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Abstract

The need of online retailers to maintain a competitive advantage in the

today’s booming online retail industry has led to an increased focus on customer

relationship management (CRM). The aim of CRM is to increase a company’s

profits by creating long-term relationships with their profitable customers.

However, before this can be accomplished, these profitable customers first need

to be identified. The profitability of a customer is often expressed in terms of

customer lifetime value (CLV), which is the net present value of all future

purchases by a customer. The goal of this research is to compare the predictive

power of several different classes of prediction models with respect to predicting

CLV. These classes include probability models that are specifically designed to

model customer purchase behaviour, duration models that model the general

time until a customer’s next purchase, and machine learning techniques. This

research shows that, for Winkelstraat.nl’s database of customer activity,

probability models are most suitable for predicting CLV.

Keywords: customer lifetime value, probability models, duration models,
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1 Introduction

In the Information Age, customers often prefer purchasing online to purchasing at

traditional brick-and-mortar shops. This change in customer behaviour has led to a

large growth in revenue for online retailers, along with a large increase in the number of

online retailers. This has caused the online shopping environment to become a highly

competitive business environment in which online retailers need to maintain a

competitive advantage. Customer Relationship Management (CRM) has become an

important business strategy for maintaining this advantage. CRM assumes that

companies can increase their profits by identifying the most profitable customers and

allocating disproportionate marketing resources to them to create strong, long-term

relationships. The profitability of a customer is often expressed in terms of customer

lifetime value (CLV). CLV is the net present value of the sum of all future revenues of a

customer, minus all costs associated with that customer. Note that CLV can be

negative, as the costs of attracting, selling, and servicing customers can exceed their

revenues over time. Therefore, online retailers should not aim to create long-term

relationships with all of their customers. Besides retaining the most profitable

customers, CLV can also be used to enhance the customer acquisition strategy and to

improve the output from customer support.

The computation of CLV requires detailed data on customers’ purchase behaviour. Online

retailers benefit from the fact that all activity on their website is tracked and stored.

Therefore, they have data on each customer’s order history, as well as on other activities,

such as a customer’s return history and click-through behaviour. Furthermore, data on

personal characteristics are also often available. These data can be used to create models

that capture the general purchase behaviour of customers, which can then be used to

predict future cash flows and associated costs of customers, or in other words, predict

CLV.

To my knowledge, no studies exist that provide an empirical comparison between the

predictive performance of machine learning techniques that are used to predict CLV

directly, and more traditional CLV models. Here, direct prediction of CLV by machine

learning techniques refers to machine learning techniques that do not model individual
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components of CLV separately, but rather directly predict future customer spend. This

topic is explained in further detail in the literature review (Section 2). Therefore, the

aim of this research is to compare the predictive power of several different classes of

prediction models with respect to predicting CLV. Three classes are considered in this

research, namely probability models, duration models, and machine learning models.

For each class I have chosen a model which I consider to be representative of the

corresponding class. The probability models are represented by the Pareto/NBD model,

which is specifically designed to model customers’ purchase behaviour. The duration

models are represented by the Cox proportional hazard model, which models the general

time until customers purchase again. Finally, the machine learning techniques are

represented by a technique called gradient tree boosting. Although machine learning

techniques exist that might be better known than gradient tree boosting, it should

represent the field of machine learning well due to its rapidly increasing popularity

among data scientists and its high predictive performance. In addition to these models,

several extensions to or different implementations of these models are studied. For the

probability model, the extended Pareto/NBD model by Abe (2009) is also considered.

Furthermore, the Cox proportional hazard model is used both with and without the

inclusion of covariates in the model, and the gradient tree boosting model is trained

using different loss functions. Note that this research focuses primarily on comparing

the predictive power of models and less on the degree of interpretability of the models’

results. As machine learning models lack interpretability, they are unable to compete in

this area with the other models considered, which that do not lack interpretability. Of

course, when one is interested in how the predictions come about, one should take the

degree of interpretability into account when deciding what model to use for predicting

CLV.

The aforementioned models are applied to the data of Winkelstraat.nl, who have provided

me with their complete database of six years’ customer activity. Winkelstraat.nl is a

Dutch online retailer of luxury designer clothing, bags, and shoes. By collaborating with

hundreds of exclusive boutiques from all over the Netherlands and Belgium, it is able

to offer over 500 different premium and luxury brands. Its brand awareness has grown

rapidly in recent years to approximately 180,000 unique customers as of September 2018.
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The report is structured as follows. First, a review of scientific literature on CLV

prediction is given. Next, the methodology is discussed, which contains a discussion on

or description of the data, the research outline, the data pre-processing, the data

stationarity, the estimation of each model applied, and the software that was used to

implement the models. Thereafter, the results of the models are presented and

discussed. The report concludes with the main findings of the research, along with

possible future work.

2 Literature Review

CLV prediction has been extensively researched in the literature, and numerous different

models are available. However, before discussing these models, it is important to make a

distinction between different kinds of customer-company relationships (Reinartz and

Kumar, 2000). These relationships can either be contractual or non-contractual.

Contractual relationships imply that there is a legal relationship between the customer

and the company (e.g. in case of a subscription or membership). In this setting, the

company knows exactly when a customer becomes inactive. Conversely, in a

non-contractual setting, there is no legal relationship between the customer and the

company, and the company does not observe the time when a customer becomes

inactive (e.g. in the case of department store purchases). Furthermore, one can

distinguish between discrete- and continuous-time purchases. Discrete-time purchases

can only occur at a certain time (e.g. charity fund drives), and continuous-time

purchases can occur at any point in time. The customer-company relationship of

Winkelstraat.nl is non-contractual and continuous in time, and therefore only CLV

models that fall within this context are discussed.

A basic model for computing CLV at the individual level is given by

CLVi “
T
ÿ

t“1

ppit ´ citq rit
p1` dqt

´ ACi, (1)

where i is the customer index, pit is the price paid by customer i at time t, cit is the

direct cost of servicing customer i at time t, d is a pre-determined discount rate, rit is the
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probability of customer i being active at time t, ACi is the acquisition cost of customer i,

and T is the forecast horizon for estimating CLV. The term ppit ´ citq is often referred to

as the customer margin at time t of customer i, and rit is often referred to the customer

retention rate at time t of customer i. The customer acquisition, retention, and margin

can be modelled separately and thereafter combined to compute CLV. Several different

approaches to model customer acquisition, retention, and margin have been used in the

literature, some of which are reviewed in this section.

The difference between CLV at the aggregate and individual level is discussed in the

next subsection. This is followed by a review of research on CLV involving the usage

of probability models, econometric models, and machine learning techniques. Finally,

different measures of performance for CLV models are discussed.

2.1 Aggregate CLV

CLV can be predicted at both the aggregate and individual level. At the aggregate level,

CLV is computed for segments of customers. For example, Sohrabi and Khanlari (2007)

used K-Mean clustering to segment customers according to their lifetime expressed in

terms of recency, frequency, and monetary value (RFM) measures. Recency is a measure

of how recently a customer made a purchase, frequency is a measure of how often the

customer purchases, and monetary value is a measure of how much the customer spends.

Similarly, Shih and Liu (2003), Liu and Shih (2005) and Khajvand et al. (2011) used

K-Mean clustering based on RFM measures to group customers together. However, they

argue that recency, frequency, and monetary value are not equally important measures

when it comes to predicting CLV. Therefore, they first applied an analytic hierarchy

process (AHP) to determine the relative importance of RFM variables in evaluating

CLV and subsequently segmented the customers based on their weighted RFM values.

Liu and Shih (2005) conclude that applying AHP proved important in predicting CLV.

Clustering customers into different groups helps decision-makers identify market

segments more clearly and thus develop more effective strategies. However, it has

limited use as a measure for allocating resources across customers because it does not

account for customer level variations in CLV and is therefore often used as a surrogate
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measure. Because this research is concerned with predicting CLV at the individual level,

the remaining part of the literature review only includes CLV models that predict at the

individual level.

2.2 Probability models

Well known models to predict CLV are probability models. These models take the past

purchase behaviour of the entire customer base into account in order to compute the

probability that a customer will still be active in the next period, and to predict the

number of purchases a customer will make in the next period. Note that the probability

that a customer will be active in the next period corresponds to the the retention rate rit

in Equation 1. Furthermore, the predicted number of future purchases can be seen as a

combination of customer retention and margin as its computation intrinsically contains

the condition of being active. However, the number of future purchases does not equal

CLV as one does not know how much a customer will spend per purchase. Therefore,

Schmittlein and Peterson (1994) created a submodel that predicts the average future

purchase value per customer. Under the assumption that the number of future purchases

and the average future purchase value are independent, these values can be multiplied to

obtain a prediction of a customer’s total future spend. The assumption of Schmittlein

and Peterson (1994) that purchase values can be described by a normal distribution was

dropped and replaced with a gamma-gamma model by Fader et al. (2005), who argued

that the distribution of purchase values is too skewed to be characterised by a normal

distribution.

The NBD model (Ehrenberg, 1959) is the first probability model for customer base

analysis. This model assumes that customers purchase randomly around an

individual-specific, time-invariant purchase rate, and that this purchase rate is different

per customer. These two assumptions are captured by a Poisson distribution with

gamma-distributed purchase rate, which is also known as the negative binomial

distribution (NBD). However, the assumption of time-invariant purchase rates usually

does not hold. Therefore, Schmittlein et al. (1987) introduced the Pareto/NBD model,

which extends the previous model by allowing for time-variant purchase rates. The
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Pareto/NBD model assumes that customers are first ‘alive’ (actively making purchases)

for an unobserved period of time before they ‘die’ (become permanently inactive). While

a customer is alive their purchase pattern is captured by the NBD model, and the time

a customer stays alive is captured by an exponential distribution with a

gamma-distributed dropout rate, which is also known as the Pareto distribution. A

property of the Pareto/NBD model is that the recency, frequency, and observation

length of customers are the only statistics required to make predictions of their future

number of purchases. It therefore does not require other information such as the exact

time purchases were made. Despite its limited use of purchase information, Fader and

Hardie (2009) claim that the model has good predictive performance.

The Pareto/NBD model is modified by, among others, Glady et al. (2009), who relaxed the

assumption of independence between the number of purchases and the average purchase

amount and show that a dependency between these values can be exploited to increase the

accuracy of CLV predictions. Other modifications of the Pareto/NBD model are proposed

by Fader and Hardie (2007) and Abe (2009), who developed, respectively, a frequentist

and a Bayesian method which incorporate time-invariant covariates in the model; this can

especially be useful for rich data sets that include various characteristics on customers

and their purchases.

2.3 Econometric models

This subsection contains a brief overview of studies that used econometric models to

predict CLV. These models are often used to model customer acquisition, retention, and

margin separately, and are ultimately combined (see Equation 1) to obtain CLV

predictions. Therefore, customer acquisition, retention, and margin are also reviewed

separately in this subsection.

2.3.1 Customer acquisition

Customer acquisition refers to the first purchase by new customers. Research in this field

often focuses on factors that influence the acquisition of customers. Additionally, they
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attempt to link customer acquisition with retention and CLV. However, since this research

focuses on predicting CLV for existing customers and not on analysing how certain factors

influence customer acquisition, this topic is not reviewed further.

2.3.2 Customer retention

Customer retention refers to the probability of a customer being active at some future

point in time t. There are two broad classes of retention models. The first class is called

the ‘lost for good’ class and assumes that customer defection is permanent. The second

class is called the ‘always a share’ class and assumes that customers can switch between

vendors. The ‘lost for good’ retention models usually are duration models. Allenby

et al. (1999), Lewis (2006), and Venkatesan and Kumar (2004) used an accelerated failure

time duration model to model relationship duration. Furthermore, Bolton (1998), Gönül

et al. (2000), Knott et al. (2002), and Levinthal and Fichman (1988) used a proportional

hazard model to model customer retention. The ‘always a share’ retention models usually

are migration or Markov models. Markov models estimate the transition probabilities

of a customer being in a certain state. Bitran and Mondschein (1996) used a Markov

model and define transition states based on RFM measures, and Pfeifer and Carraway

(2000) only used recency to define them, as well as an additional state for new or former

customers.

Customer retention can also be modelled by using machine learning techniques. For

example, Datta et al. (2000), Buckinx and Van den Poel (2005), Hung et al. (2006),

and Koh and Gerry (2002) used neural networks and decision trees, Bae et al. (2005)

and Song et al. (2004) used self-organising maps, and Cheung et al. (2003) used support

vector machines to model customer retention.

2.3.3 Customer margin

Customer margin refers to the margin generated by a customer at time t. A simple method

is used by Reinartz and Kumar (2003) and Gupta et al. (2004), who assumed constant

margins across time and use the average margin of a customer’s past purchases. Gupta
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and Lehmann (2005) show that in many cases this assumption is likely to hold. Venkatesan

and Kumar (2004) relaxed this assumption and used a simple regression model to capture

time-variant customer margin. A more complex method involving Markov chain models

was used by Etzion et al. (2005). Machine learning techniques can also be applied to

model customer margin. For example, neural networks were used by Drew et al. (2001),

and Bayesian network classifiers by Baesens et al. (2004).

2.4 Machine learning techniques

Machine learning techniques are universal approximators and generally have good

predictive performance. The main advantage of these techniques is that they are very

flexible as they make no assumptions on underlying relationships in the data. However,

the disadvantages of these techniques are that they usually require a lot of parameter

tuning, may suffer from overfitting, and can be computationally expensive. Machine

learning techniques can be used to model either customer acquisition, retention, or

margin, as discussed before. However, in this research a different approach to the use of

machine learning techniques to predict CLV is considered. Instead of combining

customer acquisition, retention, and margin using Equation 1, machine learning is used

to directly predict customers’ total future spend one year ahead. The choice of a

one-year prediction horizon is an implication of the distinctive nature of machine

learning techniques, which will be clarified in Section 3.2.1. To predict customer spend

one year ahead, the machine learning technique infers a function from labelled training

data, where the previous year’s aggregated customer order history, along with additional

covariates, serve as input into the model, and the following year’s customer spend serves

as desired output value.

Surprisingly, there are few studies that have considered machine learning techniques for

modelling CLV directly. Malthouse and Blattberg (2005) used, among other things, a

neural network to predict CLV. In a slightly different context, Chamberlain et al. (2017)

explain the CLV model for a global online fashion retailer, and show that the use of neural

nets on a rich source of data can significantly improve prediction performance. Moro

et al. (2015) present, in a contractual setting, a CLV data-driven approach using neural
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networks to predict possible bank deposit subscriptions. Machine learning techniques can

also be used to combine predictions from different models. These predictions can serve

as feature vectors in, for example, random forest or neural networks, which may result in

better predictions compared to individual models.

2.5 Performance measures

There are multiple ways to measure the performance of CLV models. Glady et al. (2009)

split the data set into a training set of three years and a test set of two years of data.

They predicted CLV using data from the training set and compared their predictions with

the actual CLV extracted from the test set by computing the root mean squared error and

the mean absolute error. In order to improve robustness to possible outliers in the data

set, they discarded the largest 1% of the prediction errors. Additionally, they ranked each

individual by sorting them based on predicted CLV and compared them with their true

ranking by computing the Spearman’s correlation coefficient, which measures the strength

of a monotonic relationship between two variables. Furthermore, Venkatesan and Kumar

(2004) split the data into a 2.5 year training set and a 1.5 year test set. They ranked the

customers from best to worst according to each of their models and then compared the

actual sales, costs, and profits from the predicted top 5%, 10%, and 15% of customers.

Similarly, Malthouse and Blattberg (2005) split their data into a training and test set

of roughly the same size. They ranked the customers from best to worst and looked at

whether customers in the predicted top 20% are part of the actual top 20%. They then

computed the accuracy, false positive rate, and false negative rate of the predictions.

3 Methodology

This section contains a detailed description of the set-up of this research and the

application of the models used in it. First of all, the Winkelstraat.nl data set is

described, whereafter a general research outline is given which explains how the data

and models are used to obtain CLV predictions. Next, a description is given of how the
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data are pre-processed to ensure that they are in the correct format for use in the

models, followed by an evaluation of the data stationarity. Afterwards, it is explained

how the Pareto/NBD model, the duration model, and the gradient tree boosting model

are applied, in that order. The section ends with a brief overview of the software that

was used to implement the models.

3.1 Data

The data are obtained from Winkelstraat.nl, an online Dutch retailer that specialises

in designer clothing, and consists of two data sets. The first data set, called products,

consists of all 422,724 products that were purchased between 3 October 2012 and 28

March 2018. The second data set, called customers, contains personal information on all

170,556 customers who made purchases between 3 October 2012 and 28 March 2018.

For each product in the products data set, the following attributes are available:

• Product ID: The unique ID of the product.

• Order ID: The unique ID of the order. An order consists of either a single product

or a group of products that were purchased together. Hence, multiple products can

have the same Order ID.

• Customer ID: The unique ID of the customer who purchased the product.

• Purchase Date: The purchase date of the product.

• Price: The price of the product.

• Returned: Whether the product was returned.

• Brand: The brand of the product. Winkelstraat.nl offers approximately 500

different brands.

The customers data set contains information on personal characteristics of all customers

and has the following attributes:

• Customer ID: The customer’s unique ID.

• Account: Whether or not the customer created an account on Winkelstraat.nl.
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• Email: The customer’s email address.

• Date of Birth: The customer’s date of birth.

• Sex: The customer’s sex.

• Subscriber Start Date: The start date of a possible subscription to the monthly

newsletter.

• Subscriber End Date: The end date of a possible subscription to the monthly

newsletter.

Since Winkelstraat.nl was founded in October 2012 and has been growing ever since, the

number of orders is not evenly distributed across the years. Figure 1 shows that the

first year (3/10/2012 to 2/10/2013) only accounts for a small proportion of the total

number of orders, and that each year the total number of orders increased. The first

and second year contain 3.1% and 13.8% of the total number of orders, respectively. In

addition, in order to increase our understanding of the purchase behaviour of customers,

Figure 2 shows the number of customers per total number of orders by customers. The

majority of customers, approximately 120,000 (70%), only made a single purchase. For

these customers, especially if they purchased recently, it may be difficult to accurately

predict their CLV because little is known about their purchase behaviour.
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Figure 1: Total number of orders per year
for the first five years.
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Figure 2: Number of customers per total
number of orders by customers.
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3.2 Research outline

This subsection first discusses the time horizon of prediction, followed by a description

of the performance measures that are used to evaluate the predictive performance of the

models.

3.2.1 Time horizon of prediction

The Winkelstraat.nl data set consists of roughly 5.5 years of transaction data. To account

for seasonal trends, only data collected from whole years should be used in the models.

Therefore, the data from approximately the first six months are discarded from the data

set so that it consists of exactly five years of data. Note that a large part of the data is

preserved since the first half year of data only contains 0.6% of all orders (see also Figure

1). From now on, I will refer to the period 29/03/2013 to 28/03/2014 as year 1, the period

29/03/2014 to 28/03/2015 as year 2, and so on, until year 5.

Although, theoretically, CLV predictions concern an infinite time horizon, it is common

practice to use a finite time horizon because customers usually do not stay customers

for their entire lifetime, and furthermore, it simplifies statistical models. To enable the

performance of the CLV models to be measured, the data is split into a training and test

set. This way, each model can be fitted to the data using the training set, whereafter

predictions can be made for a finite future period, which can be compared with the actual

values in the test set.

The different natures of the three classes of models have an important implication for the

choice of the length of the training and test set. The probability and duration models are

flexible methods in the way that the training set length is independent of the prediction

horizon. In other words, given a training set of any length, these models can make

predictions for a future period of any length. However, in the case of time-series prediction

using machine learning techniques, the training set length is dependent on the prediction

horizon because these techniques require labelled training data, the labels being the values

of interest in the next period. Therefore, the training set is divided into two periods for
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the machine learning technique: the data of the first period are used to model the labels

(next year’s spend) of the second period. Next, the data of the second period are inserted

into the trained model to obtain predictions for a future period. Note that the length

of the test set should equal the length of this second period, as one trains a model to

predict a fixed period ahead. Because of these restrictions, I decided to use the third

and fourth year as the training set and the fifth year as the test set, thus predicting the

‘next year’s CLV’ using the previous two years of purchase history. Finally, note that

customer acquisition costs are omitted from the CLV prediction. This is because the goal

of this research is to compare the performance of different models, and since customer

acquisition costs are equal for every method, they do not affect the relative performance

of the models.

3.2.2 Performance measures

The models are evaluated by multiple performance measures which can be grouped in

three different domains. The first domain is concerned with the prediction of individual

CLV. The prediction of individual CLV is relevant to companies who want to target

customers with a specific CLV. For example, a company can set up a marketing campaign

and target only customers with a CLV above a certain level, as the marketing campaign

is only profitable for these customers. The second domain is concerned with predicting

customer ordering based on CLV. This may be interesting for companies that want to

target their most profitable customers without being interested in their exact level of CLV.

Lastly, the third domain is concerned with valuing the total customer base, which can be

used for company valuation purposes. Before the performance measures are computed,

the true CLV and CLV predictions are discounted to the present by using an annual

discount rate of 10%.

The performance of the models with respect to the first domain is measured by the root

mean squared error (RMSE), which is given by

RMSE “

g

f

f

e

1

N

N
ÿ

i“1

pzCLV i,5 ´ CLVi,5q2, (2)
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where N is the number of customers, zCLV i,5 is the predicted CLV of customer i for year

5, and CLVi,5 is the actual CLV of customer i for year 5. Because CLV tends to be

right-skewed (the distribution is truncated at zero and usually has a fat right tail as a

small number of customers often spend relatively much), the RMSE can easily be inflated

by some extreme spenders. Therefore, the mean absolute error (MAE) is also considered,

which is a more robust performance measure, and is given by

MAE “
1

N

N
ÿ

i“1

|zCLV i,5 ´ CLVi,5|. (3)

An even more robust performance measure would be the median absolute error

(MedAE). However, since the majority (80.3%) of the customers who made purchases in

the training set do not do so in the test set, predicting a CLV of zero for all customers

results in a MedAE of 0. This means that this measure would greatly favour models

that underestimate the total customer base, and therefore it is, in this case,

inappropriate for comparing models.

The performance of the models with respect to the second domain is measured by

evaluating the ordering of the top customers with the highest CLV. The customers are

ranked from high to low CLV by both their predicted CLV and true CLV. One then

computes the percentage of top 10% of customers according to the predicted CLV who

are in the actual top 10% of customers. For future reference, this percentage will be

referred to as the ranking percentage (RP). Note that 80.3% of the customers who made

purchases in the training set do not do so in the test set and thus have an actual CLV of

0. Therefore, the choice of top percentage customers must be lower than or equal to

19.7%, as one cannot rank customers with equal CLV.

The performance of the models with respect to the third domain is measured by the

percentage deviation of the predicted total customer base from the true value of the total

customer base. In formula, the customer base percentage deviation (CBPD) becomes

CBPD “
p
řN
i“1

zCLV i,5 ´
řN
i“1CLVi,5q

řN
i“1CLVi,5

˚ 100%. (4)
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3.3 Data pre-processing

Approximately 54% of the orders were placed by customers who created an account on

Winkelstraat.nl. These customers are identified and are assigned a customer ID. The

remaining 46% of the orders were placed by customers who checked out as guests and

have no customer ID. Therefore, to identify each customer, their email addresses are used

to assign them unique customer IDs. An incidental advantage of this method is that it

correctly identifies customers who created an account but still made at least one purchase

as a guest. Furthermore, the original customer IDs are taken into account and preserved

to account for customers who use multiple email addresses. These email addresses then

all correspond to the same customer ID.

Since our goal is to predict CLV using two years of transaction data, all customers who

made no purchases in the training set are dropped from the data set. Note that it would

be impossible to predict the CLV of these dropped customers as no data are available on

them in the training set. Moreover, customers who made purchases in the training set

but whose first purchase occurred before the training set period are also dropped from the

data set, as the probability model requires a customer’s complete order history in order

to model their future behaviour. As a result, the number of unique customers is reduced

to 76,844 and the number of purchased products to 235,735.

The three different models require the data to be in different forms, and therefore the

data are pre-processed differently for each model. However, the following pre-processing

is performed for all models:

– A new variable called Revenue is added to the products data set, which equals the

price of the product if the product is not returned, and 0 if returned.

– All products purchased on the same day by a customer are considered as a single

order, regardless of their Order ID. These products are therefore assigned the same

unique Order ID.

– A new data set called orders is created, which consists of all unique orders in the

products data set. The variable Revenue now equals the sum of the revenues from
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all individual products in the order. The variable Returned is transformed to equal

the percentage of returned products in the order. The variables Product ID, Price,

Category and Brand are omitted from this data set.

– The variable Date of Birth in the customers data set is transformed to the age of a

customer as of the end date of the training set period, and renamed Age.

– A new variable called Subscriber is added to the customers data set, indicating

whether the customer was subscribed to the newsletter at the end of the training

set period.

– Since the variables Sex and Age contain missing values, two new variables called

Sex Missing and Age Missing are created, which indicate whether the sex or age of

a customer is missing at the end of the training period, respectively. Furthermore,

the missing values in Sex are imputed by the mode of available values in Sex, and

the missing values in Age are imputed by the mean of available values in Age.

The following data manipulations are performed in order to be able to use the Pareto/NBD

model:

– Since the Pareto/NBD model only requires the recency, frequency, and monetary

value of all customers, all variables from the orders data set are discarded besides

Purchase Date, Revenue, and Customer ID.

– The recency, frequency, and monetary value are extracted for each customer based

on their orders in the training set. Recency is measured as the day of a customer’s

last purchase. In this case, a recency of 1 corresponds to customers who made a

purchase on the first day of the observation period, and a recency of 730 corresponds

to customers who made a purchase on the last day of the observation period. The

frequency is the number of times a customer made a purchase in the observation

period, and the monetary value is the mean purchase value of a customer’s orders

disregarding returned items.

In order to be able to use the duration model, the following data manipulations are

performed:
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– All variables from the orders data set are discarded besides Purchase Date and

Customer ID.

– A new variable called Censor is added to orders, which equals 1 if the corresponding

order is the last observed order by a customer in the training set, and 0 otherwise.

– A new variable called Time is added to orders, which equals the time in days between

a customer’s current purchase and their next purchase if Censor equals 0, and equals

the time in days between the current purchase and the end date of the training set

period otherwise.

In order to be able to use the gradient tree boosting model, the data are pre-processed in

the following way:

– The recency, frequency, and monetary value are extracted for both year 3 and 4

from the orders data set for all customers, and are called Recency3, Frequency3,

and Monetary3 for the third year, and Recency4, Frequency4, and Monetary4 for

the fourth year. In this case, a recency of 1 corresponds to customers who made a

purchase on the first day of the observation period, and a recency of 365 corresponds

to customers who made a purchase on the last day of the observation period.

– The variable Subscriber in the customers data set is split into the variables

Subscriber3 and Subscriber4, which denote whether or not a customer is

subscribed to the newsletter at the end of the third and fourth year, respectively.

– The variable Returned in the orders data set is split into the variables Returned3

and Returned4, which equal the percentage of returned items in the third and fourth

year for each customer, respectively.

– The variable Age in the customers data set is split into the variables Age3 and

Age4, which equal the age of the customer at the end of year 3 and 4, respectively.

– A new variable called Favourite Brand is added to the customers data set, which is

a categorical variable that denotes the brand that has been purchased most often

by a customer in the training set. Since there are over 500 different brands in the

data set, the five most popular brands are preserved, and the remaining brands are
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gathered under the category ‘Other’. This way, 24.9% of the customers are assigned

a favourite brand. This variable is then split into six dummy variables. Furthermore,

each of the dummy variables is split for the third and fourth year, such that they

represent each customer’s favourite brand in years 3 and 4 respectively. The top

five brands are still based on all orders in both years 3 and 4.

Finally, since the extended Pareto/NBD model by Abe (2009), the Cox proportional

hazard model, and the gradient tree boosting model make use of covariates, the orders

and customers data set were combined by taking the natural join, where the variable

Customer ID served as the key attribute.

3.4 Data stationarity
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Figure 3: Violin plots of total yearly spends for each variable, where the ‘violins’ are split
between years and between the unique values of the corresponding variable.
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In this subsection the stationarity of the data is analysed with respect to years 3, 4, and

5. It is important to check whether the data behave constantly over time, as irregularities

over time may indicate that the market has changed, or that the company’s operating

method has changed. This possible change may make past data inadequate for prediction

purposes. As shown earlier in Figure 1, Winkelstraat.nl has been growing rapidly in recent

years, meaning that there might be inconsistencies in the data across the years.

The stationarity of the data is analysed by looking at so-called violin plots. Violin plots

are similar to box plots, except that they show the probability density of the data. Here, a

kernel density estimator is used to estimate the probability density, which uses a Gaussian

kernel and a bandwidth value according to the rule of thumb by Silverman (1986). Since

the data contain outliers, a robust version of Silverman’s rule of thumb is used, which is

given by

ĥ “ 0.9 min

ˆ

σ̂,
R

1.34

˙

n´
1
5 , (5)

where ĥ is the bandwidth, σ̂ is the sample standard deviation, R is the sample interquartile

range, and n is the sample size.

Figure 3 shows violin plots of total yearly spends for each variable for years 3, 4, and 5,

whereby we distinguish between each unique value of a variable. For example, the leftmost

violin in the upper left plot shows the density of total yearly spends in year 3 for females.

One can see that relatively many of these customers spent nothing, indicating that these

customers returned all their purchased products. Furthermore, one can see that there are

relatively few customers with a total spend of roughly e20, most customers spent between

e30 and e300, and a few customers spent more than e400. Note that the violins are cut

off at a total yearly spend of e750 as otherwise the plot will become too small due to

the existence of several extremely high-spending customers. Also, note that the variable

Age, since it is a numerical variable, is split into two groups, indicating whether the age

is below or above average.

To detect possible non-stationary data patterns, the violins across the three years are

compared to each other for all twelve groups (there are two different values for each of the

six variables). Since it is tedious to discuss the stationarity of the data with respect to each

group individually, only several general patterns will be discussed. One can see that, for
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all twelve groups, the probability density of the total yearly spends is quite similar across

time. However, the number of customers with no spends is larger in years 3 and 4 than

in year 5. This change is presumably caused by the introduction of a customer blacklist

at the beginning of the fifth year that deprives customers who return relatively many

products of certain payment options to discourage them from purchasing. Furthermore,

the ‘neck’ of the violin generally seems to be larger in the fifth year than in the other two

years, albeit with only a slight difference. Nevertheless, these differences are small, and

there exist no major aberrations in probability densities across the years. Therefore, I

believe that the data are adequate for predicting customer behaviour in the fifth year if

one uses the previous two years of transaction data.

3.5 Pareto/NBD model estimation

To obtain predictions of CLV for each customer, both the Pareto/NBD model and the

gamma-gamma submodel are applied to the transaction data. A detailed description of

these two models is given in Appendix A. The Pareto/NBD model predicts the future

number of purchases for each customer, and the gamma-gamma submodel predicts the

future average spend per purchase for each customer. Under the assumption that the

expected number of purchases and the expected average spend per purchase are

independent, they can be multiplied to obtain CLV predictions.

In addition to the standard Pareto/NBD model, the extended Pareto/NBD model by Abe

(2009) is applied to the transaction data. This extension replaces the analytical part of

the Pareto/NBD model with a hierarchical Bayes framework and uses MCMC simulation

to obtain parameter estimates. Furthermore, it relaxes the independence assumption

of the purchase rate and death rate of the standard Pareto/NBD model and allows for

the incorporation of time-invariant covariates. Similarly to the standard Pareto/NBD

model, it can be combined with the gamma-gamma submodel to obtain predictions of

CLV. A detailed description of the extended Pareto/NBD model by Abe (2009) is given

in Appendix A.

The extended Pareto/NBD by Abe (2009) is applied both with and without the
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inclusion of time-invariant covariates. In both cases, a single MCMC chain is

constructed to generate draws from the posterior distribution of the model parameters.

Each chain uses 50,000 steps, whereby the first 200,000 steps are used as burn-in steps

and are discarded. Furthermore, in order to reduce the autocorrelation between the

draws, a thinning value of 100 is used, meaning that only the draws of every 100th step

are returned. Whether the Markov chains are converged is assessed by looking at trace

plots of the parameter draws.

The extended Pareto/NBD model that incorporates covariates into the model uses the

following covariates: Sex, Sex Missing, Age, Age Missing, Subscriber, and Account. Note

that the age of customers is technically not time-invariant. However, as the training set

consists of only two years of transaction data, the customers’ age will only change

slightly over these two years. Therefore, the influence of age difference between

customers on purchase behaviour is practically negligible, whereas the difference in age

between customers is larger and might contain predictive power. Furthermore, the

variable Subscriber is considered to be time-invariant, as most customers stay subscribed

or unsubscribed during the complete training period. Finally, the variable Account is

also considered as time-invariant, as the large majority of customers either set up an

account during their first purchase or do not set up one at all. Moreover, the majority of

customers only make a single purchase, meaning that Account is naturally

time-invariant for these customers.

To summarise what data are used by the probability models, the recency, frequency, and

monetary value from year 3 and 4 of all customers are used to train the models and to

obtain CLV predictions. In addition, the extended Pareto/NBD model uses the following

covariates: Sex, Sex Missing, Age, Age Missing, Subscriber, and Account.

3.6 Duration model estimation

Duration models represent a class of analytical methods that are appropriate for modelling

data where the focus lies on the occurrence of a certain event. A characterising feature of

these models is that they can deal with censored observations, which are observations of
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an event of interest that has not yet occurred at the time the data are analysed. Given

the waiting time until the occurrence of an event for each observation, and whether each

observation is censored or not, duration models measure the general likelihood of an

event occurring. A detailed description of duration models is given in Appendix B. In

this research the Cox proportional hazard model is applied, both with and without the

inclusion of covariates in the model. Note that in the latter case, the semi-parametric

estimation of the Cox proportional hazard model reduces to ordinary non-parametric

estimation (Rodrıguez, 2005).

In this research we are interested in the time when a customer will make their next

purchase. Therefore, the input into the duration model is the time between a customer’s

previous purchase and their next purchase, for each purchase by a customer and for all

customers. In addition, it is indicated whether each observation is censored or not. Note

that each purchase by a customer is treated as an independent data instance in the model.

Therefore, the index i in Appendix B refers to a single purchase by a customer and not

to customers themselves. Furthermore, note that the time between a customer’s very

last observed purchase and their possible next purchase is censored, as we have not yet

observed the customer’s next purchase. For these observations, the waiting time until

the occurrence of the next purchase is set to the time between the last purchase and the

end of the training set period. All other observations are not censored. In addition, the

following time-invariant covariates are included in the Cox proportional hazard model:

Sex, Sex Missing, Age, Age Missing, Subscriber, and Account.

Once the duration model is trained, the probability that a customer will purchase at least

once in the next year (year 5), or, in other words, the probability that a customer will

still be ‘alive’ in the next year, is computed for each customer. CLV is then predicted by

multiplying this probability by the customer’s total spend in the previous period (year 4),

assuming that, given that a customer is alive in the next period, his total yearly spend

stays the same (see also Donkers et al. (2007)).

To summarise what data are used by the duration model, the time between each purchase

by a customer, for all purchases by all customers in years 3 and 4 are used to train the

model. In addition, the Cox proportional hazard model uses the following covariates: Sex,
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Sex Missing, Age, Age Missing, Subscriber, and Account.

3.7 Gradient tree boosting estimation

Gradient tree boosting is a machine learning technique that uses an ensemble of ‘weak’

decision trees to obtain a ‘strong’ predictor, and can be used in both classification and

regression settings. A detailed description of gradient tree boosting can be found in

Appendix C. A characteristic of machine learning techniques is that they are able to

learn without being explicitly programmed to do so, and they can therefore be applied

to almost any prediction setting. Because of this, and the fact that machine learning

techniques often have a high predictive performance, they have become popular among

data scientists. However, the disadvantage of these models is that they lack

interpretability, as the complex architecture of these models masks the effect of

covariates on the variable of interest.

In the remainder of this subsection, a description of the model’s set-up is given, followed

by a description of the hyperparameter tuning process.

3.7.1 Model set-up

To obtain forecasts of CLV, the model is trained to predict customer spend one year

ahead using the previous year’s transaction data. First of all, the variables Recency3,

Frequency3, Monetary3, Returned3, Subscriber3, Age3, Sex, Account, and the Favourite

Brand dummy variables measured over year 3 are used to predict the total customer spend

in the next year. After the model is trained, CLV predictions are obtained by inputting

the same variables as those on which the model was trained, the difference being that the

time variant variables (all but Sex and Account) are measured over year 4. Note that

since there is no data available in year 3 on customers who made their first purchase in

year 4, the model is only trained on customers who have made at least one purchase in

year 3.

For all customers who made no purchases in year 4 (i.e. only purchased in year 3), their
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recency4, frequency4, monetary4, and returned4 are not available. Therefore, since the

goal of this research is to make CLV predictions for all customers, I assume that customers

who made no purchases in year 4 will have a low CLV, so that the values of these four

variables can be set to values that lead to a low CLV. Therefore, their recency4, frequency4,

and monetary4 are set equal to the minimum value encountered in recency3, frequency3,

and monetary3, which is 1 for recency3 and frequency3 and 0 for monetary3. Note that

a low recency value corresponds to customers with no recent purchases. Furthermore,

returned4 is set equal to the maximum value encountered in returned3, which is 1. In

addition, Subscriber4 and all Favourite Brand dummy variables are set to 0.

To summarise what data are used by the model, the gradient boosting model is trained

on the following variables for all customers who made at least a single purchase in year

3: Recency3, Frequency3, Monetary3, Returned3, Subscriber3, Age3, Sex, Account, and

all Favourite Brand dummy variables. To obtain CLV predictions, the same variables as

those on which the model was trained are used as input in the model, the difference being

that the time-variant variables are measured over year 4.

Since the model’s performance is measured, with respect to the first domain, by both

the RMSE and MAE, the gradient tree boosting model is trained twice, once with the

RMSE as a loss function and once with the MAE as a loss function. However, since

the gradient boosting algorithm requires a derivation of the Hessian of the loss function,

the MAE loss function cannot be used as it does not have a continuous second order

derivative. Therefore, the Fair loss function is used instead of the MAE loss function,

which approximates the MAE loss function and has a continuous second order derivative.

The Fair loss function is given by

c2

ˆ

|x|

c
´ ln

ˆ

|x|

c
` 1

˙˙

, (6)

its first order derivative is given by
cx

|x| ` c
, (7)

and its second order derivative is given by

c2

p|x| ` cq2
. (8)
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Here, x is the error and equals the prediction minus the actual value, and c is a control

parameter which controls the smoothness of the function. Figure 4 shows a plot of the

MAE vs the Fair loss function on both the interval r´2, 2s and r´50, 50s. It shows that the

Fair loss function is smooth around zero and that it approximates the MAE loss function

well for larger values. In this research, the control parameter c is set to 1.
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Figure 4: MAE and Fair loss function on the interval r´2, 2s (left) and r´50, 50s (right).

3.7.2 Hyperparameter tuning

Table 1: List of gradient tree boosting hyperparameters, along with a short description
of each hyperparameter and their initialisation value.

Hyperparameter Description Initialisation
max depth Maximum depth1 of a tree. -

min child weight The minimum number of instances required -
to be in nodes.

γ Minimum loss reduction required to make 0
a further partition on a leaf node of the tree.

subsample Subsample ratio of the training instances. 0.7
colsample Subsample ratio of columns when constructing 0.7

trees.
α L1 regularization term on weights2. 0
λ L2 regularization term on weights2. 0
β The learning rate. 0.1

rounds The number of trees / boosting rounds. -

Gradient tree boosting requires one to set values for the model’s hyperparameters before

it can be applied. These hyperparameters affect the performance of the model and should

therefore be chosen carefully. To find their optimal values, 5-fold cross-validation is applied

1 The depth of a decision tree is the length of the longest path from a root to a leaf.
2 The software package XGBoost Chen et al. (2018) uses its own regularised model formulation. Each

regression tree contains a continuous score (weight) on each of its leaves. The loss function can then
be regularised to control the size of these scores. See Section 2.1 in Chen et al. (2018) for details.
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to the training set. This way, the performance of the model can be investigated using

different sets of hyperparameter values, whereby the best set of hyperparameter values

corresponds to the values that lead to the lowest cross-validated training loss. Note that

the performance of the model that minimises the Fair loss function will be evaluated by

the MAE. A list of hyperparameters that need to be tuned, along with a short description

of each hyperparameter, is given in Table 1. The first five hyperparameters in the table

are tree-specific parameters, α and λ are regularisation parameters, and β and rounds are

learning task parameters.

Since it is computationally infeasible to try out all parameter value combinations, some

parameters are tuned first while the other parameters are kept fixed. The parameters are

tuned in order from parameters that have the greatest impact on the model’s performance

to parameters that have the least impact on the model’s performance. Therefore, the tree-

specific parameters are tuned first, whereafter the regularisation parameters, and finally,

the learning rate are tuned. For each trained model, the optimal number of boosting

rounds should be re-tuned, as its optimal value is highly dependent on other parameters.

Since gradient tree boosting builds its trees sequentially, instead of fixing the number

of rounds at the beginning, the model’s performance can be investigated at each round.

Then, if its performance has not improved for ten rounds, the training of the model

is stopped and the best number of rounds is used. A detailed road map of how the

parameters are tuned is given below.

Step 1: Initialisation: The hyperparameters are initialised as shown in Table 1. The

hyperparameters max depth and min child weight are not initialised as they are

the first parameters to be tuned (see next step). The parameter rounds is not

initialised as this parameter is re-tuned for each model as described above. The

parameter γ is set to 0 and will be tuned in Step 3. The parameters subsample

and colsample are set to 0.7, as typical values for these parameters range between

0.5 and 0.9. The parameters α and λ are set to 0 as we do not want to control

for overfitting yet. Finally, the parameter β is set to a relatively high value, as

typical values range between 0.001 and 0.3. A value of 0.1 is a trade-off between

computation speed and performance, as a lower learning rate makes the model

more robust to overfitting, but increases the computation time significantly.
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Step 2: Tune max depth and min child weight : The parameters max depth and

min child weight are tuned first as they have the greatest impact on the model’s

performance. It is important to tune them together in order to find a good trade-

off between model bias and variance. A larger value of max depth allows the model

to capture more complex relationships, but since splits become less relevant and

may be caused by noise, the model may overfit. A smaller min child weight allows

the model to create child nodes that correspond to fewer instances, thus increasing

the model’s complexity and making the model prone to overfitting. To find the

optimal values of max depth and min child weight, a grid search is performed, in

which max depth is varied from 3 to 10 with steps of 1 and min child weight is

varied between 1, 5, 10, 15, ..., 45, with the result that the grid search contains

80 different parameter combinations. After the grid search is completed, both

parameters are fixed at their optimal value.

Step 3: Tune γ: Smaller values of γ will make the model more complex, and as a

consequence, more likely to overfit. Typical values of γ range between 0 and 0.5,

and therefore its value is varied from 0 to 0.5 with steps of 0.05. Afterwards, γ

is fixed to its optimal value.

Step 4: Tune subsample and colsample : The parameters subsample and colsample

control the sampling of the data set for each tree by random selection, where

subsample controls the rows of the data set on which a tree is built, and colsample

controls the columns that are considered in each split. By selecting only a subset

of the complete data set, each tree is built on slightly different data, making

the model less prone to overfitting to a single data instance. Typical values of

subsample and colsample range between 0.5 and 0.9, and therefore a grid search

is performed in which the value of subsample is varied from 0.5 to 1 with steps of

0.05 and the value of colsample is varied from 0.5 to 1 with steps of 0.10. Note

that we use larger steps for colsample as the model only uses sixteen variables,

and therefore too small steps may not increase the number of variables that are

considered in splits. After the grid search is completed, both parameters are fixed

at their optimal value.

Step 5: Tune α and λ: The parameters α and λ add an absolute and a quadratic
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penalty term for leaf weights to the loss function respectively in order to avoid

overfitting. Although the parameter γ already provides a substantial way of

controlling overfitting, it cannot harm to try to reduce overfitting further. Note

that a value of 0 for both α and λ means that no regularisation is applied to the

model. Furthermore, note that a positive value for both α and λ corresponds to

elastic net regularisation. The optimal values of α and λ are found by performing

a grid search in which both parameter values vary between 0, 0.001, 0.01, 0.1, 1,

and 10. After the grid search is completed, both parameters are fixed at their

optimal value.

Step 6: Tune β: As mentioned above, a lower learning rate makes the model more

robust to overfitting at the cost of increased computation time. A lower learning

rate should therefore increase the model’s performance, and for this reason, the

learning rate is lowered and varied between 0.001, 0.005, 0.01, 0.05, and 0.1.

Finally, β is fixed at its optimal value.

After the optimal parameter values are found, the model is trained once again with the

whole training set (i.e. without using cross-validation). The value of the parameter rounds

is set equal to the number of boosting rounds that led to the lowest cross-validated loss

in Step 6. Once the model is trained, the data of year 4 are inserted into the model in

order to obtain CLV predictions.

Since the gradient tree boosting algorithm is a randomised algorithm, a more accurate

approach to tuning the model’s hyperparameters would be to run each model multiple

times and report the average RMSE or MAE. This reduces the likelihood of a

hyperparameter value being found as optimal due to more favourable random results.

However, this approach is not followed since this is computationally expensive.

3.8 Software

The programming language R (R Core Team, 2018) was used for all computations. The

packages BTYD (Dziurzynski et al., 2014) and BTYDplus (Platzer, 2016) were used to

implement the Pareto/NBD model and its extension by Abe (2009), respectively.
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Furthermore, the package survival (Therneau, 2015) was used to implement the

duration models. Finally, the package XGBoost (Chen et al., 2018) was used to

implement the gradient tree boosting model. XGBoost, as opposed to other

implementations of gradient tree boosting, uses a more regularised model formalisation

to control overfitting, which enhances its performance.

4 Results

This section presents and discusses the results of the three models applied to the

Winkelstraat.nl data set. First of all, the in- and out-of sample fit to the data of both

the standard Pareto/NBD model and its extension are analysed. In addition, the

independence assumption of frequency and average purchase value is assessed. Next, the

duration model’s in-sample fit to the training data is examined, and thereafter the

hyperparameter tuning process of the gradient tree boosting model is presented. Finally,

the performance of all models with respect to the test set is presented and discussed.

4.1 Pareto/NBD model

The in-sample fit of the Pareto/NBD model and its extension is analysed by comparing

their predicted number of customers who made a certain number of repeat purchases

in the training set with the actual number, which is shown in Figures 5, 6 and 7 for

the standard Pareto/NBD model, its extension by Abe (2009), and its extension by Abe
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Figure 5: Frequency of repeat purchases
according to the standard Pareto/NBD
model.
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Figure 6: Frequency of repeat purchases
according to the extended Pareto/NBD
model by Abe (2009) without covariates.
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Figure 7: Frequency of repeat purchases
according to the extended Pareto/NBD
model by Abe (2009) with covariates.
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Figure 8: Actual and expected cumulative
number of purchases per week for the
standard Pareto/NBD model.
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Figure 9: Actual and expected cumulative
number of purchases per week for the
extended Pareto/NBD model without
covariates.
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Figure 10: Actual and expected
cumulative number of purchases per
week for the extended Pareto/NBD
model with covariates.

(2009) with covariates, respectively. These plots show that each model fits the data

fairly well. The standard Pareto/NBD model seems to slightly overestimate the number

of customers who made relatively many repeat purchases, while the extension by Abe

(2009), both with and without covariates, seems to slightly underestimate the number of

customers who made relatively many repeat purchases. In addition, both the in-sample

fit and the out-of-sample fit are analysed by comparing the expected number of purchases

per week of each model with the actual number of purchases per week, for both the

training and test set. Figures 8, 9 and 10 show these expected number of purchases for

the standard Pareto/NBD model, its extension by Abe (2009), and its extension by Abe

(2009) with covariates, respectively. Note that the dashed vertical line indicates the end

of the training period. In line with Figure 5, the standard Pareto/NBD model models

the total number of purchases reasonably well, although it overestimates the number of

purchases after roughly halfway through the testing period. The extended Pareto/NBD

model fits the data quite well, and the inclusion of covariates leads to an even better fit. It

overestimates the total number of purchases at the end of the test set, albeit barely. Since
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there is a very small difference in model fit between the standard Pareto/NBD model and

its extension without covariates, it seems that the extended model’s assumptions about

customer purchase behaviour are as realistic as those of the standard model.

One might wonder why the total number of purchases at the end of the test period, which

is approximately 100,000, does not correspond to the total number of purchases in year

5 as displayed in Figure 1, which is approximately 120,000. This is because these results

are based on a different time span, as there is a shift of roughly 0.5 years, and furthermore

because customers who made no purchases in the training set were discarded from the

data set. See Section 3.2.1 for details.

To obtain CLV predictions, the Pareto/NBD model and its extension are combined with

the gamma-gamma submodel under the assumption that the distribution of average

purchase values across customers is independent of the purchase process. To assess the

validity of this assumption, Figure 11 shows a set of box plots that summarise the

distribution of average purchase value, broken down by the number of repeat purchases

in the training set. For example, the plot shows that the first repeat purchase by

customers has a median purchase value of approximately e100. Although there exists a

slight correlation (0.04) between the purchase value and the number of purchases, it is

clear that the variation within each number-of-purchases group dominates the

between-group variation. Therefore, I believe that this small correlation does not

represent a substantial violation of the independence assumption.

Next, we validate the gamma-gamma submodel, which models the average purchase value

0
2

0
0

4
0

0
6

0
0

Number of transactions

A
ve

ra
g

e
 t

ra
n

s
a

c
ti
o

n
 v

a
lu

e

1 2 3 4 5 6 7 8 9 10+

Figure 11: Set of box plots of average
purchase value by frequency in the
training set.
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of customers. The theoretical mean and median purchase value of the fitted gamma-

gamma distribution are e197 and e161 respectively, while the mean and median observed

average repeat purchase value are e187 and e157 respectively. In addition, to visualise

the fit of the model, the implied distribution of average purchase value across customers

is compared with the non-parametric density of the observed average purchase values,

which is shown in Figure 12. The graph is cut off at an average purchase value of e500

to increase visibility, as there are several customers with extremely high average purchase

values up to e3500. The graph shows that the model expects there to be slightly more

customers with an average purchase value between 0 and 200, and that it fits the number

of customers with a average purchase value over e200 excellently. All in all, the gamma-

gamma model fits the data reasonably well.

To obtain CLV predictions, the expected number of purchases by each customer in the

test set, which is obtained from the Pareto/NBD model and its extension, is multiplied by

the customer’s expected average purchase value in the test set, which is obtained from the

gamma-gamma submodel. The performance of the Pareto/NBD model and its extension

with respect to predicting CLV are, along with the performance of the other two models,

given in Section 4.4.

4.2 Duration model
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Figure 13: Kaplan-Meier estimate of the
survival probability for purchasing.

0 200 400 600

0
.0

0
.2

0
.4

0
.6

0
.8

days

N
e
ls

o
n
−

A
a
le

n
 e

s
ti
m

a
te

Figure 14: Nelson-Aalen estimate of
the cumulative hazard rate function for
purchasing.

First of all, the estimated survival and cumulative hazard rate function are analysed.

Note that these estimates are similar for both the model with and without covariates.
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Figure 13 shows the Kaplan-Meier survival function, where the x-axis represents the time

in days and the y-axis shows the probability of survival. For example, the plot shows

that the probability of surviving (i.e. not purchasing) 200 days after a customer’s last

purchase is approximately 60%. The probability of survival drops relatively quickly for

roughly the first 100 days after a customer’s last purchase. In other words, relatively

many customers purchase within the first 100 days after their last purchase. After the

first 100 days, the survival function flattens out, meaning that relatively few customers

purchase after not having purchased for 100 days. Note that the survival probability

does not converge to zero because each customer’s last purchase is censored. Figure 14

shows the Nelson-Aalen cumulative hazard rate function. This plots leads us to the same

conclusion: the estimate of the cumulative hazard rate function is steeper for the first 100

days, and there is therefore evidence that the ‘risk’ of purchasing is highest in the first

100 days after a customer’s last purchase.

Next, we analyse the effect of incorporating covariates into the Cox proportional hazard

model by looking at the estimated coefficients of the covariates. The estimated coefficients

of the variables, along with a forest plot, are displayed in Figure 15. First of all, Figure

15 shows that each variable has a significant effect on the probability of survival as their

p-values are sufficiently small. Furthermore, we can conclude from the forest plot that

customers who are male, customers whose sex is not missing, customers whose age is not

missing, customers who are subscribed to the newsletter, and customers who created an

account on Winkelstraat.nl have an increased risk of purchasing. Note that since Age

is a numerical variable, it cannot be interpreted using a forest plot. Nevertheless, since

its coefficient is significantly larger than zero, we can conclude that older people have an

increased risk of purchasing.

However, these results are only valid if the proportional hazard assumption holds. This

assumptions states that explanatory variables are multiplicatively related to the hazard

function, meaning that these variables change the risk of purchasing. They should not,

however, change the time at which the hazard is high or low. This corresponds to a

constant hazard ratio for different values of variables. Therefore, whether or not this

assumption holds can be checked by comparing log-minus-log plots for different values of

a variable, where log-minus-log plots are plots of the logarithm of the negative logarithm
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Figure 15: Summary statistics and corresponding forest plot of the covariates in the Cox
proportional hazard model. The left panel shows the covariates, their different categories,
and the number of customers that belong to the corresponding category. The central panel
shows a forest plot, which displays relative hazard ratio’s with respect to other categories
of the corresponding covariate. The right panel shows the estimated coefficients, their
95% confidence interval, and their p-value.

of the survival function. Note that the logarithm of the negative logarithm of the survival

function equals the logarithm of the cumulative hazard rate function (see Equation B.7).

The proportional hazard assumption holds if the log-minus-log plots of different values of

a variable are parallel. Figure 16 shows these plots for each variable. Note that since the

variable Age is numerical, one cannot compare its different values. Therefore, in order

to enable the proportional hazard assumption for this variable to be checked to some

extent, two log-minus-log plots are compared with respect to whether the customer’s age

is below or above average. The log-minus-log plots of the variables Sex and Sex Missing

diverge slightly, indicating that the proportional hazard assumption for these variables

may not hold. The log-minus-log plots of the other variables are parallel, and hence the

proportional hazard assumption holds for these variables.

The predictive performance of the duration model is, along with the performance of the

other two models, given in Section 4.4.
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Figure 16: Log-minus-log plots of estimated survival functions for each covariate.

4.3 Gradient tree boosting

First of all, a grid search is performed to find the optimal values for the

hyperparameters max depth and min child weight. This grid search is shown in Figure

17 for both the model with the RMSE loss function and the model with the Fair loss

function. Henceforth, these two models will be referred to as the RMSE model and the

MAE model, respectively. Note that the latter model is called the MAE model because

its performance is evaluated using the MAE, and because the Fair loss function

approximates the MAE loss function. The figure shows that for the RMSE model the

optimal values of max depth and min child weight both lie around five. Therefore, to

find the optimum values, a second grid search is performed which searches for values up

to three above and below five for both hyperparameters. This second grid search shows

that the optimum values are five and six for max depth and min child weight

respectively. Figure 17 shows that for the MAE model, the optimal value of max depth
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Figure 17: Grid search on max depth and min child weight for the RMSE model (left)
and the MAE model (right).

lies between 3 and 10, and the optimal value of min child weight lies between 1 and 3.

Therefore, a second grid search is performed which searches for the optimal values in

these smaller ranges. This second grid search shows that the optimal value is six for

max depth and one for min child weight.

Next, the hyperparameter γ is tuned by trying out different values ranging from 0 to

0.50, of which the corresponding loss for both the RMSE and MAE model is shown in

Table 2. The table shows that the optimal value of γ is 0.05 for the RMSE model and

0 for the MAE model. For the MAE model, the hyperparameter γ does not seem to

influence the model’s performance by much, as the MAE ranges from 93.72 to 93.80.

Therefore, the model’s performance is also analysed for higher values of γ up to 5. The

model’s performance does not improve, however, and even declines for large values of γ.

Therefore, we set γ to 0 for the MAE model. Note that the lowest obtained RMSE and

MAE may be higher than was obtained when tuning max depth and min child weight due

to the use of randomisation in the model’s algorithm. This also applies to all results in

the remainder of this section.

Table 2: Loss for different values of γ for both the RMSE and the MAE model.

γ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
RMSE 314.6 311.1 311.7 314.1 314.3 316.0 314.8 315.8 313.3 317.2 314.4
MAE 93.72 93.77 93.78 93.76 93.74 93.77 93.80 93.80 93.77 93.79 93.73

Furthermore, a grid search is performed to find the optimal values for the hyperparameters

subsample and colsample. This grid search is shown in Figure 18 for both the RMSE and

MAE model. The figure shows that the optimal values of subsample and colsample for

the RMSE model are 0.7 and 0.8 and for the MAE model 0.9 and 1, respectively.
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Figure 18: Grid search on subsample and colsample for the RMSE model (left) and the
MAE model (right).

Subsequently, a grid search is performed to find the optimal values for the hyperparameters

α and λ. This grid search is shown in Figure 19 for both the RMSE and the MAE model.

For the RMSE model, the optimal values of α and λ are both 0.1. The grid search provides

insufficient evidence on the optimal values for the MAE model. Therefore, a second grid

search is performed which searches for α P t30, 50, 100u, while keeping the range of values

for λ equal. This grid search shows that the optimal values of α and λ are 10 and 0.01,

respectively.
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Figure 19: Grid search on α and λ for the RMSE model (left) and the MAE model (right).

Finally, the learning rate is lowered to increase the model’s performance. To see the

effect of lowering the learning rate, multiple learning rates are considered, and their

corresponding loss is displayed in Table 3 for both the RMSE and the MAE model. One

can see that a lower learning rate increases the model’s performance, although a

learning rate lower than 0.010 does not seem to improve the performance much. The

optimal learning rate for the RMSE model is 0.001, with a corresponding optimal value

of 2746 for the hyperparameter rounds. For the MAE model, the optimal learning rate is

0.010, with a corresponding optimal value of 4207 for the hyperparameter rounds. Note

that the MAE model, even though it uses a higher learning rate, requires more boosting
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rounds than the RMSE model, meaning that it converges slower and is computationally

more expensive.

Table 3: Loss for different values of β for both the RMSE and the MAE model.

β 0.001 0.005 0.010 0.050 0.100
RMSE 312.7 314.5 312.8 315.4 316.3
MAE 93.1 93.2 93.0 93.2 93.2

After the optimal values of the hyperparameters are found, the model is trained once

more with these parameter values, but this time without using cross-validation. After

this final model is trained, the importance of the variables can be assessed by looking at

the fractional contribution of each variable to the model based on the total gain (reduction

of loss) of each variable’s splits. A higher percentage indicates a more important variable.

Figure 20 shows this percentage of the ten most important variables for both the RMSE

and the MAE model. For the RMSE model, the monetary value and the frequency of

customers are the most important variables, followed by their recency, return percentage,

and age. The other variables are of little to no importance. For the MAE model, the

frequency is the most important variable, followed by the monetary value and the recency.

Furthermore, the percentage of returned items is of some importance, and the other

variables are of no importance. Note that, for both models, the recency of customers

should have more importance in studies in which the training data are measured over a

longer time span, as in this case a low recency will most likely mean that the customer has
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Figure 20: Fractional contribution of each variable to the model based on the total gain
(reduction of loss) of each variable’s splits, for both the RMSE model (left) and the MAE
model (right).
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become inactive. In both models, the dummy variables indicating a customer’s favourite

brand are not in the top 10 most important variables, having fractional contributions

of less than 0.1%. Note that, although one can assess the importance of variables by

means of their contribution to the model, one cannot determine what the effect of the

corresponding variable is. For example, Figure 20 does not show whether older or younger

people generally have a higher CLV.

The predictive performance of the gradient tree boosting model is, along with the

performance of the other two models, given in Section 4.4.

4.4 Overall test set performance

Table 4: Predictive performance with respect to the test set of each applied method. GG
is an abbreviation for the gamma-gamma submodel, and PHM is an abbreviation for the
proportional hazard model. For each performance measure, the best model’s performance
is displayed in bold.

Domain 1 Domain 2 Domain 3
RMSE MAE RP (%) CBPD (%)

1 Benchmarks
1.1 Mean spend year 4 240.7 142.4 - 114.9
1.2 Status quo 256.0 122.3 34.2 114.9
1.3 Predicting zero 238.4 58.0 - -100.0

2 Pareto/NBD + GG
2.1 Standard Pareto/NBD 196.4 85.6 38.4 36.2
2.2 Abe (2009) 194.6 80.9 38.2 18.6
2.3 Abe (2009) + covariates 191.6 76.3 40.1 14.6

3 Duration model
3.1 Non-parametric 195.0 66.8 35.6 -34.7
3.2 Cox PHM 194.3 67.8 38.5 -15.1

4 Gradient tree boosting
4.1 RMSE loss function 193.1 80.6 39.6 17.1
4.2 Fair loss function 207.2 54.7 37.4 -71.5

This section provides a comparison between the predictive performance with respect to

the test set of each applied model. Table 4 shows the RMSE, MAE, RP, and CBPD

for each model. Recall that RP measures the model’s ability to identify the top 10% of

highest spending customers, and that the CBPD measures the percentage deviation of

the model’s predicted total customer base from the true value of the total customer base.

In addition, Table 4 shows these four measures for three simple benchmark models. The
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first benchmark model predicts all customers’ average total spends in the previous year,

for each customer. The second benchmark model is a status quo model that predicts

each customer’s total spend in the previous year. The third benchmark predicts zero

spend for all customers. Furthermore, recall that this research focuses on the predictive

performance of the models and less on the degree of interpretability of the results, as

explained in Section 1.

Table 4 shows that the lowest RMSE obtained by the benchmark models is approximately

238 and the lowest MAE is 58. Both of these values are obtained by the model that

predicts no spend for all customers. A MAE of 58 is a relatively low value, which is

caused by the fact that the majority of the customers make no purchases in the test set.

Hence, for the majority of the customers, predicting no spend for the forthcoming year

is an excellent prediction. However, this benchmark model has a high RMSE compared

to the non-benchmark models, which implies that the models should not be evaluated

by their MAE alone but rather by their RMSE and MAE together. Therefore, a MAE

higher than 58 obtained by the non-benchmark models does not necessarily mean that

these models are bad predictors; however, these models are expected to have a MAE lower

than 122, the second best MAE obtained by the benchmark models. With respect to the

second domain, the status quo benchmark model obtains an RP of 34.2, and it is expected

that the non-benchmark models will improve on this. The other two benchmark models

do not predict future spend individually and are therefore not able to rank customers.

With respect to the third domain, the benchmark models perform very poorly, as their

prediction of the total customer base is twice as low or more than twice as high as the

actual customer base.

The Pareto/NBD model and its extension perform better with respect to RMSE, RP and

CBPD than the benchmark models. With respect to the MAE, they outperform the first

two benchmark models but do not outperform the third benchmark model which predicts

zero spend. However, I believe that their RMSE/MAE trade-off is better than that of

all benchmark models. As expected from the analysis of the models’ fit in Section 4.1,

both the standard and extended model have a positive CBPD. Apparently, since CBPDs

of 36.2, 18.6, and 14.6 only partially reflect their overestimation of the total number of

purchases at the end of the test set (see Figures 8, 9, and 10), these models predict a
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relatively large number of purchases for high spending customers and a relatively small

number of purchases for low spending customers. When comparing the Pareto/NBD

model’s extension that uses covariates to the one that does not, one can see that the

inclusion of covariates in the model increases its performance with respect to all domains.

When comparing the standard Pareto/NBD model to its extension that uses covariates,

we can see that the standard model is outclassed in all domains. The extended model

performs even better without the inclusion of covariates as it has a better RMSE, MAE,

and CBPD, and a similar RP. Apparently, since the extended Pareto/NBD model performs

better than the standard Pareto/NBD model, the assumptions that the extended model

makes about the purchase behaviour of customers may be more realistic than those of the

standard model.

The duration model clearly outperforms the benchmark models, having lower RMSEs,

better RMSE/MAE trade-offs, higher RPs, and better CBPDs. When comparing the

duration model with covariates (Cox PHM) to the one without covariates

(non-parametric), one can see that the inclusion of covariates in the duration model

results in a slightly lower RMSE but a slightly higher MAE. However, it leads to

significantly better results with respect to the second and third domain, and I therefore

consider the duration model with covariates superior to the one without covariates.

When comparing the duration model to the probability models, one can see that the

best probability model (extended Pareto/NBD model with covariates) surpasses the

duration model (with covariates) with respect to RMSE, RP, and CBPD, but not MAE.

However, I believe that the probability model’s better RMSE, RP, and CBPD outweigh

the duration model’s lower MAE.

Both gradient tree boosting models outperform the benchmark models, having lower

RMSEs, better RMSE/MAE trade-offs, higher RPs, and better CBPDs. Moreover, the

gradient tree boosting model that uses the Fair loss function has the lowest MAE of all

models, including the benchmark model that only predicts zero spends. However, this

low MAE comes at the expense of a reasonably high RMSE. Furthermore, it struggles to

predict the value of the total customer base. Therefore, I believe the gradient tree boosting

model that uses the RMSE loss function is a more adequate model for predicting CLV,

as it has a better RMSE, RP, and CBPD. When comparing the best machine learning
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model (with RMSE loss function) to the duration model (with covariates), it does not

become clear which model has a better predictive performance, as the machine learning

model has a better RMSE and RP but a worse MAE and CBPD. When comparing the

best machine learning model to the best probability model, one sees that the probability

model outperforms the machine learning technique with respect to all domains.

Note that for the machine learning technique, the RMSE and the MAE obtained on the

test set is lower than those obtained during the parameter tuning on the training set,

whereas one usually obtains a lower error on the (cross-validated) training set. This

phenomenon is caused by the fact that the model is trained using data on customers who

made a purchase at least once in year 3, or in other words, on active customers. Once the

model is trained, the data on all customers in year 4 are inserted into the model, that is,

including customers who did not purchase in year 4 (inactive customers). Since the CLV

of inactive customers is generally much easier to predict than that of active customers,

and since inactive customers were not considered during the training of the model, the

RMSE and MAE on the test set will be lower than those obtained on the training set.

Furthermore, the RMSE and MAE obtained on the training set are based on predicted

and actual CLV that had not yet been discounted.

All in all, the extended Pareto/NBD model with covariates is the best model for predicting

CLV. It performs better than any other model except with respect to MAE. In other

words, probability models outperform duration and machine learning models with respect

to predicting CLV. Furthermore, the duration model and machine learning technique

perform similarly.

5 Conclusion

The prediction of CLV is important for online retailers as this allows them to increase

their profits by allocating disproportionate marketing resources to their most profitable

customers. The aim of this research was to compare different classes of prediction

models by their predictive power with respect to predicting CLV. This research aim

arose from the question whether machine learning methods that directly predict CLV
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can compete with more traditional CLV methods. The research focused primarily on the

predictive power of the models and less on the degree of interpretability of their results.

The different classes of models included probability models, duration models, and

machine learning techniques. The models applied are the Pareto/NBD model, the Cox

proportional hazard model, and the gradient tree boosting model, which represent the

probability models, duration models, and machine learning techniques, respectively. In

addition, several extensions of or different implementations to these models were

considered. In terms of predictive power, the extended Pareto/NBD probability model

with covariates performed best. Seemingly, the strict assumptions that the probability

model makes about customer purchase behaviour fits our problem better than the less

restrictive duration model and machine learning technique. Furthermore, the duration

model and the machine learning model performed similarly. However, when taking the

interpretability of the results into account, machine learning models might be considered

as inferior to the two other classes of models as it lacks interpretability, while

probability and duration models provide excellent interpretation of their results.

The length of the training and test sets, and hence the length of the prediction horizon,

was restricted by the machine learning technique as it requires labelled training data. If

this technique had been excluded from the comparison of CLV models, a larger prediction

horizon and a larger training set could have been used. The probability models and the

duration model would most likely benefit from this larger training set, increasing their

predictive power. Moreover, it is questionable whether gradient tree boosting is a suitable

prediction technique when the prediction horizon is relatively large. Since the training set

should consist of a time span at least as long as that of the test set (see Section 3.2.1), the

model would be trained using relatively old data, which would compromise the model’s

validity if the data are not stationary. The probability models and the duration model

do not suffer from this restriction.

A possible direction for future work with respect to the Pareto/NBD model would be to

relax the assumption of constant time-invariant purchase rate, which is captured by a

Poisson distribution, and replace it by a more realistic assumption. One might consider

the BG/CNBD-k model (Mzoughia and Limam, 2014), which generalises the Poisson

distribution to a two-parameter distribution, offering more flexibility and a better fit to
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real world data. The performance of the duration model could be improved by making

use of recurrent duration models. Since customers are able to purchase multiple times,

the data consist of correlated data instances. Instead of treating each purchase as an

independent observation, recurrent duration models take this correlated structure of the

data into account. This would allow one, for example, to compute the probability that

a customer makes the same number of purchases as in their previous year, which would

presumably improve the predictions. Likewise, instead of using gradient tree boosting, one

could use a machine learning technique that models temporal dynamic behaviour in time

sequences, such as recurrent neural networks (RNNs). The ability of RNNs to recognise

patterns across time in customer purchase behaviour could result in better predictive

performance.
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Appendices

Appendix A: Probability Models

This section includes a detailed description the Pareto/NBD model, along with a

description of the gamma-gamma submodel and the extension of the Pareto/NBD

model by Abe (2009). The Pareto/NBD model is a probability model that predicts the

number of purchases of customers in future periods and the probability that these

customers are still active purchasers. In combination with the gamma-gamma submodel,

it provides estimates of customer spends in future periods. The extension of the model

by Abe (2009) relaxes several assumptions that the Pareto/NBD model makes and uses

a different estimation technique. It also allows for the incorporation of time-invariant

covariates.

First of all, the Pareto/NBD model will be described in detail. Thereafter, the gamma-

gamma submodel and finally the extension of the Pareto/NBD model by Abe (2009) will

be covered.

A.1 Pareto/NBD model

The Pareto/NBD model (Schmittlein et al., 1987) is a probability model that uses the

past transaction data of customers to predict their number of purchases in a future

period. Furthermore, it also computes the probability that a customer is still actively

making purchases. The model can only be applied to non-contractual, continuous data,

i.e. the company does not observe the time a customer becomes inactive and a

customer’s purchases can occur at any point in time. It is assumed that a customer is

‘alive’ (actively purchasing) for an unobserved period of time and finally ‘dies’ (becomes

permanently inactive). The description of the Pareto/NBD model in this section is

based on the description as given in Schmittlein et al. (1987).
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A.1.1 Model description

The Pareto/NBD model makes the following five assumptions on customer purchase

behaviour:

1. While a customer is alive, his number of purchases is characterised by a Poisson

distribution with purchasing rate λ.

2. The customer’s lifetime is characterised by an exponential distribution with death

rate µ.

3. Heterogeneity in the purchasing rate λ across customers is captured by a gamma

distribution with parameters r and α.

4. Heterogeneity in the death rate µ across customers is captured by a gamma

distribution with parameters s and β.

5. The purchasing rate λ and the death rate µ are distributed independently of each

other.

An important feature of the Pareto/NBD model is that it only requires the recency,

frequency, and observation length of customers’ transaction data to predict their future

purchase behaviour. Here, recency is the time since the last purchase of a customer, where

a higher recency indicates that the customer has bought more recently. Furthermore,

frequency is the total number of repeat purchases that a customer has made during the

observation period, that is, the total number of purchases excluding the first. In other

words, the Pareto/NBD model only requires aggregated transaction data of customers,

and does not require other information, such as exact purchase times. For each customer,

this information can be written as pX, t, T q, where X is the frequency, t the recency, and

T the length of the observation period. This notation allows us to mathematically express

the previous five assumptions as follows:

1. While a customer is alive, his number of purchases is characterised by a Poisson
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distribution with purchasing rate λ:

P rX “ x|λ, τ, T s “

$

’

&

’

%

pλT qx

x!
e´λT if τ ą T

pλτqx

x!
e´λτ if τ ď T

for x “ 1, 2, ... (A.1)

2. The customer’s lifetime is characterised by an exponential distribution with death

rate µ:

fpτq “ µe´µτ for τ ě 0. (A.2)

3. Heterogeneity in the purchasing rate λ across customers is captured by a gamma

distribution with parameters r and α:

gpλ|r, αq “
αr

Γprq
λr´1e´αλ, (A.3)

where

Γprq “

ż 8

0

tr´1e´tdt. (A.4)

4. Heterogeneity in the death rate µ across customers is captured by a gamma

distribution with parameters s and β:

hpµ|s, βq “
βs

Γpsq
µs´1e´βµ, (A.5)

where

Γpsq “

ż 8

0

ts´1e´tdt. (A.6)

5. The purchasing rate λ and the death rate µ are distributed independently of each

other.

Assumptions 1 and 3 imply that a customer’s number of purchases is characterised by a

Poisson distribution with gamma-distributed purchasing rate, which is also known as the

negative binomial distribution (NBD):

P rX “ x|r, α, τ ą T s “

ˆ

x` r ´ 1

x

˙ˆ

α

α ` T

˙r ˆ
T

α ` T

˙x

for x “ 0, 1, 2, ... (A.7)
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Furthermore, assumptions 2 and 4 imply that a customer’s lifetime is characterised by an

exponential distribution with gamma-distributed death rate, which is also known as the

Pareto distribution:

fpτ |s, βq “
s

β

ˆ

β

β ` τ

˙s`1

for τ ą 0. (A.8)

The Pareto/NBD model owes its name to the fact that it is based on these two

distributions.

A.1.2 Estimation

Estimating the Pareto/NBD model involves estimating the four model parameters r, α,

s, and β. These parameters can be estimated by maximising the likelihood for observed

transaction data, which is given by

Lpr, α, s, βq “
M
ź

i“1

P rXi “ xi, ti, Ti|r, α, s, βs, (A.9)

where M is the number of customers. An expression for P rXi “ xi, ti, Ti|r, α, s, βs can be

derived by splitting this probability into the case where customer i is still alive at time

T , and the case where he is not, which results in the following expression:

P rX “ x, t, T |r, α, s, βs “
ż 8

0

ż 8

0

P rX “ x, t, T |λ, µ, τ ą T s P rτ ą T |λ, µs gpλ|r, αq hpµ|s, βq dλdµ `

ż 8

0

ż 8

0

P rX “ x, t, T |λ, µ, t ă τ ă T s P rt ă τ ă T |λ, µs

gpλ|r, αq hpµ|s, βqdλdµ, (A.10)

where gpλ|r, αq and hpµ|s, βq are given in A.3 and A.5. This expression contains four

new probabilities for which we need to derive expressions. Given the probability density

function of the exponential distribution in Equation A.2, we obtain an expression for the
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probability that a customer is alive at time T

P rτ ą T |λ, µs “ 1´ P rτ ď T |λ, µs “ e´µT (A.11)

and for the probability that a customer is not alive at time T

P rt ă τ ă T |λ, µs “ P rτ ď T |λ, µs ´ P rτ ď t|λ, µs “ e´µt ´ e´µT . (A.12)

To derive expressions for the remaining two probabilities, that is, the probability of

observing X “ x repeat purchases with the last purchase at time t, we first introduce

the variable ζx, which denotes the time of the x-th purchase. Using Equation A.1, we

can see that ζx is the sum of i.i.d. exponentially distributed interpurchase times, each

with mean 1{λ. This means that ζx is characterised by a gamma distribution with shape

parameter x and rate parameter 1{λ, with density function

fζpζx|x, λq “
λx

Γpxq
ζx´1
x e´λζx , (A.13)

where the gamma function Γpxq is similar to the ones in Equations A.4 and A.6.

Furthermore, let the event that no purchase occurred in the interval pt, T s be denoted as

φT´t. Because it is assumed that the number of purchases are characterised by a Poisson

distribution (assumption 1), the probability that φT´t occurs equals e´λpT´tq. Now, the

event of observing X “ x, t, and T can be captured by the events ζx “ t and φT´t

together. Note that the events ζx “ t and φT´t are independent of each other when

conditioned on τ ą T . This allows us to derive an expression of the probability of

observing X “ x, t and T , given λ, µ and τ ą T :

P rX “ x, t, T |λ, µ, τ ą T s “ fζpt|λ, µ, τ ą T q ˚ P rφT´t|λ, µ, τ ą T s “

λxtx´1

Γpxq
e´λt ˚ e´λpT´tq “

λxtx´1e´λT

Γpxq
. (A.14)
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To obtain an expression for this probability for the case where t ă τ ă T , we need to

condition on τ “ y and use the law of total probability:

P rX “ x, t, T |λ, µ, t ă τ ă T s “
ż T

t

fζpt|λ, µ, y ą tq ˚ P rφy´t|λ, µ, y ą ts ˚ fτ py|λ, µq dy “

ż T

t

λxtx´1

Γpxq
e´λt ˚ e´λpy´tq ˚ µe´µy dy “

ż T

t

λxtx´1e´λy

Γpxq
µe´µy dy, (A.15)

where fτ p.q is the probability density function of τ as specified in Equation A.2, and fζp.q

is the probability density function of ζx as specified in Equation A.13.

Finally, substituting Equations A.3, A.5, A.11, A.12, A.14, A.15 into Equation A.10,

and thereafter substituting Equation A.10 into Equation A.9 for all customers yields

the expression for the likelihood function. The likelihood function is then maximised

by a numerical optimisation algorithm, as explicit solutions for the maximum likelihood

estimates do not exist.

A.1.3 Forecasting

The goal is to forecast the number of customer purchases X˚ in interval pT, T ˚s. To derive

an expression of this forecast we make use of the following results. First of all, we exploit

the memoryless property of the exponential distribution, which implies that, given that a

customer is alive at time T , his remaining lifetime is again exponentially distributed with

death rate µ. Morrison (1978) used Bayesian updating to show that, given the observed

transaction data pX, t, T q of customers, this death rate µ is again gamma distributed, but

with updated parameters s˚ “ s and β˚ “ β ` T . Likewise, given that a customer is

alive at time T , the number of purchases in his remaining lifetime follows again a Poisson

process with purchasing rate λ. Furthermore, it can be shown using Bayesian updating

that λ follows again a gamma distribution, but with updated parameters r˚ “ r ` x and

α˚ “ α ` T (Morrison, 1968). In addition, we use the fact that dead customers at time

T do not make future purchases. These results allow us to specify the distribution of X˚

56



as follows:

P rX˚
“ x˚|r, α, s, β,X “ x, t, T, T ˚s “

P rX˚
“ x˚|r, α, s, β,X “ x, t, T, T ˚, τ ą T s ˚ P rτ ą T |r, α, s, β,X “ x, t, T s “

P rX˚
“ x˚|r ` x, α` T, s, β ` T, T ˚s ˚ P rτ ą T |r, α, s, β,X “ x, t, T s. (A.16)

Using Equation A.16, the expected number of purchases in the time interval pT, T ˚s can

now be expressed as

ErX˚
|r, α, s, β,X, t, T, T ˚s “ ErX˚

|r ` x, α` T, s, β ` T, T ˚s ˚

P rτ ą T |r, α, s, β,X “ x, t, T s. (A.17)

The first term on the right hand side is the expectation of a negative binomial distribution

with the updated model parameters r`x and α`T , given that we also know the updated

duration time parameters s and β ` T , and is given by (Schmittlein et al., 1987)

ErX˚
|r ` x, α` T, s, β ` T,X “ x, t, T, T ˚s “

pr ` xqpβ ` T q

pα ` T qps´ 1q

«

1´

ˆ

β ` T

β ` 2T

˙s´1
ff

. (A.18)

The second term on the right hand side in Equation A.17 is more complex to derive

because it depends on the relationship between α and β. Therefore, Schmittlein et al.

(1987) consider the following three cases:

Case 1: α ą β

P rτ ą T |r, s, α ą β,X “ x, t, T s “
#

1`
s

r ` x` s

«

ˆ

α ` T

α ` t

˙r`xˆ
β ` T

α ` t

˙s

F pa1, b1; c1; z1ptqq´

ˆ

β ` T

α ` T

˙s

F pa1, b1; c1; z1pT qq

ff+´1

,

where a1 “ r ` x` s; b1 “ s` 1; c1 “ r ` x` s` 1; z1pyq “
α ´ β

α ` y
. (A.19)
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Case 2: α ă β

P rτ ą T |r, s, α ă β,X “ x, t, T s “
#

1`
s

r ` x` s

«

ˆ

α ` T

β ` t

˙r`xˆ
β ` T

β ` t

˙s

F pa2, b2; c2; z2ptqq´

ˆ

α ` T

β ` T

˙r`x

F pa2, b2; c2; z2pT qq

ff+´1

,

where a2 “ r ` x` s; b2 “ r ` x; c2 “ r ` x` s` 1; z2pyq “
β ´ α

β ` y
. (A.20)

Case 3: α “ β

P rτ ą T |r, s, α “ β,X “ x, t, T s “

#

1`
s

r ` x` s

«

ˆ

α ` T

α ` t

˙r`x`s

´ 1

ff+´1

. (A.21)

The function F pa, b; c; zq in Equations A.19 and A.20 is the Gauss hypergeometric

function, and is given by the following power series for |z| ă 1:

F pa, b; c; zq “
8
ÿ

n“0

paqnpbqn
pcqn

zn

n!
, (A.22)

where

pqqn “

$

’

&

’

%

1 if n “ 0

qpq ` 1q...pq ` n´ 1q if n ą 0.

(A.23)

An expression of the expected number of future customer purchases can now be obtained

by substituting Equations A.18, A.19, A.20, and A.21 into A.17, along with the estimated

model parameters r̂, α̂, ŝ, and β̂.

A.2 Gamma-gamma submodel

The Pareto/NBD model predicts the number of purchases that customers make in a future

period. However, our goal is to predict the amount that customers will spend in a future
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period. Therefore, Fader et al. (2005) created a gamma-gamma submodel that predicts

the average amount spent per purchase per customer. Then, one can obtain predictions of

future spends by multiplying predictions of the number of purchases with predictions of

the average amount spent per purchase. The description of the gamma-gamma submodel

follows the description as given in Fader et al. (2005).

A.2.1 Model description

The gamma-gamma submodel assumes the following:

1. The monetary value of a customer’s purchase varies randomly around the customer’s

mean purchase value.

2. The customer’s mean purchase value does not change over time, and varies across

customers.

3. The distribution of mean purchase values across customers and the transaction

process are independent of each other.

The observed mean purchase value z̄ for each customer is obtained by

z̄ “
1

x

x
ÿ

i“1

zi, (A.24)

where x is the number of purchases and zi is the observed monetary value of the i-

th purchase. This mean purchase value z̄, however, cannot be used as estimate of the

unobserved true mean purchase value µ as purchase data tend to be right-skewed: the

left tail of the distribution of purchase values is bounded at zero and its right tail can

be very long due to several exceptionally high-spending customers. Therefore, we assume

that Zi follows a gamma distribution with shape parameter p and rate parameter ν.

Since the model assumes that the mean purchase value varies across customers, a gamma

distribution with parameters q and γ is assumed for the rate parameter ν. Furthermore,

it is assumed that the shape parameter p does not vary across customers. To recapitulate,

we can write Zi|ν „ Gammapp, νq and ν „ Gammapq, γq.
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Utilising the following two relationships involving the gamma distribution,

I the sum of x i.i.d. Gamma(p,ν) random variables follows a gamma distribution with

shape parameter px and scale parameter ν, and

II multiplying a Gamma(px,ν) random variable by the scalar 1{x is gamma distributed

with shape parameter px and scale parameter νx,

it follows that Z̄ „ Gammappx, νxq. Now, we can write the expectation of Zi as

ErZis “ E
”

ErZi|νs
ı

“ E
”p

ν

ı

“ p ˚ E
„

1

ν



“
γp

q ´ 1
, (A.25)

where the first equality follows from the law of total expectation, the second equality

follows from the fact that Zi|ν „ Gamma(p, ν) has mean p
ν
, and the last equality follows

from the fact that 1
ν
„ Inv-Gamma(q, γ) has mean γ

q´1
.

A.2.2 Estimation

Estimates of the model parameters p, q, and γ are obtained by maximising the likelihood

over all customers, that is, by maximising

Lpp, q, γ| dataq “
M
ź

i“1

fpz̄i|p, q, γ, xiq, (A.26)

where M is the number of customers. The conditional probability density function of z̄

follows from the assumed gamma distributions and is given by (Fader et al., 2005)

fpz̄|p, q, γ, xq “
Γppx` qq

ΓppxqΓpqq

γqz̄px´1xpx

pγ ` z̄xqpx`q
, (A.27)

where Γp¨q is the gamma function as given in A.4.
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A.2.3 Forecasting

To obtain an expression for the expected average purchase value of customers, Fader et al.

(2005) employ Bayes’ theorem to derive the posterior distribution of ν for a customer with

observed mean purchase value z̄ across x purchases:

gpν|p, q, γ, z̄, xq “
pγ ` z̄xqpx`qνpx`q´1e´νpγ`z̄xq

Γppx` qq
, (A.28)

where Γp¨q is the gamma function as given in A.4. This results in a gamma distribution

with shape parameter px`q and scale parameter γ`z̄x. Now the expected mean purchase

value Z for a customer with observed mean purchase value z̄ can be defined as

ErZ|p, q, γ, z̄, xs “
pγ ` z̄xqp

px` q ´ 1
“

ˆ

q ´ 1

px` q ´ 1

˙

γp

q ´ 1
`

ˆ

px

px` q ´ 1

˙

z̄. (A.29)

Note that this is a weighted average of the prior mean purchase rate γp
q´1

and the observed

mean purchase value z̄. Larger values of x (a larger number of observed purchases) will

place less weight on the prior mean and more weight on the observed mean purchase value

z̄.

A.3 Extended Pareto/NBD model by Abe (2009)

The Pareto/NBD model is extended by Abe (2009), who suggests using a hierarchical

Bayesian (HB) framework. This framework adjusts the heterogeneity assumptions on the

purchasing and death rate of the Pareto/NBD, and relaxes the independence assumption

between them. Furthermore, instead of estimating the model parameters analytically,

the HB framework uses MCMC simulation to estimate them. By avoiding analytical

estimation, the model allows for the incorporation of covariates into the model. The

description of this model closely follows the description as given in Abe (2009).
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A.3.1 Model description

The first two assumption of the HB framework are equivalent to those of the Pareto/NBD

model:

1. While a customer is alive, his number of purchases is characterised by a Poisson

distribution with purchasing rate λ.

2. The customer’s lifetime is characterised by an exponential distribution with death

rate µ.

However, the assumptions on independently gamma-distributed purchasing and death

rates of the Pareto/NBD model are replaced by

3. Heterogeneity in the purchasing rate λ and the death rate µ across customers is

captured by a multivariate log-normal distribution.

Unlike the Pareto/NBD model, whereby independent distributions are assumed for λ and

µ, this assumption permits correlation between the purchasing and death rate. Abe (2009)

gives two reasons for assuming log-normally distributed purchasing and death rates. The

first reason is that Bayesian updating of log-normal distributions is a standard procedure

and simple to compute. The second reason is that correlation between logpλq and logpµq

can be retrieved using the variance-covariance matrix of the normal mixture distribution.

This correlation is hard to compute when using correlated gamma distributions. The

third assumption can be mathematically expressed as

»

–

logpλq

logpµq

fi

fl „MVNpθ,Γ0q, (A.30)

where θ and Γ0 are the mean and covariance matrix of the multivariate normal

distribution, respectively. Note that mathematical expressions of the first two

assumptions are given in Equations A.1 and A.2.

In contrast to the Pareto/NBD model, the HB framework allows for the incorporation

of time-invariant covariates. These covariates might provide important information that
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can boost the predictive performance of the model, and give insight into the profiles of

high-spending and low-spending customers. The covariates are included in the model by

specifying the logarithms of λi and µi with a linear regression as follows, where the index

i emphasises that the purchasing and death rate correspond to customer i:

»

–

logpλiq

logpµiq

fi

fl ” θi “ β
1di ` ei, with ei „MVNp0,Γ0q, (A.31)

where di is a K ˆ 1 vector containing K characteristics of customer i, β is a K ˆ 2

parameter matrix, and ei is a 2 ˆ 1 vector of error terms. When di contains only an

intercept, this model reduces to the model as specified in Equation A.30.

A.3.2 Estimation

As opposed to the Pareto/NBD model, the parameter estimates of λ and µ cannot be

computed individually in the Bayesian framework. Therefore, in order to estimate the

model parameters, Abe (2009) introduces two latent variables w and y. The latent variable

w equals 1 if the customer is active at time T , and 0 otherwise, and the latent variable y

equals the time of death when w “ 0. If these latent variables are observed, the likelihood

function for the recency-frequency data px, t, T q in the case where w “ 1, conditional on

the values of λ and µ, becomes

P rX “ x, t, T |λ, µ, w “ 1s P rw “ 1|λ, µs “
λxtx´1

x

Γpxq
e´pλ`µqT , (A.32)

which follows from Equations A.11 and A.14. In case w “ 0, the likelihood function for

the recency-frequency data px, t, T q, conditional on the values of λ and µ, becomes

P rX “ x, t, T |λ, µ, y, w “ 0s fτ py|λ, µq “
λxtx´1

x

Γpxq
µe´pλ`µqy, (A.33)

where the derivation is similar to Equation A.15. These two cases can be combined into

a more compact notation, and the conditional likelihood then becomes

LpX “ x, t, T |λ, µ, w, yq “
λxtx´1

x

Γpxq
µ1´we´pλ`µqpwT`p1´wqyq. (A.34)
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In addition, the probability of a customer being alive at time T (i.e. w “ 1) can be

written as (Schmittlein and Peterson, 1994):

P rw “ 1|λ, µ,X “ x, t, T s “ P rτ ą T |λ, µ,X “ x, t, T s “

1

1`
µ

λ` µ
repλ`µqpT´tq ´ 1s

, (A.35)

where we use the fact that w “ 1 if and only if τ ą T .

However, since neither w nor y is observed, they are treated as latent variables in the

model and are sampled alongside the model parameters in the Bayesian updating

approach. Bayesian updating requires the specification of prior distributions for the

model parameters. The log-normal prior distribution for θi is already specified in

Equation A.31. The parameters of this log-normal distribution, β and Γ0, are assumed

to to follow a multivariate normal and an inverse Wishart distribution, respectively:

β „MVNpβ0,Σ0q, (A.36)

Γ0 „ IW pν00,Γ00q, (A.37)

which are standard priors for the (log-)normal model. Finally, one assumes diffuse priors

for the constants β0, Σ0, ν00 and Γ00.

The model parameters tθi, yi, wi @i;β,Γ0u can now be estimated by Markov Chain Monte

Carlo (MCMC) simulation. The joint density is estimated by sequentially generating

each parameter, conditional on the previously generated parameters, from its conditional

distribution until the Markov chain has converged. A description of this procedure is

given below (Korkmaz et al., 2013):

Step 0: Set an initial value for θ
p0q
i @i.

Step 1: (a) Generate wi|θi @i according to equation A.35. Note that θi from the previous

iteration must be exponentiated to transform to λi and µi.

(b) If wi “ 0 (i.e. the customer is dead), generate lifetime yi|wi,θi using a

truncated exponential distribution. From Equation A.34 it follows that
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yi|wi,θi follows an exponential distribution with rate λi ` µi and

truncation such that ti ă yi ă Ti.

Step 2: Generate β,Γ0|θi @i using a standard multivariate normal regression update

(Rossi et al., 2005).

Step 3: Generate θi|β,Γ0, wi, yi using Equation A.34. After multiplying Equation A.34

with the log-normal prior, λi and µi are sequentially generated by an independent

Metropolis-Hastings algorithm with a log-normal proposal distribution. Finally,

λi and µi are logarithmically transformed to θi.

Step 4: Iterate steps 1 to 3 until convergence is achieved.

A.3.3 Forecasting

Once the Markov chain has converged, simulation draws pλ
psq
i , µ

psq
i , y

psq
i , w

psq
i q can be

obtained for each customer i. These draws can then be used to compute the number of

purchases in future time period pT, T ˚s. First of all, one draws a sample of the

remaining lifetime of a customer from Equation A.2 with parameter µ
psq
i . Next, a sample

of the number of future purchases is drawn from Equation A.1 with parameter λ
psq
i .

These two steps are repeated S times for each customer. Note that for w
psq
i “ 0, the

number of future purchases will be zero. Thereafter, these S draws are aggregated for

each customer by taking the mean of the S draws of the number of future purchases.

Finally, forecasts of the amount spent per customer are obtained by combining the

model with the gamma-gamma submodel, similarly to the standard Pareto/NBD model.
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Appendix B: Duration Models

Duration models are concerned with the study of survival times and the factors that

influence them. The study of survival times is also known as survival analysis. Usually,

duration models are applied on data that consist of individuals that were followed over a

specified time period. The focus lies on the time at which a specific event occurs, which

is referred to as the failure time. Examples of events are deaths, hospital discharges,

machinery breakdowns, and purchases. The time from the beginning of an observation

period and the occurrence of an event is called the survival time. The objectives of

duration models include predicting the time at which a yet unobserved event occurs for a

particular subject, analysing event time patterns, comparing survival time distributions

in different groups, and examining what factors influence the occurrence time of events.

B.1 Censoring

1
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Figure B.1: Different types of observations. Observation 1 is right-censored, observation
2 is left-censored, and observations 3 and 4 are complete.

A key characteristic of survival data is that the survival time of individuals may only be

partially observed, which is referred to as censored data. The most commonly encountered

type of censoring is right censoring, where the occurrence of the event of interest is known

to have occurred after a certain time. In this case, only the time span at which the
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event did not occur is observed. Right censoring may occur when an individual does not

experience the event for the duration of the study, or when an individual drops out of the

study. Left censoring is another type of censoring, where the event of interest is known to

have occurred before a certain time. In this case, the event of interest has occurred before

the start of the observation period. For example, when modelling pregnancy duration,

starting the observation period at the 250-day mark may result in women that already had

their babies. Figure B.1 shows both types of censoring graphically, along with complete

observations.

There are several mechanisms that can lead to censored data, and are categorised as

Type I, Type II, or random censoring. In Type I censoring, the study stops at a pre-

specified time by the researcher, and individuals who have not experienced the event

before the end of the study are censored. In Type II censoring, the study stops when a

pre-specified number of events have occurred, and individuals who have not experienced

the event before the end of the study are censored. In random censoring, individuals have

a censoring time that is statistically independent of their failure time. Careful attention

to this type of censoring is essential because dependent censoring times causes biased

survival estimates. For example, if patients that are close to dying are more likely to drop

out of the study than other patients, the survival estimates will be negatively affected.

B.2 Basic principles

Let T ě 0 be a random variable representing the waiting time until the occurrence of

an event. The probability density function of T is denoted by fptq, and the cumulative

density function is given by

F ptq “ P rT ă ts “

ż t

0

fpuq du, (B.1)

which can be interpreted as the probability that the event occurs before time t. One

usually considers the survival function, which is the complement of F ptq, and is given by

Sptq “ 1´ F ptq “ P rT ě ts “

ż 8

t

fpuq du, (B.2)
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which can be interpreted as the probability that the event occurs at time t or later. A

different specification of the distribution of T is given by the hazard function and is defined

as

λptq “ lim
∆tÑ0

P rt ď T ă t`∆t|T ě ts

∆t
, (B.3)

which can be interpreted as the instantaneous failure rate at time t. The hazard function

can be rewritten as

λptq “ lim
∆tÑ0

P rt ď T ă t`∆t|T ě ts

∆t

“
1

P rT ě ts
lim

∆tÑ0

P rt ď T ă t`∆ts

∆t

“
1

Sptq
lim

∆tÑ0

P rt ď T ă t`∆ts

∆t

“
1

Sptq
lim

∆tÑ0

F pt`∆tq ´ F ptq

∆t

“
fptq

Sptq
,

(B.4)

which is a more useful result. In the first step, we use the definition of conditional

probability P pA|Bq “ P pAXBq
P pBq

and the fact that P rt ď T ă t ` ∆t X T ě ts “ P rt ď

T ă t`∆ts. In the second step, we use Equation B.2, and in the fourth step we use the

definition of the derivative. This formula can be further rewritten to

λptq “
fptq

Sptq

“

B

Bt
F ptq

Sptq

“

B

Bt
p1´ Sptqq

Sptq

“ ´

B

Bt
Sptq

Sptq

“ ´
B

Bt
ln Sptq.

(B.5)

To find the inverse relation, we first define the cumulative hazard function (c.h.f.) as

Λptq “

ż t

0

λpuq du, (B.6)
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which can be used to obtain a formula for the probability of surviving to time t as a

function of the hazard at all times up to t (using Equation B.5):

Sptq “ expp´Λptqq. (B.7)

B.3 Multiplicative intensity model

The multiplicative intensity model is a statistical model for processes that are observed

on a fixed time interval. Typically, individuals under observation are not observed over

the whole study time period, and to accommodate for this, it is assumed that the

intensity process takes a certain form. All methods discussed in Appendix B follow the

multiplicative intensity model.

Suppose there are n individuals of which a counting process registering the number of

occurrences of an event of interest is known. Let Niptq be the observed number of events

for individual i in the time interval r0, ts. Furthermore, let Yiptq be an indicator whether

individual i is at risk ‘just before’ time t. More formally,

Yiptq “ ItTi ě tu. (B.8)

Then, the intensity process of Niptq is assumed to take the form

hiptq “ αptqYiptq, (B.9)

where αptq is a non-negative function called the intensity rate. Aggregating the individual

counting processes, that is, considering the process Nptq “
řn
i“1Niptq counting the total

number of observed events, results in the aggregated intensity process

hptq “
n
ÿ

i“1

λiptq “ αptqY ptq, (B.10)

where Y ptq “
řn
i“1 Yiptq, the total number of individuals at risk ‘just before’ time t. In

the special case of survival data, αptq is the hazard function.
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In case that the intensity process may be specified by a q-dimensional parameter vector

θ “ pθ1, . . . , θqq
1, it takes the form

hpt;θq “ αpt;θqY ptq. (B.11)

B.4 Non-parametric estimation

Non-parametric estimation, as opposed to parametric estimation, does not require the

researcher to choose a distribution that approximates the hazard and survival function.

When modelling human survival, distributions may not have sufficient flexibility to

represent the actual shape of the hazard and survival function, and therefore

non-parametric estimation may be more suitable. However, non-parametric estimation

does not allow for the incorporation of covariates into the model.

Suppose there are n observations, and that no observation ties exist. Sort all observations

by their duration such that

t1 ă t2 ă t3 ă . . . ă tn. (B.12)

In case there exist observation ties, the total number of recorded survival times is smaller

than n. Let di be the number of events that occur at time ti (di “ 1 if there are no ties

at time ti). A natural, non-parametric estimator of the hazard function if given by

P̂ rTi “ ti|Ti ě tis “ λ̂i “
di

Y ptiq
. (B.13)

Then, the Kaplan-Meier estimator for the probability of survival at time t is the product

over the failure times of the conditional probabilities of surviving to the next failure time,

and is formally given by

Ŝptq “
ź

i|tiďt

p1´ λ̂iq “
ź

i|tiďt

"

1´
di

Y ptiq

*

. (B.14)

Although censoring is not particularly specified in this equation, its presence does not

affect the validity of this formulation. Standard errors can be computed using
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Greenwood’s formula given by

yV arpŜptqq “ Ŝptq2
ÿ

i|tiďt

di
Y ptiq tY ptiq ´ diu

. (B.15)

The Nelson-Aalen estimator can be used to estimate the c.h.f., and is given by

Λ̂ptq “
ÿ

i|tiďt

λ̂i “
ÿ

i|tiďt

di
Y ptiq

, (B.16)

and its variance may be estimated by

yV arpΛ̂ptqq “
ÿ

i|tiďt

pY ptiq ´ diq di
Y ptiq3

. (B.17)

B.5 Parametric estimation

An alternative way of estimation in duration models is the use of parametric models.

Parametric models make assumptions about the patterns of survival times, which can be

represented by probability distributions. The hazard and survival function are assumed

to have a specific type of shape, and the exact shape is determined by parameters that are

estimated from the data. Several distributions have been proposed in the literature, and

the most common ones are the exponential, Weibull, Gamma, Log-normal, Log-logistic,

and Gompertz distribution. In addition, parametric estimation allow for the incorporation

of covariates into the model.

B.5.1 Maximum Likelihood

A common estimation method for duration analysis in maximum likelihood estimation.

Suppose there are n observations with lifetimes governed by a survival function Spt;θq

with associated density fpt;θq and hazard function λpt;θq, where θ “ pθ1, . . . , θqq
1 is a

q-dimensional parameter vector. Furthermore, let c1, c2, . . . , cn be given censoring times.

Then, for each individual, we do not necessarily observe the survival time ti itself, but only

the censored survival time t̃i “ minpti, ciq along with a death indicator di “ Itt̃i “ tiu
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which equals 1 if the actual survival time is observed, and 0 if the censored time is

observed. If di “ 1, the ith individual contributes fpt̃i;θq to the likelihood, and if di “ 0,

the ith individual contributes Spt̃i;θq to the likelihood. Both contributions can be written

in a single expression, and the likelihood contribution of individual i may be written as

Lipθq “ fpt̃i;θq
di Spt̃i;θq

1´di

“ λpt̃i;θq
di Spt̃i;θq,

(B.18)

where Equation B.4 is used in the second step. Because the likelihood contributions from

all individuals are independent, the full likelihood can be written as

Lpθq “
n
ź

i“1

Lipθq

“

n
ź

i“1

fpt̃i;θq
di Spt̃i;θq

1´di

“

n
ź

i“1

λpt̃i;θq
di Spt̃i;θq.

(B.19)

Taking logarithms and using Equation B.7, we obtain the log-likelihood function

lpθq “
n
ÿ

i“1

tdi log λpt̃i;θq ´ Λpt̃i;θqu, (B.20)

which is maximised with respect to θ to obtain parameter estimates θ̂.

B.5.2 Accelerated Lifetime Model

Until now we have been concerned with individuals’ lifetimes that all follow the same

survival function Sptq. However, these lifetimes may be affected by explanatory

variables, and therefore the inclusion of these variables may be beneficiary to survival

models. The accelerated lifetime model (ALM) is a survival model that incorporates

explanatory variables. It assumes that the survival function has the same shape for all

individuals, and that explanatory variables affect survival time by altering the speed at

which individuals move along the curve. Therefore, it scales the time by a function of

explanatory variables in the survival function.
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Let S0ptiq be the baseline survival function of individual i, that is, the survival function

of an individual with his explanatory variable(s) taking the value zero. This corresponds

to non-parametric estimation of the survival function, as described in Section B.4. Then,

time is rescaled by exppx1iβq, and the survival function for individual i becomes

Spti;xiq “ S0pexppx1iβqtiq, (B.21)

where xi “ pxi1, xi2, . . . , xiqq
1 is a q-dimensional vector of covariates of individual i with

coefficients β “ pβ1, β2, . . . , βqq
1. The factor exppβq is called the acceleration factor, and

represents the speed at which an individual moves along the survival curve. If the factor

is larger than one, then individuals with higher values of xi will tend to have earlier event

times. Vice versa, if the factor is smaller than one, then individuals with higher values of

xi will tend to have later event times.

Additionally, using Equation B.2 and the fact that B

Bt
F ptq “ fptq, the density function of

the lifetime of individual i becomes

fpti;xiq “
B

Bt
p1´ Spti;xiqq

“ exppx1iβqf0pexppx1iβqtiq,

(B.22)

where f0p¨q is the baseline density. Furthermore, using Equations B.4 and B.22, the hazard

function of individual i becomes

λpti;xiq “ exppx1iβqλ0pexppx1iβqtiq, (B.23)

where λ0p¨q is the baseline hazard. Here, the baseline density and baseline hazard are

non-parametric estimates of the density and hazard function, as described in Section B.4.

Since ALM contains both a parametric and a non-parametric part, it is said to be semi-

parametric. Note that in the absence of covariates, the ALM’s semi-parametric estimation

reduces to ordinary non-parametric estimation.
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B.5.3 Proportional Hazard Model

Another duration model that allows for the incorporation of explanatory variables is the

proportional hazard model (PHM). The description of the proportional hazard model in

this subsection closely follows the description as given in Aalen et al. (2008). The PHM

assumes that explanatory variables are multiplicatively related to the hazard function, or,

in other words, explanatory variables are assumed to change the chance of failure. Note

that these variables do not change the time at which the hazard is high or low. Formally,

it is assumed that the hazard function of individual i takes the form

λpti|xiq “ rpxiptq,βqλ0ptiq, (B.24)

where xi “ pxi1ptq, xi2ptq, . . . , xiqptqq
1 is a q-dimensional vector of covariates of individual

i that can be both fixed or time-varying, rpxiptq,βq is a relative risk function that

describes how the size of the hazard function depends on explanatory variables, and

λ0ptiq is the baseline hazard that describes the shape of the hazard function over time.

Note that this model contains both a non-parametric part (the baseline hazard) and a

parametric part (the relative risk function), and is therefore said to be semi-parametric.

Note that in the absence of covariates, the PHM’s semi-parametric estimation reduces to

non-parametric estimation (Rodrıguez, 2005). In the literature, the relative risk

functions has been specified in multiple ways. For example, the exponential relative risk

function takes the form rpxiptq,βq “ exppxiptq
1βq, the linear relative risk function takes

the form rpxiptq,βq “ 1 ` xiptq
1β, and the excess relative risk model takes the form

rpxiptq,βq “
śp

j“1 1` βjxijptq. The use of the exponential relative risk function results

in the well-known Cox regression model. In the Cox regression model, B lnλpti|xiq

Bxi
“ β,

and the coefficient can be interpreted as the constant proportional effect of the

explanatory variables on the hazard function.

Using Equations B.6, B.7, and B.24, the survival function of individual i can be written

as

Spti|xiq “ expp´Λptiqq

“ expp´rpxiptq,βqΛ0ptiqq.
(B.25)

Furthermore, using Equations B.4, B.24, and B.25, the density function of individual i
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can be written as

fpti|xiq “ λpti|xiqSpti|xiq

“ rpxiptq,βqλ0ptiq expp´rpxiptq,βqΛ0ptiqq.
(B.26)

The semi-parametric nature of the model does not allow for the use of ordinary likelihood

methods to estimate the regression coefficients. Therefore, one has to resort to a partial

likelihood. First note that the intensity process of Niptq may be written as

hiptq “ Yiptq αpt|xiptqq. (B.27)

Using Equation B.24, the intensity process of Niptq can be rewritten as

hiptq “ Yiptq α0ptq rpxiptq,βq. (B.28)

Next, the intensity process of the aggregated counting process N‚ptq can be written as

λ‚ptq “
n
ÿ

l“1

λlptq “
n
ÿ

l“1

Ylptq α0ptq rpxlptq,βq. (B.29)

The intensity process of Niptq may be factorized as λiptq “ λ‚ptqπpi|tq, where

πpi|tq “
λiptq

λ‚ptq
“

Yiptqrpxiptq,βq
řn
l“1 Ylptqrpxlptq,βq

, (B.30)

which can be interpreted as the conditional probability that an event occurs for individual

i at time t. To obtain the partial likelihood for β, these conditional probabilities are

multiplied over all event times. Assume that there are no tied event times and let the n

observations be sorted by their duration such that

t1 ă t2 ă . . . ă tn. (B.31)

The partial likelihood then becomes

Lpβq “
ź

tj

πpij|tjq “
ź

tj

Yijptjqrpxijptjq,βq
řn
l“1 Ylptjqrpxlptjq,βq

, (B.32)
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where ij is the index of the individual who experiences an event at Tj. Furthermore, let

the risk set Rj “ tl|Ylptjq “ 1u be the set of individuals who are at risk ‘just before’ time

tj. Then, the partial likelihood can be rewritten as

Lpβq “
ź

tj

rpxijptjq,βq
ř

lPRj
rpxlptjq,βq

. (B.33)

Note that the likelihood does not include the hazard function, which implies that it is not

necessary to specify the hazard function in order to estimate β.

In case there exist tied data an adjustment to the likelihood function is needed. Sort the

durations such that

t1 ă t2 ă . . . ă tk, (B.34)

with k ď n. Let dj be the number of events occurring at time tj, and let Dptjq denote

the set of individuals that died at time tj. The partial likelihood then becomes

Lpβq “
k
ź

j“1

ś

mPDptjq
rpxmptjq,βq

t
ř

lPRptjq
rpxlptjq,βqudj

. (B.35)

B.6 Forecasting

In the case of non-parametric estimation, the probability that the event for individual i

ends within the next ∆t period, given that it has not ended at time ti, is given by

P rTi ď ti `∆t|Ti ą tis “ 1´ P rTi ą ti `∆ti|Ti ą ts

“ 1´
P rTi ą ti `∆tis

P rTi ą tis

“ 1´
Spti `∆tiq

Sptiq
.

(B.36)

Furthermore, this probability is derived similarly as in Equation B.36 for the parametric

models, the difference being that one conditions on the fact that the explanatory variables

of the corresponding individual are known. This probability then becomes

P rTi ď ti `∆t|Ti ą ti,xis “ 1´
Spti `∆ti|xiq

Spti|xiq
. (B.37)
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Appendix C: Gradient Tree Boosting

This section provides a detailed description of the technique called gradient tree

boosting. Gradient tree boosting (Friedman, 2002) is a machine learning technique for

both classification and regression problems that uses an ensemble of ‘weak’ decision

trees to obtain a ‘strong’ predictor. Compared to a single decision tree, gradient tree

boosting outputs predictions with both lower bias and variance. To do this, it uses a

forward stage-wise modelling approach that allows for the optimisation of a

differentiable loss function that measures how well the model performs. The high

performance of gradient tree boosting has made this a popular technique among data

scientists. It has been used consistently to win machine learning competitions on

Kaggle, a platform for predictive modelling and analytics competitions.

Before one can understand the concept of gradient tree boosting, one has to be

acquainted with both decision trees and gradient boosting. Moreover, to be able to

understand gradient boosting, one has to be acquainted with basic ensemble techniques

such as bagging and generic boosting. Therefore, this section continues with a detailed

description of decision trees, whereafter several ensemble techniques are described

including gradient boosting.

C.1 Decision tree

Decision tree learning is a supervised machine learning technique that predicts a response

variable based on several input variables by using a tree-like structure. A decision tree

groups data instances by posing a series of questions about the features associated with

the instances. It starts using the whole set of data instances and splits it into multiple

subsets for each possible answer to its question. Each of these subsets is then split into

smaller subsets in a similar fashion. This process is repeated until a stopping criterion

is met. In each of the final subsets, a constant is predicted for the response variable.

Once the tree is grown, new data instances follow the path from the whole set of data

instances to one of the final subsets of data instances, and the value that was assigned to

the corresponding subset is predicted for the response variable.
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Figure C.1: Graphical representation of a binary tree with four terminal nodes.

A tree consists of nodes that represent the subsets of data instances. These nodes are split

into sub-nodes according to a certain splitting rule. Nodes that do not split are called

leaf nodes or terminal nodes, and a single constant is predicted for the response variable

of all data instances that fall into these nodes. Nodes are usually only allowed to have

exactly two sub-nodes and in this special case the tree is called a binary tree. Figure C.1

shows an example of a binary tree. The first node (node A) contains the set of all data

instances and is called the root node. This set of data instances is split into two subsets

(node B and C) according to some splitting rule. These two nodes are then also split into

two subsets (nodes D, E, F, and G) according to their own splitting rules. The final four

nodes are not split any further and are therefore leaf nodes.

There are two types of decision trees, each depending on the type of response variable

that is used. Classification trees deal with discrete response variables, whereas regression

trees deal with continuous response variables. These two types of trees differ in how the

best splitting variable and split point is chosen. Since the response variable in this study

is continuous, I will only describe regression trees in the remainder of this subsection.

This description closely follows the description as given in Hastie et al. (2009).

Growing a tree involves deciding on what feature and condition to use at each split. Given

a learning set L “ tpyi,xiqu
N
i“1 with continuous y, the objective of tree learning is to find
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a function F ˚pxq that maps the explanatory variables x to the response variable y, such

that the expected value of a certain loss function Ψpy, F pxqq is minimised

F ˚pxq “ arg min
F pxq

Ey,xrΨpy, F pxqqs. (C.1)

A common choice for the loss function is least-squares: Ψpy, F q “ py´F q2. Now suppose

that the data are partitioned into M regions R1, R2, ..., RM , and that a constant cm is

predicted in each region. An approximation of F ˚pxq will then be

F pxq “
M
ÿ

m“1

cmIpx P Rmq. (C.2)

Note that for a least-squares loss function, the optimal cm is the average of yi in region

Rm:

ĉm “ avepyi|xi P Rmq. (C.3)

Finding the optimal binary partition in terms of Ψpy, F pxqq is generally computationally

infeasible, and therefore a greedy algorithm is used. Starting with the complete set of

data instances, consider a splitting variable j and split point s that split the set of data

instances into regions

R1pj, sq “ tx|xj ď su and R2pj, sq “ tx|xj ą su. (C.4)

The optimal value of j and s are then found by solving

min
j,s

„

min
c1

ÿ

i|xiPR1pj,sq

Ψpyi, c1q `min
c2

ÿ

i|xiPR2pj,sq

Ψpyi, c2q



. (C.5)

Note that for a least-squares loss function, the inner minimisation problems are solved by

ĉ1 “ avepyi|xi P R1pj, sqq and ĉ2 “ avepyi|xi P R2pj, sqq. (C.6)

In words, the algorithm computes the loss for every possible pair pj, sq and chooses the

pair that results in the lowest loss, assuming that the accumulation of locally best results

delivers the global best partition of the feature space. Since determining the split point

s for splitting variable j can be done very quickly, scanning through all pj, sq pairs is

79



computationally feasible. After the best split is found, the data are partitioned into the

two resulting regions, and the splitting process is repeated for these new regions.

In addition to finding the best splitting variable and split point at each split, growing a

tree also involves knowing when to stop splitting. Large trees tend to overfit the data,

leading to unreliable estimates for new data instances, whereas small trees might underfit

the data, i.e. not capturing the underlying structure of the data. Reducing the size of a

tree is called pruning and there are several ways to do this.

A very basic pruning method is to stop splitting when the number of data instances in a

node is below a certain threshold. Another basic method is to stop splitting if the decrease

in loss is smaller than a certain threshold. These methods are too short-sighted, however,

as seemingly worthless splits may lead to good splits later on. Therefore, one usually

grows a tree as large as possible and then prunes the tree using cost-complexity pruning.

Cost-complexity pruning leverages the out-of-sample improvement of adding branches

with the added complexity. Let a subtree T Ă T0 be any tree that can be obtained by

pruning T0, that is, by collapsing any number of its non-terminal nodes. Furthermore, let

|T | be the number of terminal nodes in T . Now define the following variables:

Nm “ #txi P Rmu, (C.7)

ĉm “ min
cm

ÿ

i|xiPRm

Ψpyi, cmq, (C.8)

QmpT q “
1

Nm

ÿ

i|xiPRm

Ψpyi, ĉmq. (C.9)

The cost-complexity criterion can then be defined as

CαpT q “

|T |
ÿ

m“1

NmQmpT q ` α|T |, (C.10)

which is the sum of the prediction errors in each terminal node along with an extra term

that penalises the number of terminal nodes in the tree. The goal is to find the subtree

Tα Ď T0 that minimises CαpT q, for each value of α. Note that there are infinite values

of α but that one only considers values that change the number of nodes in the tree.

One then chooses Tα̂ as final tree, where the value α̂ results in the lowest out-of-sample
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loss, which is usually computed using 5-fold or 10-fold cross-validation. The penalty term

α ě 0 controls the trade-off between the tree complexity and the prediction error. Larger

values of α will result in smaller trees and smaller values of α will result in larger trees. If

α “ 0, Tα will be a full grown tree, and if αÑ 8, Tα will be a tree consisting of a single

node.

One can prove that there exists a unique smallest subtree Tα that minimises CαpT q for

a given α. Let the internal nodes that produce the smallest increase in prediction error

(
ř

mNmQmpT q) be collapsed successively until one ends up with only the root node. This

results in a finite sequence of subtrees, and Breiman et al. (1984) and Ripley (2007) show

that this sequence must include Tα.

C.2 Ensemble learning

Ensemble learning is a machine learning concept in which the idea is to combine the

predictions of multiple base learners to obtain better predictive performance than could

be obtained from any of the single base learners alone. The main idea behind ensemble

learning is that a group of ‘weak’ base learners, which are learners that predict relatively

poorly, come together to from a ‘strong’ learner, thus increasing the model’s performance.

The base learners can be trained using several different learning techniques, but also

using a single learning technique multiple times. Ensemble learning can be used both for

regression and classification problems. In a regression setting, the predictions of the base

learners are combined using a (weighted) average. In a classification setting, the predicted

class is the class that has been predicted the most by the base learners.

C.2.1 Bagging

Bagging (Breiman, 1996) is an ensemble algorithm that is based on combining predictions

of multiple base learners trained on bootstrapped training sets. Let L be a learning set

that consists of labelled instances tpyi,xiqu
N
i“1, where y is either a categorical or continuous

response variable, and x is a vector of explanatory variables. Assume there exists a

learning system that maps the explanatory variables to the response variable using the
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learning set and call this predictor φpx;Lq. Furthermore, assume that there exist multiple

learning sets tLku
K
k“1, each consisting of N independent and identically distributed (i.i.d)

observations. The goal is to exploit the existence of multiple learning sets to improve on

the predictor φpx;Lq, which only uses a single learning set.

The idea is to construct a predictor φpx;Lkq on each learning set Lk and then aggregate

these predictions into a single prediction. If the response variable is continuous, one takes

the average of all φpx;Lkq: φApxq “
1
K

řK
k“1 φpx;Lkq, where the subscript A in φA denotes

aggregation. If the response variable is categorical and takes values j P t1, ..., Ju, then one

aggregates all φpx;Lkq by taking the mode. More formally, let Nj “ #tk; φpx;Lkq “ ju

and take φApxq “ argmaxj Nj, that is, the j for which Nj is largest.

Usually, one only has a single learning set at their disposal and therefore cannot exploit the

existence of multiple learning sets. However, one can construct replicates of the original

learning set by bootstrapping the learning set L multiple times. More formally, one creates

K bootstrapped learning sets tL
pBq
k uKk“1 by drawing N random instances with replacement

from the original learning set L, K times. If the response variable is continuous, take

φApxq “
1
K

řK
k“1 φpx;L

pBq
k q, and if the response variable is categorical, take φApxq “

argmaxj Nj, where Nj “ #tk; φpx;L
pBq
k q “ ju. Aggregating the predictions of predictors

that were constructed on bootstrapped samples of the learning set is called ‘bootstrap

aggregating’, and one often uses the acronym bagging. To summarise, Algorithm 1

describes the bagging algorithm in pseudo-code.

Algorithm 1 Bagging

Require: learning set L “ tpyi,xiqu
N
i“1, predictor φ, integer K (number of bootstrap

samples).
for k “ 1 to K do
L
pBq
k “ bootstrap sample from L (N random draws with replacement)

Φk “ φpx;L
pBq
k q

end for
if y is continuous then
φApxq “

1
K

řK
k“1 Φk

else
φApxq “ argmaxj p#tk; Φk “ juq, for classes j P t1, ..., Ju

end if
Output φApxq
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Breiman (1996) shows that the variance of the bagged estimator φApxq is always smaller

than or equal to the variance of a single estimator φpxq. This variance reduction is

relatively large for unstable predictors such as decision trees. Moreover, the magnitude

of the bias is roughly the same for both the bagged and the single predictor. This means

that the performance of unstable predictors will improve by the bagging procedure, and

that the performance of stable predictors will roughly stay the same.

C.2.2 Boosting

Boosting is an ensemble method that, as opposed to bagging, generates the base learners

sequentially instead of in parallel, and uses weighted random subsamples of the data

instead of random bootstrap samples. After a base learner is trained on a subsample of the

learning set, the whole learning set is used to test the model, resulting in prediction errors

for each data instance. The instances are then reweighted, such that instances that were

predicted poorly are assigned large weights. These instances with larger weights have a

higher probability to be selected in the next subsample. This way, each newly created base

learner places emphasis on instances that are difficult to predict. By doing so, boosting

tries to decrease the bias of the predictor. Furthermore, by taking a (weighted) average of

the predictions of many base learners, boosting also reduces variance. Algorithm 2 shows

the pseudo-code of the generic boosting algorithm.

Algorithm 2 Generic boosting

Require: learning set L “ tpyi,xiqu
N
i“1, predictor φ, integer K (number of iterations).

Initialise weights w “ 1
for k “ 1 to K do
L1 “ subsample of L (weighted random sample with weights w)
Φk “ φpx, L1q
Test Φk using L and update weights w according to prediction errors

end for
if y is continuous then
φApxq “

1
K

řK
k“1 Φk

else
φApxq “ argmaxj p#tk; Φk “ juq, for classes j P t1, ..., Ju

end if
Output φApxq
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Algorithm 2 has been implemented in many different ways. These implementations differ

in how the data instances are tested and weighted. A popular boosting algorithm for

binary categorical data is AdaBoost (Freund and Schapire, 1996). In addition to the

generic boosting algorithm, AdaBoost assigns weights to each base learner, which are

based on a logarithmic function of their average classification error. Base learners with

an accuracy of over 50% are given positive weights, base learners with an accuracy below

50% are given negative weights, and base learners with an accuracy of 50% are given

no weight. Furthermore, the weights in AdaBoost are updated exponentially after each

iteration, and therefore instances that were predicted good (bad) are given a relatively

small (large) weight. At the end of the algorithm, the predictions of the base learners

are aggregated by a weighted majority vote, where base learners with a high classification

rate have higher weights.

C.2.3 Gradient Boosting

Boosting suits additional models that are based on minimising a certain loss function. A

loss function evaluates how well a model performs by measuring the deviation between

a model’s prediction and the actual value of data instances. By minimising this loss

function the model finds optimal parameter values which will result in more accurate

predictions. In many optimisation problems, however, finding the minimum of a loss

function is computationally infeasible. A solution to this problem is to approximate the

minimum of the loss function by using a forward stage-wise modelling approach, such as

gradient descent. Gradient boosting (Friedman, 2001) is a technique that builds a model

in a forward-stage wise fashion, and generalises it by allowing the minimisation of a loss

function by gradient descent. The description of gradient boosting in this subsection

closely follows the description as given in Friedman (2002).

Given a learning set L “ tpyi,xiqu
N
i“1, the objective of gradient boosting is to find a

function F ˚pxq that maps the explanatory variables x to the response variable y, such

that the expected value of a certain loss function Ψpy, F pxqq is minimised

F ˚pxq “ arg min
F pxq

Ey,xrΨpy, F pxqqs. (C.11)
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Common choices for the loss function include least-squares: Ψpy, F q “ py ´ F q2, least

absolute deviation: Ψpy, F q “ |y ´ F |, and Huber-M: Ψpy, F q “ py ´ F q2Ip|y ´ F | ď

δq ` 2δp|y ´ F | ´ δ{2qIp|y ´ F | ą δq, where Ip¨q is the indicator function. Boosting

approximates the function F ˚pxq by means of an additive expansion of the form

F pxq “
K
ÿ

k“0

βk φkpxq, (C.12)

where K is the number of iterations, φkpxq is the fitted base learner in the k-th iteration,

and βk is the expansion coefficient of the k-th base learner. Using Equation C.12, we can

define Fkpxq for k “ 1, ..., K as

Fkpxq “ Fk´1pxq ` βkφkpxq, (C.13)

where F0pxq is an initial constant estimate of F ˚pxq. Gradient boosting finds φkpxq and

the optimal value of βk in Equation C.12 for loss function Ψpy, F pxqq using a two step

gradient descent procedure. First, the base leaner φkpxq is fit to the so-called pseudo-

residuals

ỹik “ ´

„

BΨpyi, F pxiqq

BF pxiq



F pxq“Fk´1pxq

, (C.14)

and afterwards, the optimal value of βk is determined by

βk “ arg min
β

N
ÿ

i“1

Ψpyi, Fk´1pxiq ` βφkpxiqq. (C.15)

In words, gradient boosting finds a function that maps the explanatory variables to the

response variable by combining boosting with gradient descent. It starts with an initial

guess as model, and keeps adding sub-models to this model. Each sub-model explores

the path that his predecessor has already followed and tries to improve this model by

following the direction of the negative gradient to reach closer to the local minimum of

the loss function. Algorithm 3 shows the pseudo-code of the gradient boosting algorithm.
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Algorithm 3 Gradient boosting

Require: learning set L “ tpyi,xiqu
N
i“1, predictor φ, integer K (number of iterations),

differentiable loss function Ψpy, F pxqq.
F0pxq “ arg minβ

řN
i“1 Ψpyi, βq

for k “ 1 to K do

ỹik “ ´

„

BΨpyi,F pxiqq

BF pxiq



F pxq“Fk´1pxq

, i “ 1, ..., N

Fit base learner φkpxq to ỹik, i.e. train using the learning set tpỹik,xiqu
N
i“1

βk “ arg minβ
řN
i“1 Ψpyi, Fk´1pxiq ` βφkpxiqq

Fkpxq “ Fk´1pxq ` βkφkpxq
end for
Output FKpxq

C.2.4 Gradient Tree Boosting

Gradient boosting is used typically with decision trees (see Section C.1) of a fixed size

as base learners. For this case Friedman (2002) proposes an adjustment to the gradient

boosting algorithm which enhances the quality of fit of each regression tree and is known

as gradient tree boosting. Let the base learner φpxq be an L-terminal node regression

tree. At each iteration k in the algorithm, the feature space is divided into L-disjoint

regions tRlku
L
l“1, where a separate constant value is predicted in each region. Then, φkpxq

can be written as

φkpx; tRlku
L
l“1q “

L
ÿ

l“1

ȳlk Ipx P Rlkq, (C.16)

where ȳlk “ avepỹik|xi P Rlkq is the average of ỹik in Equation C.14 in each region Rlk.

Furthermore, decision trees allow βk in Equation C.15 to be solved separately within each

region Rlk, and Equation C.15 reduces to

βlk “ arg min
β

ÿ

xiPRlk

Ψpyi, Fk´1pxiq ` βq. (C.17)

The current model Fk´1pxq is then updated separately in each corresponding region

Fkpxq “ Fk´1pxq `
L
ÿ

l“1

βlk Ipx P Rlkq. (C.18)
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