
MASTER THESIS

Light robust location – routing

Leon van der Knaap
386320

Supervisor
dr. K. S. Postek

Co-reader
dr. S. Sharif Azadeh

Econometrics and Management Science
Operations Research and Quantitative Logistics

Erasmus School of Economics

October 28, 2018



ABSTRACT

In this thesis we will address the location routing problem (LRP) with uncertainty in
customer demand. The objective of the LRP is to minimize the sum of depot cost,
vehicle cost and routing costs. The LRP is an integrated version of the facility loca-
tion problem (FLP) and the vehicle routing problem (VRP), where the decisions on the
opening of facilities and determining optimal routes are considered simultaneously. We
will present a two-stage light robust problem formulation, where in the first stage the
decisions regarding the locations of the open depots, the number of assigned vehicles
and the a priori routing are considered. After observing the actual demand values, the
a posteriori routing can be revised. We will show that we can provide non-conservative
robust solutions using the light robust approach. We also introduce a set of valid in-
equalities specifically designed to tighten the light robust LRP formulation and evalu-
ate the computational performance on benchmark instances. In addition, we consider
a similar LRP with uncertainty in the customer set.
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1 Introduction

The classical and widely studied vehicle routing problem (VRP) considers designing
optimal vehicle routes along multiple customers. The main characteristics of this prob-
lem include that every customer can only be served by a single vehicle. However, a
vehicle can serve multiple customers on any given route. Also, every vehicle must start
and end their route at the same depot. The objective of the problem is to minimize the
sum of the routing costs and the fixed vehicle deployment cost.

The location-routing problem (LRP) is derived from this problem and differs in the
sense that the depot locations are not fixed in advance. Given a set of potential depot
locations, a subset of locations needs to be opened in order to start the routes. This
problem is similar to the commonly known facility location problem (FLP), which aims
to open facilities in order to minimize the opening cost as well as the distances from
customers to their nearest open facility. The LRP considers the decisions of opening
facilities and determining optimal routes simultaneously. Hence, it can be seen as a
combination and a generalization of both the VRP and the FLP. If the depot locations
are fixed, the LRP becomes a VRP. Otherwise, if we require all routes to contain ex-
actly one customer, the LRP reduces to a capacitated FLP. Since both the VRP and the
capacitated FLP are NP-hard problems, the LRP is an NP-hard problem as well. Prior
to the research on LRP, facility location and vehicle routing problems have generally
been solved separately in a sequential manner. Here, the locations of open facilities are
chosen first without taking into account the routing options, after which the optimal
routes are determined. This approach ignores the interrelation between location and
routing, which may result in non-optimal solutions. In addition, many different side
constraints for all given problems have been studied, of which the most widely used
deal with capacitated facilities and vehicles.

In this thesis, we study a robust approach to the stated LRP, where we consider un-
certainty in customer demand. Similar to stochastic optimization (see e.g. Birge and
Louveaux (2011)), robust optimization (see e.g. Ben-Tal and Nemirovski (1999)) deals
with models in which a part of the information is unknown. In the field of robust opti-
mization, the distribution of the unknown values is assumed to be unknown and only
a bounded set of possible realizations is taken into account. The aim is to optimize
the solution to the uncertain problem assuming the realizations attain a worst-case sce-
nario. We introduce a two-stage method, where the actual demand is observed in the
second stage. Before that, only a nominal demand value is known, alongside with a
symmetric uncertainty interval around this nominal value. In the first stage, the deci-
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sions of opening facilities, deciding on the number of vehicles and determining optimal
routes corresponding to the demand realizations are considered simultaneously. The
locations of the open depots and the number of assigned vehicles become fixed in the
second stage. Based on the known values of demand, the actual routes to perform can
be revised. This also means that customers are not bound to a fixed depot nor a vehicle.
Throughout this thesis, we will refer to the initial routes as a priori routes and the final
executed routes as a posteriori routes.

A popular method within the field of robust optimization is a strict robust approach
(Liebchen et al. (2009)). This approach is also known as classic robust optimization and
min-max optimization. A solution is called strictly robust if it is feasible for all possi-
ble scenarios that compose the uncertainty set. When using a box uncertainty set, this
becomes equivalent to solving the initial problem with all uncertain parameters simul-
taneously attaining their worst-case values. While being reasonably easy to solve, this
approach is known to result in conservative solutions, yielding a large cost in order
to be feasible for all possible scenarios. Since it is very unlikely that all uncertain pa-
rameters actually attain their worst-case value simultaneously, this solution might be
too conservative. According to the central limit theorem, this effect becomes larger for
multiple uncertain parameters (Rosenblatt (1956)). In order to avoid such conservative
solutions, different types of uncertainty sets can be used by shrinking the original un-
certainty set. A popular method is to use a budgeted uncertainty set (Bertsimas and
Sim (2004)). This method defines a budget denoted by Γ and only takes into account
the scenarios in which at most Γ uncertain parameters attain their worst-case value, per
constraint. Therefore, the optimal solution might not be feasible in the case all uncertain
parameters attain their worst-case values, but will hold for the more likely scenarios.
Besides a budgeted uncertainty set, different alternative robust optimization concepts
have been introduced (Goerigk and Schöbel (2016)), including the modeling framework
of light robustness, introduced by Fischetti and Monaci (2009). Light robustness allows
for a certain total cost and maximizes the robustness of the optimal solution, bounded
by the given cost. By only allowing for a certain maximum cost for the optimal solu-
tion, the control parameter as input will be a concrete cost value. We can argue that this
is more convenient from a managerial standpoint than the alternative of controlling an
indistinct value of robustness, e.g. as in the budgeted uncertainty set. We will provide
a more detailed explanation of the light robustness framework in the following sections.

The contribution of this thesis is threefold:

• we solve a two-index location-routing problem containing uncertainty in cus-
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tomer demand using light robust optimization. This is computationally easier
than solving the problem using a budgeted uncertainty approach, which requires
a three-index formulation to consider the sum of the uncertain parameters.

• we present a set of valid inequalities designed with the specific purpose of solving
the light robust location-routing problem under demand uncertainty faster.

• we reformulate the light robust problem formulation at hand to account for the
situation of uncertainty in the customer set

The outline of this thesis is as follows. In Section 2, we will present a literature review
on the subjects of LRP and robust optimization. Section 3 contains an elaboration on
the problem definition and the possible problem formulations. Then in Section 4 we in-
troduce the setup of the experiments of which several numerical results are presented
in Section 5. A conclusion of this thesis and suggested directions of future research are
discussed in Section 6

Introductory example
To motivate the problem, we start with a small example. Consider a graph consisting of
three customers {a, b, c} on the vertices of an equilateral triangle in a Euclidean plane
and two potential depot locations {A,B}, located on the geometric center and on the
midpoint between a vertex and the center, see Figure 1. Furthermore, assume the fol-
lowing information:
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• The demand of a customer is uncertain,
but is known to belong to the set U =

{d ∈ R3
+ | 0 ≤ da, db, dc ≤ 1

2Q}, where Q
denotes the capacity of a vehicle. Hence,
with uncertain demand located in uncer-
tainty set U you need to deploy at least
two vehicles to satisfy all demand scenar-
ios.

• The cost of opening a depot and of as-
signing a vehicle is very large in relation
to the routing costs. This assumption as-
sures that there will be no more assigned
vehicles and open depots in the optimal
solution than minimally required.

• The routing costs corresponds to the Eu-
clidean distances between the nodes for a
triangle with sides of length 1:

– c(a, b) = c(a, c) = c(b, c) = 1

– c(A, a) = c(A, b) = c(A, c) = 0.577

– c(B, a) = 0.289

– c(B, b) = c(B, c) = 0.736

a

b

c

A

B

Figure 1: Topology design

We consider the following three different methods that all consider the worst-case sce-
narios for demand:

Heuristic approach The classical heuristic approach is a sequential method that first
solves the FLP to optimality and later, when the customer demand becomes known,
considers the VRP. The location of the open depot is based on minimzing the sum
of distances to the customers. Hence, it ignores the routing costs. A VRP is solved
when the actual demand values are observed.

Static approach The static approach is a single-stage robust LRP that determines all
decisions simultaneously (i.e. the depots to open, the number of vehicles to assign
and the final routing). Due to the static nature, no decisions can be revised once
actual demand values are observed.

Two-stage approach The two-stage robust approach first considers the opening of de-
pots, the number of vehicles and the a priori routes. Therefore, the first stage
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is equal to the approach described above. However, the final routing may be
changed after the actual demand values are observed.

A property of an equilateral triangle is that depot A, located on the triangle’s center,
is the point that minimizes the sum of the distances to the vertices. Hence, this is the
optimal place to open a depot according to the heuristic approach. The optimal vehicle
routes from depot A have a total cost of 3.308. On the other hand, the optimal routes
starting from depot B have a total cost of 3.05. The latter routes are optimal for all
scenarios for which da + db + dc > Q, which requires two vehicles. Due to the dynamic
nature of the heuristic approach and the two-stage LRP, the final routes can be revised
if this reduces the routing costs. In case the observed demands satisfy da + db + dc ≤ Q,
a single route is sufficient and, according to the triangle inequality assumption, reduces
the routing cost. Note that these revised routes are bounded by the decisions made in
the first stage. The optimal solutions for the three approaches and the two different
demand scenarios are visually shown in the Figures 2 and 3.

a

b

c

A

B

Heuristic approach

a

b

c

A

B

Static approach

a

b

c

A

B

two-stage LRP

Figure 2: Optimal solutions for scenarios with observed demand da + db + dc > Q.
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Static approach

a

b

c
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B

two-stage LRP

Figure 3: Optimal solutions for scenarios with observed demand da + db + dc ≤ Q.

Given the assumption of large cost for opening locations and assigning vehicles, all
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approaches will open a single depot with two vehicles assigned to it. This is sufficient
to satisfy all possible scenarios. The location of the open depot and the determined
routes differ. The total routing costs per solution, according to the Euclidean distances,
are given in Table 1.

Table 1: Routing costs for different approaches and demand scenarios

Total demand Heuristic approach Static approach Two-stage LRP
> Q 3.308 3.05 3.05
≤ Q 3.154 3.05 3.025

We conclude that the two-stage LRP outperforms the heuristic approach due to a better
decision on the location of the open depot. The heuristic approach opens a different de-
pot which results in larger routing costs due to the opportunity cost of ignoring vehicles
routing costs while locating depots. Note that the difference in routing costs would be
even larger if the location of depot B coincides with the location of one of the customers
(Salhi and Rand (1989)). Furthermore, the two-stage LRP outperforms the static ap-
proach if the routing can be revised and optimized after observing the actual demand
values. Since the two-stage LRP takes multiple demand scenarios into account, it is
more difficult to formulate and to solve computationally. We will elaborate on this in
Section 3.

2 Literature review

In this section we provide a literature review of the subjects of location-routing prob-
lems and (light) robust optimization.

2.1 Location-routing problem

The idea of combining location and routing problems dates from the late 1960s. How-
ever, the first paper to be credited for showing that an LRP can significantly outperform
the discussed sequential heuristic approach was Salhi and Rand (1989). This study
has instigated the research of integrating depot location and vehicle routing problems.
Most of the early works consider a simplified problem with uncapacitated vehicles, as
described in Min et al. (1998), for which a single vehicle per depot is sufficient if the cost
obey the triangle inequality. Since then, similar to the research on VRP, many different
problem variants and solution methods have been introduced. For elaborate surveys
on the progress of LRPs, we refer to Nagy and Salhi (2007), Prodhon and Prins (2014)
and Drexl and Schneider (2015).
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Several different problem formulations have been introduced for the LRP. A three-index
flow formulation has been introduced by Perl and Daskin (1985). Compared to a two-
index formulation, the additional index denotes a specific vehicle. This notation allows
for more general problem formulations including heterogeneous vehicles. Laporte et al.
(1986) was the first to formulate a two-index formulation for the LRP with uncapaci-
ated facilities. Karaoglan et al. (2011) have come up with a two-index flow formulation
by introducing a set of constraints that prohibits illegal routes. This problem extends
the original LRP by including simultaneous pickup and deliveries. They also consider
several polynomial-size valid inequalities to strengthen the formulation. This formu-
lation has been extended by Koç et al. (2016) to allow for heterogeneous fleet and time
windows. For a computational comparison of different LRP formulations, including
two- and three-index node-based and flow-based formulations, we refer to Contardo
et al. (2013).

2.2 Robust optimization

Although the field of robust optimization stems back to Soyster (1973), it has expe-
rienced an increase in popularity since the late 90s. A series of papers (Ben-Tal and
Nemirovski (1998), Ben-Tal and Nemirovski (1999), Ben-Tal and Nemirovski (2000))
provide a strong framework for strict robust optimization. Strict robustness using cer-
tain uncertainty sets has disadvantages in many situations due to the conservativeness
of the solution. This is due to the very unlikely event that all uncertain parameters
will attain their worst-case scenario simultaneously. Bertsimas and Sim (2004) intro-
duce the budgeted uncertainty approach to address this issue. This approach shrinks
the uncertainty set by limiting the maximum total deviation of uncertainties from their
nominal values. This widely used concept has been generalized for multiple types of
robust optimization in Bertsimas and Thiele (2006). For a survey about the different
types of robust optimization and the development of the subject, we refer to Goerigk
and Schöbel (2016).

2.2.1 Adjustable robustness

Ben-Tal et al. (2004) show that two-stage robust linear programming is computation-
ally intractable and propose adjustable robust programming as an alternative approach.
Specifically for two-stage problems, and allowing to extend for multiple stages (Bertsi-
mas and Caramanis (2010)), the approach of adjustable robustness (Ben-Tal et al. (2004))
distinguishes variables that have to be decided on before and after some information
becomes to be known. These are the so called here-and-now variables and wait-and-see
variables. The first of these types of variables has to be determined when there still are
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uncertainty parameters, while the latter can be decided when the actual scenario be-
comes known. Adjustable robustness is a convenient tool to solve integrated problems.
For example, Zeng and Zhao (2013) apply two-stage adjustable robustness to solve a
location-transportation problem. A recent survey regarding adjustable robustness can
be found in Yanıkoğlu et al. (2017).

2.2.2 Light robust optimization

Fischetti and Monaci (2009) introduce light robustness as a modeling framework to
substitute the use of a budget of uncertainty. Instead of minimizing the objective cost,
while satisfying a certain level of robustness, the aim is to maximize the level of ro-
bustness while satisfying a constraint on the allowed cost. The level of robustness is
measured by a weighted sum of slack variables in the robust constraints. In this way,
some of the constraints are allowed to be violated. The cost of a solution to the light
robust problem is bounded by either: a) an absolute deviation in cost from the objective
value of the nominal problem or b) a relative deviation in cost from the objective values
of both the nominal problem and the strict robust problem. The optimal solution to the
light robust problem has to satisfy the nominal problem and minimizes the weighted
slack variables that allow to satisfy the strict robust problem. Note that, since the cost
boundary is equal or larger than the obtained cost from the optimal nominal problem
solution, the optimal solution to the nominal problem is always a feasible solution to
the light robust problem. Fischetti and Monaci (2009) show for several problems that
the problem at hand can relatively easy be reformulated as a light robust problem and
that it will yield similar results as the budget of uncertainty.

The formulation of light robustness from Fischetti and Monaci (2009) has been gener-
alized for multiple optimization problems and uncertainty sets in Schöbel (2014). The
concept of light robustness is currently a popular tool in the field of timetable schedul-
ing (e.g. Fischetti et al. (2009) and Goerigk et al. (2013)). It has also been shown to work
well in several other problems, such as network slicing (Baumgartner et al. (2017)) and
bi-objective robust problems, see Carrizosa et al. (2017) and Kuhn et al. (2016).

2.3 Uncertain routing problems

Laporte et al. (1989) was the first to introduce uncertainty in the LRP. They considered
a chance-constrained stochastic two-stage problem containing uncertainty in customer
demand. They required customers to be assigned to a specific vehicle and route. In
case the vehicle capacity is exceeded by the total demand of the customers on the route,
the vehicle needs to return to the depot in order to reload the capacity to continue the
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route. The objective is to minimize the cost of opening depots and performing the a
priori routes. The solution is subject to either a limit on the probability of routes to fail
or a limit on the expected penalty of failed routes. A similar formulation is applied by
Albareda-Sambola et al. (2007), with the alternative objective of minimizing the cost of
opening depots, expected routing costs and expected penalty cost. Penalty costs are
incurred in case the a posteriori route needs to omit customers if the total demand on
route exceeds the vehicle capacity. Furthermore, the authors only allow for one vehicle
per depot. In addition, uncertainty in the customer set is included using independent
Bernoulli distributions.

Research in LRP is limited in relation to the number of publications regarding loca-
tion or routing problems. However, many problem variations and solution procedures
can be generalized to the integrated LRP. Although we are not aware of any existing
research on the subject of robust location-routing, several different robust routing prob-
lems have been presented in the field of VRP. A strict robust formulation with different
types of demand uncertainty sets has been introduced by Sungur et al. (2008). Gounaris
et al. (2013) derive a robust counterpart for several formulations. Using a single-stage
problem the objective is to find optimal routes feasible for all scenarios of customer de-
mand. Cao et al. (2014) study a robust open vehicle routing problem that allows for
unsatisfied demand at a penalty cost. The open VRP deviates from the general prob-
lem by not restricting vehicles to end the route at the starting depot. They introduce
different strategies such as minimizing total cost or minimizing unmet demand.

3 Model formulations

In this section we start with an introduction to the different problem formulations.
Next, we will define the LRP and introduce the notation. We then present the mixed-
integer programming (MIP) formulations to solve the LRP under demand uncertainty.
These include the uncertain problem, the nominal and strict robust problem and the
light robust problem formulations. In addition, we present a set of valid inequalities
to strengthen the formulations. Finally, we also consider a variation of the LRP with
deterministic demand for every customer, but with uncertainty in the customer set.
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3.1 Introduction to strict and light robustness

Consider the following standard linear programming problem.

max
x

n∑
j=1

cjxj ,

s.t
n∑
j=1

aijxj ≤ bi ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n.

Suppose A is actually uncertain and lies in the uncertainty set U = U11 × . . . × Umn,
with Uij = [āij − âij , āij + âij ]. In the nominal problem formulation, (Nom), we replace
uncertain parameters aij by the known nominal values āij .

(Nom) max
x

n∑
j=1

cjxj ,

s.t
n∑
j=1

āijxj ≤ bi ∀i = 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

The problem solution of the robust counterpart should satisfy all possible scenarios.
Note that the worst-case scenario corresponds to all uncertain parameters attaining their
maximum values. We formulate the robust counterpart as follows.

(SR) max
x

n∑
j=1

cjxj ,

s.t
n∑
j=1

(āij + âij)xj ≤ bi ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n.

This is called a strict robust formulation for the box uncertainty set which is known to
often yield conservative solutions. The light robust approach aims to minimize the vi-
olation of the strict robust solution, while satisfying the nominal problem. The solution
is subject to a limit in total cost that is linearly dependent on (a) the nominal problem
solution cost and (b) the strict robust problem solution cost. Let C and Ĉ denote the
obtained objective values from (Nom) and (SR), respectively. We introduce parameter
ρ ∈ [0, 1] to denote a convex combination of the two obtained costs values. Let slack
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variables γi denote the violations of the strict robust constraints, which we aim to min-
imize. Finally, we present the light robust problem formulation.

(LR) min
γ

n∑
i=1

γi,

s.t
n∑
j=1

cjxj ≥ (1− ρ)C + ρĈ,

n∑
j=1

āijxj ≤ bi ∀i = 1, . . . ,m,

n∑
j=1

(āij + âij)xj ≤ bi + γi ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n,

γi ≥ 0 ∀i = 1, . . . ,m.

Note that the optimal solution of (LR) corresponds to the solution to (Nom) in case
ρ = 0 and to the solution of (SR) if ρ = 1. The latter is equivalent to a formulation
including a budget of uncertainty in case Γ = n (Schöbel (2014)). We can interpret the
optimal solution to the light robust formulation as follows. Out of all feasible solutions
to the nominal problem that have a total cost lower than the limit, dependent on ρ, C
and Ĉ, it is the solution that is most robust (i.e. closest to feasibility in case all customers
attain their maximum demand).

3.2 Notation and problem definition

In this section we will consider an LRP with capacitated depots and vehicles. We will
consider the two-index flow-based formulation introduced by Karaoglan et al. (2011).
The formulation is adapted as a two-stage formulation and extended to allow for un-
certainty in demand. Furthermore, we do not explicitly require that every customer
needs to be served. Instead, it is allowed for demand to remain unsatisfied, which will
yield a penalty cost. This allows for a more gradual transition towards the second stage
problem formulation, where it might not be possible to serve every customer due to the
dependence on previously made decisions on the opening of depots and assignment of
vehicles.

Consider a complete directed graph G = (N ,A), where the set of nodes is composed of
both potential depot and customer locations N = ND ∪ NC and arcs A = {(i, j) | i, j ∈
N} \ {(i, j) | i, j ∈ ND, i 6= j}. We introduce the following variables:
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• xij ∈ {0, 1} equals 1 if node i ∈ N is followed by j ∈ N on a route, 0 otherwise.

• yk ∈ {0, 1} equals 1 if depot k ∈ ND is opened, 0 otherwise.

• vk ∈ Z+ denotes the number of vehicles stationed at depot k.

• zik ∈ {0, 1} equals 1 if customer i is assigned to depot k, 0 otherwise.

• uij ∈ R+ denotes the current load of a vehicle when traveling from node i to j.

A nonnegative cost, denoted by cij , is incurred for traveling over arc (i, j) ∈ A. It is
assumed that the traveling cost is symmetric and satisfies the triangle inequality. Fur-
thermore, fixed costs fk and gk are incurred for opening depot k and for every vehicle
assigned to depot k, respectively. Let pi denote the penalty cost per unit of unsatisfied
demand to customer i, which can be interpreted in multiple ways e.g. loss in revenue
or outsourcing cost.

The vehicles are homogeneous and all have a capacity Q. Potential depots are hetero-
geneous and have a capacity Dk for k ∈ ND. Every customer i ∈ NC has a nonnegative
uncertain demand di ∈ Di, where Di is an uncertainty set. Assume that the actual
demand is known to be bounded by a symmetric interval around the known nominal
value. Let d̂i denote the deviation in demand from the nominal value d̄i for customer
i. Hence it holds that di ∈ [d̄i − d̂i, d̄i + d̂i]. We define the demand uncertainty set as
D = D1 × . . .×Dn, with

Di = {di ∈ R+ | |di − d̄i| ≤ d̂i}

being the uncertainty set for customer i.

3.3 Integer programming formulations

We will now present the different problem formulations. We first consider the LRP for-
mulation containing uncertainty in customer demand and we will clarify the objective
and all the constraints. Afterwards, we will use the formulation containing uncertainty
to derive the deterministic nominal and strict robust formulations. We will use the
obtained optimal cost values from these two approaches in the derived light robust
formulation. To test the performance of the optimal solutions from the light robust for-
mulation, we introduce an artificial second stage formulation. Here, we assume that
the actual demand is now observed and the wait-and-see variables have to be deter-
mined, subject to the previously decided here-and-now variables on the depot location
and vehicle allocation. Finally, we present a set of valid inequalities to strengthen the
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various formulations. The robust LRP with uncertain demand formulation is defined
as follows:

(P1) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + sup
d∈D

F (y, v, d), (1)

s.t. yk ∈ {0, 1} ∀k ∈ ND, (2)

vk ≥ 0 ∀k ∈ ND, (3)

where F (y, v, d) is defined as the optimal value of the second stage problem:

F (y, v, d) := min
x,u,z

∑
(i,j)∈A

cijxij +
∑
i∈NC

pidi(1−
∑
j∈N

xij), (4)

s.t.
∑
j∈N

xij =
∑
k∈ND

zik ∀i ∈ NC , (5)

∑
j∈N

xij =
∑
i∈N

xji ∀j ∈ N , (6)

∑
i∈NC

xki ≤ vk ∀k ∈ ND, (7)

uij ≤ Qxij ∀i, j ∈ N , i 6= j, (8)

uij + (di −Q)xij ≤ 0 ∀i ∈ NC , j ∈ N , (9)

uij − djxij ≥ 0 ∀i ∈ N , j ∈ NC , (10)∑
i∈NC

uik = 0 ∀k ∈ ND, (11)

∑
j∈N

uji −
∑
j∈N

uij ≥
∑
j∈N

dixij ∀i ∈ NC , (12)

∑
k∈ND

zik ≤ 1 ∀i ∈ NC , (13)

∑
i∈NC

dizik ≤ Dkyk ∀k ∈ ND, , (14)

xik ≤ zik ∀i ∈ NC , k ∈ ND, (15)

xki ≤ zik ∀i ∈ NC , k ∈ ND, (16)

xij + zik +
∑

m∈ND,m 6=k
zjm ≤ 2 ∀i, j ∈ NC , i 6= j, k ∈ ND, (17)

xij ∈ {0, 1} ∀i, j ∈ N , (18)

zik ∈ {0, 1} ∀i ∈ NC , k ∈ ND, (19)

uij ≥ 0 ∀i, j ∈ N . (20)

In the above formulation: the objective function and subsequent constraints can be in-
terpreted as follows:
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• (1) the total objective cost consists of the first stage decisions considering the cost
for opening depots and cost for deploying vehicles. The supremum over F (y, v, d)

denotes the optimal second stage cost dependent on the first stage decisions, for
the most expensive scenarios of demand within the uncertainty set.

• (4) the second stage cost consists of the total routing cost and a penalty cost for
unsatisfied demand. Note that the second term allows for a feasible solution of
F (y, v, d) for every first stage solution, since xij = 0 ∀i, j ∈ N is feasible for all
here-and-now variables yk, vk ∀k ∈ ND;

• (5) every customer can be served by only one vehicle and only if they are assigned
to a depot;

• (6) the number of arcs entering each node is equal to the number of arcs leaving
the node;

• (7) the number of vehicles departing from a depot is bounded by the number of
vehicles assigned to the depot;

• (8) the load of a vehicle never exceeds the vehicle capacity;

• (9) the current load of a vehicle is at most equal to the vehicle capacity minus the
demand of the most recently visited customer;

• (10) a vehicle can only visit a customer if the current load is sufficient to satisfy all
the customer’s demand;

• (11) the load of all vehicles is empty when traveling back to the depots;

• (12) the load of a vehicle is updated correctly after a delivery. This implies that
both pickups and partial deliveries are prohibited;

• (13) each customer can only be assigned to a single depot;

• (14) customers can only be assigned to open depots and the total demand of cus-
tomers assigned to a depot cannot exceed the depot capacity;

• (15)-(17) together prevent illegal vehicle routes that start and end at different de-
pots. Constraint (17) states that each adjacent pair of customers in a route needs
to be assigned to the same depot. Constraints (15) and (16) only allow vehicles to
travel between a depot and a customer if the customer is assigned to that depot.
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Together with (13), this ensures that all customers on a route need to be assigned
to the same depot and each vehicle has to start and end at the same depot.

Problem (P1) is a large MIP problem that contains a supremum to consider uncertain
parameters. In order to solve this problem, we will derive: 1) a nominal formulation,
2) a strict robust formulation and 3) a light robust formulation, in the following subsec-
tions.

3.3.1 Nominal and strict robust problem formulation

We observe uncertainty in customer demand in several constraints in the above formu-
lation. The nominal approach replaces the uncertain parameters di by the known nomi-
nal values d̄i, to allow for a deterministic problem. By setting F (y, v, d) = F (y, v, d̄), we
can compactly formulate the nominal LRP. Similarly, replacing all uncertain demand
di by their maximum attainable value d̄i + d̂i and defining F (y, v, d) = F (y, v, d̄ + d̂)

coincides with the strict robust formulation, where each demand attains its maximum
value. We can now define the nominal (P1N) and the strict robust model (P1SR):

(P1N) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + F (y, v, d̄), (1′)

s.t. (2)− (20).

(P1SR) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + F (y, v, d̄+ d̂), (1′′)

s.t. (2)− (20).

3.3.2 Light robust problem formulation

In the light robust formulation, we aim to maximize the robustness of the solution.
This is equivalent to the minimization of the constraint violations in the strict robust
approach. At the same time, the solution is required to:

• satisfy all the constraints under the nominal demand scenario

• have a total cost that is bounded by a predetermined threshold relative to the
nominal problem objective value.

The constraints in the light robust (LR) problem formulation are related to those of a
strict robust formulation. Once again, we consider for every uncertain parameter its
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worst-case value within the uncertainty set. The LR problem differs by adding a slack
variable γij to all constraints that contain the uncertain parameter di. This allows the
solution to not satisfy all the strict robust problem. The objective is to minimize the sum
of the slack variables.

Let C and Ĉ denote the optimal objective values from (P1N) and (P1SR), respectively.
The light robust cost value upper bound will be a convex combination of these objective
values, defined as C ∈ {(1−ρ)C+ρĈ | ρ ∈ [0, 1]}. Our formulation is analogous to that
of Schöbel (2014), Section 4.3.

(P1LR) min
γ

∑
(i,j)∈A

γij (21)

s.t.
∑
k∈ND

fkyk +
∑
k∈ND

gkvk +
∑

(i,j)∈A

cijxij+∑
i∈NC

pi(d̄i + d̂i)(1−
∑
j∈N

xij) ≤ (1− ρ)C + ρĈ, (22)

uij + (d̄i −Q)xij ≤ 0 ∀i ∈ NC , j ∈ N , (9′)

uij − d̄jxij ≥ 0 ∀i ∈ N , j ∈ NC , (10′)∑
j∈N

uji −
∑
j∈N

uij ≥
∑
j∈N

d̄ixij ∀i ∈ NC , (12′)

∑
i∈NC

d̄izik ≤ Dkyk ∀k ∈ ND, (14′)

uij + (d̄i + d̂i −Q)xij ≤ γij ∀i ∈ NC , j ∈ N , (9′′)

uij − (d̄j + d̂j)xij ≥ −γij ∀i ∈ N , j ∈ NC , (10′′)∑
j∈N

uji −
∑
j∈N

uij ≥
∑
j∈N

(d̄i + d̂i)xij −
∑
j∈N

γji ∀i ∈ NC , (12′′)

∑
i∈NC

(d̄i + d̂i)zik ≤ Dkyk +
∑
i∈NC

γki ∀k ∈ ND, (14′′)

γij ≥ 0 ∀i, j ∈ N , (23)

(2), (3), (5)− (8), (11), (13), (15)− (20).

The objective function and constraints can be interpreted as follows:

• (21) the objective is to minimize the total sum of the slack variables;

• (22) the relative increase in total cost compared to the cost obtained from the nom-
inal formulation is limited;
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• (9′), (10′), (12′) and (14′) are nominal counterparts of the original uncertain con-
straints. Hence, the nominal demand d̄i of every customer i must either be satis-
fied or stay unsatisfied at a penalty cost that has remained unchanged;

• (9′′), (10′′), (12′′) and (14′′) are the robust counterparts of the original uncertain
constraints with the addition of the slack variables γij to allow for feasible solu-
tions in case a strict robust solution is unattainable.

Note that the optimal solution of (P1LR) with ρ = 0 is equivalent to the nominal prob-
lem solution. Furthermore, the optimal solution in case ρ = 1 is equal to the strict
robust solution, in which case γij = 0 for all i, j ∈ N . Throughout this thesis, we will
refer to the solutions of (P1N) and (P1SR) as the solutions of (P1LR) with ρ = 0 and
ρ = 1, respectively.

3.3.3 Formulation of the solution evaluation

We now provide a formulation that we can use to test the performance of the light ro-
bust problem solutions. The location of the open depots and the number of assigned
vehicles are decided on in the first stage. These decisions now remain unchanged. In
the second stage the actual demand values di are known and we determine the optimal
a posteriori routes. Hence, we solve minx,u,z{F (y, v, d)}. This problem is equivalent
to solving a multi-depot capacitated vehicle routing problem (MDCVRP). To test the
performance of the first stage decisions dependent on the different formulations, the
second stage is solved T times for random sampled customer demand scenarios. Ev-
ery time, actual demand dit of all customers at time t is observed. Since there are no
linking constraints over index t, every instance of time is independent. Since there are
no linking constraints over index t ∈ {1, . . . , T}, every instance of time is independent.
Therefore we do not actually need to include index t. We present the second stage
formulation as follows:

(P2) min
x,u,z

∑
(i,j)∈A

cijxij +
∑
i∈NC

pidi(1−
∑
j∈N

xij), (24)

s.t (5)− (20) (25)

3.3.4 Valid inequalities

In the research on LRP, valid inequalities (also known an valid cuts) are a popular tool to
tighten the LP-relaxation of the problem. Valid inequalities are not needed to obtain an
optimal solution, but can decrease the solving time by restricting the solution space of
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a problem. We first discuss a few valid inequalities that can be included in all described
problems. These inequalities are derived from Karaoglan et al. (2011), who show a
positive effect in terms of solving times.

Two-customer subtour elimination constraints

The first inequalities are subtour elimination constraints, classically used for the Trav-
eling Salesman Problem (Miller et al. (1960)).

xij + xji ≤ 1 ∀i, j ∈ NC . (26)

Constraint (26) eliminates subtours involving only two customers. This type of elimi-
nation constraint can be included for subtours involving a larger number of customers,
but adding the constraint for all subsets results in an exponential number of constraints,
thereby increasing the problem’s difficulty.

Only assign a customer to an open depot

The following valid inequality imposes that a customer can only be assigned to an open
depot.

zik ≤ yk ∀ i ∈ NC , k ∈ ND. (27)

Lower bound on the number of routes

This inequality assigns a lower bound to the minimum number of vehicles to use, based
on the total demand and capacity of the vehicles.

∑
i∈NC

∑
k∈ND

xij ≥
⌈∑

i∈NC di

Q

⌉
. (28)

This inequality is only valid if all demand has to be satisfied. This only holds if the
penalty cost pi per unit of unsatisfied demand is sufficiently large, on which we will
elaborate in the next section. If this is the case, the optimal solution to the light robust
problem for any value of ρ will satisfy at least all nominal demand values due to the
nominal problem constraints. Therefore, constraint (28) can be included with di = d̄i.
In addition, the optimal solution to the strict robust problem will satisfy the maximum
attainable demand for every customer. Therefore, if ρ = 1, constraint (28) can be in-
cluded with di = d̄i + d̂i.

We will now consider some new valid inequalities.

Three-customer subtour elimination constraints
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The first set of constraints is related to the two-customer subtour elimination constraints
(26). The total number of constraints increases exponentially when considering sub-
tours involving an increasing number of customers. We find that the solution time
effectively increases when including these subtour elimination constraints for three or
more customers using this formulation. The first observation to make is that for all
i, j ∈ NC , constraint (26) considers every distinct pair of customers twice, as well as
all cases where i = j. Since the formulation for two customers already includes both
arc directions, we can instead formulate given constraints for i, j ∈ NC , i > j and we
still consider all unique distinct customer pairs. Hereby, we reduce the number of con-
straints by more than half. We can extend this formulation for subtours containing more
than two customers. Extending (26) to three customers can be formulated as follows

xij + xjl + xli ≤ 2 ∀i, j, l ∈ NC .

If we only consider the customers i, j, l ∈ NC , i > j > l, we have to take into account
both directions, i.e. xij + xjl + xli ≤ 2 and xil + xlj + xji ≤ 2. However, since subtours
of two customers are also illegal, we can combine both directions in the following set
of constraints.

xij + xji + xjl + xlj + xli + xil ≤ 2 ∀i, j, l ∈ NC , i > j > l. (29)

By only allowing to use a maximum of two out of the six possible edges between each
unique set of three distinct customers, all subtours involving three customers are for-
bidden. The addition of constraint (26) separately for subtours involving both two and
three customers results in an addition of |NC |3 + |NC |2 constraints. Constraint (29)
yields |NC |(|NC |−1)(|NC |−2)

6 constraints, and an additional |NC |(|NC |−1)
2 constraints for the

subtours involving two customers.

Symmetry breaking constraints

Next, we consider a set of symmetry breaking constraints. Due to the absence of time
windows and the presence of symmetry in routing cost, the direction of an optimal
route is irrelevant, resulting in 2N non-unique optimal solutions, where N denotes the
number of distinct routes in an optimal solution. Ultimately, we want to eliminate all
but one of these non-unique optimal solutions. However, due to the absence of an index
denoting individual vehicles or routes, this is not possible. Consider the following
symmetry breaking constraint.

∑
i∈NC

√
i · xki ≤

∑
i∈NC

√
i · xik ∀k ∈ ND. (30)
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Constraint (30) removes symmetry using a lexicographical order of the routes. The sum
of the square root of the indices of the last customer in every route to depot k must be
larger than the sum of the square root of the indices of the first customer in every route
from depot k. We can prove this by contradiction: consider an optimal set of routes that
violates (30). For every depot k that does not satisfy the symmetry breaking constraint,
change the directions of all routes starting at k. Due to the symmetry in traveling cost,
the routing costs will remain unchanged and constraint (30) now holds. First note that
this set of constraints eliminates all but one non-unique solutions if there is a single
route per depot k. With multiple routes per depot, this effect is reduced. Furthermore,
the square root reduces the number of instances in which an equality in constraint (30)
holds. Hence, it tightens the inequality compared to the index i as the constant term.
Consequently, the constraint can be formulated even tighter (e.g. using higher power
roots), although the improvements will be close to non-existent.

Slack variables bounding constraints

We now introduce some valid inequalities that relate to the slack variables γij in (P1LR).
Consider the constraints from the light robust formulation that contain slack variables
γij : (9′′), (10′′), (12′′). The bounding constraints already ensured that uij > 0 if and only
if xij = 1 for i, j ∈ NC . Due to the referred constraints, we can extend this with γij > 0

if and only if xij = 1 for i, j ∈ NC . Constraint (31) offers a tighter bound based on the
the maximum relative deviation in demand.

γij ≤
d̂j

d̄j
uij ∀i, j ∈ NC . (31)

Satisfied demand shortage constraints

The following valid inequalities provide a lower bound to the required total sum of
the slack variables. Recall that, due to the bounding constraints in combination with
constraint (11),

∑
k∈ND

∑
i∈NC uki denotes the total satisfied demand to all customers.

Inequality (32) requires the total sum of slack variables to be at least as large as the
difference between the maximum attainable demand and the total satisfied demand.

∑
i∈NC

( ∑
k∈ND

uki +
∑
j∈N

γji
)
≥
∑
i∈NC

d̄i + d̂i. (32)

Capacity shortage constraints

Finally, the slack variables are needed to denote the demand that cannot be satisfied, in
case of maximum demand, due to the lack of sufficient capacity. This lack of capacity
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equals either the the total depot capacity or the total vehicle capacity. Therefore we can
formulate ∑

j∈N

∑
i∈NC

γji + min{
∑
k∈ND

Dkyk,
∑
k∈ND

Qvk} ≥
∑
i∈NC

d̄i + d̂i,

which can be rewritten as linear constraints as follows:

∑
j∈N

∑
i∈NC

γji +
∑
k∈ND

Dkyk ≥
∑
i∈NC

d̄i + d̂i, (33)

∑
j∈N

∑
i∈NC

γji +
∑
k∈ND

Qvk ≥
∑
i∈NC

d̄i + d̂i. (34)

3.4 Uncertainty in the customer set

So far we have considered the location-routing problem with uncertainty in customer
demand. In this section we consider an alternative problem in which we face uncer-
tainty in the set of customers to consider. In other words, we have a set of potential
customers, but it is uncertain which customers have a positive demand. For simplicity,
we assume demand per customer (if positive) is known. A combination of both uncer-
tainties can readily be included.

We consider that every customer i ∈ NC will either have a positive demand or a de-
mand equal to zero. We first have to define the subset of potential customers to be
included in the problem. Let the uncertain parameter ai ∈ {0, 1} denote whether a cus-
tomer has a positive demand, with ai = 1 denoting that customer i is included in the
customer set, and 0 otherwise. We define an uncertain realization as a1× . . .×a|NC | and
the customer uncertainty set as A = {0, 1}|NC | . Later on, values ai will be randomly
sampled for every i ∈ NC , in a similar fashion as in Albareda-Sambola et al. (2007).
This will be explained in further detail in Section 4.

We rewrite the integer programming formulation containing uncertainty in the cus-
tomer set as follows:
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(P1c) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + sup
a∈A

F (y, v, a), (35)

s.t. (2), (3),

where F (y, v, a) is defined as the optimal value of the second stage problem:

F (y, v, a) = min
x,u,z

∑
(i,j)∈A

cijxij +
∑
i∈NC

pidiai(1−
∑
j∈N

xij), (36)

s.t.
∑
j∈N

xij = ai
∑
k∈ND

zik ∀i ∈ NC , (37)

(6)− (20).

The demand values di are now deterministic, while ai is uncertain. The objective func-
tion (36) only takes a penalty cost into account for a priori unsatisfied demand for the
potential customers included in the actual customer set. This can be justified by stating
that the demand of customers not included in given set is equal to zero. Furthermore,
we have included uncertain parameter ai in constraint (37). We could have rewritten
the entire formulation by including ai in all relevant constraints or by introducing a
subsetNC ⊆ NC consisting of the customers included in the customer set for the nomi-
nal problem. However, this is not necessary: the combination of constraints (5) and (13)
states that a customer has to be included in exactly one route if and only if it is assigned
to exactly one depot. If a customer is not assigned to a depot; it is not visited on a route,
which results in a cost due to the second term in objective (4). By including ai in this
cost term in objective (36), there will be no cost incurred for customers not included in
a route if ai = 0. This effect ensures that, if ai = 0, then xij = xji = 0, ∀j ∈ N will
be optimal due to the absence of routing costs. Hence, customer i will not be included
in any route and subsequently, uij and zik will also be equal to zero ∀j, k ∈ N . Con-
cluding, we do not need to redefine all constraints by including parameter ai. We did,
however, rewrite constraint (37) such that we can introduce the formulation of the light
robust problem in a more gradual manner.

Similar to the original problem (P1), problem (P1c) contains a supremum to consider
uncertain values which is difficult to solve to optimality. Therefore, our solution ap-
proach remains unchanged. We will introduce the formulations of the nominal problem
and the strict robust problem. The obtained objective values are stored in the values C
and Ĉ. These values are used in the maximum cost constraint in the light robust prob-
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lem formulation.

(P1Nc) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + F (y, v, ā), (35′)

s.t. (2), (3), (6)− (20), (36), (37).

(P1SRc) min
y,v

∑
k∈ND

fkyk +
∑
k∈ND

gkvk + F (y, v, â), (35′′)

s.t. (2), (3), (6)− (20), (36), (37).

These formulations are similar to the case of uncertainty in demand, with the exception
of using F (y, v, a) instead of F (y, v, d). Finally, we introduce the light robust problem:

(P1LRc) min
γ

∑
i∈N

diγi (38)

s.t.
∑
k∈ND

fkyk +
∑
k∈ND

gkvk +
∑

(i,j)∈A

cijxij+∑
i∈NC

pidiāi(1−
∑
j∈N

xij) ≤ (1− ρ)C + ρĈ, (39)

∑
j∈N

xij = āi
∑
k∈ND

zik ∀i ∈ NC : āi = 1, (40)

∑
j∈N

xij = 1− γi ∀i ∈ NC , (41)

γi ≥ 0 ∀i ∈ NC , (42)

(2), (3), (6)− (20).

Once again, γi denotes a slack variable needed in case a strict robust solution is too
costly and violates constraint (39). Customer demand value di is used as a weight in
the objective function. Hereby we ensure that customers with small demand values are
not prioritized due to their lower requirement for capacity. Constraint (40) ensures that
the optimal solution will be feasible for the scenario of nominal demand, while con-
straint (41) implies that the optimal solution should be as robust as possible.

The term
∑

k∈ND zik is absent in constraint (41), as well as âi. First, note that the worst-
case scenario consists of ai = 1,∀i ∈ NC , therefore âi = 1. Furthermore, in case ai = 0,
customer i is still included if

∑
j∈N xij = 1. If customer i can not be included (due

to a violation of constraint (22)), γi will be equal to one. Thus,
∑

i∈Ni γi is equal to
the number of customers not included in the problem. For both cases, the presence of
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constraints (13), (15), (16) and (17), results that∑
j∈N

xij =
∑
k∈ND

zik,

will hold by default.

Similar to the case of demand uncertainty, the value ai will become known in the sec-
ond stage. We can redefine the second stage problem without rewriting the formulation
by only including customer i in the customer setNC in case ai = 1. Hence (P2c) is equal
to (P2).

In addition, we can use the valid inequalities (26), (27), (29) from the previous sec-
tion. Furthermore, valid inequality (28), considering the minimum number of required
vehicles to satisfy all demand, can be rewritten to

∑
i∈NC

∑
k∈ND

xij ≥
⌈∑

i∈NC āidi

Q

⌉
.

As explained in Section 3.3.4, this valid inequality provides a lower bound on the num-
ber of routes if all demand has to be satisfied and should therefore only be used if the
penalty cost per unit of unsatisfied demand is sufficiently large.

4 Experimental setup

In this section we will introduce the setup of the experiments that will be presented
in Section 5. We will first introduce the test environment in Section 4.1, followed by
the implemented solution procedure in Section 4.2. Afterwards we present the perfor-
mance measures used to discuss the obtained results in Section 4.3.

4.1 Test environment

We first introduce the test environment of the problem formulations. Unless stated
otherwise, all parameters will be equal to these given values. In further subsections, we
will perform a sensitivity analysis by varying one or a few values, while keeping the
remaining parameters unchanged. To the best of our knowledge, no benchmark values
exist for the LRP containing any type of uncertainty. However, multiple deterministic
benchmark instances exist that are traditionally used to compare the performance of
solution methods for the deterministic LRP. For fairness, our test environment will be
closely related to these instances with the addition of data uncertainty.
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4.1.1 Base parameter values

All node locations are uniformly sampled from the rectangle of size [0, 100]2. The rout-
ing costs cij are equal to the Euclidean distance between node i and j. Each testing in-
stance consists of three distinct possible depots, each having a uniformly sampled depot
capacity Dk ∼ U(100, 400) and opening cost fk = 5Dk. Furthermore, the base number
of customers is |NC | = 10, where each customer has a nominal demand sampled from
[10, 30]. The maximum deviation in demand for customer i from its nominal value is
equal to 0.5d̄i. Each vehicle has a capacity of Q = 70 and the cost of assigning a vehicle
to a depot gk = 2Q for all k ∈ ND. The penalty cost for each unit of unsatisfied de-
mand pi equals 10, 000 for each customer i ∈ NC . Note that, if pi > M for a sufficiently
large value of M , all demand will be satisfied, with M = maxi{mink{fk+gk+2cik}

di
}. This

holds provided that the total capacity of the available depots is larger than the maxi-
mum attainable total demand. Unless mentioned otherwise, we simulate #Sims = 100
instances which are solved for ρ ∈ P = {0, 0.1, . . . , 0.9, 1}. Furthermore, to evaluate the
performance of the solution for every instance, we sample T = 20 demand scenarios
uniformly from Di and solve (P2) for every scenario. Thus, the light robust LRP (P1LR)
is solved #Sims×|P | times and (P2) is solved T× #Sims×|P | times. All base parameter
values are summarized in Table 2.

Table 2: Base parameter values

#Sims 100
T 20
|NC | 10
|ND| 3
Q 70
Dk ∼ U(100, 400)

d̄i ∼ U(10, 30)

d̂i 0.5 d̄i
fk 5Dk
g 2Q

k 10,000

For the problem with uncertainty in customer set, |NC | now denotes the number of
potential customers, of which p×|NC | customers have a positive demand, with 0 ≤ p ≤
1. For every problem instance, we simulate a nominal scenario of the customers with
a positive demand using a Bernouilli distribution with probability p to be included.
That is, āi ∼ B(1, p), ∀i ∈ NC . The worst-case scenario corresponds to âi = 1, ∀i ∈
NC . Customers still have heterogeneous nominal demands, but d̂ = 0, removing the
uncertainty in demand. Furthermore, the experiment remains unchanged.
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4.1.2 Classical instances from the literature

In addition to simulated instances, we make use of publicly available benchmark in-
stances, introduced by Prins et al. (2006) and available on Prodhon (2006). We refer
to individual benchmark instances by their instance names as follows |NC | - |ND| -
#clusters- {a, b}, with a and b denoting low and high vehicle capacity Q. For several
instances, we selected a subset of the first n ∈ NC of customers, to create more unique
smaller instances. In addition, we include a certain level of uncertainty in the given in-
stances by changing the given deterministic demand to nominal demand and we hold
on to the maximum deviation d̂i = 0.5d̄i for all customers i. Therefore the optimal solu-
tion to the nominal problem in case all customers are included (and only then) is equal
to the optimal solution of the benchmark instance.

4.2 Solution and testing procedure

In this section we will elaborate on the method of solving and testing the solutions. For
any given instance we first solve the nominal problem (P1N) and the strict robust prob-
lem (P1SR), with the single purpose of obtaining the optimal cost values C and Ĉ. We
then solve (P1LR) for all values of ρ ∈ P . Finally, we sample T scenarios of customer
demand from the given demand uncertainty set and solve (P2) for every demand sam-
ple subject to every distinct solution to (P1LR) based on ρ. We will report the running
times for (P1LR) for all values ρ ∈ P . The optimal solution to the light robust problem
for a certain value of ρ is always a feasible solution for all larger values of ρ. The con-
secutive problems will therefore be solved in increasing order of ρ where the yielded
optimal solutions are used as a starting point for the next problem. A pseudocode of
the solution method can be found in Algorithm 1. The same procedure holds for solv-
ing the problem with uncertainty in the customer set by replacing formulations (P1) for
(P1c).

All experiments have been performed on an HP laptop with intel core i7 CPU (16GB
RAM) using Gurobi 7.5.2 with its default settings as the optimizer to solve the MIP
formulations.
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Algorithm 1 Solution Procedure

1: γ, τ , S1Sol are arrays of size |P | that store the total sum of slack variables, the solving
time and the optimal strategic decisions, respectively for every solution based on ρ.

2:

3: n← |P |
4: for Sim← 1 to #Sims do
5: locations i← randomly sampled ∀i ∈ N
6: dij ← Euclidean distances based on distances ∀i, j ∈ N
7: Dk ← randomly sampled ∀k ∈ ND
8: d̄i ← randomly sampled ∀i ∈ NC
9: solve (P1SR) Stage 1

10: Ĉ ← z∗; τ [n− 1]← time; x̂← x

11: solve (P1N)
12: C ← z∗; τ [0]← time; x̄← x

13: for r ← 0 to n− 1 do
14: ρ← P [r]

15: if ρ = 0 then
16: Solve (P1LR) with x̄ as start solution
17: γ[0]← z∗

18: S1Sol[0]← optimal strategic decisions
19: StartSol← optimal solution
20: else if ρ > 0 and ρ < 1 then
21: Solve (P1LR), s.t. C, Ĉ with StartSol as start solution
22: γ[r]← z∗; τ [r]← time

23: S1Sol[r]← optimal strategic decisions
24: StartSol← optimal solution
25: else
26: Solve (P1LR) with x̂ as start solution
27: γ[n− 1]← z∗

28: S1Sol[n− 1]← optimal strategic decisions
29: end if
30: end for
31: for t← 1 to T do Stage 2
32: di ← randomly sampled from Di, ∀i ∈ N
33: for r ← 0 to n− 1 do
34: solve (P2) s.t. S1Sol[r]
35: end for
36: end for
37: end for
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4.3 Performance measures

In this section we introduce the different performance measures that we will use through-
out this thesis. First, we will focus on the average optimal solution values from (P1LR)
for different values of ρ. This optimal value, being the total sum of the slack variables,
will be referred to as the Tot. slack =

∑
i∈N

∑
j∈N γij . We also consider the average

total cost of these optimal solutions. This total cost, denoted by Tot. cost in all tables, is
equal to the LHS of constraint (22), consisting of the cost of opening depots, assigning
vehicles and the a priori route and unsatisfied demand cost. To denote the increasing
cost for solutions with larger values of ρ, we use a percentage increase in cost relative to

the optimal cost of the nominal solution, where %Wors. = 100× Cρ−C
C

, withCρ denoting
the cost value from (L1RP) for ρ.

Value θ indicates the instance percent tightness ratio, introduced by Sungur et al. (2008).
It can be calculated as follows:

θ =

∑
i∈NC d̄i

min{
∑

kQvk,
∑

kDkyk}
.

This ratio can be interpreted as the ratio of the total nominal customer demand and
the minimum of the total available vehicle capacity and available depot capacity. If the
minimum of the total depot capacity and the total vehicle capacity is equal to the total
nominal customer demand, then θ = 100%. This implies that it is necessary to fully uti-
lize the maximum available capacity to satisfy the nominal demand. Therefore, every
customer sample with a larger total demand than the nominal demand will result in
unsatisfied demand. Thus, lower values of θ imply robust solutions. In case the avail-
able capacity is smaller than the nominal demand, θ can be larger than 100%.

Finally, we report two computational measures of robustness for any solution to the
light robust problem, based on the demand scenario sampling. The first measure, re-
ferred to as % Infeas., indicates the percentage of demand scenarios where not all cus-
tomer demand can be satisfied. This is the case if the minimum of the available de-
pot capacity and total vehicle capacity is smaller than the total sampled demand. The
second measure, % Uns., equals the average percentage of demand that remains un-
satisfied in the optimal solutions. Hence, given an instance where the optimal second
stage solution yields a positive total unsatisfied demand, we refer to the instance as
infeasible with a certain percentage of unsatisfied demand. Note that feasible instances
can also result in unsatisfied demand, although this only occurs if the penalty cost for
unsatisfied demand is very low.
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5 Computational experiments

In this section we present results of the light robust LRP as formulated in the previous
sections, that are obtained from random scenario sampling and solving public instances
from literature. We present and discuss the results obtained using different parameters
in Sections 5.1 to 5.3. Finally, in Section 5.4 we will present results from the LRP with
uncertainty in the customer set.

5.1 Homogeneous customers and varying vehicle capacities

In this section we focus on the results obtained from randomly sampled instances with
different vehicle capacitiesQ. For simplicity we only consider homogeneous customers
with a nominal demand d̄i = 20 for all i ∈ NC to show the relevance of the different
performance measures.

Table 3 presents the results obtained from sampling instances with homogeneous cus-
tomers. Here, every vehicle has a capacityQ = 70. We present the values and measures
introduced in the Section 4.3. The average computation times of solving the light robust
problem (P1LR) and the solution evaluation (P2) are given in seconds.

Table 3: Results obtained from instances with homogeneous customers and vehicle capacity Q = 70.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 2349.100 0.000 82.62 76.453 5.144 8.30 0.678 2.622
0.1 2403.784 2.328 69.82 76.237 23.148 7.90 0.652 2.748
0.2 2468.192 5.070 63.54 75.301 31.273 6.30 0.511 2.633
0.3 2539.437 8.103 55.22 74.778 35.795 5.30 0.440 2.635
0.4 2597.531 10.576 49.52 73.303 28.179 4.10 0.346 2.629
0.5 2664.158 13.412 43.88 71.989 37.758 2.80 0.227 2.726
0.6 2729.956 16.213 36.86 69.979 29.108 1.10 0.089 2.632
0.7 2773.411 18.063 33.28 68.292 31.931 0.80 0.065 2.691
0.8 2871.344 22.232 24.78 62.563 27.971 0.10 0.010 2.855
0.9 2958.754 25.953 22.38 61.709 62.645 0.10 0.010 2.814
1.0 3069.667 30.674 0.00 56.915 1.085 0.00 0.000 2.941

We first observe that the formulation of the light robust approach in case ρ = 1 co-
incides with the strict robust formulation. This is confirmed by the total slack being
equal to zero, implying that no slack variables are needed to satisfy the worst-case
demand scenarios. In addition, all demand is satisfied in all sampled demand scenar-
ios. Furthermore, the sum of slack variables as well as both robustness measures are
monotonously decreasing for increasing values of ρ, while the total cost increases con-
tinuously. The same holds for the tightness ratio θ. This confirms that allowing for
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higher total cost results in more robust solutions. The next observation is that strict
robust solutions can lead to conservative solutions, yielding unnecessarily high cost for
common scenarios. The percentage of unsatisfied demand quickly increases for low
values of ρ, while the improvements are relatively small for larger values. Note that
the increase in total cost is gradual due to the dependency of the maximum allowed
increase in cost. Thus, an average cost increase of 30.674 % compared to the nominal
problem solution guarantees a solution that is always feasible, while an increase of 17
- 22 % can provide a solution that will be close to always feasible, assuming uniform
demand sampling. Due to the additional complexity of the light robust problem for
values of ρ ∈ (0, 1) compared to the deterministic nominal and strict robust problems,
the running times are significantly larger due to the addition of the slack variables.
We observe fairly balanced running times for solving the sampled scenarios (P2) with
slightly larger times for lower values of ρ. This result is due to the increase in difficulty
in solving the optimal a posteriori routes for customer demand samples where not all
demand can be satisfied.

Despite these observations, we can conclude that even for the solutions for lower val-
ues of ρ, the percentage of unsatisfied demand is still reasonably small. We will explain
how these findings are caused by the tightness of both location and routing problems.
We discuss two examples with Q = 70 and Q = 100 that yield very different per-
formances. First consider the following example: for simplicity, we ignore the depot
capacity. Given |NC | = 10, d̄ = 20 and Q = 70, as in the scenarios used in Table 3, four
vehicles are required to satisfy all nominal demand (recall: split deliveries are not al-
lowed). Hence, an excess vehicle capacity of 80 units remains to accommodate sampled
additional demand. Considering that the worst-case scenario coincides with d̄+ d̂ = 30,
which requires a total of five vehicles, we observe that the presence of a large excess ca-
pacity in the nominal solution results in tight instances. This is confirmed by the low
values for θ and can explain the reasonably adequate performance in terms of satis-
fied demand. Now consider the same example with vehicle capacity Q = 100. In this
scenario, assigning two vehicles is sufficient to satisfy all nominal demand, leaving an
excess vehicle capacity of zero. This implies that every scenario with a total demand
larger than the total nominal demand, results in unsatisfied demand. This is shown in
Table 4, containing the results from the same sampled instances as before with vehicle
capacity Q = 100.
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Table 4: Results obtained from instances with homogeneous customers and vehicle capacity Q = 100.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 2109.926 0.000 106.815 100.000 0.847 48.85 4.695 7.175
0.1 2164.524 2.587 106.464 100.000 10.435 48.85 4.695 7.008
0.2 2254.804 6.879 96.440 86.565 12.149 38.40 3.724 5.814
0.3 2333.849 10.632 72.006 76.791 8.368 22.45 2.008 3.645
0.4 2396.179 13.587 63.445 74.026 9.625 17.05 1.502 3.034
0.5 2475.032 17.343 45.523 72.542 12.187 4.35 0.333 2.184
0.6 2567.818 21.751 36.814 70.811 15.641 2.50 0.174 2.287
0.7 2648.278 25.556 31.489 68.139 18.638 1.50 0.118 2.545
0.8 2777.168 31.699 23.822 63.643 25.036 1.00 0.079 2.875
0.9 2897.092 37.356 17.219 61.390 28.950 0.00 0.000 2.681
1.0 3026.733 43.516 0.000 56.878 32.043 0.00 0.000 2.576

We can clearly observe the differences in terms of performance resulting from the ro-
bustness measures. First consider the value of θ = 100 for ρ = 0. This indicates that
the minimum of the capacity of the opened depots and the deployed vehicles is equal
to the sum of the nominal demands. This coincides with the assigning of two vehicles
in every scenario due to the homogeneous nominal demand d̄ = 20. As argued in the
example above, this will result in infeasible instances for every demand sample larger
than the nominal demand. This can be deduced from the percentage of infeasible in-
stances being close to 50% and larger percentages of unsatisfied demand.

Furthermore, we observe that both the average value of θ as well as the performance
measures are equal for ρ = 0 and ρ = 0.1. This implies that the additional allowed
cost is in no instance sufficient to assign a third vehicle. The total of slack variables,
however, is slightly lower, since larger depot capacity has become available. For the
running times, we observe longer times if the strategic decisions are less obvious. We
also see longer running times for the solution evaluation, due to the presence of more
scenarios resulting in unsatisfied demand. Finally, compared to Table 3, both perfor-
mance measures decrease faster as ρ increases due to the clear connection with θ. Note
that the percentage of unsatisfied demand is still small. In case of a scenario where not
all demand can be satisfied, it is often possible to serve all but one customers, where
the excluded customer might have the lowest demand value. Thus the large majority
of the total demand can still be satisfied.

5.2 Varying cost ratios

The main purpose of the previous section was to clarify the realization of the perfor-
mance measures. In this section we consider the base case including heterogeneous
customers. Hence, all parameter values are equal to those, or distributed accordingly,
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as stated in Table 2. Afterwards we will consider similar problem settings, but with
different cost values associated with the strategic decisions, i.e. fk and gk, denoting
the cost for opening depots and assigning vehicles, respectively. The relative difference
between the strategic cost and the operational cost is of high relevance for the location-
routing problem. If we consider the strategic cost to be very high compared to the
routing cost, additional depots will only be opened for the sake of sufficient capacity.
Otherwise, if the strategic cost is very low, additional depots will be opened to reduce
the length of the needed routes. The latter scenario resembles more an uncapacitated
FLP where additional depots are opened if and only if it reduces the total shipping cost.
Table 5 reports the average results of the LRP over multiple instances and customer de-
mand samples for different values of ρ.

Table 5: Results obtained from instances with base values.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 2246.570 0.000 93.356 86.059 2.392 19.20 1.686 3.434
0.1 2306.171 2.653 75.774 83.513 11.892 16.00 1.354 3.429
0.2 2382.798 6.064 64.104 75.880 14.031 10.50 0.838 3.102
0.3 2453.952 9.231 53.813 73.509 11.408 7.50 0.620 2.648
0.4 2531.682 12.691 43.187 73.025 8.300 4.30 0.346 2.641
0.5 2601.979 15.820 37.670 71.317 8.635 3.10 0.246 2.541
0.6 2668.891 18.798 32.157 68.761 7.970 2.20 0.178 2.684
0.7 2726.066 21.343 26.042 66.168 11.195 1.00 0.087 2.755
0.8 2822.812 25.650 17.522 63.559 18.903 0.10 0.011 2.766
0.9 2897.567 28.977 10.190 61.701 26.124 0.00 0.000 2.808
1.0 3033.944 35.048 0.000 57.513 1.582 0.00 0.000 2.611

The heterogeneity of the nominal customer demand removes the consistency in the
number of customers contained in any route, compared to the previous results. As a re-
sult, the excess capacity of a vehicle will be smaller if this reduces the required number
of vehicles. Hence, both the total sum of slack variables and θ are larger compared to
Table 4. This lower level of robustness also negatively affects the performance for small
values of ρ. This heterogeneity also implies that less additional vehicles are required to
provide more robust solutions. Hence, the average performance of larger values of ρ is
slightly better than before. We can conclude that a cost increase of 35.048% compared
to the nominal problem solution guarantees a solution that is always feasible, while an
increase of 20 - 25 % can provide a solution that will be close to always feasible. The
percentage decrease in the total sum of slack variables and the performance measures
against the increase in total cost are shown in Figure 4. It shows that the theoreti-
cal increase in robustness is close to linear for more costly solutions, while the actual
robustness performance measures show a much steeper curve based on the random
sampling.
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Figure 4: The effect of percentage increase in stage 1 cost, compared toC on percentage decrease in light robust objective
value and the robustness measures

Tables 6 and 7 report the results in which the strategic cost values are relatively lower
and higher, respectively. Specifically, in case of low strategic cost fk and gk are reduced
by half to values 2.5Dk and 1.0Q for every depot k ∈ ND. For the high strategic cost
these values are 20.0Dk and 8.0Q, respectively

Table 6: Results obtained from instances with fk = 2.5Dk, gk = Q.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 1392.157 0.000 87.827 84.513 2.240 15.65 1.330 3.200
0.1 1422.277 2.164 70.853 81.113 6.202 11.95 0.980 3.018
0.2 1470.116 5.600 54.878 71.825 7.776 5.45 0.423 2.557
0.3 1514.071 8.757 44.912 69.668 7.773 4.05 0.329 2.554
0.4 1562.292 12.221 36.684 68.135 8.863 2.10 0.168 2.589
0.5 1603.907 15.210 30.907 66.172 9.035 1.30 0.104 2.618
0.6 1629.256 17.031 23.286 65.089 10.791 0.85 0.075 2.717
0.7 1676.723 20.441 18.145 62.454 10.614 0.30 0.029 2.651
0.8 1720.320 23.572 12.732 59.876 15.797 0.15 0.016 2.781
0.9 1765.053 26.785 6.711 58.321 25.429 0.00 0.000 2.788
1.0 1826.120 31.172 0.000 57.607 1.710 0.00 0.000 2.665
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Table 7: Results obtained from instances with fk = 20Dk, gk = 8Q.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 7556.330 0.000 93.801 86.587 3.867 17.40 1.483 2.881
0.1 7720.611 2.174 79.027 86.059 30.538 15.75 1.329 3.034
0.2 7954.420 5.268 66.646 75.880 29.422 10.20 0.840 2.753
0.3 8228.666 8.898 55.871 73.536 50.399 6.60 0.517 2.664
0.4 8429.744 11.559 49.245 72.729 28.877 4.75 0.364 2.516
0.5 8668.333 14.716 38.201 72.542 12.427 2.00 0.154 2.280
0.6 8826.506 16.809 33.758 71.731 12.590 1.65 0.136 2.373
0.7 9062.553 19.933 31.295 69.731 25.975 1.45 0.122 2.387
0.8 9309.628 23.203 23.504 66.551 41.603 0.45 0.046 2.556
0.9 9609.433 27.171 12.243 62.541 46.409 0.00 0.000 2.522
1.0 10275.146 35.981 0.000 57.752 2.300 0.00 0.000 2.376

We can observe a few differences in terms of performance. First, a better performance
is obtained for higher values of ρ for the instances with lower strategic cost. This is be-
cause the maximum available increase in cost allows for the opening and assigning of
relatively more vehicles. This effect is also apparent in the relatively low improvements
for lower values of ρ in Table 7. An explanation is that in many instances, the small ad-
ditional increase in allowed cost does not enable an additional depot to be opened or a
vehicle to be assigned. This is confirmed by the more gradual decrease in θ for lower
strategic cost values.

Figure 5 shows the relative increase in the minimum capacity of opened depots and
assigned vehicles, compared to the minimum capacity for the solution to the nominal
problem with normal strategic cost. Similar to θ, the minimum capacity is defined as
min{

∑
kDkyk,

∑
kQvk}. It shows that lower strategic cost result in larger minimum ca-

pacities. Since the same demand values are taken into consideration, this implies that
relatively more depots and vehicles are used to reduce the total routing cost.
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cost, for different values of strategic cost.

We can now compare the improvement in performances for more costly solutions for
the different problems from this and the previous section, see Figure 6. For the variety
of problems we can make the following important observation: both the percentage of
unsatisfied demand and infeasible scenarios reduce quickly when using more expen-
sive cost. However, this improvement in performance diminishes when solutions get
more expensive, in the figure around 20% for all problems. From this we can conclude
that, for all different problems, we seem to be able to find non-conservative robust so-
lutions.
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demand and infeasible scenarios.

5.3 Results from classical instances from literature

Table 8 reports on the performance of several (subsets) of benchmark instances consist-
ing of {16, 20, 25} customers and five potential depot locations. We compare the per-
formance using the valid inequalities introduced in Section 3.3.4 with the performance
in absence of these valid inequalities. The valid inequalities adopted from previous
papers (i.e. constraints (26)-(28)) are contained in both formulations, since they have al-
ready been proven to yield significant improvements in running time (Karaoglan et al.
(2011)).

For every instance we report the number of customers and depot locations. In terms
of performance, we report the computation times (in seconds) and the optimality gaps
(in %). The optimality gap is the percentage deviation between the best known feasible
solution (upper bound) and the best known lower bound. Each instance is interrupted
after one hour if an optimal solution has not yet been. The instances are solved for
values ρ = {0.0, 0.5, 1.0}, due to the requirement to solve the nominal and strict ro-
bust problem before solving the light robust problem. The column names {P,A} − ρ
denote the presence or absence of the valid inequalities and the value for ρ. In case
the deterministic problems (ρ = 0 or 1) have not been solved to optimality within an
hour, we use the values C and Ĉ obtained from the cases (either presence or absence
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of VI) that obtained the smallest optimality gap after an hour. This ensures that the
problem at hand for ρ = 0.5 remains the same for both cases with and without the valid
inequalities.

Table 8: Results obtained from benchmark instances of varying sizes with the addition and absence of valid inequalities.

Instance |NC | |ND| P-0.0 A-0.0 P-0.5 A-0.5 P-1.0 A-1.0
name Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap
20-5-1a 16 5 97.98 0.00 94.44 0.00 32.57 0.00 99.50 0.00 25.78 0.00 26.13 0.00
20-5-1b 16 5 3.21 0.00 2.81 0.00 42.46 0.00 37.43 0.00 29.90 0.00 68.54 0.00
20-5-2a 16 5 47.52 0.00 44.17 0 .00 544.05 0.00 1194.26 0.00 14.86 0.00 12.72 0.00
20-5-2b 16 5 3.37 0.00 2.61 0.00 20.10 0.00 14.39 0.00 9.83 0.00 4.95 0.00
50-5-3 16 5 12.86 0.00 10.80 0.00 105.35 0.00 273.98 0.00 57.88 0.00 40.07 0.00
Avg 32.98 0.00 30.97 0.00 148.91 0.00 323.91 0.00 27.65 0.00 30.48 0.00

20-5-1a 20 5 497.80 0.00 418.98 0.00 1388.88 0.00 3600* 1.34 532.36 0.00 719.12 0.00
20-5-1b 20 5 27.61 0.00 25.89 0.00 706.45 0.00 1063.35 0.00 43.02 0.00 48.26 0.00
20-5-2a 20 5 751.57 0.00 887.43 0.00 41.35 0.00 2648.52 0.00 1521.04 0.00 2422.24 0.00
20-5-2b 20 5 23.07 0.00 11.50 0.00 88.84 0.00 1607.20 0.00 217.96 0.00 467.04 0.00
50-5-3 20 5 295.74 0.00 1570.28 0.00 198.95 0.00 2143.13 0.00 1458.45 0.00 2768.71 0.00
Avg 319.16 0.00 582.82 0.00 484.89 0.00 2212.44 0.27 754.57 0.00 1285.08 0.00

50-5-1 25 5 2464.07 0.00 3600* 1.45 3600* 45.36 3600* 64.45 1023.76 0.00 1724.13 0.00
50-5-1b 25 5 2225.78 0.00 3138.40 0.00 1092.57 0.00 3600* 100.00 3600* 4.61 3600* 4.29
50-5-2a 25 5 3600* 1.54 3600* 1.94 3600* 41.18 3600* 100.00 3600* 0.99 3600* 1.32
50-5-2b 25 5 242.13 0.00 230.17 0.00 3600* 25.18 3600* 100.00 803.11 0.00 1693.49 0.00
50-5-3 25 5 3600* 3.47 3600* 2.78 1013.95 0.00 3600* 38.78 3600* 2.36 3600* 2.32
Avg 2426.4 1.00 2833.71 1.24 2581.31 22.34 3600* 80.65 2525.37 1.59 2843.52 1.59

From Table 8 we can observe that the addition of the valid inequalities results on aver-
age in smaller computation times. Only for the instances containing 16 customers and
ρ = 0 there is no improvement. For instances with 16, 20 and 25 customers, the number
of benchmark instances where the presence of the valid inequalities finds an optimal so-
lution faster is 5, 12 and 6, respectively, while the absence of valid inequalities is faster
10, 3 and 1 times, respectively. In the remaining 8 instances where both methods do not
find the optimal solution within an hour, the case with valid inequalities provides, on
average, smaller optimality gaps.

Furthermore, three out of the five largest instances still have a lower bound equal to
zero after an hour if no valid inequalities are used, resulting in an optimality gap of
100%. This implies that the valid inequalities help in finding stricter lower bounds. Re-
call that all valid inequalities can be applied to the light robust problem. In the nominal
problem ρ = 0 and the strict robust problem ρ = 1, however, we can only include the
symmetry breaking constraints and the two- and three-customer subtour elimination
constraints. The remaining valid inequalities all relate to slack variables γij . It can be
observed that on average, the solving times show a larger improvement when ρ = 0.5.
The same can be expected for every value ρ ∈ (0, 1).
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5.4 Results on LRP with uncertain customer set

We now consider the problem with deterministic demand values, but uncertainty whether
customers have a positive demand or not. We first consider a problem with 10 poten-
tial customers and probability p to have a positive demand. If a customer has a positive
demand, we still sample a known demand value di ∼ U [10, 30] ∀i ∈ NC . We present
the results for the problem with uncertainty in the customer set with p = 0.5 in Table 9.

Table 9: Results obtained from instances with uncertainty in the customer set.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 1452.505 0.000 98.156 72.886 0.319 24.85 8.979 2.076
0.1 1510.070 3.963 70.587 70.721 1.379 22.25 7.148 2.029
0.2 1576.903 8.564 56.464 63.211 2.037 15.30 4.172 1.877
0.3 1664.143 14.571 42.269 56.294 2.551 13.60 3.746 1.099
0.4 1743.340 20.023 28.299 56.218 2.857 10.75 2.889 1.205
0.5 1812.308 24.771 20.770 55.698 2.826 9.30 2.517 1.123
0.6 1870.316 28.765 15.629 55.285 2.370 8.20 2.139 1.146
0.7 1917.931 32.043 12.314 55.212 2.529 7.30 1.983 1.980
0.8 1977.356 36.134 9.744 53.763 2.408 5.95 1.530 0.998
0.9 2047.693 40.977 7.031 52.938 2.092 5.10 1.247 1.016
1.0 2246.570 54.669 0.000 43.554 1.503 0.00 0.000 1.078

Recall that the total sum of weighted slack variables in the case of uncertainty in the
customer set denotes

∑
i diγi. This is equal to the total demand of customers that are

not included in the problem. For instances of 10 potential customers, p = 0.5, and
d̄i ∼ U [10, 30], as in Table 9, this can be seen with the total weighted sum of slack vari-
ables for ρ = 0 being close to 100. As expected, all potential customers are included in
the strict robust problem. Furthermore, the running times are naturally smaller com-
pared to the case of demand uncertainty for both stages. This is due to the smaller
problem size. Since the number of customers in both the nominal problem and every
sampled scenario are independently binomially distributed, i.e.

∑
i ai ∼ B(|NC |, p), we

know that E(
∑

i ai) = p|NC |.

According to the performance measures, the solutions are not as robust compared to
previous results while the tightness ratios θ are smaller, see Table 5. This can also be de-
voted to the smaller instance sizes. A relatively large deviation in number of successes
from the expected value is more common when the number of trials is low. We examine
this by performing a similar experiment with a larger number of potential customers.
Table 10 presents the results from the same test environment, with the exception that
|NC | = 12. We can indeed observe a relatively better performance for larger values
of ρ, while the values for θ are very similar. This indicates that for larger instances,
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we are able to find non-conservative solutions, that are less expensive than the optimal
solution to the strict robust problem.

Table 10: Results obtained from instances with 12 potential customers with uncertainty in the customer set.

(P1LR) (P2)
ρ Tot. cost % Wors. Tot. slack θ Time % Infeas. % Uns. Time
0.0 1583.900 0.000 117.168 74.534 0.512 30.25 8.899 8.656
0.1 1653.316 4.383 87.866 74.534 4.525 30.00 8.869 8.753
0.2 1773.729 11.985 64.312 64.464 8.565 19.35 4.590 3.097
0.3 1859.997 17.431 42.082 64.017 16.238 16.70 3.724 2.069
0.4 1950.700 23.158 31.105 64.017 22.021 13.75 2.734 2.111
0.5 2059.616 30.034 18.840 61.713 15.189 9.25 1.736 2.215
0.6 2152.380 35.891 9.539 61.760 13.192 8.90 1.707 2.203
0.7 2224.560 40.448 5.541 60.045 8.078 6.75 1.210 2.193
0.8 2337.945 47.607 5.284 55.338 21.477 4.10 0.647 2.551
0.9 2350.867 48.423 3.421 56.751 2.281 2.65 0.483 2.493
1.0 2592.477 63.677 0.000 42.857 2.977 0.00 0.000 2.470

6 Conclusion and further research

We have introduced a two-stage light robust problem formulation for the LRP with
uncertainty in customer demand. To the best of our knowledge, this is the first time
any type of robust optimization on an LRP has been studied. Using extensive random
scenario sampling on a variety of problem settings, we have shown that the light ro-
bust problem can provide non-conservative solutions that achieve good performances
in terms of satisfied demand. We have presented a set of valid inequalities designed
specifically for light robust optimization applied to an LRP and have shown that it
improves the performance of, in particular, larger-scaled widely used benchmark in-
stances. However, a smaller computation time cannot be guaranteed. We also applied
light robust optimization to a similar LRP with uncertainty in the customer set, which
yielded comparable results in terms of performance as the case of uncertainty in cus-
tomer demand.

Further research directions may include applying a similar light robust approach to
the VRP. Since the LRP is a general version of the VRP, this might provide a similar per-
formance on problems of a larger scale. In order to improve the computation time even
further, it would be beneficial to introduce a heuristic to solve large instances of the
LRP with uncertainty in demand. Within the field of robust LRPs, we might consider
uncertainty in routing cost. This would provide a realistic model since travel times tend
to deviate from their nominal values. Alternatively, we could use different types of ro-
bust optimization for the case with uncertainty in demand and compare the obtained
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performance and computation times. For example, we can consider a three-index flow
formulation for which the constraints include summations over the uncertain demand
values and introduce a budget uncertainty set.
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A List of symbols

Notation (Domain) Description
Acronyms
VRP Vehicle routing problem
MDCVRP Multi-depot capacitated vehicle routing problem
FLP Facility location problem
LRP Location-routing problem
MIP Mixed-integer programming
Sets
NC i, j ∈ {1, . . . , |NC |} Set of customers.
ND k ∈ {1, . . . , |ND|} Set of potential depots.
N i, j ∈ {1, . . . , |N |} Set of all nodes, combines customers and potential depots.
Variables
xij {0, 1} Equals 1 if node i ∈ N is followed by node j ∈ N on a route, 0 otherwise.
yk {0, 1} Equals 1 if location k ∈ N is opened, 0 otherwise.
zik {0, 1} Equals 1 if customer i ∈ NC is assigned to depot k ∈ ND, 0 otherwise.
uij R+ The vehicle load when traveling from node i ∈ N to j ∈ N .
vk Z+ The number of vehicles assigned to depot k.
γij R+ Slack variable.
Parameters
cij R+ Travel cost from node i ∈ N to node j ∈ N .
fk R+ Cost for opening location k ∈ ND.
gk R+ Cost per vehicle assigned to location k ∈ ND.
pi R+ Cost per unit of unsatisfied demand for customer i ∈ NC .
di R+ Demand of customer i ∈ NC .
d̄i R+ Nominal demand of customer i ∈ NC .
d̂i R+ Maximum absolute deviation in demand of customer i ∈ NC .
Q R++ Vehicle capacity.
Dk R++ Capacity of depot k ∈ ND.
ρ [0, 1] Relative deviation between nominal and strict robust total cost.
C R+ Nominal problem objective value
Ĉ R+ Strict robust problem objective value
ai {0, 1} Equals 1 if customer i ∈ NC has positive demand, 0 otherwise.
Functions
F (y, v, d) Second stage cost function with uncertain demand.
F (y, v, a) Second stage cost function with an uncertain customer set.
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