0030) 0.0007∗ (0.0004) 0.0045∗ (0.0024) 0.0047∗ (0.0024)
Massachusetts 0.0080∗∗∗ (0.0022) 0.0008 (0.0013) 0.0022∗ (0.0012) 0.0020 (0.0013)
Rhode Island 0.0021 (0.0019) −0.0031∗∗ (0.0015) −0.0027∗ (0.0016) −0.0024 (0.0016)
Connecticut 0.0061∗∗ (0.0024) 0.0015 (0.0019) 0.0015 (0.0018) 0.0016 (0.0016)
South Carolina −0.0073∗∗ (0.0034) −0.0003 (0.0020) −0.0037 (0.0028) −0.0044 (0.0033)
Iowa −0.0042∗ (0.0023) −0.0003 (0.0021) −0.0002 (0.0020) −0.0012 (0.0020)
Minnesota −0.0051∗ (0.0028) −0.0022 (0.0027) −0.0006 (0.0026) −0.0019 (0.0028)
Note: Heterogeneity levels are from the hierarchy outlined in Figure 13. Conventional standard errors are given in parentheses. The
symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. We only show regions with a significant estimate,
ordered according to significance strength, i.e. the total amount of asterisks over all ML submethods.
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6.1.2 Persuasion rates

We continue with a discussion of heterogeneous persuasion rates, for the states Michigan, New York and
California. We choose these states in order to compare our results to other media persuasion rates from
the literature. To compute heterogeneous persuasion rates, we use the HTE estimates per state from
Section 6.1.1 as β̂0,V oteShare in (18). Further, note that we are unable to estimate HTEs in the audience

regression, because of the small sample size. We proceed by taking for β̂0,Audience the ATE estimated
with DML, as given in Table 21 in Section A.1 of the Appendix. The heterogeneous persuasion rates
are then presented in Figure 7. For Michigan, we observe persuasion rates of approximately 10% with
little difference across ML submethods within heterogeneous DML. For 3 out of 4 ML submethods, the
confidence interval does not cover zero, implying a significant persuasion rate. The significant persuasion
rates for Michigan exceed the original ATE persuasion rates. It becomes thus clear that in Michigan a
higher than average fraction of Fox News watchers is persuaded to vote Republican.
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Figure 7: Estimates and 95% confidence intervals for heterogeneous persuasion rates computed by combining
heterogeneous vote share regressions and the audience regression. RF is short for random forest and NN for neural
network. The Causal Forest rates are discussed in a later Section.

Continuing with California, we obtain large differences in persuasion rate across ML submethods.
The rate is estimated at approximately 5% according to the random forest and Best ML submethod,
whereas it is estimated at 1 − 4% when following the SVM or neural network. We do not find any
significant persuasive effects. To highlight the benefit of using HTEs, we compare this effect to the
laboratory experiment of Ansolabehere and Iyengar (1995), who assess the persuasive effect of 30 second
exposure to a political ad on the vote share for the party sponsoring the ad. In a Southern California
testing location, they find a significant persuasion rate of 8.2%. When using the original ATE estimate
with county fixed effects, we would conclude that the media persuasive effects of Fox News and political
ads do not differ much. Conversely, when adopting the sparsity based heterogeneous DML, we find an
insignificant but smaller effect. This implies that the media persuasive effect of political ads might exceed

36



that of Fox News.
For New York, we find two groups of persuasion rates. The random forest and neural network produce

rates of 11− 12%, whereas the SVM or Best ML submethod give rates of approximately 15% with much
wider confidence intervals. For 3 out of 4 ML submethods, the persuasion rate is significant. Therefore,
we have a wide range of estimates for the persuasion rate in New York of 11− 15%. Hence, the fraction
of Fox News watchers that is persuaded to vote Republican is even higher in New York than in Michigan.
The relevance of HTEs can now also be seen when we compare the persuasive effect of Fox News to that of
other media. Green and Gerber (2001) conducted a randomized field experiment to assess the persuasive
effect of phone canvassing, i.e. getting a phone call encouraging you to vote, on voter turnout. In two
locations in New York they find persuasion rates of 8.2% point (Albany) and 9.3% point (Stonybrook).
Comparing that to the Fox News rate by using the original ATE persuasion rates, we would conclude
that the media persuasive effect of Fox News is either lower or around that of phone canvassing. However,
when correcting for geographical differences by using the HTE for New York, we arrive at the opposite
conclusion: the media persuasive effect of Fox News is larger than that of phone canvassing.

6.2 Causal Forest: Fox News

6.2.1 Vote share regression

Causal Forest estimates for level 1 HTEs of Fox News availability on the Republican vote share in 2000 are
presented in Table 16. The Fox News effect estimate is significant for the Northeast, Midwest and West
regions. It is greatest for the West region (0.93%), followed by the Northeast region (0.77%) and then
the Midwest region (0.67%). The size of the Fox News effect estimate in the Midwest region corresponds
to the weighted original ATE estimate with county fixed effects. For the South region, we obtain an
insignificant positive estimate. Hence, we find that the significant positive Fox News ATE is mainly
driven by the West, Northeast and Midwest region, but perhaps not the South. There is thus evidence
in the data for heterogeneity in the Fox News effect across regions.

Both the Causal Forest and heterogeneous DML indicate that the Fox News effect might be lower or
even absent in the South region. Furthermore, in the West region the Causal Forest estimate lies within
the range of heterogeneous DML estimates across ML submethods (0.5 − 1.1%). There is however no
consensus on the Midwest region, since heterogeneous DML estimates for the Midwest are close to zero
and insignificant instead of significant and positive, as follows from the Causal Forest. Moreover, the
estimates for the Northeast region differ numerically between these methods. Underlying assumptions
provide insights into the origin of the discrepancies between the methods. Because it assumes sparsity
of the Fox News effect across regions, heterogeneous DML pulls estimates towards zero in some regions
(South, Midwest). The differences across regions are then highlighted well, but having null effects in
some regions might not be realistic. To the contrary, the Causal Forest gives the same estimate of
approximately the ATE for these regions. This leads to less clear differences across regions, but we do
not get null effects anymore. Depending on the believed structure of Fox News effect heterogeneity, we
can prefer one or another.

Increasing the degree of heterogeneity, we present Causal Forest estimates for level 2 HTEs in Table
17. We find significant estimates for all divisions. The Fox News effect is estimated to be large for the
Republican Mountain division (0.82%) and the Democratic Middle Atlantic division (0.78%), but small for
the mixed West North Central division (0.60%) and the Republican East South Central division (0.68%).
Other divisions get a Fox News effect estimate close to 0.71%. Comparing to heterogeneous DML, it
follows that both the Causal Forest and heterogeneous DML with any of the four ML submethods assign
the West North Central division the single lowest Fox News effect estimate. Furthermore, the Middle
Atlantic division gets the highest estimate with the Causal Forest and heterogeneous DML for the neural
network and SVM. Thus, we find some similarity between the two methods. However, we do not observe
the sharp distinction between Democratic and Republican divisions anymore with the Causal Forest.
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Table 16: Causal Forest estimates for level 1 Fox
News vote share HTEs

Causal Forest
Median HTE se

Conditional ATE Model

Midwest 0.0067∗∗ (0.0034)
Northeast 0.0077∗∗ (0.0038)
West 0.0093∗∗ (0.0043)
South 0.0069∗ (0.0041)

Note: Heterogeneity levels are from the hierarchy out-
lined in Figure 13. Conventional standard errors are
given in parentheses. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote
significance at the 10, 5 and 1% level, respectively. The
regions are ordered according to significance strength, i.e.
the amount of asterisks.

Table 17: Causal Forest estimates for level 2 Fox
News vote share HTEs

Causal Forest
Median HTE se

Conditional ATE Model

East South Central 0.0068∗∗∗ (0.0025)
Mountain 0.0082∗∗∗ (0.0031)
Middle Atlantic 0.0078∗∗∗ (0.0029)
East North Central 0.0070∗∗ (0.0031)
New England 0.0071∗∗ (0.0029)
Pacific 0.0071∗∗ (0.0030)
South Atlantic 0.0071∗∗ (0.0029)
West North Central 0.0060∗∗ (0.0030)
West South Central 0.0072∗∗ (0.0029)

Note: Heterogeneity levels are from the hierarchy out-
lined in Figure 13. Conventional standard errors are
given in parentheses. The symbols ∗, ∗∗ and ∗∗∗ denote
significance at the 10, 5 and 1% level, respectively. The
regions are ordered according to significance strength,
i.e. the amount of asterisks. Remaining states denotes
the estimate for other states that are not explicitly indi-
cated. These states and their standard errors are given
in Table in Section of the Appendix.

Table 18: Causal Forest estimates for level 3 Fox
News vote share HTEs

Causal Forest
Median HTE se

Conditional ATE Model

Arkansas 0.0073∗∗∗ (0.0026)
Iowa 0.0070∗∗∗ (0.0024)
Michigan 0.0076∗∗∗ (0.0018)
New York 0.0091∗∗∗ (0.0031)
New Jersey 0.0074∗∗∗ (0.0025)
Ohio 0.0071∗∗∗ 0.0024
Wisconsin 0.0070∗∗∗ (0.0019)
Wyoming 0.0073∗∗∗ (0.0028)
Pennsylvania 0.0071∗∗ (0.0029)
Tennessee 0.0067∗∗ (0.0026)
Remaining states 0.0072∗∗∗ −

Note: Heterogeneity levels are from the hierarchy out-
lined in Figure 13. Conventional standard errors are
given in parentheses. The symbols ∗, ∗∗ and ∗∗∗ denote
significance at the 10, 5 and 1% level, respectively. The
regions are ordered according to significance strength,
i.e. the amount of asterisks. Remaining states denotes
the estimate for other states that are not explicitly indi-
cated. These states and their standard errors are given
in Table 26 in Section A.1 of the Appendix.

We move on with the largest degree of heterogeneity. Causal Forest estimates for level 3 HTEs are
given in Table 18. A lot of states get an equal Fox News effect estimate of 0.72%. They are listed
with the corresponding complete results in Table 26 in Section A.1 of the Appendix. We observe again
significant estimates for all states. A distinctly large Fox News effect of 0.91% is obtained for New York.
Other states which show a relatively large Fox News effect are Michigan (0.76%), New Jersey (0.74%),
Wyoming (0.73%) and Arkansas (0.73%). We find a relatively small Fox News effect for Tennessee
(0.67%), Wisconsin (0.70%) and Iowa (0.70%). Except for New York, the Fox News effect does not differ
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widely across states. This could be an indication that the data do not fully support heterogeneity to such
a high degree. Finally, we compare the results to estimates from heterogeneous DML. Wyoming belongs
to the states with a significant positive effect for heterogeneous DML and similarly it gets a relatively
large estimate with the Causal Forest. Wisconsin is one of the few states with a significant negative
heterogeneous DML estimate and in line with this it gets a relatively small Causal Forest estimate.
Further, heterogeneous DML with the neural network, SVM and Best ML submethod obtains the single
highest Fox News effect for New York, similar to the Causal Forest. Moreover, for New York the Causal
Forest estimate falls within the range of heterogeneous DML estimates across ML submethods (0.8−1.1%).
Next, Michigan gets the second highest Fox News effect with both the Causal Forest and heterogeneous
DML with the neural network, SVM and Best ML submethod. The Causal Forest estimate additionally
resembles the heterogeneous DML estimates for the random forest (0.79%), neural network (0.74%) and
SVM (0.78%) closely here. The findings for New York and Michigan seem particularly strong, given that
the methods agree on the size of the Fox News effect there, both relative to other states and absolute.

6.2.2 Persuasion rates

Next, we discuss heterogeneous persuasion rates for selected states. Note again that we are unable to
estimate HTEs in the audience regression, because of the small sample size. In order to obtain the
persuasion rates by using solely the Causal Forest, not DML, we proceed differently than before. We
estimate a new Causal Forest for the audience regression after which we average over the HTEs for all
observations to obtain an ATE estimate of 0.0231 with a standard error of 0.0084, following the procedure
to obtain the ATE via the Causal Forest from Athey et al. (2016b). The recall audience heterogeneous
persuasion rate is then presented in Figure 7 in Section 6.1.2. For Michigan, we observe a significant
persuasion rate of approximately 10%, conforming to the heterogeneous DML persuasion rates. Hence,
the previous conclusion remains valid; evidence for it becomes even stronger.

Proceeding to California, we find a significant persuasion rate estimate around 8%. Comparing this
to the 8.2% persuasion rate of Ansolabehere and Iyengar (1995), we conclude that the media persuasive
effects of Fox News and political ads do not differ much, as opposed to the conclusion from heterogeneous
DML. For New York, we find a significant persuasion rate of 11 − 12%, similar to heterogeneous DML
with the random forest or neural network. Earlier conclusions continue to hold in this case.

6.3 Causal Forest: Contracts and Trade

After having estimated the ATE of contract enforcement quality on trade flows, we extend the original
analysis with HTEs. We inspect heterogeneity across the number of inputs for an industry, because the
larger the number of inputs, the harder vertical integration becomes. In turn, vertical integration could
make good contract enforcement less important for trade flows, since it removes the need to collaborate
with suppliers. Thus, HTEs across the number of inputs inform us about the impact of vertical integration
on the relationship between contract enforcement and trade flows.

To make a fair comparison with the original result, we firstly compute Causal Forest contracts and
trade HTE estimates by using only the country and industry level controls. The results are shown in
Figure 8, where HTE estimates are significant if the confidence intervals do not cover zero. The standard
Causal Forest of Figure 8a produces an HTE estimate that starts at a low level close to 0.10, for the
number of inputs smaller than 15. The HTE estimate increases with the number of inputs next, roughly
until the number of inputs reaches 60. Finally, it stabilizes at a level just above 0.30. For any number
of inputs larger than approximately 15, the HTE estimate is significant. We interpret this pattern as
follows: only for a moderate number of inputs roughly between 15 and 60, we find evidence that easier
vertical integration decreases the effect of contract enforcement quality on trade flows.

Originally, when controlling for the levels of trade, Nunn (2007) estimates the contracts and trade
effect at 0.186 for industries with the number of inputs below the median across industries and at 0.342
for industries with the number of inputs above it (Table V column (1)). Averaging our Causal Forest
results, we get estimates for the below and above median number of input industries of 0.217 and 0.326.
Hence, the Causal Forest results are broadly consistent with the original findings, but extend them in
the sense that we now obtain a complete functional form for the impact of vertical integration on the
contracts and trade effect.
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Figure 8: Causal Forest estimates and 95% confidence intervals for HTEs of contract enforcement quality on
trade flows across different number of inputs using only the country and industry level control variables.

Another direction in which we extend the original findings is taking into account reverse causality.
The previous Causal Forest and original results do not incorporate that causality possibly runs from
comparative advantage in relationship important industries to good contract enforcement. Therefore, we
apply the instrumental variable version of the Causal Forest, with the results outlined in Figure 8b. The
HTE estimate begins with a low level around 0.20, for the number of inputs smaller than 35. Next, we
observe that the HTE estimate increases with the number of inputs, roughly until the number of inputs
reaches 90. In the end, it stabilizes at a level close to 0.50. For an input amount larger than 50, we
find consistent significance of the contracts and trade effect. Our interpretation is that easier vertical
integration reduces the effect of contract enforcement quality on trade flows, but only if the number
of inputs lies between 50 and 90. The HTE level for the Causal Forest with instrumental variables is
generally higher than for the Causal Forest without instrumental variables, for any given number of
inputs. Similarly as for the ATE, this suggests that the reverse causal effect found by incorporating
IVs into the Causal Forest is negative. It seems that the Causal Forest cannot sufficiently control for
alternative channels through which the legal origin instruments affect trade flows. Furthermore, compared
to the Causal Forest without instrumental variables, we also find a slightly smaller range for which the
number of inputs and accordingly vertical integration affects the contracts and trade effect. Hence, the
impact of vertical integration seems to decrease after taking into account reverse causality.

We continue with extending the original findings to the main specification, thereby adding the labor
and capital interactions. As such, we control for other determinants of trade flows in order to make
our causal effect identification assumptions more plausible. Figure 9 shows Causal Forest contracts and
trade HTE estimates for the main specification. The standard Causal Forest of Figure 9a gives an HTE
estimate just below 0.30 up to approximately 100 inputs. It then increases to a level slightly above 0.30,
until reaching 110 inputs. For more than 110 inputs, the HTE estimate seems to remain around 0.30. It
follows that the degree to which easier vertical integration implies a smaller contracts and trade effect
drops substantially by including extra controls. What remains is a very narrow region of 100−110 inputs
where vertical integration appears to have a tiny effect. Hence, the original results and the Causal Forest
results without the extra controls possibly overstate the impact of vertical integration.

Finally, we turn to instrumental variables to remove potential reverse causal effects. Figure 9b shows
the HTE estimates of the instrumental variable version of the Causal Forest. The HTE estimate begins
slightly above 0.40 and decreases gradually towards 0.40 for approximately 100 inputs. For more than
100 inputs, we observe a steeper descent until the HTE estimate stabilizes around 140 inputs at a much
lower level of roughly 0.15. Additionally, we see that the HTE confidence intervals become very wide
for a very small or large number of inputs. The contracts and trade HTE is nonetheless significant
approximately until the number of inputs reaches 125. Surprisingly, the results now imply that easier
vertical integration leads to a slightly higher effect of contract enforcement quality on trade flows, except
for the largest amounts of inputs. Compared to the Causal Forest without IVs, we generally find a higher
HTE estimate for any given input amount, indicating again that Causal Forest controlling might not be
sufficient in order for the IV assumptions to hold. In addition, any evidence for a lower contracts and
trade effect due to vertical integration completely disappears by taking into account reverse causality.
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Everything combined, it becomes clear that the negative impact of easier vertical integration on the effect
of contract enforcement quality on trade flows might not be as large as found by Nunn (2007) or not even
existent. Furthermore, assuming that it still exists, it is only present for industries with certain moderate
levels of vertical integration.
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Figure 9: Causal Forest estimates and 95% confidence intervals for HTEs of contract enforcement quality on
trade flows across different number of inputs using the main specification.

7 Conclusion

In this paper, we investigate the merits of promising ML-based causal inference methods in empirical
applications by revisiting two applied papers. The first estimates the causal effect of the introduction of
the Fox News channel on the Republican vote share in the 2000 U.S. presidential elections by assuming
unconfoundedness. The second estimates the causal effect of contract enforcement quality on trade flows
by using IVs. We target the ATE, like originally, but we also extend the original papers by targeting
HTEs. For the ATE, we implement DML and ARB and compare the results both to the original results,
that were obtained using established causal inference methods, as well as to each other. For the HTEs,
we employ heterogeneous DML and the Causal Forest and examine what additional insights we can get
and investigate to what extent the insights from both methods agree.

Starting with ATE estimation under unconfoundedness using DML, we find in the Fox News appli-
cation for the effect of Fox News availability on the 2000 Republican vote share that DML produces
positive estimates, which conforms to our intuition. Conversely, the original difference-in-difference es-
timator gives negative estimates. This suggests that DML might give a better indication of the ATE
than simple causal inference methods. Next, it becomes clear that the DML estimates are consistently
larger than the original OLS estimate in both considered specifications. This increase could be the con-
sequence of more adequate correcting for high-dimensional and complex confounding relationships with
DML relative to original OLS. This explanation is supported by additional analyses using the LASSO,
which suggest that nonlinearities play a large role in the control functions. This result provides evidence
that DML might improve on causal inference from standard linear controlling. Finally, in the main spec-
ification, the DML estimates show a lot of similarity with more advanced original estimates, i.e. those
that use controls and apply weighting and/or fixed effects. DML strengthens the original results here
given that DML and the advanced original methods capture confounding very differently. In the dynamic
specification, the DML estimates are greater than most of the advanced original estimates, possibly be-
cause we are able to correct for nonlinear political trends with DML. DML might improve the original
estimates here by adjusting them upwards. Thus, DML can be a very useful alternative to established
advanced causal effect estimation methods.

Furthermore, it follows that DML estimates for the fraction of Fox News channel viewers that is
persuaded to vote Republican remain close to the main original estimates. Confidence intervals for this
persuasion rate are however a lot wider with DML, implying that we cannot exclude that the Fox News
channel did in fact not convince any viewers to vote Republican. Economic implications of the changes
in estimate due to DML are limited here.
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Moving on to ATE estimation under IV-identification using DML, we find in the contracts and trade
application with the main specification that DML estimates with IVs are smaller than the original estimate
with IVs. Moreover, they are also smaller than the DML estimates without IVs and in majority smaller
than the original estimate without IVs. These findings correspond to a positive reverse causal effect,
which is in line with intuition and other original estimates from propensity score matching. In contrast,
original IV-estimation with a linear control specification leads to a negative reverse causal effect. The
difference might indicate that DML is better capable of correcting for alternative channels through which
the instruments affect the outcome, making the exclusion assumption more credible. In particular, we
might be able to discover complex industry specialization patterns for country variables with DML that
could not be found originally. Accordingly, DML might improve on standard causal inference with IVs
to a great extent.

The change in ATE estimate due to DML has economic implications. Originally, it was found that the
effect of contract enforcement on trade flows exceeds the combined effect of labor and capital variables
by large. However, the majority of DML estimates suggest that the contract enforcement effect actually
could as well fall in the same range as this combined effect. The size of the causal effect seems to be
overstated originally due to improperly taking into account reverse causality.

Continuing with ATE estimation under unconfoundedness using ARB, we find in the Fox News ap-
plication for the previously considered Fox News effect solely positive estimates with ARB, rather than
the negative estimates from difference-in-difference. Hence, ARB might give a better indication of the
ATE than simple causal inference methods, similar to DML. Further, it follows that the fully linear
ARB estimates become very similar to the original OLS estimate in both specifications. Some of the
quadratic ARB estimates are slightly larger. We conclude therefore that adequate correcting for solely
high-dimensional confounding does not lead to differences. However, adequately correcting for complex
(and high-dimensional) confounding relationships does lead to a slight increase of the ARB estimate
compared to the original OLS estimate. There is some evidence that ARB might improve on standard
linear controlling, albeit weaker evidence than for DML. Lastly, in both specifications, the ARB esti-
mates are moderately similar to the more advanced original estimates. Both types of methods control
for confounding in a very different ways, such that ARB strengthens the original results here. ARB can
thus also be a useful alternative to established advanced causal effect estimation methods. Persuasion
rate estimates from ARB resemble those of DML closely and lead to similar conclusions.

Comparing DML and ARB more closely by adopting the same model, we find in the main specification
that both DML and ARB give insignificant Fox News effect estimates. In the dynamic specification, we
obtain significant estimates for both DML and ARB. In that sense, DML and ARB seem to agree here.
However, the DML estimates are greater than the ARB estimates in the dynamic specification. This
difference possibly reflects the difference in weights that are used to balance covariate distributions across
the treatment and control group: ARB weights might be more suitable than DML weights in smaller
samples, especially if estimation of the propensity score proves to be difficult.

Next, for HTE estimation under unconfoundedness using heterogeneous DML, we obtain in the Fox
News application only a significant positive Fox News effect estimates for the Northeast region, when
using the lowest degree of heterogeneity. This gives a first indication that geographical heterogeneity
indeed exists. When we increase the degree of heterogeneity, it follows that divisions with the largest
estimates all turn out be Democratic, whereas the divisions with the smallest estimate happen to be
Republican. Thus, we agree with the original insight that the Fox News effect is broadly driven by towns
where the Democratic party won the elections in 2000. For the highest degree of heterogeneity, we find
a high Fox News effect in the Democratic states New York (0.8− 1.1%) and Michigan (0.7− 0.8%), but
also in the Republican states Wyoming (0.5− 1.5%) and Alabama. The lowest Fox News effect is found
for the Democratic state Wisconsin, where it even becomes negative. We firstly conclude that on a more
detailed level, geographical heterogeneity of the Fox News effects goes beyond the distinction of states
with another winning party in 2000. Secondly, it follows that within the group of Democratic states
heterogeneity of the Fox News effect exists as well.

Proceeding to HTE estimation under unconfoundedness using the Causal Forest, we find in the Fox
News application for the lowest degree of heterogeneity significant positive Fox News effect estimates for
the Northeast, Midwest and West region, but not the South. Hence, we have indication for geographical
heterogeneity again. When increasing the degree of heterogeneity, we do not find a sharp distinction
in Fox News effect between Democratic and Republican divisions anymore. For the highest degree of
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heterogeneity, we find a clear largest Fox News effect in New York (0.91%). Other states with relatively
large effects are Michigan (0.76%), New Jersey, Wyoming (0.73%) and Arkansas. For Tennessee, we find
the smallest effect, although it remains positive. Other states with a small effect are Wisconsin and Iowa.

Finally, for HTE estimation under IV-identification with the Causal Forest, we find in the contracts
and trade application an HTE estimate that increases with the number of inputs of an industry, but only
for not too extreme input amounts. This implies that easier vertical integration reduces the causal effect
of contract enforcement quality on trade flows, which is in line with the original claim. However, it also
follows that this only holds if industries happen to have certain moderate levels of vertical integration.
Furthermore, it becomes apparent that taking into account reverse causality by using IVs or controlling
for labor and capital variables shrinks the range of levels for which vertical integration does have an
influence. When including both, we do not even find an increasing HTE estimate in the number of inputs
anymore. Thus, our results refine the original insight regarding vertical integration: it might not have
too much of an influence on the relationship between contract enforcement and trade flows.

Comparing heterogeneous DML and Causal Forests, it follows that they actually show some similarity,
with respect to the ordering of geographical regions on Fox News HTE as well as the Fox News HTE
itself. For the smallest degree of heterogeneity, we find with both methods that the Fox News effect
might be lower or absent in the South region. For the largest degree of heterogeneity, we notice for both
methods that Wyoming and Wisconsin belong to the states with a relatively high and low Fox News
effect, respectively. Furthermore, according to both methods New York has the largest Fox News effect
and Michigan the second largest. Moreover, the Causal Forest estimates lie within the range of estimates
from heterogeneous DML for these two states. Differences between the heterogeneous DML and Causal
Forest estimates seem to arise primarily due to the sparsity assumption on the HTEs for heterogeneous
DML. This assumption pulls some heterogeneous DML HTE estimates towards zero, or even makes them
negative. Finally, from a literature comparison, it becomes clear that HTE estimates from both methods
improve on ATE estimates in the sense that they accommodate valid comparisons of the media persuasion
effect of Fox News watching to other media forms.
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A Appendix

A.1 Additional results

Original results

Table 19: Original audience regression ATE estimates with corresponding table numbers and columns
from DellaVigna and Kaplan (2007)

Audience
Unweighted Weighted

No controls
Diff-in-diff 0.0219∗∗∗ Earlier draft 0.0270∗∗∗ Table VIII column (1)

Main specification
No f.e. (LS) 0.0228∗∗ Earlier draft 0.0272∗∗∗ Earlier draft
District f.e. 0.0471∗∗∗ Earlier draft 0.0371∗∗∗ Table VIII column (2)
County f.e. 0.0295∗∗ Earlier draft 0.0251∗∗∗ Table VIII column (3)

Note: Unweighted and weighted estimation corresponds to using the observations directly and after weighting
them by the amount of votes cast in 1996, respectively. Diff-in-diff denotes the simple difference-in-difference
estimator computed with only the 2000 and 1990 audience shares. No f.e. (LS), district f.e. and county f.e. add
controls from the main specification, see Table 1. No f.e. (LS) denotes the least squares estimator without fixed
effects, while district f.e. and county f.e. denote different fixed effect estimators. The symbols ∗, ∗∗ and ∗ ∗ ∗
denote significance at the 10, 5 and 1% level, respectively. Earlier results indicates an estimate that belongs to
earlier original methodology, but where originally a different estimation sample was used. We computed new
values by using the final instead of the earlier estimation sample to exclude sample effects from comparisons.

DML

Table 20: 5 Fold DML estimates for the Fox News vote share ATE using the dynamic specification,
S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML method 0.24 0.00 0.00 0.00 0.76 0.00 /
Median ATE (5 fold) 0.0065∗∗∗ 0.0085∗∗∗ 0.0114∗∗∗ 0.0115∗∗∗ 0.0078∗∗∗ 0.0077∗∗∗ 0.0076∗∗∗

[0.0025] [0.0020] [0.0040] [0.0042] [0.0021] [0.0022] [0.0021]
(0.0019) (0.0018) (0.0024) (0.0021) (0.0019) (0.0019) (0.0019)

B. Interactive Regression Model

Fraction best ML method 0.57 0.00 0.00 0.00 0.43 0.00 /
Median ATE (5 fold) 0.0076∗∗ 0.0058∗∗ 0.0077∗∗ 0.0100∗∗∗ 0.0109∗∗∗ 0.0102∗ 0.0072∗

[0.0034] [0.0025] [0.0034] [0.0031] [0.0033] [0.0062] [0.0038]
(0.0028) (0.0017) (0.0027) (0.0019) (0.0022) (0.0051) (0.0032)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.
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Table 21: DML estimates for the Fox News audience ATE using census and cable controls, S = 50

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net.

A. Partially Linear Regression Model

Fraction best ML method 0.28 0.13 0.00 0.10 0.00 0.50 −
Median ATE (2 fold) 0.0220∗∗ 0.0247∗∗ 0.0212∗∗ 0.0224∗∗ 0.0270∗∗ 0.0224∗ 0.0193∗

[0.0102] [0.0103] [0.0099] [0.0110] [0.0124] [0.0119] [0.0108]
(0.0094) (0.0099) (0.0090) (0.0106) (0.0113) (0.0103) (0.0098)

B. Interactive Regression Model

Fraction best ML method 0.40 0.16 0.00 0.11 0.00 0.33 −
Median ATE (2 fold) 0.0291 0.0219∗∗∗ 0.0272 0.0216∗∗ 0.0252∗∗∗ 0.0271 0.0265

[0.0181] [0.0085] [0.0227] [0.0099] [0.0080] [0.0447] [0.0173]
(0.0152) (0.0074) (0.0178) (0.0084) (0.0073) (0.0353) (0.0149)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors.

Table 22: 5 Fold DML estimates for the contracts and trade ATE using the main specification, S = 20

SVM LASSO Reg. Boost- Random Neural Best
Tree ing Forest Net

A. Partially Linear Regression Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (5 fold) 0.2997∗∗∗ 0.3061∗∗ 0.1092 0.1469∗∗∗ 0.1845∗∗ 0.2940∗∗∗ 0.1845∗∗

[0.1147] [0.1219] [0.0830] [0.0393] [0.0756] [0.1089] [0.0781]
(0.0075) (0.0076) (0.0102) (0.0099) (0.0151) (0.0074) (0.0151)

B. Partially Linear IV Model

Fraction best ML method 0.00 0.00 0.00 0.00 1.00 0.00 −
Median ATE (5 fold) 0.2203∗∗ 0.4701∗∗ 0.1047 0.3107∗∗∗ 0.2945∗∗ 0.2485∗∗∗ 0.2945∗∗

[0.0858] [0.1830] [0.3581] [0.0953] [0.1382] [0.0760] [0.1437]
(0.0422) (0.0472) (0.2538) (0.0718) (0.1262) (0.0486) (0.1262)

Note: Fraction best ML method denotes the fraction of nuisance function estimation problems in which the
ML submethod outperforms all the others in terms of out-of-sample MSE, over the folds and S replications. We
present conventional standard errors in parentheses and median standard errors that incorporate the variation of
sample splitting in square brackets. The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level,
respectively, assessed with median standard errors. We use fewer replications because computation time is longer
here due to the large amount of observations (n = 10, 976) and folds.
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Figure 10: Contracts and trade LASSO terms with the largest absolute mean coefficient size over the folds and
S replications, in the PLIV using the main specification. * in the name of the term denotes an interaction and
∧2 denotes a squared term. The abbreviations for the control variables are explained in Table 28 in Section A.2
of the Appendix.
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Figure 11: Contracts and trade LASSO terms with the largest absolute mean coefficient size over the folds and
S replications, in the PLIV using the extended specification. * in the name of the term denotes an interaction
and ∧2 denotes a squared term. The abbreviations for the control variables are explained in Table 28 in Section
A.2 of the Appendix.
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ARB

Table 23: Fully linear ARB estimates for the Fox News audience ATE

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0219∗∗∗ 0.0218∗∗∗ 0.0210∗∗ 0.0219∗∗∗ 0.0218∗∗∗ 0.0210∗∗

(0.0084) (0.0085) (0.0086) (0.0084) (0.0085) (0.0086)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Table 24: Quadratic ARB estimates for the Fox News audience ATE

LASSO Elastic Net
ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.3 ζ = 0.5 ζ = 0.7

Interactive Regression Model

ATE 0.0193∗∗ 0.0207∗∗ 0.0218∗∗ 0.0193∗∗ 0.0207∗∗ 0.0218∗∗

(0.0087) (0.0087) (0.0087) (0.0087) (0.0087) (0.0087)

Note: The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. ζ is a tuning
parameter that trades off bias against variance, with lower values corresponding to less variance but more bias.

Heterogeneous DML

Table 25: Insignificant orthogonal debiased LASSO estimates for level 3 Fox News vote share HTEs,
S = 50

Random Forest Neural Net. SVM Best
Median TE se Median TE se Median TE se Median TE se

HTE Model with Modeled Heterogeneity

Alaska −0.0016 (0.0056) −0.0002 (0.0020) −0.0014 (0.0032) −0.0021 (0.0030)
Arkansas 0.0004 (0.0050) 0.0000 (0.0034) −0.0026 (0.0037) −0.0002 (0.0038)
California 0.0041 (0.0026) 0.0011 (0.0020) 0.0027 (0.0020) 0.0036 (0.0024)
Idaho −0.0081 (0.0058) −0.0030 (0.0047) −0.0031 (0.0034) −0.0062 (0.0040)
Maine −0.0004 (0.0020) −0.0018 (0.0016) −0.0014 (0.0014) −0.0007 (0.0017)
Missouri −0.0041 (0.0044) −0.0007 (0.0033) −0.0025 (0.0036) −0.0005 (0.0043)
Montana 0.0048 (0.0042) −0.0034 (0.0031) −0.0002 (0.0032) −0.0008 (0.0033)
New Hampshire 0.0004 (0.0025) 0.0006 (0.0007) 0.0004 (0.0016) 0.0024 (0.0024)
New Jersey 0.0028 (0.0021) 0.0012 (0.0019) −0.0005 (0.0018) 0.0011 (0.0019)
North Dakota −0.0019 (0.0069) 0.0025 (0.0024) 0.0005 (0.0037) 0.0011 (0.0037)
Ohio 0.0002 (0.0012) −0.0011 (0.0010) −0.0014 (0.001) −0.0013 (0.001)
Pennsylvania −0.0004 (0.0012) 0.0015 (0.0012) −0.0005 (0.0012) −0.0004 (0.0012)
Tennessee −0.0049 (0.0039) −0.0022 (0.0028) −0.0026 (0.0027) −0.0019 (0.0029)
Utah −0.0053 (0.0040) −0.0023 (0.0036) −0.0050 (0.0035) −0.0053 (0.0036)
Vermont 0.0015 (0.0028) −0.0011 (0.0018) −0.0008 (0.0020) −0.0028 (0.0025)
Virginia 0.0012 (0.0021) −0.0004 (0.0021) −0.0008 (0.0024) −0.0016 (0.0028)
Note: Heterogeneity levels are from the hierarchy outlined in Figure 13. Conventional standard errors are given in parentheses.
The symbols ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10, 5 and 1% level, respectively. The states are ordered alphabetically.
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Causal Forest

Table 26: Remaining states’ Causal Forest estimates
for level 3 Fox News vote share HTEs

Causal Forest
Median TE se

Conditional ATE Model

Utah 0.0072∗∗∗ (0.0025)
Alaska 0.0072∗∗∗ (0.0026)
Alabama 0.0072∗∗∗ (0.0026)
Hawaii 0.0072∗∗∗ (0.0026)
Idaho 0.0072∗∗∗ (0.0026)
Massachusetts 0.0072∗∗∗ (0.0026)
Missouri 0.0072∗∗∗ (0.0026)
Montana 0.0072∗∗∗ (0.0026)
North Dakota 0.0072∗∗∗ (0.0026)
New Hampshire 0.0072∗∗∗ (0.0026)
Rhode Island 0.0072∗∗∗ (0.0026)
Virginia 0.0072∗∗∗ (0.0026)
Vermont 0.0072∗∗∗ (0.0026)
South Carolina 0.0072∗∗∗ (0.0026)
Connecticut 0.0072∗∗∗ (0.0025)
California 0.0072∗∗∗ (0.0026)
Minnesota 0.0072∗∗∗ (0.0026)
Maine 0.0072∗∗∗ (0.0027)

Note: Heterogeneity levels are from the hierarchy out-
lined in Figure 13. Conventional standard errors are
given in parentheses. The symbols ∗, ∗∗ and ∗ ∗ ∗ de-
note significance at the 10, 5 and 1% level, respectively.
The states are ordered according to significance strength,
i.e. the amount of asterisks.
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A.2 Supporting material

Table 27: Description of the individual Fox News control variables for the LASSO term importance
figures.

Variable Control set Description

reppresfv2p1996 vRepk,1996 Republican vote share in 1996

reppresfv2p1992 vRepk,1992 Republican vote share in 1992

reppresfv2p1988 vRepk,1988 Republican vote share in 1988

black2000 and black00m90 Xk,2000 and Xk,00−90 Fraction of the town African-American
hisp2000 and hisp00m90 Xk,2000 and Xk,00−90 Fraction of the town Hispanic
empl2000 and empl00m90 Xk,2000 and Xk,00−90 Fraction of the town employed
unempl2000 and unempl00m90 Xk,2000 and Xk,00−90 Fraction of the town unemployed
male2000 and male00m90 Xk,2000 and Xk,00−90 Fraction of the town male
married2000 and married00m90 Xk,2000 and Xk,00−90 Fraction of the town married
urban2000 and urban00m90 Xk,2000 and Xk,00−90 Fraction of the town urban
hs2000 and hs00m90 Xk,2000 and Xk,00−90 Fraction of the town with high school
hsp2000 and hsp00m90 Xk,2000 and Xk,00−90 Fraction of the town with some college
college2000 and college00m90 Xk,2000 and Xk,00−90 Fraction of the town with a degree
noch2000d2 until noch2000d9 Ck,2000 Decile 2 until 9 in the number of channels across towns
poptot2000d2 until poptot2000d10 Ck,2000 Decile 2 until 9 in voting age population reached across towns
Note: The variables with and are available for 2000 and 1990. The ending 2000 indicates the variable for 2000, whereas 00m90
indicates the difference between the variables for 2000 and 1990. Control set denotes the set that is described in Section 4.1 to
which the variable belongs.

Table 28: Description of the individual contracts and trade control variables for the LASSO term impor-
tance figures.

Variable Control set Description
country level Country trade level Trade level variable within a country
industry level Industry trade level Trade level variable within an industry
capital times at kap kiKc Capital
skill1 times at hk hiHc Human capital
herf y int (1− hfi)ln(yc) Input variety
iit y int iitiln(yc) Intra-industry trade
ln credit banks int kiCRc Financial development
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Figure 12: Result of the 2000 U.S. presidential elections; red corresponds to a Republican win and blue
to a Democratic win.
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A.3 ML submethods

Regression Tree

Regression trees recursively split the covariate space into different regions. A tree can in this way be
constructed according to the covariate splits, with subgroups of observations as final nodes or leafs. For
each leaf, we estimate a different effect on the response variable. The splitting variable and the splitting
point are commonly chosen to minimize impurity. Impurity from a split is the weighted average of
the node impurities of the daughter nodes, with weights proportional to the number of daughter node
observations. We calculate the node impurity measure by running the regression with only a constant by
using the observations in the node that we are considering. Node impurity is then the sum of squared
errors of this regression. To avoid overfitting, we eventually remove part of the tree by using cost-
complexity pruning. We grow a tree without stopping criterion and compute for each subtree up to the
split the cost-complexity measure, i.e. out-of-sample predictive accuracy penalized by complexity. In
the end, starting from the leafs, we remove all branches with cost-complexity above the threshold of the
minimum value plus one standard deviation.

Random Forest

Another way to avoid overfitting is to combine multiple trees into a random forest. We construct a
random forest prediction by averaging the predictions of multiple unpruned trees into a new prediction.
For classification, we take a minimum of 3 observations in a leaf and for regression 5. We obtain for each
tree a different data set by bootstrapping from the original sample. Furthermore, since it creates variation
in the trees, we randomly draw at each splitting point r of the covariates. Next, we only consider the
drawn variables for splitting instead of the complete set. We follow common practice and apply r =

√
p.

Additionally, we grow 300 trees for each forest, which is a reasonable amount that does not result in too
much computation time.

Boosting

Regression trees often have difficulty distinguishing multiple overlapping regions of the covariate space.
Forests solve this by combining the predictions of many simultaneously grown trees. Boosting employs
a different strategy by sequentially growing trees, where the residuals of a tree serve as input for the
next tree. Hence, to improve predictions, it focuses on the observations that are difficult to predict.
Boosting methods minimize

∑n
i=1 L(Yi; γ), where L(·) is the squared loss function for regression and

the AdaBoost exponential loss function for classification. First, we calculate pseudo residuals rim =
−[∂L(Yi;F (xi))/∂F (xi)] evaluated at the tree F (x) = Fm−1(x) instead of normal residuals, to be able
to handle complex loss functions. These are based on the direction of steepest descent. Next, we grow
a regression tree hm(x) on the pseudo residuals, using exactly s = 5 leaf nodes. Then, we compute
the update of our regression tree: Fm(x) = Fm−1(x) + νγmhm(x), where γm are computed as arg
minγL(Yi, Fm−1(x)+νγhm(x)) and ν = 0.01 is a regularization factor. Finally, we note that we randomly
select a fraction f = 0.5 of the training sample observations to fit the hm(x) in each iteration, while we
use the test sample to compute the loss function. We use 2-fold cross-validation to get training and test
samples. We repeat the whole procedure M = 300 times and use standard initialization routines.

Neural Network

Another class of ML methods uses weighted combinations of the covariates to predict the response. Neural
networks belong to this class. neural networks make weighted linear combinations of input covariates
or nodes and transform them with a logistic transformation to an end node with probabilities. The
logistic transformation permits us to capture nonlinear relationships. The weights are optimized using a
gradient descent algorithm on a least squares loss function, using as training data class observations for
classification and probabilities for regression. These probabilities are calculated by standardization with
the minimum and maximum value of a variable. We use a decay regularization parameter λ = 0.02 in
the gradient descent algorithm. In practice, adding an additional layer between the input and end node
often improves the predictions. Moreover, it enables us to model covariate interactions. Therefore, we
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choose to add a hidden layer with d = 2 additional nodes. The input covariate nodes are transformed to
probabilities by the hidden layer nodes and these serve as input data for the end node.

LASSO & Elastic Net

The last class of ML methods modifies standard regression methods by applying regularization. Popular
implementations are the LASSO and the elastic net. Both shrink regression coefficients towards zero
by adding a penalty term. The LASSO uses an `1-penalty term, which leads to sparse estimates. It is
computed by minimizing 1

n

∑n
i=1(Yi − X ′iβ)2 + λ

n ||Γ̂β||1 over β, where Γ =diag(γ̂1, . . . , γ̂p) is a penalty
loading matrix and λ a penalty parameter. The elastic net brings additional stability by using a combi-
nation of the `2- and `1-penalty term. That is, it adds a penalty term λ

n (α||β||22 + (1− α)||β||1) instead

of the previously added λ
n ||Γ̂β||1. Therefore, the elastic net can be seen as generalization of the LASSO.

For DML, we use the LASSO with data-driven choice of λ, as proposed by Belloni et al. (2012), because
it is robust to nonnormality and heteroskedasticity. The algorithm initializes the penalty components

as γ̂l =
√

1
n

∑n
i=1 x

2
ij(yi − ȳ)2, l = 1, . . . , p and specifies λ = 2c

√
nΦ−1(1 − γ/2p), with c = 1.1 and

γ = 0.1/log(min(n, p)). Next, it computes the LASSO estimate and its residuals v̂i. Finally, we update

the penalty loadings setting γ̂l =
√

1
n

∑n
i=1 x

2
ij v̂

2
i , l = 1, . . . , p and compute a new LASSO estimate. We

iterate the last steps K = 15 times. For ARB, we use the LASSO but we simply pick the identity matrix
for Γ̂ and estimate λ with cross-validation. Additionally, we apply the elastic net with cross-validated λ
and α = 0.5. In both cases, we pick λ that produces the smallest cross-validated error plus 1 standard
deviation.

Best

The best method from Chernozhukov et al. (2016) picks for each prediction problem the estimates from
the ML method that gives the smallest mean squared prediction error or misclassification error, for
regression and classification respectively. Hence, if there is no ML method that outperforms the others in
all prediction problems, different ML methods are used for each prediction problem. This hybrid method
combines ML methods optimally after estimation.

Support Vector Machine

Support vector machines also use weighted combinations of covariates, but in a slightly different fashion
than neural networks. Firstly, for regression, the idea is to find the flattest function w′x + b with at
most ε deviation from Yi, which reflects the tradeoff between regularization and overfitting. However, to
overcome infeasibility, we add slack variables ξi to ε to relax deviation restrictions when needed. Hence,
formally we optimize the leftmost primal problem over w and b:

min
1

2
||w||22 + C

n∑
i=1

ξi

s.t.
∑
|Yi − w′xi − b| ≤ ε+ ξi

max
1

2

n∑
i,j=1

(α∗i − αi)(αj − α∗j )x′ixj − ε
n∑
i=1

(αi − α∗i ) +

n∑
i=1

yi(αi − α∗i )

s.t.
∑∑n

i=1
(αi − α∗i ) = 0

where C > 0 is a cost parameter that controls the size of deviations. In practice, due to ease of computa-
tion, we turn to the dual problem that is given on the right, with αi, α

∗
i ∈ [0, C] the dual variables. After-

wards, we use w =
∑n
i=1(αi − α∗i )xi to construct predictions according to f(x) =

∑n
i=1(αi − α∗i )x′ix+ b,

where b is calculated from KKT conditions belonging to the dual problem.
SVMs capture nonlinear relationships by preprocessing, that is we obtain a new set of covariates

Φ(x) with added nonlinearities like quadratic and cross terms. However, computations become quickly
infeasible for either high order nonlinearities or many covariates in this case. The solution is to apply
a kernel trick: since we only compute x′ixj in the dual problem, it is sufficient to have a function that
gives k(xi, xj) = Φi(x)′Φj(x) rather than Φ(xi) itself. Then, we substitute x′ixj in the dual problem
and prediction function f(x) for k(xi, xj). We apply the widespread radial basis function: k(u, v) =
exp(−γ||u− v||22), because it only has a single parameter that needs tuning. Here, we differ from neural
networks, since we do not use the logistic kernel. In initial runs, we tuned the parameters C and γ by
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cross validation with ranges 2c with c = {−10, . . . , 0} for γ and c = {0, . . . , 6} for C. This results in the
choice of γ = 2−9 and C = 24.

For classification, the idea is to find a hyperplane that separates the binary class observations as
well as possible. For that, we recode the classes as 1 and -1. Then, the projections of observations on a
hyperplane are given by qi = w′xi+b. Ideally, we would get a hyperplane for which all class 1 observations
have qi ≥ 1 and all class -1 observations qi ≤ −1. However, this is not feasible in most cases, so again we
need to use slack variable ξi ≥ 0 to permit deviations. The primal optimization problem is given on the
left:

min
1

2
||w||22 + C

n∑
i=1

ξi

s.t.
∑

Yi(w
′xi + b) ≥ 1− ξi

max
1

2

n∑
i,j=1

(αiαjyiyjx
′
ixj)−

n∑
i=1

αi

s.t.
∑∑n

i=1
Yiαi = 0

For class 1 observations with qi ≥ 1 or class -1 observations with qi ≤ −1, we set ξi = 0. Otherwise,
we have to correct using the slack variable ξi. The restriction on w ensures normalization, it validates
the choice of 1 and -1 as boundary points. Again, for computation of the solution, we employ the dual
formulation on the right, with variable αi ∈ [0, C]. Furthermore, by using w =

∑n
i=1 yiαixi we calculate

decision values f(x) =
∑n
i=1 yiαix

′
ix + b, where b is obtained from the KKT conditions. Probability

predictions follow from fitting a logistic distribution to the decision values using maximum likelihood.
The kernel trick with radial basis function can be applied similarly as for regression. With the same
initial ranges, we get γ = 2−6 and C = 23. For regression and classification, we follow standard practice
by using ε = 0.1. We also standardize all variables before training SVMs.

56



A.4 Proofs and derivations

DML

Consider the PLR model and Robinson (1988) style score function. We apply GMM and solve the
corresponding sample moment conditions as follows:

1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ0, η0) = 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)− β0(Di −m0(Xi))}{Di −m0(Xi)} = 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)}{Di −m0(Xi)} − β0
1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2 = 0

=⇒ β0

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2 =

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)}{Di −m0(Xi)}

=⇒ β̂DML
0 =

( K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2
)−1( K∑

k=1

∑
i∈Ik

{Di −m0(Xi)}{Yi − l0(Xi)}
)
,

which indeed equals the expression (X ′X)−1(X ′y) for OLS estimation of residualized Yi on residualized
Di.

Consider the PLR model and Robinson (1988) style score function. We fill in the expressions in order
to compute the DML variance estimates:

Ĵ0 =
1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2

=⇒ Σ̂ = (Ĵ−10 )
1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ̂0, η̂0,k)φ(Wi; θ̂0, η̂0,k)′(Ĵ−10 )′

=
( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2
)−1( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2{Yi − l0(Xi)− β̂DML
0 (Di −m0(Xi))}2

)

·
( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2
)−1

.

=⇒ Var[β̂DML
0 ] = Var[(1/

√
n)Σ̂] =

1

n

( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2
)−1

·
( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2{Yi − l0(Xi)− β̂DML
0 (Di −m0(Xi))}2

)( 1

n

K∑
k=1

∑
i∈Ik

{Di −m0(Xi)}2
)−1

,

which indeed equals the expression (X ′X)−1(X ′diag{û21, . . . , û21}X)(X ′X)−1 for White’s heteroscedastic-
ity consistent standard errors using residualized Yi and residualized Di.

57



Consider the interactive model and Robins and Rotnitzky (1995) style score function.

1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ0, η0) = 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

(
g0(1, Xi)− g0(0, Xi) +

Di{Yi − g0(1, Xi)}
m0(Xi)

− (1−Di){Yi − g0(0, Xi)}
1−m0(Xi)

− β0
)

= 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

β0 =
1

n

K∑
k=1

∑
i∈Ik

(
g0(1, Xi)− g0(0, Xi) +

Di{Yi − g0(1, Xi)}
m0(Xi)

− (1−Di){Yi − g0(0, Xi)}
1−m0(Xi)

)

=⇒ β̂DML
0 =

1

n

K∑
k=1

∑
i∈Ik

(
g0(1, Xi)− g0(0, Xi) +

Di{Yi − g0(1, Xi)}
m0(Xi)

− (1−Di){Yi − g0(0, Xi)}
1−m0(Xi)

)
,

which indeed equals the mean over ψ(Wi; η0) from (3.1.1), denoted ψ(Wi; η0) in the following.
Consider the interactive model and Robins and Rotnitzky (1995) style score function. We fill in the

expressions in order to compute the DML variance estimates:

Ĵ0 =
1

n

K∑
k=1

∑
i∈Ik

1 = 1

=⇒ Σ̂ = (Ĵ−10 )
1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ̂0, η̂0,k)φ(Wi; θ̂0, η̂0,k)′(Ĵ−10 )′

=
1

n

K∑
k=1

∑
i∈Ik

(
g0(1, Xi)− g0(0, Xi) +

Di{Yi − g0(1, Xi)}
m0(Xi)

− (1−Di){Yi − g0(0, Xi)}
1−m0(Xi)

− β̂DML
0

)2
=

1

n

K∑
k=1

∑
i∈Ik

(
ψ(Wi; η0)− ψ(Wi; η0))2

=⇒ Var[β̂DML
0 ] = Var[(1/

√
n)Σ̂] =

1

n

( 1

n

K∑
k=1

∑
i∈Ik

(
ψ(Wi; η0)− ψ(Wi; η0))2

)
which indeed suggests that DML standard errors are computed as the standard deviation of ψ(Wi; η0)
divided by

√
n.
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Consider the PLIV model and Robinson (1988) style score function. We apply GMM and solve the
corresponding sample moment conditions as follows:

1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ0, η0) = 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)− β0(Di − r0(Xi))}{Zi −m0(Xi)} = 0

=⇒ 1

n

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)}{Di − r0(Xi)} − β0
1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di − r0(Xi)} = 0

=⇒ β0

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di − r0(Xi)} =

K∑
k=1

∑
i∈Ik

{Yi − l0(Xi)}{Di − r0(Xi)}

=⇒ β̂DML
0 =

( K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di −m0(Xi)}
)−1( K∑

k=1

∑
i∈Ik

{Di −m0(Xi)}{Yi − l0(Xi)}
)
,

which indeed equals the expression (Z ′X)−1(Z ′y) for IV estimation of residualized Yi on residualized Di

using as instrument residualized Zi.
Consider the PLIV model and Robinson (1988) style score function. We fill in the expressions in order

to compute the DML variance estimates:

Ĵ0 =
1

n

K∑
k=1

∑
i∈Ik

{Di − r0(Xi)}{Zi −m0(Xi)}

=⇒ Σ̂ = (Ĵ−10 )
1

n

K∑
k=1

∑
i∈Ik

φ(Wi; θ̂0, η̂0,k)φ(Wi; θ̂0, η̂0,k)′(Ĵ−10 )′

=
( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di −m0(Xi)}
)−1( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}2

· {Yi − l0(Xi)− β̂DML
0 (Di −m0(Xi))}2

)( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di −m0(Xi)}
)−1

.

=⇒ Var[β̂DML
0 ] = Var[(1/

√
n)Σ̂] =

1

n

( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di −m0(Xi)}
)−1

·
( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}2{Yi − l0(Xi)− β̂DML
0 (Di −m0(Xi))}2

)

·
( 1

n

K∑
k=1

∑
i∈Ik

{Zi −m0(Xi)}{Di −m0(Xi)}
)−1

,

which indeed equals the expression (Z ′X)−1(Z ′diag{û21, . . . , û21}Z)(Z ′X)−1 for White’s heteroscedasticity
consistent standard errors IV estimation using residualized Yi, residualized Di and residualized Zi.
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Causal Forest

Consider the CATE model with the associated score function. We apply weighted GMM with the
corresponding system of sample moment conditions:

n∑
i=1

ψ(Oi; θ0(x∗), η0(x∗)) = 0

=⇒

{∑n
i=1 αi(x

∗)(Yi − θ0(x∗)Di − η0(x∗) = 0∑n
i=1 αi(x

∗)(Yi − θ0(x∗)Di − η0(x∗)Di = 0

We start with solving the top equation:

n∑
i=1

αi(Yi − θ0Di − η0) = 0

=⇒ η0

n∑
i=1

αi =

n∑
i=1

αiYi − θ0
n∑
i=1

αDi

=⇒ η̂CF0 = Y α − θ0Dα,

because
∑n
i=1 αi = 1. Inserting this into the second equation yields:

n∑
i=1

αi(Yi − θ0Di − η0)Di = 0

=⇒
n∑
i=1

αi(Yi − θ0Di − (Y α − θ0Dα))Di = 0

=⇒
n∑
i=1

αi((Yi − Y α)− θ0(Di −Dα))Di = 0.

Next, we add the following term:

n∑
i=1

αi((Yi − Y α)− θ0(Di −Dα))Dα

= Dα

n∑
i=1

αi(Yi − Y α)−Dαθ0

n∑
i=1

αi(Di −Dα)

= Dα(Y α − Y α)−Dαθ0(Dα −Dα) = 0,

in order to obtain:

n∑
i=1

αi((Yi − Y α)− θ0(Di −Dα))(Di −Dα) = 0

=⇒ θ0

n∑
i=1

αi(Yi − Y α)(Di −Dα) =

n∑
i=1

αi(Di −Dα)2

=⇒ θ̂CF0 =
( n∑
i=1

αi(Di −Dα)2
)−1( n∑

i=1

αi(Di −Dα)(Yi − Y α)
)

which indeed equals the expression that is given in the main text.
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