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Abstract

In this thesis we study the use of so-called sandwich functions for

lot-sizing problems. A sandwich function is a function that replaces the

objective function of an optimisation problem in such a way that the

original objective function is bounded by this function and a scalar mul-

tiple of this function from below and above, respectively. We start by

pointing out some places in the literature where this method has been

used before. We then provide an analysis of sandwich functions for

two well known cost functions, the modified all-unit discount cost func-

tion and the stepwise cost function. Finally, several applications of this

method to existing lot-sizing problems are presented. Amongst these

applications is a 2-approximation algorithm for the lot-sizing problem

with demand time windows and stepwise cost, which is strongly NP-

hard when order splitting is not allowed. To the best of our knowledge,

this is the first constant factor approximation algorithm for this prob-

lem.
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Among the choices of available thesis topics then, I noticed one which discussed
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Anyway, I would like to take the opportunity to thank Wilco van den

Heuvel for being my supervisor throughout the process. I am grateful for the

meetings we had, my productivity increased infinitely after those. Moreover,

a special thanks to Albert P.M. Wagelmans for being the second reader of this

project. Besides the gentlemen mentioned above, the presence of the coffee

machine at the Erasmus University Rotterdam also helped a bit.

A comment about this document is in order. You might notice that in the

document, I refer to ‘we’ whenever I make a statement. This is not because the

author of this document is socially awkward or anything. At least, that was not

the case before undertaking this project. It is because I would like to include

you, the reader, in the thinking process. To this same reader, Congratulations!

You almost managed to read at least one page of this report. I challenge you

to read the rest...

Just like this awesome sandwich project, all things must come to an end.

The four years in Rotterdam were an amazing experience, partly due to all

my friends, family and God. I can’t wait to continue my journey next year in

England, where I will study Applicable Mathematics at the London School of

Economics.
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1 Introduction

In the classical lot-sizing problem (LSP) we are given a discrete and finite time

horizon, with known demands for each period. The problem is to determine

when and how much to produce each time period, such that the demand is

met in time and the cost of production and holding inventory over time is

minimised.

The problem was introduced in Wagner and Whitin (1958), and has seen

many extensions ever since. Extensions of the LSP include production capaci-

ties, generalised cost structures, backlogging, lost sales, perishability, stochas-

tic demand, multi-item or multi-mode considerations, and many more. One

extension that will be central throughout this thesis is the transportation de-

cision that is part of the production process. The importance of including in-

bound transportation cost cannot be overstated, see Carter and Ferrin (1996),

who provide a wide range of companies and numerical examples to illustrate

this. We will look at two common discount structures in detail, these being the

Full Truck Load (FTL) structure and Less Than Truck Load (LTL) structure.

The FTL structure is common in situations where costs are paid per shipped

batch or container, while the LTL structure is common in situations where the

shipment sizes are less than truck capacity.

Although the classical lot-sizing problem is considered a relatively easy

problem, many of its extensions are not. In particular, while the LSP is

solvable in polynomial time, using various cost structures makes the prob-

lem NP-hard in some scenarios. The intractibility of these problems implies

that in some cases we have to resort to inexact approaches like approximation

algorithms or heuristics.

Amongst these approximation algorithms are construction approaches (see

Van Den Heuvel and Wagelmans (2009)), primal dual methods (Levi et al.

(2006)) and LP-based rounding methods (Levi et al. (2008)). Remarkably,

very recently Akbalik and Rapine (2017) suggest an approach where the objec-

tive function of their problem is “sandwiched” by an alternative cost function.
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When we say “sandwiched”, we mean that the original objective function is

bounded by this alternative function and a scalar multiple of this function

from below and above, respectively. They then show that they obtain an ap-

proximation algorithm for their problem, because of the sandwich relationship

between the two cost functions and the fact that the problem with the alter-

native cost function is much easier to solve. We will refer to this alternative

function as the sandwich function and studying the method of using sandwich

functions will be the central topic of this thesis. To be more specific, this the-

sis is dedicated to 1) studying existing sandwich approaches in the lot-sizing

literature 2) studying the use of non-linear sandwich functions, in particular

the effect of introducing discontinuities in the sandwich function 3) applying

this sandwich approach to extensions of the LSP. We will now state the results

that can be found in this thesis.

· We apply the concept of sandwich functions to the modified all-unit dis-

count function. In particular, we show that no linear sandwich function

for this function exists. This result can be modified in such a way that

it states that an existing linear approximation from Hill and Galbreth

(2008) can perform arbitrarily bad. We also revisit the upper concave

envelope sandwich approach by Chan et al. (2002a). We elaborate on

their work by providing the complexity of the construction of the upper

concave envelope and a more sophisticated bound on the approximation

guarantee. We also present limitations on the introduction of disconti-

nuities in this sandwich function.

· We apply the concept of sandwich functions to the stepwise cost func-

tion. We show that we can sandwich this cost function arbitrarily close,

using only a finite number of discontinuities. We conclude that for cer-

tain sets of problems, sandwich functions can lead to polynomial time

approximation schemes (PTAS).

· We present a 2-approximation algorithm for the lot-sizing problem with
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demand time windows and stepwise cost, which isNP-hard in the strong

sense when order splitting is not allowed. To the best of our knowledge,

this is the first constant factor approximation algorithm for this problem.

· We present an application of sandwich functions to mathematical pro-

gramming formulations. We show that some formulations are related to

the formulation that is obtained when replacing the objective function

by its sandwich function. This gives the opportunity to model sand-

wich functions that cannot be used directly in a dynamic programming

environment.

This thesis is organised as follows. We start with some notation in Section

1.1. In Section 2, we will present a literature review on the lot-sizing problem

and on the concept of sandwich functions, especially on its applications to

the LSP. The formal definition and properties of sandwich functions are pre-

sented in Section 3. Two common cost functions, the stepwise cost function

and the modified all-unit discount cost function, which represent FTL and

LTL cost structures respectively, are discussed in Section 4. Then, in Section

5, we present applications of the sandwich function approach to the LSP. A

conclusion is provided in Section 6.

1.1 Notation

For a function f : R → R we write ∆f(a, b) for the slope between the points

(a, f(a)) and (b, f(b)) in the Euclidean plane, assuming a < b. We use the

shorthand notation (xi) for the list of numbers (x1, x2, . . . , xn). We let N≥1 =

N\{0} be the set of positive integers. The notation dxe is used for the smallest

integer n > x. We write x ∼ [a, b], a < b, to indicate that x is chosen uniformly

from the integers {a, . . . , b}. Finally, we write x = 0+ for x→ 0+ and f(0+) =

limx→0+ f(x).
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2 Literature review

In this section we will present a literature review on both the lot-sizing problem

and the concept of sandwich functions.

2.1 The lot-sizing problem

Since the seminal paper by Wagner and Whitin (1958), a lot of research has

been done on the classical lot-sizing problem, and many extensions have been

proposed since then. The LSP is well known to be polynomially solvable (e.g.

Wagelmans et al. (1992), Federgruen and Tzur (1991)), but some extensions

may not be necessarily. We present some extensions of the LSP that are the

most closely related to this research. For other extensions or a more detailed

state of the art review of the LSP we refer to the recent surveys Brahimi et al.

(2006) and Brahimi et al. (2017).

The lot-sizing problem with modified all-unit discount cost structure (LSP-

M) has been introduced primarily in Chan et al. (2002a). Their main result

is the complexity result that this problem is NP-hard when the cost function

is time dependent or the number of breakpoints is part of the input. They

also present a 4/3-approximation algorithm for this problem running in O(T 2),

and show that the approximation guarantee reduces to 5.6/4.6 whenever the

cost function is stationary over time. Here, T denotes the length of the time

horizon. They leave the complexity of the problem where the cost function is

time-invariant and the breakpoints are stationary as an open question. This

question is later answered in Li et al. (2012), who show that the problem is

solvable in O(Tm+3), where m is the number of price breakpoints. This result

is later generalised by Ou (2017a), who presents a O(Tm+2 log T ) algorithm for

the case of piecewise linear production cost, with m the number of breakpoints

in this cost function.

The LSP-M has also been analysed in a more general setting. In par-

ticular, only shortly after the paper Chan et al. (2002a), Chan et al. (2002b)
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extend their methodology by considering the one-warehouse multiretailer prob-

lem (OWMR) with a modified all-unit discount cost structure. They show

that the set cover problem (see Feige (1998)) reduces to this problem, hence

it cannot be approximated within a factor γ log T in polynomial time unless

P = NP , for any γ > 0. They also show that the optimal zero inventory

policy has a cost of at most 4/3 from the optimal solution, but finding this

policy is an NP-hard problem itself. Later, Hill and Galbreth (2008) propose

a heuristic for the OWMR where the modified all-unit discount functions are

approximated with linear functions. We show that these linear approximations

can perform arbitrarily poor.

The lot-sizing problem with batch procurement (LSP-B) has been re-

searched for quite some time, see for example Lippman (1969), Pochet and

Wolsey (1993) or Li et al. (2004). The problem is polynomially solvable, in

O(T 6) time to be exact, whenever capacities are considered (Akbalik and Rap-

ine (2012)). Yet, a thorough analysis of the complexity of the LSP-B where the

batches are time dependent (LSP-Bt) was performed only recently by Akbalik

and Rapine (2013). In their paper, they show that the LSP-Bt is NP-hard

whenever any of the cost parameters is nonstationary over time. A couple of

years later, Akbalik and Rapine (2017) show that the lot-sizing problem with

multi-mode replenishment and batches cost (LSP-MMB) is a special case of

the LSP-Bt. It can then be shown that this problem has NP-hard complexity

too, even when the time horizon is restricted to a single period.

The lot-sizing problem with demand time windows (LSP-TW), first intro-

duced in Lee et al. (2001), is also discussed in this thesis. In the LSP-TW, every

demand order has a set of consecutive time periods, called its demand time win-

dow, within it can be satisfied without incurring holding or backlogging cost.

Lee et al. (2001) present two algorithms to solve this problem. First an O(T 2)

algorithm for the case without backlogging and next an O(T 3) algorithm for

the case with backlogging, both under a nonspeculative cost structure. Hwang

(2007) shows that the latter problem can be solved in O(max{T 2, nT}) time,

where n is the number of different demands in the time horizon. In a later
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paper, Jaruphongsa and Lee (2008) consider the LSP-TW where the produc-

tion cost function is given by the stepwise cost function (LSP-TWS). They

show that the problem is strongly NP-hard when split delivery is not allowed,

by reducing the 3-partition problem to it. They go on to present polynomial

time algorithms for the case when split delivery is allowed. We show that

the LSP-TWS admits a 2-approximation algorithm running in O(T 2) time, by

sandwiching the stepwise function by a linear sandwich function.

Finally, most of the extensions of the classical lot-sizing problem fall un-

der a specific category, which is the class of lot-sizing problem with general

cost structures. In Van Hoesel and Wagelmans (2001), a fully polynomial

time approximation scheme (FPTAS) is developed for the capacitated LSP

with a concave cost structure. A more general FPTAS is presented later in

Chubanov et al. (2006), only requiring monotonicity of the cost structure. We

can therefore conclude that many extensions of the LSP like the LSP-M and

the LSP-Bt admit FPTASs. However, these algorithms are often more of the-

oretical interest, as their running time makes them prohibitive to be used in

practice.

2.2 Sandwich functions

In this section we discuss the use of sandwich functions in the lot-sizing liter-

ature. We will start with the history of sandwich functions in mathematical

programming in general, and next look at the applications of this concept to

the LSP. We should point out that, to the best of our knowledge, no litera-

ture review on the concept of sandwich functions in the lot-sizing literature

exists yet. We have tried to find all the instances in the literature where this

technique has been used and include them in the literature review below. In

none of the found instances there is a reference to an earlier application of this

concept of sandwich functions.

The first occurrence of sandwich functions in mathematical programming

seems to be in the form of additive sandwich functions. These are sandwich
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functions for which the deviation from the original cost function is measured

in an absolute, instead of a relative way. Geoffrion (1977) claims that the idea

of sandwiching functions is a practice that already exists (e.g. in non-linear

optimisation), but that his paper is the first to consider it in a mathematical

programming setting. In fact, he points out the application of sandwich func-

tions in separable programming. This application was later analysed in Meyer

(1979).

We will now present several occasions where sandwich functions have been

used to construct approximation algorithms for extensions of the lot-sizing

problem. One place where sandwich functions have been used in an LSP

setting is in Chan et al. (2002a). Recall that in this paper they present a

4/3-approximation algorithm for the LSP-M. However, as an alternative so-

lution they consider the upper concave envelope as a sandwich function for

the modified all-unit discount cost function. They show that this function is a

2-sandwich function for the original cost function. We elaborate on their result

with a couple of findings. First, we show that no linear sandwich function ex-

ists for the modified all-unit discount cost function. Secondly, we present the

complexity of the construction of the upper concave envelope of the modified

all-unit discount cost function, which is not mentioned in the paper of Chan

et al. (2002a). Thirdly, we show that their bound of 2 can be refined and

finally, we show that even when we introduce a finite number of discontinu-

ties to this sandwich function (independent of the input), the approximation

guarantee of the sandwich function does not improve.

Another example of where sandwich functions have found their use in the

lot-sizing literature is in Hu (2016). In Chapter 4 of this doctoral thesis, many

sandwich functions are suggested, amongst which are a 2-sandwich function

for the stepwise function and a (2γ)-sandwich function for regular modified

all-unit discount cost function, where this sandwich function can only be con-

structed under certain conditions and γ > 1 is data dependent. Note that the

regular modified all-unit discount cost function, introduced in Archetti et al.

(2014), is a special case of the modified all-unit discount cost function where

10



the sections of the cost function with positive slope have identical length and

the flat sections have identical length too. Hence this setting is more restricted

than the general modified all-unit discount cost setting considered in this the-

sis.

Another instance where sandwich functions have been used, as mentioned

earlier, is in Akbalik and Rapine (2017). Besides showing that the LSP-MMB

was a special case of the LSP-Bt, they also presented a 2-sandwich function

for the stepwise cost function. We elaborate on their result by showing that

when we allow discontinuities in the sandwich function, the approximation

guarantee improves.

The linear sandwich function for the stepwise cost function can also be

used for extensions of the LSP-B. In Goisque (2017), they show that this sand-

wich approach can be used to construct a 2-approximation algorithm for the

multi-level lot-sizing problem with batch deliveries.
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3 The sandwich function

In this section we introduce the concept of a β-sandwich function. Consider

the optimisation problem

(P) min f(x)

s.t. x ∈ X,

where X is a nonempty set of feasible solutions and f(x) is an objective func-

tion. We assume that problem (P) is bounded and has optimal solution value

zP. It could be that (P) is difficult to solve, due to for example a complicated

objective function f(x). A natural solution would then be to replace f(x) by

a much simpler function, say r(x), that approximates f(x) sufficiently. This

gives rise to another optimisation problem, namely

(R) min r(x)

s.t. x ∈ X.

If problem (R) is much easier to solve, one might consider solving this problem

instead of (P). If, in addition, r(x) does not deviate to much from the original

objective f(x), we can guarantee that the value of the solution obtained from

solving (R) does not deviate too much from the value zP. We formalise this

concept as follows.

Definition 3.1. A function r(x) is called a β-sandwich function of f(x) if

f(x) 6 r(x) 6 βf(x) for all feasible x ∈ X, for some β > 1. We call β the

approximation guarantee. Morerover, the approximation guarantee is said to

be tight if there are x1, x2 ∈ X such that f(x1) = r(x1) and r(x2) = βf(x2).

If the approximation guarantee is clear from the context we might refer to

r(x) simply as a sandwich function of f(x), and drop the β prefix. Also, we

almost always assume or show that the approximation guarantee of a sandwich

function is tight, else we can introduce another sandwich function that has an

approximation guarantee with this property.
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Recall that an α-approximation algorithm for a problem (P), with α > 1,

is an algorithm that provides a solution with cost at most αzP and runs in

polynomial time in terms of the input of the problem. The following property

is a direct consequence of the definition of a β-sandwich function for a problem

(P).

Property 3.1. If f(x) has a β-sandwich function r(x) that can be constructed

in polynomial time and problem (R) admits an α-approximation algorithm,

then (P) admits an αβ-approximation algorithm.

Proof. Let x∗ be the optimal solution to problem (P) with value zP and let

zR be the value of the optimal solution to (R). Suppose that running the ap-

proximation algorithm on problem (R) gives solution x̃. Because the feasible

region remained unchanged when sandwiching f(x) by g(x), x̃ is also feasible

to (P). Hence, f(x̃) 6 r(x̃) 6 αzR 6 αr(x∗) 6 αβzP, where the first inequality

follows from the sandwich function r(x), the second inequality from the ap-

proximation algorithm for (R), the third from definition of zR and the fourth

from the sandwich function r(x) again. Because r(x) can be constructed in

polynomial time and the approximation algorithm runs in polynomial time,

the solution to (P) can be obtained in polynomial time.

Note that as soon as we can solve (R) in polynomial time to optimality,

i.e. α = 1, the derivation above reduces to f(x̃) 6 r(x̃) 6 r(x∗) 6 βzP, which

means that we obtained a β-approximation algorithm for (P).

In the discussion above we restricted ourselves to sandwiching a single

function f(x) by a single function g(x). Two important properties that we

will use are the following, which state that we can also sandwich a function

f(x) that is either separable or defined piecewise.

Property 3.2. (Separable sandwich function) If ri(x) is a βi-sandwich func-

tion of fi(x) for i = 1, . . . , n, then r(x) =
∑n

i=1 ri(x) is a β-sandwich function

of f(x) =
∑n

i=1 fi(x), where β = maxi=1,...,n βi.

For the following property, let 0 6 x0 < x1 < · · · < xn.
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Property 3.3. (Piecewise defined sandwich function) If ri(x) is a βi-sandwich

function of f(x) on the interval [xi, xi+1], for i = 0, . . . , n−1, then the piecewise

defined function r(x) = {ri(x)} is a β-sandwich function of f(x) on [x0, xn],

where β = maxi=1,...,n βi.

We end this section by mentioning that most of these concepts can be

extended to include more general situations one might encounter when mod-

elling sandwich functions. For example, Property 3.2 can be extended to linear

combinations of functions, Property 3.3 can be extended to any collection of

disjoint intervals, and the concept of tightness of the approximation guarantee

of a sandwich function can be refined by saying that for all ε > 0 there exists

x1, x2 ∈ X such that r(x1) − f(x1) < ε and βf(x2) − r(x2) < ε. Also, the

sandwich function only has to actually sandwich the objective function over

the feasible region X ′ ⊂ X, as long as x∗, x̃ ∈ X ′. Property 3.1 still applies in

this case.
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4 Common cost functions

In this section we analyse sandwich functions for two common cost functions,

the modified all-unit discount function (Section 4.1) and the stepwise cost func-

tion (Section 4.2). The former is often used to model an LTL cost structure,

while the latter is used to model an FTL cost structure.

4.1 The modified all-unit discount cost function

In this section we will use the notation from Chan et al. (2002a) on the input

parameters of the modified all-unit discount cost function. The modified all-

unit discount cost function f(x) takes as an input a list of n constants (αi)

and breakpoints (Mi), and is given by

f(x) =



0 if x = 0

α1M1 if 0 < x 6M1

α1x if M1 6 x 6M ′
1

α2M2 if M ′
1 6 x 6M2

α2x if M2 6 x 6M ′
2

...

αnMn if M ′
n−1 6 x 6Mn

αnx if Mn 6 x.

This input (αi) and (Mi) has to satisfy three conditions: (i) α1 > α2 > · · · >
αn > 0 (ii) Mn > · · · > M2 > M1 > 0 (iii) αi+1Mi+1 > αiMi for i =

1, . . . , n − 1. The breakpoints (M ′
i) are calculated using the identity M ′

i =

αi+1Mi+1/αi, for i = 1, . . . , n − 1. We let M ′
n =

∑
t dt be an artificial break-

point, representing an upper bound on the total demand to be satisfied. We

will assume w.l.o.g. that M ′
n > Mn, extending the last input condition.

The modified all-unit discount function f(x) is an extension of the all-unit
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discount cost function f̃(x). The all-unit discount function is given by

f̃(x) =



0 if x = 0

α1M1 if 0 < x 6M1

α1x if M1 6 x < M2

α2x if M2 6 x < M3

...

αnx if Mn 6 x.

The all-unit discount function is used in situations where a supplier encourages

large shipments, and offers all-unit discounts at a specific set of shipment sizes.

Chan et al. (2002a) mention that in practice, the cost of the order size of the

shipper is calculated using min{αix, αi+1Mi+1} whenever Mi 6 x < Mi+1.

This means that after a certain threshold, M ′
i to be exact, the shipper orders

x units but pays as if they were shipping Mi+1 units. In the industry this

is called shipping x but declaring Mi+1. When modelling this cost structure,

we obtain the modified all-unit discount cost function. For this function, the

term α1M1 acts as a minimum charge for a small shipping volume. The all-unit

discount cost function is shown in Figure 1 and the modified all-unit discount

cost function is shown in Figure 2.

α1 α2 α3

0 M1 M2 M3
x

α1M1

Figure 1: The all-unit discount cost function for n = 3.
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α1 α2 α3

0 M1 M2 M3M1’ M2’ x

α1M1

Figure 2: The modified all-unit discount cost function for n = 3.

We will now study the modified all-unit discount cost function from a

sandwiching point of view. We will first show that no linear sandwich function

for the modified all-unit discount cost function exists.

Theorem 4.1. For any β > 1, there exists an input (αi) and (Mi) to the

modified all-unit discount cost function f(x) for which any linear function

satisfying g(x) > f(x) for x > 0 has g(x1)
f(x1)

> β for some x1 > 0.

Proof. For simplicity, consider n = 2 breakpoints. If we let α1 = 2β, M1 =

1/(4β2), α2 = M2 = 1, then the input is valid because it satisfies input con-

ditions (i) - (iii). We will prove this theorem by showing that either x1 = 0+

or x1 = M2 for this class of modified all-unit discount functions. Suppose a

function g(x) = a + bx exists for which g(x) > f(x) for all x > 0. This holds

in particular for x = 0+, from which we obtain α1M1 6 a. If g(0+) > βf(0+)

then we are done by setting x1 = 0+, else a < βα1M1. We also know

that g(x) > f(x) for x = M ′
1, from which we obtain g(M ′

1) = a + bM ′
1 >

f(M ′
1) = α2M2. Hence b > (α2M2 − a)/M ′

1 > (α2M2 − βα1M1)/M
′
1 =

(α2M2 − βα1M1)/(α2M2/α1). Now for x1 = M2 we get g(x1) = a + M2b >

M2b >M2(α2M2−βα1M1)/(α2M2/α1) = (1−β(2β)(1/(4β2)))/(1/2β) = β =

βα2M2 = βf(x1).
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Simply put, there does not exist a linear sandwich function for the modified

all-unit discount cost function, because the relative deviation from any linear

function that lies above the modified all-unit discount function to this function

is not bounded by a constant. We will now consider the use of piecewise linear

concave sandwich functions. We start with the construction of such a function.

Lemma 4.1. We can construct the upper concave envelope of the modified

all-unit discount cost function f(x) in O(n) time.

Once we notice that the upper concave envelope of f(x) is the upper convex

hull of the points (M ′
i , f(M ′

i)), the work simplifies rather much. This is because

the breakpoints are trivially sorted (from a lexicographical ordering point of

view), hence we can use an existing convex hull algorithm to construct this

function, see Andrew (1979).

Now that we have constructed the upper concave envelope, we would like

to see if this is in fact a β-sandwich function of f(x), and possibly derive an

expression for β. We will do this with the help of the following lemma.

Lemma 4.2. Consider the interval [M,M ] ∪ [M,M ], M < M < M . Let

f(x) be piecewise defined as f(x) = αM for x ∈ [M,M ] and f(x) = αx for

x ∈ [M,M ], and let r(x) = αM+αg(x−M), with αg 6 α, be the line through

the points (M,αM) and (M,αM). Then r(x) is a β-sandwich function of f(x)

with β = 1 + αg(M−M)

αM
. Moreover, this approximation guarantee is tight.

Proof. Clearly we have that r(x) > f(x) for all x ∈ [M,M ]. One key ob-

servation is that the ratio r(x)/f(x) is increasing on the interval [M,M ] and

decreasing on the interval [M,M ]. Hence, β 6 r(M)/f(M) = (αM +αg(M −
M))/(αM) = 1 + (αg/α)(M −M)/M . Tightness of the approximation guar-

antee trivially follows from r(M) = f(M) and r(M) = βf(M).

We will now derive the approximation guarantee of the piecewise linear

concave sandwich function r(x) of f(x). We assume that r(x) has k 6 n

pieces, where each piece ri(x) of r(x) is linear. We denote the approximation
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guarantee of ri(x) for that piece of the original function by βi. We start by

bounding the approximation guarantee βi of the piece ri(x).

Lemma 4.3. Let r(x) be the upper concave envelope of the modified all-unit

discount cost function f(x). For each piece ri(x) of r(x), i = 1, . . . , k, it holds

that βi 6 2− M1∑
t dt

.

Proof. Let ri(x) be a linear piece of the upper concave envelope r(x), with ap-

proximation guarantee βi. We assume that the piece is defined over the interval

[M,M ]∪ [M,M ′
j], M < M < M ′

j, where M ′
j is one the breakpoints from (M ′

i).

We assume that M > 0, but the case of M = 0 is similar. Notice that the

slope of the function at M ′
j is equal to αj. We introduce the new function f̃(x)

on the interval [M,M ] ∪ [M,M ′
j], which is defined piecewise as f̃(x) = f(M)

and f̃(x) = αjx on those two intervals. An important observation is that

f̃(x) 6 f(x) 6 ri(x) on this interval, and ri(x) = f(M) + αg(x−M). Hence,

if ri(x) β-sandwiches f̃(x), then it β-sandwiches f(x) also. By Lemma 4.2 we

know that it does, and βi = 1 + (αg/αj)(M −M)/M . We will bound αg, and

show that it leads to the desired result.

One observation on αg is that it is defined as the slope between the points

(M, f(M)) and (M ′
j, αjM

′
j). Since M ′

j 6
∑

t dt, αg is smaller or equal to the

slope between the points (M, f(M)) and (
∑

t dt, αj
∑

t dt). We will use this

last slope to derive the bound. We obtain

βi = 1 +
αg
αj

(
M −M
M

)
6 1 +

1

αj

(
αj
∑

t dt − f(M)∑
t dt −M

)(
M −M
M

)
6 1 +

1

αj

(
αj
∑

t dt − f(M)∑
t dt −M

)(∑
t dt −M∑

t dt

)
= 1 +

1

αj

(
αj
∑

t dt − f(M)∑
t dt

)
6 1 +

1

αj

(
αj
∑

t dt − α1M1∑
t dt

)
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= 2− α1M1

αj
∑

t dt

6 2− M1∑
t dt

.

Here, the first inequality follows from the bound on αg, the second inequality

follows from the fact that the function f(x) = (x−a)/x is increasing on (a,∞),

the third inequality follows from the fact that the modified-all unit discount

function is nondecreasing and the last inequality follows from the first input

condition.

Hence, we obtain the following result.

Theorem 4.2. The modified all-unit discount cost function f(x) has a β-

sandwich function r(x) with approximation guarantee β = 2 − M1∑
t dt

, which

can be constructed in O(n) time. Moreover, if n = 1, that is, the function has

a single breakpoint, then this approximation guarantee is tight.

Proof. The approximation guarantee follows from Lemma 4.3 and the fact that

the approximation guarantee of this upper concave envelope r(x) is given by

(Property 3.3) β = maxi=1,...,k{βi}, where k is the number of pieces of this

function and the βis are the approximation guarantees of these pieces. The

tightness follows from Lemma 4.2.

One of the main research questions of this thesis is whether introducing

discontinuities to the sandwich function will improve the approximation guar-

antee. We show that the answer is negative for this sandwich function for

the modified all-unit discount cost function. That is, introducing even a finite

number of discontinuities (independent of the input) to the piecewise linear

concave sandwich function does not seem to improve the approximation guar-

antee. This is stated more explicitly in the following theorem.

Theorem 4.3. For any 0 < ε < 1 and m ∈ N≥1, there exists an input (αi)

and (Mi) to the modified all-unit discount cost function f(x) for which the

piecewise linear concave β-sandwich function r(x) has at least m pieces with

tight approximation guarantee of at least 2− ε.
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Proof. We consider an input (αi) and (Mi) where the upper concave envelope

is the collection of lines between the (except for possibly the first) consecu-

tive breakpoints M ′
i and M ′

i+1. By then choosing the appropriate input size,

breakpoints and slopes we get βi > 2 − ε for each piece (except for possibly

the first), and we obtain the desired result.

Let r > 1 and assume n ∈ N≥1 general for now. We set αi = rn−i, M1 = 1

and Mi+1 = r2Mi. Clearly, the first two input conditions are satisfied. The last

input condition is also satisfied, because αi+1/αiMi+1 = (1/r)Mi+1 = rMi >

Mi. We now calculate the slope ∆i = ∆f(M ′
i+1,M

′
i) between two consecutive

breakpoints:

∆i = ∆f(M ′
i+1,M

′
i)

=
f(M ′

i+1)− f(M ′
i)

M ′
i+1 −M ′

i

=
rn−i−2Mi+2 − rn−i−1Mi+1

1
r
(Mi+2 −Mi+1)

= rn−i−1
(
Mi+2 − rMi+1

Mi+2 −Mi+1

)
= rn−i−1

(
1− (r − 1)Mi+1

Mi+2 −Mi+1

)
= rn−i−1

(
1− r − 1

r2 − 1

)
= rn−i−1

(
1− 1

r + 1

)
.

Because the sequence {∆i} is decreasing, the upper concave envelope will be

the collection of lines between the (except for possibly the first) consecutive

breakpoints M ′
i and M ′

i+1. In fact, the piece of r(x) between the breakpoints

M ′
i and M ′

i+1 has slope ∆i and approximation guarantee (using Lemma 4.2

and setting r = 1/(1−
√

1− ε))

βi = 1 +
∆i

αi+1

(
M −M ′

i

M

)
= 1 +

rn−i−1

rn−i−1

(
1− 1

r + 1

)(
M − 1

r
M

M

)
21



= 1 +

(
1− 1

r + 1

)(
1− 1

r

)
> 1 +

(
1− 1

r

)2

= 1 + (1− (1−
√

1− ε))2

= 2− ε.

If we let n = m+ 2, then the upper concave envelope r(x) of f(x) has at least

m pieces with tight approximation guarantee of at least 2− ε.

4.2 The stepwise cost function

In this section we will use the notation from Akbalik and Rapine (2013) on

the input parameters of the stepwise cost function. This is possible if we bear

in mind that f(·) denotes a function and f a parameter. The stepwise cost

function or multiple setup cost function f(x) takes as an input the quadruple

(f, p, k, B), and is given by f(x) = 0 for x = 0 and f(x) = f + px + kdx/Be
for x > 0. Here, f is the fixed setup or ordering cost, p is the unit production

or procurement cost, k is the batch production or ordering cost and B ∈ N≥1
is the batch size.

Because the term px is trivially sandwiched for any linear sandwich func-

tion, we will from now on omit it from further consideration, so that the cost

function reduces to f(x) = f + kdx/Be. When we decide to use the sandwich

function to do computations for example, we can always add the term px back

to the model. When trying to fit a linear β-sandwich function, we obtain the

following result.

Theorem 4.4. The stepwise cost function f(x) has a linear β-sandwich func-

tion r(x) with approximation guarantee β = 2− f
f+k

. Moreover, this approxi-

mation guarantee is tight.

Proof. This theorem is a special case of Lemma 4.4.

This theorem is illustrated in Figure 3.
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g(x)

βf(x)

Figure 3: The stepwise cost function and its β-sandwich function.

However, when we allow for discontinuities we can do better. This is illus-

trated by the following lemma.

Lemma 4.4. The stepwise cost function f(x) has a β-sandwich function r(x)

consisting of m pieces with approximation guarantee β = 1 + 1
m
− f

m(f+mk)
.

Moreover, this approximation guarantee is tight.

Proof. Let r(x) be a piecewise linear function defined as

r(x) =


0 if x = 0

f + kd x
B
e if 0 < x 6 (m− 1)B

f + k + k x
B

if x > (m− 1)B

Clearly we have that r(x) > f(x) for all x. One key observation is that

r(x)/f(x) is increasing on the interval ((m−1)B,mB]. Hence, β 6 r(mB)/f(mB) =

(f+(m+1)k)/(f+mk) = 1+1/m−f/(m(f+mk)). Tightness of the approx-

imation guarantee follows from r(0+) = f(0+) and r(mB) = βf(mB).

While the sandwich function for the modified all-unit discount function

cannot be improved even when introducing a finite number of discontinuities,
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quite the opposite is true for the stepwise cost function. This function can be

approximated arbitrarily close with a finite number of pieces.

Theorem 4.5. For any ε > 0, there is a β-sandwich function r(x) of the

stepwise cost function f(x) consisting of a finite number of pieces having a

tight approximation guarantee of at most 1 + ε.

Proof. Considering a sandwich function consisting of m = d1/εe pieces gives

β 6 1 + 1/m = 1 + 1/(d1/εe) 6 1 + 1/(1/ε) = 1 + ε.
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5 Applications to literature

In this section we will look at applications of sandwich functions to lot-sizing

problems. In Section 5.1, we will show that the linear approximation of Hill

and Galbreth (2008) can perform arbitrarily poor. In Section 5.2, we look at

applications amongst the lot-sizing problem with modified all-unit discount

cost, the lot-sizing problem with batch cost and the lot-sizing problem with

demand time windows and stepwise cost. We end this section with Section 5.3,

where we provide integer programming formulations for sandwich functions

that cannot be used efficiently in a dynamic programming environment.

5.1 Modified all-unit discount cost function linear ap-

proximation

Hill and Galbreth (2008) propose to approximate the modified all-unit discount

cost function f(x) instead of sandwiching it. The approximation function

g(x) they suggest satisfies three conditions. First of all, the function is linear.

Secondly, the minimum charge for both functions are the same, i.e. g(0+) =

f(0+) = α1M1. Finally, the total area under the linear function A equals to

total area under the modified all-unit discount function. In the calculation of

this area they ignore the area from the rectangle (0, 0) to (Mn, α1M1), because

both functions share this area under their curves. The linear approximation

they obtain is given by g(x) = (2A/M2
n)x+ α1M1, where

A =
n∑
i=2

[
1

2
(αiMi − αi−1Mi−1)(M

′
i−1 −Mi−1) + (Mn −M ′

i−1)(αiMi − αi−1Mi−1)

]
+

1

2
(Mn −Mn−1)

2αn−1.

We will show that the approximation function g(x) can perform arbitrarily

bad. This statement is similar to Theorem 4.1 from Section 4, which says that

no linear β-sandwich function for the modified all-unit discount cost function

exists. The only difference is that for this approximation, the ratio between

the approximation function and the true function can be arbitrarily small.
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Theorem 5.1. The linear approximation from Hill and Galbreth (2008) for

the modified all-unit discount cost function can perform arbitrarily bad.

Proof. Proving this theorem is equivalent to showing that for any 0 < ε < 1,

there exists an input (αi) and (Mi) to the modified all-unit discount cost

function f(x) for which the linear approximation g(x) from Hill and Galbreth

(2008) has g(x1)
f(x1)

< ε for some x1 > 0. We will do this by providing a bound

on A for a certain class of modified all-unit discount functions, and show that

this leads to the ratio g(x1)/f(x1) being sufficiently small for suitably chosen

x1.

We will start with providing a bound on A for a set of modified all-unit

discount cost functions. Similar as in the proof of Theorem 4.1, consider n = 2

breakpoints. The expression for A reduces to A = (α2M2 − α1M1)(M
′
1 −

M1)/2+(M2−M ′
1)(α2M2−α1M1)+(M2−M1)

2α1/2 = (α2M2−α1M1)(M2−
M ′

1/2−M1/2)+(M2−M1)
2α1/2 = (α2M2−α1M1)(M2−α2M2/(2α1)−M1/2)+

(M2−M1)
2α1/2. Now consider the input α1 = 1/2 + 1/(2 max{1/3, 1− k/4}),

M1 = max{1/3, 1 − k/4}, α2 = M2 = 1 for some constant 0 < k < 1. One

can check that this input is valid. Moreover, we obtain A = (1 − α1M1)(1 −
1/(2α1)−M1/2)+(1−M1)

2α1/2 6 (1−α1M1)(1−M1)+(1−M1)
2α1/2 = (1−

M1)(1+α1/2−3α1M1/2) 6 (1−M1)(1+α1/2) 6 2(1−M1) 6 2(1−(1−k/4)) =

k/2. Here, the first inequality follows from the third input condition, the second

inequality follows from the nonnegativity of the modified all-unit discount cost

function and the last two inequalities from the fact that max{1/3, 1− k/4} >
1/3 and max{1/3, 1 − k/4} > 1 − k/4. Setting k = ε/2 and x1 = 2/ε gives

g(x1) = 2Ax1 + α1M1 < (ε/2)(2/ε) + 1 = 2 = ε(2/ε) = εf(x1).

5.2 The lot-sizing problem

In the classical lot-sizing problem we are given a discrete time horizon t =

1, . . . , T . For each period t, there is a known demand dt ∈ N. The problem

asks to find the optimal production quantities (xt) and inventory levels (It)

such that the demand is met and the cost of production and holding inven-
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tory over the time period is minimised. The problem can be formulated as a

mathematical program. This mathematical program, following the notation

from Brahimi et al. (2017), is given by

min
T∑
t=1

[
fpt (xt) + fht (It)

]
s.t. It = It−1 + xt − dt for t = 1, . . . , T,

xt, It > 0 for t = 1, . . . , T.

Here, fpt (x) denote the production cost functions, fht (x) denote the holding

cost functions, the first constraint is the inventory balance constraint and

the last constraint specifies the domain of the decision variables. A common

assumption made in the literature is that initial and ending inventory are zero,

that is, I0 = IT = 0.

We have discussed sandwich functions in a general setting but not in a lot-

sizing setting. However, one can show that if we can sandwich the production

cost functions fpt (x) by βt-sandwich functions rpt (x) each, then we can sandwich

the objective function of this formulation with approximation guarantee β =

maxt=1,...,T βt. This claim is a direct application of Property 3.2. Hence, we

can use the sandwich functions discussed earlier to construct approximation

algorithms for the lot-sizing problem.

5.2.1 Modified all-unit discount cost structure

The lot-sizing problem with the modified all-unit discount cost structure (LSP-

M) is the classical lot-sizing problem where the production cost function fpt (x)

is the modified all-unit discount cost function. Chan et al. (2002a) show that

this problem is NP-hard when the cost functions fpt (x) are either time depen-

dent or the number of breakpoints of the cost functions is not bounded by a

constant. When we sandwich the production cost functions with their upper

concave envelope β-sandwich functions, we obtain the following result.

Theorem 5.2. The lot-sizing problem with the modified all-unit discount cost
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structure admits a 2-approximation algorithm running in O(nT 3) time.

The running time O(nT 3) comes from the fact that the sandwich functions

are piecewise linear concave. This allows us to use the algorithm from Ou

(2017b), which solves the capacitated lot-sizing problem with piecewise linear

concave costs in O(nT 3) time, where n is the average number of line segments

of the cost functions. We should point out that this algorithm is developed for

the capacitated problem, thus better algorithms for this problem could exist.

5.2.2 Batch cost structure

The lot-sizing problem with batch procurement (LSP-B) is the classical lot-

sizing problem where the production cost function fpt (x) is the stepwise cost

function. Akbalik and Rapine (2013) show that this problem isNP-hard when

the batches are time dependent and any of the cost parameters is nonstationary

over time. When we sandwich the production cost functions with linear β-

sandwich functions, we obtain the following result.

Theorem 5.3. (Akbalik and Rapine (2017)) The lot-sizing problem with

batch procurement admits a 2-approximation algorithm running in O(T log T )

time.

The running time O(T log T ) comes from the fact that the sandwich func-

tions are linear, allowing us to use the algorithm from Wagelmans et al. (1992).

We would like to end this subsection with another application of sandwich

functions. In particular, we show that because we can sandwich the step-

wise cost function arbitrary close, we obtain a polynomial time approximation

scheme (PTAS) for the CLSP-B. Recall that a PTAS for a problem is an al-

gorithm (or family of algorithms) such that for every ε > 0, this algorithm is

a (1 + ε)-approximation algorithm for this problem.

Theorem 5.4. The lot-sizing problem with batch procurement admits a PTAS.

This result follows from the fact that we can sandwich the stepwise cost

function by a sandwich function having an approximation guarantee of at most
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(1 + ε), see Theorem 4.5. Because for a PTAS the value ε is fixed, so is the

number of pieces of the sandwich function that is used. We can therefore apply

the algorithm from Ou (2017a), which solves the lot-sizing with piecewise linear

cost in polynomial time in T . We do have to point out that in this specific

scenario, a PTAS is not particularly useful. This is because the problem can

be solved in polynomial time in O(T 6) by an existing algorithm (Akbalik

and Rapine (2012)). Yet, it remains nice to see that a sandwich approach

cannot only lead to constant factor approximation algorithms, but also to

approximation schemes.

5.2.3 2-approximation algorithm for the time windows and batch

cost structure

The lot-sizing problem with demand time windows and stepwise cost (LSP-

TWS) is introduced in Jaruphongsa and Lee (2008). This problem is an ex-

tension of the classical LSP where each demand order di, i = 1, . . . , n, has a

demand time window [ei, `i], ei 6 `i. If the demand is satisfied in this time pe-

riod, no penalty cost in terms of holding inventory or backlogging is incurred.

We assume w.l.o.g. that each demand order is unique, i.e. if demand i and

i′ have the same demand time window (ei = ei′ and `i = `i′) they can be

aggregated to a single demand order. This way, the number of demands is

bounded by n 6 1
2
T (T +1). When we set ei = `i for each demand i, we obtain

the classical lot-sizing problem.

The production cost function in the LSP-TWS is the stepwise cost function

ft(x) = ft + ptx + ktdx/Be from Section 4.2, assuming stationary batch size

B, and (ft), (pt) and (kt) all to be nonincreasing over time. This is the same

setting as the one used in Jaruphongsa and Lee (2008). Note that they do not

consider backordering in their model, while this could have been included.

They show that the problem is strongly NP-hard when split delivery, also

known as order splitting, is not allowed. Order splitting refers to the phe-

nomenon of satisfying a demand order from a single order period, not from
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multiple. We show that we can obtain a 2-approximation algorithm for this

problem when we sandwich the production cost function by a linear β-sandwich

function. The most important ingredient for this approximation algorithm is

the following property.

Property 5.1. (Lee et al. (2001)) There exists an optimal solution to the lot-

sizing problem with demand time windows where delivery is not split. This

solution can be found in O(T 2) time.

Property 5.1 can be proven by considering an optimal solution to the LSP-

TW and any demand di. Suppose that order i is split, that is, di = dit + dit′

for two periods t and t′. One can check that satisfying di fully from period

t or t′ does not increase the cost, hence there is an optimal solution to the

LSP-TW where order is not split. The runtime O(T 2) follows from Lee et al.

(2001), who present a dynamic programming algorithm for this problem. We

obtain the following result.

Theorem 5.5. The lot-sizing problem with demand time windows and step-

wise cost admits a 2-approximation algorithm running in O(T 2) time, when

order splitting is not allowed.

This theorem follows from the fact that when we replace the objective

function by a 2-sandwich function, we obtain a lot-sizing problem with demand

time windows where order splitting is not allowed. But, in this case the cost

are linear, so we can use the algorithm from Lee et al. (2001) to obtain an

optimal solution to this problem. Because this solution is also feasible to the

LSP-TWS and the objective function is 2-sandwiched, we have obtained a

2-approximation algorithm running in O(T 2) time.

5.3 Integer programming formulations

One of the issues with the sandwich approach taken thus far is that although

some sandwich functions allow for a good approximation guarantee, they can-

not be used efficiently in a dynamic programming environment due to their
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complexity. One example of such a sandwich function is the piecewise linear

sandwich function for the stepwise function described in Section 4.2. However,

in some cases these sandwich functions that are too evolved to be used in a

dynamic programming approach can be modelled by a mathematical program-

ming formulation. We show that for some mathematical programming formu-

lations, solving an alternative formulation leads to a solution whose quality

with respect to the optimal solution is known a priori. Moreover, any feasible

solution to this alternative formulation can be used to construct a feasible

solution to the original formulation, often with only little time resource.

In this section we will give a couple of examples where sandwich functions

can be used to construct alternative programming formulations. In particular,

we provide a family of formulations to model the piecewise linear sandwich

function for the LSP-B and a formulation to model the piecewise linear sand-

wich function for the lot-sizing problem with batch ordering and capacity

reservation (LSP-BCR).

5.3.1 Batch cost structure

The lot-sizing problem with batches is the lot-sizing problem where the produc-

tion cost functions are stepwise cost functions. In Section 4.2 we showed that

the stepwise cost function has a piecewise linear sandwich function consisting

of m pieces having an approximation guarantee of 1 + 1
m

. We will present a

mathematical programming formulation where the stepwise cost function is

replaced by this sandwich function.

The LSP-B can be modelled using an integer programming formulation

provided by Akbalik and Pochet (2009). It is given by

(F ) min
T∑
t=1

[ftyt + ptxt + ktzt + htIt] (1)

s.t. It = It−1 + xt − dt for t = 1, . . . , T, (2)

xt 6Myt for t = 1, . . . , T, (3)

xt 6 Btzt for t = 1, . . . , T, (4)
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xt, It > 0 for t = 1, . . . , T, (5)

yt ∈ B for t = 1, . . . , T, (6)

zt ∈ N for t = 1, . . . , T. (7)

Here, (1) is the objective function to be minimised, consisting of a setup cost,

unit procurement cost, batch procurement cost and holding cost. Constraints

(2) are the classical inventory balance constraints, and constraints (3) and (4)

relate the setup and batch variables (yt) and (zt) to the production quantities

(xt). Constraints (5) - (7) specify the domain of the production quantities

(xt), inventory levels (It), setup indicators (yt) and batch sizes (zt).

We now present a formulation where we replace the objective functions by

their sandwich functions, which are piecewise linear functions consisting of m

pieces. In order to do so we will split the production quantity in x = xB + x`,

where the first quantity xB models the production quantity 0 6 xt 6 (m−1)B

and the second quantity models the production quantity x > (m− 1)B. Now

that we have the split the production quantity into these two quantities, we

can assign different cost structures to each, these being batch cost and linear

cost, respectively. The integer programming formulation is given by (Fm).

Note that when m = 1 we simply use a linear sandwich function, and obtain

the classical lot-sizing problem formulation.

(Fm) min
T∑
t=1

[
ftyt + ptxt + ktzt + htIt + kty

`
t +

(
kt
Bt

)
x`t

]
(8)

s.t. It = It−1 + xt − dt for t = 1, . . . , T, (9)

xt 6Myt for t = 1, . . . , T, (10)

xt = xBt + x`t for t = 1, . . . , T, (11)

xBt 6 Btzt for t = 1, . . . , T, (12)

zt 6 (m− 1) for t = 1, . . . , T, (13)

(m− 1)− zt 6Mδt for t = 1, . . . , T, (14)

x`t 6M(1− δt) for t = 1, . . . , T, (15)
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x`t 6My`t for t = 1, . . . , T, (16)

xt, x
B
t , x

`
t, It > 0 for t = 1, . . . , T, (17)

yt, y
`
t , δt ∈ B for t = 1, . . . , T, (18)

zt ∈ N for t = 1, . . . , T. (19)

Constraints (9) and (10) are the same constraints as the ones from (F ),

and constraints (11) split the production quantities (xt) into (xBt ) and (x`t)

as described earlier. Constraints (12) - (16) model the cost structure of the

piecewise linear sandwich function. In short, if xt 6 (m− 1)Bt, then the pro-

duction costs are ptxt + ktdxt/Bte, and if xt > (m − 1)Bt then the costs are

ptxt + kt + (kt/Bt)xt. Finally, (17) - (19) specify the domain of the decision

variables.

We should point out that it is only worthwhile to consider solving an alter-

native formulation if this alternative formulation has some desirable properties.

It turns out that this is the case, as we can see from the following theorem.

Theorem 5.6. Let OPTF and OPTFm be the optimal objective values of

formulations (F ) and (Fm), respectively. Then

(1) Any solution to (Fm) can be transformed in O(T ) time to a solution of

(F ) with an at least as good objective value.

(2) OPTF 6 OPTFm 6 (1 + 1
m

)OPTF .

Proof. The first claim follows from the fact that given a feasible solution

(xt, x
B
t , x

`
t, It, yt, y

`
t , δt, zt) for (Fm), the tuple (xt, It, yt, z

′
t) is feasible for (F ),

where z′t = dxt/Bte. Because the objective function of (Fm) is a (1 + 1
m

)-

sandwich function for the objective function of (F ), the objective value cannot

increase. This also proves (2).

Note that the quality of the solution obtained from solving (Fm) depends

on m, the number of pieces used in the sandwich function of the stepwise cost

function. This gives the modeller the opportunity to tune this parameter,
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with a potential trade-off between solution quality and runtime of solving the

formulation.

5.3.2 Batch cost and capacity reservation cost structure

Another example of a problem where the sandwich approach by dynamic pro-

gramming seems to fail is the lot-sizing problem with batch ordering and a ca-

pacity reservation contract (LSP-BCR). This problem was recently discussed

in Akbalik et al. (2017), where NP-hard and polynomial cases of the problem

are identified. We will use their notation throughout this section. Simply put,

the problem is the same as the LSP-B, but now at a certain capacity, R, the

batch costs increases. This corresponds to a situation where a long-term con-

tract is established between a manufacturer and an external supplier in which

the costs and the reserved capacities are specified. Formally, the function is

given by

f(x) =

K + adx/V e if 0 6 x 6 RV,

K + aR + b(dx/V e −R) if x > RV,

where K is the fixed setup cost, a is the batch cost when production is below

capacity, b is the batch cost when production exceeds capacity, V is the batch

size and R is the set capacity. It is generally assumed that a < b, that is, the

suppliers offers a discount whenever production is below capacity.

An obvious 2-sandwich function for the production cost function is a piece-

wise linear function consisting of 2 pieces. The first piece being the linear

sandwich function on [0, RV ] and the second piece being the linear sandwich

function on (RV,∞). Unfortunately, because of the potential discontinuity at

the point RV , this sandwich function cannot be used efficiently in a dynamic

programming environment. However, this function can be modelled using a

mathematical programming formulation. We will present this formulation be-

low.

The LSP-BCR can be modelled using an integer programming formulation

provided by Akbalik et al. (2017). In this formulation, the inventory holding
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costs (ht) have been substituted out using the inventory balance constraints.

The formulation is given by

(FCR) min
T∑
t=1

[Ktyt + atAt + btBt + ptxt] (20)

s.t.
T∑
s=1

xs =
T∑
s=1

ds (21)

t∑
s=1

xs >
t∑

s=1

ds for t = 1, . . . , T − 1, (22)

xt 6Myt for t = 1, . . . , T, (23)

xt 6 Vt(At +Bt) for t = 1, . . . , T, (24)

At 6 Rt for t = 1, . . . , T, (25)

xt > 0 for t = 1, . . . , T, (26)

yt ∈ B for t = 1, . . . , T, (27)

At, Bt ∈ N for t = 1, . . . , T. (28)

The objective function (20) consists of the setup cost, batch cost (both below

and above production capcacity) and unit procurement cost. The demand is

met due to constraints (21) and (22), and the setup variables (yt) are related to

the production quantities (xt) in (23). The batch variables (At) and (Bt) are

calculated using (24) and (25), and the domain of the production quantities

(xt), setup indicators (yt), and batch sizes (At) and (Bt) are specified in the

constraint set (26) - (28).

When we sandwich the production cost function by a piecewise linear sand-

wich function consisting of two pieces, we obtain the following formulation.

(FCR′) min
T∑
t=1

[
Ktyt + ptxt + aty

A
t +

(
at
Vt

)
xAt + bty

B
t +

(
bt
Vt

)
xBt

]
(29)

s.t.
T∑
s=1

xs =
T∑
s=1

ds (30)
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t∑
s=1

xs >
t∑

s=1

ds for t = 1, . . . , T − 1, (31)

xt 6Myt for t = 1, . . . , T, (32)

xt = xAt + xBt for t = 1, . . . , T, (33)

xAt 6 VtRty
A
t for t = 1, . . . , T, (34)

VtRt − xAt 6Mδt for t = 1, . . . , T, (35)

xBt 6M(1− δt) for t = 1, . . . , T, (36)

xBt 6MyBt for t = 1, . . . , T, (37)

xt, x
A
t , x

B
t > 0 for t = 1, . . . , T, (38)

yt, y
A
t , y

B
t , δt ∈ B for t = 1, . . . , T. (39)

Constraints (30) - (32) are the same constraints as the ones from (FCR), and

constraints (33) split the production quantities (xAt ) and (xBt ). Here xAt is

the production quantity under the capacity reservation and xBt is the produc-

tion quantity exceeding the capacity reservation. The piecewise linear cost

structure is captured in constraints (34) - (37). Shortly put, if the production

quantity xt 6 VtRt then the production costs are ptxt + at + (at/Vt)xt, and if

xt > VtRt then the costs are ptxt + atRt + bt + (bt/Vt)(xt − VtRt). Finally, the

domain of the decision variables is specified in (38) - (39).

Similar as for the sandwich formulation for the LSP-B, we can derive certain

relationships between the formulation (FCR) and its alternative formulation

(FCR′).

Theorem 5.7. Let OPTFCR and OPTFCR′ be the optimal objective values of

formulations (FCR) and (FCR′), respectively. Then

(1) Any solution to (FCR′) can be transformed in O(T ) time to a solution

of (F ) with an at least as good objective value.

(2) OPTFCR 6 OPTFCR′ 6 2OPTFCR.

Proof. The first claim follows from the fact that given a feasible solution

(xt, x
A
t , x

B
t , yt, y

A
t , y

B
t , δt) for (FCR′), the tuple (xt, yt, A

′
t, B

′
t) is feasible for
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(FCR), where A′t = dxAt /Vte and B′t = dxBt /Vte. Because the objective func-

tion of (FCR′) is a 2-sandwich function for the objective function of (FCR),

the objective value cannot increase. This also proves (2).

5.3.3 Computational results

In this section we perform a computational study on the family of formula-

tions provided in Section 5.3.1. That is, we consider an integer programming

approach for the lot-sizing problem with batch procurement (LSP-B). We com-

pare the solution times and qualities of solving formulations (F ) and (Fm) for

different values of m.

The instances are generated with the following parameter values (recall

the notation from Section 4.2): ft ∼ [1, 25], pt = 20, kt ∼ [26, 50], ht = 5,

dt ∼ [1, 100], Bt ∼ [3, 9], for each period t. The parameters are chosen in such

a way that a typical solution consists of several periods in which production

takes place, and several periods in which inventory is held only. The time

horizon is chosen T = 300 and the output statistics are averaged over 100

executions. All computations are done using Gurobi 8.0 on an Intel Core 2.30

Gigahertz, 8 Gigabyte RAM.

The results are displayed in Table 5.3.3. For a given instance, the formu-

lations that are solved are (F ), the exact formulation for the LSP-B, and the

formulations (Fm), which use the sandwich function consisting of m pieces as

the objective function. The theoretical gaps are calculated using

max
t=1,...,T

{
1 +

1

m
− ft
m(ft +mkt)

}
,

and are known in advance. The real gaps for an alternative formulation Fi

are given by the objective value (in terms of objective from F ) of the solution

obtained from solving this formulation divided by the value of the optimal

solution of formulation F .
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Table 1: Computational results of the integer programming formulations for

the lot-sizing problem with batch procurement cost. We use the abbreviation

std for the standard deviation.

Formulation Theoretical gap Real gap Runtime (sec) Runtime std (sec)

F NA NA 12.0180 8.9294

F1 1.9797 1.0053 0.0465 0.0136

F2 1.4949 1.0052 0.1787 0.0605

F3 1.3310 1.0049 0.2983 0.1094

F4 1.2487 1.0046 0.3870 0.1343

F5 1.1992 1.0044 0.5894 0.2884

F6 1.1661 1.0041 0.8370 0.3294

F7 1.1424 1.0037 1.0961 0.3732

F8 1.1247 1.0034 1.3471 0.2800

F9 1.1109 1.0032 1.8607 0.8116

F10 1.0998 1.0029 3.7314 1.9023

F11 1.0907 1.0026 5.7440 2.1929

F12 1.0832 1.0022 7.7609 2.7968

F13 1.0768 1.0019 10.3222 5.0122

F14 1.0713 1.0016 14.1193 7.1578

F15 1.0666 1.0014 19.8360 12.2098

There are several observations that can be made here. One of these is

that there is a clear trade-off between solution quality and runtime. That is,

when the sandwich functions consists of more pieces, the theoretical and real

gap decrease while the overall running time increases. Remarkably, for this

parameter setting, the linear sandwich function (m = 1) performs really well,

resulting in an average gap of 0.53% and a runtime much faster than the one

obtained from the exact approach. On the other hand, it is interesting to

see that when the number of pieces in the sandwich function becomes high

enough, in this case around 13 pieces, the runtime of solving the alternative
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formulation is higher than the one from the exact approach, and the quality

of the obtained solution is worse.

We should mention that this computational study is not very exhaustive.

The LSP-B is quite an easy problem in the sense that it is solvable to optimality

in a couple of seconds, even with a time horizon of T = 300, and the parameter

setting is rather restricted. The standard deviations are also quite high, see

for example the 8.92 seconds for solving the exact approach, while the average

solving time of this formulation 12.02 seconds.

These results suggest that it might only be worthy to use the alternative

formulations to obtain a decent solution within a short time span, rather than

for finding near optimal solutions. The best setting under where this can be

achieved could be a problem that is very hard to solve, or a problem where

even finding a feasible solution is very difficult.
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6 Conclusion

In this thesis we considered sandwich functions for the lot-sizing problem. We

presented instances where this method has been used before, and theoretically

studied the modified-all unit discount cost function and the stepwise cost func-

tion. We showed that the stepwise cost function can be sandwiched arbitrarily

close when we introduce discontinuities in the sandwich functions. We also

presented limitations on the sandwich function approach for the modified all-

unit discount cost function. These limitations include the nonexistence of a

linear sandwich function for this cost function, and the absence of improve-

ment in the approximation guarantee when introducing discontinuities in the

sandwich function.

Applications to the lot-sizing literature were also presented. Although

some of the approximation algorithms obtained from this method were not

competitive with existing approximation algorithms in terms of runtime or

approximation guarantee, we did obtain a 2-approximation algorithm for the

lot-sizing problem with demand time windows and stepwise cost. Recall that

this problem is strongly NP-hard when order splitting is not allowed. To the

best of our knowledge, this is the first constant factor approximation algorithm

for this problem.

Several research suggestions are as follows. First of all, a more detailed lit-

erature review on the sandwich function approach would be interesting. This

is mainly because to the best of our knowledge, this method is not systemat-

ically used yet. Secondly, it would also be worthwhile to find other lot-sizing

problems where the sandwich function approach can be used. Although the

method can only be used in a limited setting, the method itself is extremely

simple and general, only relying on Property 3.1. Finally, more detailed com-

putational experiments could be of interest as well.
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