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Abstract
By using smooth effect for predictors, a researcher is relieved of the burden of
assuming a specific functional form for how a predictor influences the response
variable. For a data set with many predictors, estimation of smooth effects
might become difficult computationally, and overfitting might occur. Our re-
search overcomes these issues by using the Spike and Slab Generalized Additive
Model (SSGAM) proposed by Scheipl et al. (2012). This Bayesian method esti-
mates smooth effects, including interaction effects, and shrinks small effects to
prevent overfitting. The contribution of our paper is to make this methodology
feasible for a data set with many predictors. We propose to apply a first step of
variable selection with DART proposed by Linero (2018), which performs vari-
able selection with a Bayesian modification of a decision tree ensemble. In this
way, we can estimate smooth effects for a data sets with many predictors. Our
proposed methodology is used to model the choice of viewing a premiere of a
new TV series on prime time TV in the US. We visualize the estimated smooth
effects to provide new insights into how advertising, demographic variables and
TV viewing behavior influence consumer behavior. The predictive performance
only drops slightly compared to a competitive benchmark, while interpretation
is greatly improved.
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1 Introduction

Since the start of the use of scanning equipment in the packaged good industry, the
focus of marketing research has shifted. The availability of consumer behavior data
on the individual level allows marketing researchers to investigate how consumers
react to promotions and price reductions. The explosion in the amount and variety
of data greatly influenced statistical research in marketing (Rossi and Allenby, 2000).
Demonstrated by the highly cited pioneering research with scanning equipment of
Guadagni and Little (1983), this area of marketing research has been of great value,
both academically and practically.

In the current digital landscape, there are plenty of methods to obtain and store
data of consumer behavior on the individual level. For businesses, insight into indi-
vidual customer behavior became an essential part of marketing strategy. Uncovering
the preferences of individuals by using marketing analytics allows for tailoring prod-
ucts and services to consumers demand. This ultimately increases the equilibrium
profit of a firm (Iyer et al., 2005).

However, the value of complex marketing analytics models should not be over-
stated. Throughout the academic marketing literature, complex parametric mod-
els barely outperform simpler ones on data sets of small to moderate size. Often,
the introduced complexity causes an unfavorable bias-variance trade-off. Complex
parametric models support a richer representation of the data-generating mechanism.
However, this might increase the variance of the parameters at the same time, which
may ultimately cause the model to over-fit the data (Wedel and Kannan, 2016). Thus,
it seems challenging to develop complex models which have appealing properties in
terms of interpretation, while also providing good predictive accuracy.

To successfully create a model on a large data set, the researcher typically needs to
apply methods which are (i) able to handle a huge amount of observations, (ii) select
relevant predictors among a large set and (iii) estimate nonlinear relations between
the response variable and selected predictors. Luckily, the collaborations between
statisticians and computer scientists have resulted in a vast range of methods which
are able to carry out these tasks (Varian, 2014).

Our paper focuses on several techniques in data science that are able to carry out
these tasks. Specifically, we focus on the Spike and Slab Generalized Additive Model
(SSGAM), introduced by Scheipl et al. (2012). With this method, we are able to
estimate and visualize the nonlinear relations that are found between the predictors
and the response variable, including interactions of the predictors. In this way, we
do not have to make simplifying assumptions on how a predictor affects the response
variable. This method decomposes the smooth effect of each predictor into separate
orthogonal components with a clear interpretation. Next, function selection is applied
to every component, such that an effect is only estimated if sufficient evidence for that
effect is found in the data.

However, when we use this model on a data set with many predictors, the com-
putation time rises such that it no longer is feasible to use this method. We propose
a solution for this issue by using the SSGAM in combination with a suitable variable
selection method. As the SSGAM methodology models smooth effects, it is important
that we use a variable selection method which also does not assume specific relations
of a specific shape between predictors and the response variable a priori. We address
this by using DART variable selection proposed by Linero (2018) to select a subset
of predictors that are most likely to exert the largest influence on the response vari-
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able. With this method, we can carry out model-free variable selection.In addition,
we apply a pragmatic solution to find which pairs of the variables selected by DART
are likely to exert an interaction effect.

In a large application on measuring the effectiveness of TV advertising, we show
the insights that can be gained by using nonlinear modeling. We use an individual-
level data set on TV viewing behavior with 6582 observations and 203 predictors.
The largest data set on which SSGAM has previously been used with has only 500
observations and 150 predictors (Scheipl, 2010). By combining this method with the
DART variable selection, we open up the possibility to apply the SSGAM on larger
marketing applications. With the obtained nonlinear functions, we can gain new
insight into how consumer traits affect behavior.

In this application, we model the probability of viewing the premiere episode of
a new TV series broadcast on prime time TV in the US. We pay additional atten-
tion to advertising effectiveness. In the literature, the shape of the response function
to advertising is often studied (Schmidt and Eisend, 2015). Next to this, previous
research on marketing effectiveness uncovered that the effect of advertising is depen-
dent on consumer characteristics and advertising types (Vakratsas and Ambler, 1999).
Thus, we use our proposed methodology to shed a light on the shape of the adver-
tising response function and investigate how the effect of advertising differs across
individuals.

Nonlinear modeling allows a different set of research questions to be answered,
compared to an approach where the functional form of a predictor is chosen a priori.
The exact questions differ for each application, but our methodology allows us to
investigate the following general research question in more detail:

What relationships are found between predictors and the response variable in an
application with many predictors?

In Section 2, we describe the relevant literature for this research. In Section 3, we
describe the used methodology in more detail. Section 4 contains a description of the
data set and other models that are used for comparison. In Section 5, we visualize
the results of the models and compare the performance to other models. Section 6
contains a discussion on the used methods and topics for future work.
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2 Literature Study

In this section, we first discuss the publications concerned with estimating nonlinear
effects of predictors. Second, we discuss the methods to carry out variable selection
without making restricting model assumption. Fourth, we review the influential pub-
lications on individual responses to advertising. Fifth, we review the literature on live
TV program choice.

2.1 Nonlinear modeling

In order to use a smooth effect for estimating the effect of a predictor, we use a
model with the structure of a Generalized Additive Model (GAM) introduced by
Hastie and Tibshirani (1986). Specifically, we use the Spike and Slab Generalized
Additive Model (SSGAM) introduced by Scheipl et al. (2012). With this model,
the probability of watching a live TV program is modeled with a sum of estimated
smooth effects for the predictors in the model. The smooth effect of each predictors
is decomposed in multiple orthogonal components, which have a clear interpretation.
Function selection is applied, such the effect of a component is shrunken to zero if
the effect on the response variable is only has a small. We can inspect the estimated
functional form of the effect to obtain more insight into how a predictor influences
the response variable. Splines are used to model the smooth effects of the predictors.
Thus, before describing the literature on the SSGAM, we review the methodology on
using splines in modeling.

Often, a cubic spline is used to model the nonlinear relation between a predictor
and the response variable (Hastie et al., 2009, Ch. 5.2). A problem associated with
estimating cubic splines is the selection and placement of knots, which determine how
flexible the shape of the spline is allowed to be. Eilers and Marx (1996) propose the
penalized B-spline methodology (renamed as P-spline), which uses a large number of
equidistant knots and puts difference penalties on the spline coefficients. This method
circumvents the problem of having to select an appropriate set of knots for a spline.
Instead of the selection of knots, the spline can be tuned with a single smoothness
parameter, which governs how much we allow the spline to oscillate. In practice, P-
splines have been very popular for modeling smooth effects in additive models (Eilers
et al., 2015).

A Bayesian adaptation of the P-spline methodology is introduced by Lang and
Brezger (2004). This method allows for Bayesian inference of the model and the use
of different penalty structures for the spline coefficients via their prior distribution.
This method also allows for the estimation of two dimensional splines, which are
smooth surfaces to describe the joint effect of two numerical predictors. This is useful
when two predictors are expected to interact with each other. For example, these
smooth surfaces allow us to investigate the interaction effects between demographic
variables and advertising effectiveness.

Brezger and Lang (2006) introduce the generalized Structured Additive Regression
(STAR) model, which is the generalization of the Bayesian P-spline model (2004) that
can be used for any response variable from an exponential family, such as a binary
response variable. The estimation of this model is difficult when a large number of
predictors is added to the model, as multiple parameters are required for each spline.

In order to make the STAR methodology feasible with a larger set of predictors,
Kneib et al. (2011) propose the regularized STAR. For a small number of variables
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for which the nonlinear relation with the response variable is of interest, Bayesian P-
splines are used to model the functional form. For a large set of categorical variables,
sparse linear regression with the Bayesian lasso (Park and Casella, 2008) is applied.
This allows the STAR methodology to be applied on high dimensional data with a
large amount of categorical predictors and a small amount of numerical predictors for
which splines are estimated. Unfortunately, this method does not alleviate the com-
putational burden of estimating splines for the numeric variables. Many parameters
need to be estimated for each spline of a numeric variable. Therefore using many
numeric variables make the method demanding computationally.

Scheipl et al. (2012) extend the STAR methodology such that function selection
can be applied on the smooth effects. In their proposed Spike and Slab Generalized
Additive Model (SSGAM), each basis of a univariate splines is separated into two
orthogonal components. These components can be interpreted in terms of the linear
trend and the nonlinear part of the smooth effect. The design matrices of the orthog-
onal components contain fewer columns, such that the number of parameters needed
to estimate a smooth effect is reduced. Next to that, we can use the design matrices
of these components to obtain a decomposed version of a bivariate spline.

For the Bayesian P-splines in the STAR, the linear trend of the spline was implic-
itly unpenalized in the model. This might be undesirable, as we often do not know
whether a linear trend is suitable to model the effect of a predictor. By decomposing
each spline onto multiple orthogonal components with the SSGAM, we can apply
function selection separately on all components. Then, the effect of a component is
only added in the model if it exerts enough influence on the response variable. In
order to select which components are relevant, the SSGAM carries out the function
selection by using a variant of the spike-and-slab priors introduced by Mitchell and
Beauchamp (1988). This method makes sure that a parsimonious model is obtained
where all irrelevant effects are shrunk to zero.

Next to the application in medical research to study the spread of diseases (e.g.
Lai et al. (2015) and Chammartin et al. (2013)), the SSGAM has also been used in
marketing research to find customer characteristics that should be used for targeting
potential new customers (Tillmanns et al., 2017).

Until now, the largest data sets that were used to model a binary variable with the
SSGAM consist of roughly 3000 observation and 45 predictors and 500 observation
and 125 predictors. In these models, no interaction effects were added. The compu-
tation times for SSGAM are much better compared to the STAR approach, but the
computation time still increases to unfeasible levels when a larger number of smooth
effects is estimated. This is especially the case when many interactions effects are
estimated, as roughly 40 parameters needs to be sampled for each smooth surface in
the model (Scheipl, 2010).

This makes it difficult to apply this method on applications with many individuals
and predictors. The contribution of our paper is to combine a suitable variable selec-
tion method with the SSGAM in order to make this method feasible for larger data
sets. Ideally, we would like to detect all variables for which an effect of a reasonable
size could be estimated in the SSGAM. For that purpose, we use a variable selection
technique that does not assume relations of a specific shape between the response
variable and predictors a priori. The method we use to carry out variable selection is
discussed next.
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2.2 Variable Selection

Bayesian Additive Regression Trees (BART) proposed by Chipman et al. (2010) can
be used to carry out variable selection without having to specify relations of a spe-
cific shape between predictors and response variable a priori. Tree structures are
suitable for this task, as they implicitly take nonlinearities and variable interactions
into account. BART identifies which variables exert an influence on the response
variable by using a sum of Bayesian Regression Trees (Chipman et al., 1998). The
influence of each individual tree in the ensemble is kept small by imposing a prior on
the tree components. Using a sum of trees causes each tree to explain a small, but
different portion of the response variable. The trees are fitted using a tailored ver-
sion of Bayesian backfitting (Hastie and Tibshirani, 2000). This method was initially
developed to have good predictive performance, but can also be used for variable
selection. The BART method produces a subset a variables which are used to split
on in the sum-of-trees model for each posterior draw. The proportion of draws where
a variable is included in the BART model can be used for the purpose of variable
selection. However, these inclusion proportions are found to be very sensitive to the
hyperparameter settings, which makes it more difficult to perform variable selection
with BART.

Bleich et al. (2014) proposed a permutation test which allows to determine whether
the influence that a predictor exerts on the response variable is likely to be real, re-
gardless of the chosen hyperparameter setting. This test generates an interval of
variable inclusion proportions for randomly permuted data. With this, we can deter-
mine whether the found proportion of draws that include a certain variable is large
enough, such that the predictor is likely to have a real effect on the response vari-
able. They concluded that their method performs competitively to a wide range of
variable selection methods in various simulations and applications. However, this
permutation-based approach requires refitting the BART many times, which makes
the variable selection demanding computationally.

Linero (2018) extended the BART framework by using a sparsity-inducing Dirich-
let prior on the probability that a predictor is chosen for a split in a tree. This
modification removes the sensitivity to the hyperparameters, so that we can carry
out variable selection without having to use a computationally demanding permu-
tation test. In addition, this method generates a posterior distribution of variable
inclusion probabilities, which gives us insights into the relative importance of the
variables. This Dirichlet prior BART model is named DART by the authors.

As the estimation of interaction effects in the SSGAM is demanding, we only
estimate an interaction effect of two variables if they are likely to have a real effect on
the response variable. We use a Friedman’s H-statistic (Friedman and Popescu, 2008)
to find interaction effects between variables that are likely to exert influence on the
response variable. With this statistic, we are able quantify the relative importance of
all two-way interactions with the advertising variables. On the basis of this, we add a
small number of interactions which are most likely to have an effect. The calculation
of the Friedman’s H-statistics requires making many predictions. As DART is a
Bayesian model, a prediction is made for every draw in the posterior. Therefore, it is
too demanding computationally to calculate the Friedman H-statistic with the DART
model. Instead, we use a Random Forest (Breiman, 2001) on subset of predictors
selected by DART. For a Random Forest, the Friedman H-statistics can be calculated
quickly, with a good performance in general (Friedman and Popescu, 2008).
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2.3 Individual Response to Advertising

Each year, TV advertisers in the US spend 70 billion dollars on advertising. Regardless
of the emergence of other popular media platforms, TV advertising still is one of the
largest advertising platforms, and is predicted to remain substantial1. Much research
on advertising effectiveness has been done, from which we use the findings to select
what variables should be created in our application.

In an attempt to bring together insights from both academics and industry pro-
fessionals, Pechmann and Stewart (1988) carried out a qualitative literature synthesis
on advertising effectiveness. They compared the research on how individuals react
to advertising in an experimental setting to the research on how individuals react
in practice. In an experimental setting, desired results of advertising such as brand
recall, brand attitude and purchase intentions peak at roughly three ad exposures.
After more exposures, brand recall stops increasing and brand attitude and purchase
intentions even start to decline. Thus, these studies concluded that consumers should
be exposed to three ads for maximum effect. This conclusion echoes the much fol-
lowed advice from Krugman (1972), which is often used as a rule of thumb by industry
practitioners.

When casually watching television, it is much less likely that undivided attention
is being paid to advertising, which causes the results to be different in practice. In
general, the effect of seeing an additional ad is found to be diminishing. However,
the effect continues to be positive even after a consumer has been exposed to an ad
multiple times. Additionally, the magnitude of the effect varies across different ad
types, such as mostly verbal ads, or ads that contain emotion evoking images. At the
time of writing, Pechmann and Stewart (1988) encouraged researchers to measure the
magnitude of how this effect changes, which has been extensively studied since then.

Schmidt and Eisend (2015) summarize the found answers on the questions posed
by Pechmann and Stewart. In their meta-analysis, they describe which variables are
found to have an influence on advertising effectiveness. They conclude that the time
between exposures and the amount of personal involvement with an ad are the most
important variables that affect advertising effectiveness. Thus, to correctly calculate
the total effect of advertising on an individual, the ad types and the time between
the exposures to each ad should be taken into account.

Next to characteristics of the ad, the characteristics of an individual, and thus
how advertising is experienced, are also found to influence the effect of advertising.
(Vakratsas and Ambler, 1999; Campbell and Keller, 2003). To take account of this
observable heterogeneity in consumer behavior, we incorporate both individual and
ad specific information when modeling the effect of advertising. We allow the effect of
advertising to vary across individuals by adding interactions between the advertising
variables and individual characteristics. Consequently, the estimated effects for these
interactions inform an advertiser on which ad types have been most effective, and
which individuals responded to advertising most clearly.

1https://www.emarketer.com/content/us-tv-ad-spending-to-fall-in-2018
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2.4 Live TV Program Choice

The research on the effect of advertising is mostly focused on the consumer goods
industry. However, TV ads are also often aimed at increasing viewership rates for
a program aired in the near future. The literature on this topic guides us on how
we should model live TV viewing choice and what variables unrelated to advertising
should be created and added to the model in our application.

In a meta-analysis on live TV program choice modeling, Webster and Wakshlag
(1983) conclude that live TV program choice mostly depends on the availability of a
viewer and not on program content. First, the viewer decides whether to watch TV
or not. Second, a choice for a specific program is made. They conclude that it is
unlikely that viewers are drawn towards watching live TV solely by program content.

With the introduction of streaming services such as Netflix and Hulu, it becomes
even less likely that viewers are attracted to live TV viewing by program content.
These streaming services give TV viewers more control over TV program choice when
consuming media. Now, TV viewers can watch their preferred TV series at any given
moment if it is available on a streaming service (Schweidel and Moe, 2016). With
this broader supply of different channels to consume media from, it is even harder
to predict whether a consumer will choose to watch a new TV series on live TV.
Therefore, we decide to focus on the individuals that already chose to watch TV on
the evening of the modeled TV series. In this way, we model the live TV program
choice, conditional on their availability for viewing.

The method developed in Rust and Alpert (1984) is often used as benchmark
for predicting individual TV program choice. The novelty of this publication was
to investigate the hypothesis that many viewers are not inclined to switch channels
after a TV show ends. They conclude that many viewers do not switch channels
and recommend to always include a variable that denotes viewership of the previous
program when modeling live TV choice. In an extension of this model, Rust et al.
(1992) concluded that the program preferences of individual closely match with the
a priori genre categorization of the TV program content by the Nielsen TV panel2.
This confirms that we can use the total viewing hours of TV series of a certain genre
categorization to describe viewing preference of an individual.

Shachar and Emerson (2000) and Danaher and Dagger (2012) conclude that the
performance of TV rating models is substantially improved by including series spe-
cific random-effects in the choice model. The importance of these random-effects
show that there is unobserved heterogeneity in the popularity of different TV series.
Thus, when modeling program choice for multiple TV series in one model, unobserved
heterogeneity should be taken into account. As the estimation of unobserved hetero-
geneity is out of the scope of our research, we choose to model only one TV series to
circumvent this issue.

The mentioned TV choice models often assume that the individual is aware of all
aired programs. In reality, individuals are not fully aware of the available TV content
when starting to view. Advertising helps to make the viewer aware of a TV content,
and might cause the viewer to watch the program (Webster and Wakshlag, 1983).
Therefore, adding the dimension of advertising to a model of live TV program choice
seems a useful addition.

Lovett and Staelin (2016) make a distinction between three different ad types for
TV content: paid advertising such as launched TV ads, owned advertising such as

2http://www.nielsen.com/us/en/solutions/measurement/television.html
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a website of a TV series and earned advertising such as the word of mouth effect
of TV viewers that discuss events of their favorite TV series on social media. They
conclude that paid advertising has the largest effect on increasing TV program choice
probability, compared to the other media channels they investigated. The main role
of paid advertising is to remind the viewer of the series its existence. Next to that,
advertising informs the viewer on how well the series matches its taste.

This paper identifies that TV ads have an important effect on TV program choice.
However, paid advertising is broadcast on different channels and the content of the ads
usually differ. For these different types of TV ads, advertising effectiveness might also
differ, which is not investigated in this paper. Also, the total exposure to advertising
is added in the choice models linearly, which might not be a suitable specification.
Thus, a valuable addition of our research is that we use a more flexible function to
estimate the effects of exposure to different types of advertising.
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3 Methodology

In this section, the applied methodology is described in detail. The methods are
explained in the order of how we apply them. First, we describe the DART variable
selection. Second, we describe the method to detect interactions. Third, we briefly
review the general form of a P-spline, before moving on to the methodology of the
SSGAM. In order to limit the number of different symbols used, some of the notation
is used multiple times across the sections. However, there is no relation between the
duplicated notation, except when we refer to it explicitly.

3.1 DART Variable Selection

In order to obtain a subset of predictors which are likely to exert influence on the
binary response variable, we use the DART methodology proposed by Linero (2018).
This method is an extension to the BART methodology proposed by Chipman et al.
(2010). The method takes input X, a matrix of size N × K, to predict response
variable y by using a sum of binary decision trees. In this sum-of-trees model, each
tree explains a small, but different part of the response variable y. This differs from
model averaging approaches where each tree makes a prediction for y, which are
averaged to obtain the final prediction. When a model averaging approach is used
like is done in Chipman et al. (1998), all trees in the ensemble tend to gravitate to a
single large tree. Chipman et al. (2010) show that BART models are computationally
inexpensive and perform competitively in various experiments and applications in
terms of predictive power.

In our research, the DART is used to model a binary response variable. A probit
model is used such that

P [yi = 1|Xi] = ŷi = Φ(f(Xi) + µ0) (1)

where Φ(·) denotes the standard normal CDF, f(Xi) denotes the sum of binary
decision trees andXi denotes row i ofX. µ0 denotes a scalar offset, which is described
below. The goal of this method is to obtain f(Xi) =

∑T
t=1 g(Xi; Tt,µt), where

g(Xi; Tt,µt) corresponds to the part of yi that is predicted by tree t. Here, Tt denotes
the topology and splitting rules of tree t, and µt = (µt1, . . . , µtLt(Tt))

′ denotes the
vector of length Lt(Tt) of prediction values at the terminal nodes of tree t.

The topology and splitting rules Tt consists of a sequence of decision rules with cor-
responding splitting values. These rules determine how many terminal nodes Lt(Tt)
tree t has, and which terminal node is reached with input Xi. The path to one of the
terminal nodes is determined by decision rules in the form of [Xij > cts], where Xij

denotes the value of predictor j for individual i, and cts denotes the sampled splitting
value for split s in tree t. These rules determine what direction is taken at a split in
a tree. After a sequence of splits, a terminal node is reached and the value from µt
which corresponds to that terminal node is used as the prediction of the tree. Thus,
an individual tree predicts g(Xi; Tt,µt) = µtl if the topology and splitting rules Tt
lead to terminal node l with input Xi, where µtl denotes the prediction value for the
lth terminal node.

In order to obtain samples of Tt and µt for t = 1, . . . , T , we use a modification of
Bayesian backfitting (Hastie and Tibshirani, 2000). First, we describe the used prior
distribution for the parameters that govern the tree structures. Second, we describe
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the method to obtain samples of the posterior distribution p((T1,µ1), . . . , (TT ,µT )|y).
Third, we describe how we use the output of the model.

3.1.1 Priors on the Tree Structures

In order to simplify the prior distributions, independence of the prior distributions is
assumed across trees and terminal nodes, such that

p((T1,µ1), . . . , (TT ,µT )) =

T∏
t

p(µt|Tt)p(Tt) =

T∏
t

p(Tt) Lt(Tt)∏
l

p(µlt|Tt)

 .

This simplifies the prior distributions such that the tree components (Tt,µt) are in-
dependent across the trees and all elements in µt are independent within each tree.

We independently generate the trees as follows. Each tree structure is initialized
at depth d = 0. A node is given two child nodes of depth d+ 1 with probability q(d),
where q(d) = γ(1 + d)−λ with γ ∈ (0, 1) and λ ∈ [0,∞). Thus, a node is terminal
with probability 1 − q(d). The tree keeps increasing in depth until all nodes are
terminal. Selecting larger values for γ and smaller values for λ result in deeper trees.
This probability q(d) induces a prior distribution on the number of terminal nodes
in a tree Lt(Tt). Figure 1 shows the prior distribution of Lt(Tt) for hyperparameters
γ = 0.95 and λ ∈ {1, 2}. As can be seen, the priors cause the individual trees to have
few terminal nodes, with 31% and 60% of the trees having less than three terminal
nodes for λ = 1 and λ = 2, respectively. This prior shrinks the size of each tree to a
simpler fit, such that we need multiple trees make capture the effect of all variables
in X on y. With this way, we cause each tree in the ensemble to explain a different,
independent part of y. This prior causes the conceptual difference between this a
sum-of-trees model and a model averaging approach where each tree in the ensemble
models y independently.

The degree of interaction effects between the predictors is also governed by the
depth of each individual tree. Deep trees have the possibility of splitting on a se-
quence of different predictors before arriving at the terminal node. In this way, a
tree structure adds interaction effects between the predictors. By changing the hy-
perparameters γ and λ, the prior probability to increase in depth, q(d), is larger for
higher d. In this way, DART can be configured to allow for more interaction effects
in the trees. This is desirable for our SSGAM described next, as we also want to add

Figure 1: Prior probability for the number of terminal nodes in an individual trees in
the ensemble. γ = 0.95 and λ ∈ {1, 2}.
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interaction affect in the specification. We use two hyperparameter settings γ = 0.95
and λ ∈ {1, 2} in the application to investigate this effect.

The splitting probabilities sj are defined as the probability of selecting variable
Xj to split on at any given node in the trees, where Xj denotes the jth column of X.
These probabilities are the same for all trees in the ensemble. For s = (s1, . . . , sK),
we use the prior distribution s ∼ D(α/K, . . . , α/K), where D denotes a Dirichlet
distribution. The use of this prior distribution is proposed by Linero (2018) to im-
prove the variable selection performance of the BART methodology when K is large.
Compared to BART, which uses sj = K−1 for all variables, this prior favors using
a smaller number of predictors when α/K is small. More favorable properties, such
as the asymptotic distribution of the number of predictors included in the model for
different α, are described in Linero (2018).

By using this sparsity inducing prior for s, we allow only a small number of
variables to have a high variable inclusion probability sj . The α plays an important
role in determining how many sj have drawn values larger than zero. Instead of
selecting α as a hyperparameter, it is treated as a random variable. This allows us to
let the data determine the number of predictors for which the sj are larger than zero.

For α, we use the prior α
α+ρ ∼ Beta(aα, bα). Here, aα and bα are selected hy-

perparameters and hyperparameter ρ corresponds to the guess of the researcher on
how many of the variables in X exert influence on the response variable. By default,
aα = 0.5 and bα = 1 are selected such that the prior gives additional preference to
models with few sj that have probability mass far from zero. If a researcher has
a strong belief about the number of predictors that exert influence on the response
variable, ρ can be used to alter the prior distribution on α. In the application, we
roughly use ρ ∈ {K10 ,

K
4 ,K}, such that we can evaluate how sensitive the results are

to this hyperparameter. Figure 2 shows boxplots of the number elements in s that
are larger than 1

K for 100 prior draws of α with aα = 0.5 and bα = 1 for different
values of ρ with K = 100. Here we can see that the number of sj >

1
K is lower for

small values of ρ, such that more sparsity is induced.
After drawing a variable to split on, a splitting rule is constructed as [Xij ≤ cts],

when Xj is the chosen splitting variable and cts the value to split on at split s in
tree t. In order to determine the splitting value cts, a value is drawn from a uniform
distribution over all observed values of Xj . If the drawn splitting value cts leads to
a splitting rule which contradicts a splitting rule used in a higher node, a new cts
is drawn. If these rules do not exist, a splitting value is drawn which contradicts a

Figure 2: Boxplot of number of sj >
1
K in s for different values of ρ. 100 prior draws

of α are taken with aα = 0.5 and bα = 1 and K = 100.
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previous splitting rule, such that only one of the child nodes can be reached.
Finally, each of the µtl are drawn with prior distribution N(0, σ2

µ) where σµ =

3/k
√
T with default choice k = 2. Here, the division by T has the effect of limiting

the influence of each individual tree in the ensemble, as the µtl are more shrunk to
zero as T increases. This selection of k cause the prediction of the full ensemble f(Xi)
to be in the interval of (−3, 3) with a high probability, such that probabilities in the
interval of (0.001, 0.999) are obtained.

The prior on µtl causes f(Xi) to be shrunk towards 0, such that P [yi = 1|Xi] is
shrunk toward 0.5 if there are many trees in the ensemble. To overcome this issue and
shrink P [yi = 1|Xi] to a desired probability p0, a fixed offset µ0 in (1) is used with

µ0 = Φ−1(p0) with p0 = N−1
∑N
i=1 yi. In this way, the prior on the µtl parameters

shrinks f(Xi) to p0 instead of 0.5. This data dependent prior is informative, but with
k = 2, probability mass is obtained for a wide interval of values for f(Xi).

Linero (2018) find that slightly more variables get selected when using a larger
number of trees T . We use T ∈ {50, 200} to investigate the impact in our application.

3.1.2 Posterior Sampling with the Backfitting MCMC

To sample the parameters from the posterior density, we use the backfitting MCMC
algorithm as described in Chipman et al. (2010). Following the idea of Albert and
Chib (1993), latent variables z = (z1, . . . , zn) are independently generated from a
truncated normal distribution conditional on yi as

zi|yi,Xi, {Tt,µt}Tt=1 ∼
{
N(f(Xi) + µ0, 1)I[zi > 0] if yi = 1
N(f(Xi) + µ0, 1)I[zi ≤ 0] if yi = 0

for i = 1, . . . , N. (2)

such that zi > 0 if yi = 1 and zi ≤ 0 if yi = 0. The sum-of-trees model is used to
model zi = f(Xi) + µ0 + εi, with independently distributed εi ∼ N(0, 1) assumed.

A Gibbs sampler is used to obtain successive draws of (Tt,µt), conditional on
(T(t),µ(t), z,y), where T(t) and µ(t) denote the draws of all T and µ, except those for
t. Thus, we obtain successive draws from

p(Tt,µt|T(t),µ(t), z,y) (3)

for trees t = 1, . . . , T .
This conditional distribution from (3) only depends on T(t),µ(t), z,y through par-

tial residuals
Rit ≡ zi −

∑
k 6=t

g(Xi; Tk,µk) (4)

where the partial residuals for all observations is denoted as Rt = (R1t, . . . , RNt).
This Rt corresponds to the fit of the ensemble when tree t is excluded. Thus, the
draws from p(Tt,µt|T(t),µ(t), z,y) are equivalent to the draws from p(Tt,µt|Rt). This
posterior is formally equivalent to the posterior of a single tree model with Rit =
g(Xi; Tt,µt) + ui, with ui ∼ N(0, 1) where the effect of all other trees on zi are
captured in Rit. The name backfitting MCMC lends its name from the backfitting
step of the Bayesian Backfitting method proposed by Hastie and Tibshirani (1986),
which is used to fit smooth functions in additive models on partial residuals.

After integrating out on µt, we obtain the posterior

p(Tt|Rt) ∝ p(Tt)p(Rt|Tt) = p(Tt)
∫
p(Rt|µt, Tt)p(µt|Tt)dµt. (5)
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With this closed form expression for Tt|Rt, the sampling can be carried out in two
steps. This is done by sequentially drawing Tt|Rt and µt|Tt,Rt for each tree.

We make a draw for Tt|Rt by using the Metropolis-Hastings algorithm proposed
by Chipman et al. (1998). This algorithm generates a Markov chain of tree structures
which converge in distribution to the posterior p(Tt|Rt) in (5). In the algorithm, a
new tree structure is proposed based on the current tree structure using one of four
moves, with the probability of each move denoted in parenthesis. When creating the
next tree structure in the Markov chain, the next tree grows by

1. Growing a new split with a splitting rule and two terminal nodes (0.25).

2. Removing a split which removes two terminal nodes and a split (0.25).

3. Randomly changing a splitting rule in an internal node in the tree (0.40).

4. Swapping a rule between parent and child node (0.10).

Next, the new tree structure T ∗t is accepted as the drawn m+1th tree in the chain

with probability min
{
p(T ∗t )p(Rt|T ∗t )
p(Tmt )p(Rt|Tmt ) , 1

}
. Otherwise, the previous draw is used such

that T m+1
t = T mt . This stochastic searching algorithm explores the space of different

tree structures, without getting stuck in local optima (Chipman et al., 2010).
The draws for µt|Tt,Rt are independently drawn from a normal distribution using

a Gibbs sampler. By using a conjugate prior for µt, the sampling for this step is
facilitated. With these new draws for the prediction values of this tree, the partial
residual for the next tree that is sampled can be calculated.

Thus, the scheme is as follows:

1. Initialize tree structure at depth 0 with one terminal node and draw a corre-
sponding prediction value from the prior µt ∼ N(0, σµ) for all trees t = 1, . . . , T .

2. Draw z|y with distributions as in (2).

3. Calculate Rt as in (4).

4. Draw Tt|Rt with the Metropolis-Hastings algorithm from Chipman et al. (1998).

5. Draw µt|Tt,Rt from a normal distribution using a Gibbs sampler.

6. Repeat steps 3 – 5 for all trees t = 1, . . . , T .

7. Repeat steps 2 – 6 until satisfactory number of samples.

The proposed algorithm allows the structure, size and prediction values for each
tree to change at every iteration. Elegantly put by Chipman et al.: “we can imagine
the algorithm as analogous to sculpting a complex figure by adding and subtracting
small dabs of clay”. Chipman et al. (2010) recommend to sample the parameters
in one long chain, as mixing problems do not appear to be an issue. Kapelner and
Bleich (2016) studied the number of required draws to attain convergence for a various
simulations and applications. They conclude that no more than 1000 iterations are
required for burn-in. After the burn-in period, an additional 1000 draws are sufficient
for inference on the posterior of the ŷi.

More details on the robust performance for various hyperparameter settings can
be found in Linero (2018) and Chipman et al. (2010). A more elaborate description of
the sampling procedure is described in Kapelner and Bleich (2016). For the estimation
of the BART and DART models we use the R-package BART (McCulloch et al., 2018).
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3.1.3 Using the Output of DART

Following Linero (2018), a predictor Xj is selected if it is used to split on in at least

50% of the draws. This results in the set of selected predictors X̃, a N × J matrix
with J ≤ K, as a subset of predictors are selected from data set X. In order to obtain
information on the relative importance of the predictors in X, we analyze the draws
of splitting variables s.

In addition to variable selection, we can also use BART and DART to obtain
predictions of the response variable. As prediction value from a posterior sample of
M draws, we use ŷi = M−1

∑M
m=1 Φ(fm(Xi)+µ0), where fm(Xi) corresponds to the

mth posterior draw of f(Xi). The predictive performance of these methods is found
to be very good in simulations and applications, which make it a strong benchmark for
predictive performance (Chipman et al., 2010; Linero, 2018). However, it is harder
to visualize how the predictors influence the response variable. We compare the
performance of these methods with the performance of SSGAM to determine how
much predictive performance is traded in for the possibility of visualizing the effects
in SSGAM.

3.2 Interaction Detection

To detect which variables are likely to interact with advertising, we use Friedman’s H-
statistic (Friedman and Popescu, 2008). For this statistic, a Random Forest (Breiman,
2001) is used to create predictions of y with input data X. For each of the variables
Xj in the data set, the influence of the variable is measured by using a Partial
Dependency (PD) function proposed by (Friedman, 2001)

F̂j(Xj) = N−1
N∑
i=1

F (Xi\j ,Xj), (6)

where F (·) denotes the predicted value of the random forest andXi\j the ith row of the

X matrix, excluding the jth column. In this way F (Xi\j ,Xj) relates to a prediction

of the model, where only the value of Xj is changed. The PD function F̂j(Xj)
is centered around its mean. With this PD function, we can see how the average
predicted values F̂j(Xj) change when the value of Xj is varied for all individuals.

Next, we calculate the PD functions when varying two variables Xj and Xk as

F̂jk(Xj ,Xk) = N−1
N∑
i=1

F (Xi\{j,k},Xj ,Xk), (7)

where F (Xi\{j,k},Xj ,Xk) denotes the prediction value of the random forest when
other values are used for Xj , Xk while the other variables are not changed. This PD

function F̂jk(Xj ,Xk) is also centered around its mean.
An interaction between variablesXj andXk occurs when a change of the predicted

value F (X) by changingXj is dependent on the value ofXk. Thus, If the variables do

not interact in any way, we obtain F̂jk(Xj ,Xk) = F̂j(Xj) + F̂k(Xk). If the variables
interact, this equality does not hold. In that case, the model predicts differently for
certain combinations of Xj and Xk.
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Friedman’s H statistic for interaction between variable j and k is defined as

H2
jk =

N∑
i=1

[F̂jk(Xij ,Xik)− F̂j(Xij)− F̂k(Xik)]2/

N∑
i=1

F̂ 2
jk(Xij ,Xik) (8)

where Xij denotes the ith element of Xj and all centered PD functions are used. This

statistic measures the proportion of variance of F̂jk(Xij ,Xik) that is not captured by

F̂j(Xij) and F̂k(Xik) for the observed values of Xj and Xk. Based on this statistic,
we can quantify how much two predictors interact.

As a model to obtain PD functions, other models that include interactions are
also suitable to detect variables that interact. Thus, it would be possible to use the
DART model that we obtained. However, many predictions need to be made to obtain
the PD functions. As DART is a Bayesian method, the prediction takes some time,
which make it too demanding computationally to use it to calculate the Friedman H
statistic. Instead, we use a Random Forest which is easy to obtain, makes predictions
relatively fast and has a good performance for interaction detection in simulations
(Friedman and Popescu, 2008). As the model F (·), we use a Random Forest with
250 trees to model y with subset of predictors selected by DART X̃. We use the
recommended hyperparameters of the R-package randomForest (Liaw and Wiener,
2002). For all pairs of predictors in X̃, the Friedman H statistic is calculated as in
(8). As we do not want to increase the computational burden too much, we only
include the three interactions with the largest H statistic.

3.3 Bayesian P-splines

As the foundation of the SSGAM model, Bayesian P-splines proposed by Lang and
Brezger (2004) are used to model the smooth effects of predictors. Both one and two
dimensional P-splines are used, which we discuss subsequently.

A spline is a piecewise polynomial for which the parameters of the polynomial are
allowed to vary on predefined intervals. In practice, cubic splines are most commonly
used (Hastie et al., 2009, Ch.5).A selection of knots is made that govern the intervals
on which the spline is can be described by a different cubic polynomial. For each
interval between two knots, the parameters that describe the cubic polynomial can
be different, while the complete spline is continuous and has a continuous first and
second order derivative.

The selection of the number of knots and the placement of knots require more
attention. When a small number of knots is used, the nonlinear relation might be
captured insufficiently with the spline. However, for a large number of knots, some
modification is needed to prevent the spline from overfitting the data. Next to that,
the placement of knots has to be such that each interval between knots contains
observations, such that a polynomial can be fitted in that interval.

Eilers and Marx (1996) propose a solution to circumvent the problem of having
to select the number and positions of knots. They propose to use a large number of
equidistant knots and impose restrictions on the parameters that govern the shape
of the spline. With this modification, the smoothness of the spline can be governed
with a single parameter, which can be tuned to prevent overfitting. Additionally, the
extrapolation of the spline is improved by also adding some knots outside the range
of observed values of the predictor. This penalized spline is known as the P-spline
and has been frequently used since its introduction Eilers et al. (2015).
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3.3.1 Basis Representation of a Predictor

When using a P-spline to model the effect of numeric predictor x on response variable
y, we need to create a basis for x. We follow the approach from Eilers and Marx
(2010) to create a basis for x. First, we calculate the Truncated Power Functions
(TPF) for a degree p and a vector of equadistant knots ζ = (ζ−p, . . . , ζr+p), where
r is the selected number of knots used within the range of observed values of x. As
noted before, 2p knots are added outside of the domain to improve extrapolation when
using the spline. This gives TPFs

gij(xi) = (xi − ζj)pI[xi > ζj ]

for i = 1, . . . , N and j = −p, . . . , r+ p. Next, the basis B(x) is constructed by taking
the differences of these TPFs as

Bj(x) = (hpp!)−1(−1)p+1∆p+1gj(x), (9)

where h denotes the chosen distance between two knots such that h = (max {x} −
min {x})/r and ∆p denotes the pth difference operator which takes the difference of
the functions gj(x) as ∆pgj(x) = ∆p−1(gj(x) − gj−1(x)) where ∆0 is the identity
function. For a cubic spline with p = 3, this results in the following difference of
TPFs

∆4gj(x) = ∆3(gj(x)− gj−1(x))

= ∆2(gj(x)− 2gj−1(x) + gj−2(x))

= ∆1(gj(x)− 3gj−1(x) + 3gj−2(x)− gj−3(x))

= gj(x)− 4gj−1(x) + 6gj−2(x)− 4gj−3(x) + gj−4(x)

for j = 2, . . . , r + p. The basis representation of x is then described as B(x) =
[B1(x), . . . ,BM (x)], a matrix of size N ×M , with M = r + p− 1. Thus, each basis
is a linear combination of TPFs, which is scaled by the factor (hpp!)−1(−1)p+1, such

that
∑M
j=1Bj(x) = 1 for all elements in x. A visual representation for a N(0, 1)

distributed variable and the basis representation for a cubic spline with 10 knots
is shown in Figure 3. For more properties on this basis representation, such as a
comparison with other often used basis representations, see Eilers and Marx (2010).

Figure 3: Spline basis representation of x drawn from N(0, 1) using a cubic spline
with 10 knots. Each color denotes a different Bm(x) for m = 1, . . . ,M .

3.3.2 Univariate splines

An univariate P-spline as defined in Eilers and Marx (1996) is constructed as

f(x) = B(x)δ, (10)
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where B(x) is the basis representation of a cubic spline defined in the previous sec-
tion. The parameters δ could be estimated in a linear regression if B(x) is of full
rank. However, this causes the problem of overfitting described before, which is why
the preferred approach is to penalize the δ parameters. Eilers and Marx (1996) pro-
pose to add a penalty in the objective function on the dth order differences of the
adjacent spline parameters in δ. This difference penalty causes neighboring parame-
ter estimates in δ to be drawn towards each other. This results in a smoother spline,
which can be seen in Figure 4. Here we see that a more smooth spline is obtained
after bringing the elements in δ closer towards their neighboring elements.

The selection of the difference order determines what effect in the spline is not
penalized. With a second order difference penalty, a linear trend of the spline is
unpenalized, as all second order differences between the spline parameters are zero if
a linear relation exists between a predictor and a response variable (Eilers and Marx,
1996). Higher order difference penalties can also be used to allow for unpenalized
estimation of higher order relations between x and y. The second order difference
penalty is used in this research to limit the flexibility of the estimated splines.

Lang and Brezger (2004) propose a Bayesian variant of the P-spline by using a
specific prior distribution for the spline coefficients δ to shrink the δ to neighbor-
ing elements. Here, the second order difference penalty is replaced by its stochas-
tic analogue. A prior distribution for δ is used with restrictions in the form of
δk = 4

6 (δk−1 + δk+1) + 1
6 (δk−2 + δk+2) + 1

6uk, with uk ∼ N(0, τ2) where τ2 is a
parameter that governs the amount of smoothing.

These restrictions can be denoted more conveniently by using penalty matrix P =
∆d′∆d for a dth order difference penalty, where ∆d denotes the dth difference operator
matrix. Depending on which restriction on neighboring δks the researcher wants to
impose, d can be chosen. For example, in the case of M = 5 with second order
difference penalties (d = 2) this results in matrices

∆2 =

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 and P =


1 −2 1 0 0
−2 5 −4 1 0
1 −4 6 −4 1
0 1 −4 5 −2
0 0 1 −2 1

 ,
such that the prior can be denoted as δ|τ2 ∝ exp{−(2τ2)−1δ′Pδ}, or more compactly

Figure 4: Splines for different degrees of smoothing. Left panel shows cubic spline
with 10 knots and chosen δ parameter. Right panel shows the spline after moving all
elements in δ closer to its neighbors, which result in a spline which is more smooth.
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as δ|τ2 ∼ N(0, τ2P+). Here, P+ denotes the generalized inverse of P , such as the
Moore Penrose inverse (Ben-Israel and Greville, 2005), which needs to be used because
the previously described penalty matrix P is not of full rank.

The singular P matrix causes the prior for δ to be improper. Specifically, the
second order difference penalty implies using an improper flat prior on the constant
and linear trend of the estimated spline (Lang and Brezger, 2004). Intuitively, this
improper prior distribution with a second order difference penalty matrix P has the
same “prior density” for δ + a1M + b[1, . . . ,M ]′ for all values of scalars a and b.

In order to obtain a proper posterior for δ, a non-diffuse prior must be assumed for
the smoothing parameter τ2 (Hobert and Casella, 1996). This is important, because
Hobert and Casella (1996) argue that Gibbs sampler draws from improper posterior
distributions are ill-behaved in theory. Often, the dispersed prior distribution τ2 ∼
IG(aτ , bτ ) is used, which results in a proper posterior for δ.

3.3.3 Bivariate splines

This univariate spline framework can also be extended to the bivariate case. A basis
for a two-dimension spline is obtained by calculating the Hadamard product of the
basis representation of two numeric variables x and z such that

f(x, z) =

Mx∑
mx=1

Mz∑
mz=1

δmxmzBmx(x) ◦Bmz (z), (11)

where Bmx(x) denotes the mth
x column of the basis representation of x as defined

previously, and ◦ denotes the operator for the Hadamard product, which performs
element-wise multiplication. The basis for a bivariate spline can be conveniently
rewritten by as an N × (MxMz) matrix

B(x, z) =
(
B1(x) ◦B1(z),B1(x) ◦B2(z), . . . ,

BMx(x) ◦BMz−1(z),BMx(x) ◦BMz (z)
)
.

(12)

The parameter vector can be denoted as δxz = (δ11, δ12, . . . , δMxMz−1, δMxMz
), such

that the function in (11) can be denoted as

f(x, z) = B(x, z)δxz. (13)

In order to penalize the parameter vector δxz, we can use the kronecker product of the
two individual penalty matrices can be used Pxz = Px⊗Pz of size (MxMz)×(MxMz).
Here Px denotes the Mx ×Mx penalty matrix that is used for the spline of x and
likewise for Pz. Now, we have δxz|τ2 ∼ N(0, τ2P+

xz), just as in the one-dimensional
case (Lang and Brezger, 2004).

In addition to using a Hadamard product of two numeric predictors, it is also
possible to use the Hadamard product of a numerical and categorical variable x and
w, respectively. In this case

f(x,w) =

Mx∑
mx=1

Mw∑
mw=1

δmxmwBmx(x) ◦ I[w = mw], (14)
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where w has Mw unique category values. Just like in the previous case, this basis
could be written as an N × (MxMw) matrix as

B(x,w) =
(
B1(x) ◦ I[w = 1],B1(x) ◦ I[w = 2], . . . ,

BMx
(x) ◦ I[w = Mw − 1],BMx

(x) ◦ I[v = Mw]
)
.

(15)

Together with parameter vector δxw = (δ11, δ12 . . . , δMxMw−1, δMxMw
) of lengthMxMw,

the function in (14) can be denoted as

f(x,w) = B(x,w)δxw, (16)

In this case, no penalty is imposed across categories of w such that δxw|τ2 ∼
N(0, τ2P+

xw) with P+
xw as a (MxMw) × (MxMw) block diagonal matrix with Mw

matrices P+
x of size Mx×Mx on its diagonal. In this way, we can rewrite all considered

splines in the form Bδ, with δ|τ2 ∼ N(0, τ2P+).

3.4 Spike and Slab Generalized Additive Model

For the estimation of the nonlinear functions with the matrix of predictors X of size
N × J and response variable y of length N , we use the Spike and Slab Generalized
Additive model (SSGAM) proposed by Scheipl et al. (2012). An implementation of
this method is available in the SpikeSlabGAM package in R (Scheipl, 2011), which is
also used in this research. First, we first describe the general form of a STAR model
on which the SSGAM model is based. Second, we describe how the design matrices for
the smooth effects in the SSGAM are obtained and what prior distributions are used
for the parameters. Third, we give the general model formulation for an SSGAM.
Fourth, we describe how we can reparametrize the parameters, such that function
selection can be applied. Fifth, we describe how posterior samples for the model are
obtained. Sixth, we describe evaluation metrics that we can use to draw conclusions
from the output of an SSGAM.

3.4.1 Generalized STAR Model

The SSGAM uses the same foundation as the generalized STAR model proposed by
Brezger and Lang (2006). The generalized STAR models a response variable from the
exponential family with a sum of penalized splines in a Bayesian way. The generalized
STAR model for a binary variable is defined with a logistic regression as

E[yi|ηi] =
(
1 + e−ηi

)−1
with η = η0 +

Q∑
q=1

ηq. (17)

Here, η0 is the estimated intercept and η = [η1, . . . , ηN ]′ denotes the vector of pre-
dictions for all individuals. These predictions are composed of a sum of Q effects ηq.
Each ηq relates to a smooth effect that is estimated with an univariate or bivariate
spline of one or two of the predictors in X. When we use the definitions from (10),
(13) and (16) to rewrite the effects ηq, we obtain

Q∑
q=1

ηq =

J∑
j=1

fj (Xj) +

J∑
u=1

∑
v>u

fuv (Xu,Xv) (18)
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where Xj corresponds to the jth column of X, fj(Xj) corresponds to an univariate
spline as in (10) and fuv(Xu,Xv) relates to a bivariate spline as defined in (13) or
(16), depending on the type of the variables Xu and Xv. In this example, we have

Q = J + J(J−1)
2 , such that an interaction is added for every pair of variables.

As was shown in the previous section, we can rewrite each nonlinear function
fj(Xj) or fuv(Xu,Xv) as Bδ , where B corresponds to the N ×M basis represen-
tation B(Xj) as in (9) or Hadamard product of bases B(Xu,Xv) as in (12) or (15),
with corresponding δ of length M .

As is shown in the previous section, a Bayesian P-spline with a second order
difference penalty uses improper prior distribution δ|τ2 ∼ N(0, τ2P+). This penalty
structure allows for unpenalized estimation of an intercept and a linear trend of the
effect Bδ, as we discussed earlier. By centering all effects and adding one intercept in
the model, the unpenalized intercept can be removed from the spline. However, the
estimation of the linear trend remains unpenalized. As we do not know in what way
a predictor exerts influence on the response variable, it is undesirable to estimate the
linear trend without penalization. It might as well be that we find a nonlinear effect,
but no linear effect. Ideally, we want to be able to penalize the linear trend of Bδ as
well, if the data shows little evidence for it.

To achieve this, Scheipl et al. (2012) propose to decompose each univariate spline
Bδ into two orthogonal components, on which function selection is applied separately.
They propose to split each Bδ into Dlinβlin +Dnlβnl. Here, Dlinβlin represents the
linear trend of the spline andDnlβnl represents the nonlinear part of the spline. Here,
we use the design matrices Dlin of size N × 1 and Dnl of size N × Snl, which are
described in more detail in the next section.

By decomposing a univariate spline like this, we can put a prior on both βlin and
βnl, which enables us to apply function selection on both the linear and the nonlinear
part of a spline. With function selection, we refer to being able to shrinking a whole
effect such as Dnlβnl to zero if no real effect is found. This is done by putting a
specific prior on βnl, on which we will elaborate in a following section.

In addition, we can useDlin andDnl to create design matrices for bivariate splines,
which consist of four orthogonal components. In that way, we obtain a decomposed
version of fuv(Xu,Xv) in (18). Thus, we are able to decompose all effects that are
used in the generalized STAR model, such that we can penalize parts of effects that
were previously unpenalized.

The construction of these new design matrices Dlin and Dnl is done separately
in the following way. We drop the subscripts in the following sections to improve
readability. However, we construct a Dj,lin and Dj,nl for every fj(Xj) in (18). Next
to that, we also describe how we obtain the design matrixDw for an indicator variable
Xw. Before diving into the details of how the design matrices are created, we give a
summary of all steps that are taken to obtain the orthogonal design matrices for the
SSGAM:

1. Create all design matrices Dj,nl for the nonlinear part of Bjδj by making use
of the spectral decomposition of Bjδj .

2. Create all design matrices Dj,lin = Xj for the linear trend of Bjδj and Dw =
Xw for every indicator variable.

3. Orthogonalize each Dj,nl on [1N ,Dj,lin] and each Dj,lin and Dw on [1N ].
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4. Obtain the four design matrices for each interaction effect between Xu and Xv

by multiplying the design matrices Du,nl, Du,lin,Dv,nl and Dv,lin.

5. Obtain the two design matrices for each interaction effect between Xu and Xw

by multiplying the design matrices Du,nl, Du,lin and Dw.

6. Calculate the reduced rank representation for the design matrices for each in-
teraction by using the singular value decompositions of the design matrices.

7. Orthogonalize the reduced rank representation of the design matrices for the
interaction on the design matrices with which they were created.

8. Scale all design matrices such that they are of comparable size.

3.4.2 Design Matrix for the Nonlinear Part of a Spline

For each univariate Bayesian P-spline as in (10) we obtain the design matrix of the
nonlinear part of the spline Dnl by applying a spectral decomposition on the Bδ.

For the improper prior distribution δ|τ2 ∼ N(0, τ2P+), the effect Bδ has im-
proper prior distribution Bδ|τ2 ∼ N(0, τ2BP+B′). The spectral decomposition of
the BP+B′ matrix of size N × N can be taken such that BP+B′ = UV U ′, with
orthonormal U and diagonal matrix V . Here UV U ′ is the orthogonal basis repre-
sentation of the covariance of the improper prior of Bδ. When a penalty matrix with
difference penalty of order d is used, P has rank M − d. This causes all eigenvalues,
except the first M − d, in V to be equal to zero. In this case we can rewrite

BP+B′ = UV U ′ = [U+U0]′
[
V+ 0
0 0

]
[U+U0],

where U+ is the N × (M − d) matrix of eigenvectors that corresponds with the first
M−d eigenvectors with nonzero eigenvalue in V+. The N×(M−d) design matrix for

the penalized part of Bδ is obtained as Dnl = U+V
1/2

+ . This reparametrization uses
a different prior βnl|v2

nl ∼ N(0, v2
nlI), with prior variance v2 and (M − d)× (M − d)

identity matrix I. Just as desired, this Dnlβnl has a Gaussian distribution that is
proportional to the improper prior of Bδ (Rue and Held, 2005, eq. 3.16) but only
parametrizes the penalized part of Bδ.

As we only need the first M − d eigenvectors and eigenvalues for creating Dnl, it
is impractical and computationally demanding to calculate all N eigenvectors in the
N × N matrix BP+B′. Instead, we only calculate the first M − d eigenvectors by
using the fast truncated bidiagonalization algorithm (Baglama and Reichel, 2005).

Next to this, we only use a subset of the M − d eigenvectors to obtain Dnl to
reduce computational complexity even further. Typically, only the first few columns
in U+ represent the majority of variability in Bδ. Thus, the first Snl columns from
U+ are taken which represent 0.995 of sum of all eigenvalues in V+. In this way, we
can reduce the number of columns of Dnl, while retaining the majority of variance.

Additionally, this allows us to add a large number of knots (and thus increasing
M−d) without increasing the number of columns in Dnl. The number of eigenvectors
in the subset remains roughly equal past a moderate number of knots Scheipl et al.
(2012). We select the number of knots as the number of unique values of Xj .

In this application, we are able to calculate the spectral decomposition of the
full BP+B′. We should note that the matrix BP+B′ is of size N × N . When
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N is large, this matrix might often be too large to fit in memory, such that we
cannot compute the eigenvalue decomposition. As a solution to this problem, we can
calculate Dnl on a random subset of rows in B which just fits in memory. Next, we
use interpolation to obtain the design matrix for the other rows. We know the original
value of the predictor that corresponds to each row in the design matrix Dj,nl. For
each column in Dj,nl, we can use spline interpolation to obtain the design matrix for
all observations of the predictor. For this, we can use a natural cubic spline, which
uses linear extrapolation.

To summarize, we can represent the nonlinear part of Bjδj by using the spectral
decomposition of the covariance of a Bayesian P-spline. We represent the effect of the
nonlinear part as Dj,nlβj,pen, with βj,nl|v2

j,nl ∼ N(0, v2
j,nlI). In order to complete

the decomposition of Bjδj , we need to add the unpenalized part of Bjδj explicitly.

3.4.3 Design Matrix for the Unpenalized Part of a Spline

For an univariate spline with second order difference penalty, The unpenalized part
of the spline corresponds to an intercept and a linear trend. Thus, we would like to
include these two part into Dlin. However, we will cause identification issues if an
intercept is added for every spline in the model. To circumvent this issue, all intercepts
are removed and one global intercept term η0 is added to ensure identifiability. Thus,
to model the unpenalized part of a univariate spline fj(Xj) we only use a linear trend
Dj,linβj,lin = Xjβj,lin. For the coefficient of the linear trend βj,lin, we use the prior
βj,lin|vj,lin ∼ N(0, v2

j,lin).
Next to splines of numeric variables, we also add indicator variables to the model.

As design matrix Dw for an indicator variable Xw, only one component is used. The
design matrix Dw simply corresponds to the original predictor Xw, which only takes
the values 1 and 0. In this way we model the effect as Dwβw with βw|vw ∼ N(0, v2

w).

3.4.4 Orthogonalizations

In order to improve the separability of the effects modeled with the design matrices, we
orthogonalize them on design matrices that have an overlapping column space. Using
the general notation D for one of the design matrices, we orthogonalize the design
matrices as (I −Z(Z ′Z)−1Z ′)D. Here, Z corresponds to a matrix that contains the
design matrices that have overlapping column space with D.

For the two design matrices of a univariate spline Dnl and Dlin, we orthogonalize
Dnl on Znl = [1N ,Dlin]. Next we orthogonalize Dlin on Zlin = [1N ]. We orthog-
onalize the design matrix of an indicator variable Dw on Dw = [1N ]. In this way,
we center all effects around zero and remove the trend from the design matrix of the
nonlinear effect. This ensures that all design matrices are orthogonal to the effects
that should be estimated with a different component. This gives us the orthogonal-
ized design matrices Dj,nl, Dj,lin and Dw. Next, these design matrices are used to
obtain the design matrices for interaction effects.

3.4.5 Design Matrices for a Interaction Effects

In the model (18), we also included bivariate effects fuv(Xu,Xv). We can use the
obtained components Du,lin, Du,nl, Dv,lin and Dv,nl to obtain a decomposed version
of a bivariate effect of the predictors. Next to this, we can obtain a decomposed version
of a interaction effect between a numerical and indicator variable fuw(Xu,Xw) by
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using Du,lin,Du,nl and Dw. As we obtain decomposed versions of the interaction
effects, we can also apply function selection to every component of the bivariate
spline which was previously unpenalized in the STAR model in (17).

We model a bivariate spline for two numeric variables Xu and Xv with four
components which can all be given an interpretation. For the nonlinear components
of the bivariate spline we construct the design matrix Duv,nl of size N×(Su,penSv,pen)
as

Duv,nl =
[
Du,nl,1 ◦Dv,nl,1,Du,nl,1 ◦Dv,nl,2, . . . ,

Du,nl,Su,nl−1 ◦Dv,nl,Sv,nl ,Du,nl,Su,nl ◦Dv,nl,Sv,nl

]
.

(19)

Here, the ◦ denotes element-wise multiplication. Du,nl,s denotes the sth column of
the N × Su,nl matrix Du,nl. For the linear trend, we use design matrix Duv,lin =
(Du,lin◦Dv,lin). For the two linear interaction effects, we use design matricesDuv,u =
(Du,nl ◦Dv,lin1′u) and Duv,v = (Du,lin1′v ◦Dv,nl). Just as is the case for univariate
splines, no constant effect is added to prevent identification issues.

With these design matrices, we model a bivariate spline with four components as

fuv(Xu,Xv) = Duv,nlβuv,nl +Duv,linβuv,lin +Duv,uβuv,u +Duv,vβuv,v. (20)

For all coefficients, prior distributions βuv,nl|v2
uv,nl ∼ N(0, v2

uv,nlI), βuv,u|v2
uv,u ∼

N(0, v2
uv,uI), βuv,v|v2

uv,v ∼ N(0, v2
uv,vI) and βuv,lin|v2

uv,lin ∼ N(0, v2
uv,lin) is used,

with identity matrices I of appropriate sizes. Note that all four components in (20)
have their own variance parameter v2. This will allow for separate function selection,
which is described in a following section.

For an interaction between a numeric variable Xu and an indicator variable Xw,
only two design matrices are used. We use design matrix Duw,nl = (Du,nl ◦Dw1′u)
for the nonlinear interaction and design matrix Duw,lin = (Du,lin ◦Dw) for the linear
interaction. The interaction for fuw(Xu,Xw) is modeled as

fuw(Xu,Xw) = Duw,nlβuw,nl +Duw,linβuw,lin, (21)

where we use prior distributions βuw,nl|v2
uw,nl ∼ N(0, v2

uw,nlI), βuw,lin|v2
uw,lin ∼

N(0, v2
uw,lin).

Just like the univariate splines, we project the obtain design matrices on the
components to make it easier to separate the effects. For Duv,nl we use

Zuv,nl = [1N ,Du,nl,Du,lin,Dv,nl,Dv,lin].

For the linear interaction effects we use Zuv,u = [1N ,Du,nl,Dv,lin] for Duv,u and
Zuv,v = [1N ,Dv,nl,Du,lin] for Duv,v. For the linear trend Duv,lin we use Zuv,lin =
1N . The interactions between an indicator variable and numeric variable are projected
with Zuw,nl = [1N ,Du,nl,Dw] for Duw,nl and Zuw,lin = [1N ,Du,lin,Dw] for Duw,lin.

To reduce the number columns of the design matrices for the interactions, we use a
reduced rank representation for all of the obtained design matrices for the interactions,
which we denote with Dint. Here, the Singular Value Decomposition (SVD) of each
design matrix is taken, such that we obtain Dint = UΣV ′. The first S columns from
U are taken which represent 0.999 of the sum of all singular values in Σ. Next we
obtain the reduced rank approximation for each design matrix for the interactions as

Dint = UselΣ
1/2
sel where Usel denotes the selection of the first S columns in U and

Σsel the (S × S) diagonal matrix of Σ.
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3.4.6 Rescaling the design matrices

Lastly, we scale all design matrices. In this section we denote any of the introduced
design matrices as Dp. Thus, this can be a design matrix such as Dj,nl, Duv,u

or Duw,lin. With βp, we denote the corresponding parameter of Dp. The function
selection that is discussed next, depends on the size of the estimated βp parameters. If
the design matrices Dp vary a lot in scale for the different components, the estimated
βp are not a good proxy of the size of the effect Dpβp.

In order to have a similar norm for each matrix Dp, Scheipl (2011) propose to
scale each Dp such that they have a Frobenius norm equal to 0.5. This Frobenius

norm is defined as ||Dp||F =
√
trace(D′pDp). We carry out the scaling by dividing

all elements in each Dp by 2||Dp||F . In this way, the size of the βp becomes a better
proxy for the size of the effect, on which we would like to base the function selection.

This results in the two design matrices Dj,lin and Dj,nl to model an univariate
spline for Xj , design matrix Dw to model the effect of an indicator variable Xw,
the four design matrices Duv,nl, Duv,lin, Duv,u and Duv,v to model the interaction
of two numeric variables Xu and Xv and two design matrices Duw,lin and Duw,nl

to model the interaction between a numeric variable Xu and indicator variable Xw.
Each matrix is orthogonalized and scaled, such that they model a different effect and
their corresponding βp parameter can be using as a proxy of the effect size Dpβp.

To give an idea of how the new design matrices relate to the original predictors,
Figure 5 shows the columns from the obtained design matrices for the two components
of an univariate spline Dj,lin and Dj,nl, for three simulated predictors.

The first row shows the histograms of the three simulated predictors we consider.
These simulated predictors closely match the distribution of some of the predictors
that are used in the application. The first column shows a normally distributed
variable. The second column shows a Box-Cox transformed variable with a minimum
value of 0 which was very skewed before transformation. The third column shows a
predictor which has some fixed upper and lower bound which are often observed.

The second row shows the columns of the obtained orthogonalized design matrices
Dj,lin and Dj,nl after we apply the described methodology. Here, the red line repre-
sents the component Dj,lin, which is the centered linear trend of the spline. The other
lines represent the component Dj,nl, for which the number columns Sj,nl is 9,7 and
7 for the three predictors, respectively. As can be seen, the columns of Dj,nl closely
resemble polynomials which peak at different quantiles of the data. We also observe
that many functions of Dj,nl have roughly the same value at values of x with a lot
of observed values, such as x = 5.5 in the middle panel, or x = −100 and x = 100 in
the right panel. Ultimately, the smooth effect we obtain are a linear combination of
these functions.
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3.4.7 SSGAM Model Specification

With the newly obtained design matrices , we have separated each original Bayesian
P-spline Bδ into multiple, orthogonal, scaled components. We decompose each uni-
variate spline into two components, each indicator effect in one component, each
interaction between two numeric variables into four components and each interaction
between a numeric variable and a categorical variable into two components. For each
of these components, we estimate a parameter. Now, we can rewrite the model from
(17) into the specification for the SSGAM as

η = η0 +
∑
j

(Dj,nlβj,nl +Dj,linβj,lin) +
∑
w

Dwβw+

∑
uv

(Duv,nlβuv,nl +Duv,uβuv,u +Duv,vβuv,v +Duv,linβuv,lin)+

∑
uw

(Duw,nlβuw,nl +Duw,linβuw,lin) = η0 +

P∑
p=1

Dpβp, (22)

with global intercept η0 with an uninformative prior η0 ∼ N(0, 5). Here, we denote
the η as a sum of Dpβp, to which we will refer as components. The Dp denotes the
N × Sp design matrix for the pth component. Sp varies over p, as each component
has a different number of columns in Dp. Here, each Dp can correspond to any of
the design matrices such as Dj,nl, Duv,u or Duw,lin, with βp as its corresponding
parameter.

For each βp, we use prior distribution βp|v2
p ∼ N(0, v2

pIp), with Ip a Sp × Sp
identity matrix. If we use Jnum numeric variables and Jcat indicator variables and
add interaction effects for all pairs of numeric variables and pairs of indicator and

numeric predictors, we know that P = 2Jnum+Jcat+4Jnum(Jnum−1)
2 +2JcatJnum. In

order to carry out function selection for each component in the SSGAM, Scheipl et al.
(2012) propose a novel multiplicative parameterization for the βp, which we discuss
in the next section.
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Figure 5: Design matrices Dj,lin and Dj,nl for three simulated predictors with 1000 observations. The red line in the right panel
represent the design matrix of the unpenalized linear trend of the spline Dj,lin, whereas the other lines represent the design matrix of
the penalized nonlinear effect of the spline Dj,nl.
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Figure 6: Schematic overview of the peNMIG prior for βp. An arrow with an open head corresponds to a deterministc relation,
whereas an arrow with a closed head corresponds to a stochastic relation. Dotted blocks denote parameters which are sampled for all
P components, or all Sp parameters for a component.
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3.4.8 Function Selection

When function selection is applied, we shrink an the entire effect of a component
Dpβp to zero, by shrinking all elements in the parameter vector βp to zero. Only if
we find that the effect of the component Dpβp is large enough, we allow for nonzero
estimation of βp.

In order to perform function selection for each Dpβp component, Scheipl et al.
(2012) propose the following multiplicative parametrization for βp. A graphic rep-
resentation of how all parameters are related to each other is shown in Figure 6,
which might be helpful for keeping an overview of the introduced parameters. In this
parametrization, βp = αpξp, where αp is a scalar parameter and ξp = [ξp1, . . . , ξpSp ]′

a vector of length Sp. In terms of interpretation, αp can be interpreted as the global
importance parameter for component p, whereas ξp corresponds to the direction of
the effect for each of the Sp elements in βp.

For αp, the global importance parameter for component p, it is assumed that

αp ∼ N(0, v2
p = γpτ

2
p ), τ2

p ∼ IG(aτ , bτ ) and γp ∼ wδ1(γp) + (1− w)δv0(γp).

Here aτ and bτ are the selected shape and scale hyperparameters for τ2
p . δx(γp) denotes

a Dirac delta distribution, which is a proper distribution that only has probability
mass at γp = x. Thus, γp takes the value 1 with probability w and v0 with probability
1 − w. The mixture weights w are uniformly distributed on the interval 0 to 1 as
w ∼ Beta(aw, bw) with aw = bw = 1. However, other aw and bw could be chosen if
we would have prior knowledge about how many components exert an influence on
the response variable.

The variance component of αp is obtained as v2
p = γpτ

2
p . With the described prior

distributions for τ2
p and γp, the prior distribution for v2

p is a bi-modal mixture of
inverse gamma distributions. When γp = v0, the prior variance for the importance
parameter αp equals v2

p = v0τ
2
p . A small v0 such as v0 = 0.005 is chosen, which results

in a small v2
p. As αp|γp = v0 ∼ N(0, v0τ

2
p ), a prior with a narrow probability mass

centered around zero is obtained, also referred to as the spike. When γp = 1, the prior
αp|γp = 1 ∼ N(0, τ2

p ) is obtained. In this case, a wider prior distribution centered
around zero is obtained for αp, also referred to as the slab.

The use of these distribution is to either shrink the αp value to zero, or have a
prior distribution with probability density for a wide range of values. Figure 7 shows
the prior density for α|γ for values aτ = 5, bτ = 25 and v0 = 0.05 as an illustration.

Figure 7: Draws of αp|γp = 1 and αp|γp = v0 from its prior density for aτ = 5,
bτ = 25 and v0 = 0.05.
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The selection of the spike (a draw of γp = v0) has the function of shrinking the αp
to zero. The slab (a draw of γp = 1) allows for drawing values for αp which are far
from zero. In this case the prior variance equals τ2

p . Thus, in order to obtain a wide
prior distribution for αp|γp = 1, the τ2

p should be sufficiently large. We achieve this
by choosing the hyperparameters for τ2

p such that there is little probability mass for
values of τ2

p close to zero. Therefore, we select a larger bτ than aτ , such as default
selected values (aτ , bτ ) = (5, 25).

Scheipl et al. (2012) show that after integrating out τ2
p and γp from αp ∼ N(0, v2

p =
τ2
pγp), the distribution of αp|w can be denoted as a mixture of two scaled t-distribution

αp|w ∼ (1− w)t(df, s0) + w t(df, s1),

where df = 2aτ , s0 =
√
v0bτ/aτ and s1 =

√
bτ/aτ . Thus, by using this structure of

prior distributions, a spike and slab prior with t-distributions is induced for αp|w.
This combination of used prior distribution for αp is referred to as a normal-

mixture-of-inverse gamma (NMIG) distribution denoted as αp ∼ NMIG(θ) with the
set of chosen hyperparameters θ = {v0, aτ , bτ , aw, bw}.

We obtain the final parameter vector βp, by multiplying the global importance
parameter αp with ξp, which determines the direction for each of the elements in βp.
Each element in ξp = (ξp1, . . . , ξpSp)′ has prior distribution

ξpk|mpk ∼ N(mpk, 1), with mpk ∼
1

2
δ1(mpk) +

1

2
δ−1(mpk),

independently for all elements k = 1, . . . , Sp and all components p = 1, . . . , P . As a
large amount of the prior mass is close to 1 or −1, this parameter does not heavily
influence the scale of importance for parameters in βp. Thus, the importance inter-
pretation of αp for component p is preserved. This specification also yields a marginal
prior for βp that is less concentrated on small absolute values compared to the case
when using prior ξpk ∼ N(0, 1).

We complete the prior specification for βp by assuming prior independence between
αp and ξp. This results in the proposed Parameter-Expanded NMIG (peNMIG) prior
distribution for βp, denoted by βp ∼ peNMIG(θ).

To summarize, we parametrize the importance of each component Dpβp with
a scalar parameter αp. For each αp, a spike-and-slab prior is used, such that the
importance can be shrunken to zero if no real effect is found for component Dpβp.
Next, we obtain βp = αpξp, where we can interpret ξp as the direction of the effect
for each of the columns in Dp.

Alternatively, we could use βp ∼ N(0, γpτ
2
pISp) for each βp, which does not intro-

duce these extra variables αp and ξp. Scheipl (2011) have shown that this specification
causes mixing problems, as it results in very low probabilities to jump from γ = 1
to γ = v0 while sampling. Luckily, the proposed peNMIG prior for βp remedies this
problem, such that function selection can be carried out.

Scheipl et al. (2012) studied the hyperparameter sensitivity in a large simulation
study and applications and concluded that the prediction accuracy is very robust
for the different configurations, whereas variable selection is sensitive to selections of
v0 and (aτ , bτ ). To investigate this sensitivity, we use four hyperparameter settings
(aw, bw) = (1, 1), (aτ , bτ ) ∈ {(5, 25), (5, 50)} and v0 ∈ {0.00025, 0.005}.
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3.4.9 Sampling Scheme

To obtain posterior draws of β = (β1, . . . ,βp)
′ with prior distribution βp ∼ peNMIG(θ)

for p = 1, . . . , P , we use a blockwise Metropolis-within-Gibbs sampler. We use
the MCMC sampling scheme from Brezger and Lang (2006) implemented in the
spikeSlabGAM package in R (Scheipl, 2011). Algorithm 1 shows a summary of the
sampling procedure, which is described in more detail below. We denote design ma-
trices D = [D1, . . . ,DP ], binary response variable y = (y1, . . . , yN ) and parameters
α = (α1, . . . , αP )′, γ = (γ1, . . . , γP )′, τ 2 = (τ2

1 , . . . , τ
2
P )′, ξ = (ξ′1, . . . , ξ

′
P )′ and

m = (m′1, . . . ,m
′
P )′ with mp = (mp1, . . . ,mpSp)′ for p = 1, . . . , P .

Algorithm 1 MCMC sampler for the peNMIG with binary responses

Initialize w(0), τ 2(0), γ(0) and m(0) using their prior distributions.

Initialize η
(0)
0 , β(0), α(0) and ξ(0) by using IWLS from Scheipl (2010).

for iterations m = 1, . . . ,M do
for blocks for α, b = 1, . . . , Bα do

Update α
(m)
bb

using the MH algorithm with a P-IWLS proposal
end for
Update all elements in m(t) using the full conditional distribution in (23)
for blocks for ξ, b = 1, . . . , Bξ do

Update ξ
(m)
bb

using the MH algorithm with a P-IWLS proposal
end for
Rescale ξ(m) and α(m)

Update η
(m)
0 using the MH algorithm with a P-IWLS proposal

Update all elements in τ 2(m) using the full conditional distribution in (23)
Update all elements in γ(m) using the full conditional distribution in (23)
Update w(m) using the full conditional distribution in (23)

end for

We obtain initial values w(0), τ 2(0), γ(0) andm(0) by taking a draw from their prior

distributions. To obtain η
(0)
0 , α(0) and ξ(0), starting values for β(0) are simulated,

which are then used to obtain starting values η
(0)
0 , α(0) and ξ(0). We obtain β(0) by

using Iteratively Weighted Least Squares (IWLS), which uses the QR-decomposition
update method proposed in Scheipl (2010) described in Algorithm A.1 in the Ap-
pendix. This gives us starting values for all parameters in the model.

Next, we use the full conditional distributions to obtain draws with Gibbs sam-
pling. For parameters w, τ 2, γ and m, a closed form for the full conditional distri-
bution is known. Specifically,

w|· ∼ Beta(aw +

P∑
p=1

δ1(γp), bw +

P∑
p=1

δv0(γp)),

τ2
p |· ∼ Γ−1(aτ + Sp/2, bτ +

β′pβp

2γp
),

P [γp = 1|·]
P [γp = v0|·]

=
√
v0 exp

(
1− v0

2v0

α2
p

τ2
p

)
,

P [mpk = 1|·] = (1 + exp(−2ξpk))−1.

(23)
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The full conditional distributions for η0, α and ξ do not have a known closed
form expression. To draw samples from the full conditional distributions for η0, α
and ξ, we use a modification of the Metropolis-Hastings (MH) algorithm proposed
by Brezger and Lang (2006, Section 3.1.1, scheme 1) that uses Penalized Iteratively
Weighted Least Squares (P-IWLS).

This method updates the parameters by using proposals from a Gaussian approx-
imation around the approximate mode of the full conditional distributions. For more
details, see Brezger and Lang (2006, Section 3.1.1, scheme 1).

Scheipl et al. (2012) propose to use a modification of this algorithm to reduce
the computational complexity. Instead of using the mode of the approximated full
conditional distributions, the mean from the proposal distribution of the previous
step is used instead of the posterior mode.

The parameters α and ξ are not updated in one step, but are updated sequentially
in blocks of 5 parameters for α and 15 parameters for ξ, conditional on the state of all
other parameters. In this way, α is divided in blocks α = (α′b1 , . . . ,α

′
bBα

) with Bα =

dP/5e blocks and ξ is divided in blocks ξ = (ξ′b1 , . . . , ξ
′
bBξ

) with Bξ = d(
∑P
p=1 Sp)/15e.

This causes the Metropolis-Hastings sampler to have higher acceptance probabilities,
which makes it more likely to obtain new posterior draws for the parameters. In
order to solve identification issues for α and ξ, we rescale the drawn proposal of the

parameters as ξp =
Sp∑Sp

k=1 |ξpk|
ξp and αp =

∑Sp
k=1 |ξpk|
Sp

αp for p = 1, . . . , P . In this way,

we obtain the same βp = αpξp. Next to that, the posterior mode that is used in the
P-IWLS update is shifted to the new approximated mode. After a large rescaling,
the acceptance rate might be low, as the proposal density might no longer be well
adapted to the posterior distribution (Scheipl, 2010). This rescaling also makes sure
that we maintain the interpretation of αp as importance parameter for component p
and ξp as the parameter which determines the directions of the effects for component
p.

3.4.10 SSGAM Evaluation Metrics

For making prediction with the SSGAM, we take the posterior mean of the proba-

bilities as ŷi = M−1
∑M
m=1(1 + e−η

(m)
i )−1. Here, η(m) = η

(m)
0 +

∑P
p=1Dpβ

(m)
p where

η
(m)
0 and β

(m)
p denote the mth posterior sample of η0and βp, respectively.

In order to select which components in an SSGAM exert influence on the response
variable, we can use the selection probabilities p = (p1, . . . , pP ). We can estimate

these probabilities with the draws of γ as p̂p = M−1
∑M
m=1 I[γ

(m)
p = 1]. However, we

calculate the Rao-Blackwellized estimator of pp as

p(m)
p = P [γp = 1|α(m)

p , τ2(m)
p ] = 1−

(
1 +
√
v0 exp

{
1− v0

2v0

(α
(m)
p )2

τ
2(m)
p

})−1

(24)

for m = 1, . . . ,M , such that we can estimate the inclusion probability as p̂p =

M−1
∑M
m=1 p

(m)
p . This estimator provides a better estimate, as we draw γp condi-

tional on αp and τ2
p . We can make a better estimate of the inclusion probability by

using αp and τ2
p compared to using the discrete draws of γp. With these estimated

inclusion probabilities p̂p, we can make general decisions on which components to in-
clude in a new model. Scheipl (2010) propose to include all components with p̂p ≥ 0.5.
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This rule is found to result in optimal predictive power by Barbieri and Berger (2004)
for variable selection under strong conditions. These conditions are not met in the
SSGAM, but simulations show that this decision rule performs well regardless.

In addition to the inclusion probability p̂p, we calculate a proxy for the impor-
tance of component p as πp = η̄′pη̄−1/η̄

′
−1η̄−1, where η̄p corresponds to the posterior

expectation of the drawn effects ηp = Dpβp and η̄−1 corresponds to the posterior
expectation of η − η01N . Thus, πp measures how much the effect of the pth compo-
nent correlates with the effect of all components, which is a proxy for the component
importance (Gu, 1992).

To make predictions for new data, Scheipl (2011) proposes to use interpolation,
such that the design matrices for the new data are not required for making predictions.
Due to all the steps that are taken in the construction of the design matrices, we do
not have a closed form expression to create the design matrices for new data. however,
we do have the posterior of effects for each component Dpβp and the corresponding
X values for the train set. We obtain the prediction for each effect by interpolating
or extrapolating the results from the train set with a spline. For univariate effects,
interpolation is done with a natural cubic spline. In this way, we use linear extrapola-
tion for values outside the range of X. For interaction effects, bivariate interpolation
is done with the R-package akima (Akima and Gebhardt, 2016).

3.5 Evaluation Criteria

In order to assess whether the MCMC chains have converged, we inspect the traceplots
of the draws as an informal preliminary check. In addition, we use more formal
convergence diagnostics to test whether the chains have converged.

For the BART and DART models, drawing the samples in one long chain is rec-
ommended (Linero, 2018; Chipman et al., 2010). For a single chain of draws, the
Geweke diagnostic proposed by Geweke (1991) is a suitable convergence statistic to
check for convergence. Therefore, we decide to use this statistic for the DART and
BART model. This statistic tests whether the mean of two parts of the posterior
draws are not significantly different. A chain of n draws of parameter θ, is divided
into two fractions, n1 and n2 which contain the first dn/10e draws θ1 and last dn/2e
draws θ2, respectively. Next, the means of these fractions of the sample θ̄1 and θ̄2

are calculated. The variance of θ̄1 is calculated as ŝ2
1 =

ω̂2
1

n1
(1 + 2

∑n1−1
j (1− j/n)ρ̂1j),

where ω̂2
1 is the estimated variance of θ1 and ρ̂1j the estimated jth order autocorrela-

tion of θ1. This variance is also calculated for θ̄2. The Geweke diagnostic is defined
as θ̄1−θ̄2√

ŝ21+ŝ22
which is N(0, 1) distributed for large n. For the SSGAM, we use 3 chains

of MCMC draws. In order to test whether these chains have converged, we use the
Gelman-Rubin convergence statistic (denoted as R̂), proposed by Gelman and Rubin
(1992), which is a more suitable pick for multiple chains of draws. This test compares
the variance of the drawn parameter values across the chains.

For the SSGAM, we use 3 chains of MCMC draws. In order to test whether these
chains have converged, we use the Gelman-Rubin convergence statistic (denoted as R̂),
proposed by Gelman and Rubin (1992), which is a commonly to test for convergence
when multiple chains of draws are used. This test compares the variance of the
drawn parameter values across the chains. θ1, . . . ,θm denote the parameter draws
from m independent Markov chains, each with n draws. For each chain, the variance
s2
j = 1

n−1

∑n
i=1(θij − θ̄j)2 is estimated, where θ̄j denotes the sample mean of θj .
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Next, the mean within variance W = m−1
∑m
j=1 s

2
j and variance between means

B = n
m−1

∑m
j=1(θ̄j − ¯̄θ)2 are calculated, where ¯̄θ denotes the mean of sample means

θ̄j . The pooled variance of θ is estimated as V̂ ar(θ) = (1− 1/n)W + (1/n)B and R̂

is obtained as R̂ =

√
V̂ ar(θ)
W . This diagnostic approaches one as the estimate of the

pooled variance gets closer to the mean within variance of the m chains. In practice,
one often considers parameters to have converged if they have a statistic value smaller
than 1.1.

We measure the performance of the methods with the mean predictive deviance,
which is defined as D̄ = − 2

N

∑N
i=1 L(yi|ηi), where L(yi|ηi) denotes the log-likelihood

contribution of individual i, L(yi|ηi) = yi log(ŷi) + (1 − yi) log(1 − ŷi), where ŷi
denotes the predicted probability for individual i. Next to that, the Area Under the
Receiver Operating Characteristic curve (AUROC) is used to measure the predictive
performance of the model, which can be easily calculated using the ROCR package in R

(Sing et al., 2005). The Receiver Operating Characteristic curve is measures how the
true positive rate changes for different false positive rates, as the prediction threshold
is varied. Next the AUROC is calculated as the area under this curve, which is a proxy
for how well a model is able to discriminate between a true and false observation.

As prediction value for all Bayesian methods, we use the posterior mean of the
sampled predictions. Both evaluation criteria are measured in and out of the training
sample to see if the estimated model generalizes well.
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4 Data Description

We use the SSGAM to model the probability the premiere episode of Designated Sur-
vivor, aired on 21 September 2016 on the ABC channel from 10:00 PM to 11:00 PM, is
watched by an individual. The Nielsen Television panel consists of 58033 individuals
for which TV viewing behavior is measured. As the panel is not a representative sub-
sample of the population in the USA, Nielsen provides individual weights wi, which
corresponds to how many Americans they represent to obtain a representative sub-
sample of the USA in terms of age and gender. In order to obtain a data set on
which it is feasible to estimate the SSGAM, we draw a sample of 11606 individuals
(20% of the full sample) with the probability wi(

∑58033
i=1 wi)

−1 to draw individual i.
In this way, the drawn subsample is representative of the USA population on age and
gender, such that we do not have to adjust the methods for estimation with individual
weights.

Following Webster and Wakshlag (1983), we consider live television viewing to
be a two-step process. First, an individual decides to watch television or do some
other activity. Second, a choice for a specific program is made. In this research, the
focus is to model the second step of choosing a program for an individual that already
has chosen to view television. Thus, out of the subsample of 11606 individuals, we
only select the individuals that have been watching television for at least one minute
during the prime time block from 8:00 PM to 11:00 PM on 21 September. In this
way, a subsample of N = 8777 individuals is obtained.

The binary response variable y is a vector of length N for which an element
equals 1 if an individual watched at least one minute of the series, and 0 otherwise.∑N
i=1 yi = 1437, such that roughly 16% of the individuals have seen at least one

minute of the Designated Survivor premiere. The data set contains several types of
variables which describe exposure to advertising, social demographics and TV viewing
behavior.

We denote ad exposures byA, the N×K matrix which contains the total exposure
to an ad type in minutes. We include a predictor for K = 9 ad types. The ad types
vary in two ways. First, the ad can be on the same channel as the premiere, or on a
different channel. Ads on the channel where Designated Survivor is broadcast (ABC)
are denoted as an on-channel ads. Ads which are not broadcast on ABC are split in
two groups. Ads that are aired on channels which are owned by the ABC network3

are denoted as cross-channel ads. The ads that are aired on channels outside of the
ABC owned channels are denoted as off-channel ads. For ABC, this distinction is of
interest, as ads on their owned channels might be less expensive compared to channels
they do not own. Second, ads of 6 different spot lengths are aired, which might vary
in effect.

The three ads on ABC in the hour prior to the broadcast of the premiere are
removed from the data set. The effects of these spots are hard to distinguish from
the tendency to keep looking at the same TV channel without zapping away. Thus,
these ads are removed to circumvent the possible issue of finding that these ads are
extremely effective in persuading TV viewers to watch the premiere.

For simplicity, we do not take the time between exposures into account. As a
predictor, we use the sum of minutes of advertising of a certain ad type since that
start of the advertisement campaign one month earlier. Thus, we implicitly assume

3At the time of the premiere, ABC had broadcast ads on owned TV channels ABC, Freeform,
ESPN, ESPN2, History, A&E network, Lifetime Television and Lifetime Movie.
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that the effect of advertising on an individual does not diminish over time. Ideally,
we would like to use a retention rate which describes what proportion of exposure
to advertising is carried over to the next week, such that the accumulated minutes
of ad exposure slowly diminish over the weeks. However, estimating the retention
parameter is out of scope for this method, as we cannot add it to the SSGAM model
specification with ease.

These variables are highly positively skewed, as the majority of individuals have
been exposed for less than two minutes, while a huge variation in minutes is found
for the rest of individuals have a large variation in minutes of ads seen. For the
SSGAM, Scheipl (2010) recommend to apply a transformation on the predictors to
reduce the skewness to prevent possible numerical instability. For this purpose, a
Box-Cox transformation is applied.

We describe the individual characteristics with Z, the N×L matrix which contains
a combination of 10 numerical variables and categorical variables. For categorical vari-
ables, we include C − 1 dummy variables for a categorical variable with C categories,
removing the largest category for identification. After creating dummy variables for
the categorical variables, L = 40 columns are obtained.

We describe past viewing behavior variables with V , the N × Q matrix which
contains Q = 153 numerical variables. We describe the past viewing behavior by using
the viewing duration from the previous week in hours4. For all channels, dayparts
and genres that the Nielsen panel uses to categorize TV viewing, we construct a
numerical variable that describes the number of hours that a specific kind of TV
program is viewed in the previous week. For example, a predictor is created for
the number of hours an individual watched FOX, watched during the “early fringe”
daypart, or watched the genre “general drama” in the previous week. A genre or
channel is removed from the data set if more than 95% of the individuals watched
it for zero minutes. As these variables are also highly positively skewed, we apply a
Box-Cox transformation as well.

This results in the data set X = [A,Z,V ] of size N×(K+L+Q) (8780×203) on
which we perform variable selection. By using DART to model y with X, a new data
set of selected variables is obtained. The data set X̃ is obtained which can be further
split down into [Ã, Z̃, Ṽ ] with sizes N ×Ksel, N × Lsel and N ×Qsel, respectively.

We use the Friedman H-statistic to find which of the variables in W = [Z̃, Ṽ ] have
an interaction effect with each of the selected advertising variables Ãk, which denotes
the kth column in Ã. For each Ãk, the three variables with the largest H statistic are
selected, which we denote as the N × 3 matrix W̃k, for k = 1, . . . ,Ksel. We include
interaction effects between W̃ks and Ãk, for s = 1, 2, 3, where W̃ks denotes the sth

column in W̃k.
Denoted as a sum of nonlinear functions as in (18), the model corresponds to

E[y|η] =
(
1 + e−η

)−1
with

η =

Ksel∑
k=1

fA(Ãk) +

Lsel∑
l=1

fl(Z̃l) +

Qsel∑
q=1

fq(Ṽq) +

Ksel∑
k=1

3∑
s=1

fks(Ãk, W̃ks). (25)

4The number of hours of watched TV in a week can be large due to multiple televisions that
are turned on at the same time. In addition, we are aware that the data from the Nielsen Panel
may contain inaccurate observations due to incorrect recording of viewing sessions. Nevertheless,
the obtained quantities are the best available proxy for measuring TV viewing behavior.
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After creating the design matrices for all components we obtain

η = η0 +

P∑
p=1

Dpβp (26)

with the constructed design matrices Dp and each βp ∼ peNMIG(θ). We use the
described SSGAM methodology to sample the posteriors of the parameters.

For evaluating the out-of-sample performance of the models, a random subsample
of 2195 individuals (25%) is selected as test sample. We use the remaining 6582
individuals (75%) to train the models on.

4.1 Models for Comparison

We evaluate both the variable selection and model fit. As both tasks require different
models, the evaluation is done separately. For both these modeling tasks, we use a
variety of models and hyperparameter settings and compare the results.

Variable selection is done by using both BART proposed by Chipman et al. (2010)
and DART proposed by Linero (2018). For BART, the hyperparameters are varied
with T ∈ {50, 200} and λ ∈ {1, 2}. For DART, the hyperparameters are varied with
T ∈ {50, 200}, λ ∈ {1, 2} and ρ ∈ {20, 50, 203}. The performance of the variable
selection is based on the number of variables that are selected to exert influence on
the response variable. For the modeling, we use one of the selected sets of predictors.
We base this selection on the number of predictors selected and the average number
of splits in a tree.

The probability of watching the premiere of Designated Survivor is modeled with
six models. The main model that we described in the previous section uses the
set of variables selected by DART, adds interaction between Ãk and W̃k for k =
1, . . . ,Ksel and uses an SSGAM to estimate smooth effects of the predictors. we
abbreviate this model as DARTSSGAM. The hyperparameters for this method are
varied with (aτ , bτ ) ∈ {(5, 25), (5, 50)} and v0 ∈ {0.005, 0.00025}. In order to compare
the performance of this model, we use the following parametric and nonparametric
models.

The parametric benchmark is a probit model, estimated with maximum likelihood
estimation. With this method, we can visualize the relations between the predictors
and response variable, but have to choose a functional form of the model a priori. As
the logit link function is nonlinear, interaction effects implicitly exist for the marginal
effects of the predictors. We us two different sets of predictors. One of the data sets
uses all predictors, whereas the other method makes use of the predictors selected by
DART.

The first data set contains all 9 transformed advertising variablesA and the square
root of the predictors in A to allow for more nonlinearity in advertising effectiveness.
Furthermore, all 40 demographic variables Z and a subset of the principle components
of V are used as predictors.

As V consist of 153 numeric predictors, we can use Principal Component Analy-
sis (PCA) to reduce the number of variables used in this model, while retaining the
majority of variance in the data. In order to determine how many Principal Compo-
nents (PCs) should be included, we use a permutation test. In this permutation test,
we compare the distribution of eigenvalues from the Singular Value Decomposition
(SVD) of V with the eigenvalues of those of Vperm. This matrix Vperm is obtained
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by randomly permuting the columns in V , such that the multivariate relations are
removed, but the univariate properties of the columns in Vperm remain the same.
Next we generate a confidence interval for the eigenvalues of the SVD of V by cal-
culating the distribution of eigenvalues for multiple Vperm. This will show whether
the eigenvalues from the SVD of V are significantly different from those of randomly
permuted matrices Vperm, and thus should be included as predictor. To determine the
confidence interval, we use 1000 randomly permuted matrices Vperm and the 0.99th

percentile of eigenvalues of the permuted matrices is used as critical value.
From the literature, we know that the variable which denotes the number of sec-

onds an individual watched the preceding program is of great importance. For that
reason, we decide to add it to the model linearly and not include it in the matrix V
that is decomposed into PCs. It would be unfair not to include this variable explicitly,
given its found importance in previous research. We abbreviate this probit model as
PCAProbit.

The second data set we use for the probit model contains all variables that are
found to be important by the DART variable selection, X̃. In addition to these
variables, we add the square roots of Ã to allow for more nonlinearity in advertising
effectiveness. We abbreviate this model as DARTProbit.

As nonparametric benchmark model, we use the BART and DART models that
were used in the variable selection step. These models also make predictions of the
probability of watching the premiere of Designated Survivor. The same hyperpa-
rameter configurations are used, such that re-estimating the models is not necessary.
Visualization of the effects of the predictors is more difficult, as we would need to use
additional methods such as Partial Dependency Functions to gain insight into how the
predictors relate to the response variable. BART is expected to perform very well on
predictive performance, as Chipman et al. (2010) show that it performs competitively
for prediction a binary response variable. The predictive performance of DART is
expected to be lower than BART, given that it is designed for variable selection and
not necessarily for prediction. Due to its sparsity inducing Dirichlet prior for variable
selection probabilities in the trees, this method is expected to select a lower number
of variables for its trees compared to BART, which might result in lower predictive
performance. We abbreviate this model as BART and DART.

Finally, we use another models that uses the SSGAM methodology. This SSGAM
uses the full set of variables X and adds interactions between A and all Z. We do
not add the interactions between all A and V , as this would result in adding more
than 1500 interactions, which is too heavily computationally. As the spike-and-slab
priors enable regularized estimation, it is theoretically possible to use a large data set.
However, after running for 65 hours on a modern laptop (Intel i7-4600U processors
with 2.69GHz) without finishing, we aborted the sampling. Thus, using a data set
with such a large number of variables really seems too heavy computationally for this
research.

With this selection of models and evaluation criteria, we can compare the models
in three ways. First, we evaluate the predictive performance. Second, we compare
the insights that a model provides in terms of relations between response variable and
predictors. Third, we compare the models in terms of practical use, as some models
might need a lot of computation time or hyperparameter tuning.
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5 Results

This section contains the results from the applied methods. First, we describe the
results from the variable selection and interaction detection. Second, we present the
output from the SSGAM by showing the relations between predictors and response
variable that have been found in the data. Third, we compare the performance of all
used models.

5.1 Variable Selection

For all BART and DART models we sample the number of draws that is recommended
by Linero (2018). We draw 10000 samples, where the first 5000 are discarded as burn-
in period. We use a thinning factor of 5, such that we obtain a posterior sample of
1000 draws. To check whether the chain has converged for hyperparameter setup
T = 200, λ = 1 and ρ = 20, we compare the output to the output of a DART model
with more draws. This DART model to check for convergence uses 35000 draws,
where the first 25000 draws are discarded as burn-in. We use a thinning factor of 10,
such that we also obtain 1000 posterior draws.

As can be seen in Figure 8 both samplers converged to a similar range of values for
the average number of splits in a tree in the DART model with T = 200, λ = 1 and
ρ = 20. Thus, using 5000 burn-in draws seems adequate in order to reach convergence
for the size of the individual trees in the ensemble. The Geweke Diagnostic for the
average number of splits is -0.128, which also shows that convergence is likely.

Figure 8: Draws of the average number of splits in a tree for the DART model with
T = 200, λ = 1 and ρ = 20. A sampler with 5000 burn-in draws and a thinning factor
of 5 is compared to the draws of a sampler with 25000 burn-in draws and a thinning
factor of 10.

Figure A.1 in the Appendix shows the distribution of Geweke Diagnostics of split-
ting probabilities, which is not significantly different from zero for 183 out of the 203
variables, using α = 0.05 as significance level. Thus, we find multiple splitting prob-
abilities where the posterior mean at the start of the sample is significantly different
from the posterior mean at the end of the sample. For the DART model to check
for convergence, 178 out of the 203 variables have drawn parameters with a Geweke
diagnostics that are not significantly different from 0. Thus, increasing the number
of draws in the burn-in sample, or increasing the thinning factor does not cause the
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posterior to have a more stable mean. When inspecting the traceplots for variables
with a large Geweke diagnostic, we see that the chain can remain stuck in a posterior
mode. This can be seen in Figure A.2 in the Appendix, which shows the traceplot for
one of the predictors with a Geweke diagnostic of -2.18. Linero (2018) describe that
the Markov chain can become stuck in a mode of the posterior when highly correlated
predictors are used, which is the case in this data set. They also show that the per-
formance of the variable selection of DART remains good, even when the posterior is
multimodal. Thus, we decide to use the drawn posterior samples as they are.

Table 1 shows the performance of the DART and BART models for all considered
hyperparameter configurations T ∈ {50, 200}, λ ∈ {1, 2} for BART, and also ρ ∈
{20, 50, 203} for DART. The other hyperparameters are fixed at the values γ = 0.95,
aα = 0.5, bα = 1 and k = 2, recommended by Chipman et al. (2010). A predictor is
selected if it is used to split on in at least 50% of the ensembles.

First, we investigate the effect of the number of trees in the ensemble. For BART,
increasing T causes more different predictors to be used for splitting. As BART does
not assume a sparsity inducing prior for the splitting probabilities, more different
variables are used to split on in the ensemble when T is increased. As the BART
models with T = 200 select the majority of the variables at least once, the use of
BART does not seem to be a good pick for the purpose of variable selection when we
use this rule for selecting predictors.

For DART, the difference between T = 50 and T = 200 is less pronounced. In
4 out of 6 cases, fewer variables get selected for a larger number of trees. However,
the difference between the number of selected variables is always smaller than four.
Thus, when a different number of trees is used, the Dirichlet prior keeps the number
of selected predictors relatively stable compared to BART.

Second, we investigate the effect of the hyperparameter λ for the prior on the
tree depth. When λ = 1, the average number of splits in each individual tree is
higher compared to the models with λ = 2. Thus, the trees with λ = 1 are deeper
in general. For BART, slightly more different predictors are selected when the trees
are deeper. For DART, the number of variables selected stays the same or decreases
in 5 out of 6 cases when we use λ = 1. Thus, this implies that trees with λ = 1
add more interactions between the selected predictors, or make multiple splits on the
selected predictors in each individual tree. Thus, if interaction effects are large enough,
this hyperparameter setting for DART seems more suitable for selecting predictors
for which interaction effects are found. We do not have a metric to measure the
interaction importance with the splitting probabilities, but this observation shows
the potential of using DART for interaction detection.

For DART, we are able to set ρ, which reflects our initial guess of the number
of variables that exert influence on the response variable. As expected, the number
of selected predictors increases with ρ in 6 out of 8 cases. The largest shift is found
when we increase ρ from 50 to 203. However, this only causes 6 additional predictors
to be selected in the most extreme case. we conclude that the number of variables
selected is only slightly sensitive to ρ, as only a small increase is found for larger ρ.

When comparing the evaluation metrics, it becomes clear that the BART models
perform slightly better than the DART models. The BART models especially perform
better in-sample, as the worst BART is still better than the best DART. However,
when comparing the out-of-sample performance, a slightly lower, but more stable
performance is found for DART. In general, the performance of all DART models is
very stable across the hyperparameter settings.
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As data set for the next step, the subset of the 11 predictor selected by the DART
model with T = 200, λ = 1 and ρ = 20 is chosen. We choose this model because
the goal of this variable selection step is to reduce the size of the data set such that
estimation with SSGAM is feasible. As the performance of the DART models is
comparable, we prefer picking a model which selects the lowest number of predictors
and a higher number of average splits.

The subsets of selected predictors for all DART models are similar. Table A.1
in the Appendix shows how many DART models selected each predictor. The three
variables ctrl duration leadin, sd age and vb channel nbc are selected in every DART
model. Surprisingly, only two of the advertising variables are selected in more than
half of the DART models. In the model we selected, the on-channel advertising is
included in the subset of predictors.

The DART models that select a larger number of predictors often select predictors
that are not selected by other DART models. This puts doubt on how large the
influence of those predictors is. The predictors that are included in the DART model
we decide to use are often included in many other DART models. Thus, it seems
reasonable that this is a subset which contains many influential predictors. We show
a description of the selected predictors in Table A.2 in the Appendix. The selection of
this subset of predictors results in data set X̃ = [Ã, Z̃, Ṽ ] of size N × (Ksel +Lsel +
Qsel) with Ksel = 1, Lsel = 5 and Qsel = 5.
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Table 1: Performance of the DART and BART models for used hyperparameter settings. Best performing BART and DART models in
bold.

BART
T 50 50 200 200
λ 2 1 2 1
Predictors selected 25 28 154 160
Average number of splits 1.18 1.34 1.05 1.13
AUROC (in) 0.851 0.849 0.858 0.858
AUROC (out) 0.802 0.805 0.809 0.813
D̄ (in) 0.654 0.653 0.645 0.641
D̄ (out) 0.679 0.675 0.671 0.666

DART
T 50 50 200 200 50 50 200 200 50 50 200 200
λ 2 1 2 1 2 1 2 1 2 1 2 1
ρ 20 20 20 20 50 50 50 50 203 203 203 203
Predictors selected 13 15 11 11 13 12 13 12 18 18 17 14
Average number of splits 1.33 1.75 1.26 1.82 1.24 1.7 1.26 1.83 1.26 1.6 1.28 1.81
AUROC (in) 0.839 0.840 0.837 0.833 0.839 0.841 0.84 0.839 0.842 0.845 0.841 0.842
AUROC (out) 0.810 0.808 0.806 0.806 0.806 0.805 0.806 0.806 0.805 0.806 0.806 0.807
D̄ (in) 0.662 0.659 0.666 0.670 0.663 0.656 0.664 0.661 0.655 0.655 0.662 0.657
D̄ (out) 0.668 0.668 0.671 0.670 0.673 0.672 0.672 0.671 0.671 0.671 0.673 0.672
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Figure 9: Boxplots of the drawn posterior splitting probabilities for the predictors that have been selected at least once to form a split
on in 5% of the ensembles, ordered on the posterior means. posterior splitting probabilities for ctrl duration leadin with a posterior
mean of 0.82 removed for a clearer overview. All predictors to the left of the grey line are selected, as they are used for splitting in at
least 50% of the ensembles. Results shown for DART with T = 200, ρ = 20 and λ = 1.
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Figure 9 shows the posterior draws of the splitting probabilities for all predictors
that are added in at least 5% of the ensembles for the DART with T = 200, λ = 1
and ρ = 20. These posteriors give us information on the relative importance of the
selected predictors. We removed the posterior of ctrl duration leadin from the figure,
which had a much higher posterior mean of 0.82 to improve the readability. These
high splitting probabilities for ctrl duration leadin already show that this variable was
the most important by far, as the posterior mean of the splitting probability of the
second most important variable sd age is more than twenty times lower. As expected,
the posterior means of the splitting probabilities of the selected variables are higher
than those of the variables that are not selected.

For the predictors which are not selected, the splitting probability in the posterior
regularly jumps between zero and a nonzero splitting probability. However, the ma-
jority of draws of the splitting probability is very close to zero. For the set of selected
predictors, nonzero splitting probabilities are sampled more frequently, such that the
median is not so close to zero. Here, we can see that the sparsity inducing Dirichlet
prior only allows a small number of predictors to have a nonzero splitting probability,
while the splitting probability for the majority of the predictors is close to zero.

To find the variables that interact with the selected advertising variable, we use a
Random Forest to model y with X̃. Next, partial dependency plots are calculated,
such that we can calculate Friedman’s H statistic to quantify the importance of the
interactions between the minutes of on-channel ads seen Ã and the selected predictors
[Z̃, Ṽ ]. We obtain the H statistics shown in Figure A.3 in the Appendix. The inter-
actions with the three largest H statistics are added to obtain W̃1, which corresponds
to predictors that interact with on-channel advertising most clearly in the Random
Forest. We add the interactions between on-channel advertising and total viewing
hours, total viewing hours on the ABC TV channel and the age of the respondent.

Next, we use the set of selected predictors and interactions as input for the SS-
GAM, which allows us to visualize how the predictors effect the probability of watching
the premiere episode of Designated Survivor.
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5.2 SSGAM

After creating design matrices for the selected predictors and interactions, the SSGAM
uses P = 30 components, with S =

∑P
p=1 Sp = 182 parameters for all components

combined. This corresponds with parameter vectors α,γ and τ 2 of length P and
vectors β, ξ and m of length S. First we discuss the convergence diagnostics. Second,
we describe the which components are found to be important. Third, we visualize the
estimated smooth effects.

5.2.1 Convergence Diagnostics

For the SSGAM, we draw 3 chains of 26000 samples in parallel in roughly 3 hours
on a modern laptop (Intel i7-4600U 2.68GHz). The first 1000 draws are discarded as
burn-in period and a thinning values of 5 is used, as is recommended by Scheipl et al.
(2012). With these settings, we obtain 15000 posterior draws.

Figure 10: Traceplot of three randomly selected βpk from the posterior sample of β
from the SSGAM with hyperparameters v0 = 0.005 and (aτ , bτ ) = (5, 25).

As an informal check, we inspect the traceplots of the elements in the drawn β.
Figure 10 shows this for a random selection of three drawn βpk for hyperparameter
setting v0 = 0.005 and (aτ , bτ ) = (5, 25), which evolve around a single mode. As a
more formal check to investigate if all the chains have converged, we use the R̂. This
statistic compares the posterior draws of β from the three MCMC chains. The R̂
values are shown in Figure 11, which are very close to 1 for all βpk parameters, which
shows that it is likely that the chains converged.

Figure 11: R̂ values for βpk for k = 1, . . . , Sp and p = 1, . . . , P from the SSGAM
model with hyperparameters v0 = 0.005 and (aτ , bτ ) = (5, 25).
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For the hyperparameter settings with v0 = 0.00025 and (aτ , bτ ) = (5, 25), the R̂
values of the βpk parameters for the components that model the interaction effects
are often higher than 1.1, which indicates that the chain might not have converged.
Figure 12 shows the traceplot of posterior draws of one of the βkp with a R̂ of 1.4,
where the output of the three chains is concatenated. As we can see, the chains
switch regularly from drawing γp = 1 to γp = v0, which cause this chain of draws

to be bi-modal. As the R̂ diagnostic uses the variance of parameter draws within a
chain, it is not a surprise that we conclude that the parameters did not converge with
this statistic. This also seems to be the case for v0 = 0.00025 and (aτ , bτ ) = (5, 50).
For these two hyperparameter settings, we doubled the number of burn-in draws to
see whether this could solve this problem, but it still kept occurring. Thus, when the
amount of shrinkage is increased by picking v0 = 0.00025, the sampler seems to have
more difficulty with obtaining chains that converge to one posterior mode.

Figure 12: Posterior draws of βkp for the first column of the design matrix that models
the interaction between the penalized component hours of general drama seen and
linear component of on-channel advertising. Samples taken for the SSGAM model
with hyperparameter v0 = 0.00025 and (aτ , bτ ) = (5, 25).

The predictive performance of the SSGAMs for the different hyperparameter con-
figurations is shown in Table 2. We find that almost no difference in predictive per-
formance is found across the hyperparameter settings. Thus, the bimodal posterior
distributions that are obtained by picking v0 = 0.00025 do not seem to be a problem
in terms of predictive performance. Nevertheless, we choose to display the results of
v0 = 0.005 and (aτ , bτ ) = (5, 25) in all following results, such that we are sure we are
looking at posteriors which are more likely to have converged.

Table 2: Performance of SSGAM models for the considered hyperparameter settings
v0 0.00025 0.005 0.00025 0.005
(aτ , bτ ) (5,25) (5,25) (5,50) (5,50)
AUROC (in) 0.826 0.828 0.827 0.828
AUROC (out) 0.805 0.805 0.805 0.805
D̄ (in) 0.687 0.686 0.685 0.686
D̄ (out) 0.679 0.679 0.679 0.679

5.2.2 Importance of Components

Table 3 shows the combinations of components that often have a high inclusion proba-
bility. It shows the 6 most common combinations of components with P [γp = 1] ≥ 0.5
with corresponding proportions of draws with this combination. Each row in this table
denotes one of the components Dpβp for p = 1, . . . , P . Each component in the table
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corresponds to a component in (22). Recall that each univariate spline is decomposed
in two components, and each bivariate spline is decomposed in four components. With
lin(·), we denote the centered linear trend represented by Dj,lin. With nonlin(·) we
denote the nonlinear component represented by the design matrix Dj,nl. With ind(·),
we denote an indicator variable represented by the design matrix Dw. For a bivariate
spline, each component is denoted as an interaction between two components with the
× symbol. For example, lin(Xu)× nonlin(Xv) denotes an effect which is estimated
with design matrix Duv,v and nonlin(Xu)× nonlin(Xv) denotes an effect which is
estimated with design matrix Duv,nl when relating the components to the definitions
used in (22).

Table 3: The 6 most common combinations of functions with P [γp = 1] ≥ 0.5 and
corresponding proportions, mean inclusion probabilities p̂p, influence of a component
πp, and the number of columns in the design matrix Sp for all components in the
SSGAM with v0 = 0.005 and (aτ , bτ ) = (5, 25).

Combination of components (proportion)
1 2 3 4 5 6

Component (0.061) (0.046) (0.035) (0.028) (0.024) (0.021) p̂p πp Sp
lin(ctrl duration leadin) x x x x x x 1.000 0.307 1
nonlin(ctrl duration leadin) x x x x x x 1.000 0.078 7
lin(vb total duration transf) x x x x x x 0.972 0.003 1
nonlin(vb total duration transf) 0.037 0.000 9
lin(vb genre general drama transf) x x x x x 0.646 0.016 1
nonlin(vb genre general drama transf) 0.058 0.012 8
lin(vb channel abc transf) 0.352 0.085 1
nonlin(vb channel abc transf) x x 0.427 0.018 7
lin(vb channel nbc transf) x x x x x x 0.803 0.102 1
nonlin(vb channel nbc transf) 0.041 0.002 8
lin(sd age) x x x x x x 0.825 0.093 1
nonlin(sd age) x x x x x x 0.935 0.022 9
ind(sd householdlanguageEnglish Only) 0.328 0.040 1
ind(sd territorycodeNortheast Territory) 0.088 0.000 1
ind(sd householdincomecode125000 or more) 0.158 0.002 1
ind(sd householdincomecode20000to29000) x x 0.421 0.027 1
lin(exp total duration on transf) x x x x x x 0.932 0.182 1
nonlin(exp total duration on transf) x 0.354 0.017 7
lin(sd age)
×lin(exp total duration on transf)

0.036 0.000 1

nonlin(sd age)
×lin(exp total duration on transf)

0.036 0.000 8

lin(vb total duration transf)
×lin(exp total duration on transf)

0.036 0.000 1

nonlin(vb total duration transf)
×lin(exp total duration on transf)

0.037 0.000 8

lin(vb channel abc transf)
×lin(exp total duration on transf)

0.083 0.005 1

nonlin(vb channel abc transf)
×lin(exp total duration on transf)

0.038 0.002 6

lin(sd age)
×nonlin(exp total duration on transf)

0.047 -0.002 6

nonlin(sd age)
×nonlin(exp total duration on transf)

0.036 0.000 26

lin(vb total duration transf)
×nonlin(exp total duration on transf)

0.037 -0.002 6

nonlin(vb total duration transf)
×nonlin(exp total duration on transf)

0.036 0.000 27

lin(vb channel abc transf)
×nonlin(exp total duration on transf)

0.051 -0.009 6

nonlin(vb channel abc transf)
×nonlin(exp total duration on transf)

0.038 0.000 21

We see that both components for total minutes seen of the previous program
(ctrl duration lead in) and age of the respondent (sd age) have high inclusion prob-
abilities. Especially viewership of the previous program contributes a large part
to the predictions given its large πp values. This large effect confirms the earlier
findings of Rust et al. (1992) that it is important to include a predictor on viewer-
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ship of the preceding program. The posterior of the splitting probabilities in DART
also showed that these two predictors are of large importance. We also find rela-
tively high inclusion probabilities for the two components of exposure on channel
ads (exp total duration on transf). Thus, this type of advertising seems to have an
important influence on the viewing probability. However, none of the interaction
components with advertising have a high inclusion probability. We conclude that
the interaction effects between on-channel advertising and having a certain age or
watching a lot of television are small.

Other important components are the linear components of previous week’s viewing
hours in total (vb total duration transf), viewing hours of the genre general drama
(vb genre general drama transf) and viewing hours of the NBC channel (vb channel -
nbc transf). To a lesser extent, we find that both components of the viewing hours
of the ABC channel from the previous week (vb channel abc transf) have a high
inclusion probability. We observe that the method does not necessarily have high
inclusion probabilities for both the linear and nonlinear components, but is able to
select the one or the other.

Next to age, other demographic variables which have a relatively high inclusion
probability is the indicator for a household that only speaks English (sd household-
languageEnglish Only) and the indicator for a household with an income between
$20,000 and $29,000 (sd householdincomecode20000to29000).

For hyperparameter setting v0 = 0.00025 and (aτ , bτ ) = (5, 25) the obtained
inclusion probabilities are higher compared to the hyperparameter setting v0 = 0.005
and (aτ , bτ ) = (5, 25). Table A.3 in the Appendix shows the inclusion probabilities
for this hyperparameter setting, where the p̂p values are much closer to 1. we can
explain this with the degree of shrinkage that is induced with this hyperparameter
setting.

Recall that the importance parameter αp ∼ N(0, γpτ
2
p ), where the γp takes either

the value v0 when a spike draw is made, or 1 when a slab draw is made. If an αp
value of 0.1 needs to be sampled as the importance of a component, the following
prior probabilities are obtained in both hyperparameter settings. We assume that
τ2 = 6 is drawn, which is very close to the prior mean of τ2 with (aτ , bτ ) = (5, 25).

With v0 = 0.005 and (aτ , bτ ) = (5, 25), the shrinkage is only modest. For a spike
draw (γp = v0) with these hyperparameters, the prior probability for drawing αp ≥ 0.1
is roughly 28%. In this case, we are able to obtain a low inclusion probability p̂p,
while we sample αp = 0.1.

With v0 = 0.00025 and (aτ , bτ ) = (5, 25), the shrinkage is heavier. In this case,
the prior probability for drawing αp ≥ 0.1 is roughly 0.5% when a spike draw is made.
Thus, we are likely to need a slab draw (γp = 1) in order to draw αp = 0.1, given the
low prior probability for this αp when γp = v0.

Thus, we obtain a higher inclusion probability in the case of v0 = 0.00025, while
the same effect is sampled. As we have seen in our application, we conclude that the
inclusion probabilities are sensitive to the chosen hyperparameter settings. With a
hyperparameter setting like v0 = 0.00025 and (aτ , bτ ) = (5, 25) that induces heavy
shrinkage, any small effect will obtain a high inclusion probability. With a hyper-
parameter setting like v0 = 0.005 and (aτ , bτ ) = (5, 25) that induces more modest
shrinkage, only large effects will obtain a high inclusion probability. Which inter-
pretation is preferred depends on the goal of the researcher. To gain more insight
into which components are of largest importance, we visualize the estimated smooth
effects.

47



5.2.3 Visualization of Component Effects

The sampled intercept η0 has a posterior mean of −2.2. To obtain the complete η,
we add the effect of all components

∑P
p=1Dpβp. We visualize the functional form of

the component effects Dpβp to provide insights into how a predictor influences the
response variable. As a Bayesian method is used, we can easily gain knowledge on the
uncertainty of sums of Dpβp for different p. To obtain information on how a predictor
influences the response variable, we use the sum of posteriors of all component effects
Dpβp that use a certain predictor. In this way, we can easily visualize the total effect
of a predictor, including its credible interval. In all visualizations, the y-axis shows
this total effect of a predictor on an individual, which we denote as η. Just like is
done for prediction, we obtain the effects Dpβp by applying spline interpolation for
a range (or grid) of predictor values.

Figure 13 shows the effects of the 2 Dpβp components that are used for modeling
the effect of the number of seconds the individual watched to the preceding program.
Here we can clearly see the difference between the linear component in the left panel
and the nonlinear effect in the middle panel. By construction, the nonlinear effect
is centered around zero and does not follow a trend, due to the orthogonalization of
the design matrix. By summing the posteriors of the two components, we obtain the
total effect of watching the preceding program in the right panel, which we name the
lead-in effect.

A possible explanation for the non-monotonicity of the lead-in effect can be found
when investigating the timing of the ad breaks of the preceding program. As can
be seen in Figure 14, many viewers stopped viewing the preceding program at 900,
1200 and 1620 seconds into the time block of the show. It is likely that this drop in
the number of viewers occurred due to an ad break. The number of seconds between
each ad break corresponds to 900, 300 and 420 seconds. Next to this, individuals
that watched between 1400 and 1500 seconds of the program are likely to have been
zapping away during commercials as well. These numbers of seconds match closely
with the found local minima in the lead-in effect. Additionally, it is likely that an
individual that have only seen a few minutes of the preceding program, tuned in early
before starting to view the premiere of Designated Survivor. This matches with the
first local maximum that is found for the lead-in effect.

Figure 13: Estimated effects for the number of seconds that have been seen from the
program preceding Designated Survivor. Left panel shows the linear component of
the spline. Middle component shows the nonlinear component. Right panel shows
the sum of the two components. Black line presents the posterior mean and the gray
area the 10-90% credible interval of the effect. Ticks at x-axis denote the observed
values.
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Figure 14: Number of total panel viewers for the preceding program. Vertical lines
denote likely moments of ad breaks.

Thus, the number of seconds you have been watching the previous program is a
good proxy whether you zap away during ad breaks, or whether you are a viewer who
decides to tune in early. Here, we can see how the SSGAM allows us to model the
smooth effect of a predictor of a very specific form.

As we have shown for the lead-in effect, each effect can be decomposed into its
components Dpβp. However, all following visualizations show the total effect of a
predictor, which is more interesting for the purpose of interpreting the effect of a
predictor.

The effect of transformed on-channel advertising minutes is shown in Figure A.4
in the Appendix. As we prefer to have a quantity on the x-axis which we can interpret
more clearly, we transform the x-values back to their original values. After transform-
ing the advertising exposure back to minutes of ads seen, we obtain the effect shown
in Figure 15.

The minutes of ads seen on ABC are not randomly distributed across the individ-
uals, as viewers that have seen a lot of ABC are likely to have seen more ads. Thus,
a non-random subsample of individuals is exposed to advertising. As we include vari-
ables that measure the effect of viewing behavior and demographics, we assume that
we appropriately control for having this non-random subsample of individuals with
exposure to advertising. If this assumption holds, we can interpret the found effect
as the effect of seeing on-channel advertising. However, we should note that more at-
tention should be paid to adding the correct control variables to have more certainty
on the estimated effect of advertising. This remains out of scope for this research,
but we acknowledge the importance.

Figure 15: Effect of the on-channel advertising in total minutes of ads seen. Black
line presents the posterior mean and the gray area the 10-90% credible interval of the
effect.
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In general, the advertising effectiveness diminishes after multiple exposures, as
is often assumed in the literature. For 1 to 3.5 minutes of advertising seen, the
effect remains roughly constant. Reaching new individuals with ads is more effective
compared to exposing someone to an ad that has already seen ads previously. A shift
from zero to one minute of ads seen increases the η with roughly 0.625 on average,
whereas the η is only increased by roughly 0.125 for a shift from five to six minutes.
Thus, we find that the additional exposures to advertising keep having a positive
effect, but the increase in effectiveness is obtained by exposing new individuals to
advertising. Therefore, an advertiser should be most concerned with reaching new
individuals with their ads.

Figure 16: Effects for the viewing behavior variables. Black line presents the posterior
mean and the gray area the 10-90% credible interval of the effect.

We show the effects of the variables that describe TV viewing behavior in the
previous week in Figure 16, which are also transformed back to hours watched in the
previous week. As can be seen in the upper left panel, we find lower η for individuals
that watched a lot of TV in the previous week. Especially individuals that spent
few hours watching TV in the previous week have an increased η. If an individual
watches a lot of general drama or NBC, the η is increased, as can be seen in the right
panels. For the genre general drama, a sharply diminishing curve is found. After
roughly five hours of general drama, the effect no longer increases. As the genre of
Designated Survivor also is general drama, we interpret this effect as genre loyalty,
which increases η with a maximum of approximately 0.80 compared to someone who
does not watch any general drama. For NBC, we conclude that Designated Survivor
naturally appeals to frequent NBC viewers. For ABC in the bottom left panel, the
effect is less pronounced. Individuals with roughly 30 minutes of ABC viewing in the
previous week have an increased η of 0.45 on average. A reason for this might be that
these individuals follow a single TV series on ABC and are likely to start following
Designated Survivor as well. After 30 minutes, the effect diminishes until roughly
2.5 hours. These individuals might be viewers of different types of programming on
ABC. After 2.5 hours, the effect keeps rising steadily. These individuals are likely to
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be loyal to the ABC channel and watch the majority of content.
We show the effects of the demographic variables in Figure 17. Age, language

of the household and a the yearly household income have the largest effect. For the
age of the respondent, a nonlinear effect is found. On average, younger individuals
have a lower η compared to older individuals. For example, the difference in η for
an individual of 20 and 70 years old is 0.925 on average. The effects of the indicator
variables for living in the Northeast Territory and for earning more than $125,000 per
year are a bit lower.

Figure 17: Effects for the social demographics. Black line and points present the
posterior mean and the gray area the 10-90% credible interval of the effect.

Just like univariate effects, we can visualize the bivariate effects. The upper panel
of Figure 18 shows the sum of all components that describe the total effect of age and
exposure to advertising. The figure shows the cumulative effect of all eight components
(2 for both univariate splines and 4 for the bivariate spline). In this way we can see
how the η differs over different ages and minutes of exposure to on-channel ads.

The bottom panel of Figure 18 shows the interaction effect after removing the effect
of the univariate effects of advertising and age. The posterior mean of η is small and
zero is included in the 10-90% credible interval for the majority of the observed values.
Thus, adding the four bivariate components to model the interaction effect between
age and on-channel advertising exposure have little effect.

There are only two combinations of age and advertising exposure where η = 0 is
not contained in the 10-90% credible interval. For individuals aged between 25 and
60 that have seen between 0 and 1 minutes of on-channel ads, the η is roughly 0.10
lower on average. For individuals aged between 80 and 95 that have seen 30 seconds
of on-channel advertising, the η is roughly 0.15 higher on average. Apart from these
two small effects, there is little posterior support for interaction effects between age
and on-channel advertising. Similar conclusions are drawn for interactions with total
ABC viewing or total TV viewing. Thus, the interaction effects are small.
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Figure 18: Interaction effect between age and total exposure to advertising. Upper
panel shows a sum of the 8 components which are used to model the univariate
splines and the bivariate interaction. Lower panel shows the sum of effects for the
4 components used to model the bivariate interaction. Regions with vertical stripes
denote the combinations of age and advertising where η = 0 is not included in the
10-90% posterior region. Points in the plot denote observed values.

We conclude that SSGAM is capable of providing detailed insight into how the
predictors relate to the response variable. With the estimated functions, we gained
more knowledge on the lead-in effect and found supporting evidence on the diminish-
ing returns of advertising. Next to this, we obtained a clear pictures of how viewing
behavior and individual characteristics affect the probability of choosing a certain TV
program.
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5.3 Performance comparison

Table 4 shows the evaluation criteria for each method with the hyperparameter con-
figuration that performed best in-sample. After performing the permutation test,
the PCAProbit uses the first 26 principal components as predictors for the viewing
behavior variables. We show the obtained eigenvalues and critical values from the
permutation test in Figure A.5 in the Appendix.

Table 4: Predictive performance for each model with the hyperparameter setting that
results in the best in-sample performance. Best performing methods in bold.

Method DARTSSGAM BART DART PCAProbit DARTProbit
AUROC (in) 0.826 0.858 0.845 0.839 0.803
AUROC (out) 0.805 0.813 0.806 0.815 0.787
D̄ (in) 0.685 0.641 0.655 0.671 0.718
D̄ (out) 0.679 0.666 0.671 0.678 0.702
Computation minutes 182 11 4 3 4

As expected, the BART models performs good for both evaluation metrics. The
PCAProbit also performs surprisingly well for both evaluation metrics. For the out-
of-sample AUROC, it even performs best. Compared to the other methods, this
method predicted lower probabilities for some of the 0 observations, which cause the
true positive rate to quickly increase for a very low false positive rate. Thus, for
some individuals, this method is very well able to predict that they will not watch
Designated Survivor.

For the predictive deviance D̄, we obtain the best performance with the BART
and DART models. The restriction of only selecting a low number of variables for
DART does not cause for much lower model fit. The difference between BART and
DART is especially small for the out-of-sample criteria.

As expected, lower predictive performance is obtained when using the DARTSS-
GAM. However, the difference for the out-of-sample criteria is much smaller. Com-
pared to the DARTProbit model, the DARTSSGAM has a higher predictive perfor-
mance with the same set of predictors. Thus, the nonlinear effects are able to improve
the fit compared to a model where linear relations are assumed a priori.

In this application, the SSGAM combined with variable selection using DART
performs slightly worse compared to the strong prediction benchmark using BART.
However, the added functionality of being able to visualize the nonlinear effects with
SSGAM make it an attractive modeling technique to gain insights into how predictors
influence the response variable.
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6 Discussion

The SSGAM enables a marketing researcher to uncover the relationships between the
response variable and the predictors. In combination with DART variable selection,
the SSGAM can be applied on data sets with more predictors. The predictive per-
formance of this method is only slightly lower than BART, a model which is known
to have strong predictive performance. Thus, the cost of being able to visualize the
nonlinear relations is low in this application.

It would be fruitful to apply the methodology to model other TV premiere launches
to investigate if similar effects are found. The same model could either be used for
different TV series, or it could be used to jointly estimate the effects for multiple
series, where some coefficients are allowed to vary across TV series.

Next to that, we can apply the SSGAM methodology on different marketing mix
modeling problems. For example, a smooth effect can be used to model price elasticity.
With this flexible method, no assumptions have to be made on the effects between
price and increase in sales, such that effects such as psychological price barriers are
taken care of, without having to define them a priori. As is found in this study, the
smooth effects estimated with the SSGAM methodology could uncover new insights
into how marketing variables and social demographics influence consumer behavior.

Additionally, we can analyze more factors that influence the effectiveness of ad-
vertising. One variable that was found to be important in previous research is the
time between seeing ads. One approach would be to estimate how quickly the effect
of advertising diminishes over time by estimating what proportion of the advertising
effect is retained after each week. In this research, we have seen that almost all ad-
vertising types were not selected by the DART variable selection. However, it is also
possible to overrule this variable selection procedure and manually add predictors in
the model. In this way, we can estimate smooth effects for all advertising types of
interest.

In future work, more attention could be paid to measuring the causal effect of
advertising. Leamer (1983) warns that inaccurate treatment effects could be obtained
when a large set of control variables are used. However, cherry picking a subset of
predictor is not the solution to this issue. When we use shrinkage to estimate the effect
of control variables, Hahn et al. (2018) show that a bias is induced on the treatment
effect in a linear regression context. By using recent methods such as Bayesian Causal
Forests proposed by Hahn et al. (2017), we can correct for the bias of the effect of a
binary treatment variable. As the SSGAM uses smooth effects to measure the effect
of advertising, social demographics and viewing behavior, we cannot directly apply
the proposed methodology to correct for the bias of advertising effectiveness that is
likely to be present. Thus, how we can estimate the causal smooth effect of a predictor
with the SSGAM is an interesting direction of future work.

A limitation of the current study is that it is difficult to evaluate the difference in
performance if no variable selection is applied. Adding all predictors to the SSGAM
simply was too demanding computationally for this study. This makes it difficult to
conclude whether all important effects are picked up by the DART variable selection.
However, the predictive performance of BART on the full set of predictors and the
SSGAM on the subset of predictors is similar. Thus, it is unlikely the SSGAM could
have performed much better with a larger set of predictors.

Next to that, the evaluation metrics for the predictive performance would ideally
be based on cross validation. This would stabilize the performance criteria, as it
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would be possible that a method might just have a good performance on the one
split considered in this study. As the models are fitted for multiple hyperparameter
settings, calculating the evaluation criteria for multiple splits was too demanding
computationally for this research.

Another improvement could be made on the interaction detection. Currently, the
approach with the Friedman H-statistic and a Random Forest is a simple solution
to make a small selection of possible interactions. More attention could be paid to
select interactions for all variables and detecting higher order interactions. Next to
that, we can compare the performance of different methods to detect interactions.
A possible approach would be to investigate how the posterior samples from DART
can be used to detect interactions. This extension would make DART an even more
versatile method for selecting predictors from a large set.

Our proposed combination of using DART variable selection with the SSGAM
methodology allows us to estimate smooth effects between the predictors and the
response variable for a large data set. This makes this combination of methods an
excellent candidate for marketing research applications with many predictors. With
the SSGAM, we do not have to make assumptions on the functional form of the effect
of a marketing variables, and we shrink small effects to zero to prevent overfitting.
With the obtained smooth effects, we can test hypotheses on how predictors relate
to the response variable. Next to this, it gives evidence of how a predictor should
be added to a model to accurately describe its effect. By using Bayesian inference,
the uncertainty of the estimated effects can be analyzed with ease. In our applica-
tion, this advance in interpretation only comes at the cost of slightly lower predictive
performance compared to a strong benchmark. Thus, this combination of methods
alleviate the burden of making restrictive assumptions for a researcher, by letting the
data do the heavy lifting.
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A Appendix

A.1 Starting values for SSGAM sampler

In order to make notation easier, we denote y = (y1, . . . , yN ) and N × SD matrix

D = [1,D1, . . . ,DP ] with SD = 1 +
∑P
p=1 Sp.

Algorithm A.1 Generation of β(0),α(0) and ξ(0) for SSGAM with binary responses

1. Calculate initial µi = (yi + 0.5)/2 for i = 1, . . . , N .

2. Calculate initial (or updated) σ2
i = µi(1− µi) and ηi = log(µi/(1 − µi)) for

i = 1, . . . , N .

3. Calculate initial (or updated) ỹ = [ỹ1, . . . , ỹN ,0
′
P ]′ of length N + SD, with

ỹi = (σi(ηi + (yi − µi)/σ2
i )) and matrix D̃ =

[
D◦σ1′SD
2−1/2ISD

]
of size (N +SD)×SD

with σ = (σ1, . . . , σN )′.

4. The vector with regression coefficients for δ̂ is initialized (or updated) by fitting

ỹ = D̃δ̂, where δ̂ is obtained by using the QR decomposition of D̃.

5. For all i = 1, . . . , N , update µi = (D̃iδ̂)−1, where D̃i corresponds to the ith row
of D̃.

6. Repeat steps 2 – 5 for five times, such that δ̂ is updated at every iteration. The

final δ̂ = (η
(0)
0 ,β(0)′)′.

7. For each chain that is run in parallel, add N(0, 1) noise to η
(0)
0 and β(0) to

obtain different starting values for each chain.

8. All β
(0)
p are rescaled by the drawn γ

(0)
p τ

2(0)
p from the priors for p = 1, . . . , P .

This causes the β
(0)
p with γ

(0)
p = v0 to be close to zero as starting value.

9. Finally α
(0)
p = S−1

p

∑Sp
k=1 |β

(0)
pk | for p = 1, . . . , P , where β

(0)
pk is the kth element

of β
(0)
p . Lastly, the elements in ξ(0) are calculated as ξ

(0)
pk = β

(0)
pk /α

(0)
p for

k = 1, . . . , Sp and p = 1, . . . , P .
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A.2 Additional Results for DART Variable Selection

Figure A.1: Geweke convergence diagnostic of the drawn variable inclusion probabil-
ities for DART with T = 200, λ = 1 and ρ = 20.

Figure A.2: Traceplot of the splitting probability for the amount of hours an individual
has seen programs with the genre award ceremony.
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Table A.1: Number of DART models that selected a predictor. Predictors in the subset of the selected DART model with T = 200,
λ = 1 and ρ = 20 in bold.

Variable name
selected by
number of DARTs

Variable name
Selected by
number of DARTs

ctrl duration leadin 12 exp total duration 30 5
sd age 12 vb total duration 3
vb channel nbc 12 sd householdincomecode$15,000-$19,000 3
vb genre general drama 10 sd nsimarketrankranges50-99 2
vb channel other 9 sd nsimarketrankranges100+ 2
vb genre popular music 8 vb genre participation variety 2
sd householdincomecode$125,000 or more 8 vb genre science fiction 2
exp total duration 10 8 vb channel uni 2
vb channel abc 7 sd territorycodeNortheast Territory 2
exp total duration on 7 sd territorycodePacific Territory 2
vb genre award ceremonies 6 vb genre news 1
vb channel 2 t 6 exp total duration 15 1
sd householdincomecode$20,000-$29,000 6 vb genre concert music 1
sd householdlanguageEnglish Only 5 vb channel top15 1
vb channel tel 5 vb channel nfln 1
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Table A.2: Selected predictors which have been selected at least once to form a split on in 50% of the ensembles for a DART with
T = 200, ρ = 20 and λ = 1.

Variable name
Proportion of ensembles
which split on this variable

Description

ctrl duration leadin 1.000
Number of seconds the individual watched
to the preceding TV program

sd age 1.000 Age of the panelist

sd householdlanguageEnglish Only 1.000
Indicator for a household
that only speaks English

sd territorycodeNortheast Territory 0.537
Indicator for a household
that is situated in the North East states in the USA

sd householdincomecode $125000 or more 0.685
Indicator for a household
that has a yearly income of more than $125,000

sd householdincomecode $20,000-$29,000 0.810
Indicator for a household
that has a yearly income between $20,000 and $29,000

vb total duration 1.000
Number of seconds the individual watched
to the TV the previous week

vb genre general drama 1.000
Number of seconds the individual watched
to TV programs with the genre general drama
the previous week

vb channel abc 1.000
Number of seconds the individual watched
to the TV channel ABC the previous week

vb channel nbc 1.000
Number of seconds the individual watched
to the TV channel NBC the previous week

exp total duration on 1.000
Number of seconds the individual has been exposed
to ads for Designated Survivor on ABC
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Figure A.3: Friedman H statistic of the interaction between exp total duration on
and all other selected predictors for a Random Forest with 250 trees to model y on
the set of selected predictors X̃.

A.3 Additional Results for SSGAM

Figure A.4: Total effect of transformed minutes of ABC advertising seen. Black line
corresponds to posterior mean, shaded area to the 10-90% credible interval. Ticks at
the x-axis denote observed values.
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Table A.3: The 6 most common combinations of components with P [γp = 1] ≥ 0.5 and
corresponding proportions, general inclusion probabilities p̂p, influence of a component
πp, and number of columns in the design matrix Sp for all components in the SSGAM
with v0 = 0.00025 and (aτ , bτ ) = (5, 25).

Combination of components (proportions)
1 2 3 4 5 6

Component (0.66) (0.14) (0.09) (0.05) (0.01) (0.01) p̂p πp Sp
lin(ctrl duration leadin) x x x x x x 1.000 0.301 1
nonlin(ctrl duration leadin) x x x x x x 1.000 0.076 7
lin(vb total duration transf) x x x x x x 1.000 0.005 1
nonlin(vb total duration transf) 0.017 0.000 9
lin(vb genre general drama transf) x x x x x x 1.000 0.017 1
nonlin(vb genre general drama transf) x x 0.221 0.006 8
lin(vb channel abc transf) x x x x x x 1.000 0.113 1
nonlin(vb channel abc transf) x x x x x x 0.996 0.021 7
lin(vb channel nbc transf) x x x x x x 1.000 0.100 1
nonlin(vb channel nbc transf) 0.019 0.000 8
lin(sd age) x x x x x x 1.000 0.096 1
nonlin(sd age) x x x x x x 1.000 0.021 9
fct(sd householdlanguageEnglish Only) x x x x x x 1.000 0.049 1
fct(sd territorycodeNortheast Territory) x x x x 0.889 0.000 1
fct(sd householdincomecode125000 or more) x x x x x x 0.998 0.001 1
fct(sd householdincomecode20000to29000) x x x x x x 0.998 0.032 1
lin(exp total duration on transf) x x x x x x 1.000 0.145 1
nonlin(exp total duration on transf) x x x x x x 0.998 0.021 7
lin(sd age)
×lin(exp total duration on transf)

0.017 0.000 1

nonlin(sd age)
×lin(exp total duration on transf)

0.017 0.000 8

lin(vb total duration transf)
×lin(exp total duration on transf)

0.018 0.000 1

nonlin(vb total duration transf)
×lin(exp total duration on transf)

0.017 0.000 8

lin(vb channel abc transf)
×lin(exp total duration on transf)

x x 0.094 0.001 1

nonlin(vb channel abc transf)
×lin(exp total duration on transf)

0.017 0.000 6

lin(sd age)
×nonlin(exp total duration on transf)

0.027 -0.001 6

nonlin(sd age)
×nonlin(exp total duration on transf)

0.035 0.000 26

lin(vb total duration transf)
×nonlin(exp total duration on transf)

0.019 -0.001 6

nonlin(vb total duration transf)
×nonlin(exp total duration on transf)

0.017 0.000 27

lin(vb channel abc transf)
×nonlin(exp total duration on transf)

0.022 -0.002 6

nonlin(vb channel abc transf)
×nonlin(exp total duration on transf)

0.019 -0.001 21
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Figure A.5: Obtained eigenvalues for the Principal components of the viewing be-
havior predictors. blue circles two sided critical values for α = 0.01 obtained by
performing a permutation test. The first 26 Principal Components are used for mod-
eling.
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