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1 Introduction Antithetical to the Black and
Scholes (1973) assumption on the constant implied
volatility of option contracts, in reality, it tends to vary
across strike prices and maturity. Empirical evidence
shows that this results in a phenomenon which we refer
to as the implied volatility surface (IVS hereafter).1 The
non-linear pattern of the surface across the moneyness and
term-structure of option contracts is often referred to as
the “smile”, due to its characteristic U-shape. The IVS
may also present a skewed U-shape, which is, in turn,
referred to as “smirk”. Secondly, the IVS tends to vary over
time while reflecting investors’ beliefs and incorporating
market information. It is therefore highly valuable for
traders, hedgers and risk managers to understand the
underlying dynamics which drive this non-linearity and
time-variability. The ability to model the ever-evolving
shape of the implied volatility surface could be exploited
to the benefit of their respective fields.

While a vast amount of research has been dedicated
in an attempt to describe the IVS, much improvement is
still to be made to increase the accuracy of the models as
hitherto, they are over-simplified while imposing unrealistic
assumptions. Previous research has mainly focused on the
general exploitability of the dynamics of index options,
and some to equity options. Kim and Kim (2003)
focus on short-term, close-to-money implied volatility
from currency options. Pena et al. (1999) examine the
determinants of implied volatility “smiles” by using data
from close-to-maturity Spanish IBEX 35 index options.
Dumas et al. (1998) use a simple parametric specification
that establishes the relationship between time to maturity
and strike prices, using S&P 500 index options. They were
the first to report promising results of using this linkage
and showing the opportunities of capitalising on the implied
volatility over time. Goncalves and Guidolin (2006) and
Bernales and Guidolin (2014) use parametric specifications
from Dumas et al. (1998) and Pena et al. (1999) in order
to find a cross-sectional description of the S&P 500 daily
implied volatility surface. More specifically, Bernales
and Guidolin (2014) investigate predictable patterns and
a dynamic linkage of equity and S&P 500 index options.
The extent to which the non-linearity is captured within
the models of these authors is, however, still limited.
More sophisticated manners to approximate the IVS shape
may prove to be useful in obtaining better forecasts and
consequently higher returns.

Chalamandaris and Tsekrekos (2011) show that their
seven-factor model specification which accounts for
asymmetry in short and long-term maturities consistently
outperforms simpler models in their ability to describe
the surface.2 Their model is based on the exponential
components framework of Nelson and Siegel (1987).
Diebold et al. (2008) already used this framework in
their analysis for a dynamic approach to modelling global
yield curve dynamics and interactions of government
bonds. By explicitly modelling the term structure of
foreign exchange option contracts, Chalamandaris and

Tsekrekos (2011) have significantly improved on existing
literature. Although the authors succeed at capturing the
U-shape of the term-structure, the moneyness dimension
remains under-investigated. It is, therefore, of the
essence to walk this untrodden path in light of further
improvements on capturing the implied volatility surface.
Consequently, this leads to the question of whether we
can develop a model that augments existing descriptions of
the time-varying non-linear implied volatility surfaces by
explicitly modelling the corner regions of both moneyness
and maturity dimensions.

This paper follows the works of Chalamandaris and
Tsekrekos (2011) and extends their analysis by proposing
an alternative approach to their model using index option
data. More specifically, we examine whether we can
improve current published research on the matter in terms
of predictability, using more sophisticated modelling of the
moneyness dimension of implied volatility surfaces. Our
proposed model is additive to the model of Chalamandaris
and Tsekrekos (2011), which focuses on capturing the
“smile/smirk” shape of the option term structure. The
nine-factor model that we propose namely focuses on an
enhancement of the moneyness structure which may better
capture the non-linear extremities in the corresponding
dimension of the IVS shape. Additionally, we correct for
our still relatively simple model by explicitly modelling a
lagged error term, while distinguishing between put options
and call options. This inclusion adequately corrects for the
non-white noise residuals and substantially increases our
predictive accuracy.

We find that both our nine-factor deterministic model
and the seven-factor model proposed by Chalamandaris
and Tsekrekos (2011) significantly improve the predictive
accuracy and general fit of the index option implied
volatility surface as compared to the five-factor model
of Goncalves and Guidolin (2006). Our model that
focuses on both moneyness and maturity performs best
in the in-sample description of our data. It does,
however, produce neither significantly superior nor inferior
forecasting accuracy results compared to the model of
Chalamandaris and Tsekrekos (2011). Furthermore, we
obtain significant risk-adjusted abnormal returns across all
our models before transaction costs. Although imposing
transaction costs eradicates these returns, our simple
trading strategy serves as producing lower-bound returns
as practitioners may have access to more professional
techniques and strategies.

We contribute to two strands of literature. First, we
provide an innovative perspective on modelling the implied
volatility surface. Although we do not significantly improve
on the forecasting accuracy of existing research, our model
provides a remarkable in-sample fit of the IVS. We believe
that further research may provide more elegant manners in
modelling the moneyness dimension of the option contracts
in light of forecasting e�ciency and accuracy. Secondly,
we show strong dissimilarities in trading returns across both
moneyness and maturity dimensions. We believe traders

1See Canina and Figlewski (1993), Heynen et al. (1994), Xu and Taylor (1994) and Campa and Chang (1995) for the evidence of the non-linear
structure of the implied volatility surface across moneyness and time to maturity

2They have obtained inspiration from the works of Dumas et al. (1998), Pena et al. (1999), Kim and Kim (2003), Goncalves and Guidolin (2006)
and Diebold et al. (2008).
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may find these results highly beneficial in the construction
of their own, more sophisticated, trading algorithms.

This paper is constructed as follows. First, we analyse
the main properties of our options trading data and discuss
their descriptive statistics in Section 2. Secondly, Section

3 motivates and explains the used methods. Thirdly, the
implementation of these methods and results are reported
and discussed in section 4. Finally, we conclude in section
5.

2 Data For this research, we use data on daily
index option prices extracted from the OptionMetrics
database, covering the period between January 01, 2003,
and December 31, 2017. This time frame is chosen
such that it includes periods with and without financial
turmoil. The dataset consists of four index option tickers,
namely the Dow Jones industrial average (DJX), Nasdaq
(NDX), Standard and Poor’s 500 (SPX), and the Russell
2000 index (RUT) in Panels (a)-(d), respectively. Option
specific information includes implied volatility, volume,
strike price, bid and ask price, delta, and the unique contract
identification number.

Figure 1 shows plots of the surface of each of the
four datasets on a given day. We clearly identify a

“smile” shape in the moneyness dimension for the Dow
Jones and Nasdaq index options. The S&P 500 and
Russell 2000 index options exhibit a skewed structure in
this dimension for the given date, which we refer to as
a “smirk” shape. In the maturity dimension, we observe
a relatively less pronounced non-linear shape contrary to
the currency options investigated by Chalamandaris and
Tsekrekos (2011). Finally, we notice an overall level shift
of the IVS during periods of turmoil, such as during the
financial crisis around 2008. This level shift is clearly
visible in the IVS plot for NDX options in Figure 1.
We also plot the daily standard deviation of the implied
volatility surface, which is shown in Figure 6 in Appendix
A. These plots display the variability of the implied
volatility surfaces, which tends to be more severe for higher

Figure 1: This figure shows four plots of the implied volatility surface (IVS) for each of our index option datasets on a given date. From Panel (a) to Panel (d): Dow Jones
(DJX), Nasdaq (NDX), Standard and Poor’s 500 (SPX), and Russell 2000 (RUT). The IVS plots are given on a di↵erent date for each index. In the same order: 2006-01-31,
2008-01-31, 2012-01-31, and 2014-01-31.
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Table 1: Summary Statistics of Implied Volatilities across Moneyness and Maturities

Short-term (6 < ⌧  120) Medium-term (120 < ⌧  240) Long-term (240 > ⌧)

Moneyness Av. IV Std.dev. IV Av. Trading Av. IV Std.dev. IV Av. Trading Av. IV Std.dev. IV Av. Trading
(%) (%) Volume (%) (%) Volume (%) (%) Volume

Panel (a): DJX Options
Deep OTM Call/Deep ITM Put 27.07 18.07 99.70 22.12 10.54 103.27 19.02 7.11 75.08
Call OTM/ITM Put 16.21 8.31 199.85 17.31 6.67 117.60 18.31 5.86 103.03
Left ATM Call/ATM Put 17.38 8.56 292.71 18.97 6.99 102.66 19.46 5.91 134.81
Right ATM Call/ATM Put 18.62 9.01 305.32 20.40 7.35 119.60 20.96 6.20 145.46
ITM Call/OTM Put 21.55 9.85 183.01 23.87 8.11 112.64 24.41 6.92 78.12
Deep ITM Call/ Deep OTM Put 31.43 14.22 161.85 31.15 9.70 103.78 29.70 7.68 72.33

Panel (b): NDX Options
Deep OTM Call/Deep ITM Put 19.80 12.76 176.64 18.10 7.43 51.36 16.19 5.57 35.13
Call OTM/ITM Put 16.31 6.37 130.15 18.10 5.47 46.89 17.91 4.02 29.23
Left ATM Call/ATM Put 17.41 6.38 125.67 19.53 5.26 37.98 19.72 3.64 23.13
Right ATM Call/ATM Put 18.33 6.58 137.86 20.40 5.15 53.18 21.33 3.78 30.24
ITM Call/OTM Put 20.76 7.52 113.45 23.16 6.11 45.09 24.30 4.66 25.60
Deep ITM Call/ Deep OTM Put 29.13 11.66 158.80 30.25 7.66 47.55 30.55 5.89 34.68

Panel (c): SPX Options
Deep OTM Call/Deep ITM Put 15.25 10.45 623.81 16.49 9.14 403.26 15.76 6.31 273.55
Call OTM/ITM Put 13.56 6.82 811.62 15.55 6.03 605.77 16.33 4.97 396.76
Left ATM Call/ATM Put 15.18 7.22 1173.26 17.22 6.03 592.88 18.15 4.76 367.86
Right ATM Call/ATM Put 16.36 7.47 1657.90 18.87 6.38 833.25 19.70 4.93 493.15
ITM Call/OTM Put 18.99 7.89 825.23 21.98 6.74 744.72 23.05 5.46 421.04
Deep ITM Call/ Deep OTM Put 26.40 10.29 657.99 29.15 7.72 463.52 30.94 8.77 421.38

Panel (d): RUT Options
Deep OTM Call/Deep ITM Put 21.90 13.04 314.61 19.60 8.78 27.56 18.76 6.93 23.84
Call OTM/ITM Put 18.76 7.52 218.45 19.69 6.37 56.40 20.26 5.77 48.31
Left ATM Call/ATM Put 20.23 7.72 246.70 21.50 6.34 59.36 22.37 5.59 91.23
Right ATM Call/ATM Put 21.45 8.02 300.24 23.15 6.67 76.06 24.09 5.63 74.00
ITM Call/OTM Put 24.24 8.70 199.59 26.51 7.42 73.35 27.54 6.23 85.70
Deep ITM Call/ Deep OTM Put 31.33 10.90 233.48 33.00 9.00 39.69 34.99 8.90 35.93

Notes: The table contains summary statistics for implied volatilities across moneyness (in terms of the option delta) and time-to-maturity (calendar days to the expiration).
The first column determines the moneyness for call and put options: (Deep) Out-Of-The-Money (OTM), At-The-Money (ATM), and (Deep) In-the-Money (ITM). The moneyness
measure is divided into six regions: �50 < �  �37.5; �37.5 < �  �12.5; �12.5 < �  0; 0 < �  12.5; 12.5 < �  37.5; 37.5 < �  50. The following three columns
correspond to short-term maturities between 6 and 120 days. Medium-term maturities are those between 120 and 240 days, and long0term maturities over 240 days. Panels
(a), (b), (c), and (d) report statistics for the index options of respectively DJX, NDX, SPX, and RUT. IV is the implied volatility, as well as the strike price, and the underlying
asset price. The table presents trading means, standard deviations, and volumes. The trading volume is defined as the average volume over all actual trades with specific
characteristics (given by the moneyness and the time-to-maturity). The data cover the period between January 1, 2003, and December 31, 2017.

volatilities. As corner regions often have relatively high
implied volatilities, the fact that their variability is also
higher results in comparatively greater uncertainty. It may
thus be more challenging to predict the implied volatility of
options that fall into these outer regions.

We apply four exclusionary criteria to our data, akin
to Bernales and Guidolin (2014). Observations which are
not likely to represent traded prices in well-functioning
and liquid option markets are consequently omitted. We
first eliminate option data that violate basic no-arbitrage
conditions by setting upper and lower bounds for call
and put prices. Secondly, we exclude observations with
less than one week, as their prices usually contain little
information regarding the implied volatility surface (Dumas
et al., 1998). Contrary to Bernales and Guidolin (2014)
but similar to Chalamandaris and Tsekrekos (2011), we do
not impose an upper bound on the maturity of the option
contracts as we specifically aim to investigate the term
structure in our cross-sectional model. The lower bound in
maturity is seven days. Thirdly, we drop option contracts
with prices lower than 3/8 to bypass the e↵ect of price
discreteness.3 For this very reason, we finally exclude
contracts with absolute deltas above 0.98 or below 0.02.

Analogously to Chalamandaris and Tsekrekos (2011)

and Bollen and Whaley (2004), we use the delta of each
contract �raw

i as moneyness measure and transform it as
follows:

�i = (�raw
i � 0.50) ⇤ 100, (1)

where �i is the transformed delta of option contract i
and lies between [-50,50]. Bollen and Whaley (2004)
explain that, usually, moneyness is measured as the relative
di↵erence between the forward price of the underlying
asset and the exercise price of the option contract. They
show that the volatility rate of the underlying asset strongly
a↵ects the probability of the option contract to expire
In-The-Money. Using the typical moneyness metric may,
therefore, be problematic. The adjusted moneyness metric
�i as described by the above equation is sensitive to the
volatility of the underlying asset as well as the time to
expiration of the option contract. Moreover, it has several
advantages as depicted by Sheldon (1994). First, we avoid
the need for interpolating strikes of di↵erent liquidity as the
metric is based on actual contracts. Secondly, the shape of
the IVS is conserved, and thirdly, it reduces the flattening
e↵ect.4

Summary statistics of our resulting data is given in
Table 1, which is separated into six moneyness regions and

3As options prices are adjusted with a pre-specified ‘tick-size’, one tick in any direction may influence the IVS of an option with a relatively low
price too strongly. This is called the e↵ect of price discreteness.

4While it is known that volatility “smiles/skews” flatten at longer maturities, �i produces a scaling which is independent of the volatility hence
reducing this e↵ect (Yang et al., 2010).
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three maturity regions for each dataset. The moneyness (�)
regions are: �50 < �  �37.5; �37.5 < �  �12.5;
�12.5 < �  0; 0 < �  12.5; 12.5 < �  37.5;
37.5 < �  50. The option expiration times are divided into
the regions of 6 up to 120 days, 120 up to 240 days, and over
240 days. These regions correspond to respectively short-,
medium-, and long-term maturities.

The given statistics are average implied volatility (IV),
its average standard deviation as well as the average trading
volume. Days in which no trade is executed are excluded in
calculating the latter metric.

From this table, we immediately notice the non-linearity
in average implied volatility over the moneyness region.
The “smile” shape is most visible for the short-term Dow
Jones index options. The other index options display
on average an upwards sloping “skew” towards Deep
In-The-Money (ITM) calls and Out-Of-The-Money (OTM)
puts.

Also, while the variation of the average implied
volatility is observed to be less pronounced in terms of
maturity, the non-linearity is still present and of importance
to our investigation. This is in line with our visual
observation from Figure 1.

Interestingly, the standard deviation of the IV seems
positively correlated with an increasing average IV over all
regions, while observing the opposite for average trading
volumes. More specifically, the relatively large standard
deviations in the corner regions are most apparent for
short-term maturities. Andersen et al. (2017) explain that
this phenomenon occurs due to a larger jump-risk for
short-term option contracts in moneyness corner regions.5

Clearly, the distribution of the implied volatility
over both maturity and moneyness dimensions is highly
non-linear and ought not to be ignored. Its complexity in
shape and time-variation inclines to be described through a
simplified parametric model.

3 Methodology

3.1 Modelling the Implied Volatility Surface
A method to describe the volatility surface in a model that
broadly captures the key characteristics of the non-linearity
of the IVS shape is by application of a cross-sectional
regression with a select set of parameters. Both Bernales
and Guidolin (2014) and Chalamandaris and Tsekrekos
(2011) follow a five-factor specification proposed by
Goncalves and Guidolin (2006). The former authors have
concluded that this model performs best in describing the
index option IVS. The resulting deterministic model, which
is referred to as the five-factor GLS model for the implied
volatility for contract i is given by the following equation:

�i,t = �0,t + �1,t Mi,t + �2,t⌧i,t + �3M2
i,t+

�4,t(Mi,t · ⌧i,t) + ✏i,t,
(2)

where Mi is the time-adjusted moneyness, ⌧i is the
time-to-maturity, and ✏i the residual term. i = 1, . . . ,N,
with N the number of option contracts available at day t,
t = 1, . . . , 3776. Note that, contrary to Chalamandaris and

Tsekrekos (2011), we do not take the natural logarithm
of the implied volatilities in order to allow for model
comparisons. Similar to Bollen and Whaley (2004), Mi is
defined by the delta of the corresponding option contract as
motivated in Section 2.

As a result, �0 of our deterministic five-factor GLS
model given by Equation 2 is defined as the level coe�cient,
�1 captures the moneyness (“smile/skew”) slope of the
IVS, and �2 reflects the maturity (term-structure) slope.
The curvature of the IVS in the moneyness dimension is
captured by �3. Finally, �4 describes possible interactions
between moneyness and time-to-maturity dimensions.

Similar to Chalamandaris and Tsekrekos (2011) and
Bernales and Guidolin (2014), we apply recursive
cross-sectional generalised least squares (GLS) to the
deterministic model given by Equation (2) instead of
ordinary least squares (OLS) to gain asymptotic e�ciency.

A common feature of the IVS of (index) options,
as established in the previous section, is that it takes
a non-linear shape in both the moneyness and maturity
directions. As Equation 2 only includes a linear term for
maturity, one may wonder whether the non-linearity in the
term structure is su�ciently captured. Chalamandaris and
Tsekrekos (2011) indeed show that this relatively simple
model does not su�ce in the sense that the term structure
conveys valuable information for describing the implied
volatility of foreign exchange option contracts. Since they
have found evidence of better predictability, we apply their
seven-factor deterministic model to our data set of index
options in order to exploit this information as well. The
model, which we refer to as the seven-factor GLS model is
given by the following equation:

�i,t = �1,t I1,i,t + �2I2,i,t + �3,t I3,i,t + �4,t I4,i,t+

�5,t I5,i,t + �6,t I6,i,t + �7,t I7,i,t + "i,t,
(3)

where i = 1, . . . ,N, with N the number of option contracts
available at day t, t = 1, . . . , 3776.

I1,i,t = 1 Level

I2,i,t = 1{�i,t>0}�
2
i,t Right “smile”

I3,i,t = 1{�i,t<0}�
2
i,t Le f t “smile”

I4,i,t =
1 � e��⌧i,t

�⌧i,t
S hort � term structure

I5,i,t =
1 � e��⌧i,t

�⌧i,t
� e��⌧i,t Medium � term structure

I6,i,t = 1{�i,t>0}�i,t⌧i,t Right “smile” attenuation
I7,i,t = 1{�i,t<0}�i,t⌧i,t Le f t “smile” attenuation

(4)

The seven indicators can be interpreted in a natural
manner. I1,i,t corresponds to the constant level factor and
thus �1,t describes the mean level of the IVS of contract i at
time t. The following two factors, I2,i,t and I3,i,t, describe
the “smile” shape of the moneyness measure. Their
corresponding coe�cients, therefore, capture a potential
asymmetry within this shape between contracts with a
negative or positive delta.

Indicators I4,i,t and I5,i,t account for the non-linearity
in the maturity of option contracts. They describe

5Jump-risk is the risk of sudden but infrequent movements of large magnitude in price (Yan, 2011).
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the non-linear shape within the IVS through short- and
medium-term structure asymmetry. The functions that
determine the values of these indicators are calculated
analogously to Diebold and Li (2006) who apply a
factorization of the Nelson and Siegel (1987) parsimonious
term structure model. This factorization proved to be useful
in forecasting the yield curve of government bonds. In this
parameterization, parameter � determines the rate of the
exponential decay rate of maturities.

Finally, I6,i,t and I7,i,t account for the flattening e↵ect of
the IVS “smile” shape as the option contract approaches
maturity, as described by Chalamandaris and Tsekrekos
(2011). These indicators allow for asymmetry between
In-The-Money calls and puts in this e↵ect.

Similarly to Diebold and Li (2006), we fix � to be
constant. However, as Chalamandaris and Tsekrekos
(2011) show that the optimal � varies over di↵erent datasets,
we apply a two-step estimation approach. We first estimate
� via non-linear least squares after which we apply a
recursive cross-sectional GLS regression to Equation 3.

Most importantly, our aim is to improve the extent
to which our model captures the “smile” shape in the
moneyness dimension. Specifically, we should capture the
strong increase in the implied volatility for tail regions
as it has been established in Section 2 that they strongly
deviate from centre regions in terms of both the level of
the surface as well as its variability. We consider contracts
with adjusted absolute moneyness higher than 37.5 to be
Deep In- and Out-Of-The-Money and separate their e↵ect
on the IVS from more At-The-Money (ATM) contracts.
This results in the following equation that is referred to as
the nine-factor GLS model:

�i,t = �1,t I1,i,t + �2a,t I2a,i,t + �2b,t I2b,i,t + �3a,t I3a,i,t+

�3b,t I3b,i,t + �4,t I4,i,t + �5,t I5,i,t + �6,t I6,i,t + �7,t I7,i,t + &i,t,
(5)

where i = 1, . . . ,N, with N the number of option contracts
available at day t, t = 1, . . . , 3776.

I2a,i,t = 1{0<�i,t<37.5}�
2
i,t Right AT M “smile”

I2b,i,t = 1{�i,t�37.5}�
2
i,t Right OT M “smile”

I3a,i,t = 1{�37.5<�i,t<0}�
2
i,t Le f t AT M “smile”

I3b,i,t = 1{�i,t�37.5}�
2
i,t Le f t OT M “smile”,

(6)

where I2a,i,t and I3a,i,t describe the “smile” shape of the
moneyness measure for more ATM contracts. I2b,i,t and
I3b,i,t describe the “smile” shape of the moneyness measure
for Deep OTM/ITM contracts. Their corresponding
coe�cients, therefore, capture a possible asymmetry within
this shape between contracts with a negative or positive
delta as well as being Deep In-and Out-Of-The-Money or
more ATM. It is important to note that the names given to
these indicators are for simplicity and serve as a reference.
For example, a call option with a positive delta larger than
37.5 is still Deep ITM. The name of the indicator should not
suggest otherwise.

The interpretation of the remaining five indicators and
their respective coe�cients are identical to Equation (3).6

As our proposed model strongly resembles the seven-factor
model, we expect relatively similar results. However, we
believe that our model should be able to better capture the
variability corner regions within the moneyness regions.
The proposed set of factors may thus prove to be a sensible
addition.

3.1.1 Flattening the Dynamically Dependent Residuals

Although the seven-factor GLS model has been proven
to produce better forecasting results than the five-factor
model according to Chalamandaris and Tsekrekos (2011),
we claim that neither model fully captures the non-linear
dynamics of the IVS. For this reason, we adjust our
forecasts using a threshold-AR(1) model for the residuals
obtained from the cross-sectional deterministic regressions
(2)-(5). Contributing to existing literature, we set the
threshold to distinguish between residuals for respectively
put and call contracts, as they may render asymmetric
residual distributions. The threshold-AR(1) equation is
estimated using the following equation:

�w
i,t = �

�,w�w
i,t�1 + ⌘

w
i,t � 2 {✏, ", &},w 2 {put, call}, (7)

where i = 1, . . . ,N, with N the number of option contracts
available at day t, t = 1, . . . , 3776. The error term from the
cross-sectional regression for option contract i at day t on
its respective deterministic model is denoted by �i,t.

Using our estimated residual coe�cients, we correct our
in-sample fit of the IVS by including the lagged error term
in the following equation:

�̂i,t =

JmX

jm=1

�̂ jm,t I jm,i,t + �̂
�,w�i,t�1

m 2 {(2), (3), (5)}, � 2 {", &} and w 2 {put, call},
(8)

where jm is the factor index of the Jm-factor deterministic
GLS model denoted by Equation m, for example for j(3) =
1, . . . , 7. Moreover, t = 1, . . . , 3776 and �̂�,w is estimated by
the threshold-AR(1) model given by Equation (7).

The estimated coe�cients are subsequently used in
our forecasting procedures, which will be described in the
following section.

3.2 Modelling the Dynamics of Index Option
IVS There exists a vast amount of literature that
proves strong predictability of the IVS shape using
simplified deterministic models, as mentioned in Section
1. Most relevant literature has focused on relatively simple
dynamic models as these often seem to outperform more
sophisticated models. Moreover, it is of importance to
fully grasp the extent to which our deterministic factors can
indeed capture the underlying dynamics of the IVS shape.
For this reason, we implement relatively straightforward
models to establish the linkage between our estimated
factor coe�cients and the implied volatility of index option
contracts for forecasting purposes.

The first dynamic model to be adopted is a univariate
AR(p) representation of the coe�cients extracted from the

6Note that we have investigated another approach where the five-factor model is only adjusted in terms of moneyness in a similar fashion as in the
nine-factor model, resulting in an eight-factor model. As the results generally did not outperform our other specifications, we have excluded it from this
report.
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cross-sectional GLS regressions. The autoregressive model
is given by the following equation:

�̂ jm,t = c jm +

pX

q=1

� jm,q�̂ jm,t�q + u jm,t

jm = 1, . . . , Jm and m 2 {(2), (3), (5)}
(9)

where t = 1, . . . , 3776 and jm is as previously defined.
This model, which we denote as �̂ � AR, is among the best
performing in forecasting the implied volatility of foreign
exchange rates options and could too prove to be useful
in forecasting the IVS of index options (Chalamandaris
and Tsekrekos, 2011). Contrary to them, we apply the
Bayes-Schwarz Information Criterion (BIC) to determine
the number of lags to be included in the model. To prevent
over-fitting our parameters, we allow for a maximum
number of three lags.

The second dynamic model that we impose will
be denoted as �̂ � VAR and corresponds to a vector
autoregressive model of order p for the estimated
coe�cients from the deterministic models. The equation
is structured as follows:

�̂m,t = c +
pX

q=1

�m,q�̂m,t�q + um,t m 2 {(2), (3), (5)}, (10)

for t = 1, . . . , 3776 and m denoting the respective
deterministic model. This model allows for
interdependence between the subsequent factors. Here,
we also determine the number of included lags using the
BIC, with a maximum of three.

For an alternative approach, which may render valuable
insights, we also investigate whether including a market
sentiment factor to our model significantly improves our
results in terms of forecasting accuracy. More specifically,
we investigate whether deviations from put-call parity help
improve forecasting results.

In theory, every pair of puts and calls of the same
underlying asset, strike price, and expiration date should be
equally priced and thus have the same implied volatility at
any given day. In practice, however, deviations from the
equality occur due to market imperfections and investor
preference towards a certain contract. One could argue
that these imperfections, which are mostly short-lived, are
caused by investors’ beliefs and expectations towards the
value of the underlying asset. Therefore, we view any
deviation from the put-call parity as in indicator for market
sentiment. A natural derivation from this logic is that lagged
deviations could very well influence implied volatilities of
options in the future.

It should be noted that for American-style option
contracts, put-call parity does not hold, as they allow for
early exercise. Nevertheless, we claim that this style of
option contracts still provide useful information in grasping
the time-variation of their implied volatilities. Cremers and
Weinbaum (2010) have previously shown that deviations
from put-call parity for American-style option contracts
contain relevant predictable power for the underlying equity
return. Since put-call parity does not hold for this style
of options, it should be evident that we do not view any

deviation as an unexploited arbitrage opportunity. Hence, to
avoid ambiguity, we refer to deviations instead of violations
from put-call parity.

Using interpolated option price data obtained from
OptionMetrics, we calculate the deviations in put-call parity
similarly to Amin et al. (2004) as follows:

VS i,t = IVcall
i,t � IV put

i,t , (11)

where i refers to pairs of call and put option contracts
and IVo

i,t (o 2 {put, call}) denotes the Black and Scholes
(1973) implied volatility. If a deviation is positive, we may
conclude that investors value calls higher than puts which
could be due to the expectation of a price increase in the
underlying asset and vice versa.

Thereafter, we apply principal component analysis to
reduce the dimensions and extract maximum variation from
the 100 contracts. This results in the 3776x1 eigenvector
�DPCP, which will henceforth be referred to as DPCP
(deviation from put-call parity).

The resulting model where we include DPCP to the
�̂ � VAR model is consequently referred to as �̂ � VARX
and is given by:

�̂m,t = c +
pX

q=1

�m,q�̂m,t�q +

sX

r=1

⇥r�
DPCP
t�r + zm,t

m 2 {(2), (3), (5)},
(12)

where the parameters are defined as in Equation (10)
including a maximum of three lags, determined by the BIC.

Finally, we adopt a Bayesian vector autoregressive
model, which we refer to as �̂ � BVAR. The equation is
as follows:

�̂m,t,B = c +
pX

q=1

�m,q,B�̂m,t�q + um,t m 2 {(2), (3), (5)},

(13)

where the parameters are defined as in Equation (10) and
we use the prior proposed by Doan et al. (1984).

3.2.1 The Statistical Value of Predictability

Using the provided models, it is of importance to assess the
predictability of the index option IVS. Each of the models
given by Equations (9)-(12) are estimated by ordinary least
squares (OLS) using a rolling window of 125 trading days
for forecast horizons of 1, 3, 5, and 10 days. The predicted
implied volatility of option contract i for forecast horizon
h is subsequently calculated, as denoted by the following
equation:

�̂i,t+h =

JmX

jm=1

�̂ jm,t+hI jm,i,t + �̂
�,w�i,t

m 2 {(2), (3), (5)}, � 2 {", &} and w 2 {put, call},
(14)

where the subscripts are as previously defined, �i,t is the
error term from the cross-sectional regression for option
contract i on its respective deterministic model, and �̂�,w is
estimated by the threshold-AR(1) model given by Equation
(7) using a rolling window of 125 trading days.
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To thoroughly assess the predictive power of
the proposed models, we compare their forecasting
performance to two benchmark models. The first
benchmark we employ is a “Strawman” random walk model
as used by Christo↵ersen et al. (2013) and Diebold and Li
(2006). This model is a naive approach in the sense that
tomorrow’s best prediction is that of today in terms of
factor coe�cients and is denoted by:

�̂m,t = �̂m,t�1

m 2 {(2), (3), (5)}. (15)

The second benchmark is a pure random walk (RW)
model of the implied volatility:

�̂i,t+h = �i,t, (16)

where i, t, and h are as previously defined.
The statistical value of predictability of our models is

evaluated using three metrics. The first two metrics are
the root-mean-square error (RMSE) and the mean absolute
error (MAE) of the predicted implied volatilities calculated
by Equation (14). The third metric is the mean correct
prediction of the direction of change (MCPDC), which
essentially measures the percentage of correct predictions
in terms of the direction of change in the implied volatility
for each option contract between time t and t � 1.7

3.2.2 The Economic Value of Predictability

To o↵er a complete analysis, we evaluate the economic
implications of our models’ forecasting abilities. In order
to achieve this objective, we apply a basic trading strategy,
which is similar to Bernales and Guidolin (2014). The
trading strategy is based on the rule that when our models
forecast a decrease (increase) of the implied volatility of
option contract i at time t+1, we sell (purchase) that contract
at the current day to potentially profit from this change in
its IV.

We proceed by constructing a trading portfolio based
on delta-hedged option strategies as we are not exposed
to any dangers caused by price changes in the underlying
index. Our delta-hedged positions are constructed by
trading appropriate volumes of the underlying index based
on the option delta.

We invest $1000 in each delta-hedged portfolio which
are re-balanced every day such that the $1000 investment
remains constant over time. Profits and losses are
consequently calculated and analysed. Note that these
profits are at best a lower bound for the actual profits that
traders would make (before transaction costs), due to the
sheer simplicity of our trading strategy.

Similar to Goncalves and Guidolin (2006), we assume
today’s index prices and interest rates to calculate option
price forecasts, since we lack one-day ahead predictions of
these. This assumption is fairly weak in our application,
as our trading portfolios are completely hedged against the
e↵ects of changes in the prices of the underlying index.

In constructing the delta-hedge portfolio, let Qt be the
number of option contracts written on the same underlying
index that should be traded following the trading rule

introduced above. Furthermore, let VDH
t be the total value

of all delta-hedged positions in the portfolio on day t, which
also depends on Qt. We can, therefore, write VDH

t as:

VD�H
t =

X

m2Qcall
t,+

(Cm,t � S t�
C
m,t) +

X

m2Qput
t,+

(Pm,t + S t�
P
m,t)�

X

m2Qcall
t,�

(Cm,t � S t�
C
m,t) +

X

m2Qput
t,�

(Pm,t + S t�
P
m,t),

(17)

where Qcall
t,+ (Qcall

t,� ) is the subset of call contracts that are
purchased (sold), Qput

t,+ (Qput
t,� ) is the subset of put contracts

that are purchased (sold), S t is the price of the underlying
index and �C

m,t(�P
m,t) is the absolute value of the call (put)

option delta. When the net value of the delta-hedged
portfolio is positive (i.e., VDH

t > 0), we purchase the
quantity XDH

t = $1000
VDH

t
in units of the delta-hedged portfolio,

for a total cost of $1000. Consequently, the one-day net
gain (GDH

t+1 ) is:

GDH
t+1 = XDH

t

2
666664
X

m2Qcall
t,+

((Ct+1
m � S t+1�

C
m,t) � (Cm,t � S t�

C
m,t))
3
777775

+XDH
t

2
666664
X

m2Qput
t,+

((Pt+1
m + S t+1�

P
m,t) � (Pm,t + S t�

P
m,t))
3
777775

+XDH
t

2
666664
X

m2Qcall
t,�

(�(Ct+1
m � S t+1�

C
m,t) + (Cm,t � S t�

C
m,t))
3
777775

+XDH
t

2
666664
X

m2Qput
t,�

(�(Pt+1
m + S t+1�

P
m,t) + (Pm,t + S t�

P
m,t))
3
777775

(18)

In case the net cost of the portfolio is negative (i.e.,
VDH

t < 0), we sell the quantity XDH
t = $1000

|VDH
t | in units of

the delta-hedged portfolio, which generates a cash inflow
of $1000. This sum is then invested at the daily risk-free
rate in addition to the initially available $1000. The net gain
results in GDH

t+1 +$2000 · (ert/252 �1), where GDH
t+1 is obtained

from Equation (18).
The price data of the underlying indices that are

used in constructing this trading strategy are obtained
from OptionMetrics. The risk-free rate is the one-month
Treasury bill rate at a daily frequency.

For comparative purposes, we construct benchmark
portfolios in our analysis. The first benchmark is the
Buy-and-Hold strategy, where we invest $1000 daily in
each of the four indices. The second is constructed by
passively holding an investment of $1000 at the risk-free
interest rate, which thus represents the time value of money.

Finally, we investigate the e↵ect of transaction costs on
our average daily abnormal returns. Battalio and Schultz
(2006) show that the e↵ective transaction cost of equity
options are on average 0.8 times the quoted bid-ask spread.
We extrapolate this finding to index options. This means
that for each trade that we make in our strategy, we impose
a transaction cost of 0.8 times the bid-ask spread of that
trade.

7RMS E =
q

1
n
Pn

t=1 e2
t ; MAE = 1

n
Pn

t=1 |et |; MCPDC = 1
n
Pn

t=1 1t,(sign(�i,t+1��i,t)=sign(�̂i,t+1��i,t))
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Table 2: Results of Cross-Sectional Regressions on Deterministic Model Specifications

5-factor GLS Av. R2 Max. R2 Min. R2 �̂0 �̂1 �̂2 �̂3 �̂4

DJX 71.70 97.82 25.59 99.84 93.96 84.67 99.92 80.11
NDX 73.24 98.22 15.67 100.00 95.68 84.16 99.95 83.85
SPX 72.42 97.47 15.25 100.00 97.91 88.22 100.00 88.00
RUT 73.67 98.86 4.27 99.97 91.60 77.97 99.39 81.70

7-factor GLS Avg. R2 Max. R2 Min. R2 �̂1 �̂2 �̂3 �̂4 �̂5 �̂6 �̂7

DJX 77.03 97.89 38.15 100.00 100.00 67.19 91.84 76.46 61.47 92.11
NDX 78.72 98.64 19.88 100.00 99.89 76.67 89.49 82.44 67.69 91.21
SPX 76.66 98.27 18.63 100.00 100.00 78.71 92.80 79.82 71.29 96.56
RUT 77.87 98.91 5.23 98.81 98.12 77.15 80.32 70.47 56.14 91.10

9-factor GLS Avg. R2 Max. R2 Min. R2 �̂1 �̂2a �̂2b �̂3a �̂3b �̂4 �̂5 �̂6 �̂7

DJX 77.77 97.99 41.31 100.00 99.84 100.00 47.72 67.80 90.55 75.45 61.12 88.74
NDX 79.17 98.75 28.84 100.00 98.60 99.95 68.06 78.89 88.29 80.96 66.26 88.90
SPX 77.31 98.49 20.20 100.00 99.92 100.00 63.67 79.05 91.45 79.50 72.09 92.53
RUT 78.38 98.92 10.50 98.73 95.84 98.17 57.73 77.41 78.36 69.76 55.22 86.31

Notes: The table reports the average, maximum, and minimum R2 obtained by applying generalised least squares (GLS) to our 5-, 7-, and 9-factor deterministic models
given by Equations (2), (3), and (5), respectively. In these regressions, � of Equations (3) and (5) is fixed after applying non-linear least squares to our seven- and nine-factor
models. The chosen � varies around 5.00 for each dataset. The table also reports the percentage of significant factor coe�cients within each model and index option dataset.
The data cover the period between January 1, 2003, and December 31, 2017.

4 Results and Discussion

4.1 Modelling the Implied Volatility Surface
Our deterministic models are evaluated using recursive
cross-sectional generalised least squares (GLS). In these
regressions, � of Equations (3) and (5) is fixed after
applying non-linear least squares to our seven- and
nine-factor models. The chosen � varies around 5.00 for
each dataset.

In-sample statistics are given in Table 2, which consists
of measures for the goodness of fit and the percentage of
significant coe�cients for each of the factors within each
deterministic model.

Similarly to the findings of Chalamandaris and
Tsekrekos (2011) for currency options, their seven-factor
model renders a significantly higher average in-sample
R2. Moreover, both the maximum and minimum variance
explained are higher for all index options compared to
the five-factor model. Our newly proposed nine-factor
model does increase the R2 of the seven-factor model as
expected. The model even significantly outperforms the
simpler models in terms of minimum R2. Impressively, the
minimum R2 for the Russell 2000 index options given this
model is more than double that of the five-factor model. A
slight increase of the maximum R2 is observed compared to
the seven-factor model.

Among all models and datasets, we observe that all
coe�cients are significant at a 10% significant levels most
of the time. As expected, the level coe�cient is most
significant of all, as it is the principal constituent of the
implied volatility level.

The right “smile” seems to exhibit a more significant
e↵ect on the determination of implied volatility than
the left “smile” as shown by the seven-factor coe�cient
results. When separating the corner moneyness regions
from the more ATM regions in the nine-factor model,
we find an interesting imbalance between ATM and OTM
option contracts. Table 2 shows that the reduction in the
significance of the left “smile” is mainly due to ATM option

contracts as �̂3a is on average less significant than �̂3b. Still,
we notice that the right “smile” factor is on average more
significant. Also, the di↵erence between OTM and ITM
contracts is less pronounced for this region. From these
observations, we may conclude that the “smile” factor is
on average more pronounced for ITM calls and OTM puts.

The term-structure e↵ects also become apparent from
this table, where we find a strong di↵erence in significance
between short- and medium-term maturities. The implied
volatility is on average more significantly determined by the
former. This could, however, be influenced by the choice of
�.

Interestingly, the interaction term between maturities
and “smile” shows a strong di↵erence between left and
right “smiles” in both the seven- and nine-factor model.
One could investigate how results would change when
introducing interaction terms by separating terms for
several maturity regions as well.

We winsorize the estimated coe�cients by 0.50 percent
to correct for the strong influence of outliers in our dynamic
forecasting procedures. Figure 7 in Appendix B plots the
daily evolution of these coe�cients, averaged over our
four index option datasets. Generally, we find similar
patterns of the estimated coe�cients between all models,
while they follow closely together for the seven- and
nine-factor models. It becomes apparent that all factors
are significantly time-varying, as expected. Panels (b) and
(c) show a convolution between the factors for ATM and
OTM options while identifying a distinct di↵erence in their
values. Panels (d) and (e) also show strong asymmetry
between short- and medium term contracts, as the values
of their factor coe�cients di↵er significantly. From these
observations, it becomes evident that our nine-factor model
specification is reasonable.

To further evaluate the in-sample fit of our
deterministic models, we construct plots of the percentage
root-mean-square error (RMSE) for both moneyness
regions and maturity regions. The moneyness (�) regions,
which range from region 1 through 6 are as follows:
�50 < �  �37.5; �37.5 < �  �12.5; �12.5 < �  0;
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Figure 2: This figure shows four plots of the average root-mean-square error (RMSE); two over six moneyness regions (Panels (a) and (c)) and two over six maturity
regions (Panels (b) and (d)), obtained from fitting the 5-, 7-, and 9-factor deterministic models given by Equations (2), (3), and (5) using generalised least squares (GLS).
Panels (a) and (b) present the RMSEs before correcting for our in-sample error terms with the use of a threshold-AR(1) model, given by Equation (7). Panels (c) and (d) shows
the RMSEs after this correction. The RMSEs are averaged over our di↵erent index options datasets, which cover the period between January 1, 2003, and December 31,
2017, is given. The moneyness (�) and maturity (⌧) regions are depicted as follows: �50 < �  �37.5; �37.5 < �  �12.5; �12.5 < �  0; 0 < �  12.5; 12.5 < �  37.5;
37.5 < �  50. 6 < ⌧  60; 60 < ⌧  120; 120 < ⌧  180; 180 < ⌧  240; 240 < ⌧  320; 320 < ⌧.

0 < �  12.5; 12.5 < �  37.5; 37.5 < �  50. The
six maturity (⌧) regions are separated in a similar equally
spaced manner: 6 < ⌧  60; 60 < ⌧  120; 120 < ⌧  180;
180 < ⌧  240; 240 < ⌧  320; 320 < ⌧. We distinguish
between the three deterministic models but take the average
RMSE of our four datasets for each region.

These RMSEs are visualised in Figure 2, where the
average RMSE per moneyness region and maturity region
are given respectively in Panel (a) and Panel (b). From
this figure, we notice a clear “smile” shape in the RMSEs
over the moneyness regions for all deterministic models,
showing that they clearly fail to capture the non-linearity
in the corner regions in this dimension. Nevertheless, we
perceive lower RMSEs when including more factors in our
models. The nine-factor model specifically produces the
lowest errors across all moneyness regions. The figure
also displays relatively low RMSEs between regions two
and five, meaning that the models do capture a large
extent of the IVS shape for these regions. Furthermore,
we observe relatively large RMSEs for very short-term
maturities, while flattening out for larger days to maturity.
In terms of maturity, the extended models produce a better
overall fit in terms of residuals compared to simpler models.
Given the maturity regions, the nine-factor model obtains
the lowest average root-mean-square errors. Both plots
taken together still show however an alarmingly non-linear
shape, for which inevitably has to be corrected.

As discussed in Section 3.1, we therefore explicitly

model the error terms from the GLS regressions while
separating put and call option contracts, as specified by
Equation (7). The e↵ective residuals of the adjusted IVS
fit now equal to ⌘w

i,t, as denoted by the stated equation.
Panel (c) and Panel (d) in Figure 2 show that modelling the
GLS residuals via our threshold-AR(1) model drastically
improves our fit in the corner regions. Specifically,
the OTM/ITM regions present significantly lower average
root-mean-square errors. In the outer corner regions, we
namely achieve a decrease of over 40 percent. Also, the
middle regions seem to flatten out somewhat as well, along
with an overall decrease in RMSE. Taken together, we
find a less significant “smile” shape along the moneyness
regions. The in-sample correction using our dynamic error
term model also improves the fit along the maturity regions.
We clearly observe straighter lines in Panel (d) compared
to Panel (b), especially for the short-term maturities. We
thus find a strong flattening e↵ect over the fitted implied
volatility surfaces when using our threshold-AR(1) model
for the residuals. As this correction renders such significant
improvements, which are in line with previous research,
we apply it to all of our forecasting results.8 It must be
noted that, due to this strong correction, the di↵erences in
performance across our three deterministic models are less
apparent. Nevertheless, performance comparisons remain
feasible.

In conclusion, we find that our nine-factor model
produces the best fit among the deterministic models,

8We have investigated the e↵ect of including the lagged error term in our forecasts and concluded that it always significantly improves our results.
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having the highest average, minimum, and maximum R2

for all indices. Moreover, the model produces the lowest
root-mean-square errors for all moneyness and maturity
regions. Finally, the coe�cients for moneyness corner

regions seem to di↵er significantly from more centred
regions. In sum, we may argue that our nine-factor
model delivers the best in-sample description of the implied
volatility surface among previously proposed models.

4.2 Modelling the Dynamics of Index Option
IVS

4.2.1 The Statistical Value of Predictability

We assess the statistical forecasting performance of our
dynamic models for each of the three deterministic GLS
models. The results of our discussed methodology of
Section 3.2 are presented in Table 3. The table shows the
percentage RMSE, MAE, and MCPDC for every model in
four panels. For each statistical measure, the percentage
of decrease compared to the relatively simpler model is
given in parentheses. The seven-factor model is thus
compared to the five-factor model and the nine-factor model
is subsequently compared to the seven-factor model. A
negative percentage can be considered an improvement in
terms of RMSE and MAE, while the converse is true for
the MCPDC as it corresponds to a relative decrease in the
calculated statistic. Panels A, B, C, and D display results

for respectively Dow Jones, Nasdaq, S&P 500, and Russell
2000 index options.

Most noticeable is the fact that the RMSE is
significantly smaller for the seven- and nine-factor models
compared to the five-factor model of Goncalves and
Guidolin (2006) across all tickers, showing the e↵ectiveness
of our term structure specification. The di↵erence in
RMSE between the former two models is, however, less
pronounced. Only the Bayesian VAR for all tickers and the
AR model for SPX and RUT deliver a lower RMSE for the
9-factor model compared to the model of Chalamandaris
and Tsekrekos (2011). We must note, however, that the AR
model performs worse for the seven-factor model compared
to its simpler specification. The nine-factor model does
not exhibit such a large di↵erence and even performs better
than the five-factor model in this case. Among our dynamic
models, the Strawman random walk performs best in terms
of our root-mean-square errors, with only one exception.

The five-factor model is also beaten by our other

Table 3: Statistical Measures of Predictability

5-factor GLS 7-factor GLS 9-factor GLS

RMSE (%) MAE (%) MCPDC (%) RMSE (%) MAE (%) MCPDC (%) RMSE (%) MAE (%) MCPDC (%)

Panel (a): DJX Options
AR 3.60 1.86 53.02 2.69(-25.30) 1.75 (-5.77) 52.74 (-0.53) 2.70 (0.57) 1.75 (0.01) 52.72 (-0.03)
VAR 3.57 1.86 54.35 2.33(-34.84) 1.30(-29.70) 53.78 (-1.04) 2.36 (1.51) 1.32 (1.17) 53.63 (-0.28)
VARX 3.57 1.86 54.31 2.33(-34.78) 1.31(-29.75) 53.86 (-0.82) 2.36 (1.54) 1.32 (1.14) 53.72 (-0.26)
Bayesian VAR 3.93 2.14 53.96 3.45(-12.17) 2.35 (9.62) 53.54 (-0.78) 3.34 (-3.29) 2.24 (-4.53) 53.31 (-0.43)
Strawman random walk 3.31 1.86 52.77 1.88(-43.16) 1.04(-44.33) 52.65 (-0.21) 1.88 (0.24) 1.03 (-0.27) 52.81 (0.30)

Pure random walk 3.29 1.27 56.01

Panel (b): NDX Options
AR 2.74 1.44 53.02 2.28(-16.95) 1.34 (-6.72) 53.88 (1.63) 2.26 (-0.83) 1.32 (-1.63) 53.85 (-0.07)
VAR 2.73 1.43 53.24 1.92(-29.61) 1.02(-28.93) 53.30 (0.12) 1.95 (1.81) 1.04 (2.65) 52.72 (-1.09)
VARX 2.73 1.43 53.22 1.93(-29.43) 1.02(-28.60) 53.15 (-0.14) 1.96 (1.91) 1.05 (2.58) 52.61 (-1.01)
Bayesian VAR 3.07 1.70 52.30 2.94 (-3.93) 1.82 (7.22) 52.70 (0.76) 2.88 (-2.25) 1.77 (-3.05) 52.44 (-0.49)
Strawman random walk 2.66 1.46 51.89 1.51(-43.11) 0.80(-45.17) 51.95 (0.11) 1.52 (0.42) 0.80 (-0.34) 52.24 (0.55)

Pure random walk 3.11 1.26 52.83

Panel (c): SPX Options
AR 3.13 1.73 53.03 3.77 (20.74) 2.92 (68.29) 52.77 (-0.50) 2.17(-42.51) 1.39(-52.53) 54.64 (3.55)
VAR 3.13 1.75 53.44 2.02(-35.38) 1.20(-31.42) 54.35 (1.70) 2.05 (1.51) 1.21 (0.87) 54.09 (-0.49)
VARX 3.14 1.75 53.40 2.03(-35.23) 1.20(-31.34) 54.28 (1.66) 2.06 (1.39) 1.22 (0.97) 54.05 (-0.42)
Bayesian VAR 3.49 2.03 53.89 2.91(-16.55) 1.92 (-4.97) 54.27 (0.71) 2.78 (-4.65) 1.81 (-5.84) 53.90 (-0.68)
Strawman random walk 2.55 1.76 51.87 1.63(-36.16) 0.92(-47.73) 51.71 (-0.31) 1.62 (-0.90) 0.90 (-1.55) 52.05 (0.66)

Pure random walk 3.47 1.41 53.49

Panel (d): RUT Options
AR 2.72 1.51 53.97 2.43(-10.57) 1.53 (1.66) 53.75 (-0.42) 2.41 (-1.10) 1.51 (-1.59) 53.72 (-0.05)
VAR 2.65 1.45 54.48 1.97(-25.63) 1.10(-24.28) 54.22 (-0.48) 2.00 (1.67) 1.11 (0.67) 54.27 (0.10)
VARX 2.66 1.46 54.46 1.98(-25.38) 1.11(-24.15) 54.18 (-0.53) 2.01 (1.62) 1.12 (0.79) 54.29 (0.21)
Bayesian VAR 3.00 1.75 53.54 3.11 (3.62) 2.01 (14.49) 53.42 (-0.22) 3.03 (-2.67) 1.95 (-2.84) 53.41 (-0.03)
Strawman random walk 2.53 1.49 52.78 1.65(-34.85) 0.91(-39.08) 52.65 (-0.23) 1.65 (0.30) 0.91 (-0.32) 52.92 (0.50)

Pure random walk 2.86 1.10 55.66

Notes: The table contains the out-of-sample statistical measures of predictability to evaluate the forecasting performance of five dynamic models for Dow Jones, Nasdaq,
S&P 500, and Russell 2000 index options across three di↵erent deterministic models. The dynamic models include an AR, VAR, VARX, Bayesian VAR, given by Equations (9)
- (13). The AR, VAR, and Bayesian VAR models take into account the lagged dynamics of the implied volatility surface of our index options. The VARX model extends these
dynamics by including a factor representing the global dynamics of deviations in put-call parity obtained by principal component analysis. The Strawman random walk and
pure random walk models of Equations (15) and (16) are included as benchmarks. The three deterministic models include the five-, seven-, and nine-factor deterministic GLS
models given by Equations (2), (3), and (5), respectively. The statistical measures include the root-mean-square error (RMSE), mean absolute error (MAE), and the mean

correct prediction of the direction of change (MCPDC). RMS E =
q

1
n
Pn

t=1 e2
t ; MAE = 1

n
Pn

t=1 |et |; MCPDC = 1
n
Pn

t=1 1t,(sign(�i,t+1��i,t )=sign(�̂i,t+1��i,t )). We calculate these
statistics for both the GLS while correcting for our residuals obtained from applying generalised least squares (GLS) to our deterministic model. This correction is applied
by modelling these residuals using a threshold-AR(1) model given by Equation (7). The data cover the period between January 1, 2003, and December 31, 2017.
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Figure 3: This figure shows two plots of the average root-mean-square error (RMSE); one over six moneyness regions (Panel (a)) and one over six maturity regions (Panels
(b)), obtained from forecasting the implied volatility surface using a dynamic VAR model on the estimated coe�cients obtained from the 5-, 7-, and 9-factor deterministic
models given by Equations (2), (3), and (5) using generalised least squares (GLS). The RMSEs are averaged over our di↵erent index options datasets, which cover the period
between January 1, 2003, and December 31, 2017, is given. The moneyness (�) and maturity (⌧) regions are depicted as follows: �50 < �  �37.5; �37.5 < �  �12.5;
�12.5 < �  0; 0 < �  12.5; 12.5 < �  37.5; 37.5 < �  50. 6 < ⌧  60; 60 < ⌧  120; 120 < ⌧  180; 180 < ⌧  240; 240 < ⌧  320; 320 < ⌧.

specifications in terms of the MAE, except for the �̂ � AR
models in Panels (c) and (d). The MAE of the �̂ � BVAR
model is also slightly larger in Panel (d). The extended
models thus show value in terms of relative improvement
in forecasting precision. Again, we find the generally best
performing dynamic model to be the Strawman random
walk. The Bayesian VAR model is, however, beaten by
all other dynamic models. It must be noted that the pure
random walk outperforms our dynamic models for the
five-factor model across all tickers.

Finally, the MCPDC shows inconclusive results. The
seven-factor model has a worse MCPDC in Panel (a)
compared to the simpler deterministic model. Our
nine-factor model does not generally improve this result,
as only a larger MCPDC is observed for the Strawman
random walk of a 0.50 percent increase on average across
all panels. A noteworthy result is the one percent increase
in MCPDC in panel B for the seven-factor model compared
to the five-factor model. Interestingly, among our dynamic
models, the MCPDC is highest for our �̂ � VAR and
�̂ � VARX. Some exceptions are noticed for the �̂ � AR
and �̂ � BVAR. A case in point is the MCPDC 53.89
percent for the latter dynamic model in Panel (c) using the
estimated factor coe�cients of the five-factor model. The
pure random walk outperforms all models in Panels (a) and
(d). Half of the time, however, this model is defeated by the
dynamic models for NDX and SPX index options.

Although we do not observe a stronger forecasting
performance by including the DPCP factor within our
�̂ � VARX model, the variance explained within the first
principal component is higher than 81 percent for all
tickers. One would, therefore, expect that there exists a
strong global dynamic across all contracts in terms of these
deviations from put-call parity.

Furthermore, Figure 3 shows the root-mean-square
errors averaged over all dataset for six moneyness and
maturity regions. Due to the ease of comprehension and
superior performance among the dynamic models, we focus
only on �̂�VAR. The average RMSE per moneyness region
and maturity region are given respectively in Panel (a) and
Panel (b). Pre-eminently, we find that both the seven-
and nine-factor model outperforms the five-factor model
for all regions in both panels. Panel (a) presents a slight

overall lower RMSE for the nine-factor model, compared
to the model of Chalamandaris and Tsekrekos (2011). This
shows that our proposed model indeed somewhat improves
on capturing the dynamics of the moneyness dimension.
It does not, however, clearly outperform the seven-factor
model in terms of maturity, as would be expected due to its
similar specification. From the panel (a), we observe a clear
“smile” shape in the RMSEs over the moneyness regions for
all deterministic models, similar to our in-sample results
of Section 3.1. We find similar patterns in residuals
obtained from our one-day ahead forecasts compared to
our in-sample fit. Hence, our three models still fail to
accurately predict the corner regions compared to ATM
option contracts. Finally, the di↵erence between the
five-factor model and our more sophisticated models has
become more apparent in our forecasts. However, our
models are still to be improved if we aim to describe and
forecast the corner regions of the IVS shape well.

To grasp the forecasting performance for larger
horizons, we report the percentage RMSE for each ticker
and deterministic model for a one-day up until and
including ten-day horizons. Focusing only on �̂ � VAR,
the results are visualised in Figure 4. From this figure,
we immediately notice the fact that all deterministic
models mostly outperform the pure random walk for higher
forecasting horizons. Some exceptions are observed,
especially for the seven-factor model using NDX options
and the nine-factor model using RUT options. Both cases
seem to diverge from the other models around a forecasting
horizon of five days. The fact that the five-factor model
is outperformed by our extended models until a horizon of
seven days for DJX and SPX options is very promising.
This also applies to our NDX and RUT options, although
until a horizon of three days.

In sum, we find the model proposed by Chalamandaris
and Tsekrekos (2011) to significantly improve our
forecasting results in terms of RMSE and MAE compared
to the model of Goncalves and Guidolin (2006). Moreover,
the performance of our proposed nine-factor specification
matches closely to the seven-factor model and in some
cases significantly improves forecasting results for larger
forecasting horizons.
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Figure 4: This figure shows four plots of the root-mean-square error (RMSE) obtained by the use of a VAR (Equation (13)) and pure random walk (Equation (16)) model
for each of our three deterministic IVS models. The latter include the five-, seven-, and nine-factor deterministic GLS models given by Equations (2), (3), and (5), respectively.
Results are given for each of our four index option datasets. From Panels (a)-(d), these include Dow Jones (DJX), Nasdaq (NDX), Standard and Poor’s 500 (SPX), and
Russell 2000 (RUT). The RMSEs are given for forecast horizons one through ten days.

4.2.2 The Economic Value of Predictability

Building upon our findings in a statistical sense, we
investigate the economic value of our proposed models.
For this, we apply the methodology of Section 3.2.2. Our
delta-hedged trading results, along with our benchmarks
are reported in Table 4. The results consist of the average
daily profit, its standard deviation, and the Sharpe ratio
of our portfolios. The table shows the superiority of our
dynamic models over both the Buy-and-Hold and Treasury
bill benchmark portfolios. As expected, both the time value
of money and the average risk-less rate are close to zero.
Across all deterministic and dynamic models, we obtain
significant abnormal returns, which is in line with findings
of previous literature (e.g. Bernales and Guidolin (2014)).

The mean profit is generally highest for the seven-factor
GLS model. While mostly showing similar returns as our
nine-factor model, it significantly improves the result of the
five-factor model of Goncalves and Guidolin (2006). The
nine-factor model outperforms its simpler models merely
for Russell 2000 options, among several exceptions. The
Strawman random walk mostly renders the lowest average
daily returns among all dynamic models. Our conclusions
on the other dynamic models remain mixed, as none
consistently outperforms their alternatives.

Conversely, the five-factor model is not outperformed
by the other deterministic models in terms of risk-adjusted
returns. Most notably, the Bayesian VAR model performs
worst for our extended models. �̂ � BVAR also renders the
lowest average daily returns among all dynamic models.

Both the VAR and VARX models stand out in terms of
their risk-adjusted returns. Interestingly, �̂ � VARX has on
average a higher Sharpe ratio than the �̂ � VAR. Involving
the market sentiment factor, therefore, seems moderately
valuable in obtaining risk-adjusted abnormal returns.

To further evaluate the economic value of our
deterministic models and investigate the most profitable
trading regions, we construct plots of the percentage
daily average profit for both moneyness regions and
maturity regions. These regions are identical to those
of Section 4.1 and, consistent with Figure 4, we report
results obtained from our VAR model. The average daily
profits are averaged over our four index option datasets
while distinguishing between our three deterministic GLS
models. From Panel (a) in Figure 5, we find that ITM
calls and OTM puts are most profitable given our trading
strategy. For ITM puts and OTM calls, however, we
obtain on average negative results, ante transaction costs.
Although the plot exhibits strong non-linearity, we observe
no “smile” shape. Panel (b) of this figure, given the maturity
regions, displays a similar shape as in Panel (b) of Figure
2. The short-term option contracts show significantly
larger average daily profits than for longer maturities, while
these have been recognised to be subject to the largest
in-sample root-mean-square errors. This could be due to
the comparatively larger variance, as previously shown in
Table 1.

Clearly, our seven-factor and nine-factor models
outperform the simplest deterministic model for nearly
all moneyness and maturity regions. We may, therefore,
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Table 4: Economic Measures of Predictability (before transaction costs)

5-factor GLS 7-factor GLS 9-factor GLS

Mean St.dev. Sharpe Mean St.dev. Sharpe Mean St.dev. Sharpe
Profit (%) Profit (%) Ratio (%) Profit (%) Profit (%) Ratio (%) Profit (%) Profit (%) Ratio (%)

Panel (a): DJX Options
AR 1.45 11.89 12.19 3.02 24.40 12.38 3.11 24.40 13.28
VAR 2.73 16.88 16.12 2.98 18.48 16.12 2.57 17.11 15.00
VARX 2.65 16.30 16.20 3.30 18.85 17.48 2.79 18.59 15.00
Bayesian VAR 2.37 14.77 15.99 2.34 40.32 5.80 3.12 41.94 7.42
Strawman random walk 1.52 15.06 10.09 1.85 12.55 14.71 2.15 14.41 14.87

Buy-and-hold 0.03 1.07 2.79

Panel (b): NDX Options
AR 5.35 34.80 15.37 9.50 62.56 15.18 6.89 48.82 14.10
VAR 5.68 30.90 18.37 4.39 28.97 15.14 3.78 28.00 13.49
VARX 4.88 24.84 19.64 4.07 29.01 14.00 4.11 32.46 12.63
Bayesian VAR 4.93 26.62 18.51 5.64 49.23 11.44 4.99 47.98 10.39
Strawman random walk 3.72 8.42 13.93 2.68 23.27 11.48 2.80 22.63 12.36

Buy-and-hold 0.06 1.31 4.08

Panel (c): SPX Options
AR 4.64 23.36 19.86 4.79 102.34 4.68 5.16 37.84 13.62
VAR 6.36 30.82 20.62 3.44 19.42 17.69 2.99 23.11 12.93
VARX 5.10 24.54 20.78 4.40 25.41 17.30 3.07 21.64 14.16
Bayesian VAR 3.84 22.99 16.67 3.18 36.01 8.80 3.32 34.93 9.49
Strawman random walk 4.51 11.40 18.85 2.90 17.91 16.17 2.67 15.97 16.72

Buy-and-hold 0.04 1.16 3.29

Panel (d): RUT Options
AR 2.28 19.18 11.88 4.98 38.32 12.98 6.63 48.56 13.64
VAR 3.81 22.60 16.84 3.67 21.95 16.70 4.02 25.16 14.18
VARX 3.74 23.60 15.83 3.50 21.56 16.23 4.34 26.52 16.33
Bayesian VAR 2.76 18.55 14.88 4.21 79.80 5.27 4.32 84.83 5.08
Strawman random walk 2.37 22.83 10.34 2.09 17.05 12.25 2.47 17.37 14.18

Buy-and-hold 0.05 1.49 2.91

Panel (e): Benchmark
T-Bill 0.05 0.06 0.00

Notes: The table contains the out-of-sample delta-hedge trading results before transaction costs to evaluate the economic value of five dynamic models for Dow Jones,
Nasdaq, S&P 500, and Russell 2000 index options across three di↵erent deterministic models (see Section 3.2.2). The data cover the period between January 1, 2003, and
December 31, 2017. The dynamic models include an AR, VAR, VARX, Bayesian VAR, given by Equations (9) - (13). The AR, VAR, and Bayesian VAR models take into account
the lagged dynamics of the implied volatility surface of our index options. The VARX model extends these dynamics by including a factor representing the global dynamics of
deviations in put-call parity obtained by principal component analysis. The Strawman random walk of (15) is included as the dynamic benchmark. Two other benchmarks
are included: a riskless daily investment in the index options which we denote as the Buy-and-Hold strategy and an initial investment worth 1000$ in Treasury bills. The latter
results in the time value of money. The three deterministic models include the five-, seven-, and nine-factor deterministic GLS models given by Equations (2), (3), and (5),
respectively. The economic measures include the average daily percentage return, its standard deviation, and the risk-adjusted return (Sharpe ratio). In obtaining our trading
results, we use our implied volatility forecasts which are corrected using residuals obtained from applying generalised least squares (GLS) to our deterministic model. This
correction is applied by modelling these residuals using a threshold-AR(1) model given by Equation (7).

conclude that the more extensive models are of higher
economic value than the model of Goncalves and Guidolin
(2006).

Despite the fact that all our models produce significant
risk-adjusted abnormal returns, we have yet to establish
whether these are due to the exclusion of transaction
costs. As suggested by Battalio and Schultz (2006) we
thus include transaction costs in our trading strategies of
0.8 times the quoted bid-ask spread. From Table 5 in

Appendix C we immediately notice that both our average
and risk-adjusted returns su↵er significantly from these
transaction costs. As expected, we now fail to deliver
positive abnormal returns. The comparisons between our
models stay roughly similar. Nonetheless, we deliver
trading results of a highly simplified strategy. These should,
therefore, serve as a mere lower-bound for the expected
results obtained by experienced traders who have more
sophisticated algorithms and means to process information.

5 Conclusion and Further Research
Currently, there exists a plethora of literature revolving
around the modelling of the highly non-linear shape of
implied volatility surfaces. The ability to exploit this
non-flat shape to the benefit of academic knowledge, risk
management, or augmenting trading performance seems to
attract professionals in their respective fields to investigate
the matter at hand.

Within this research, we have built upon previous
literature focusing on applying parametric models in order
to describe the “smile/smirk” shape of the surface in terms

of option moneyness and expiration time. More specifically,
we applied the deterministic models of Goncalves and
Guidolin (2006) and Chalamandaris and Tsekrekos (2011)
to four index option datasets. Additionally, we proposed
a nine-factor model, that extends the seven-factor model
of the latterly named authors. Alongside modelling the
outer regions of maturity, it focuses on capturing the strong
asymmetries in implied volatility between At-The-Money
and Deep In(Out)-The-Money put and call options.

We have shown that both extended models result in
a better overall fit of the surface in terms of variance
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Figure 5: This figure shows two plots of the percentage average daily return from our delta-hedged portfolios, as obtained by our dynamic VAR model (Equation (10)).
These profits are plotted against six moneyness regions (Panel (a)) and over six maturity regions (Panel (b)). The calculated returns result from applying our delta-hedge
strategy to our �̂ � VAR forecasts after fitting the 5-, 7-, and 9-factor deterministic models given by Equations (2), (3), and (5) using generalised least squares (GLS). These
forecasts are constructed by use of a threshold-AR(1) model, given by Equation (7). The average daily profits are averaged over four index options datasets, which cover the
period between January 1, 2003, and December 31, 2017. The four datasets consist of Dow Jones, Nasdaq, S&P 500, and Russell 2000 index options. The moneyness (�)
and maturity (⌧) regions are depicted as follows: �50 < �  �37.5; �37.5 < �  �12.5; �12.5 < �  0; 0 < �  12.5; 12.5 < �  37.5; 37.5 < �  50. 6 < ⌧  60;
60 < ⌧  120; 120 < ⌧  180; 180 < ⌧  240; 240 < ⌧  320; 320 < ⌧.

explained and average residuals. As the nine-factor model
has been proven to best describe the implied volatility
surface in terms of in-sample fit, we may conclude
that our specification is sensible and highly promising.
It seems to describe the time-variation of the IVS in
terms of moneyness somewhat better than the model of
Chalamandaris and Tsekrekos (2011). In obtaining these
results, we have applied generalised least squares (GLS)
after fixing the decay rate for maturities within our seven-
and nine-factor models. None of the models can, however,
fully capture the non-linearity in the IVS in corner regions.
Therefore, we have explicitly modelled the residuals with
their lag while accounting for asymmetry in dynamics
between put and call options, which drastically improved
both in- and out-of-sample results.

Several popular dynamic models have been used
to determine the out-of-sample statistical performance
across our three deterministic models, along with simple
benchmarks. We have shown that the seven-factor
model significantly improves the general performance of
the five-factor model for one-day ahead forecasts and
larger horizons. The nine-factor model has shown to
render similar results. Moreover, our dynamic models
mostly outperform the benchmarks in terms of forecasting
accuracy.

Our models generally prove to be promising in terms
of their economic applicability. We have illustrated this
by applying a simple delta-hedge strategy based on our
IVS forecasts. Before transaction costs, all our models
produce significantly positive abnormal risk-adjusted
returns, outperforming well-known benchmarks. While
these returns all become negative after imposing transaction
costs, we may conclude that our models produce strong
results. In reality, traders have more means and experience
to process information and stronger trading algorithms
that may produce better forecasts and strategies. Our
results are, therefore, mainly illustrative of general model
performance. Interestingly, we have found significant
di↵erences in average daily returns over both moneyness
regions and maturity regions. ITM call options, OTM put
options, and short-term maturity options have shown to be

most profitable.
In conclusion, our results o↵er valuable contributions

to existing literature. Firstly, we may conclude that it
makes sense to explicitly model both the term structure
and moneyness of index options as it provides better
overall results than the simple five-factor model. Although
the nine-factor model does not significantly improve on
existing literature in terms of forecasting accuracy, it
provides the best in-sample performance. Using our
nine-factor model as a new baseline, one could investigate
further refinements in modelling the moneyness dimension
of the IVS. Secondly, ensuing research could focus on
the exploitation of the asymmetry of corner regions in
both maturity and moneyness dimensions, as this may
be specifically helpful in obtaining abnormal returns.
Finally, one could investigate further the constituents of the
time-varying non-linear shape of the surface as these may
originate from the dynamics of both macroeconomic factors
and individual underlying stocks.
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Appendices
A Data

Figure 6: This figure shows four plots of the standard deviation of the implied volatility surface (IVS) for each of our index option datasets on a given date. From Panel (a)
to Panel (d): Dow Jones (DJX), Nasdaq (NDX), Standard and Poor’s 500 (SPX), and Russell 2000 (RUT). The IVS plots are given on a di↵erent date for each index. In the
same order: 2006-01-31, 2008-01-31, 2012-01-31, and 2014-01-31.
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B Modelling the Implied Volatility Surface

Figure 7: This figure plots the evolution of the estimated and 0.50 percent winsorized factor coe�cients obtained by applying generalised least squares (GLS) to our 5-,
7-, and 9-factor deterministic models given by Equations (2), (3), and (5), respectively. In these regressions, � of Equations (3) and (5) is fixed after applying non-linear least
squares to our seven- and nine-factor models. The chosen � varies around 5.00 for each dataset. Each panel is constructed to show similar patterns among similar factors.
The plots show the mean daily estimated coe�cients, averaged over our four datasets consisting of Dow Jones, Nasdaq, S&P 500, and Russell 2000 index options. The data
cover the period between January 1, 2003, and December 31, 2017.
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C The Economic Value of Predictability

Table 5: Economic Measures of Predictability (after transaction costs)

5-factor GLS 7-factor GLS 9-factor GLS

Mean St.dev. Sharpe Mean St.dev. Sharpe Mean St.dev. Sharpe
Profit (%) Profit (%) Ratio (%) Profit (%) Profit (%) Ratio (%) Profit (%) Profit (%) Ratio (%)

Panel (a): DJX Options
AR -2.22 14.35 -15.51 -1.99 26.68 -7.47 -1.81 25.08 -7.23
VAR -11.14 266.55 -4.18 -10.30 115.49 -8.92 -7.72 66.60 -11.59
VARX -34.81 1642.11 -2.12 -8.65 82.51 -10.48 -11.69 173.04 -6.76
Bayesian VAR -11.75 174.05 -6.75 -19.07 217.85 -8.76 -18.13 176.26 -10.29
Strawman random walk -11.96 144.87 -8.26 -8.63 156.34 -5.52 -5.73 31.27 -18.32

Panel (b): NDX Options
AR -4.79 76.00 -6.31 -12.22 291.36 -4.20 -10.99 252.28 -4.36
VAR -3.84 77.03 -4.99 -4.84 94.69 -5.12 -4.85 61.37 -7.91
VARX -3.31 76.46 -4.33 -5.14 81.35 -6.32 -6.66 121.74 -5.47
Bayesian VAR -9.87 269.63 -3.66 -8.98 175.22 -5.13 -9.23 131.43 -7.03
Strawman random walk -5.40 59.65 -9.07 -8.35 244.37 -3.42 -6.18 97.97 -6.32

Panel (c): SPX Options
AR -16.54 632.30 -2.62 -27.14 333.65 -8.14 -5.30 62.19 -8.53
VAR -6.60 129.31 -5.11 -6.55 157.58 -4.16 -4.05 55.27 -7.33
VARX -5.13 118.87 -4.32 -8.39 232.81 -3.60 -5.01 92.04 -5.45
Bayesian VAR -9.20 238.04 -3.87 -32.30 1210.65 -2.67 -10.12 135.46 -7.47
Strawman random walk -7.92 177.33 -4.47 -2.12 28.17 -7.53 -3.02 55.39 -5.46

Panel (d): RUT Options
AR -5.32 83.53 -6.38 -4.59 46.30 -9.93 -9.69 201.90 -4.80
VAR -4.26 53.10 -8.02 -6.05 234.37 -2.59 -6.64 132.05 -5.03
VARX -7.87 303.37 -2.59 -2.51 29.38 -8.55 -23.34 1109.07 -2.10
Bayesian VAR -4.95 67.55 -7.33 -28.38 450.51 -6.30 -49.34 892.21 -5.53
Strawman random walk -6.77 65.54 -10.34 -8.02 210.50 -3.81 -2.82 32.98 -8.55

Notes: The table contains the out-of-sample delta-hedge trading results after transaction costs to evaluate the economic value of five dynamic models for Dow Jones, Nasdaq,
S&P 500, and Russell 2000 index options across three di↵erent deterministic models (see Section 3.2.2). The data cover the period between January 1, 2003, and December
31, 2017. The dynamic models include an AR, VAR, VARX, Bayesian VAR, given by Equations (9) - (13). The AR, VAR, and Bayesian VAR models take into account the
lagged dynamics of the implied volatility surface of our index options. The VARX model extends these dynamics by including a factor representing the global dynamics of
deviations in put-call parity obtained by principal component analysis. The Strawman random walk of (15) is included as the dynamic benchmark. Two other benchmarks
are included: a riskless daily investment in the index options which we denote as the Buy-and-Hold strategy and an initial investment worth 1000$ in Treasury bills. The
latter results in the time value of money. The three deterministic models include the five-, seven-, and nine-factor deterministic GLS models given by Equations (2), (3), and
(5), respectively. The economic measures include the average daily percentage return, its standard deviation, and the risk-adjusted return (Sharpe ratio). In obtaining our
trading results, we use our implied volatility forecasts which are corrected using residuals obtained from applying generalised least squares (GLS) to our deterministic model.
This correction is applied by modelling these residuals using a threshold-AR(1) model given by Equation (7). The imposed transaction costs consist of 0.8 times the bid-ask
spread, as suggested by Battalio and Schultz (2006).


