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Abstract

We estimate the one- and ten-day-ahead Value-at-Risk and the Expected Shortfall of a portfolio by using
marginal modeling and two different dependence models. The marginal modeling consists of two steps. Firstly
the returns are filtered by an asymmetric Markov-Switching ARMA-GARCHmodel (ARMA-MS-GARCH-GJR)
and secondly the tails of the filtered returns are estimated by the Generalized Pareto Distribution. We
fit two different joint distributions on these transformed returns: Vine Copulas and a distribution based
on Multivariate Extreme Value Theory (MEVT). These two models will be compared with the t copula by
backtesting the Value-at-Risk (VaR) and Expected Shortfall (ES) in two periods: during the Financial Crisis
in 2008 and during a stable period. We show from the backtesting that all joint distributions are capable of
providing accurate one-day-ahead VaR and ES forecasts, while the ten-day-ahead forecasts during the Financial
Crisis are not accurate. It follows that during periods of financial distress the models with fatter tails are in
favor, such as the t copula and the Vine Copula, while in stable periods these models tend to overestimate the
Value-at-Risk and the Expected Shortfall slightly. In stable periods the model based on MEVT is preferred.
Keywords: Portfolio VaR and ES, Vine Copula, Multivariate Extreme Value Theory, Markov-Switching
ARMA-GARCH-GJR, Generalized Pareto Distribution, Backtesting
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1 Introduction

Financial risk management is the process of quantifying and dealing with the uncertainty of bad outcomes in the
financial world. There are different types of financial risks, such as market risk, credit risk and operational risk.
In this research the risk of losses when taking certain positions in the financial market, or the so-called market
risk of a portfolio, is considered. Risk measures are used to determine the riskiness of financial instruments by
quantifying the risk. Risk measures therefore play a central role in the financial risk management. The behavior
of the profit or loss distribution 2 is often used in order to estimate risk measures. There are two risk measures
which are in practice extensively used: the Value-at-Risk (VaR) and the Expected Shortfall (ES) (McNeil et al.
2005). If we consider losses, then the VaRα corresponds to the loss which has a probability 1−α of being exceeded
by a larger loss. The VaRα can be seen as the α quantile in a loss distribution. VaR reporting is part of the
capital-adequacy framework of Basel II. It is required that the ten-day ahead VaR99% is reported. This ten-day
VaR99% corresponds to the value that a cumulative ten-day loss will only exceed one in the hundred times (1%).
However, this value tells nothing about the size of the potential loss when it is exceeded. The ES does. The ES
is more sensitive to the shape of the tail. The ES99% is the average of all the losses greater than the VaR99%.
In this research the target is to estimate the VaR and the ES not only for a single financial instrument, but for
a certain position in multiple financial instruments or a portfolio. This adds another dimension to the problem.
It is well-known that financial instruments often show strong dependencies which need to be accounted for when
constructing a portfolio VaR or ES. As our focus mainly lies on the extreme quantiles of our returns we need
to incorporate the joint tail behavior of the marginals. To model the dependencies we will use two multivariate
models. The first model is based on the Vine Copula theory from Bedford & Cooke (2002) and Dißmann (2010).
The second model is based on the Multivariate Extreme Value Theory (MEVT) from Hilal et al. (2014). Both
models require data that is independent and identically distributed as marginal input. This requires filtering in
the first place. In the end we will compare the performance of both different multivariate approaches by comparing
the backtest results of the VaR and the ES.

1.1 Marginal Modeling

Before estimating the joint distribution we filter the returns. With our filter we aim to transform the data
into i.i.d. observations, which is required when modeling the joint distributions. It is well-known that financial
time series exhibit several stylized facts. McNeil et al. (2005) summarizes these stylized facts into six bullet
points 3. Given the fact that many time series we will be using may exhibit several of these characteristics, we
choose our marginal models in such a way that these characteristics are captured. There are several ways to
model the marginals. Firstly there are non-parametric methods. These non-parametric methods do not take any
financial return characteristics into account. Historical simulation is a common used non-parametric methods to
model marginal distributions. Secondly there are parametric methods. Examples of parametric methods include
GARCH, extreme value theory and kernel fitting, but there are many more. The benefits of using non-parametric
methods are mainly their simplicity and the fact that no distributional assumption is required. However there are
some drawbacks of non-parametric marginal modeling. Firstly there is no extrapolation and interpolation possible
when using a non-parametric method like historical simulation. Furthermore empirical quantile estimations tend
to be very volatile when large observations enter the sample (McNeil & Frey 2000). It is found that the parametric
methods outperform the non-parametric methods. In order words, incorporating stylized facts in our models is
beneficial. We can use GARCH for example to account for volatility clustering and extreme value theory to model
the tail behavior.

2When returns are multiplied by minus one and these values are used to construct a distribution, then the distribution becomes
a loss distribution instead of a profit distribution.

3The following facts are often considered to be stylized in financial time series: (1) Return series are not i.i.d. although they show
little serial correlation; (2) Series of absolute or squared returns show profound serial correlation; (3) Conditional expected returns are
close to zero; (4) Volatility appears to vary over time; (5) Return series are leptokurtic or heavy-tailed; (6) Extreme returns appear
in clusters (McNeil et al. 2005, page. 117).
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The two step method from McNeil & Frey (2000), the method that we use, has become a widely-used basis for
VaR estimation. Combining GARCH with Generalized Pareto Distribution (GPD) for the tails has proven to be
powerful when estimating the VaR and ES (McNeil & Frey 2000). The GARCH model is used to filter out possible
volatility clustering, while extreme value theory is used to capture the tail behavior by modeling the upper- and
the lower-tails separately using the GPD. This allows us to model heavy tails and asymmetric tail behavior. We
not only choose to use this two step method, but we also extent it. To adsorb any autocorrelation in the returns we
choose to extent the GARCH model with an ARMA model. Besides volatility clustering we want to incorporate
the leverage effect. This effect arises from the observation that in many financial time series negative shocks in
the very recent past tend to have a stronger effect on the variance than positive shocks. We therefore choose to
add an asymmetric component to the GARCH model. We therefore choose to use the GARCH-GJR model from
Glosten et al. (1993). Since Tang & Gau (2004) show that the volatility process may differ across different regimes,
we choose make the ARMA-GARCH-GJR Markov-Switching over time to govern the return by a non-observed
Markov chain. Tang & Gau (2004) show that this Markov-Switching GARCH variant is beneficial when it comes
to VaR estimation. The model that we will use will be called the ARMA-MS-GARCH-GJR model. We use this
model to obtain a filtered time series that is very close to i.i.d. which is required prior to the multivariate modeling.
The filtered series will be tested on i.i.d. by using a Ljung-Box test. Furthermore the Augmented Dickey-Fuller
test will be conducted in order to check for stationarity.
Once the returns are filtered, we will model these filtered returns in a semi-parametric way. This corresponds
to the next step (McNeil & Frey 2000). With semi-parametric modeling we model both the lower and upper
tails by using different extreme value distribution functions, while we model the middle part of the distribution
by the empirical distribution. Modeling the upper and lower tails using extreme value theory (EVT) allows for
interpolation and extrapolation in the regions where the amount of data are scarce. Due to the fact that the tails
of the standardized data may behave in a different manner, both tails will be fitted into separate models. To use
data more efficiently, we choose to base the extreme value density function on exceedances over thresholds instead
of on Block Maxima, see McNeil et al. (2005). The distribution that corresponds to exceedances over thresholds
is the GPD. Choosing the right threshold is a balance between bias and variance. Allowing a huge number of
observations in the tail results to smaller variance and introduces a larger bias. On the other hand, allowing fewer
observations will result into larger variance and smaller bias. The thresholds are chosen using Hill plots and an
automated eye-ball test from Daníelsson et al. (2016).

1.2 Multivariate Modeling

Once all the returns are filtered in the first step, the filtered returns will be transformed to the standard uniform
scale by the corresponding fitted semi-parametric marginal distribution. We choose to do so, since both dependence
models require (close to) i.i.d. data in the standard uniform scale. The joint distributions are used to model the
dependence between the components of our portfolio.
In order to show the importance of multivariate modeling in the area of risk management we use an example
from during the 2008 Financial Crisis. In October 2007 the tranches of Collateralized Debt Obligations (CDOs)
that are considered to be the risk safest (AAA-tranche) started to fall and turned out to be strongly correlated
4. The domino-like collapse of the network of promises that made up the CDO market could be seen as one
of the causes of the 2008 financial crisis. The Financial Times published an article "Recipe for Disaster: The
Formula That Killed Wall Street", which shed light on the dependence structures that were used prior to the crisis
for Collateralized Debt Obligations. It points out that the formulas that were used (Gaussian Copulas) did not
account for the strong dependence of CDOs during financial distress. This example underlines the importance of
proper dependence modeling, mainly during times of financial distress. In this research we use two methods to
model the joint behavior of a set of financial return series.

4The Financial Crisis Inquiry Report, 2011, p.129
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1.2.1 Vine Copulas

The first method to model the joint distribution is based on copula theory. Copulas allow us to combine
complex marginal models with different dependence structures. In other words the marginal distributions are
individually differently specified, completely apart from the dependence function. This property make copulas
desired dependence models. The dependence structure between financial data is characterized by a non-linear
relationship (Embrechts, McNeil & Straumann 1999). Copulas allow a non-linear relationship between variables.
The construction of higher-dimensional copulas (often when there are more than two dimensions) is recognized as
a difficult problem (Embrechts et al. (2003) and Savu & Trede (2006)). The Gaussian and the t copulas, which
are both elliptical, can easily be extended to higher dimensions, while many other copulas cannot. Estimation of
many multivariate copulas are characterized by long computation time, see e.g. Embrechts et al. (2003), Savu &
Trede (2006) and Czado et al. (2010)(page. 93-109). Throughout the history many bivariate copulas have been
developed, but the number of multivariate ones is rather limited (Gruber & Czado 2015). Besides the difficulties
that arise when constructing multivariate copulas, Hilal et al. (2011) elaborate on the fact that multivariate copulas
often have hard and inflexible dependence conditions. Regular Vine copulas provide a solution to this problem
by offering a method that can construct a multivariate density function as a product of bivariate conditional
and unconditional copula densities (Joe (1996) and Bedford & Cooke (2002)). A multivariate density is split up
into a cascade of different conditional and unconditional bivariate copulas (pair-copulas). In other words these
pair-copulas will be used as simple building blocks to construct higher dimensional dependence structures. There
are however a lot of different ways to split up a multivariate system into pair-copulas. A remaining question is
how to choose this structure. Arbitrarily, one often use C or D-vine structures, because of the graphical simplicity
of these structures. Following Dißmann (2010) Graph theory and maximum spanning trees can be used to adsorb
most of the dependence in the first pair-copulas. Dißmann (2010) provide us several reasons why this is considered
to be beneficial. Firstly, it is important to hold in mind that most copulas can in general model independence
and close to independence pretty well. Secondly, the first copula pairs have the most influence on the rest of the
consecutive pairs. Thirdly, it is natural to assume that selecting the variables with the strongest dependence in
the first trees will adsorb the dependence in later trees. In other words, choosing a certain R-Vine using strongest
dependencies in the first tree, will result to many weak dependence in later trees. So, a small number of bivariate
copulas model stronger dependencies, while a large number is used to model pairs that are close to independence,
therefore there is less room for estimation error. Dißmann (2010) shows that the sample fit of these Vine copulas
is generally better in terms of likelihood than Gaussian and t copulas (Aas et al. (2009) and Dißmann (2010)).

1.2.2 Multivariate Extreme Value Theory

The second method that is used to model the dependence structure is based on the multivariate extreme value
theory from Hilal et al. (2014). Again this model requires i.i.d. marginal data as input, which is obtained by the
filtering in the marginal modeling step. This multivariate extreme value distribution has a non-linear dependence
structure. According to Hilal et al. (2011) there are mainly two advantages of using this approach. Firstly, there
is besides copulas virtually no model that is capable of handling extreme value distributions in more than two
dimensions from a practical point of view. Secondly many extreme value distributions assume tail dependence
once the assumption of independent variables is rejected. If variables are assumed to be asymptotic dependent
while in reality they are not, then this will lead to to an overestimation of the probability of joint extreme events
(Ledford & Tawn 1996). The model of Hilal et al. (2014) overcomes the issues stressed out above. The model
captures the asymmetric behavior of extreme negative and positive returns. Once the marginals are modeled, the
data on standard uniform scale are transformed using the Laplace transformation. The dependence modeling is
based on the distribution of a certain asset of our portfolio, given the fact that another asset is considered to
be extreme. All the possible different possible "pairs" are estimated using Maximum Likelihood estimation. In
the case that both observations of assets are considered to be non-extreme, the distribution is modeled empirically.

3



The simulated data from both multivariate distributions are scaled from zero to one. This data will be transformed
by the inverse of the corresponding estimated marginal semi-parametric models to obtain filtered residuals. These
filtered residuals are used in the ARMA-MS-GARCH-GJR model to obtain simulated returns.

We show in this research that an unobserved Markov-chain with two different states clearly distinguishes between
turbulent and stable financial periods. The turbulent financial periods are characterized by a lower persistence
of historical variance. On the other hand during turbulent periods the ARMA-GARCH-GJR models are more
strongly exposed to the leverage effect. We show from the backtesting that all joint distribution are capable of
providing accurate one-day-ahead VaR and ES forecasts, while the ten-day-ahead forecasts during the Financial
Crisis are not accurate. It follows that during periods of financial distress the models with fatter tails are in
favor, such as the t copula and the Vine Copula, while in stable periods these models tend to overestimate the
Value-at-Risk and the Expected Shortfall slightly. In stable periods the model based on MEVT is preferred.
The remainder of this paper will be as follows. Section 2 describes the findings in literature for both the marginal
and the joint modeling. We describe our data transformations in Section 3 along with some descriptive statistics.
In Section 4 we provide the methodology for both the marginal and the joint models. We will discuss the results
in section 5 and finally draw conclusions in Section 6.

2 Literature

In this section we give an overview of relevant literature. This overview is twofold: in the first part we provide
relevant literature on the marginal modeling and in the second part literature on the joint modeling, which contains
the copula modeling and the modeling based on MEVT.
The marginal modeling is based on the two step approach from McNeil & Frey (2000). McNeil & Frey (2000)
proposed to combine two powerful models that account for several different characteristics that financial time
series exhibit. Firstly the data is filtered by using GARCH models. These type of models are commonly used
for estimating the VaR or the ES. Secondly the filtered data is modeled semi-parametrically. The tails of the
filtered data are modeled by the GPD apart from the main body, which is modeled non-parametrically by using
the empirical density function. Instead of using an ordinary GARCH model as in McNeil & Frey (2000), we choose
to extent it. Mabrouk & Chaker (2011) give an overview of different GARCH models and show that inclusion of
asymmetry in GARCH improves the performance. Furthermore Mabrouk & Chaker (2011) show that a GARCH
model with an ARMA extension performs well when forecasting the VaR. Therefore we use a GARCH model
with both an ARMA and a GJR extension, resulting to ARMA-GARCH-GJR model. From this point we deviate
slightly from the closely related work of Dißmann (2010) and Hilal et al. (2014), who use a GARCH model with
only a ARMA extension. Since Tang & Gau (2004) show that the volatility process may differ across different
regimes, we choose make the ARMA-GARCH-GJR Markov-Switching over time by governing the return series by
a non-observed Markov chain. Tang & Gau (2004) show that this Markov-Switching GARCH variant performs
well in terms of VaR estimation. We refer to this final model as the ARMA-MS-GARCH-GJR model.
The tail modeling in the second step of McNeil & Frey (2000) approach has been extensively studied. Roughly
speaking there are two different approaches for putting extreme value theory into practice. The first approach
is the most traditional one. It is based on block maxima theory. It has extensively studied by Embrechts et al.
(1997), Longin (1997) and McNeil (1998). In this approach the largest observations from large samples of i.i.d
distributed observations are collected in blocks. Longin (1997) and Embrechts et al. (1997) constructed models
based on block maxima disregarding the fact that volatility tends to cluster over time 5. A more modern group
of models is based on the exceedances over thresholds. This type of model is proposed by Embrechts, Resnick &
Samorodnitsky (1999). It has extensively been used in modeling losses in various ways, such as: financial losses
(Embrechts, McNeil & Straumann (1999) and McNeil & Frey (2000)), windstorm losses (Rootzen & Tajvidi 2000)
and losses on bonds and loans (Chava et al. 2008). We use this exceedances over threshold method, since it uses

5violating the i.i.d. assumption
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data more efficiently and we want to stay in line with previous and comparable researches. The distribution which
matches the exceedances over threshold is the GPD.
We use two different ways to model the data jointly: copulas and a model based on MEVT. A copula is a
multivariate cumulative density function that links marginal cumulative density functions to a joint cumulative
density function. This is a very famous result from Sklar (1959) and proved by Schweizer & Sklar (1983). Nelsen
(1999) described a tremendous amount of copula theory with many examples of bivariate copulas. Bedford &
Cooke (2002) introduced a completely new way of creating complex multivariate dependence structures based
on Joe (1996) using parallels to hierarchical modeling (Green & Richardson 2003). In Aas et al. (2009) this
methodology is used in order to decompose a multivariate density into a cascade of pair-copulas. In other words,
these pair-copulas will be used as simple building blocks to construct higher dimensional dependence structures.
We refer to these compositions as vines. A vine however is not a unique decomposition but a set of decompositions.
Aas et al. (2009) only considered two different structures, the canonical vine (C-Vine) and the D-Vine. Aas et al.
(2009) compared the C- and D-Vine structure with pair-copulas to the widely used multidimensional t-copula. The
C- and D-Vine produced a significantly better in-sample fit in terms of likelihood than the t-copula. As mentioned
before there are numerous ways to break down a high dimensional system into pair-copulas and therefore numerous
different vine structures. Bedford & Cooke (2002) introduced a subset of these vines, the regular vine (R-Vine).
Kurowicka (2010) proposed a new method to select a structure based on the largest partial correlation. Dißmann
(2010) used rank correlation to select a vine structure. Dißmann (2010) showed that the use of his sequential
algorithm on financial datasets is quite often better than using the t-copula. This result was confirmed by Aas
(2013), who used the sequential algorithm of Dißmann (2010) on 19 financial variables that constitute the financial
market portfolio of the DNB (Den Norske Bank). To the best of our knowledge these methods have not yet been
applied in the field of risk management and VaR estimation. The use of copulas in the field of market risk
management is however quite common. One of the pioneers of applying copula theory to VaR estimation are
Nyström & Skoglund (2002). They use the two-step method from McNeil & Frey (2000) to model the marginals,
which are then jointly modeled by a t-copula in the second step. Many variations of this approach have been
studied. For example Hsu et al. (2012) used a similar approach with different copulas to show that for emerging
markets the use of a Clayton copula is beneficial. Other variations to the method of Nyström & Skoglund (2002)
can be found in Liu & Luger (2009), Berg (2009) and Aas et al. (2009).
Besides vine copulas, we use a method based on MEVT to model our data jointly. Throughout the history
MEVT is used in multiple disciplines, from an assessment of Heffernan & Tawn (2004) on environmental impact
to financial risk management (Embrechts et al. 2003) and Internet traffic modeling. While extreme value theory
has existed for quite a long time, constructing a multivariate variant is recognized as a difficult task. The existing
methods mostly rely on the use of copulas (Hilal et al. 2011). Heffernan & Tawn (2004) came up with a practical
method to model EVT in multiple dimensions. They also overcame the limiting argument in which all variables
become large at the same rate. They impose a conditional approach to model extremal dependence. Existing EVT
methods assume asymptotic dependence once the assumption of independence does not hold anymore. This leads
to an overestimation in the case of joint extreme events (Ledford & Tawn 1996). Hilal et al. (2011) uses the model
of Heffernan & Tawn (2004) on bivariate financial data by creating a hedge portfolio. Hilal et al. (2014) extent
their earlier work to accommodate more than two dimensions. To the best of our knowledge this methodology
has not been applied in the field of VaR estimation.

3 Data

Since we are interested in modeling dependencies, we choose our portfolio in such a way that there is a fair amount
of correlation present. We choose to construct a portfolio containing several different major world indices 6. Other
researches in this domain (Hilal et al. (2014), Dißmann (2010)) also chose a portfolio containing major world indices
or a portfolio containing exchange rates. The data consists of end of the day closing prices sampled on daily basis.

6AEX, CAC40, DAX30, Hang Seng, NIKKEI225, SMI and S&P500
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The dataset will be discussed in more detail in Section 3.2. Firstly we focus on the data transformation, which is
reported in Section 3.1.

3.1 Data Transformation

Once the data is collected, we transform the data to log returns. Let Pt be the price of a certain asset at time t,
then the log transformation can be described as follows:

Rt = logPt − logPt−1, (1)

where Rt denotes the log return of a certain asset at time t. The log transformation is a standard in finance and
is also being used in comparable researches. During the weekends we assume that there is no economic activity.
Therefore we calculate the over weekend log return as the logP at Monday minus the logP at Friday. In the
case of missing data both the return on that particular day and the return the next day is removed from the
entire dataset. Missing data may occur when a certain market is closed. This means that there is practically no
economic activity for that certain market, however other financial markets may be open and active. Our data is
sampled from different markets and if we would delete only the return on that particular day, we assume that all
the markets are inactive. Therefore we choose to remove the return on the particular day and the return on the
next day for all the indices in our dataset.

3.2 Indices Dataset

The indices dataset is constructed using seven different indices, namely: AEX, CAC40, DAX30, HangSeng,
NIKKEI225, SMI and S&P500 7. We choose to use this combination of indices because the geographical locations
of the indices are spread across different continents and the indices are mutual differently financially integrated.
The data is initially quoted in the local currency. Therefore the price movement over time is also influenced by the
movement of the exchange rate market. In order to isolate the return on the indices, the exchange rate effects are
filtered out by transforming the local currency to USD using the closing foreign exchange rate of this particular
currency against the USD.
The indices dataset consists of daily data starting from the 5th of January 1999 until the 17th of November 2017.
After having filtered out the missing data, 3719 observations are left. The price movements over time of several
indices are given in Figures 1 and 2. In Figure 1 theses movements are shown for the CAC40, DAX30 and SMI.
In Figure 2 these movements are shown for the AEX and S&P500 8. Both figures indicate a dependence in
price movement. Shocks in prices occur quite often simultaneously, which can especially be observed during the
Financial Crisis in 2008.

7Data from Yahoo! Finance
8We choose to use different plots for scaling issues
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Figure 1: Daily prices of the CAC40, DAX and the SMI over a period of 18 years (5-1-1999 until 17-11-2017)

Figure 2: Daily prices of the AEX and the S&P500 over a period of 18 years (5-1-1999 until 17-11-2017)

In Table 1 some descriptive statistics are reported. We observe that the mean is very close to zero for every single
index. The standard deviations, maxima and minima of the different indices are quite comparable. High kurtosis
indicate the presence of fat tails. The negative skewness indicates that the distributions are skewed to the left.
These results are in line with the stylized facts from McNeil et al. (2005).
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AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500

Mean -0,0001 0,0001 0,0002 0,0001 0,0000 0,0001 0,0001
Maximum 0,1166 0,1179 0,1093 0,1340 0,0950 0,0809 0,1025
Minimum -0,1184 -0,1173 -0,0959 -0,1359 -0,1111 -0,0773 -0,0947
Skewness -0,4031 -0,2150 -0,2554 -0,0024 -0,3182 -0,2657 -0,4275
Standard Deviation 0,0153 0,0158 0,0160 0,0148 0,0150 0,0120 0,0121
Kurtosis 9,8226 8,9990 7,1618 11,2466 6,6085 7,4490 10,7397

Table 1: Descriptive statistics of the daily log returns of some major indices: AEX, CAC 40, DAX, Hang Seng,
NIKKEI 225, SMI and S&P500 for a period from 5-1-1999 until 17-11-2017.

Since we are interested in dependences among different indices, we construct a figure, which can be found in the
the Appendix C in Figure 8, containing the Kendall’s τ 9 in the upper triangle and the scatter plot in the lower
triangle for all the different pairs. This figure indicates the presence of strong dependences between the European
indices. Furthermore a strong dependence can be observed between the two Asian indices. The S&P500 dataset
seems to be more strongly linked to the European indices than to the Asian indices.

4 Methodology

To determine the VaR or the ES of a portfolio we follow two consecutive steps. Firstly we model the marginals by
our own extension of the two-step method from McNeil & Frey (2000). Once we estimate both steps, we transform
our data to the standard uniform scale. Secondly we use this transformed data to estimate the joint distribution
by either Vine Copulas or a distribution based on MEVT. This section therefore is split up into two different
parts: marginal modeling and joint modeling. However before stepping into these parts, we believe it is important
to put risk and dependency into a mathematical context, which can be found in Sections 4.1 and 4.2. In Sections
4.3 and 4.4 both steps of the two-step method (ARMA-MS-GARCH-GJR filter and Semi-Parametric using EVT
respectively) are discussed. We will emphasize on the joint modeling based on (Vine) copulas in Section 4.5 and
on MEVT in section 4.7. In order to evaluate the VaR and ES estimation performance of our dependence model
we use backtests. Section 4.8 we describe several different backtests.

4.1 Risk Measures

Risk Measures allow us to quantify risk. Quantifying risk is important in order to analyze and manage it later on.
Artzner et al. (1999) defined requirements for a so-called coherent risk measure. Artzner et al. (1999) basically
defined four properties that a appropriate risk measures should have. Let X be a random variable with a return
distribution F . Consider a set of random variablesM and ρ a risk measure such that ρ :M→ R. Then for ρ to
be coherent the following properties need to be satisfied:

1. Monotonicity
For X1, X2 ∈M such that X1 ≤ X2 it holds that:

ρ(X1) ≤ ρ(X2)

This means that when the worth of a object is smaller than the worth of another object, the object with
the highest worth is more risky.

2. Translation Invariance
For all X ∈M and every constant A ∈ R it holds thats:

ρ(X +A) = ρ(X)−A

9More information can be found in Section 4.2.1.
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This show that addition of capital reduces risk by the same amount.

3. Positive Homogeneity
For all X ∈M and every constant A > 0 it holds thats:

ρ(AX) = Aρ(X)

This shows that the risk scales together with the size.

4. Subadditivity
For X1, X2 ∈M it holds that:

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2)

This means that merging does not create risk. This property is closely related to the benefit of diversification.

In the next section we elaborate on two different risk measures, that are widely used in practice.

4.1.1 Value-at-Risk (VaR)

Value-at-Risk or VaR is the most widely used risk measure in the financial industry and plays a significant role
in the Basel agreements. Given a certain confidence level, say α, the VaRα corresponds to the loss which has
a probability 1 − α of being exceeded by a larger loss. When a loss (L) (profit (P)) distribution is considered,
the VaRs focus lies on the upper (lower) quantile 1 − α (α): VaR1−α = inf{l ∈ R : P (L > l) ≤ α} (quantile α:
VaRα = sup{p ∈ R : P (P < p) ≤ α}). Artzner et al. (1999) criticized the VaR for being not coherent. Therefore,
Artzner et al. (1999) introduced a coherent alternative of the VaR, the Expected Shortfall (ES) or the Conditional
VaR (CVaR).

4.1.2 Expected Shortfall (ES)

Expected Shortfall or ES is a risk measure that is very similar to the VaR. Where VaR violates the Subadditivity
property, ES does not. Expected shortfall given a certain confidence level α is equal to: ESα = 1

1−α
∫ 1

α
VaRudu.

The integral in the expression of the ES presented above, evaluates the total volume of the losses in the tail, or
the α × 100% greatest losses. The ES is then obtained by dividing this volume by the relative size of the tail,
1−α. The difference between the VaR and the ES is that the VaR tells us nothing about the size of the potential
loss when the threshold is exceeded, unlike the ES. The ES focuses on the expected loss when a certain loss is
exceeded. The ES is more sensitive to the shape of the tail.

4.2 Dependence Measures

In this section we describe dependence in a mathematical context. We think this is important, since dependencies
play a key role in our research. A dependence measure basically quantifies the level of dependence between two
or more variables. A well-known dependence measure is Pearson’s ρ. Pearson’s ρ is a linear measure between
two random variables that is often referred to as correlation. As we work with the two-step method from McNeil
& Frey (2000) and with copulas, where data transformation plays a significant role, it is important to use a
risk measure that is invariant under marginal transformations. Pearson’s ρ correlation is not invariant under
marginal transformations. We narrow our scope to two potential candidates, which are invariant under marginal
transformations: Spearman’s ρ, which measures the rank correlation and Kendall’s τ , which measures the level of
concordance. Both the Spearman’s ρ and the Kendall’s τ are linked to copulas. Since both measures are closely
related and we want to stay as much as possible in line with previous researches in this domain (Dißmann 2010),
we use Kendall’s τ as dependence measure. We elaborate on Kendall’s τ in section 4.2.1.
It is widely known that the dependence structure in the main body of the distributions can behave quite differently
from the dependence structure in the tails of the distributions. To measure the dependencies in these particular
regions a tail dependence measure is used. In section 4.2.2 we describe tail dependence.
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4.2.1 Kendall’s τ (τ)

Kendall’s τ is a measure of concordance, which assesses the ordinal association between two variables, say X,Y .
To explain concordance, let us denote two random vectors in R2 by (X1, Y1) and (X2, Y2). These variables are
considered to be concordant if (X1 −X2)(Y1 − Y2) > 0 and discordant if (X1 −X2)(Y1 − Y2) < 0. Now Kendall’s
τ can be expressed as follows:

τ(X,Y ) = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0) = E[sign((X1 −X2)(Y1 − Y2))] (2)

where τ ∈ [−1, 1], (X1, Y1) ∼ F and (X2, Y2) ∼ F are independent pairs of random variables. sign indicates a
function that gives minus one as output whenever the input is negative and one otherwise. Kendall’s τ can be
estimated using:

τ̂(X,Y ) =

(
n

2

)−1 ∑
1≤t<s≤n

sign
(
(Xt −Xs)(Ys − Yt)

)
(3)

It can be proven that the Kendall’s τ is linked to copulas (see Fredricks & Nelsen (2007) for the proof). In the
bivariate case the Kendall’s τ is linked to a bivariate copula with copula variables u1 and u2 as follows:

τ = 4

∫
u2

∫
u1

C(u1, u2)dC(u1, u2)− 1 (4)

This expression is useful when one wants to estimate copula variables (more on that in Section 4.6.3).

4.2.2 Tail Dependence

It is well-known that the joint behavior of two variables around the mean can be quite different from the behavior in
the tails. In this section we quantify the joint behavior in the tails by introducing upper and lower tail dependence.
In the case of upper tail dependence we focus on the right tail of the distribution. If we consider two variables
X and Y , then the upper tail dependence of these variables can be expressed as the probability that one variable
is in the upper qth quantile, given the fact that the other variable is in this quantile. Now the upper tail (λu)
dependence can be expressed as follows:

λu(X,Y ) = lim
q→1−

P
(
Y > F←Y (q)|X > F←X (q)

)
(5)

where FX and FY are the marginal cumulative density functions of X and Y and provided that λu(X,Y ) ∈ (0, 1]

exists. Where we define F←(q) = inf{X ∈ R : F (X) ≥ q}. Using the same reasoning, we can define lower tail
dependence as follows:

λl(X,Y ) = lim
q→0+

P
(
Y ≤ F←Y (q)|X ≤ F←X (q)

)
, (6)

provided that the limit λl(X,Y ) ∈ (0, 1] exists.
When the tail dependence equals zero then the random variables are considered to be asymptotic independent,
whereas the tail dependence is larger than zero the random variables are considered to be asymptotically dependent.

4.3 GARCH modeling

In this section we pay attention to the first step in the two-step approach from McNeil & Frey (2000). This step
contain the data filtering by using a GARCH model. Instead of using a GARCH model we extent the GARCH by
adding an ARMA part to capture possible autocorrelations and a GJR part to capture the leverage-effect. This
is discussed Section 4.3.1. Furthermore we choose to govern the data by a non-observed two-state Markov chain,
which details are discussed in Section 4.3.2. Finally in order to test the performance of our filter, we provide tests
for i.i.d. data and stationarity, i.e. the Ljung Box test and the Augmented Dickey-Fuller test.

10



4.3.1 ARMA-GARCH-GJR

Both the copula and the multivariate extreme value theory require i.i.d. data as input. It has already been pointed
out that the financial returns feature some non-i.i.d. characteristics. The ARMA-MS-GARCH-GJR model can
be used to filter the returns series (Poon et al. 2004) in order to obtain data that is (close to) i.i.d. data. In this
Section we focus on the ARMA-GARCH-GJR and in Section 4.3.2 we elaborate on the Markov-Switching variant
of this model.
The ARMA-GARCH-GJR basically consists of three different parts. Firstly the ARMA part, which is be able
to capture potential autocorrelation in our data. Since it is well-known that financial returns barely show
autocorrelation, we expect that the influence of ARMA is rather limited. Secondly there is the GARCH part. This
part captures the volatility movement and clustering over time. Thirdly we have the GJR part, which accounts
for asymmetry and the leverage effect.
The ARMA-GARCH-GJR was firstly introduced by Glosten et al. (1993). A downside of these kind of models
is that a GARCH type requires an assumption about the residual distribution. Because it is widely known that
many financial time series have fat tails (leptokurtic tails), a student t distribution is chosen as underlying residual
distribution. The degrees of freedom indicate the tail heaviness.
If Rt represent the financial return at time t, then the ARMA-GARCH-GJR with respectively (i, j) ARMA lags,
(k, l) GARCH lags and m asymmetric leverage parameters, can be described as follows 10:

Rt = µt + σt ·Xt,

µt = µ+ ψ1 ·Rt−1 + ...+ ψi ·Rt−i + θ1 · εt−1 + ...+ θj · εt−j ,

σ2
t = ω + α1 · ε2t−1 + ...+ αk · ε2t−k + γ1 · It−1 · ε2t−1 + ...+ γm · It−m · ε2t−p + β1 · σ2

t−1 + ...+ βl · σ2
t−l,

εt = Rt − µt,

Xt ∼ t(ν).

(7)

Where I is an indicator function which takes on value one if ε ≤ 0 and zero otherwise. Xt is student-t distributed
with ν degrees of freedom. For stationarity and invertibility of the conditional mean µt, the following constraints
are imposed: |ψi| < 1 for i = 1, ...,m, |θi| < 1 for i = 1, ..., n, ω > 0, αi ≥ 0 for i = 1, ..., p, βi ≥ 0 for i = 1, ..., q

and finally
∑p
i αi +

∑q
i βi < 1. σt denotes the conditional variance at time t, ω the intercept and εt the residuals

at time t.
To estimate and use the model the number of lags, i, j, k, l and m need to be calibrated. on one hand we want to
avoid overfitting, while on the other hand we want to incorporate as much informative lags as possible. Therefore
choosing the number of lags is a balance between overfitting the in-sample and producing an accurate model.
Brockwell & Davis (1991) use the information criteria to optimize this balance. They fit the model is fitted using
various lags. The number of lags that optimizes the information criterion, is considered to be the most suited.
There are two different information criteria that are common in market practice:

• Firstly there is the Alkaike Information Criterion (AIC). The AIC quantifies a balance between the model
fit in terms of the log likelihood and the number of parameters used in the model. It can be described as
follows:

AIC = −2 log L̂+ 2np, (8)

where log L̂ represents the log likelihood and np the number of parameters used in the model. It follows that
the AIC decreases (increases) when the model fit increases (decreases) or/and the number of parameters in
the model decreases (increases). In other words the model with the lowest AIC is considered to optimal.

• Secondly there is the Bayes Information Criterion (BIC). The BIC is very similar to the AIC. The BIC
value however is also influenced by the number of observations in the dataset. The BIC quantifies a balance

10In market practice m is set equal to l
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between the model fit in terms of the log likelihood and the number of parameters and number of observations
used in the model. The BIC can be described as follows:

BIC = −2 log L̂+ np log n, (9)

where n represents the number of observations. Again it follow that the model that leads to the lowest BIC
value is preferred.

The ARMA-GARCH-GJR model will be fitted using quasi maximum likelihood estimation (QMLE). Once the
number of lags is selected by one of the information criteria, we choose the appropriate number of lags. The model
is fitted based on this number of lags. The fitted values will be used to filter the returns, following Poon et al.
(2004). This process can be described as follows:

Xt =
Rt − µ̂t
σ̂t

, (10)

where Xt is assumed to be approximately i.i.d. over time. µ̂t and σ̂t represents the fitted conditional mean and
variance on time t, respectively. To test if Xt is i.i.d. over time we apply the Ljung Box and the Augmented
Dickey-Fuller tests, which are described respectively in Sections 4.3.3 and 4.3.4.

4.3.2 ARMA-MS-GARCH-GJR

Mikosch & Starica (2004) show that the estimation of GARCH models on samples with displaying structural
changes in the unconditional variance, have a bias due to the inflexible nature when GARCH parameters are
held fixed. We think it is reasonable to assume that our data contains different regimes over time. After
all our dataset contains the Financial Crisis in 2008. Therefore we believe that it might be advantageous to
make the ARMA-GARCH-GJR model more flexible by allowing parameters to differ across different regimes.
The regimes are however unobserved and can be determined by applying the Hamilton filter (Bauwens et al.
1989). We can use the Markov-Switching GARCH model from Bauwens et al. (2010) where the conditional mean
and variance switch in time from one GARCH process into another governed by a non-visible Markov-Chain.
The ARMA-MS-GARCH-GJR is quite similar to the ARMA-GARCH-GRJ model described in equation 7. The
conditional volatility process differs among different regimes and can be described as follows:

σ2
t =

(
ω1 + α11 · ε2t−1 + ...+ α1k · ε2t−k + γ11 · It−1 · ε2t−1 + ...+ γ1m · It−m · ε2t−p + β11 · σ2

t−1 + ...+ β1l · σ2
t−l
)
× I{St = 1}

+
(
ω2 + α21 · ε2t−1 + ...+ α2k · ε2t−k + γ21 · It−1 · ε2t−1 + ...+ γ2m · It−m · ε2t−p + β21 · σ2

t−1 + ...+ β2l · σ2
t−l
)
× I{St = 2}

...

+
(
ωq + αq1 · ε2t−1 + ...+ αqk · ε2t−k + γq1 · It−1 · ε2t−1 + ...+ γqm · It−m · ε2t−p + βq1 · σ2

t−1 + ...+ βql · σ2
t−l
)
× I{St = q}
(11)

Where St represent the state and I{St = x} an indicator function which equals one if the state is equal to x and
zero otherwise. We assume that there are q different states. If we would consider two different Markov states,
then St ∈ {1, 2} ∀t. The ARMA-MS-GARCH-GJR model can be estimated by using QML. We choose to the
student-t distribution as underlying distribution for the innovations. To limit the computational time we only
assume that there are two different states. The likelihood function can be described as follows:

L(Ψ|IT ) =

T∏
t=1

[ 2∑
i=1

2∑
j=1

pijPr
(
St−1 = i|Ψ, It−1

)
f(Xt|St = j,Ψ, It−1)

]
(12)

where L represent the likelihood function and
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f(Xt|St = j,Ψ, It−1) = f
(Rt − µt

σt
|St = j,Ψ, It−1

)
Xt ∼ t(ν)

(13)

The Pr(St−1 = i|Ψ, It−1) represent the filtered probability of state i when using the Hamilton filter. pij represents
the (i, j)th element of the transition matrix P 11. Ψ corresponds to the vector containing the model parameters
(φ1 · · ·φi, ω1, α11, · · · , α1k, β11, · · · , β1l, γ11, · · · , γ1m, ω2, α21, · · · , α2k, β21, · · · , β2l, γ21, · · · , γ2m)

4.3.3 Ljung Box test

The i.i.d. assumption can be tested using the Ljung Box test. This is an independence test originally founded by
Ljung & Box (1978). There are several other ways to test for independence. We choose the Ljung Box test, because
it is commonly used in practice. Under the null hypothesis we assume that the data is randomly distributed (i.e.
correlations are zero). The alternative hypothesis is that the data are not randomly distributed and that they
exhibit serial correlation. The Ljung Box test statistic Q is defined as:

Q = n(n+ 2)

k∑
i=1

ρ̂2
i

n− i
(14)

where the sample size is denoted by n, the squared empirical autocorrelation at lag i by ρ̂2
i and the number of

lags that are included in the test by k. Under the null hypothesis it follows that Q behaves as a chi-squared
distribution with k degrees of freedom (χ2

k). In other words, given a significance level α, the null hypothesis can
be rejected if:

Q > χ2
1−α,k

where χ2
1−α,k is the 1− α quantile of the χ2

k distribution with k degrees of freedom.

4.3.4 Augmented Dickey-Fuller test

The Dickey-Fuller test checks for the presence of a unit root in an autoregressive model. Under the null hypothesis
we assume that there is a unit root present. The test equation can be formulated as follows:

∆Yt = θ0 + γt+ ρYt−1 + δ1∆Yt−1...+ δp−1∆Yt−p+1 + εt (15)

where the coefficients are estimated by using OLS and the t-statistic of ρ̂ is used to test for a unit root. The null
hypothesis, ρ = 0, is tested against the alternative hypothesis, ρ < 0.

4.4 Semi-Parametric modeling and Extreme Value Theory (EVT)

Once the marginals are filtered using the ARMA-MS-GARCH-GJR model, we use semi-parametric modeling
to model the filtered returns, which is the second step in the two-step approach of McNeil & Frey (2000).
Semi-parametric modeling means that we model the distribution by both a parametric and a non-parametric
part. We model the tails of the distribution by using a distribution based on extreme value theory (GPD). The
main body of the data however, will be modeled non-parametrically by the empirical distribution.
Using parametric models to determine the tail behavior of distributions is beneficial because of several reason.
Firstly it is worth mentioning that VaR or ES estimations focus primarily on the tail regions. However these
regions are characterized by a data scarcity. Parametric models for the tails are therefore quite informative.
Moreover these parametric models allow for inter- and extrapolation. This is a huge benefit once we want to

11For details about the Hamilton filter see Appendix A
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transform the simulated data on standard uniform scale to simulated returns.
Basically there are two well known approaches for putting extreme value theory into practice. The first approach
is the block maxima approach. The disadvantage of this approach is that the data is used less efficiently compared
to the second approach, the peaks of threshold approach (POT approach). Following McNeil & Frey (2000) and
Hilal et al. (2011) we prefer to model the tails using GPD which is in line with the POT approach. Consider
random variable X, then the GPD (G) is given by:

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp(−x/β), ξ = 0
(16)

where β > 0, and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0. The parameter ξ refers to the shape, whereas
the parameter β refers to the scale. We can now describe the entire marginal distribution (body and tails) Fxi
for each marginal separately as follows 12:

F̂X(x) =


F̃X(u−X)[1 + ξ−(u−x − x)/β−]−1/ξ− if x < u−X ,

F̃X(x) if x ∈ [u−X , u
+
X ],

1− F̃X(u+
X)[1 + ξ+(x− u+

x )/β+]−1/ξ+ if x > u+
X

(17)

Where F̃X(x) =
∑n
t=1

1
n I(Xt ≤ x) is the empirical distribution function of variable X and F̃X(u+

X) = 1− F̃X(u+
X)

is the survivor function. u+
X and u−X stand for the upper and lower threshold respectively, while ξ+, β+, ξ− and

β− stand for the positive shape and scale parameters and the negative shape and scale respectively. The shape
and the scale can be estimated in different ways. We choose to estimate these parameters by using maximum
likelihood estimation.
However we did not yet define the thresholds for the marginals, u+

x and u−x . The choice of a proper threshold is a
balance between bias and variance. Allowing lots of observations in the tail will lead to smaller variance and larger
bias, while allowing fewer observations will result to larger variance and smaller bias. There is no straightforward
approach on how to determine these thresholds. In practice, eyeball tests can be used to determine these thresholds
properly (McNeil et al. 2005).
The first method is based on the one of the characteristics of the GPD. A linear relationship between the mean
excess over a certain threshold and the particular threshold itself can be observed when the threshold is chosen
properly. The mean excess function over threshold u (e(u)) can be defined as follows:

e(u) =
β + ξu

1− ξ
,

where 0 ≤ u <∞ if 0 ≤ ξ < 1 and 0 ≤ u ≤ −β/ξ if ξ < 0. e(u) can empirically be estimated by:

en(u) =

∑n
i=1(Xi − u)I{Xi>u}∑n

i=1 I{Xi>u}
(18)

When the thresholds (u) are plotted against their corresponding empirically estimated mean excess (en) at a
certain point linear relationship can be found. A threshold within this particular region can be seen as a properly
chosen one. This method requires however an eyeball test and can therefore be seen as arbitrary test McNeil et al.
(2005).
Another way to estimate the threshold is by applying an eyeball test to hill plots. If we order the observations
from small to big, such that X(1) > X(2) > · · · > X(n), then we can express the Hill as (McNeil et al. 2005):

α̂k,n =

(
1

k

(k−1)∑
j=1

logX(j) − logX(k)

)
, 2 ≤ k ≤ n (19)

12the proof can be found in the Appendix A.2
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where α̂k,n is the empirical estimated tail index when there are k exceedances over the threshold. The tail index
is denoted by α = 1/ξ. In practice different values of k are plotted against their corresponding α̂k,n. The first
stable regions indicates a proper chosen number threshold.
Since we want to backtest our models the marginal and the joint modeling needs to repeated over and over
again. Applying eye-ball tests to every single hill plot is absolutely infeasible. Therefore we choose to apply the
automated eye-ball method from Daníelsson et al. (2016). This automated approach is based on the acquiring a
stable region within Hill-plot. Let k∗eye be the by the automated eye-ball test selection number of exceedances.
Then k∗eye can be estimated using:

k∗eye = min

{
k ∈ 2, ..., (n− w)

∣∣∣∣h < 1

w

w∑
i=1

I[α̂k+i,n < α̂k ± ε]
}
, (20)

where α̂k is the Hill estimation of the tail index and the values w, h and ε need to be chosen specifically to the data.
w is the size of the moving window in which the stability is checked, ε gives the range in which α̂ is considered
to be stable and h is the percentage of estimates which should be within this range. According to McNeil et al.
(2005) it is misleading to choose a large k when looking at Hill-plots. McNeil et al. (2005) suggest that a low
number of exceedances is often the best choice.

4.5 Copulas

Using the two step approach previously explained, the data is transformed into observations on a standard uniform
scale that is (close to) i.i.d.. This is required when working with copulas. Copulas can be used to act as a bridge
between marginal distributions and joint distributions. The name "copula" comes from Latin, which means "link".
In other words, copulas are used to link several marginal distributions to a joint distribution. There are several
different ways to link (i.e. different copulas) the marginals. Since copulas reveal dependence on the standard
uniform scale, copulas can help us to understand dependence structures at a deeper level. In this section basics
about copulas are described along with several different copula families.

4.5.1 The Concept of Copulas

In this section the basic concepts of copulas are described. Copulas are defined as follows:

Definition
A n-dimensional copula C is a joint distribution on [0, 1]n, C : [0, 1]n → [0, 1] with univariate uniform distributed
marginals.

Let X = (X1, · · · , Xn) be a n-dimensional random variable, with joint probability density function f(x1, · · · , xn)

and joint cumulative distribution function F (x1, · · · , xn). Let F1(x1), · · · , Fn(xn) be the corresponding strictly
increasing continuous marginal cumulative distribution functions of X1, · · · , Xn. Let f1(x1), · · · , fn(xn) be the
corresponding marginal probability density functions.
Sklar’s theorem (Sklar 1959) states that a joint distribution can be expressed as a set of marginal distributions
and a copula:

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)), where C is the copula of F (x1, · · · , xn). (21)

By taking the derivative of the copula stated above the joint probability density function can be retrieved. It
follows that:

c(F1(x1), · · · , Fn(xn)) =
∂nC(F1(x1), · · · , Fn(xn))

∂F1(x1) · · · ∂Fn(xn)

21
=

∂nF (x1, · · · , xn)

∂F1(x1) · · · ∂Fn(xn)
=
f(x1, · · · , xn)∏n

i=1 fi(xi)
(22)

15



Using this equation we can derive the joint probability density function:

f(x1, · · · , xn) =
( n∏
i=1

fi(xi)
)
c12···n(F1(x1), · · · , Fn(xn)) (23)

This is a useful result, since we use the joint probability density function in the maximum likelihood function to
estimate the copula parameter(s).

4.5.2 Copula Families

In this section we describe different famous copula families. We have seen that a copula is capable of linking
marginals to a joint distribution. Copulas are capable of linking marginals to a joint distribution in many ways.
Different copula families represent different dependence structures. Generally speaking, there are two different
classes of copula families. Firstly there are elliptical copulas and secondly there are Archimedean copulas.
Throughout the history many different other copulas have been developed, including for example the class of
extreme value copulas. In order to avoid additional complexities we choose to use some well-known elliptical and
Archimedean copulas.

Elliptical Copula
In this section we describe two different elliptical copulas, the Gaussian copula and the t copula. Elliptical copulas
and especially t copulas are widely used in finance (Bouyé et al. 2000). In Table 2 the copula formula of the
Gaussian and t copula are presented. Furthermore the corresponding rank correlation is shown (in this case
Kendall’s τ) along with the tail dependence (McNeil et al. 2005).

Name Formula Kendall’s tau Tail Dependence
Gaussian Cρ = Φ(Φ−1(u1),Φ−1(u2)) τ = 2

π arcsin ρ No tail dependence

t Cρ,v = tv(t
−1
v (u1), t−1

v (u2)) τ = 2
π arcsin ρ 2tv+1

(
−
√

(v+1)(1−ρ)
1+ρ

)
Table 2: Two elliptical copula: their copula formulas, there relationship between the Kendall’s tau and the tail
dependence. ρ stands for the Pearson’s correlation coefficient (linear correlation), Φ for the cumulative standard
normal distribution, Φ−1 for the inverse standard normal cumulative distribution function and tv a Student-t
cumulative distribution function with v degrees of freedom.

Archimedean Copula
Besides the elliptical copulas, we use Archimedean copulas. Archimedean copulas are often used in practice as
well and have been studied extensively over time. They have proven to be useful for modeling portfolio risk.
Archimedean copulas refer to the class of copulas that can be expressed as follows: (McNeil et al. 2005, page. 220)

C(u1, u2) = ψ−1(ψ(u1) + ψ(u2))

where ψ is a generator function, which is strictly decreasing and convex, ψ: [0, 1]→ [0,∞], such that ψ(1) = 0. It
is known as a strict generator if ψ(0) = 1. There are many different generator function used over time, leading to
different copulas. The following Table 4 represents some basic properties of most prominent bivariate Archimedean
Copulas (McNeil et al. 2005, page. 222).
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Name Generator ψθ(t) Kendall’s τ Parameters Tail Dependence (λL, λu)

Clayton 1
θ (t−θ − 1) θ

θ+2 θ ≥ 0 (2−1/θ, 0)

Gumbel (− ln(t))θ 1− 1
θ θ ≥ 1 (0, 2− 21/θ)

Frank − ln
(
e−θt−1
e−θ−1

)
1− 4

θ + 4D1(θ)
θ θ ∈ R (0, 0)

Joe − ln(1− (1− t)θ) 1 + 1
θ2

∫ 1

0
(t ln(t))(1− t)2(1−θ)θdt θ ≥ 1 (0, 2− 21/θ)

Table 3: This table represents the generator functions of some bivariate Archimedean copula along with the
corresponding Kendall’s τ and the upper and lower tail dependence, respectively λU and λL. D1(θ) represents
the Debye function D1(θ) = θ−1

∫ θ
0
t/(exp(t)− 1)dt.

BB Copula
Joe (1997) provided several other Archimedean bivariate copulas with two copula parameters. We refer to these
copulas as the BB Copulas. We use four different BB copulas in this research: BB1, BB6, BB7 and BB8. The
BB1 copula can for example be seen as a generalization of the Gumbel and Clayton copulas (Joe 1997).

Name Generator ψθ(t) Kendall’s τ Parameters Tail Dependence (λL, λu)

BB1 (t−θ − 1)δ 1− 2
δ(θ+2) θ > 0, δ ≥ 1 (2−1/(θδ), 2−1/δ)

BB6 (− log(1− [1− t]θ))δ 1 + 4
δθ

∫ 1

0
(− log(1− [1− t]θ)(1− t)(1− (1− t)−θ))dt θ ≥ 1, δ ≥ 1 (0, 2− 2−1/(δθ))

BB7 (1− (1− t)θ)−δ − 1 1 + 4
δθ

∫ 1

0
(−(1− (1− t)θ)δ+1( (1−(1−t)θ)−δ−1

(1−t)θ−1 ))dt θ ≥ 1, δ > 0 (2−1/δ, 2− 21/θ)

BB8 − log( 1−(1−δt)θ
1−(1−δ)θ ) 1 + 4

δθ

∫ 1

0
(− log( (1−tδ)θ−1

(1−δ)θ−1
)(1− tδ)(1− (1− tδ)−θ))dt θ ≥ 1, δ ∈ [0, 1] (0, 0)

Table 4: This table represents the generator functions of some BB Archimedean copula along with the corresponding
Kendall’s τ and the upper and lower tail dependence, λU and λL respectively.

4.5.3 Copula Estimation

Copula parameters can be estimated in several different ways. In our research we limit ourselves to using rank
correlation and maximum likelihood to estimate copula parameters.

1. Rank correlations can be used to calibrate copulas to empirical data. There are two main varieties of rank
correlation, Kendall’s τ and Spearman’s ρ. It can be proven that the following relationship exist:

ρτ (X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (24)

The Kendall’s τ and Spearman’s ρ can be estimated empirically. In the tables 2-4 this expression have been
evaluated for the different copulas. Using these empirical results along with these expression, the copula
variable can be estimated.

2. Using the probability density function of the copulas, maximum likelihood estimation can be used in order
to estimate the copula parameters. The probability density function of any copula can be described as in
Equation 23.

In this research we use maximum likelihood to estimate the copula parameters. The advantage of using maximum
likelihood is that it easily accommodates estimation of copulas with two or more variables.

4.5.4 Copula Selection

As mentioned before there are many different bivariate copulas. In this section our focus lies on the determining
an appropriate copula for the data. Looking at scatter plots could give us some useful insights which copula might
be appropriate. Presence of for example upper tail dependence would motivate the choice of the Gumbel copula,
while a copula without upper tails dependence, like the Clayton copula seems to be a bad choice. However we
want to motivate our choice of copula as objective as possible. Furthermore analyzing scatter plots for many
different pairs over different time periods is from practical point of view not possible. We use AIC/BIC value as
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criterion to determine the copula type. This means that we fit all possible copula candidates to the data. The
fit in terms of likelihood is used to assess the AIC or the BIC value. Using the lowest AIC or BIC value is in
favor. This selection method is used in many comparable researches, such as Aas et al. (2009), Dißmann (2010)
and Schepsmeier & Czado (2015).

4.5.5 Independence Test

Since Vine copulas split a multivariate density up into a cascade of different conditional and unconditional bivariate
copulas, many bivariate copulas have to be selected and estimated. We therefore want to limit the model from
fitting bivariate copulas on variable pairs that are significantly independent from each other. An independence
check will be introduced to check if a complicated copula is required for a particular pair. In the case that a
pair is indeed close to independent, we use an independence copula to describe their joint behavior. We use the
independence test from Genest & Rémillard (2007). This test checks if the empirical estimation of the kendall’s
τ , τ̂ significantly differs from zero. If so, an independence copula is used to describe their relationship. The null
hypothesis that the empirical kendall’s τ equals zero, while the alternative hypothesis is that it is not equal to
zero. Genest & Rémillard (2007) show that under the null hypothesis, the test statistic τ̂ approximately normally
distributed with zero mean and a variance of 2(2N+5)

9N(N−1) , where N is the sample size. In other words, if we are
not be able to reject the null hypothesis, then we assume that the independence copula describes the dependence
structure well enough.

4.6 Pair-Copula Constructions

Throughout the history many different copulas have been developed. Most of these copulas only accommodate a
very limited number of dimensions. The construction and the extension to more dimensions of these copulas is
recognized as a difficult problem. Furthermore the estimation of many multivariate copulas is characterized by
long computational time. Due to these limitations the only feasible copulas, from a practical point of view, are
the ones in a very limited number of dimensions, i.e. bivariate copulas. This has resulted to the fact that the class
of different bivariate copulas is big, while the number of multivariate ones is rather limited. The Gaussian copula
and the t copula are exceptions. They can easily accommodate higher dimensions. Moreover most multivariate
copulas that actually can be extended to multiple dimensions are recognized by hard and inflexible dependence
conditions. This can be illustrated by for example the t copula, which have symmetric tail dependencies for all of
the variable pairs.
Regular Vine copulas provide a solution to these problems. These type of copulas can construct a multivariate
density function as a product of bivariate conditional and unconditional copula densities. Vine copulas are based
on a decomposition of a multivariate density into a cascade of pair-copulas. In other words, pair-copulas will be
used as simple building blocks to construct higher dimensional dependence structures. While the computational
time of these copulas is still quite long, these copulas can very easily be extended to higher dimensions. Moreover
these copulas do not have the hard and inflexible conditions that other multivariate copulas have.
In this Section we firstly focus on different ways to split a multivariate probability density function into multiple
pair-copulas, which can be found in Section 4.6.1. This will form a base from which we introduce R-Vines and
graph theory in Section 4.6.2. In Section 4.6.3 we pay attention to R-Vine estimation, while in 4.6.4 we focus on
sampling from R-Vines. In Section 4.6.5 the entire procedure of choosing and estimating the R-Vine is shown and
we provide a way to compare different R-Vines in Section 4.6.6.

4.6.1 Pair-Copula Constructions (PCC)

In this part we will show how to split up a multivariate distribution into multiple pair-copulas. Consider n
random variables X = (X1, · · · , Xn) with a joint probability density function f(x1, · · · , xn). It follows that the
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joint probability density function can be decomposed as

f(x1, · · · , xn) = f(xn) · f(xn−1|xn) · f(xn−2|xn−1, xn) · ... · f(x1|x2, · · · , xn) (25)

The decomposition 25 is not unique. If we would relabel the variables, other decompositions can be made. This
decomposition plays a central role for the Vine copula theory. The conditional probability density functions (for
example: f(xn−1|xn)) can be expressed in a product of copula probability density functions and a unconditional
probability density function. For illustrating purposes the full decomposition of multivariate distribution of two
and three variables are described below.

1. Consider the variable pair (X1, X2). Using the result of Equation 22 combining with Bayes rule (f(x1|x2) =
f(x1,x2)
f(x2) ) we obtain the following expression:

f(x1|x2) =
f(x1, x2)

f2(x2)
=
c12(F1(x1), F2(x2)) · f1(x1) · f2(x2)

f2(x2)
= c12(F1(x1), F2(x2)) · f1(x1) (26)

2. In the same way we can construct the conditional probability density function for three random variables
(X1, X2, X3).

f(x1|x2, x3) =
f(x1, x2|x3)

f(x2|x3)
=
c12|3(F13(x1|x3), F23(x2|x3)) · f(x1|x3) · f(x2|x3)

f(x2|x3)

= c12|3(F13(x1|x3), F23(x2|x3)) · f(x1|x3)

= c12|3(F13(x1|x3), F23(x2|x3)) · c13(F1(x1), F3(x3)) · f1(x1)

(27)

As mentioned before the decomposition is not unique. A simple variation can be found by relabeling the
second and third variable:

f(x1|x2, x3) =
f(x1, x3|x2)

f(x3|x2)
=
c13|2(F12(x1|x2), F23(x2|x3)) · f(x1|x2) · f(x3|x2)

f(x3|x2)

= c13|2(F12(x1|x2), F23(x2|x3)) · f(x1|x2)

= c13|2(F12(x1|x2), F23(x2|x3)) · c12(F1(x1), F2(x2)) · f1(x1)

(28)

We follow Stöber et al. (2013) by assuming that all bivariate copulas occurring in the constructions do not depend
on the variables that are conditioned on. This means that we assume that ci,j|k(·, ·|xk) = ci,j|k(·, ·).
Using the results derived in Equations 26-28, we can construct a general expression for multivariate conditional
probability density functions using conditional copulas as follows:

f(xi|x−i) = cxixj |x−i,−j (Fi,(−i,−j)(xi|x−i,−j), Fi,(−i,−j)(xj |x−i,−j)) · f(xi|x−i,−j) (29)

where x−i = {x1, x2, · · · , xn} \ {xi} and x−i,−j = {x1, x2, · · · , xn} \ {xi, xj}
(
(−i,−j) = {1, 2, · · · , n} \ {i, j}

)
. In

other words, a multivariate density function can be described as a non-unique product of pair-copulas. It follows
that if the number of dimensions increase, then the number of different decompositions grows exponentially.
In order to describe the three dimensional unconditional probability density function we use the results from the
two dimensional probability density function combined with the Bayes rule. Using equation 25 we know that the
following expression is valid:

f(x1, x2, x3) = f3(x3) · f(x2|x3) · f(x1|x2, x3) (30)

If this results is combined with the results of Equations 26 and 28, we can derive the following expression after
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relabeling:

f(x1, x2, x3) = f3(x3) · c23(F2(x2), F3(x3)) ·f2(x2) · c13|2(F12(x1|x2), F23(x2|x3)) · c12(F1(x1), F2(x2)) ·f1(x1) (31)

Rearranging this expression gives:

f(x1, x2, x3) = f(x1) · f(x2) · f(x3) · c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c13|2(F12(x1|x2), F23(x2|x3)) (32)

This is the full decomposition of a three dimensional joint distribution into a cascade of pair copulas. Again,
this representation is not unique. It can be proven that if d represents the number of dimensions, the number of
different R-vines equals: (

d

2

)
× (d− 2)!× 2

 d− 2

2


(33)

There are two difficulties that need to be overcome, when Using the expression 32 into practice. Firstly we know
that due to relabeling there are many different ways to construct this equation. Therefore we need to specify
a preferred structure to work with. This boils down to selecting a certain Vine structure which is addressed in
Section 4.6.2. The other problem concerns the conditional data we obtain when decomposing a joint probability
density function into pair copulas. In other words, the data has to be transformed to conditional data. To put
the R-vine theory into practice these issues have to be tackled. Firstly we will address the problem of choosing an
appropriate structures, secondly the issue of the conditional copulas and the conditional data will be addressed.

4.6.2 Regular Vines (R-Vines)

Bedford & Cooke (2002) have introduced a graphical model denoted by the regular vine (R-vine) to help organizing
different Vine structures. Regular vines are known from the graph theory. In this section the theoretical
background of regular Vines is explained, while the graph theory is kept to a minimum.
Graphs are collections of nodes which are connected to each other by edges. These edges have weight. We represent
our variables by nodes and their dependence in terms of Kendall’s τ by edges.Graphs can be expressed as follows:

Definition: (Graph). Let N be a certain set and let E be a subset of all possible two dimensional combinations
of the elements in N

E ⊂
{
{n1, n2}|n1, n2 ∈ N

}
(34)

Then we the nodes are denoted by the elements of N and edges by the elements of E. A graph G is combination
of edges and nodes: G = (N,E).

Definition: (Path). A path is a trail in which all nodes are distinct except the first and last node. A trail is a
walk in which all edges are distinct, which begins and ends with certain nodes. There is a start node and an end
node, the nodes in between are called internal nodes.

Definition: (Cycle). A cycle is a path shares the same start and end node.

Definition: (Connected Graph). A connected graph is a graph G = (N,E) in which all possible nodes x, y ∈
N (x 6= y) are connected by a path.

As mentioned before, R-vines split a multivariate distribution into a cascade of pair-copulas. These cascade
consist of several different trees. In graph theory a tree can be defined as follows:
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Definition: (Tree). A tree is a graph T = (N,E) that is connected and has no cycles.

Bedford & Cooke (2002) formulated R-Vines as being a subset of vines with the characteristics defined below.

Definition: A d-dimensional regular vine is a sequence of d − 1 linked trees with nodes Ni and edges Ei.
V = {T1, · · · , Td−1}.

1. Tree T1 has nodes N1 = {1, · · · , d} and edges denoted by E1

2. For i ≥ 2 tree Ti has nodes Ni = Ei−1 and edge set Ei
Furthermore a vine V is considered to be a R-Vine on n elements if:

3. For i = 2, · · · , d − 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2}, it must hold that |a ∩ b| = 1

(Proximity condition)

The proximity condition would be violated if there is an edge connecting node, while the connected nodes/edges
do not share a common node in trees before.

There are two types of Vines that are used commonly. These are subsets of the R-vine and named: the canonical
vine (C-vine) and D-vine. D-Vines and C-Vines are special cases of an R-Vine. A C-Vine is an R-Vine with each
tree Ti, i = 1, · · · , n− 1, has one unique node of degree n− 1, while a D-Vine is an R-Vine if each node in T1 has
degree of at most 2. For the C-vine the n-dimensional probability density function is stated as (Aas et al. 2009):

f(x1, · · · , xn) =

n∏
k=1

f(xk)

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,··· ,j−1(F (xj |x1, · · · , xj−1), F (xj+i|x1, · · · , xj−1)), (35)

The graph structure of this particular type in the case five variables are used, is reported in the Appendix 9 along
with a representation of the decomposition in Equation 50. It has to be kept in mind that these representations
in the Appendix only refer to a particular C-vine. By using relabeling, other variations of the C-vine can be
constructed. The C-vine basically links particular variable to all the remaining others. In other words, one
variable will be placed in the center. Once all the links have been estimated by bivariate copulas, the dependences
between the links their selves are estimated and so on. This process will be repeated until all possible conditional
links are estimated.
The n-dimensional probability density function for the D-vine can be described as (Aas et al. 2009):

f(x1, · · · , xn) =

n∏
k=1

f(xk)

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,··· ,i+j−1(F (xi|xi+1, · · · , xi+j−1), F (xi+j |xi+1, · · · , xi+j−1)) (36)

The graph structure of this particular type for five variables is reported in the Appendix C in Figure 10, along
with a representation of the decomposition in Equation 50. Again we have to hold in mind that there are many
different other variations possible due to relabeling. Unlike the C-vine, the D-vine does not centralize particular
variables. In the D-Vine variables are linked side by side. In other words, a non-looped chain of variables is
created. Once these links have been estimated, the dependencies between the links their selves will be estimated,
while keeping this chain structure.

Besides these two type of structures many more structures can be used. For instance Kurowicka (2010) proposed
a method based on partial correlations to select an R-Vine. In Dißmann (2010) a method is proposed based on
Kendall’s τ . In this research we will use the same methodology as in Dißmann (2010). Dißmann (2010) assigns
weights to the edges and chooses a sub graph 13, which necessarily has to be a tree, in such a way that the sum
of the weights of the edges are maximized. The weights between two nodes is defined as the empirical Kendall’s τ

13A sub graph has the same nodes but not necessarily the same edges
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between these particular variables. This particular sub graph is called the Maximum Spanning Tree or the MST.
We use the Prim’s Algorithm from Cormen et al. (2001) to determine the MST. Prim’s Algorithm is originally
described as a way to find minimum spanning tee, but it works in both ways if we choose to multiply the edge
values by minus one.
Prim’s Algorithm can be described as follows:

Step 1: Form the connected graph G = (N,E) and create an empty sub graph T = (N ′, E′)

Step 2: Start with an arbitrarily chosen node from the graph, say n∗.

Step 3: N ′ = {n∗}

Step 4: while T does not contain all nodes in G do:

Step 5: Select an edge e ∈ E such that a new node is connected with E′ and has the minimal edge value.

Step 6: Add this new node to N ′ and the new edge e to E′

Step 7: end while

In Cormen et al. (2001) it is proven that the final tree T is a MST.
To select a Vine structure in our research we follow the methodology of Dißmann (2010). This means that we
select our structure based on the tree that maximizes the sum of the edge values, where the edge values are
represented by the empirical Kendall’s τ . Once we find the MST of the next tree, containing the MST edges of
the previous tree as nodes. This process will be repeated until there is only one node left.

4.6.3 Estimating Copulas

Where in Section 4.6.2 we show how to find an appropriate Vine structure, we show in this section how we choose
a bivariate copula and how to estimate it. It is known that bivariate copulas can be estimated in several ways.
One approach uses Maximum Likelihood estimation while others use Kendall’s τ or Spearman’s ρ to estimate
the copula parameter. In this research we choose to use Maximum Likelihood in order to estimate the copula
parameters. We motivate our choice of estimation by two different reasons. Firstly Maximum Likelihood is more
flexible when the number of copula variables are greater than one. Secondly Maximum Likelihood estimation is
a standard in vine copula estimation Dißmann (2010) and Kurowicka (2010).
Let Θ denote the set of copula parameters that need to be estimated. If for example a C-vine structure is assumed
the n-dimensional log likelihood (l(Θ)) can be formulated as follows:

l(Θ) =

n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
(
cj,j+i|1,··· ,j−1

(
F (xj,t|x1,t, · · · , xj−1,t), F (xj+i,t|x1,t, · · · , xj−1,t)

))
, (37)

All marginal probability density function drop out of the likelihood function, since they are deterministic. This
boils down maximizing the likelihoods of all the individual pair-copula (estimating Θ). Since it is infeasible to
use Maximum Likelihood on the entire Vine structure, we estimate all the individual copula pairs in each tree
separately. Therefore we assume that the copula parameters optima in the next tree are unaffected by the copula
parameters in the previous trees.
In order to estimate the copula parameters in other trees than the first tree, we need to transform our data
to conditional data. The data can be transformed to conditional data by using a h-function. We can define a
h-function as follows:

h(xi, xj ,Θij) = F (Xi|Xj)|Xi=xi,Xj=xj ,Θij =
∂Cij

(
F (Xi), F (Xj)

)
∂F (Xj)

∣∣∣∣∣
Xi=xi,Xj=xj ,Θij

, (38)
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where h(xi, xj ,Θij) is the h-function always conditioned on the second parameter (in this case xj). Θij stands for
the bivariate copula parameter between variable i and variable j. It is important to hold in mind that due to the
fact that some bivariate copulas are not symmetric (this means that C12(u1, u2) 6= C12(u2, u1)). Therefore, the
same partial derivative function that is being used for conditioning j on i may not generally be used for the case
that i is conditioned on j. In other words the h-function is unique for the symmetric bivariate copula and differs
for asymmetric bivariate copulas.
The beauty of using graph theory in a copula context is that the results of the previous tree are used to obtain the
conditional data in the next tree using h-functions. In order to illustrate this, we use the C-Vine from expression
35. We now consider the fourth and the fifth line of this expression. Firstly c34|12(F (x3|x1, x2), F (x4|x1, x2)) is
considered. To estimate this copula, expressions of F (x3|x1, x2) and F (x4|x1, x2) are required in order to obtain
the conditional data. In equation 39 these two conditional cumulative density functions are described using the
appropriate h-functions.

F (x3|x1, x2) = h(F (x3|x2), F (x1|x2),Θ31) = h(h(x3, x2,Θ32), h(x1, x2,Θ12),Θ31)

F (x4|x1, x2) = h(F (x4|x1), F (x2|x1),Θ42) = h(h(x4, x1,Θ41), h(x2, x1,Θ21),Θ42)
(39)

4.6.4 Sampling from Vine Copulas

In the end we want to sample from the estimated Vine in order to obtain VaR or ES estimates. In order to sample
from the Vine the inverse h-function is required (h−1). The h−1(xi, xj ,Θij) is the inverted h-function with respect
to the first variable (in this case xi) or equivalently the inverse of the conditional distribution function. This can
be expressed as:

F (xi|xj) = h(xi, xj ,Θij) = c ⇔ F−1(c|xj) = h−1(c, xj ,Θij) = xi (40)

where c is a certain constant. Simulation from a Vine is briefly discussed in Bedford & Cooke (2002) and Kurowicka
& Cooke (2006). Aas et al. (2009) gives a practical approach on how to sample from C-Vines and D-Vines. The
basic idea of sampling from a Vine is shown by an example. In this example sampling from an d-dimensional
C-Vine is considered.

Step 1: Sample n independent uniform [0,1] variables, w1, · · · , wn

Step 2: Set x1 = w1

Step 3: Assume that the copulas are symmetric. Now, use that C12 has already been estimated in tree two and
therefore the corresponding h-function is known, to obtain x2 = F−1

2|1 (w2|x1) = h−1(w2, x1,Θ12)

Step 4: Proceed with the next tree and use the estimated copula C23|1 to obtain a sampled value of x3 as follows:
F (x3|x1, x2) = h(F (x3|x1), F (x2|x1),Θ32) = h(h(x3, x1,Θ31), h(x2, x1,Θ21),Θ32) = w3 ⇔
h−1(w3, h(x2, x1,Θ21),Θ32) = h(x3, x1,Θ31)⇔ x3 = h−1

(
h−1(w3, h(x2, x1,Θ21),Θ32), x1,Θ31

)
Step 5: Proceed until all n variables are sampled one time.

Using the same reasoning it is possible to sample from all other possible Vines.

4.6.5 Sequential Method

In our research we follow the Vine selection procedure from Dißmann (2010). He refers to this procedure as the
sequential method. This method uses the Kendall’s τ for selecting a Vine structure. This method is motivated by
the idea that the strongest dependencies need to be captured in the first trees, since these are the most important
ones. Furthermore this approach will avoid numerical errors in higher order trees (Dißmann (2010), Schepsmeier
& Czado (2015) and Aas et al. (2009)). Higher order trees contain many very weak relationships, which are less
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inclined to estimation errors, since copula are generally speaking very capable of modeling (close to) independence.

The sequential algorithm can be described in several different steps.

Step 1: Construct a tree T1 with d nodes and with all possible edges.

Step 2: Compute the absolute empirical Kendall’s τ for all the possible pairs (number of all possible pairs equals
the number all possible edges).

Step 3: Use Prim’s Algorithm (Prim 1957) to determine the maximum spanning tree.

Step 4: For all the pairs found by Prim’s algorithm select a certain copula and fit this copula to the data by using
Maximum Likelihood Estimation.

Step 5: Proceed by constructing a tree, where the nodes are represented by the edges in the previous tree.

Step 6: Transform the observations to conditional data (using the h-function).

Step 7: Compute the absolute empirical Kendall’s τ for all the possible pairs of conditional data.

Step 8: Proceed with step 3 until the R-Vine is fully specified. If there is at a certain tree only one option to create
a spanning tree, proceed by using the D-Vine structure.

An example of the sequential method for a joint distribution of six different assets is given in the Appendix C in
Figure 20.

4.6.6 Model Comparison of R-Vines

The comparison of R-Vines is useful to evaluate the performance of different vine structures. We can obtain
different vine structures when we use:

• Different tree structures in Vines

• Different copula families for the pairs in the edges

• Both different tree structures in vines and different copula families for the pairs

Because different R-Vines are considered to be non-nested, the test of Vuong (1989) for non-nested models can
be applied based on the KullBack-Leibler information criteria (Clarke 2007). Consider two different models that
try to model the true model h0, Fβ = f(Y |β) and Gγ = g(Y |γ). Let β∗ and γ∗ be the true parameters. The null
hypothesis of the test is that the two different models are equally close to the true specification:

H0 : E0

[
log

f(Y |β∗)
g(Y |γ∗)

]
= 0 (41)

Vuong (1989) proves that under general conditions (1/n) (n stands for the number of observations) times the
likelihood ratio statistic approximates this expected value:

1

n
LR(β̂, γ̂)→ E0

[
log

f(Y |β∗)
g(Y |γ∗)

]
, if n→∞ (42)

Let β̂ and γ̂ are the maximum likelihood estimator of β∗ and γ∗. LR(β̂, γ̂) = L̂f − L̂g, where L̂f and L̂h are the
maximized likelihoods. The resulting likelihood ratio statistic is asymptotically normally distributed and the test
statistic is under the null hypothesis:

V̂n :=
LR(β̂, γ̂)

(
√
n)ω̂

→ N(0, 1) (43)

with ω̂ is the estimated standard deviation:
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ω̂ =
1

n

n∑
i=1

[
log

f(Y |β∗)
g(Y |γ∗)

]2

−

[
1

n

n∑
i=1

log
f(Y |β∗)
g(Y |γ∗)

]2

(44)

The corresponding p-value is 2(1 − Φ(|V̂n|)), where Φ is the normal cumulative density function. Not rejecting
the H0 means that both models are considered to be significantly equally good. However if the H0 does not hold
then model Fβ is in favor when the value of V̂n is positive. If this value is negative then the model Gγ is in favor.

4.7 Multivariate Extreme Value Theory

Besides copulas we use another way to model the joint distribution. In this we show how multivariate extreme
value theory (MEVT) is used to model the dependence between variables. This Section will be split up into three
different parts. First we focus on the basics of this MEVT model. Next we show the estimation procedure of this
model and finally we elaborate on how to sample from this model.

4.7.1 MEVT Model

The basic idea of MEVT is to model the joint tail behavior of multiple assets. Since VaR and ES on the extreme
upper or lower quantiles, a model solely based on these certain parts could improve VaR and ES estimations. The
MEVT model we use is related with the exceedances over threshold models. The general distribution function
of univariate exceedance over threshold models can be described as: Fexcess = Pr

[
X − u ≤ x

∣∣|X| > u
]
, where

u is a single threshold for both upper and lower bounds, X a random variable and x a constant. To extent this
theory to more dimensions, say d dimensions, many different extreme value distributions can be constructed. We
can for example construct Fexcess = Pr

[
Xi − u ≤ x

∣∣|Xj | > u
]
, Fexcess = Pr

[
Xi − u ≤ x

∣∣|Xk| > u, |Xj | < u
]
, or

Fexcess = Pr
[
Xi−u,Xj −u ≤ x

∣∣|Xk| > u
]
and so on. The number of scenarios increases even more if for example

time lags are added or when the order of variables is changed. Zhang & Huang (2006) tried to tackle this issue
by constructing a three-state Markov chain to account for some of these scenarios. In other words, including lots
of dimensions in the model leads to great problems.
Hilal et al. (2014) divides the problem in less scenarios and make POT multivariate EVT feasible from a practical
point of view. Hilal et al. (2014) only accounts for the conditional probability of one variable given another
certain variable is extreme (positive or negative). These models M are denoted by M†j|i,∀j, i which j 6= i, where
† ∈ (+,−) represents if the observation conditioned on is extremely positive or negative. The number different
dependence models now equals d× (d− 1)× 2. McNeil et al. (2005) show that autocorrelation of extreme returns
is not present or very short-lived events. To keep the model as simple as possible and because we do not wish to
over parameterize the model, these effects will not be captured by the model.

The model from Hilal et al. (2014) requires i.i.d. data as input. The ARMA-MS-GARCH-GJR filter will be used
in order to obtain data that is (close to) i.i.d.. Moreover, this methodology requires the marginals to be Laplace
transformed (in order to obtain the correct standardizing functions). Let F̂Xi(Xi,t) be the tth observation of
variable i fitted accordingly to the appropriate marginal estimated cumulative density function of variable i, then

Yi,t = F−1
Y [F̂Xi,t(Xi,t)] =

log[2F̂Xi,t(Xi,t)] F̂Xi,t(Xi,t) ≤ 0.5,

− log[2(1− F̂Xi,t(Xi,t))] F̂Xi,t(Xi,t) > 0.5
(45)

is the Laplace transformation of a uniform random variable. The Laplace distribution is known for its exponential
upper and lower tails.
The main objective of Hilal et al. (2011) and Hilal et al. (2014) is to capture the dependence structure between
Yi,t and Yj,t for both the upper and lower tail. We use the modeling assumption from Heffernan & Tawn (2004)
that there exist some standardizing constants a†j|i ∈ [−1, 1] and b†j|i ∈ (−∞, 1) such that for all fixed z†j|i,t = z the
following condition holds:
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lim
yi→∞

{
Pr[Y,j ≤ a†j|i(Yi) + b†j|i(Yi)z| † Yi = yi]

}
= Gj|i(z)

†, (46)

where Gj|i(z)† is a non-degenerate function and limz→∞Gj|i(z)
† = 1. The standardizing constants can take on

numerous of forms (a detailed table about different standardizing constants can be found in Heffernan & Tawn
(2004)). For the Laplace margins the appropriate standardization functions are:

a
(l)†
j|i (Yi) = a†j|i † Yi

b
(l)†
j|i (Yi) = †Y

b†
j|i

i

Using this model the standardized residuals can be obtained:

Z
(l)†
j|i,t =

Yj,t+l − a†j|i † Yi,t

†Y
b†
j|i

i,t

Using this standardized variable, equation 46 can be rewritten as:

lim
yi→∞

{
Pr[Z†j|i,t ≤ z| † Yi,t = yi]

}
= Gj|i(z)

†, (47)

The following relationship holds given that †Yi →∞:

Yj,t+l = a†j|i † Yi,t + †Y
b†
j|i

i,t Z†j|i,t

Using this relationship three different categories of asymptotic dependence can be specified.

1. Positive asymptotic dependence if 0 < a†j|i < 1 or both a†j|i = 0 and b†j|i > 0.

2. Negative asymptotic dependence if −1 < a†j|i < 0.

3. Close to asymptotic independence if both a†j|i = 0 and b†j|i ≤ 0

In the remainder we discuss on how to estimate the model and how to sample from it.

4.7.2 MEVT estimation

In order to estimate this model, the estimation method from Heffernan & Tawn (2004), Hilal et al. (2011) and
Hilal et al. (2014) is used. All the thresholds u†i|j are assumed to be the same and correspond to the 5th percentile
of the Laplace distribution for the lower threshold (u−i|j = u−) and the 95th percentile for the upper threshold
(u+
i|j = u+). Let uY + denote the general upper threshold and uY − the general lower threshold. To estimate the

model a distributional assumption has to be made. The standardizing functions are assumed to be normalizing in
the sense that Z†j|i ∼ N(µ†j|i, σ

2†
j|i) when †Yi → ∞. µ†j|i is the finite mean and σ†j|i the standard deviation. Using

this distributional assumption the models M†j|i can be estimated using maximum likelihood estimation. The log
likelihood (logL) function that needs to be maximized with respect to Θ†j|i is stated as follows:

logL(Θ†j|i) = −
n†
j|i∑
t=1

[
log

{
σ†j|i † Y

b†
j|i

i(t)

}
+

1

2

{
Yj(t) − a†j|i † Y

†
i(t) − µ

†
j|i † Y

b†
j|i

i(t)

σj|i† † Y
b†
j|i

i(t)

}2]
,

where Θ†j|i =

[
µ†j|i, σ

†
j|i, a

†
j|i, b

†
j|i

]
4.7.3 MEVT Sampling

Once the models are fitted, we can start sampling observations from the models. The target is to sample a d
dimensional vector of returns. In order to do so, we consider 2d+ 1 different regions or intervals:
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R+
1 =

{
Y1 > uY + ∩ Y1 ≥ YI , ∀I ∈ {1, ..., d} \ {1}

}
R+

2 =

{
Y2 > uY + ∩ Y2 ≥ YI , ∀I ∈ {1, ..., d} \ {2}

}
...

R+
d =

{
Yd > uY + ∩ Yd ≥ YI , ∀I ∈ {1, ..., d} \ {d}

}
R−1 =

{
Y1 > uY − ∩ Y1 ≤ YI , ∀I ∈ {1, ..., d} \ {1}

}
R−2 =

{
Y2 > uY − ∩ Y2 ≤ YI , ∀I ∈ {1, ..., d} \ {2}

}
...

R−d =

{
Yd > uY − ∩ Yd ≤ YI , ∀I ∈ {1, ..., d} \ {d}

}
R0 =

{
YI ≤ uY + ∩ YI ≥ uY − , ∀I ∈ {1, ..., d}

}
This is a natural way to split up the space (Hilal et al. 2011). The associated possibilities of observations of vector
Y falling in the particular region are:

P+
1 = Pr

(
Y ∈ R+

1

)
= Pr

[
Y ∈ R+

1

∣∣∣Y1 > uY +

]
Pr
(
Y1 > uY +

)
P+

2 = Pr
(
Y ∈ R+

2

)
= Pr

[
Y ∈ R+

2

∣∣∣Y2 > uY +

]
Pr
(
Y2 > uY +

)
...

P+
d = Pr

(
Y ∈ R+

d

)
= Pr

[
Y ∈ R+

d

∣∣∣Yd > uY +

]
Pr
(
Yd > uY +

)
P−1 = Pr

(
Y ∈ R−1

)
= Pr

[
Y ∈ R−1

∣∣∣Y1 > uY −
]
Pr
(
Y1 > uY −

)
P−2 = Pr

(
Y ∈ R−2

)
= Pr

[
Y ∈ R+

2

∣∣∣Y2 > uY −
]
Pr
(
Y2 > uY −

)
...

P−d = Pr
(
Y ∈ R−d

)
= Pr

[
Y ∈ R−d

∣∣∣Yd > uY −
]
Pr
(
Yd > uY −

)
P0 = Pr

(
Y ∈ R0

)
= 1−

d∑
i=1

(
P−i + P+

i

)
The probability can be approximated using Monte Carlo simulation. The algorithm for a certain P+

i is
described by the following steps:

Algorithm 1a

Step 1: Simulate an extreme positive Ŷ +
i = u+

Y +E, where E ∼ Exponential(1) using the fact that both tails of the
Laplace transformed variable are exponential.

Step 2: Sample a d− 1 vector Ẑ+
j|i independently from Ŷi using the estimated models M+

j|i.

Step 3: Obtain the simulated Ŷ +
j = â+

j|i · Ŷi + Ŷ
b̂+
j|i

i · Ẑ+
j|i

Step 4: Repeat step 2 and 3 for all the possible j ∈ {1, · · · , d} \ {i}
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Step 5: Let Y|i denote (Y1|i, Y2|i, · · · , Yd|i). Now the probability can be estimated using Monte Carlo:

P+
i ≈

{
1
K

∑K
k=1 I

[(
Ŷ +
|i
)(k) ∈ R+

I

]}{
1
2 exp(−uY +)

}
The probability can be approximated using Monte Carlo. The algorithm for a certain P−i is described by the

following steps:

Algorithm 1b

Step 1: Simulate an extreme positive Ŷ +
i = u−Y −E, where E ∼ Exponential(1) using the fact that both tails of the

Laplace transformed variable are exponential.

Step 2: Sample a d− 1 vector Ẑ−j|i independently from Ŷi using the estimated models M−j|i.

Step 3: Obtain the simulated Ŷ −j = â+
j|i · Ŷi + Ŷ

b̂−
j|i

i · Ẑ−j|i

Step 4: Repeat step 2 and 3 for all the possible j ∈ {1, · · · , d} \ {i}

Step 5: Let Y|i denote (Y1|i, Y2|i, · · · , Yd|i). Now the probability can be estimated using Monte Carlo:

P−i ≈
{

1
K

∑K
k=1 I

[(
Ŷ −|i
)(k) ∈ R+

I

]}{
1
2 exp(−uY −)

}
Combining the results from algorithm 1a and 1b and using that the sum of all the probability has to be equal to
one, we can obtain the following expression for P0:

P0 = 1−
( d∑
i=1

P+
i + P−i

)
Once the probabilities are estimated, sampling from the model is made possible. The sampling algorithm can be
described as follows:

Algorithm 2

Step 1: Sample [k0, k
+
1 , ..., k

+
d , k

−
1 , ..., k

+
d ] from a multinomial distribution with estimated probabilities

P̂0, P̂
+
1 , P̂

+
2 , ..., , P̂

+
d , P̂

−
1 , P̂

−
2 , ..., P̂

−
d . Where k†i represents the number of cases that the vector that needs to

be sampled lies in region R†i for † ∈ {+,−}.

Step 2: Sample k0 empirically from the region R0

Step 3: Sample Ŷ+
|1 using the algorithm 1a and 1b until k+

1 are accepted in the region R+
1

Step 4: Repeat Step 3 for all different i = 1, ..., d and † = {+,−}

4.8 Backtesting

Historical data is used in order to evaluate the performance of the different models when estimating the VaR or
the ES. The accuracy of the VaR estimation can be tested using the conditional or unconditional coverage tests.
These tests count the number of times the VaR is exceeded, i.e. when portfolio losses exceed VaR estimates. If
the number of exceedances is significantly greater than the selected confidence level corresponding with the VaR
then the estimated VaR is considered to underestimate the risks. On contrary, when the number of exceedances is
significantly smaller than the selected confidence level, then the VaR is considered to overestimate the risks. The
exceedances often occur in clusters (for example during financial distress). In theory the exceedances in a good
VaR model occur independently over time. This independence feature is not taken into account when conducting
an unconditional coverage test, unlike the conditional coverage test (Christoffersen 1998). The testing can be
conducted in two different ways. Firstly there static models can be used. In these static models the VaR is kept
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fixed over time. The advantage of this method is its simplicity, there is no requirement to estimate the VaR
repeatedly in a window. The other method is the dynamic method. Then a window is used to estimate all the
different models over and over again. In our research we prefer the dynamic models.
We can also backtest the ES. We elaborate on this test in Section 4.8.2

4.8.1 POF-test

The POF-test from Kupiec (1995) is an unconditional coverage test. To conduct this test N days in the future
are collected. Now, let π denote the probability that observation i in the future exceeds the VaRa. Assuming that
this probability is equal the likelihood ratio is given by:

L =

N∏
i=1

πIi(1− π)1−Ii = πn(1− π)N−n,

where Ii is an indicator function that is one if the VaRa is exceeded and zero otherwise and n =
∑N
i=1 Ii. Using

maximum likelihood estimation would give: π̂ = N/n. Let the null hypothesis be that the VaRa describes the
data well and the alternative hypothesis be that the VaRa fails. Under the null hypothesis we get the likelihood:

L0 = (1− π)nπN−n,

while under the alternative hypothesis we have:

L1 =
( n
N

)n(
1− n

N

)N−n
,

Now the log likelihood ratio can be formulated as: −(logL0 − logL1)) which is χ2 distributed with one degree of
freedom.

4.8.2 ES Zero Mean Test

McNeil & Frey (2000) propose a way to backtest the Expected Shortfall (ES). The test that is being used is
based on the idea that when a certain return exceeds the VaR, given that the VaR is specified correctly, then the
exceeded loss or profit minus the ES should have mean zero. This can be described as follows:

St =
(Rt − ESα)

σt
I{Rt>VaRα}, then

H0 :
1

T

T∑
t=1

St = 0

To test if this null hypothesis holds we can either use the standard one sample t test, with the assumption that St is
i.i.d. distributed, or use the bootstrap test from Efron & Tibshirani (1994), which does not require a distributional
assumption. In this case we use the one-sided t test with null hypothesis that the excess shortfall has zero mean
against the alternative hypothesis that the excess shortfall has mean greater than zero, so that the shortfall is
systematically underestimated.

5 Results

In this section we provide the empirical results of applying the described methods to a dataset containing seven
different major world indices. We decide to keep the same structure as in the methodology. Therefore we split
the result reporting roughly into two different parts. In the first part we elaborate on the results of the marginal
modeling and the two-step method (ARMA-MS-GARCH-GJR and semi-parametric modeling). In the second part
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we analyze the dependence modeling using Vine copula and a joint distribution based on MEVT. We backtest
these models in both a period of financial distress and a stable period.

5.1 Marginal Results

The marginal modeling consists of the two-step method containing the ARMA-MS-GARCH-GJR as first step and
the semi-parametric modeling as second step.

5.1.1 ARMA-MS-GARCH-GJR

The estimated ARMA-MS-GARCH-GJR will operate as a filter for the return series. The target is that some
of the stylized facts of returns reported by (McNeil et al. 2005) are filtered out. The ARMA part (if necessary)
will focus on the autocorrelation of returns, the GARCH part the volatility clustering, the GJR part to capture
the asymmetric behavior of the volatility process. Finally, we govern our returns series by an unobserved Markov
process containing two different states. Firstly the number of lags and the number of regimes that are included
need to be calibrated. This corresponds to calibrating i, j, k and l of the ARMA(i,j)-GARCH(k,l)-GJR(m), where
the number of lags of the GJR is assumed to be equal to the number of ARCH lags (m = l).
The number of regimes is set to two for different reasons. Firstly, the Financial Crisis in 2008 is part of our
dataset, we want to model a volatility process that mainly distinguishes between crisis and stability. Secondly, we
want to avoid overfitting. Adding states will add i+ j+k+2× l ARMA-GARCH-GJR parameters and will extent
the transition matrix with transition probabilities. Thirdly, since for the backtesting we use a moving window
setting in which we choose to re-estimate the parameters instead of keeping them fixed, adding many different
states pushes the computation time up severely.
We choose the number of parameters i,j,k and l by comparing BIC values following Brockwell & Davis (1991). This
lag selection occurs only at one period in time to avoid long computation time. It turns out that using this criterion
for all series no ARMA effects and one GARCH lag is used. This results to a two state ARMA(i,j)-MS-GARCH(k,l)-GJR(m)
with: i = 0, j = 0, k = 1 and l = m = 1 (Appendix B) Table 10. As expected given the stylized facts from McNeil
et al. (2005) no ARMA lags are included. This means that the addition does not significantly improve the model
fit in terms of BIC values.
The performance of the filter can be analyzed using autocorrelation plots. In the Appendix C in Figures 11-17
several autocorrelograms are shown for the filtered (standardized) and non-filtered series for all of the different
marginals of the indices dataset. We observe a strong presence of autocorrelation in non-filtered absolute and
squared returns. On the other hand the autocorrelation in the returns series is as expected rather weak. The
standardized or filtered series hardly exhibit any autocorrelation in all of the normal, the absolute and squared
cases. Using the Ljung-Box test and the Augmented Dickey-Fuller test we can test for i.i.d. (stationarity) of the
filtered series. The results of these tests are reported in Appendix B in Table 7. This table gives us an indication
that the filtered marginal returns seem to be very close to i.i.d.. 14 The fitted student t distributions along with
the normal distributions of all the marginals’ residuals are shown in the Appendix C in Figure 18. It shows that
the fitted student t distributions are very close to the normal distribution, which is no surprise given the high
number of degrees of freedom (Table 5). For illustrating purposes the ARMA-MS-GARCH-GJR estimates over a
period starting in 2002-07-08 until 2009-06-29 (containing 1500 observations) are shown in Table 5 below.
To illustrate the performance of the Markov switching of the GARCH-GJR model we show the returns over a
certain period in time of the SMI along with the filtered probability of being in state 2 on a scale zero to one
in gray in Figure 3. Furthermore we also choose to add the Viterbi path in this figure. In the Appendix C
in Figure 19 these figures are shown for all the other indices as well. We choose to add the Viterbi path for
illustration purposes. In the end we use the filtered path instead. The Viterbi path is a nice way to make
the unobserved states observable by assigning the most likely sequence of unobserved states. The filtered path

14It has to be taken in mind that this is only an indication at one point in time. As we work with a moving window and recalibration
of the models this does not have to be necessarily the case at other points in time. The number of lags is kept fixed over time due to
limiting computation power.
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AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500

ω1 0,00 0,00 0,00 0,00 0,00 0,00 0,00
α1 0,00 0,00 0,00 0,03 0,00 0,00 0,00
γ1 0,20 0,14 0,12 0,19 0,57 0,16 0,16
β1 0,78 0,83 0,86 0,85 0,72 0,83 0,90
ω2 0,00 0,00 0,00 0,00 0,00 0,00 0,00
α2 0,00 0,00 0,00 0,00 0,03 0,02 0,00
γ2 0,12 0,10 0,11 0,06 0,06 0,10 0,18
β2 0,92 0,93 0,92 0,94 0,91 0,91 0,83
P11 1,3% 0,8% 0,2% 0,1% 88,7% 0,3% 0,1%
P21 99,8% 99,8% 99,9% 99,9% 95,6% 99,8% 99,8%
DOF 27,73 29,49 29,50 9,38 97,79 52,92 17,18

Table 5: This table contains the estimated ARMA-MS-GARCH-GJR parameters using a window of 1500 daily
observations starting in 2002-07-08 until 2009-06-29. The italic values are not significantly different from zero
using a significance level of 1%.

however, gives probabilities of being in certain states. If the filtered probability is multiplied by the transition
matrix the estimated probability of being in a certain state can be evaluated. The Viterbi path selects the highest
estimated probability.
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Figure 3: This graph contains the daily log returns for the SMI starting in 2002-07-08 until 2009-06-29, containing
1500 observations. The black and the red lines correspond with the actual returns. The dashed line represents
the Viterbi path. When the Viterbi path is high then the Viterbi path is in state 2 and when it is low in state 1.
The gray line represents the filtered path probability scaled to the maximum and the minimum log return.

We observe in figure 3 that there is a very high probability of being in state 1 until approximately end 2002 and
after approximately mid 2008. In between there is a big probability of being in state 2. There is a clear indication
that there is a very big probability of being in state 1 during a periods of financial distress. We see that there
is a very high probability of being in state 1 during the dotcom bubble burst in 2002. Furthermore we observe
that this probability is also high during Financial Crisis, which hit its peak in mid 2008. If we combine this figure
with table 5, we see that the estimated parameters of the GARCH-GJR model for the SMI differ across different
states. We observe a higher value for γ in state 1 and a higher value for β in state 2. This indicates that there is
an increased leverage effect in state 1 and an increased persistence in the volatility in state 2 given the volatility
process: σ2

t = ω + (α1 + γ1 · It−1) · ε2t−1 + β1 · σ2
t−1. In other words the GARCH-GJR model is more reactive

to shocks in state 1 than in state 2. This is in line with the statement from McNeil et al. (2005) that extreme
returns (shocks) appear in clusters. Negative shocks result in high values of ε2 and will have a larger impact on
the estimated volatility in state 1 than in state 2 given the value of γ. The same conclusion can be drawn from
the other indices. Only the NIKKEI225 seems to behave differently. This can be explained by the Lost Decade
15 of Japan. The Lost Decade is recognized as a period of economic stagnation due to the asset price bubble’s

15The term originally refers to 1991 to 2000, but recently the decade from 2001 to 2010 is also included.
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collapse in the early 90’s.

5.1.2 Marginal Extreme Value Theory

In the Appendix C in Figures 20 and 21 the results of the threshold selection algorithm, or the automated eye-ball
test in Section 4.4, are shown for indices dataset for the lower and the upper tails respectively for 1500 observations
from 18-07-2000 until 01-07-2007. In order to avoid including too many observations in the tails, the w is set to
5 and the ε is set to 0.1 and the h is set to 80%. The graphs show that the algorithm is quite capable of locating
the first stable region, while keeping the number of observations in the tails quite low.

5.2 Multivariate Results

All of the marginal models will be modeled jointly by using Vine copula, MEVT or t-copula. The t-copula is
used as benchmark model, since it is widely used in finance. In order to test the appropriateness of our methods
regarding VaR and ES estimation, backtesting is used on both a equal weighted portfolio and a minimum variance
portfolio. For the backtesting two different time periods will be used. Firstly we will examine the performance
of our models during a period of financial distress (2007-07-01 until 2009-07-01 containing 389 observations) and
secondly during a more stable time period (2015-01-01 until 2017-01-01 containing 391 observations). A rolling
window will be used containing 1500 observations. In Section 5.3 the estimation of a certain Vine copula will be
discussed, in Section 5.4 some results of the MEVT will be discussed and finally the backtesting results will be
reported in Section 5.5.

5.3 Vine Copula results

To illustrate the performance of the Vine Copula at a certain point in time, the dataset prior to 2007-07-01
containing 1500 observations will be used. These observations will be filtered by using the marginal modeling as
reported earlier. Once the observations have been filtered a pair-scatter plot and a pair-contour plot is constructed,
which is shown in the Appendix C in Figure 22. It can easily be observed that there is a strong relationship between
the indices in Europe by looking at the Kendall’s τ . Furthermore the Asian indices show among each other quite
a strong relationship, while the relationship with the indices in Europe and the S&P500 is rather limited. The
S&P500 shows a stronger relationship with the European indices than with the Asian ones. These results can
also be seen in the selected Vine structure in the Appendix C in Figure 23. In the first tree the very strong
relationships between the AEX, the CAC40 and the DAX estimated by using bivariate t copulas, which indicate
the presences of fat tails and tail dependence. The CAC40 and the SMI are also linked, which is expected due
to the geographical argument. The S&P500 is linked to the SMI, while the Hang Seng and the NIKKEI225 are
linked to each other as well. The other trees are hard to interpret and the dependence in these trees decrease
tremendously, which can be observed in the Appendix C in Figure 24.

5.4 MEVT results

In this section we will discuss some results of the joint distribution using MEVT. For illustration purposes we
choose to report the values of a− for the AEX, CAC40, DAX, Hang Seng and the S&P500. These results are shown
in a smoothed path (spline) over time. The values have been estimated in a rolling window setting containing
1500 observations and a tail of 5% starting at 2007-07-01 until 2009-07-01. Since we expect that the Financial
Crisis is interesting for the tail behavior we choose to report these results, which can be found in the Appendix C
in Figures 25-28. We show two different lines in each subplot because the effects are not required to be symmetric.
In other words the value of a−j|i may differ from a−i|j . The black line indicates the value a−i given the fact that j is
a negative extreme. For example the Figure 25 corresponds with with the values of a− for all the indices except
the AEX conditioned the fact that the AEX is a negative extreme. The estimated values of a− are particularly
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interesting since they tell us something about the lower asymptotic (tail) dependence. From section 4.7 it follows
that the following holds:

1. Positive asymptotic dependence if 0 < a†j|i < 1 or both a†j|i = 0 and b†j|i > 0.

2. Negative asymptotic dependence if −1 < a†j|i < 0.

3. Close to asymptotic independence if both a†j|i = 0 and b†j|i ≤ 0

If we look at figure 25 in the Appendix C we see that during the crisis the value of a−j|AEX ,∀j ∈ {CAC40,DAX, SMI}
decreases until mid 2008. This can be explained by the fact that the data of the dotcom bubble period leaves
the in sample. When the Financial Crisis hits its peak in the mid 2008, we observe a shift in this pattern. The
tail dependence starts to increase strongly for the CAC40, DAX, SMI and the AEX. This is expected given the
domino-like collapse of the financial markets during the Financial Crisis in 2008. The value of a−j|AEX ,∀j ∈
{Hang Seng,NIKKEI225} is very close to zero, indicating asymptotic independence in the lower tails. This can be
explained by the fact that these markets are not integrated as much as for example other European markets and the
US market. The asymptotic dependence between the AEX and the S&P500 seems to be positive and more stable
over time. Figure 27 shows that the influence in terms of lower asymptotic dependence of the Hang Seng index on
the other indices except the NIKKEI is rather limited. The influence of the Hang Seng index on the NIKKEI225
index is quite extensive. We think this is a reasonable result, since both markets are financially strongly integrated
due to mainly the geographic locations of both markets. There seems to be a negative relationship forming over
time between many indices and the Hang Seng index. The S&P500 and the SMI are exceptions, they seem to
behave asymptotic independent in the lower tails with the Hang Seng index. The Hang Seng index contains lots
of Chinese blue chip companies. China was until 2015 the fastest growing economy, with extreme growth rates.
Therefore it is no surprise that the Hang Seng index behaves quite different from the other indices. In Figure 28
we observe that the influence of the S&P500 on the European indices is positive and increasing slightly over time.
This can be explained by the fact that the American economy is a strong and persistent driver for the European
economies due to strong market integration.

5.5 Backtesting Results

In this section we use three different dependence models a moving window setting with 1500 observations that
is re-estimated over time. The dependence models we use are Vine Copulas and a model based on MEVT. The
t copula is used as the benchmark model. We use the backtests to evaluate the performance of the dependence
models. We choose to use a large moving window, since many observations are required for putting this type of
MEVT into practice. The MEVT requires modeling assumption from Heffernan & Tawn (2004) (see Section 4.7)
which only holds if the observations in the tail are extreme, otherwise a bias is introduced.
The backtesting is split up into two difference time periods. One time period includes the Financial Crisis
(2007-07-01 until 2009-07-01) in the out sample. The other time period excludes the Financial Crisis in both
the in and out sample (2015-01-01 until 2017-01-01). We estimate both the one-day-ahead VaR/ES and the
ten-day-ahead VaR/ES. We use two different portfolio constructions: an equally-weighted portfolio and a minimum
variance portfolio. Both portfolios imply different weights to the assets. If the weight vector is multiplied by real
returns or the simulated returns, the portfolio returns can be constructed.
In Tables 12 and 13 we report the lower breaches, using an equally-weighted portfolio, of the estimated one- and
ten-day-ahead VaR for the first dataset. Moreover we report in these tables the results of the conditional and
unconditional coverage Kupiec’s and the results of the ES zero mean test.
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alpha Expected Vine Copula MEVT t Copula

10% 38,9 47 51 53
5% 19,45 26 29 24
2% 7,78 10 14 9
1% 3,89 9 10 7

0,50% 1,945 3 9 1

Table 6: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. The column Expected
indicates the expected number of breaches given alpha. This corresponds to multiplying the value α by the total
number of observations. Portfolios are constructed using equal weights. This set contains 389 observations.
The gray digits indicate that the model does not capture the number of breaches correctly according to the
unconditional coverage test using a 5% significance level. The bold numbers indicate that both the conditional
and the unconditional coverage tests support the assumption of correct number of lower breaches. The italic
number indicates that the ES is specified correctly using the zero mean test.

alpha Expected Vine Copula MEVT t Copula

10% 38,9 71 84 72
5% 19,45 31 45 32
2% 7,78 14 21 12
1% 3,89 10 12 10

0,50% 1,945 7 10 7

Table 7: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. Portfolios are
constructed using equal weights.

When we compare the expected number of breaches with the realized breaches from each method, we can tell
something about the performance of each method. From Table 12 we observe that all the methods seem to
underestimate the VaR and the ES, since the number of breaches is higher than expected number of breaches
given alpha. This VaR underestimation is however no surprise. After all the out sample contains many extreme
observations due to the Financial Crisis. We observe an underestimation of the ten-day-ahead VaR and ES forecasts
as well (Table 13). This underestimation is however more severe than the underestimation of the one-day-ahead
forecast. We can explain this because we forecast ten-day-ahead cumulative returns in Table 13. If for example
a very extreme loss is exactly ten days in front of the last observation in the in sample, then it takes ten days
before the information about this extreme loss enters the in sample. Furthermore we know from the stylized fact
from McNeil et al. (2005) that extremes occur often in clusters. This may cause several consecutive breaches. In
the following Figures 4 and 5 both the daily and cumulative ten day log losses are shown over 2007-07-01 until
2009-07-01 (389 observations) along with their 99% VaR and the ES estimations and the breaches. In Figure 5
we observe the clustering of breaches for all the methods when forecasting the ten-day-ahead 99% VaR and ES.
If we compare the number of breaches of the one-day-ahead VaR and ES estimations (Table 12) among the different
methods, we observe that the t copula outperforms the other two methods for generally all the values of alpha. It
follows that the unconditional coverage test indicates that the t copula method significantly produces the correct
number of breaches for alpha = 5%, 2%, 1% and 0.5%. The number breaches of the method based on Vine
Copula is slightly higher but still very close to the number of breaches of the method when a t copula is used.
This can be explained by the fact that many bivariate relationships in the first tree, which is the most important
one in the Vine structure, are estimated using bivariate t copulas (for example see Figures 22 and 23). The major
difference is that for the Vine Copula method in later trees many bivariate conditional couples are estimated by
an independence copula. This reduces the computation time, but it also reduces the dependence. Therefore, this
method produces in this case tails that are less fat than the t copula. The fat tails of the t copula are advantageous
when estimating the VaR or ES during a period of financial distress. However, generally speaking, the in sample
fit of the Vine copula is higher in terms of likelihood than the in sample fit of the t copulas (Aas et al. 2009).
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The performance of the method based on MEVT in terms of breaches is the worst. The number of breaches
for alpha = 1% however, which is in the main point of interest given Basel II, is very close to the number of
breaches of the other methods. For non of the alpha’s the unconditional coverage test indicate the correct number
of breaches significantly. The method based on MEVT seem to have some trouble with catching up. Again this
can be explained due to overfitting of the t copula and the Vine Copula, that is quite similar to the t copula.
Especially during the peak of the financial crisis the method based on MEVT seem to be not very reactive. This
may be caused by the fact that the length of the window is quite long. If we look at Figures 4 and 5 we indeed
observe that the 99% quantile of the portfolio losses is the highest for the method based on the t copula. The
Vine Copula has a lower 99% quantile estimation, while the method based on MEVT has the lowest.
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Figure 4: This figure contains the daily log losses along with the estimated one-day-ahead 99% VaR and ES and
the breaches.
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Equal weights portfolio ten day cummulative losses 2007-07-01 until 2009-07-01 
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Figure 5: This figure contains the cumulative ten day log losses along with the estimated ten-day-ahead 99% VaR
and ES and the breaches.
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Since portfolio managers often want to diversify and limit the risk, we believe it is important to analyze the
performance of the dependence models in a less risky portfolio. We therefore choose to construct a minimum
variance portfolio that is not rebalanced for simplicity and have a short position constraint 16. In Tables 14 and
15 in Appendix B the breaches are shown for this minimum variance portfolio. The weights are reported in the
tables as well. It follows that there is no weight put on the AEX, CAC40 and the DAX, which are strongly
correlated to each other. Most of the weight is put on the S&P500 (41%), the Hang Seng (28%) and the SMI
(22%). The number of breaches shrinks quite a bit regarding the equally weighted portfolio. The tests show that
the one-day-ahead VaR and the ES of 2%, 1% and 0.5% for all of the all three methods is well defined. The
ten-day-ahead VaR and ES are according to the tests not correctly specified.
We can conclude from both the graphs and the tables that during financial distress we would prefer to use t
copula, whose performance is slightly better than the performance of the Vine copula. The MEVT seems to have
some trouble catching up to the other two methods.
To analyze the performance of our dependence model during a stable financial period we choose to use 371
observations from 2015-01-01 until 2017-01-01 with the same moving window length. We choose to use these
dates since we do not want our in sample to be interfered by the extreme events during Financial Crisis. In tables
16 and 17 the breaches are shown for both the one-day- and cumulative ten-day-ahead VaR.

alpha Expected Vine Copula MEVT t Copula

10% 39,1 22 33 26
5% 19,55 12 15 14
2% 7,82 5 6 5
1% 3,91 3 3 3

0,50% 1,955 2 3 2

Table 8: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 391 observations.

alpha Expected Vine Copula MEVT t Copula

10% 39,1 20 28 21
5% 19,55 10 14 11
2% 7,82 5 7 5
1% 3,91 3 5 3

0,50% 1,955 3 3 3

Table 9: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 391 observations.

We observe from table 16 that both the Vine Copula and the t copula produce fewer breaches than expected.
This overestimation of the VaR and ES may be explained by the fact that both methods have quite fat tails.
The upper and lower tail dependence of the t copula is similar. Vine copulas often use bivariate t copulas in the
first trees. Therefore, these copulas show some symmetry as well. This is not the case for the method based on
MEVT. Since this period is known for its recovery after the Financial Crisis, which can be observed in Figures
1 and 2, the positive shocks in returns affect the estimation of the lower quantile when using t copulas or Vine
Copulas. This will lead to an overestimation of the lower tail. This can also be observed in both tables 16 and
17. The method based on MEVT outperforms the other two methods based on the breaches. In Figures 6 and 7
the daily and the cumulative ten-day log losses are shown over time along with the 99% VaR and ES estimation
and the breaches. In these figures we see that both the Vine Copula and the t copula produce higher VaR and ES
estimates than the method based on MEVT. The same results can be drawn from the breaches of the minimum

16This means that short positions are not allowed
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variance portfolio reported in Tables 18 and 19 in the Appendix B. We can conclude that in more stable financial
periods we prefer to use methods based on MEVT above the Vine Copula and the t copula
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Figure 6: This figure contains the daily log losses along with the estimated one-day-ahead 99% VaR and ES and
the breaches.
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Figure 7: This figure contains the cumulative ten day log losses along with the estimated ten-day-ahead 99% VaR
and ES and the breaches.
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6 Conclusion

In this research we forecast both the one- and ten-day-ahead Value-at-Risk (VaR) and Expected Shortfall (ES)
for a portfolio using two different dependence models: Vine Copula and a method based on Multivariate Extreme
Value Theory (MEVT). We use two steps to do so. Firstly we model the marginals and secondly we model the
dependence structure. The marginal modeling consists of the two-step method. In the first step we filter the
marginals by a Markov-Switching variant of the ARMA-GARCH model with an asymmetric component (GJR).
In the second step we model the filtered returns semi-parametrically using extreme value theory. In the end we
compare the performance of our dependence models with a t copula by using backtesting with conditional and
unconditional coverage tests for the VaR and the zero mean test for the ES. We use two different samples for
backtesting the VaR and ES of a portfolio consisting seven different major world indices in a rolling window
setting containing 1500 observations. Firstly we evaluate the performance of our models during the financial crisis
(2007-07-01 until 2009-07-01) and secondly during a stable financial period (2015-01-01 until 2017-01-01).
It follows that the MEVT underestimates the VaR during the financial crisis. The fat tails of the t copula and the
Vine copula seem to capture the downward breaches better than the model based on MEVT. Generally, all the
models underestimate the ten-day-ahead VaR during the crisis and too many breaches occur. The one-day-ahead
VaR estimates are much more precise in terms of breaches for all the models then the ten-day-ahead VaR estimates.
Especially the t copula is be able of significantly producing the correct number of breaches for VaR95%, VaR98%,
VaR99% and VaR99.5%.
In the stable financial period both the Vine copula and the t copula seem to have tails that are too fat. These
methods tend to overestimate the VaR. The MEVT however, captures the number of breaches more correctly.
The ten-day-ahead VaR estimations of this dataset are much more precise for all of the methods than during the
financial crisis.
We can conclude that the VaR estimation performance of the Vine copula regarding the t copula is quite
comparable. Both methods produces heavy tails which is beneficial during periods of financial distress, but
lead to overestimation during stable financial periods. Unlike the Vine Copula and the t copula, the model based
on MEVT slightly underestimates the VaR and the ES during financial crisis. However, this method seems to
outperform the other two during stable periods.
We see that the performance of the dependence methods varies over time. In order to overcome this issue we
think it is beneficial to make the dependence model more robust to regime changes. It may be beneficial to create
a dependence structure that accommodates different regimes. Therefore, we believe that this is a good suggestion
for further research.
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Appendix

A Derivations

A.1 Hamilton Filter

Let’s consider a two state Markov-Switching model where the innovations are assumed to be t-distributed. Let St
denote the unobserved regimes, which can take values 1 or 2. Then the transition matrix P can be described as:

P =

(
p11 p12

p21 p22

)
, with

p11 = P (St = 1|St−1 = 1)

p21 = P (St = 2|St−1 = 1) = 1− P (St = 1|St−1 = 1) = 1− p11

p22 = P (St = 2|St−1 = 2)

p12 = P (St = 1|St−1 = 2) = 1− P (St = 2|St−1 = 2) = 1− p22

The Hamilton filter consists of iteratively repeating two consecutive steps. Firstly the model is predicted and
secondly the model is updated.

A.1.1 Prediction Step

P (St = st|It−1) =

2∑
i=1

P (St = st|St−1 = i)P (St−1 = i|It−1),

where It denotes the information set available at time t (note that It = It−1 ∪Xt) and P (St−1 = st−1|It−1) is the
result of updating step in the previous iteration.

f(Xt|It−1) =

2∑
i=1

f(Xt, St = i|It−1) =

2∑
i=1

f(Xt|St = i, It−1)P (St = i|It−1)

Using the equations both the probability of being in a certain state one period ahead is evaluated along with the
one day ahead prediction of the distribution of Xt.

A.1.2 Updating Step

P (St = st|It) =
f(Xt, St = st|It−1)

f(Xt|It−1)
(48)

The Hamilton filter requires initialization. It is often initialized using the unconditional probabilities of being in
certain states. These probabilities can be found by finding vector v such that:

Pv = v

In other words this corresponds to the vector which remains the same when it is multiplied by the transition
matrix. Using this equation, it turns out that this vector corresponds to the eigenvector. If we consider two
different Markov states then:

Pv =

(
p11 (1− p22)

(1− p11) p22

)
v = v, where

v =

(
1−p22

2−p11−p22
1−p11

2−p11−p22

)
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where 1−p22
2−p11−p22 denotes the unconditional probability of being in state 1 and 1−p11

2−p11−p22 denotes the unconditional
probability of being in state 2. We start the filter with P (S0 = 1) = 1−p22

2−p11−p22 and P (S0 = 2) = 1−p11
2−p11−p22 .

A.1.3 Estimation of Hamilton Filter

We can now obtain the Maximum Likelihood function L:

L(XT ) =

T∏
t=1

f(Xt|It−1)

A.2 Marginal GPD

In this section the marginal GPD is derived. The aim is to construct the following:

F̂Xi(x) =


F̃Xi(u

−
X)[1 + ξ−(u−x − x)/φ−]

−1/ξ−

+ if x < u−X ,

F̃Xi(x) if x ∈ [u−X , u
+
X ],

1− F̃Xi(u+
X)[1 + ξ+(x− u+

x )/φ+]
−1/ξ+

+ if x > u+
X

(49)

It does not require any explanation to show that F̂Xi(x) = F̃Xi(x) when x ∈ [u−X , u
+
X ]. Next the third line of the

equation is considered. We know that F̃Xi(u
+
X) = 1 − F̃Xi(u+

X). The main interest in this case is to model the
probability that the random variable X is less than a certain constant x given the case that x > u (x exceeds a
certain threshold u and therefore considered to be in the tail) 17:

Pr(X ≤ x|x > u) = F (x|x > u) = 1− F (x|x > u)

F (x|x > u) = Pr(X > x|x > u)
1

Pr(X > x|x > u)
Pr(X > x|x > u)

= Pr(X > u|x > u)
Pr(X > x,X > u)

Pr(X > u)

= F (u)Pr(X − u > x− u|X > u)

Pr(X ≤ x|x > u) = 1− F (u)[1− Pr(X − u < x− u|X > u)],

where F (u) can be replaced by the empirical estimate. Furthermore it is known that Pr(X − u > x− u|X > u)

follows a GPD. If the indices are placed back the following expression can be obtained:

F̂Xi(x) = 1− F̃Xi(u+
X)[1 + ξ+(x− u+

x )/φ+]
−1/ξ+

+ if x > u+
X

In the same way the first equation can be proved to be correct.

A.3 Five dimensional C-Vine and D-Vine
f(x1, x2, x3, x4, x5) = f(x1) · f(x2) · f(x3) · f(x4) · f(x5)

· c12

(
F (x1), F (x2)

)
· c13

(
F (x1), F (x3)

)
· c14

(
F (x1), F (x4)

)
· c15

(
F (x1), F (x5)

)
· c23|1

(
F (x2|x1), F (x3|x1)

)
· c24|1

(
F (x2|x1), F (x4|x1)

)
· c25|1

(
F (x2|x1), F (x5|x1)

)
· c34|12(F (x3|x1, x2), F (x4|x1, x2)) · c35|12(F (x3|x1, x2), F (x5|x1, x2))

· c45|123(F (x4|x1, x2, x3), F (x5|x1, x2, x3))

(50)

17For practical issues the indices are dropped for the derivation and later on added.
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B Tables

ARMA(i,j)-MS(2)-GARCH(k,l)-GJR(m)

Marginal i j k l m

AEX 0 0 1 1 1
CAC40 0 0 1 1 1
DAX 0 0 1 1 1
Hang Seng 0 0 1 1 1
NIKKEI225 0 0 1 1 1
SMI 0 0 1 1 1
S\&P500 0 0 1 1 1

Start: 5-1-2000
End: 28-6-2007
Number of Observations: 1500

Table 10: This table contains the number of lags selected by the BIC criterion for the indices dataset. The number
of lags is calibrated on a time period starting in 5-1-2000 until 28-6-2007 and kept fixed over the n-day ahead
forecasts.

Ljung-Box (PValue) Augmented DF (PValue)

AEX 0,886 <0,01
CAC40 0,583 <0,01
DAX 0,732 <0,01
Hang Seng 0,053 <0,01
NIKKEI225 0,993 <0,01
SMI 0,930 <0,01
S\&P500 0,219 <0,01

Start: 5-1-2000
End: 28-6-2007
Observations: 1500

Table 11: This table shows the P-values of the Ljung-Box and the Augmented Dickey-Fuller test with ten lags.
Under the null hypothesis of the Ljung-Box test is assumed that the data is randomly distributed. Under the
null hypothesis of the Augmented Dickey-Fuller test the data is assumed to be non-stationary. Both tests are
conducted using the Indices dataset from 5-1-2001 to 28-6-2007. The bold numbers represent the case when the
P-values of the Ljung-Box test are below 0.05% or when the P-values of the Augmented Dickey-Fuller test are
above 0.05%.

alpha Expected Vine Copula MEVT t Copula

10% 38,9 47 51 53
5% 19,45 26 29 24
2% 7,78 10 14 9
1% 3,89 9 10 7

0,50% 1,945 3 9 1

Table 12: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 389 observations. The gray digits indicate that the model does
not capture the number of breaches correctly according to the unconditional coverage test using a 5% significance
level. The bold numbers indicate that both the conditional and the unconditional coverage tests support the
assumption of correct number of lower breaches. The italic number indicates that the ES is specified correctly
using the zero mean test.
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alpha Expected Vine Copula MEVT t Copula

10% 38,9 71 84 72
5% 19,45 31 45 32
2% 7,78 14 21 12
1% 3,89 10 12 10

0,50% 1,945 7 10 7

Table 13: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 389 observations.

alpha Expected Vine Copula MEVT t Copula

10% 38,9 49 53 55
5% 19,45 24 29 25
2% 7,78 9 10 6
1% 3,89 5 8 3

0,50% 1,945 3 4 2

AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500
Weights 0% 0% 0% 28% 9% 22% 41%

Table 14: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. Portfolios are
constructed using a minimum variance portfolio, constructed using 1000 observation prior to 2007-07-01 (no
rebalancing). This set contains 389 observations.

alpha Expected Vine Copula MEVT t Copula

10% 38,9 58 73 58
5% 19,45 36 41 37
2% 7,78 16 23 20
1% 3,89 11 14 10

0,50% 1,945 8 11 9

AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500
WEIGHTS 0% 0% 0% 28% 9% 22% 41%

Table 15: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2007-07-1 until 2009-07-01 for several different values of α. Portfolios are
constructed using a minimum variance portfolio, constructed using 1000 observation prior to 2007-07-01 (no
rebalancing). This set contains 389 observations.

alpha Expected Vine Copula MEVT t Copula

10% 39,1 22 33 26
5% 19,55 12 15 14
2% 7,82 5 6 5
1% 3,91 3 3 3

0,50% 1,955 2 3 2

Table 16: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 391 observations.
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alpha Expected Vine Copula MEVT t Copula

10% 39,1 20 28 21
5% 19,55 10 14 11
2% 7,82 5 7 5
1% 3,91 3 5 3

0,50% 1,955 3 3 3

Table 17: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using equal weights. This set contains 391 observations.

alpha Expected Vine Copula MEVT t Copula

10% 39,1 18 23 23
5% 19,55 11 12 11
2% 7,82 3 4 3
1% 3,91 3 3 3

0,50% 1,955 3 3 2

AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500
WEIGHTS 0% 0% 0% 7% 32% 25% 36%

Table 18: This table contains the number of one-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using a minimum variance portfolio, constructed using 1000 observation prior to 2015-01-01 (no
rebalancing). This set contains 391 observations.

alpha Expected Vine Copula MEVT t Copula

10% 39,1 15 24 18
5% 19,55 11 12 11
2% 7,82 5 7 4
1% 3,91 3 4 2

0,50% 1,955 2 3 2

AEX CAC40 DAX Hang Seng NIKKEI225 SMI S&P500
WEIGHTS 0% 0% 0% 7% 32% 25% 36%

Table 19: This table contains the number of ten-day-ahead VaRα lower breaches for all of the three dependency
models of the indices dataset from 2015-01-1 until 2017-01-01 for several different values of α. Portfolios are
constructed using a minimum variance portfolio, constructed using 1000 observation prior to 2015-01-01 (no
rebalancing). This set contains 391 observations.
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Figure 9: A graphical representation of a C-Vine with five variables, resulting into four trees with ten edges.
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Figure 10: A graphical representation of a D-Vine with five variables, resulting into four trees with ten edges.
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Graph Description
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This is the starting graph of T1 with six
nodes. We choose node 1 to start Prim’s
Algorithm. The dashed edges are the ones
selected by Prim’s Algorithm to be in the
maximum spanning tree. The values are
chosen arbitrarily and should be replaced by
the empirical Kendall’s τ .

15 12 26

13 24

0 564

6 3

Using the maximum spanning tree from T1
this tree (T2) can be created with all possible
edges with corresponding Kendall’s τ values.
The starting node is 15 and again Prim’s
Algorithm is used to find the maximum
spanning tree.

25|1 23|1

14|2 46|2

2

0

8

4

4

The maximum spanning tree from T2 is used
to create the tree T3. We use the same
strategy as in the previous tree to determine
the maximum spanning tree while we choose
25|1 to be the starting node.

45|12 34|12

16|42

4

43

Using the maximum spanning tree from T3
this tree (T4) can be created with all possible
edges with corresponding Kendall’s τ values.
The starting node is 45|12 and again Prim’s
Algorithm is used to find the maximum
spanning tree.

35|124 36|124

This is the last tree that is left. It is
not possible to go any further and the
R-Vine structure is found using the sequential
algorithm.

Table 20: This figure shows an example of using the sequential algorithm on actual trees with arbitrarily chosen
values that have to be replaced in practice by values of the empirical Kendall’s τ .
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Figure 11: This graph contains several different autocorrelation plots for the AEX dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 12: This graph contains several different autocorrelation plots for the CAC40 dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 13: This graph contains several different autocorrelation plots for the DAX dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 14: This graph contains several different autocorrelation plots for the Hang Seng dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.

59



0 5 10 15 20 25 30

−
0.

10
0.

00

Lag

P
ar

tia
l A

C
F

AC NIKKEI225

0 5 10 15 20 25 30

−
0.

08
−

0.
02

0.
04

Lag

P
ar

tia
l A

C
F

std.AC NIKKEI225

0 5 10 15 20 25 30

−
0.

05
0.

10
0.

20

Lag

P
ar

tia
l A

C
F

|AC| NIKKEI225

0 5 10 15 20 25 30

−
0.

04
0.

02
0.

06

Lag

P
ar

tia
l A

C
F

|std.AC| NIKKEI225

0 5 10 15 20 25 30

−
0.

1
0.

1
0.

3

Lag

P
ar

tia
l A

C
F

AC^2 NIKKEI225

0 5 10 15 20 25 30

−
0.

04
0.

00
0.

04

Lag

P
ar

tia
l A

C
F

std.AC^2 NIKKEI225

Figure 15: This graph contains several different autocorrelation plots for the AEX dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 16: This graph contains several different autocorrelation plots for the SMI dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 17: This graph contains several different autocorrelation plots for the S&P500 dataset, containing 1500
daily observations starting in 2002-07-08 until 2009-06-29. The left plots contain the non-filtered autocorrelation
coefficients and the right plots contain the filtered ones for the series, the absolute series and the squared series.
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Figure 22: This figure contains the pair scatter plots (upper triangle) and the pair contour plots (lower triangle)
of a datasets consisting 1500 observations until 2007-07-01.
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Figure 24: This figure contains by the Vine Copula implied contour plots of 23
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Figure 25: This figure contains the estimated parameter a− of the MEVT of all the indices with respect to the
AEX from 2007-07-01 until 2009-07-01.
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Figure 26: This figure contains the estimated parameter a− of the MEVT of all the indices with respect to the
DAX from 2007-07-01 until 2009-07-01.

71



Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. A

E
X

2007−07−01 2009−01−01

−
0.

8
−

0.
4

0.
0

0.
2

●●●
●
●●

●

●
●●●

●●●
●

●●●

●

●

●●●●●●●●

●●●●

●●

●

●●●

●●●

●●

●●●●●

●

●●●●
●
●●●
●

●

●
●
●

●●●

●

●●●

●●●●

●

●

●

●

●●●●●●●●●
●●●
●
●●●

●●

●

●●
●●
●
●●●●●
●●●●●●
●●
●
●
●
●
●●●●
●
●●●●●●
●
●●●●●
●●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●●
●●●
●
●●●●●
●

●●●●●●●●●
●●
●
●●
●●●
●●●●
●●●●●●
●
●●
●●
●●
●
●●●
●●
●
●
●●●●
●●
●●●●●●●

●●
●●●●●
●
●●
●
●

●
●●●●●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●

●

●●●●●

●

●

●

●

●●

●
●

●

●

●

●
●●●●●●●

●

●●

●

●

●
●
●●●

●

●

●

●
●
●●●
●

●

●●

●●
●●●●●
●●●●●●●●●●●●●

●

●●

●●
●

●

●

●●

●
●●

●●

●●

●●
●●●●
●●●●●

●●

●

●●

●

●●

●

●

●●

●

●●
●
●●
●●
●●●

Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. C

A
C

40
2007−07−01 2009−01−01

−
1.

0
−

0.
5

0.
0

0.
5

●●●●●●●●
●

●●

●●●

●●●
●●

●
●
●●

●●●
●

●●●●
●

●

●

●
●
●●
●

●●●

●
●●●●

●

●
●●

●
●

●

●●●

●
●●●
●●
●●●
●●

●

●●●
●
●●●●

●●●●●●●●●●●●●●●●
●●
●
●●●●●●

●●●●●●●

●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●
●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●●●●●●●●●●●●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●●●●

●

●●●●●
●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●

●
●

●●●●●●●●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●
●●

●●●●

●

●●●
●
●●
●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●

Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. D

A
X

2007−07−01 2009−01−01

−
1.

0
−

0.
6

−
0.

2
0.

2

●●●●

●
●●●
●

●●●●●●●●●●●
●●
●●●●
●
●●●●●●●●●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●
●●

●

●
●●●●●●●
●

●

●●
●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●●●

●
●●
●

●

●●
●

●
●
●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●●●●●●●●●

●

●●
●
●●●●●

●

●

●

●●

●
●
●●

●●●●●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. N

IK
K

E
I2

25

2007−07−01 2009−01−01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●●●●●●●●●●●
●●●
●

●●●●
●●
●
●
●●

●

●●

●●●●

●
●

●●

●

●

●●

●

●

●●
●
●●
●●

●●●●

●
●

●

●●

●

●

●

●●

●●
●●●
●●

●
●
●
●

●

●●
●

●

●

●
●

●●●●●
●●
●
●

●
●

●
●

●●
●
●●

●

●

●
●

●

●

●

●●

●
●

●●●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●●

●

●

●●

●

●

●●●●●●

●●

●

●●●●

●

●

●●

●
●

●
●
●●●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●
●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●●

●

●

●

●●
●●
●
●●●
●
●

●

●

●
●
●
●●

●●
●
●
●

●●●●

●
●●

●

●

●

●
●
●
●

●

●●
●

●

●

●
●

●

●

●

●
●
●●

●●

●

●

●●

●
●

●●●
●●
●
●●
●●●

●

●●
●●●●●
●●

●
●●

●●

●

●
●
●

●●

●●

●

●●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●
●
●
●●●●●●●

●
●

●

●

●

●

●●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. S

M
I

2007−07−01 2009−01−01

−
0.

4
−

0.
2

0.
0

0.
2

●●
●●●●●●●●●●
●
●●
●●●
●●●●●
●●●●
●

●

●
●●●●●●
●●●

●●

●
●●
●
●
●●●●

●
●
●

●
●●
●●
●●●●●●●●●●
●
●●●●

●●●●●●●●●
●

●●
●
●●

●●
●

●●
●
●●

●

●●
●

●

●●

●
●●●

●

●

●●●●

●
●

●●●
●●●
●●●●
●
●●
●●

●●●●●●

●

●

●

●

●
●
●●●
●●●●●●●●
●●●
●●●
●
●●

●
●
●●●
●
●●●●●●●●●
●
●●●●●●●●●●

●●●●

●

●●●●
●

●
●
●

●

●

●●●

●●

●
●●
●
●

●●
●●●●●●●
●

●
●

●

●

●
●
●●●
●

●
●

●

●

●

●

●
●●●
●●●

●
●

●●●
●

●

●●●

●

●●●
●●●●
●●●
●●●●●●●
●●●●
●●●●
●

●●●
●
●
●
●

●
●

●●

●●●●●●●●
●●
●●●
●●●
●●●●
●●●●●●
●●

●●●●
●●

●●●●●
●●

●

●●

●

●●●●
●●
●●●●●●

●

●
●●●●●●●●

●
●●

●●
●

●

●

●

●
●

●

●

●

●●
●●

●●●●
●●●

●
●

●

Time

al
ph

a 
lo

w
er

: H
an

g 
S

en
g 

vs
. S

&
P

50
0

2007−07−01 2009−01−01
−

0.
5

−
0.

3
−

0.
1

0.
1

●

●

●●

●●

●

●

●●

●●●●

●
●●

●●●●●

●

●●●
●
●●●●●●●●

●

●
●●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●●●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●●
●●
●

●
●

●
●

●

●●
●
●

●

●●●
●

●

●●

●
●

●

●

●

●
●●

●

●

●

●
●

●●
●●
●●

●

●

●

●
●●

●●

●●
●
●●
●●

●

●●

●
●

●
●●
●

●
●
●

●●●●
●
●

●
●●

●

●●●●●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●
●●

●

●●
●
●

●

●

●
●●

●
●

●

●

●
●●

●

●●
●

●●

●●

●●
●
●

●

●●

●

●●

●
●●
●●
●
●
●

●●
●

●
●
●
●●●●●●
●●
●

●
●
●

●
●
●
●●

●

●
●●
●●

●●
●

●
●
●●●●

●
●
●

●
●
●●

●●●●
●●●

●●●●
●●●●
●

●

●●

●●●
●

●

●●

●
●●
●
●
●●
●
●●●●
●
●
●
●●●●●
●●●●●

●

●

●●

●●●
●●●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●

●●

Hang Seng AEX CAC40 DAX NIKKEI225 SMI S&P500

Figure 27: This figure contains the estimated parameter a− of the MEVT of all the indices with respect to the
Hang Seng index from 2007-07-01 until 2009-07-01.
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Figure 28: This figure contains the estimated parameter a− of the MEVT of all the indices with respect to the
S&P500 from 2007-07-01 until 2009-07-01.
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