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Abstract

To protect blood donors from anemia, donors with low hemoglobin levels are generally deferred from
donating. In this thesis we consider various statistical techniques to gain insight in the trajectory of
hemoglobin and to predict future values, which both can be useful to prevent deferrals. We examine
the longitudinal association of hemoglobin (Hb) and zinc protoporphyrin (ZPP), a biomarker which
is believed to be predictive for future Hb levels. We apply a multivariate autoregressive mixed-effects
model, and find that our data suggest that there is not a time-dependent association, but rather a
correlation of individual specific average values of Hb and ZPP. In the context of out-of-sample pre-
dictions, the usefulness of ZPP as a predictor for future Hb levels seems very limited. In order to
successfully predict future Hb levels we examine a variety of methods that can be used for longitu-
dinal forecasting. We propose a hierarchical specification of the mean-reverting Ornstein-Uhlenbeck
process model, which matches well with the theoretical properties of the trajectory of Hb levels, and
we provide a way to generate dynamic predictions with this model. Furthermore, we implement a
Bayesian variable selection technique to incorporate an additional relatively high-dimensional set of
blood levels, and we consider two decision tree ensemble methods to capture possible non-linearities
in our data. We focus on out-of-sample forecasting and find that (i) the hierarchical Ornstein-
Uhlenbeck model performs slightly better than traditional mixed-effects models, (ii) the tree based
methods seem to be most successful in determining eligibility for donation and (iii) incorporating
additional blood levels can improve predictions.
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1 Introduction

Blood transfusion is an essential part of modern healthcare, which helps to save a large number of
lives every single day. Even though the field of medical sciences has made great progress in various
directions over the last decades, an artificial alternative for real blood is not yet available. There-
fore, the supply of blood is still fully dependent on blood donors. There are several types of blood
donations, but the most common type is whole blood donation. Whole blood donation refers to a
standard (usually 500 ml) donation, with other possible types of donation being plasma and platelet
donation. A potential harm for whole blood donors is that donations could cause a loss of iron
and blood cells, putting the donors at risk for anemia. In order to mitigate that risk, hemoglobin
(Hb) concentrations are measured prior to every donation and donors with Hb levels below a certain
threshold are deferred from donation.

Hemoglobin is a protein found in red blood cells that facilitates oxygen transport in the body of
vertebrates. Hb is a biomarker that is very frequently used to assess the overall health condition of an
individual, and decreased Hb levels provide an indication for anemia. As iron is the most important
element of the Hb protein, a loss of iron can lead to a decrease of Hb levels. Insufficient consumption
or excessive loss of iron can lead to iron deficiency and eventually anemia can develop. Anemia
can have many different causes, including vitamin deficiencies, chronic diseases, but also excessive
blood loss because of whole blood donations. Potential symptoms of anemia include fatigue, short-
ness of breath, impairment of cognitive functions and several other long term risks (Janz et al., 2013).

As Hb levels are impacted by donating blood, the Dutch blood bank Sanquin imposed a mini-
mum time of 56 days between two successive donations. The idea behind imposing a minimum time
between two donations is that the Hb levels of donors are impacted by a donation. On average a
donation of 500 ml of blood causes male and female donors to lose 242 and 217 mg of iron respectively
(Simon, 2002). This will cause Hb to decrease and reach its lowest value a few days after donation.
The body will then start to reproduce Hb, whereupon the Hb level will gradually recover to its pre-
donation value (Kiss et al., 2015 and Boulton, 2004). The required 56 days between two donations
are assumed to be sufficient for Hb levels to fully recover to their initial values, but still a consid-
erable proportion of blood donors is deferred from donation each year due to their Hb levels being
too low. These deferrals can be costly, because a new donation needs to be scheduled. More impor-
tantly, it is demotivating for the donor and the probability of a donor not returning is relatively high.

In order to reduce deferrals, it can be useful to generate predictions of Hb levels and assess the
predictive power of variables that can possibly explain (future) Hb levels. In this thesis we use statis-
tical models to focus on two research objectives. Firstly, we examine the longitudinal association of
Hb and a biomarker named zinc protoporphyrin (ZPP), which is a compound found in red blood cells
and is believed to be predictive for Hb levels. Secondly, we evaluate strategies to obtain accurate Hb
predictions. For both research objectives we start with the relatively basic univariate autoregressive
mixed-effects model (Diggle et al. (2002)). In order to further examine the longitudinal association
of ZPP and Hb we apply a multivariate autoregressive mixed-effects model. That is, we use a gener-
alization of the usual vector autoregression model (Heij et al. (2004)) by embedding it in the linear
mixed-effects framework (Verbeke (1997)). In order to predict future Hb levels as well as possible,
we apply three types of techniques that can be used for longitudinal forecasting. We examine the
performance of (i) two decision tree based ensemble methods, (ii) a newly proposed hierarchical



specification of the Ornstein-Uhlenbeck process model and (iii) a spike and slab regression model.

In the research of Baart et al. (2013) it is concluded that ZPP measurements have added value
in the prediction of future Hb levels. In clinical practice, measurements of ZPP in red blood cells
are already used as a screening test for lead poisoning and iron deficiency (Crowell et al., 2006 and
Martin et al., 2004). The hypothesized association between ZPP and Hb is as follows: ZPP levels
start to increase in the early stage of iron deficient erythropoiesis'. More specifically, ZPP is formed
during heme synthesis? in case of iron deficiency. When iron levels are low, more zinc rather than
iron is incorporated into protoporphyrin IX during the heme synthesis. This results in the formation
of more ZPP and less heme, and as a result, ZPP accumulates in the blood cells. This implies ZPP
measurements can detect iron deficiency in an early stage before Hb levels decrease (Baart et al.,
2013). Therefore, biological theory suggest ZPP could be useful for predicting future Hb levels. In
order to test this theory, we employ a multivariate autoregressive mixed-effects model, which is able
to identify different types of association structures of the two biomarkers.

In the context of Hb level predictions, we argue that traditional methods that dominate current
applied biostatistical research can potentially be improved. Firstly, we propose a novel hierarchical
specification of an Ornstein-Uhlenbeck model, which theoretically matches well with the theoretical
properties of Hb levels and is able to explicitly account for the fact that the measurements in our data
are unequally spaced. Secondly, we examine the added value of two decision tree based ensemble
methods. These methods can potentially further improve performance due to their increased flexibil-
ity and their ability to account for any nonlinearities in our data. Lastly, we implement a Bayesian
variable selection technique named spike and slab regression in the context of a mixed-effects model
specification in order to exploit a relatively high-dimensional set of additional blood levels, which
could possibly be predictive for Hb levels.

Earlier research on statistical models for Hb levels is given by Nasserinejad et al. (2013), in which
mixed-effects and transition (autoregressive) models were applied for the prediction of Hb levels.
The results indicate that the transition model provides somewhat better predictions than the mixed-
effects model, especially at a higher number of visits. Furthermore, in Nasserinejad et al. (2016) a
latent class model was applied to (i) examine the required time between two subsequent donations,
and (ii) predict future Hb levels. The authors find that the estimated recovery time is longer than
the current minimum interval between donations, suggesting that an increase of this interval may be
warranted. This notion is also further examined in this thesis.

The rest of this thesis is organized as follows: in Section 2 we present the data that we will use
in our research. In Section 3 we describe various statistical topics that are relevant for analyzing
longitudinal data and we provide the basis for the methodology used in this thesis. In Section 4
we introduce the multivariate autoregressive mixed-effects model, which we will use to examine the
longitudinal relation between ZPP and Hb. In Section 5 we will elaborate on the aforementioned
methods with which we aim to improve the predictions of future Hb levels. In Section 6 we discuss
the empirical results of our analyses. In Section 7 we conclude with a review of our findings and
provide proposals for future research.

!Erythropoiesis is the process which produces red blood cells.
2Heme is an iron-containing compound which forms the non-protein part of hemoglobin and some other biological
molecules.
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2 Data

The data that we will use in this thesis has been gathered by Sanquin, which facilitates blood dona-
tions in the Netherlands. The data describes 14006 observations (donations) of 2215 different whole
blood donors. The data has been collected during the period October 2009 - February 2014. Each
visit includes a small screening prior to each donation. This screening involves taking a fingerstick
capillary sample for measuring Hb level along with filling out a health appraisal form. Based on a too
low Hb level or information on the appraisal form, an individual can be deferred from donation. The
data used in this thesis has a longitudinal structure. That is, the data contains repeated observations
of several donors where the number of observations of each specific donor differs and the observations
are unequally spaced.

Because the data has not been gathered from an experimental study, there is no information
about the Hb levels between subsequent donations; only measurements at the time of donation are
available. Regarding the donation moments of individuals, there are two restrictions. Firstly, the
minimum time interval between two successive donations should be at least 56 days. Secondly, the
maximum number of yearly donations is 3 for females and 5 for males. Conditional on meeting these
two requirements, individuals are free to choose their desired moment to donate blood.

Figure 1: Trajectory of Hb levels of male and female donors. Each line represents all visits of an
unique donor. The profiles of 3 randomly selected donors that had at least three visits are highlighted.
The dashed horizontal lines show the Hb cut-off values of eligibility for donation.
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Several factors are known to be associated with Hb values, such as season, body mass index
(BMI) and age (Yip et al., 1984 and Hoekstra et al., 2007), which implies these variables can be
useful variables when modelling Hb levels. Because the trajectory of Hb is in general quite different
for males and females and because the thresholds of eligibility for donation differ, we consider separate



models for males and females. When looking at the trajectory of Hb levels of the individuals in our
data, as shown in Figure 1, we cannot identify any clear relation between the number of donations
and Hb levels. The plots do confirm that women on average have lower Hb levels than males, and
we can observe a clear between-individual variation of Hb levels. That is, some individuals have
consistently higher Hb levels than others.

2.1 Explanatory variables

Our data contains information on several variables that can be used to explain and predict Hb levels.
In our models we incorporate multiple explanatory variables that describe a specific donor. We use
the age of a donor, Body Mass Index (BMI), estimated blood volume and an indicator whether a
female is post menopausal®. For the blood volume we use the approximation by Nadler’s formula
(Nadler et al., 1962). That is, we approximate the blood volume of an individual based on its height
and weight. Blood volume can potentially be an important predictor as an increased blood volume
is typically associated with higher Hb levels. As additional explanatory variables we use season of
donation, hour of the day, number of previous donations over the last two years, time since previous
donations and previous ZPP value. The variable ’season of donation’ describes in which season a
specific donation took place, i.e. winter, autumn, summer or spring. The variable 'hour of the day’
describes the hour at which the donation took place as a numeric value. For example, if a donation
took place at 14:45 (2:45 PM), the value for this variable would be equal to 14.75. The full list of
the explanatory variables that we use in our primary models is available in Table 1.

Table 1: List of explanatory variables which we include in our primary models

Variable Type
Season Categorical
Post menopause Dummy
Previous Hb measurement Numeric
Previous ZPP measurement Numeric
Estimated blood volume Numeric
Body Mass Index Numeric
Number of previous donations last 2 years | Numeric
Time since previous donation (in months) | Numeric
Time of the day (in hours) Numeric
Age Numeric

For a subset of donations, we also have access to an additional set of blood levels. These blood levels
contain information on i.a. platelets, red blood cell characteristics and the composition of white
blood cells. The additional blood levels, along with measurements of ZPP, are derived from a lab
analysis of the donated blood, and are thus not measured by means of a fingerstick capillary sample.
We will specifically evaluate the benefit of exploiting these additional blood levels by incorporating
these blood levels in a spike and slab regression model, which is described in Section 5.3. That is, we
apply a specific regression model where we exploit the additional blood levels to predict Hb levels of
individuals as our response variable, and we compare the predictive performance of this regression

3Post menopausal women have no menstrual flow. Note that this variable is not applicable for models describing
male donors.



model to the performance of a regression model where we do not incorporate the additional blood
levels. The full list of the blood levels is available in Appendix D.

Table 2: Descriptive statistics for the Sanquin data set

Males Females
Age at 1st donations (years)” 48 (34, 57) 44 (31, 55)
Number of donations” 6 (3, 8) 3(2,5)
Time between donations (months)® | 2.57 (1.46) 4.45 (1.76)
Hb level® 9.32 (0.66) 8.62 (0.62)
Log ZPP level® 4.05 (0.32) 4.17 (0.33)
Number of donations for which
full set of blood levels are observed 1926 2191

* Median and inter-quantile range
© Mean and standard deviation

In order to visually explore the structure of our data we apply Principal Component Analysis
(PCA) to the set of explanatory variables of Table 1. PCA is a dimensionality reduction technique
that aims to visualize data in a low-dimensional space by means of new variables that are a linear
combination of the original variables. The results can be obtained by an eigenvalue decomposition
of the covariance matrix of the data or a singular value decomposition of the data matrix. PCA
generates components that are uncorrelated and explain as much of the variability of the original
data as possible. A thorough explanation of PCA can be obtained from various sources such as Bro
and Smilde (2014) and Jolliffe (2011).

The results of applying PCA to our data is shown in Figure 2. The plots show that it is very hard
to separate specific groups of donors based on the first two principal components. For females we
can identity a rough separation of two groups, which appears to be closely related to the menopausal
status. In the right group, which approximately corresponds to visits of donors that still have
menstrual periods, there is a larger number of deferrals. This is intuitive, as menstrual periods cause
blood loss, which can lower Hb levels and therefore increase the risk of having low Hb levels. Despite
this separation, we are not able to accurately identify clear groups of visits that have a larger risk
of resulting in a deferral. It appears that for both males and females the linear combinations of our
variables that explain the largest possible part of the variance in the data are unable to identify
eligibility for donation.
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Figure 2: Visualization of the data structure using the first two principal components (based on
variables from Table 1). The red dots refer to visits that resulted in Hb measurements lower than
the specified cut-off values of eligibility for donation.
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3 Methodological framework

In this section, we elaborate on several statistical topics that are relevant for our research objectives
of (i) examining the longitudinal association of Hb and ZPP and (ii) predicting future Hb levels. We
briefly introduce the standard mixed-effects model and the mixed-effects transition model, which we
use for the two research objectives. Afterwards, we explore the violated model assumptions that arise
when combining a random intercept with an autoregressive term. We then describe our approach
to estimate the statistical models in this thesis. Lastly, we provide a method to generate dynamic
out-of-sample predictions with a random intercept model.

3.1 DModels for longitudinal data

Hb levels are subject to both within-individual and between-individual variability. Two commonly
used models to take into account within-individual correlation in a longitudinal setting are (i) mixed-
effects models and (ii) transition (autoregressive) models. It can be useful to combine these two
models in order to distinguish between unobserved heterogeneity and state dependence (Heckman,
1981) regarding the trajectory of Hb levels.

3.1.1 Linear mixed-effects model

The linear mixed-effects model is used extensively for analyzing longitudinal data (Verbeke, 1997).
Apart from general parameters, the model also contains parameters that vary per individual. In our
research we restrict ourselves to the inclusion of only an individual specific intercept, so that the



used model is defined as:
Yit = o+ bi + zB + e, (1)

e ~ N(0,02), by~ N(0,07). (2)

The vector? a;; refers to explanatory variables of individual i at time ¢, with corresponding
parameter vector 8. The random intercept b; can be interpreted as the deviation of the individual-
specific mean of person ¢ from the population mean of Hb levels. This can be caused by several
external factors that are not properly explained by the variables in the data, such as genetics, diet
and exercise. The error term ¢ is assumed to be independent of the random intercept. An impor-
tant assumption for the consistency of the parameter estimates of the model is that the explanatory
variables and the random intercept are independent (Hsiao, 2014).

In a linear mixed-effects framework, subsequent observations of a specific individual are marginally
correlated, but are independent given the random effects:

T;

p(yilbs) = [ [ p(yulbs) (3)

t=1

Even though no explicit autocorrelation is modelled in a standard mixed-effects model, the model
still allows for some correlation structure of subsequent observations of the same individual. This
correlation is given by (Verbeke (1997)):

2
Op

p(Yit; Yit—1) = P (4)
The linear mixed-effects model is a standard framework for longitudinal data analysis. For more
information on the properties, extensions and practical usage of this type of model we refer to

Verbeke (1997).

3.1.2 Mixed-effects transition model

Despite the fact that the mixed-effect model allows for some correlation structure of subsequent ob-
servations, it is unable to explicitly capture state dependence. State dependence occurs if the current
outcome of a dynamic process depends on prior outcomes. In Heckman (1981), a strict distinction
between true and spurious state dependence is made. In the context of biomarker values, true state
dependence refers to a situation where a past biomarker level has a genuine effect on future values
in the sense that the biomarker levels of a individual with a specific past biomarker level would
behave differently in the future than those of an otherwise identical individual with a different past
biomarker level.

True state dependence of two subsequent biomarker values is different from so called spurious
state dependence. The latter refers to the case when individuals may differ in certain unmeasured
variables that influence their biomarker value, while their current biomarker are not actually influ-
enced by previous biomarker values. If the unmeasured variables are correlated over time, and are

4Throughout this thesis, we denote the transpose of a vector or matrix with an apostrophe. Thus, @’ refers to the
transpose of vector x.



not properly controlled for, previous biomarker values may appear to be a determinant of future
biomarker values only because they are a proxy for such temporally persistent unobservables.

In order to account for the true state dependence of Hb, we add an autoregressive term to our
regression model. With the combination of a random intercept and an autoregressive term, we aim to
distinguish between unobserved heterogeneity and true state dependence, which is captured by the
autoregressive parameter. In particular, we consider the linear regression model where the response
variable follows an AR(1) process:

Yit = a + b + B+ \yi—1 + it (5)

where b; and e;; again follow normal distributions, as specified in Equation (2). After introducing
the autoregressive term, the correlation between two successive observations is given by (Cameron
and Trivedi (2005)):

1—A (6)
1+ (1=X)a2/(1+A)op)’
Equation (6) shows that if the transition effect is negligible, the correlation of two successive obser-
vations reduces to the intra-class correlation. Similarly, when the heterogeneity between individuals
is very small (O'g ~ 0), the correlation is approximately equal to the transition effect.

p(Yit, Yit—1) = A+

In order to investigate the hypothesized association of ZPP and Hb, which suggests that ZPP
levels could predict future Hb levels, the most simple approach would be to add the previous measure-
ments of ZPP to the regression Equation (5) as extra a predictor, so that the estimated parameter
for this predictor measures the effect of previous ZPP values on current Hb values. This can be
achieved by fitting a regression model that corresponds to the equation:

Y1t = o+ b; + T8 + MYrie—1 + Aovoir—1 + €its (7)

where y1;: and y9;+ refer to measurements of respectively Hb and ZPP of individual ¢ at time ¢. Using
this regression model, we can use the parameter estimates for A9 to examine whether ZPP can indeed
explain future Hb values. As mentioned in the introduction, we also opt for using a multivariate
approach to analyze the association. We will further elaborate on the multivariate model in Section
4.

3.2 Initial conditions problem

An important assumption of using a mixed-effects model is that the correlation between the ran-
dom intercept and the predictors is zero, i.e., all the predictors are exogenous. In the mixed-effects
transition model this assumption is violated, as one of the predictors is the lagged response variable,
which is endogenous. This problem is known as the ’initial conditions problem’ within the field of
econometrics. When ignoring the initial conditions problem, the resulting parameter estimates are
no longer consistent (Hsiao, 2014). In statistical literature, several solutions are proposed to correct
for these violated model assumptions.

A well known approach to overcome the initial conditions problem is given by Heckman (1987).
The idea of the approach is to jointly model an equation which links the random effects to the first
observation of each individual:

Yio = Z;’U + b9 + n;, (8)



where z; refers to exogenous variables that could be associated with the initial observation, and
where v and ¥ are parameters corresponding to the exogenous variables and the random effects,
respectively. Additionally, n; is the error term, which is assumed to be independent of the random
effects. This linear specification, in terms of orthogonal error components, accounts for the possibil-
ity that the correlation between y;9 and the random effects is non zero, which is expressed through
the parameter 1.

An alternative approach is given by Wooldridge (2005), who proposes a conditional maximum
likelihood estimator that considers the distribution of the random effects conditional on the initial
observation and exogenous variables. That is, we formulate the distribution of the random effects
as:

bi = Co + Cyio + ziv + aj, 9)

where z; again refers to exogenous variables that could be associated with the initial observation, and
a; is the normally distributed error term corresponding to the distribution of the random effects. We
can now substitute the expression for b; of Equation (9) into our initial regression model equation,
so that the term a; is now our new random intercept, which is assumed to be uncorrelated with the
initial observation y;p, thus satisfying our model assumptions. The solution of Wooldridge (2005)
is easy to implement, as it only requires adding additional variables to the set of explanatory variables.

In Arulampalam and Stewart (2009) the two described solutions, along with a two-step estimator
proposed by Orme (1996), were tested by means of an empirical simulation study. When comparing
results obtained using these different correction methods, it was shown that all corrections yield
similar results. This suggests that the choice which estimator to choose does not substantially
impact estimate accuracy. Akay (2012) further investigates the Wooldridge solution and the Heckman
solution under varying simulation setting. Based on the results of the simulations, the author claims
Heckman’s approach works better in shorter panels. As our dataset contains a large number of
donors that donate infrequently during our observational period, we will implement the Heckman
solution when estimating our models.

3.3 Bayesian inference

In order to estimate our models and generate forecasts, we opt for a Bayesian approach. Estimation
of mixed-effect models is usually done in a frequentist framework by means of restricted maximum
likelihood (Harville, 1977). However, there are several advantages for using a Bayesian approach
for our analysis. First, maximizing the likelihood function of more complex mixed-effects models
often brings computational difficulties, which can be overcome by relying on Bayesian inference.
Second, Bayesian inference offers a natural approach to constructing mixed-effects model by means
of hierarchical prior specifications, and it facilitates an intuitive way to make out-of-sample forecasts,
which is further described in Section 3.4.1. Third, it allows to generate forecasts based on entire
posterior distributions of the relevant model parameters, rather than relying solely on point estimates.
Lastly, it provides exact inference in finite samples, without relying on asymptotic approximations.

3.3.1 Prior specification

We consider natural conjugate priors for all our parameters. For the variance of the random effects
and the residuals, 0b2 and o2, we impose inverse gamma priors. For each parameter in the full



parameter vector 8 = («, B, A)’, we consider a normal prior:
‘752 ~ IG(vg, s5¢), ag ~ IG (v, ssp),
B ~ N(Bo, So)-
Because we apply the Heckman solution to correct for the initial conditions problem, we jointly
model the initial response of every individual. Therefore, we also have to specify prior distributions
for the parameters corresponding to Equation (8). We again opt for conjugate prior specification
for the parameters by imposing a normal prior for the regression parameters in ¥ = (v’,9)" and an
2

inverse gamma prior for the residual variance oy

O~ N(vo,Up), 07~ IG(vy, ssy). (11)

(10)

As we have no prior information on our model parameters, we use diffuse priors for all our parameters.
We implement these priors by setting v, = v, = 15, = 0.01 and ss. = ss, = ss; = 0.01. For the
prior of the regression parameters we set both By and vy equal to a vector of zeros, and the prior
covariance matrices Uy and Sy equal to diagonal matrices with 103 on their diagonal, so that our
prior means contain a lot of uncertainty and the predictors are assumed to be uncorrelated.

3.3.2 Posterior sampling

Due to the conjugacy of the priors, the conditional posterior distributions are of known form. There-
fore, we can sample all model parameters by means of the Gibbs sampler. That is, we iteratively
sample b, B, o2, O'g, 0% and © from their conditional distributions, which we can analytically derive
from the full posterior distribution. Gibbs sampling is a Markov chain Monte Carlo (MCMC) algo-
rithm obtaining a sequence of observations which are sampled from a specific multivariate probability
distribution. An extensive explanation of the Gibbs sampler can be obtained from several sources,

such as Casella and George (1992).

3.4 Out-of-sample forecasting

In order to evaluate the out-of-sample prediction performance of our models we split the data in
a train and test set. To split the data, we randomly select 90% of the individuals to be included
in the train set, which we use to estimate our model parameters, and 10% of the individuals to be
included in the test set, which we use to evaluate our model performance. We perform the random
split between train and test, the estimation of our models and the prediction of observations in our
test set 10 times. We then report the average performance over these 10 replications.

All of our fixed model parameters are estimated using data of observations in the train set, and
the model predictions are evaluated using observations in the test set. In general, the predictive
likelihood of observations in the test set is given by:

p(ytest ’ytrainv X) = /p(ytest|0a Xtest)p(a‘Xtrainy ytrain)dov (12)

where the vector @ contains all fixed model parameters. In order to obtain point predictions,
which we use to evaluate our models, we consider the mean of the posterior predictive distribu-
tion p(Yrest|Ytrain, X ). Note that because we use an autoregressive term in all of our models, we do
not predict the first observation of an individual. As our models also contain an individual specific
intercept, we need to separately estimate this parameter for individuals contained in the test set.
The procedure of this estimation is explained in the section below.

10



3.4.1 Dynamic predictions

The forecasts of future Hb levels of a specific individual are based on fixed model parameters, the
available covariates of an individual and on any previous donations an individual. After computing
the posterior distributions for the fixed parameters in @, we can dynamically 'update’ the random
intercepts of individuals in the test set whenever we gain new information. The posterior distribution
for the random intercept is given by:

(O yit—1, s Yi1, Xi, 0) X p(Yit—1, ..., yi1 | X, b, 0)p(b), (13)

where b§ refers to the random intercept of individual 7 at time ¢. The superscript ¢ is relevant, because
bt is a dynamic parameter. That is, for the estimation of b! we can use all information available at
time t — 1, including all past observations of individual i. Therefore, for every new observation of
individual 7, we can update the random intercept. Because the model is linear in the random effects,
the conditional posterior distribution is a normal distribution:

p(bﬂXh 07 Yit—1, "')yil) - N(b}, O-Ii)u (14)

where b; is the posterior mean and a? is the posterior variance of the random intercept b;. In order to
find closed form expressions for b; and ab , we first rearrange the terms from the initial observation,
as given in Equation (8), and then divide all the terms by the standard deviation of the relevant
error term:

(yio — Z;’U)/Un = bid/oy +ni/oy. (15)
Similarly, subsequent observations of individual ¢ can be rewritten as:
(yz’t _w;tﬁ)/ae = bi1/06+€it/06' (16)

In order to express the sampling distribution of the random effects of individual ¢ at time ¢ 4+ 1 we
can stack the observations 0, ..., ¢ for every individual, resulting in the two auxiliary variables:

(yio — Z/z{v)/gn (e
y;k _ (yil - 33:@'1/8)/(75 ’ 32;‘ _ 1/:0'5 . (17)
(yit — z;,B) /0= 1/o.

After stacking the observations of individual ¢, we can now use that b; is a parameter of an ordinary
linear regression model with standard normally distributed error term. This conditional sampling dis-
tribution of the linear regression model is a well-known result, which is available in most introductory
textbooks on Bayesian statistics such as Greenberg (2012). Due to the conjugacy of the prior specifi-
cation p(b), we now know that we can sample the random intercept of individual b; at time ¢+ 1 from
a normal distribution with mean (z}'x} + o, %) ~'a}'y} and variance (z}'z} + 0, ?)~!. Note that in
order to estimate the value of b; at time t41 we can only use observations of individual ¢ up to time ¢.

The predictive distribution for observations in the test set can be decomposed as done in Equation

(18). The predictions are dynamic because the predictive distribution of observations of an individual
can be updated as soon as information from subsequent donations becomes available.

p(yit|0, 0%, zit) = //p(yit|07bgaxit)p(bﬂXiaeayit17--~ayi1)p(0|Xtrainaytrain)dadbg (18)
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3.4.2 Performance measures

In order to evaluate the performance of our models, we consider the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE).5 One could also opt to compare models by means of measures
like the deviance information criterion (Spiegelhalter et al., 2002) or the Bayesian information crite-
rion (Schwarz et al., 1978), but in the context of predicting Hb levels the out-of-sample performance
is more relevant than in-sample model fit.

In the Netherlands, the Hb thresholds of eligibility for donation are 7.8 and 8.4 mmol/1 for women
and men, respectively. In order to assess the performance of our models in terms of determining
donation eligibility, we compute the receiver operating characteristic (ROC) curve for the predicted
values of male and female donors. The ROC curve is created by plotting the true positive rate against
the false positive rate at various threshold values. That is, the ROC curve evaluates a variety of
values for which we classify a predicted donation to match the specified thresholds of 7.8 and 8.4.
We then calculate the area under the curve (AUC) and use this measure to compare the models.
The AUC measures discrimination, i.e., the ability of the models to correctly determine whether
individuals are eligible for donation.

5We are aware that using the posterior mean of the predictive distribution to obtain point predictions makes the
use of the RMSE the most logical approach; using the absolute error implies it would be natural to use the median
of the predictive posterior distribution as a point prediction. Yet, in order to facilitate comparison to earlier research,
we also use the MAE as an error measure.
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4 Examining biomarker association with a multivariate
autoregressive mixed-effects model

Rather than analyzing the hypothesized association of ZPP and Hb with an univariate regression
model, as defined in Equation (7), a more sophisticated approach to modelling the association can
be achieved by fitting a multivariate regression model. By using a multivariate model in which both
ZPP and Hb are response variables, we can identify different types of association structures of the
two biomarkers. As a result, we can hopefully reveal the true relation of ZPP and Hb that is present
in our data. In particular, we propose to apply to following model:

Yi,it g b1 A Ay 2> <y1 i t1> (m;t,&) (51 it>
") = +{, ")+ ’ ’ " + +{_ T, 19
(?JZ,z‘t) <Oé2> <b2,z’> (A2,1 Ao ) \y2,it-1 x;, B2 €9,it (19)

(b1,i,b2,4) ~ N(0,Xp), (e1,its€2,it) ~ N(0, %), (20)

m— (T 7Y w7 7). (21)

Op21  Opo Oe21  Og2
This type of model is not used often in practice as of today in the field of biostatistics. In econo-
metrics this type of model is known as a vector autoregression (VAR) model, while in psychology it is
often referred to as a the cross-lagged panel model (CLPM). In biostatistics, the association between
biomarkers or other outcomes is occasionally analyzed with multivariate mixed-effects models, which

do involve random effects. However, to our knowledge the extension of also including autoregressive
terms is still relatively uncovered.

Earlier literature on applications of multivariate mixed-effects models in the context of bio-
statistics include Oskrochi et al. (2016), where the model was used to investigate shoulder muscle
functionality for patients that were treated for breast cancer. In Verbeke et al. (2014), a multivariate
mixed-effect model was used to model loss of hearing ability. The authors treated measurements of
hearing capabilities at different frequency levels as different response variables, and they specifically
used the estimated covariance matrix of the random effects to make conclusions on the relation of
hearing loss at different frequency levels. In econometrics, the combination of individual specific
parameters and autoregressive terms in a multivariate regression model has been applied earlier by
for example Fok et al. (2006), where the model was used to explain the differences in immediate and
dynamic effects of promotional prices and regular prices on sales.

With the application of the multivariate autoregressive mixed-effects model we aim to empirically
identify the ’true’ association between ZPP and Hb that is present in our data. The multivariate
autoregressive mixed-effects model is able to distinguish between three possible association structures
of the two response variables:

o Correlation of simultaneous outcomes. This refers to the situations where correlation of con-
temporaneous measures of the two response variable exists. This can arise through the shared
relation between the response variables and the observed predictors in the data or because of
unobserved factors that impact both response variables simultaneously. The latter is expressed
through the off-diagonal elements of 3.. Modelling the two outcomes separately in a univariate
regression framework implicitly assumes these off-diagonal elements are zero.
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o (ross-lagged effects. This association refers to the off-diagonal elements of the matrix A. It
could be possible that one response variable impacts the future path of the other response
variable. That is, one response being high in a specific period indicates that the other response
is going to be high or low in future periods and vice versa. This type of association relates to
the theoretically assumed relation between ZPP and Hb, as described in the introduction.

e Correlation of the random effects. As described in Section 3.1.1, the random intercept can
be interpreted as the deviation of the individual-specific mean of a response variable from
the population mean of that response variable, which is due to unobserved factors such as
genetics or diet. It could be possible that the deviation of the individual-specific mean from
the population mean of one response variable for a specific individual indicates that in general
the individual-specific mean of the other response variable of that individual also deviates
from the population mean in a specific direction. If this is the case, the random intercepts
of the two response variables are correlated. This association is expressed through the off-
diagonal elements of 3. Again, when using an univariate regression model, these covariances
are implicitly assumed to be zero.

When using an univariate regression model, we are able to only identify one of the three possible
association structures. This can lead to invalid conclusions about the actual association structure of
the two biomarkers and might not be able to determine the exact association that is present in our
data. For inferential purposes it can be valuable to apply a multivariate autoregressive mixed-effects
model, as this model is able to give a more extensive view on the longitudinal association of the two
response variables.

4.1 Model estimation

As we use Bayesian inference for the estimation of the statistical models in our thesis, we have to
specify priors for all model parameters associated with the multivariate autoregressive mixed-effects
model. A complexity of the model is the combination of autoregressive terms and random intercepts,
which again leads to the violated model assumptions, as earlier described in Section 3.2.

4.1.1 Initial conditions problem in a multivariate setting

In order to overcome inconsistency issues related to the initial conditions problem, we implement a
multivariate generalization of the Heckman solution. That is, we jointly fit a separate multivariate
equation which links the initial values of the two response variables to their respective random

intercepts:
Y\ _ Zii’v1> <b1i191> (ﬁli) .
= + + , with n; ~ N(0,3,). 22
<y2¢> (Zéivz b2 02 n2i i (0, %) (22)

In current statistical literature, there is a very decent amount of information on the initial con-
ditions problem available, along with relevant solutions and simulation studies empirically testing
these solutions. Yet, to our knowledge there do not exist any simulation experiments that empirically
test out any of these solutions in a multivariate context. The increased complexity of a multivariate
model might further detriment the consistency of the parameter estimates or cause the established
solutions to no longer function optimally. We will test out by means of a simulation study to what
extent the Heckman solution for correcting for the initial conditions problem also works in a multi-
variate setting, and we will compare the results to the implementation of the Wooldridge solution.
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As this simulation study might be tangential to the more applied nature of this thesis, the full design
and the relevant results are available in Appendix A.

4.1.2 Prior specification

In our multivariate model, the variance parameters are no longer scalars. Hence, we use inverse
Wishart priors for the covariance matrices of the residuals and the random effects. For the parameter
vectors belonging to the two equations, we again consider normal priors. Using the notation that
Bi = (o, A1, Ai2,B!), we adopt the following prior specification:

S ~ IW(Rp, 1), Se ~ IW(Re,v2),

B, B2 ~ N(Bo, So) (23)

We also have to specify priors for the parameters relating to the regression Equation (22). Using
that the parameter vectors for this equation are defined as ©; = (v}, ?;)’, we specify the following
priors:
EﬂNIW(R’NVU)? (24)
1‘)1, 1}2 ~ N(U(], U())

As we have no prior knowledge, we consider a diffuse prior specification for all our model parameters.
We set v, = v, = 15 = 3 and we set the matrices R., R, and R, equal to 2 x 2 diagonal matrices
with a 1072 on their diagonal. These settings for the inverse Wishart distribution correspond to
non-informative priors (Lesaffre and Lawson, 2012). In addition, we set By and vy equal to vectors
of zeros and we set the matrices Sy and Uy equal to diagonal matrices with 103 on their diagonal.
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5 Improving hemoglobin predictions

Current biostatistical methodology for predicting longitudinal outcomes is dominated by linear
mixed-effects regression models. Even though in general these relatively straightforward models have
proven to be successful for both inferential and predictive purposes, there are ways to potentially
further improve the predictive accuracy. The traditional linear regression methods are unable to ac-
count for non-linear relations or interaction effects between variables. In order to overcome this issue,
researchers can add non-linear transformations and interaction effects to their regression models (or
splines, which are particularly popular in biostatistics). However, doing this forces the researcher to
have some explicit knowledge or suspicion about the possible location of the non-linearities, which
is often absent. In practice it is more desirable to have models that are able to identify these non-
linearities themselves. For this purpose, we apply two decision tree based algorithms, which are
described in Section 5.1.

Another downside of traditional methods is that typical linear regression models used for longitu-
dinal modelling do not take the differences in time between subsequent measurements of the response
variable into consideration. When adding an autoregressive term we do not explicitly account for the
fact that the measurements are unequally spaced. Moreover, traditional biostatistical methods might
not fit the characteristic properties of Hb levels of blood donors, which are theoretically assumed
to be impacted by a donation, whereafter the levels gradually recover to their pre-donation value.
In order to overcome these shortcomings, we propose an adapted version of the Ornstein-Uhlenbeck
process model, which is described in Section 5.2.

As mentioned in Section 2, our dataset contains measurements of 21 variables describing blood
levels. Initially, the idea of the researchers of Sanquin was to not use these variables, because of
their relatively large quantity and the missing evidence that these variables are useful to specifically
forecast Hb levels. Yet, from medical literature it is known that these variables can say something
about the general health status of an individual, and therefore they might also be useful for predicting
Hb levels. The relatively high dimension of this additional set of variables and the notion that these
variables are likely to show a substantial degree of multicollinearity might make the use of traditional
regression models not very appropriate. Instead, we rely on a Bayesian variable selection technique
named spike and slab regression. In Section 5.3 we introduce the methodology behind this method.
By using spike and slab regression, we can incorporate the additional variables in a more sophisticated
manner than just adding them to a linear regression model.

5.1 Tree based methods

Decision tree learning uses a decision tree to exploit observations of several explanatory variables of a
subject, which are represented the tree’s branches, in order to make conclusions about the subject’s
target value, which is represented in the leaves of the tree. In our case we use regression trees to
predict Hb levels as our target value. For a complete introduction on decision trees we refer to Tan
et al. (2005).

The main motivation for applying decision trees to predict Hb levels is that decision trees are able
to account for the possible non-linear relations and interaction effects of our explanatory variables.
Tree based methods do not require any distributional assumptions, and they are intuitive to under-
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stand for anyone with limited statistical knowledge. Moreover, algorithms to fit decision trees and
several further extensions are widely available in software packages for the programming language R.
Although decision tree based models do not involve an individual specific intercept which can account
for unobserved heterogeneity, the models are able to accurately capture possible heterogeneity that is
revealed through the observed covariates available in our data. As we only use the lagged dependent
variables as a predictor in our models, we can no longer distinguish between true and spurious state
dependence, as described in Section 3.1.2. However, as we do not use decision tree methods for any
inferential purposes, this is not a major problem.

In general, single decision trees are known to be unstable and can be prone to overfitting (James
et al., 2013). Ensemble methods aim to overcome this problem by aggregating the predictions of
multiple trees, resulting in less volatile predictions. In order to improve prediction accuracy we use
two well-known ensemble methods, which apply the general techniques of boosting and bagging to
decision trees. FEven though classification trees can also be used to predict deferrals as a binary
outcome, we focus on using regression trees to predict Hb levels as a numeric outcome.

5.1.1 Random forest

Random forest is an ensemble method developed by Breiman (2001), in which the predictions of
multiple individual decision trees are combined into a single prediction. The algorithm behind
random forest applies the general technique of bootstrap aggregating to decision trees. Each single
tree in the ensemble uses a different set of observations to generate predictions, as the observations
for each decision tree are sampled with replacement from the full data set. In this thesis we use the
Classification And Regression Tree (CART) algorithm, as proposed by Breiman et al. (1984), to fit
single trees. The random forest algorithm can be summarized as follows:

1. Create B subsamples by sampling with replacement from the full data

2. Fit a CART tree on each of the B subsamples to obtain an ensemble of fitted decision trees
3. Use each individual tree in the ensemble to make a prediction of the response variable

4. Obtain the final prediction by taking the average prediction of the B different decision trees

The idea behind the random forest algorithm is based on the paper of Breiman (1996), in which it is
shown how bootstrap aggregating any predictor can improve prediction accuracy. The vital element
is the instability of the prediction method. Bootstrap aggregating is able to significantly improve
accuracy if perturbing the dataset that is used to train the predictor can cause significant changes
in the constructed predictor. The somewhat unstable nature of decision tree algorithms makes that
it is in general very useful to apply the technique of bootstrap aggregating to decision trees, leading
to the motivation for the random forest algorithm.

An additional feature of the random forest algorithm is the parameter h, which is defined as
the number of variables randomly sampled as candidates at each split. That is, when building the
tree structure, the algorithm only evaluates h of the total of k£ explanatory variables as potential
candidates to split on. In Breiman (2001) it is shown the accuracy of the random forest predictions
is dependent on the strength of all B individual tree and the correlation among the trees (less
correlation leads to better predictions). The parameter h provides a way to find the 'perfect balance’
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between the two features. In general, a higher value for h increases the strength of individual trees,
but leads to a higher correlation, and vice versa. By tuning this parameter on the training data we
can find the best value for h, which hopefully also leads to the best out-of-sample predictions.

5.1.2 Gradient tree boosting

The second decision tree ensemble method we consider is a relatively new adaptation of the idea of
boosting in the context of decision trees, which has been proposed by Chen and Guestrin (2016).
Again, this method uses an multitude of regression trees to make one single prediction. While in the
case of random forests the trees are built independently of each other, in boosting each consecutive
tree grown improves upon the previous tree. Trees in random forest are constructed by choosing
splits that maximize impurity reduction, similar as in traditional decision tree algorithms. In gradi-
ent boosting, the splits are chosen such that a differentiable loss function is minimized. Moreover, the
gradient boosting method contains various regularization parameters which can be tuned to decrease
overfitting.

Traditional gradient boosting as proposed by Friedman (2001) is a regression method where new
models are created that predict the residuals or errors of prior models and then are added together
to make the final prediction. The algorithm that we use in this thesis optimizes an objective function
L that takes decision trees as input. We aim to minimize the following objective:

n T; D
L= 1 dit) + > _O(fa), fa€F, (25)
i=1 t=1 d=1

where F is the function space of all tree functions. FEach tree function is formally defined as
fa(r) = wy(z),w € RE g : RP — {1,2,..,L}. That is, a tree function fy(z;) takes a set of vari-
ables x;; and maps this set to a leaf index j = 1,2,.., L corresponding to output value w; via the
tree structure q. Equation (25) shows that the predicted values g;; are evaluated by means of a
loss function [. This loss function can take on any form, such as the mean squared errors, which
we will use as loss function. The second part, O(fy), is the regularization term that controls the
complexity of the model and thus prevents the model from overfitting. The regularization term is
defined as O(fy) = vL + 3A|wl||?, where L refers to the number of leaves in a tree and w refers to
the weights on each of the leaves. Therefore, the parameter v penalizes the total number of leaves
and the parameter A penalizes the leaf weights.

The loss function includes relatively complex tree functions as parameters and can not be opti-
mized using traditional optimization methods. Therefore, our model is trained in an additive manner.
That is, we add a new tree function each iteration of the algorithm. When we let Q,L(td ) be the predic-
tion of the Hb level of individual ¢ at time ¢ at iteration d, we will need to add a tree f; to minimize

the following objective:

n Tl'

L) =33 i, 050 + fal@) +O(fa). (26)

i=1 t=1

In order to find the optimal tree function at each iteration, the method proposed by Chen and
Guestrin (2016) uses a second order Taylor polynomial approximation in order to quickly optimize
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the objective:

n Ti
Ad— 1
£ Zl ;[l(ya, 3+ gafalaa) + §hitf3(xi)] + O(fa), (27)
where g;; = 8yd—1l(yit, yz(td 71)) and hj = éﬁd,ll (Yit, yz(td 71)) refer to the first and second order gradient

statistics on the loss function. The loss term l(yit,yftd 71)) does not depend on the tree structure
of iteration d and can thus be considered a constant term. Therefore, we can rewrite a simplified
approximated loss function as:

n T;

LD =3 lgifal@) + %hitf3<wit>] +O(fa). (28)

i=1 t=1

Let I; = {i|g(z;+ = j} denote the set of observations that is mapped to leaf j. Using this notation,
we can rewrite Equation (28) as:

1
= Z [(Z git)wj + 5(2 hit + A)U}ﬂ + L. (29)
=1 itel; itel;
For a fixed structure g(x;), we can now compute the optimal weight w; of leaf j by:

* Zitelj git
Zitefj hit + )\’

.

with associated optimal loss

A(d) . _1 L (Zitelj git)2

LU =52 s heia T (31)
The optimal loss measures the quality of a tree structure in the gradient tree boosting algorithm, and
is similar to impurity measures in traditional tree algorithms. In order to build the tree structure, the
algorithm initializes with a single leaf and adds branches iteratively, a procedure which is identical
to traditional decision tree algorithms. For a binary split, let I; contain all observations in the left
set of nodes and Ir contain all observations in the right set of nodes. Now, let I = I, UIg. The loss
reduction after the split can be expressed as (Chen and Guestrin (2016)):

1 (Zz‘teIL git)2 (ZiteIR git>2 (Zite[ git)2

2 EitEIL hit + A ZiteIR hit + X Y oiver hit + A a

A (32)

This loss reduction is used to evaluate the loss reduction of potential splits, thus defining the way
the tree structure is built. The parameter A is the minimum loss reduction required for a split. The
algorithm of Chen and Guestrin (2016) contains an additional hyperparameter, the learning rate, by
which all weights are shrunk after each iteration. This parameter helps to prevent the model from
overfitting.
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5.1.3 Hyperparameter tuning

Both tree ensemble methods that we use contain hyperparameters that need to be tuned before
applying the methods to generate predictions. For the random forest algorithm, the only parameter
which we will tune is h, which refers to the number of variables sampled as candidates at each split.
In order to find the optimal value for A we perform an exhaustive search combined with 10-fold cross
validation on our test set. That is, we let h range from 2 to k — 1, where k refers to the total number
of variables. The training set is randomly partitioned into 10 equal sized subsamples, after which
each single subsample is retained as the validation data for testing the model, and the remaining 9
subsamples are used to train our model. We test out each single value of h, and eventually choose a
value for h for which the cross-validated prediction error is the lowest. Then, this value for h is used
to predict observations in the test set. We tune each of our model parameters based on the RMSE
as the error measure.

The hyperparameter set-up of the gradient tree boosting algorithm is more complex when com-
pared to random forest. The exact number of parameters to tune varies across different gradient
boosting algorithms. We opt to fix certain parameters and only perform tuning on the parameters
that get most attention in the literature. In order to find the optimal set of parameters without
the risk of getting stuck at local optimal we perform a grid-search, again combined with 10-fold
cross validation. In particular, we tune (i) the maximum tree depth, (ii) the learning rate, (iii) the
fraction of observations that are randomly sampled to be used in each iteration and (iv) the fraction
of variables that are randomly sampled to be used in each iteration. Note that this last parameter
is very similar to the h parameter of the random forest algorithm. As the grid-search is performed
in a four-dimensional parameter space, the tuning of the hyperparameters related to the boosting
algorithm is relatively time intensive. For larger datasets a more restricted way of choosing the
optimal parameter values may be warranted.

For the purpose of determining whether donors will be eligible for donation, we can also choose
to find the optimal value of our hyperparameters based on a different performance measure, such as
the AUC. However, to facilitate comparison with our other prediction methods, in this research we
solely tune the parameters based on the RMSE. As described in Section 3.4, we split the data in a
train and a test set multiple times in order to evaluate the performance of our models. This means
we also have to tune our parameters independently for each single train set.

5.2 A hierarchical approach to the Ornstein-Uhlenbeck model

The classic Ornstein-Uhlenbeck model describes a mean reverting stochastic process, which is based
on a differential equation. The Ornstein-Uhlenbeck process is widely used for modelling several
biological processes, and in mathematical finance, modelling the dynamics of interest rates and
volatilities of asset prices. The Vasicek model, which is based on an Ornstein-Uhlenbeck process,
describes the evolution of interest rates (Vasicek, 1977).

Treating Hb levels as an Ornstein-Uhlenbeck process is intuitive because of the characteristic
properties of the trajectory of hemoglobin. When people donate blood, their Hb levels are believed
to decline, after which they gradually recover to their initial values. These initial values can be
described as the asymptotic means, to which the Hb levels gradually return as time passes by.
Furthermore, the Ornstein-Uhlenbeck model explicitly takes into account the time that has passed
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since the measurement of the previous Hb level, whereas the normal linear regression models just
use an autoregressive term, neglecting the fact that the measurements are unequally spaced. The
more time that has passed since a previous donation, the longer the donor has had to recover, and
therefore the more likely it is that the Hb level will be close to its asymptotic mean.

5.2.1 Traditional model specification

The classic Ornstein-Uhlenbeck process satisfies the following stochastic differential equation:
dyy = k(p — y¢) dt + 7 dBy, (33)

with ¢ € R, k,7 € Ry and B(t):>0 being a standard Brownian motion. The parameter x can be
interpreted as the decay-rate of the process, and describes how strongly the process reacts to per-
turbations. The asymptotic mean of the process is determined by the parameter y. The parameter
7 describes the volatility of the process, and thus determines the size of the noise or variation.

Using It6 calculus, we can rewrite the Ornstein-Uhlenbeck process of random variable variable y;
as:

t
yr = ety 1+ p(l—e ) + 7’/ e"s=0ap,, (34)
0

where fg e"YdBy ~ N(0, 2 (1 — e72%%)) and & refers to time between measurements ¢ and ¢ —
1. The only random component of the equation is the integral related to the Brownian motion.
Substituting 7 fg "5~ B, = &,, we can rewrite the process as a regression model:

yr=e Py +p(l—e ") + ey, (35)

where ¢; refers to the residuals of the regression equation, with ; ~ N(0, %(1 — 72Ky,

5.2.2 Proposed adaptation to fit longitudinal data structure

We propose to adjust the traditional Ornstein-Uhlenbeck model to match the longitudinal structure
of our data. We do this by estimating an individual specific asymptotic mean p;, which we shrink
towards a asymptotic population mean by using a hierarchical prior specification. Furthermore, we
add a regression component to the expected value of the our response variable. In particular, our
proposed hierarchical Ornstein-Uhlenbeck model is summarized as:

yie = € Pityi1 + pi(1— e7) + 2B + ey (36)
2
T 946
27 NN(M7UZ)1 Eit NN(O,ﬂ(l—e 2’{6”))’

where x;; refers to the explanatory variables of individual ¢ at time ¢ and y; is the Hb level of
individual ¢ at time ¢.

The downside of estimating an individual specific asymptotic mean is that we need to estimate
a relatively large number of parameters, which is at the expense of the parsimony of the model. In
order to mitigate this issue, we adopt a prior specification where we shrink the parameters towards
a population parameter. The hierarchical prior allows the information in the data regarding the
parameters describing the asymptotic mean of each individual to be shared. In general, hierarchical
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priors are useful in more complex models where the parameter space is of such a dimension that the
data is insufficient to properly identify all parameters. This is very applicable to our data, which
contains only a limited number of donations for each individual.

5.2.3 Prior specification

As we are using a Bayesian approach to estimate our models and generate predictions, we have to
specify priors for our model parameters. We adopt the following prior specification:

aﬁ ~ I1G(vy,ss,),

p~ N (o, ¢7,), B ~ N(Bo, So), (37)
T ~ N (70, 9072—)]]-[7'>0]a K ~ N(ko, Soi)]]'[li>0]a

where 1) denotes the indicator function, which equals one if the parameter in brackets is in the
specified range and is zero otherwise. Note that we use truncated normal priors for x and 7 because
these parameters are restricted to be positive. As we have no prior knowledge we opt for using
diffuse priors for all our parameters. We do so by setting ¢2 = (pﬂ = 2 = 100, v, = ss, = 0.01,
o = ko =79 =0, Bg = 0 and Sy equal to a diagonal matrix with 103 on its diagonal.

5.2.4 Dynamic predictions

As we want to use the model to make out-of-sample predictions of future Hb levels, we need to
dynamically update the individual specific asymptotic mean u; whenever we gain information on the
trajectory of the Hb levels of individual ¢. We do this in a similar way as described in Section 3.4.
Therefore, we need to derive the sampling distribution of the parameters that describe the individual
specific mean. Rearranging the terms of Equation (36) and dividing every element by the standard
deviation of €;;, we obtain:

(yir — € ity — yB) Y20 (1 — ¢ 20) U2 = (1 — ¢RI VER(] o m2R0iy =12t (38)

\/ﬂ(l _ 6—2H5it)—

with 771t = &4 1/2 being a standard normally distributed random variable. We can
now define the auxiliary variables y; and x;:

(yin — e~ “y 0 — @}y B)YEE(1 — e~ 2r0in) = 1/2

5 — e~ 0i2 —x 1—e" 2K0;2 —1/2
yz* _ (y12 Yi1 22/3) ( ) , (39)

b

—K&;T

(yie — e Yit—1 — wétﬁ) \/37”(1 — e~ 2Mdit)~1/2

(1 _ e*ﬁéil)\/ﬂ(l _ 672%67;1)71/2

1— —Kdia\ V2K 1— —2kK0;2\—1/2
x; = (-e ) ( ‘ ) (40)

(1— 67”6“)@(1 _ 672@“)71/2

Using these two variables and the conjugate prior specification of u;, we use the standard results
from an ordinary linear regression model to obtain the conditional sampling distribution of the
individual specific parameter describing the asymptotic mean. That is, we can treat y: as the
dependent variable and ccj as the predictor of an ordinary linear regression model with standard
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normally distributed error term in order to derive the sampling distribution of regression parameter
wi. Similar as described in Section 3.4, we know that the distribution of u; at time ¢+ 1 is a normal
; Hat —1—0;2)*1. Again, in order to estimate

with mean ('@} +0,2) " (x}'y; + po,,?) and variance (;

the value of y; at time ¢ + 1 we can only use observations up to time ¢.

5.3 Exploiting additional blood levels with spike and slab regression

In order to evaluate the benefits of the set of blood levels, which is described in Section 2, we apply
spike and slab regression. Spike and slab regression is a Bayesian method that allows the exclusion
of regressors whose coefficients are likely to be zero by means of hierarchical prior specification on
the regression coefficients. By using spike and slab regression we are able to only select the variables
that are relevant for predicting future Hb levels. Spike and slab regression allows us to (i) account for
the uncertainty about whether each of the individual blood levels has added value when it comes to
predicting hemoglobin, (ii) overcome the presence of multicollinearity amongst the variables and (iii)
prevent the model from overfitting. Note that we also include our primary variables from Table 1 in
our spike and slab regression model. We will examine the benefits of the blood levels by comparing the
predictive performance of a spike and slab mixed-effects regression model in which we do incorporate
the blood levels to the performance of a mixed-effects regression model without the blood levels. To
avoid any look-ahead bias, we can only use the measured values of each of the blood levels at time
t — 1 to predict the Hb level of an individual at time ¢.

5.3.1 Prior specification and posterior sampling

Spike and slab regression, as popularized by George and McCulloch (1997) and Ishwaran et al. (2005),
uses a conjugate prior specification that imposes a normal mixture prior on the regression parameters
B3 by introducing a binary parameter vector v that defines which explanatory variables are included
in the regression model. That is, the vector v consists of zeros and ones, where v; = 1 indicates
variable ¢ is included and ~; = 0 implies exclusion. When one wants to apply variable selection on k
explanatory variables, any particular vector « represents an unique regressor combination out of a
total of 2F possible combinations.

The prior specification for ~ is the product of k independent Bernoulli variables, for which the
prior inclusion probability p; is allowed to vary per variable. The term ’spike and slab’ originates from
Mitchell and Beauchamp (1988) and refers to the prior specification of the model, which assumes
a two-point mixture distribution made up of a uniform flat distribution (the slab) and a degener-
ate distribution at zero (the spike). The marginal distribution p(7y) defines the spike, as it places
probability mass at zero. The prior inclusion probability is usually determined on the basis of the
expected model size m, with o = m/k.

Conditional on =, the posterior distribution of 3 follows from the well-known posterior of an
ordinary linear regression model with conjugate priors, with the only difference being the exclusion
of variables whose value for « equals 0. The sampling procedure of the binary parameter vector -~ is
slightly more tricky. In George and McCulloch (1997) it is shown that the spike and slab algorithm
improves by sampling from the marginal posterior of . Although a closed-form expression for the
marginal posterior of ~ is not available, samples of v can be constructed by means of an embedded
Gibbs sampling routine that sequentially samples from the conditional Bernoulli distribution of ~;
given v_; in a random order, where «_; refers to the set including all values of v except for ~;.
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In essence, the algorithm evaluates for each variable i the residual sum of squares and information
matrix corresponding to v; = 1 and v; = 0. When a certain predictor has a large explanatory power,
it will substantially reduce the residual sum of squares and it will receive a high probability of being
included in the model. For a thorough explanation of the exact algorithm behind spike and slab
regression with conjugate priors we refer to George and McCulloch (1997).

Apart from the Bernoulli prior for 4, the conjugate prior set-up that we use is identical to the
set-up described in Section 3.3.1. The only difference is that the prior for 8 depends on -, because
the coefficients corresponding to a value of v = 0 are defined to be equal to zero. Because we apply
this method in the context of the mixed-effects transition model, we also implement the Heckman
solution to the correct for the initials conditions problem. As we have no prior knowledge, we use
diffuse prior settings, which are again identical to the settings described in Section 3.3.1. We set the
prior inclusion probability equal to o = 0.25.

5.3.2 Bayesian model averaging

In order to make out-of-sample predictions using a spike and slab regression model we use the same
procedure as described in Section 3.4. The predictive distribution for observations in the test set
is again given by Equation (18). In the context of spike and slab regression, integrating over 0 is
a form of Bayesian model averaging, due to the parameters in . Each draw of « can essentially
correspond to a different model, as in each iteration of the Gibbs sampler different predictors can be
included in the model.

The idea behind Bayesian model averaging is that all predictors that are truly related to the
dependent variable guide the posterior mean of the predictive distribution to its *true value’. Con-
trarily, all predictors that are unrelated to the dependent variable, but do get included in the model
at certain iterations of the Markov chain, individually push the mean away from the true value.
Hopefully, these spurious inclusions are independent, so that they eventually average out to zero. In
practice the Gibbs sampler might at some point get stuck in local modes of the parameter space. As
a result, spurious relations between the predictor variables and the dependent variable may dominate
the posterior. However, the risk of this problem is a lot higher in very high-dimensional regression
problems. As in our data the number of explanatory variables is still relatively moderate, we expect
that the algorithm is well able to eventually find the most ideal model specification.
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6 Empirical results

In this section we present the results of applying the described methods to the data of Sanquin. We
make a separation between the inferential results, in which we emphasize the longitudinal association
of ZPP and Hb, and the results of the predictions of Hb levels. In order to improve model fit we
normalize the skewed distribution of our data on ZPP by considering a log transformation. Note
that for the inferential results we have used the full data to estimate the reported posteriors, while
for our predictions we solely report the out-of-sample forecasting results.

In order to check for the convergence of our Markov chains, we run three different chains and
examine standard Bayesian diagnostics, such as trace plots and Brooks-Gelman-Rubin statistics
(Brooks and Gelman, 1998). We dismiss the first 5000 iterations of each chain, which proved to
be sufficient to solely sample from converged chains. Only for the hierarchical Ornstein-Uhlenbeck
model we had to chose a larger burn-in, which we set to 25000 iterations. In addition to the burn-in
iterations, we used an additional 7000 draws to build our posterior distributions.

6.1 Inferential results

In order to analyze the relation of Hb and our explanatory variables, we consider the autoregressive
mixed-effects model of Equation (7), with explanatory variables as described in Section 2. Addition-
ally, we consider the multivariate mixed-effects model of Equation (19) using the same explanatory
variables, but with both ZPP and Hb as outcome variables.

6.1.1 Univariate regression

Table 3: Posterior results of the regression analysis of Equation (7) with Hb as dependent variable

Females Males

mean 95% CI mean 95% CI
(Intercept) 7.855%  7.426 8.297 8.119*  7.570 8.670
Age 0.001  —0.002 0.004 | —0.007* —0.009 —0.004
Spring 0.003 —0.036 0.043 | —0.021 —0.066 0.023
Summer —0.016 —0.054 0.022 0.003 —0.042 0.048
Autumn —0.009 —0.049 0.031 | —0.026 —0.072 0.020
Time of the day (hours) 0.000 —0.005 0.004 | —0.006* —0.011 —0.001
BMI 0.005 —0.004 0.013 0.017*  0.005 0.029
Bloodvolume 0.063 —0.018 0.123 0.041 —0.028 0.111
Number of previous donations last 2 years 0.013 —0.001 0.027 0.016*  0.006 0.026
Post menopause 0.101*  0.023 0.179 - - -
Time since previous donation (months) 0.001  —0.003 0.006 0.007*  0.001 0.013
Previous Hb value 0.104*  0.071 0.136 0.137*  0.101 0.173
Previous ZPP value —0.163* —0.227 —0.098 | —0.104* —0.180 —0.024

The asterisk (*) denotes that zero is not included in the 95% highest posterior density interval.
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The posterior results in Table 3 suggest that previous ZPP values indeed have a significant® effect
on measured Hb levels. Thus, according to the model it could be useful to exploit previous ZPP
levels when generating predictions of Hb. This conclusion is in line with earlier findings by Baart
et al. (2013). Another interesting finding is that the time since previous donation does not have
appear to have a significant effect on Hb levels for females. Note that for each observation in our
data, at least 56 days have passed by since the previous donation and there is maximum number
of donations each year. Therefore, the lack of posterior support for this parameter suggests that
extra time between two donations does not further impact the Hb levels. This implies that for fe-
males the current restrictions regarding donation moments are sufficient for Hb levels to fully recover.

The explanatory power of the seasonal indicators and the time of the day seems very limited.
We also tried using trigonometric functions of the time of the day and the day of the year” in order
to capture the impact of seasonality and timing of the donations, but this did also not result in any
posterior support for a significant influence of these variables. The number of previous donations
does not seem to significantly impact the Hb levels for females, while for males we even find posterior
evidence for a positive effect, which is an unexpected result from a clinical perspective. The posterior
distribution of the autoregressive parameter suggests that there is some degree of state dependence
present in the data. Overall, the data suggests that the explanatory value of the majority of the
predictors is low, resulting in lack of significant posterior evidence for many of our parameters.

6.1.2 Multivariate regression

The full results of fitting the multivariate regression model, which are shown in Appendix C, in-
dicate that (i) the outcomes of ZPP seem to be more affected our explanatory variables than the
outcomes of Hb, and (ii) the overall conclusion regarding the impact of the explanatory variables
on Hb remains very similar. However, there is one eye-catching difference compared to the results
from the univariate model: the effect of previous ZPP levels on Hb is no longer significant, and even
switched sign for males. This result, which is shown in Table 4, can be explained by the fact that
the multivariate model is able to account for (i) correlation of the random effects and (ii) correlation
of the residuals, whereas our initial univariate model is not.

A closer look to the estimated covariance matrices of the random effects and the residuals sug-
gests that it is mostly the correlation of the random effects that accounts for the disappearance
of the cross-lagged effect. The posterior results of the covariance matrix of the random effects, as
shown in Table 5, show an estimated correlation of the random effects of around -0.4. This finding,
in combination with the absence of significant cross-lagged effects, suggests that the association of
ZPP and Hb is mostly reflected through the correlation of the random effects.

In order to verify that the correlation of the random effects is responsible for the absence of the
cross-lagged effect, we fit an additional multivariate model according to Equation (19), where we now

SWith "significant effect" we mean that zero is not included in the 95% highest posterior density interval of the
related parameter.

"For the seasonal component, we created two new variables by means of the functions sin(2x) and cos(25t), where
t denotes the day on which a donation took place and T is the total number of days (365.25). Similarly, for the time
of the day components we also created two variables by means of the functions sin(%) and cos(%)7 where now ¢
denotes the hour (as a numeric value) on which the donation took place and T is the total number of hours (24). The

idea for this approach originates from Stolwijk et al. (1999).
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Table 4: Selection of posterior results of multivariate regression of Equation (19)

Dependent variable | Predictor variables Females Males
mean 95% CI mean 95% CI
b Previous Hb 0.094*  0.063 0.125 0.130*  0.095 0.165
Previous ZPP —0.049 —0.040 0.137 0.106 —0.016 0.204
7Pp Previous Hb 0.002 —0.009 0.013 0.013 —0.002 0.024
Previous ZPP 0.213*  0.175 0.252 0.241*  0.201 0.281

The asterisk (*) denotes that zero is not included in the 95% highest posterior density interval.

Table 5: Posterior results of covariance matrix and correlation of the random effects belonging to
the multivariate regression analysis of Equation (19)

Females Males
mean 95% CI mean 95% CI
(7131 0.120 0.101 0.139 0.138 0.113 0.166
Tpy 0.046 0.040 0.053 0.038 0.031 0.044
Op21 —0.029 —0.038 —0.020 | —0.030 —0.040 —0.020
p(b1,b2) | —0.380 —0.475 —0.279 | —0.407 —0.512 —0.296

restrict X to be diagonal. This is equivalent to assuming that the random intercepts corresponding
to Hb and ZPP come from independent normal distributions:
bir ~ N(0,03,),

biz ~ N(0,0%,). (41)

The results of fitting these models with the restriction that no correlation of the random effects
can exists, as partially shown in Table 6, confirm the notion that the absence of significant cross-
lagged effects in our 'normal’ multivariate model is caused by the fact that this model allows for
presence of correlation of the random effects. In Table 6 we find results that are very similar to the
results of the univariate models, which indicates that when we do not allow the random effects to be
correlated, the off-diagonal element of parameter matrix A from Equation (19) again ’absorb’ the
association of the two response variables.

Table 6: Selection of posterior results of multivariate regression of Equation (19) with 3 restricted
to be diagonal

Dependent variable | Predictor variables Females Males
mean 95% CI mean 95% CI
Hb Previous Hb 0.103* 0.071 0.137 0.136* 0.101 0.172
Previous ZPP —0.164* —-0.228 —0.100 | —0.094* —-0.174 —0.015
7PP Previous Hb —0.010* —0.020 —0.001 0.003 —0.008 0.013
Previous ZPP 0.213*  0.175 0.252 0.242*  0.203 0.282

The asterisk (*) denotes that zero is not included in the 95% highest posterior density interval.

Our results suggest that the unobserved heterogeneity, which is expressed through the random

effects, has a mutual influence on both variables. When the average ZPP level of an individual is
higher than the population average ZPP level, then generally the average Hb level of that individual
is lower than the population average of Hb levels, and vice versa. This implies that, when using ZPP

27



as an explanatory variable in a model which predicts Hb, one can also opt for using a long term
average of ZPP as a predictor. This has the advantage that ZPP does not necessarily need to be
measured at every visit.

6.2 Prediction results

In this subsection we analyze the performance of our models with regards to the prediction of future
Hb levels. We first evaluate the added value of ZPP as an explanatory variable, after which we
examine the performance of the different predictions models we argued for in Section 5. Lastly, we
evaluate the benefits of the additional set of blood levels. In order to obtain the reported performance
measures, we randomly split the data in a train and a test set ten times. We compute the relevant
performance measures for each of the random splits, and we report the average performance measures
over the ten replications. We use each model to predict Hb levels as a numeric outcome, and we
report the RMSE and MAE as our error measures. We compare the discriminative ability of each
model by examining the AUC measure that is calculated based on the predicted Hb levels (as also
explained in Section 3.4). Note that a higher AUC value indicates better performance, as opposed
to the other two reported performance measures. We observe that the AUC measure is relatively
unstable, i.e., it is very dependent on the specific splits of the train and test sets. This means that
the accuracy of the discrimination of our used methods is highly dependent on the data that we use
to train and evaluate our models. This finding can possibly be explained by the small number of
deferrals in our data.

6.2.1 The benefits of using ZPP as a predictor

In order to test the usefulness of ZPP for the prediction of Hb levels in an out-of-sample context,
we compare the performance of three different linear mixed-effect transition models. Apart from the
model in which we use all explanatory variables from Table 1, we also fit a model without previous
ZPP measurements. Thus, this model uses all explanatory variables from Table 1, except for previous
ZPP. Additionally, we fit a model for which we also use all explanatory variables, but we now replace
the previous ZPP value with a dynamic individual-specific average of ZPP. Note that the 'model
with previous ZPP’ is our primary model, with which we have obtained the parameter estimates as
shown in Table 3. In order to avoid any look-ahead bias, we use only observations up to time ¢ to
compute the average ZPP that is used to predict Hb at time ¢ + 1.

Table 7: Average out-of-sample prediction performance measures for three different linear mixed-
effect transition models

Females Males
MAE | RMSE | AUC | MAE | RMSE | AUC
Model without ZPP 0.399 | 0.506 | 0.671 | 0.416 | 0.529 | 0.651
Model with previous ZPP 0.398 | 0.504 | 0.679 | 0.415 | 0.529 | 0.658
Model with average ZPP 0.399 | 0.506 | 0.675 | 0.415 | 0.529 | 0.658

The results in Table 7 suggest that the three models all perform very similar in terms of the used
performance measures. The most important implication of this finding is that the added value of ZPP
as a predictor for Hb seems to be absent in an out-of-sample context. In general, caution is required
in extrapolating the findings of in-sample analyses to out-of-sample contexts. While findings of Baart
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et al. (2013) suggested that ZPP are useful as a predictor for future Hb levels, they solely focus on
in-sample analyses. Even though our models indicate that ZPP levels are associated with Hb levels,
this relationship seems of limited usefulness for predicting future Hb levels or determining eligibility
for donation. This result can possibly be explained by (i) the relatively small effect-size of ZPP and
(ii) our finding that ZPP appears to be mostly useful for explaining average Hb levels. As the random
intercept is already able to capture between-individual variation of Hb levels, adding measurements
of ZPP to a regression model may have little added value from a forecasting perspective.

6.2.2 Comparison of different methods for predicting longitudinal outcomes

In this subsection we compare the out-of-sample performance of the models that we argued for
in Section 5 to the more established models in longitudinal forecasting, namely the mixed-effects
(transition) models, which are described in Section 3.1. The performance measures for the standard
linear mixed-effects model (without autoregressive term) are also computed, because this model is
very frequently used in current biostatistical research and therefore serves as our benchmark. Fur-
thermore, this model has also been used in the context of Hb predictions by Nasserinejad et al.
(2013), so computing the relevant performance measures for this model facilitates comparison to
earlier research. Note that for each of the models that we evaluate in this section, we use the same
set of explanatory variables to predict Hb levels. These explanatory variables are specified in Table 1.

Table 8: Average out-of-sample prediction performance measures for different models

Females Males
MAE | RMSE | AUC | MAE | RMSE | AUC
Mixed-effects model 0.411 | 0.512 | 0.661 | 0.421 | 0.536 | 0.648
Mixed-effects transition model” 0.398 | 0.504 | 0.679 | 0.415 | 0.529 | 0.658
Random forest 0.420 | 0.532 | 0.717 | 0.432 | 0.538 | 0.690
Gradient tree boosting 0.419 | 0.535 | 0.711 | 0.435 | 0.542 | 0.692
Hierarchical Ornstein—Uhlenbeck 0.389 | 0.499 | 0.694 | 0.409 | 0.514 | 0.666

*

Note that this model refers to the standard mixed-effects transition model, which we also used to obtain the
inferential results from Table 3. Hence, the reported performance measures are identical to those of the 'model
with previous ZPP’ from Table 7.

The results in Table 8 give various insights in the performance of the different models. The
two decision tree ensemble methods perform best in terms of determining eligibility for donation, as
they have the highest AUC values. Furthermore, the hierarchical Ornstein-Uhlenbeck process model
performs the best in terms of RMSE and MAE, also outperforming the mixed-effects transition
model. Overall, the performance of our models seems somewhat disappointing, especially when
focusing on the AUC values. Visual inspection of the out-of-sample forecasts suggest that for a large
number of donations, the predictions of the hierarchical Ornstein-Uhlenbeck are highly similar to
the predictions of the autoregressive mixed-effects model, which can be also observed for the three
randomly selected donors shown in Figure 3. The predictions of the Ornstein-Uhlenbeck model
are on average slightly better, but the difference is limited. Plots of the predictions suggest that
the traditional mixed-effects (transition) model and the hierarchical Ornstein-Uhlenbeck model are
both successful in explaining the majority of the between-subject variation. The decision tree based
methods are slightly less successful in doing so, which also explains why these models show higher
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RMSE and MAE values. The inability of these models to accurately account for between-subject
variation can be explained by the absence of explicit individual specific parameters in these models,
which makes it not possible for the algorithms to account for heterogeneity that is not observed
through the covariates in our data.

Figure 3: Predicted and observed Hb values for three randomly selected female donors in the test
set. The black lines refer to the observed Hb values of each donors, and the grey lines refer to the
corresponding predicted values.®
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Overall, it seems that none of the methods are very well able to accurately explain deviations of
the expected trajectories of Hb levels for any specific individual. When shocks occurs, i.e., when a
measurement is substantially higher or lower than previous measurements, we would ideally be able
to link this to external factors, such as the season in which the donation takes place or the ZPP

8We randomly selected three donors from the subset of donors in one of the test sets that had at least 5 donations.
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measurement at previous visit. In practice, we are only able to do so on a limited scale, which is
in line with our in-sample findings of Section 6.1 that suggested that the explanatory power of the
covariates in our data is in general very low. The decision tree based methods seem slightly more
successful in exploiting the explanatory variables than the other methods, resulting in a relatively
high discriminative ability of the decision tree models. This implies nonlinear relationships might
be relevant for explaining the Hb trajectories. The somewhat disappointing accuracy of our pre-
dictions is likely to be (partially) blameable on our data: in Nasserinejad et al. (2013) the same
implementation of the mixed-effects model achieved an out-of-sample AUC of 0.81 for men, while
for us this model only scores an AUC of 0.65 (and is our worst performing model). Possible reasons
for this difference are (i) the availability of different explanatory variables, (ii) a larger sample size,
and in particular (iii) a generally larger number of observations for each individual. In our data we
are dealing with a relatively large number of donors who only donate less than three times during
the observational period, and the Hb levels for these individuals are in general harder to predict.
This notion is confirmed when we compare the predictive performance of our models across indi-
viduals with differing numbers of donations. Especially for the mixed-effects regression models and
the Ornstein-Uhlenbeck model we find that individuals with a higher number of visits during our
observational period typically yield better out-of-sample performance measures.

Further inspection of plots of observed Hb level trajectories of various individuals indicates that
the theoretical trajectory, which implies that Hb levels are lowered by donations and afterwards
slowly recover to their 'normal levels’ after each donation, cannot be clearly observed in our data.
This unexpected data characteristic, along with the absence of a larger explanatory power of our
predictor variables, might also be partially caused by the noisiness of the measurements of Hb. Every
measurement of Hb is obtained by means of a finger-stick sample, which can lead to relatively inad-
equate measurements. When the Hb level of an individual is measured twice, the two measurement
can in practice be quite different, even if the second measurement occurred immediately after the
first.

6.2.3 The added value of additional blood levels as explanatory variables

In order to assess the added value of the additional blood levels when it comes to predicting Hb
levels, we compare the performance of the mixed-effects transition model in which we incorporate
the additional set of blood levels by means of the spike and slab regression described in Section 5.3
to our standard mixed-effects transition model, without including the extra variables. We estimate
and evaluate both models only on the subset of donors for which the additional set of blood levels
is available. We consider two alternative specifications of the spike and slab regression model. In
the first one we restrict the more established predictors, which are also used to gather the inferential
results in for example Table 3, to be included in the model. For the second one, we only restrict
the intercept and the previous Hb values to be included in the model, and therefore we are applying
variable selection on all the other explanatory variables.

In the subset of the data for which the additional blood levels are available, the number of de-
ferrals is very low; for a substantial number of train-test splits there was not even a single deferral
included in the test set. In order to still be able to evaluate the discriminative ability of our models,
we redefine the AUC measure: we will now investigate how accurate our models can predict dona-
tions to be lower than the thresholds 7.9 and 8.6, which correspond to the lowest 10% percentile
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measurements of females and males, respectively. In order to improve model fit, we used a log trans-
formation on some of the blood levels that had skewed data distributions.

Table 9: Average out-of-sample prediction performance measures for the subset of the data for which
the additional blood levels are available

Females Males
MAE | RMSE | AUC | MAE | RMSE | AUC
Mixed-effects transition 0.398 | 0.508 | 0.681 | 0.413 | 0.526 | 0.722
Mixed-effects transition + blood levels (i) 0.389 | 0.499 | 0.696 | 0.401 | 0.512 | 0.748
Mixed-effects transition + blood levels (ii) 0.386 | 0.496 | 0.696 | 0.398 | 0.510 | 0.748

For model (i) we restrict the variables as shown in Table 3 to be included in the model at each iteration. For model
(ii) we only restrict the intercept and the previous Hb levels to be always included in the model.

The results in Table 9 show that incorporating the additional blood levels leads to a moderate
increase of the average performance. That is, the use of the additional variables results in small im-
provements of the out-of-sample prediction accuracy measures in the range of 1 to 4 percent. From a
practical perspective it is very questionable whether such limited improvements of the out-of-sample
accuracy are sufficient to motivate the actual use of these variables in clinical practice. As the used
blood levels cannot be obtained with a standard fingerstick capillary sample, it is more costly to
incorporate measurements of these variables in a donation procedure.

It might be useful to select only a limited number of variables for actual use, where the selection
can be based on the in-sample inclusion probabilities. For example, the red blood cell count (RBC)
and hematocrit (HCT) consistently rank high in terms of inclusion probability, which indicates these
variables play an important role in reducing the in-sample prediction errors. The results in Table 9 do
again not answer any questions on the exact relation of the various blood characteristics and Hb lev-
els. It could be the case that it is mostly the correlation of average values of Hb and the various other
blood levels that drives the improvement of the predictions, rather than that the blood levels at time
t—1 can really explain Hb levels at time ¢. Further research is needed to examine these relations, but
our results suggest that these variable may potentially be useful for the prediction of future Hb levels.
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7 Conclusion, discussion

In this thesis we have considered various statistical techniques to (i) examine the longitudinal as-
sociation of ZPP and Hb and (ii) predict future Hb levels. For the purpose of forecasting future
Hb levels we utilized three different types of models: an autoregressive random intercept model,
two decision tree based ensemble methods and a hierarchical specification of the Ornstein-Uhlenbeck
model. Additionally, we used spike and slab regression to incorporate an relatively high-dimensional
set of blood levels into our models. In order to investigate the exact association of Hb and ZPP, we
employed a multivariate autoregressive mixed-effects model.

With the application of our multivariate autoregressive mixed-effects model we illustrate that
there is a subtle difference between state dependence and unobserved heterogeneity in a multivariate
context. We also show how inaccurate model specifications can have a detrimental effect on the dis-
covery of the true association. Previous econometric literature such as Heckman (1981) and Keane
(1997) already defined this difference between unobserved heterogeneity and state dependence, and
we are able to illustrate this difference in a multivariate context by means of a practical exam-
ple. When simultaneously modelling unobserved heterogeneity and state dependence, the traditional
model assumptions are violated. In a simulation experiment we empirically verify the validity of
multivariate generalizations of existing methods to correct for the violation of these model assump-
tion.

We find that our data indicates that the association between ZPP and Hb is not reflected through
the cross-lagged effects of the two variables, but rather through the negative correlation of the ran-
dom intercepts of individuals. From a clinical perspective this finding can be reformulated by stating
that the unobserved heterogeneity of individuals has a opposite influence on the two biomarkers.
That is, unobserved factors like genetics, diet and exercise, which are not measured in our data, have
a concurrent influence on ZPP and Hb. Therefore, the average value of one of the two variables for
a specific individual provides some indication for the average value of the other variable. It may be
feasible to use an average of ZPP as a predictor of Hb values in order to schedule future donation
moments. Yet, our further analyses suggested that the usefulness of ZPP for the (out-of-sample)
prediction of future Hb levels is very limited. Therefore, we are not able to generalize Baart et al.’s
(2013) in-sample findings to an out-of-sample context, and it remains very questionable whether ZPP
should be used to predict Hb levels in a practical setting.

When comparing the predictive performance of our different models, we find that the proposed
hierachical Ornstein-Uhlenbeck process model on average outperforms traditional mixed-effects mod-
els. Additionally, we find that incorporating blood levels can improve Hb predictions and that the
decision tree ensemble methods are most successful in determining eligibility of donation. However,
despite the use of different types of state-of-the-art prediction methods, the out-of-sample results are
not fully satisfying. Especially in terms of discriminative ability, it seems that none of the models
is very successful in identifying whether donors will be eligible for donation. This can mostly be
blamed on the limited usefulness of the set of explanatory variables, which seems unable to accu-
rately explain the within-subject variation that is present in our data. This notion is supported by
our in-sample analyses, which suggest that the explanatory power of our set of predictor variables is
in general quite low.
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It may be a future aim to combine the properties of the different models. While the mixed-effects
models and the hierachical Ornstein-Uhlenbeck process model were typically successful in explaining
the majority of the between-subject variation, they failed to accurately capture the within-subject
variation. Conversely, the two decision tree based methods were better able to explain deviations of
the expected Hb trajectories of individuals, but failed to accurately capture individual heterogeneity
that is not revealed through the covariates in our data. The most straightforward way to combine
the different properties of our models can be achieved by using model stacking, which is especially
popular outside academia. From a practical perspective, it may also be useful to evaluate other
(machine learning) models that are able to account for nonlinear relationships of our variables. The
most obvious extension would be to test predictions that are based on neural networks.

We have several more suggestions for future research. From a methodological perspective, it
could be very interesting to combine the Ornstein-Uhlenbeck model specification with spike and slab
variable selection on the explanatory variables of our model. That is, one could consider a spike and
slab prior on the parameters related to the external explanatory variables in Equation (36). The
resulting model could be used for a variety of (biomedical) applications, where a biomarker has a
stationary trajectory and is possibly related to a (large) set of external predictors. The idea behind
this model is similar to the idea of the BSTS model of Scott and Varian (2014), which combines
spike and slab regression with a Kalman Filter and has proven to be successful in i.a. forecasting
macroeconomic time series using external predictors. Whilst in our case the relatively moderate
number of explanatory variables might not make the variable selection an essential property, higher
dimensional biomedical regression problems, such as problems related to gene expression data, could
very well profit from incorporating the spike and slab prior.

For inferential purposes, the hierarchical Ornstein-Uhlenbeck process model could possibly also
help to discover the recovery time of hemoglobin that is needed between two subsequent donations.
In Nasserinejad et al. (2016) a function of various parameters was added to a linear regression model
for the same purpose. The decay parameter in the Ornstein-Uhlenbeck model can be interpreted as
the speed to which the stochastic process returns to its asymptotic mean. Therefore, it could possibly
explain how quickly Hb levels return to their individual specific mean, and thus how quickly an indi-
vidual recovers from donating blood. It could also be beneficial to incorporate additional parameters
that specifically capture the impact of a donation, similar to what was done in Nasserinejad et al.
(2016). Additionally, it can be useful to incorporate a method to explicitly deal with measurement
errors, as these are not automatically accounted for by the Ornstein-Uhlenbeck model.
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Appendices

A Initial conditions problem in a multivariate setting;:
a simulation study

Even though the initial conditions problem that arises when using autoregressive mixed-effect models
is well covered in statistical literature, the validity of the established solutions to this problem in
a multivariate setting are not yet empirically examined. Multivariate autoregressive mixed-effects
models have an increased complexity, due to the allowance of correlation of the residuals and the in-
dividual specific intercepts. Furthermore, previous simulation experiments that evaluated solutions
to the initial conditions problem considered only very low dimensional regression designs, which
results in limited generalizability of the obtained findings. In this section we provide a small sim-
ulation study to analyze the performance of the Heckman solution and the Wooldridge solution in
a multivariate regression model, and we compare their performance to an analysis where the initial
conditions problem is neglected. We also consider a more extensive data generating process than in
previous simulation studies.

A.1 Simulation design

With the set-up of the simulation study we aim to generate data in a way that closely resembles a
data generating process (DGP) of real longitudinal outcomes, such as biomarkers (like ZPP and Hb).
The simulation set-up is relatively complicated because we need to take into account (i) the possible
association structures of the two response variables, (ii) the longitudinal structure of the data and
corresponding structure of the predictor variables and (iii) the notion that it is not reasonable to
assume that the DGP starts at the first observation. In order to evaluate the performance of the
three different models, we generate 100 artificial datasets. The procedure that we use to generate
these datasets is explained in the next subsections.

A.1.1 General data generating process

In order to simulate data that has the appropriate longitudinal structure, we consider a case where
we have repeated observations of n = 300 individuals. For these n individuals we consider three
balanced panel situations where each individual has either ¢ = 5, 10 or 15 measurements, which
leads to total samples sizes of 1500, 3000 and 4500 observations. We also consider a situation where
we are dealing with an unbalanced panel situation, in which we generate a varying number of obser-
vations for every individual. We generate this number of observations by drawing from the number of
donations for each individual that we find in our real data, described in Section 2. As a consequence,
the structure of our artificial unbalanced panel datasets should be very comparable to the structure
that we find in the Sanquin data.

We consider the following data generating process (DGP) to simulate the response variables:

Y1,it aq b1 A Ay 2) <y1 i t1> <X/~t,31> (81 it>
) — + ’ + ’ ’ k) + ? + ’ 5 42
<y2,z‘t> <a2> <b2,i> <A2,1 Ao ) \Y2,it-1 X, B2 €2,it (42)
git ~ N(0,3), a=(85), bi~N(Oy). (43)
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The terms X, X, A and (81, B2) are the model parameters that define the association structure of
the two response variables. The matrix X consists of 9 explanatory variables, whose simulation we
describe in Section A.1.2.

The first observation of the two response variables of an individual is generated by means of:

- <m§051> , .
Yyio=1| | + 1.1 + b; + €. (44)
x;0B2

Subsequent observations are generated by means of the DGP defined in Equation (42), so with the
values of the autoregressive term included in the equation. In general, it is not reasonable to assume
the process that is analyzed in longitudinal studies starts at the first measurement. For example,
the first measurement of Hb at the first donation of a specific individual does not correspond to the
first realization of this stochastic variable; each human being has had Hb levels fluctuating since they
were born. In order to incorporate this notion into our simulation study, we generate observations
prior to the start of the observational period (the set of observations that are used to estimate the
models). Therefore, we generate 10 extra observations for each individual in all of our datasets. For
example, for our balanced panel design of t = 5, we generate observations for ¢ = 0,1, ...,15. When
estimating the parameters of our models, the first 10 observations of each individual are discarded,
so that we are left with 5 observations for each individual.

The full set of parameters that we use to generate our response variable is defined as follows:

(B _ [Buir Bz ... Pio
1= <ﬁé> B |:B21 522 ,329 ’ (45)

We generate a new parameter matrix IT for every simulated dataset. In order to do so, we simulate
each of the 2 x 9 elements in II separately by setting 3;; = C. Here C is a discrete random variable,
with p(C' = 0.5) = 0.25, p(C' = —0.5) = 0.25 and p(C' = 0.0) = 0.5. Thus, for every value of f;;, we
simulate a separate value C. The random variable C' is independently and identically distributed.

A.1.2 Simulation of predictor variables

In longitudinal studies it is reasonable to assume that the predictor variables are composed of a mix
different types of variables. We define three types of variables, and consider the notation as specified
below.

8«

: variables that are constant for a specific individual, such as menopausal status,
&: variables that only rely on timing of the measurement, such as seasonal variables,

&: variables that are individual specific, and do change over time, such as blood pressure.

We simulate the initial values for & and & for every ¢ by means of:

(&30, Tio) ~ N (K, Xz0) (46)
p=(1,0,1,1,0,1,1,0,1)
In order to create predictor variables that are correlated, we set 3g0(i,7) = 1 and Xpo(i,j) =

0.5/=71 ¥ i # j. The covariates in & are assumed to be independent of the other covariates and are
generated by means of:
Eio ~ N(p79,15). (47)
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Given the initial values of the three types of predictors for an individual ¢, we generate subsequent
values by means of:

Zip ~ N(pro, L), &y = ®y—1, Xig = Xjo + & with & ~ N(0, ). (48)
The covariance matrix of the disturbances in &;; is defined as X¢(4,7) = 0.2 and 3¢ (i, j) = 0.11—ily
7, so that the changes of the variables in &;; have a relatively strong correlation.

A.1.3 Association structure scenarios

The parameter values that are generated in Il already create correlation between the two response
variables, as the mutual non-zero elements in IT result in an association of the two variables. Ad-
ditionally, we consider the following three scenarios for the covariance matrix of the residuals, the
covariance matrix of the random effects and the autoregressive matrix:

e (1) Only cross-lagged effect.

0.5 0 0.3 0.1 0.5 0
b = < 0 0.5) A= (0.1 0.3) o Xe= ( 0 0.5) (49)
e (2) Full dependence structure.
0.5 0.3 0.3 0.1 0.5 0.1
= <0.3 0.5> ’ A= (0.1 O.3> ’ e = <O.1 0.5> (50)
e (3) Full dependence structure with increased heterogeneity.
1.0 0.6 0.3 0.1 0.5 0.1
b= <O.6 1.0) A= (0.1 0.3> s (0.1 0.5) (51)

In situation (1), the only association of the two response variables arises because of the parameter
values in IT and because of the off-diagonal elements in A. In situation (2), we consider a situation
where the association arises because of the off-diagonal in A, but also due to the correlation of
the residuals and the random effects. We let the correlation of the random effects be higher than
the correlation of the residuals, as this is in line what we find in our real data. In situation (3),
we consider a situation comparable to (2), but now with larger variances (and covariances) of the
random effects. Therefore, in situation (3) we increased the presence of the heterogeneity amongst
individuals.

A.1.4 Performance evaluation

In order to evaluate the estimation performance of the different methods, we will consider the root
mean square error (RMSE) and the average error (bias) of the estimated parameters with regards to
the true DGP parameters over the 100 generated datasets. We consider the errors for the coefficients
in IT, the diagonal elements of A and the off-diagonal elements of A separately. Thus, we define three
sets of parameters: 04,, 04, and 01, with A; and Aj referring to the diagonal and off-diagonal
elements in A, respectively. For each set of parameters, the performance measures are given by:

A~

Bias(8) = E(0 — 6) (52)
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RMSE(9) = [E(d — 0)*]2, (53)

where the term 6 refers to the posterior mean of each estimated parameter. In order to obtain the
expected value for both error measures, we consider the average over all 100 replications and over all
parameters in 8. The RMSE can be decomposed as the square root of the sum of the variance of the
estimator and the squared bias of the estimator. Therefore, by evaluating both the bias and RMSE,

we can also say something about the variance of the estimator, as this is the second component that
is reflected in the RMSE.

A.2 Results of the simulation study

Table 10: Unbalanced panel results under situation (1): Only cross-lagged effect

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.065 0.072 0.094 -0.001 0.000 -0.004
diagonal elements A 0.134 0.082 0.029 0.102 0.008 0.001
off-diagonal elements A | 0.050 0.034 0.036 0.023 -0.018 -0.014

Table 11: Unbalanced panel results under situation (2): Full dependence structure

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.080 0.077 0.110 -0.003 -0.000 -0.005
diagonal elements A 0.153 0.101 0.038 0.124 0.010 0.002
off-diagonal elements A | 0.103 0.049 0.057 0.076 0.019 0.042

Table 12: Unbalanced panel results under situation (3): Full dependence structure with increased
heterogeneity.

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.110 0.097 0.127 -0.009 -0.002 -0.009
diagonal elements A 0.215 0.131 0.045 0.179 0.017 0.002
off-diagonal elements A | 0.155 0.065 0.059 0.117 0.017 0.037

Tables 10, 11 and 12 show the average performance of the three methods for the unbalanced
panel data under the three different association structure scenarios. The results confirm the classi-
cal econometrical claim that ignoring the initial conditions problem leads to an upward bias of the
autoregressive parameters. That is, the estimates for the diagonal elements of A show a substantial
bias. Even in a situation with only cross-lagged effects, for which the results are shown in Table 10,
the percentile bias of the autoregressive parameter is more than 33%, while for the other situations
the bias is even worse. The Heckman and the Wooldridge solution seem both well able to correct
for this bias. The Wooldridge solution appears to be slightly more successful in doing so and ap-
proaches a bias of zero. The RMSE values are quite still far from zero, with especially the Heckman
implementation having a substantial RMSE value for the diagonal elements of A. As the RMSE
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reflects both the bias and the variance of an estimator, the results suggest that the Heckman and
Wooldridge estimates have a slightly lower efficiency than the estimates of the normal 'no correction’
model, which neglects the initial conditions problem.

When comparing the unbalanced panel results of the three different association structure sce-
narios, we find that an increased complexity of the association structure worsens the bias of the
estimates of the 'no correction” model. When there is correlation of the random intercepts, which
reflects the unobserved heterogeneity, the upward bias for the state dependence parameters increases.
Furthermore, when the severity of heterogeneity among individuals increases, the bias also gets con-
siderably worse. Therefore, our results suggests that the higher the complexity of the association
and the higher the degree of unobserved heterogeneity, the more desirable it is to account for the
initial conditions problem by means of a one of the two evaluated solutions.

The initial conditions problem does not seem to have a severe impact on the estimate accuracy
of the parameter matrix Il. That is, the downward bias of the estimated coeflicients of the external
explanatory variables, which is described in Kazemi and Crouchley (2006), seems very limited in
practice. Looking at the results for the off-diagonal elements of A, which define the cross-lagged
effects, we find several interesting results. The previous measurements of the other response variable
behave very different than the other explanatory variables, as the corresponding parameters show a
considerably larger bias. Furthermore, the Heckman solution appears to be more successful than the
Wooldridge implementation in solving this bias. Even though the Heckman solution performs the
best, the estimates of the corresponding model can still considered to be biased. Note that for the
DGP parameters of the off-diagonal elements of A we used the value 0.1, so the bias of 0.017 of the
Heckman implementation corresponds to an upward bias of 17%.

Table 13: Balanced panel results under situation (2) Full dependence structure.

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.107 0.092 0.115 -0.004 -0.001 -0.005
t =5 | diagonal elements A 0.210 0.130 0.070 0.191 0.020 0.004
off-diagonal elements A | 0.137 0.061 0.078 0.114 0.038 0.061
full parameter matrix IT | 0.036 0.050 0.085 -0.002 -0.002 -0.003
t =10 | diagonal elements A 0.043 0.043 0.020 0.021 0.001 0.000
off-diagonal elements A | 0.033 0.024 0.031 0.010 -0.003 0.019
full parameter matrix IT | 0.028 0.038 0.062 -0.002 -0.001 -0.004
t = 15 | diagonal elements A 0.013 0.012 0.013 0.005 0.000 0.000
off-diagonal elements A | 0.011 0.011 0.017 0.002 -0.002 0.009

The results in Table 15 suggest that the severity of the bias of the diagonal elements of A de-
creases as the panel length increases. This is line with econometrical literature on dynamic panel
models (e.g. Cameron and Trivedi, 2005). Again, the bias of the parameters in IT can be considered
neglectable, even for shorter panel lengths. The bias of the estimates of the off-diagonal elements
in A is most severe (when expressed in percentages). For shorter panel lengths the Wooldridge and
the Heckman solution seem to be able to correct for some of this bias, but the estimates are still on
average quite a bit too high compared to the DGP values. Even with a panel length of t = 15, the
bias of 9% for Wooldridge estimate of these parameters remains remarkable. Interestingly, this bias
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of the Wooldridge estimates is also higher than the bias of the 'no correction’” model.

For the balanced panel data under the other scenarios, we observe similar patterns as described
earlier. That is, the results show that an increasing panel length decreases the bias of the 'no cor-
rection” model estimates. Yet, under the increased heterogeneity scenario, the results are more in
favor of the two models which do actually implement a correction for the initial conditions problem.
Even for a panel length of ¢ = 15, the bias of the estimates of the diagonal elements in A for the 'no
correction’ model is equal to 0.014, which corresponds to an upward bias of around 5%.

While in general the results of our simulations yield clear conclusions, it might be desirable to
extend the simulations to more different situations. Considering all possible choices for the covari-
ance matrices, the random effects, the matrix A, the panel length and the set-up of the simulation
regarding the simulation of the explanatory variables leaves us with an immense number of possible
simulation scenarios. It warrants further research to specifically addresses the question which esti-
mation method works best in what scenario.

Table 14: Balanced panel results under situation (1) Only cross-lagged effect

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.109 0.098 0.120 0.003 0.003 0.004
t =5 | diagonal elements A 0.227 0.152 0.039 0.200 0.023 0.002
off-diagonal elements A | 0.106 0.039 0.041 0.056 -0.025 -0.003
full parameter matrix IT | 0.033 0.051 0.085 -0.001 -0.001 -0.005
t =10 | diagonal elements A 0.027 0.039 0.018 0.020 0.001 0.001
off-diagonal elements A | 0.018 0.018 0.022 0.009 -0.006 0.004
full parameter matrix IT | 0.028 0.037 0.065 0.000 0.000 -0.005
t = 15 | diagonal elements A 0.013 0.010 0.011 0.005 0.000 0.000
off-diagonal elements A | 0.012 0.011 0.017 0.002 -0.003 0.000

Table 15: Balanced panel results under situation (3) Full dependence structure with increased
heterogeneity

RMSE Bias
No correction | Heckman | Wooldridge | No correction | Heckman | Wooldridge
full parameter matrix IT | 0.149 0.126 0.141 0.006 0.002 0.007
t =05 | diagonal elements A 0.291 0.184 0.065 0.266 0.042 0.004
off-diagonal elements A | 0.172 0.077 0.076 0.147 0.026 0.051
full parameter matrix IT | 0.086 0.081 0.116 -0.006 -0.004 -0.002
t =10 | diagonal elements A 0.149 0.083 0.030 0.082 0.006 0.001
off-diagonal elements A | 0.119 0.046 0.049 0.064 0.004 0.030
full parameter matrix IT | 0.043 0.055 0.102 -0.002 0.001 -0.005
t = 15 | diagonal elements A 0.043 0.057 0.013 0.014 0.004 0.000
off-diagonal elements A | 0.031 0.024 0.022 0.005 -0.002 0.013
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B Full conditional posteriors of the (autoregressive) mixed-effects
model

Sampling of o2
The full conditional posterior of o2 is given by:

n

_ 1 _
p(o2]-) oc gl e D Pexp [ — 5% 2O (yi— XiB— b)) (i — XiB — bi) + s52) |, (54)
=1

where ¢ equals the total number of observations in our data (}_; ; 7;). From the conditional posterior
it follows that we can sample o2 from an inverse gamma distribution with scale parameter (37 (y; —
X8 —b;)(y; — X;B —b;) + ss:)/2 and degrees of freedom equal to (¢ + v;)/2.

Sampling of Ug
The full conditional posterior of 02 is given by:

~(ntw IR
p(ofl) o< oy "W exp| = Sop (Y b+ )] (55)
=1

and hence, we can sample o7 from an inverse gamma distribution with scale parameter (3 bi24-ss)/2
and degrees of freedom (n + v3)/2.

Sampling of 3
The distribution from which we can sample 3 is slightly different than in a normal linear regression
model, due to the random effect specification. The full conditional posterior of 3 is given by:

p(Bl) o< exp| = 5 L (yi — XiB — bV, (yi — XiB— bi) [exp| — §(8 - B0)'Sy (B Bo)].
(56)
with V; = afJTi + o2I7,. From the conditional distribution it follows that we can sample B from
a normal distribution with mean "1 | (X/V; 7' X; + Sg ) (0, X!V, 'y + S5 ' Bo) and variance
(Vi + Sy 1)L

Sampling of v, and 0’%

The sampling of the parameters corresponding to initial response equation, v, 9 and a%, is relatively
straightforward, as these parameters can be treated as parameters from an ordinal linear regression
model. Using that the regression equation is given by

Yio = Z;U + b;9 + i, (57)

we can use that our predictor variables are given by £; = (2!, ;)" and our depedent variable is given
by yi0. Conditional on the random effects in b, the regression parameters in © = (v’,1)" and the
residual variance parameter can be sampled from well-known posteriors of an ordinary linear regres-
sion model with conjugate priors, which can be found in various introductory textbooks on Bayesian
statistics, such as Greenberg (2012). After stacking the initial responses and corresponding external
covariates of all n individuals, we can sample the parameter vector © from a normal distribution
with mean (U;QZ"Z. + UO_I)*l(JTfZ.’yO +U; ' vg) and variance (U;QZ"Z' +U; )L
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Similarly, the residual variance of the initial response equation 0727

variance from an ordinary linear regression model. Hence, we can sample J% from an inverse gamma

can be treated as the residual

distribution with scale parameter ((yo — Z'0)'(yo — Z'0) + ss)/2 and degrees of freedom equal to
(n+wvy)/2.

Sampling of b
When we rearrange the terms from the initial observation, as given in Equation (8), and divide
everything by the standard deviation of the error term, we obtain:

(yio — zv) /oy = bid /oy +mi /oy (58)
Similairly, subsequent observations of individual ¢ can be rewritten as:
(yit — xyB)/0oe = bil/o- +eit/o- (59)

Then, in order to derive the sampling distribution of the random effects we can stack the observations
0, ..., T; for every individual, resulting in the two auxilliary variables:

(yio — Z;'U)/Un 19/077
il — ! € 1 €

o | o | e )
(yir, — i, B)/ 0= 1/oc

After defining these two auxiliary variables, we can use the results from an ordinary linear regression
model with standard normally distributed error term. We treat the random effects b; as our regression
parameter, y; as our dependent variable and x] as our predictor. Due to the conjugacy of the prior
specification, we know that we can sample each random effect b; from a normal distribution with
mean (:B*/ * — x/ %k

—2\—1 : ®1 ok —2\—1
Jxl 4 o, 7)  xfy; and variance (x}'x] +0,7) 7.
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C Supplementary results of the multivariate analysis

Table 16: Posterior results of covariance matrix and correlation of the residuals of the regression
analysis of Equation (19)

Females Males
mean 95% CI mean 95% CI
0'521 0.186 0.176 0.195 0.218 0.207 0.230
0522 0.028 0.026 0.029 0.028 0.027 0.030
021 0.003 0.000 0.005 0.004 0.001 0.007
p(e1,€2) 0.038 0.003 0.072 0.054 0.018 0.089

Table 17: Posterior results of multivariate regression of Equation (19) for males.

Hb \ ZPP
mean 95% CI | mean 95% CI
(Intercept) 7.414*  6.812 8.029 2.814*  2.572 3.059
Age —0.006* —0.008 —0.003 | —0.003* —0.004 —0.001
Spring —0.020 —0.064 0.024 | —0.062 —0.078 —0.002
Summer 0.020 —0.024 0.064 | —0.079* —0.096 —0.064
Autumn —0.010 —0.051 0.034 0.040 0.024 0.057
Time of the day —0.007* —0.012 —0.002 0.000 —0.002 0.002
BMI 0.013*  0.001 0.025 0.013*  0.007 0.019
Bloodvolume 0.047  —0.025 0.120 | —0.026 —0.061 0.009
Number of previous donations last 2 years 0.008 —0.002 0.018 0.021*  0.018 0.025
Time since previous donation (months) 0.005*  0.001 0.011 | —0.010* —0.012 —0.008
Previous Hb value 0.130*  0.095 0.165 0.013 —0.002 0.024
Previous ZPP value 0.106 —0.016 0.204 0.241*  0.201 0.281

The asterisk (*) denotes that zero is not included in the 95% highest posterior density interval.
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Table 18: Posterior results of multivariate regression of Equation (19) for females.

Hb PP
mean 95% CI mean 95% CI
(Intercept) 7.132*  6.641 7.634 3.362*  3.118 3.557
Age 0.003 0.000 0.006 | —0.085 —0.100 —0.070
Spring —0.012 —0.051 0.027 | —0.135 —0.150 —0.120
Summer —0.024 —0.062 0.015 0.094*  0.087 0.102
Autumn 0.001 —0.039 0.041 0.020 0.005 0.035
Time of the day —0.001 —0.005 0.004 0.001  —0.001 0.002
BMI 0.003 —0.006 0.012 0.007*  0.002 0.011
Bloodvolume 0.047 —0.026 0.120 0.004 —0.038 0.045
Number of previous donations last 2 years 0.000 —0.014 0.015 0.024*  0.018 0.029
Post menopause 0.093*  0.017 0.169 0.004 —0.032 0.039
Time since previous donation (months) 0.000 —0.005 0.004 | —0.013* —0.014 —0.011
Previous Hb 0.094*  0.063 0.125 0.002  —0.009 0.013
Previous ZPP —0.049 —0.040 0.137 0.210* 0.172 0.248

The asterisk (*) denotes that zero is not included in the 95% highest posterior density interval.
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Full list of available variables

Table 19: Variables used in primary models

Variable name

Description

Donor ID

Number of previous donations

Age
Date
Time
PP

Weight
Height
HGB

Number that defines unique individual
Number of previous donations in the last 2 years
Age at time of the donation
Date at which the donation took place
Time of the day at which the donation took place
Zinc Protoporphyrin (pmol/mol heme)
Weight of donor in kg (only measured at first visit)
Height of donor in cm (only measured at first visit)

hemoglobin concentration (mmol/1)

Table 20: Additional explanatory variables describing blood levels

Variable name

Description

WBC
RBC
HCT
MCV
MCH
MCHC
PLT
RDWSD
RDWCV
PDW
MPV
PLCR
PCT
NEUT
LYMPH
MONO
EO
BASO
1G
Systolic blood pressure
Diastolic blood pressure

red cell diameter width coefficient of variation (%)

Pressure in blood vessels during heartbeat (mmHg)

white bloodcell count (107/1)
red bloodcell count (10'2/1)
hematocrit (%)

mean corpuscular volume (fl)

mean corpuscular haem (fmol)
mean corpuscular haem concentration (mmol/1)

platelet count (10°/1)

red cell diameter width standard deviation (fl)

platelet distribution width (%)

mean platelet volume (fl)

platelet-large cell ratio (%)

plateleterit (%)

neutrophil count (10%/1)

lymphocyte count (10°/1)
monocyt count (10%/1)
eosinophil count (10%/1)
Basophil count (109 /1)

immature granulocyte count (10°/1)

Pressure in blood vessels during rest (mmHg)
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