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Abstract: The collaboration between a truck and drone with the joint
objective to satisfy customer demand under minimisation of the execution
time is studied. Leading exact methods approach the problem in the fash-
ion of a set covering problem but have to cope with a large solution space.
A framework is introduced that refines the solution space, improving the
performance of existing methods. Furthermore, a branch-cut-and-price al-
gorithm is proposed and a branching rule is introduced that is specific
for the problem. Despite, the pricing procedure did not yield any com-
putational advantage over the branch-and-cut benchmark. The computa-
tional study showed promising results as problems with 34 customers were
solved to optimality, whereas the best-known exact methods could handle
up to 15 customers under the same conditions. Furthermore, a local search
routine within the methods was considered and achieved reductions in
the costs of up to 6% for a problem with 70 customers compared to a re-
spectable heuristic (Agatz et al., 2016).
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1 introduction

Drone delivery started as a futuristic concept and is now receiving rising interest in the
industry of logistics. Especially in the parcel delivery industry companies are trying
to innovate through the use of drones. Ideas range from standalone delivery using
drones based from a central warehouse, or even based from a large airship, to assisting
delivery vehicles with drones. Nowadays, the development is also expanding to the
logistics of large cargo (Shivdas, 2018). As the technology becomes available, research
is needed to make the best operational decisions.

The setting in this paper is that of a collaborative delivery network involving a
single truck and drone. As usual, the problem involves a delivery truck that has to
visit locations to deliver parcels. However, in addition, the truck is accompanied by
a drone that is installed on top of the truck. This drone can ascent from the truck to
deliver packages to destinations and returns to the truck after doing so. The drone
and truck work together and in parallel, which possibly reduces costs and improves
service. In this paper, an exact method is developed that optimises the problem.

In the literature the problem is often referred to as the TSP-D, the travelling sales-
man problem with drone. Although some papers have introduced exact algorithms,
these can only solve small problems. Besides, branch-cut-and-price has become an
established method in the literature, yet remains to be unconsidered for the TSP-D.

This paper aims to set a new standard for the current exact approaches by devel-
oping a branch-cut-and-price algorithm. For this purpose, TSP-D related concepts
from existing literature will be adapted and refined. Computational experiments are
conducted on a computer cluster to assess the performance of the method and its per-
formance relative to alternatives. Finally, it is studied whether the method acts useful
for large instances.

The remainder of this paper is structured as follows. Section 2 discusses literature
related to the TSP-D problem and applications of methods relevant to this paper. In
Section 3 the problem is formally introduced and provided as a mathematical problem.
Besides, existing concepts are discussed and refinements are made to the framework
of these concepts. Next, Section 4 discusses the components of the algorithm. These
include two methods for the pricing procedure in the algorithm, and a discussion on
dynamic subtour elimination. In Section 5 the experimental framework is introduced
and the performance of the algorithm is assessed. Finally, concluding remarks are
provided in Section 6.

2 literature review

The literature exhibits different names for problems involving the collaborative use of
trucks and drones, that are essentially the same. Nevertheless, each of these papers
provides a good overview of related research. This section positions the research of this
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paper in the literature and provides an overview of research conducted on the TSP-D
and related problems. Likewise, the branch-cut-and-price method will be addressed.

The TSP-D problem, as defined in this paper, first appeared in Agatz et al. (2016)
and was also studied in the follow-up (Bouman et al., 2017). Notable is that the papers
handle the problem using the convenient concept of operations, describing a collection
of several truck and drone actions. In the initial paper the authors approached to solve
the TSP-D by developing heuristics. An exact method using integer programming
was also studied, but shortly after, the leading dynamic programming approach was
developed. This paper adopts and refines the framework of operations and intends to
solve instances beyond what current methods can handle.

A problem almost identical to the TSP-D is the flying sidekick travelling salesman
problem (FSTSP), first studied in Murray and Chu (2015). The problem differs as it
does not allow for a rendezvous at the same location as where the drone took off
priorly. Murray and Chu (2015) together with Ha et al. (2015) provided integer pro-
gramming formulations and developed heuristics to solve the problem. Furthermore,
Ferrandez et al. (2016) studied a genetic algorithm and Ponza (2016) used simulated
annealing to obtain solutions.

Numerous papers study the problem in which solely drones may complete deliver-
ies. In Mathew et al. (2015), the problem is called the heterogeneous delivery problem.
Besides, Othman et al. (2017) study the last-stretch delivery problem under the added
assumption that the truck route is predetermined. In Carlsson and Song (2017), the
horsefly problem is studied, which assumes no restricted launch and return locations
for the drone. Garone et al. (2010) study carrier-vehicle systems for military applica-
tions. Although the problem emerged from a different environment, many similarities
with the foregoing problems are present.

Also, Ha et al. (2018) consider minimising the operational costs together with costs
incurred for waiting times instead of the usual total delivery time. At last, the paper
of Dorling et al. (2017) is mentioned, which studies an energy consumption constraint
that relates flight times and payload weight. This may become interesting for more
realistic applications of the TSP-D.

A natural extension is to consider a single truck with multiple drones. This has been
studied in Ferrandez et al. (2016) and was also part of Carlsson and Song (2017). Fur-
thermore, the VRPD, a setting with multiple vehicles and multiple drones dedicated to
specific vehicles, is studied by Wang et al. (2016) together with Poikonen et al. (2017).
The papers contribute by researching the added value of including drones in contrast
to operating trucks exclusively. Next, Daknama and Kraus (2017) include the possi-
bility for drones to switch between trucks, and attempts to solve the problem with a
heuristic.

Applications of branch-cut-and-price have started to appear rapidly in the last decade.
The method combines branch-and-bound, cutting planes and column generation to
solve integer programs. Previously, the combination of branch-and-bound and cut-
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ting planes led to advancements in solving the travelling salesman problem (Padberg
and Rinaldi, 1991). Some time following, the combination of branch-and-bound and
column generation was studied (Barnhart et al., 1998) to solve integer programs with
many decision variables. In turn, the combination of all three methods shows to be ef-
fective for problems such as the capacitated vehicle routing problem (Fukasawa et al.,
2006). Despite its wide applicability, a drawback of the method is that it is often
considered too sophisticated as it requires tailoring to the problem at hand.

3 problem formulation

In this section, a formal problem formulation is provided. Besides, the concept of
operations is introduced together with a theoretical framework. In addition, an integer
program is provided that solves the problem. Thereby, the concept of operations and
the integer program stem from Agatz et al. (2016) and are further built upon.

3.1 Formal Problem Description

The TSP-D is a routing problem that can be represented on a graph G = (V ,E) with a
collection of nodes V connected by a complete set E of edges. The members of V , say v0
and v1, ..., vn, represent the depot and n customer locations, respectively. Throughout
this paper, the customer locations are simply referred to as locations, whereas the
depot may be involved when speaking of nodes. Furthermore, the truck and drone
are assumed to be heterogeneous and are, respectively, subject to costs cuw and cduw

incurred for using edge (u,w) to travel between nodes u and w.
The problem requires to visit all customer locations by constructing a closed walk

in the graph G, that starts and ends at v0, for both the truck and the drone. From now
on, such walks will be referred to as a tours. In other words, each customer location
is at least either on the tour of the truck or drone. The objective is to do this with
minimal costs. Like other studies, this paper will focus on minimising the total time to
complete the longest tour, implying that cuw and cduw represent travelling times. For
writing convenience throughout the paper, travel times are often referred to as costs
as well. In addition, the research in this paper is limited to the assumption that the
triangle inequality is respected by cuw and cduw, respectively. In words, the fastest way
to reach node w from node u is by utilising the edge (u,w).

Two further restrictions are imposed on the solution. Firstly, a rendezvous between
the truck and drone must occur at nodes in the graph V . As a result, a node is visited
by either the truck, the drone or both. Such nodes will be referred to as truck nodes,
drone nodes and combined nodes, respectively. Secondly, a drone can only deliver
one parcel at a time before it has to rendezvous with the truck again.

As a side note, Agatz et al. (2016) observed that, unlike most routing minimisation
problems, it could be optimal to visit nodes more than once as this allows the truck
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and drone to interact, but that it remains optimal to visit a node once that appears as
a truck node or drone node. As the tours start at the depot, it is reasonable to assume
that the depot cannot be a truck node or drone node.

3.2 Operation Framework

Define an operation as a smaller segment in the tour consisting of the collection of one
or two combined nodes, a non-negative number of truck nodes and at most one drone
node. In this way, the truck and drone tour can be represented by a set of operations.
Operations with no drone node will be called simple operations in this paper. Building
upon this concept, the following framework is introduced that elaborates on previous
research.

First some notation regarding operations is introduced, to be used throughout the
rest of this paper. Conveniently, an operation o can be represented by a tuple. Con-
sider O ′ to be the collection of all possible operations that satisfy the definition of an
operation. Accordingly, for o ∈ O ′, let

o ≡ < uo,wo,do, To,Vo, co > . (1)

The tuple describes an operation by a start node uo, end node wo, drone node do,
sequence of truck nodes To, set of nodes covered Vo and operational costs co. Here,
Vo = {uo,wo,do}∪ To, and co corresponds to the largest among the costs of the drone
path and truck path. For convenience, denote tv for the travel time of the truck from
start node uo to some node v ∈ To ∪ {wo}.

The number of possible operations is large and some may be more desirable than
others. For most methods, it is desired to identify and select those operations that have
the most potential to produce a good solution. In the context of exact methods, a suf-
ficient subset is desired, being a set O ⊆ O ′ that can still provide an optimal solution
to the TSP-D. In the following discussion a framework intended for exact methods is
developed that introduces properties, describing different classes of operations. Before
doing so, consider the notion of equivalence.

Definition 1 (Equivalence). Let sequences of n operations {o11, ...,o1n} ∈ O ′ and m
operations {o21, ...,o2m} ∈ O ′ be given. The sequences of operations are equivalent
if the start nodes and end nodes of the sequences are equal and the sequences cover
the same set of nodes. In other words, uo11

= uo21
, wo1n

= wo2m
and

⋃n
i=1 Vo1i

=⋃m
i=1 Vo2i

.

Definition 1 implies that replacing a sequence of operations by an equivalent se-
quence in a solution also creates a solution to the TSP-D. Equivalence will be useful in
the context of two single operations or a single operation and a sequence of operations.
Namely, an operation that can be represented in an alternative way that is as at least
as good can be left out of consideration.
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A subset Oe ⊆ O ′ is called an equivalent subset of O ′ if for all operations o ∈ O ′
there is an operation or sequence of operations from Oe that is equivalent to o. A
special case of this is Oc, defining an equivalent subset of minimal costs. Here, Oc sat-
isfies that its members are equivalent or part of a sequence equivalent to some o ∈ O ′
for which no other equivalent operation or sequence of operations exists with smaller
costs. Nevertheless, equivalence relations may still exist among the individual mem-
bers of Oc as two operations can be equally good. Removing such relations defines
another special set Os, an equivalent subset of minimal size. The defining property of
Os is that removing any of its members results in Os not being an equivalent subset
any longer. As a final remark, Oc and Os are not unique sets but arbitrary sets that
respect the definition.

Proving that some subset O is sufficient is straightforward provided that O is equiv-
alent. A number of properties will be discussed that are based on equivalence. Firstly,
two properties will be introduced that concern equivalence between operations. The
property of efficiency was already considered by Bouman et al. (2017).

Definition 2 (Efficiency). An operation o is called efficient if the trucks nodes To are
covered by the truck along one of the shortest paths starting at uo and ending at wo.

Efficiency assesses an operation based on the quality of its truck path. A sufficient
subset can be constructed by taking all efficient operations from O ′. However, equiva-
lence relations concerning two operations may still be present even if all shortest paths
are unique. The following property aims to deal with this.

Definition 3 (Effectiveness). An operation o ∈ O ′ is called effective if the partition of
the truck nodes and drone nodes, and the sequence of truck nodes are optimal in the
sense that the largest amongst the costs of the truck path and drone path is minimised
for fixed combined nodes.

The property of effectiveness accounts for the possibility that it is better to inter-
change the node assigned to the drone with one of the truck nodes. Note that it does
not always imply efficiency as the truck path need not be the shortest if the drone path
is longer.

Next, a property that acts upon equivalence between a single operation and a se-
quence of operations is introduced. This is useful as it enables large operations to be
disregarded and represented by an equivalent sequence of smaller operations instead.

Definition 4 (Compactness). An operation o ∈ O ′, with drone node do, is called
compact if no equivalent sequence of operations o1, ...on ∈ O \ {o}, with all but one
simple operations, exists with the same drone node and the same truck path that has
total costs not exceeding co.

In other words, it is not possible for the drone to take a different path without
increasing the costs. This implies that compactness filters out operations that require
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Figure 1: Illustration of compactness and effectiveness. (a) presents a graph with edges that
can be traversed in both directions for the stated costs, by both the drone and the
truck. On top of that, (a) depicts an efficient operation. (b) shows an equivalent
alternative of (a) that is compact. (c) shows an equivalent alternative of (a) that is
effective. Combined nodes are shaded.

the drone to take off sooner or postpone the rendezvous between the truck and drone
without benefit. Consequently, the implicit conditions that it is not possible for the
drone to depart later or return sooner will be referred to as compactness with respect
to the drone departure and return, respectively.

Examples of compactness and effectiveness are shown in Figure 1. Here, the oper-
ation that (a) depicts, with costs of 27 = max{27, 21}, is efficient as the path 1 → 3 →
4 → 5, of the truck, is shorter than the alternative 1 → 4 → 3 → 5. However, the
operation is not compact nor effective. The former is shown by (b), here the difference
is that the drone returns to the truck already at 4 instead of 5. Therefore, by the defini-
tion of an operation, now two operations are depicted. Since the total costs of the two
operations are also 27, it follows that in (a) the rendezvous is postponed, but without
benefit. The latter claim is shown by (c). By interchanging the drone node with one
of the truck nodes, the costs can be decreased to 21. These are the lowest possible for
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any operation that starts at 1, ends at 5, and covers the nodes {2, 3, 4}, which implies
that the operation in (c) is effective.

With the properties that have been discussed thus far, the following proposition can
be formulated.

Proposition 1 (Equivalent subset of minimal costs). The operations in O ′ that are
effective and compact constitute an equivalent subset Oc ⊆ O ′ of minimal costs.

Proof. Note that both effectiveness and compactness are properties that are based on
equivalence. As a result, the combination describes an equivalent subset. To show
that this set is a valid set Oc of minimal costs, it is proven that every equivalence of
minimal costs to some o ∈ O ′ can be described by operations that are effective and
compact.

By contradiction, assume that ∃o ∈ O ′ for which no equivalence of minimal costs
can be constituted by operations that are effective and compact. This implies that there
exists an equivalence of minimal costs with operations from O ′, that has strictly lower
costs than the cheapest alternative present in Oc. As this equivalence cannot be found
inOc, one of the operations is not effective or compact. However, by their definitions, it
is then possible to replace the operation inO ′ with an equivalent operation or sequence
of operations without incurring larger costs. This contradicts the above assumptions,
which completes the proof.

Obtaining an equivalent subset of minimal costs is desirable to deal with all of the
possible operations more easily. However, it is not always preferred to construct a
sufficient subset that is equivalent of minimal costs. In practice, it is better to deduce
such set from some other sufficient subset through explicitly checking for violations to
properties. The most valuable result is that of compactness with respect to the drone
arrival as it is can be applied as a resource constraint. This can be done relatively
easily while it can significantly reduce the size of sufficient subsets.

To conclude, one final property is introduced alongside the equivalence relations.
From a different perspective, even in the equivalent subset of minimal size Os, some
operations can be left out. To be more specific, it could occur that the travel distance
for the drone is large, which could make it possible for the truck to visit additional
locations within the same period of time. Such inefficiencies caused by imbalances
between the drone and truck route can be dealt with through the following property.

Definition 5 (Balancedness). An operation o ∈ O, with drone node do, is called bal-
anced if there is no node v ∈ V \ Vo that can be inserted into To, meaning that al
locations currently in To are visited in the same relative order, without increasing co.

In the worst case, imposing balancedness would rule out a particular optimal solu-
tion. However, a different solution with the same objective value can still be found by
replacing non-balanced operations with balanced operations. As a result, the solution
will visit some nodes multiple times.
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3.3 Mixed Integer Programming Formulation

To solve the problem, essentially it has to be decided which operations to execute. A
binary programming formulation for this problem is presented in Formulation 1 that
has similarities with the set covering problem and the travelling salesman problem.
The formulation improves on a number of aspects on the original formulation in Agatz
et al. (2016).

In essence, the formulation decides upon which nodes in V are designated as com-
bined nodes and constructs a tour through these nodes. This is done by considering
a sufficient subset O ⊆ O ′ of operations. Binary decision variables xo are introduced
that equal one if operation o is chosen, and zero otherwise, together with auxiliary
binary decision variables yv that equal one if node v is used as an end node amongst
the operations for which xo equals one. The costs for operation o are denoted by co.
Besides, O(v), O−(v), O+(v) and O+(S) define subsets of O. Here, O(v) is the set of
operations that contain node v, and O−(v) and O+(v), are sets of operations that have
v as start and end node, respectively. Likewise, for a given S ⊂ V , the operations with
their end node in S and start node outside S constitute O+(S). Lastly, each constraint
is followed by the notation of a dual variable corresponding to that constraint which
will be used in Section 4.

Minimise
∑
o∈O

coxo (2)

Subject to

∑
o∈O(v)\O+(v) xo > 1, ∀v ∈ V (3) λv∑

o∈O+(v) xo −
∑

o∈O−(v) xo = 0, ∀v ∈ V (4) µv

n · yv −
∑

o∈O+(v) xo > 0, ∀v ∈ V (5) ηv∑
o∈O+(S) xo − yv > 0, ∀S ⊆ V \ {v0}, ∀v ∈ S (6) ηvS

yv0
= 1, ∀o ∈ O (7)

xo ∈ {0, 1}, ∀o ∈ O (8)

yv ∈ {0, 1}, ∀i ∈ V (9)

Formulation 1: An improved formulation for the TSP-D problem.

The objective in (2) minimises the total time to serve all customers, which equals the
sum of the execution times of the separate operations that are chosen. The constraints
(3) and (4) require that the chosen operations form a tour. By constraints (3), every
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customer is served at least once. Constraints (4) make sure that an operation that ends
at a node is followed by an operation that starts at this node. An important remark
is that the expression in (3) excludes the end node. This prevents the constraints to
be loose and possibly improves the bound obtained from the linear relaxation. Next,
the constraints in (5) are auxiliary and identify the combined nodes in the solution
by setting the value of yv. As a result, constraints (6) use these values to eliminate
possible sub-tours in the solution. Essentially, these require a strongly connected graph
by stating that for every subset S of locations that consist of a combined node, an
operation is chosen that starts outside S and ends in S. In contrast to the original
formulation, the set S can be equal to V \ {v0}. This ensures that the formulation
behaves properly if the truck decides to stay at the depot. Lastly, (7) sets yv0

to 1 for
computational efficiency, and (8)-(9) require binary decisions to be made.

Formulation 1 introduces the TSP-D problem in its elementary form. For more
realistic applications of the problem, considerations such as a maximum flight time
for the drone, restrictions on nodes that the drone and truck can visit, or sparseness
of the network may be relevant. Most of these can easily be included by properly
defining a sufficient subset O ⊆ O ′.

4 methodology

In this section the branch-cut-and-price algorithm will be introduced. Branch-cut-and-
price is a generic approach that applies column generation and cutting planes during
branch-and-bound. The approach can deal with problems that have a large number
of redundant decision variables and constraints. This makes it a plausible approach
for solving Formulation 1, whose number of decision variables xo and subtour elimi-
nation constraints increase exponentially in the number of locations. In the upcoming
subsections an outline of the algorithm is provided, and its components are elaborated.
At last, a heuristic approach is proposed that is based on branch-cut-and-price.

4.1 Outline of Branch-Cut-and-Price

Branch-cut-and-price avoids solving the entirety of Formulation 1 by solving a so-
called restricted master problem, which abbreviates to RMP. This problem is restricted
in the sense that only a subset of the decision variables and constraints from the orig-
inal formulation are included. Consequently, the usual branch-and-bound scheme is
applied to the RMP, except the scheme is extended with procedures to achieve that the
quality of the solutions for the linear relaxations of the RMP and original formulation
are equal. This is done by dynamically adding needful rows and columns, which rep-
resent variables and constraints, respectively, to the RMP. Cutting planes and column
generation procedures, respectively, deal with dynamically including constraints and
decision variables.
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Cutting planes, sometimes called constraint generation, is a procedure that searches
for constraints, in the original formulation, that are violated by the solution to the RMP.
For this purpose, an optimisation problem called the separation problem is solved.
The objective value of the separation problem indicates whether or not violated con-
straints exist. Furthermore, possible violated constraints are derived from the feasible
solutions to the separation problem. As a side note, cutting planes is often used to
tighten the feasible region of a problem while not changing the integer feasible region.
However, in this paper cutting planes exclusively handles constraints that describe the
feasible region of the problem.

Column generation operates like cutting planes and is used to dynamically include
decision variables to the RMP. A so-called pricing problem is solved to find decision
variables that have potential to improve the quality of the solution value, when their
values are set to a non-zero value. The process is often referred to as pricing out
variables. If no more variables can be priced out it is established that the RMP solution
is optimal for the entire sufficient set O under the constraints that are present in the
RMP.

In the context of Formulation 1, the RMP is obtained by replacing the binary restric-
tions of (8) and (9) by linear restrictions between 0 and 1. Cutting planes is used for the
exponentially growing number of subtour elimination constraints in (6). Furthermore,
a proper sufficient subset can significantly reduce the number of xo variables but can
still make the problem intractable as the number of locations increases. Therefore, it
is convenient to apply column generation to the xo variables while yv can be included
beforehand.

4.2 Separation Problem

A mixed integer programming formulation will be provided for the separation prob-
lem. The formulation models the difference between the left-hand and right-hand
side of constraints in (6) to determine whether a violated constraint exists. Thereby, a
constraint is characterised by a set S ⊂ V \ {v0} and a specific element v ∈ S.

Let a zero subscript correspond to the depot from now on and consider i, j ∈ V .
The parameters in the model are determined by the solution values of yi and xo in
the RMP. The chosen operations in the solution are accumulated based on their start
node i and end node j to x̄ij =

∑
o∈O−(i)∩O+(j) xo. In addition, the outcomes of yi

are represented by the parameters ȳi.
Introduce decision variables Φi that indicate whether or not i ∈ S for some node

i. Furthermore, let φij be auxiliary decision variables, whose values depend on Φi

and Φj, which equal one if the event that i /∈ S together with j ∈ S occurs, and zero
otherwise. Finally, consider decision variables ιi that achieve to set a constraint to
active or inactive, and ymax that corresponds to the maximum value of ȳi among the
i ∈ S. In Formulation 2 the mixed integer formulation is provided.
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Minimise
∑
i∈V

∑
j∈V

x̄ijφij − ymax (1)

Subject to

φij > Φj −Φi, ∀i, j ∈ V (2)

ymax 6 ȳiΦi + ιi, ∀i ∈ V (3)∑
i∈V ιi 6 n− 1 (4)

Φ0 = 0 (5)

Φi, ιi ∈ {0, 1}, ∀i ∈ V (6)

φij > 0, ∀i, j ∈ V (7)

ymax > 0 (8)

Formulation 2: The separation problem that searches for violated subtour elimination con-
straints.

The objective (1) finds the most violated constraint in (6) by creating a set S through
the variables Φi. Here, the summations in the objective accumulate all operations that
start outside the set S and end inside S, which represents

∑
o∈O+(S) xo from (6). The

appropriate value of φij, corresponding to the event that i /∈ S together with j ∈ S, is
guaranteed through constraints (2).

On the other hand, the severity of a violation also depends on the particular con-
straint corresponding to the set S. The variable ymax is set through (3) and (4), which
implicitly maximise the value of ȳi amongst i selected for S. Constraint (4) implies
that one of the constraints in (3) must be active. Therefore, ymax will be set to the
largest possible ȳi. Furthermore, the depot may not be part of S as stated by (5), and
(6)-(8) describe possible values for the decision variables.

A violated constraint is found if the objective is negative. If the optimal solution
has a negative objective value, the decision variables Φi and the node i ∈ S implied
by ιi depict the most violated constraint. Additionally, multiple violated constraints
can be found by inspecting all feasible solutions that were found during the process
of solving the mixed integer program.

4.3 Pricing Problem Formulation

The pricing problem contributes to the optimisation of the RMP over all operations
in the sufficient subset O. Pricing out new decision variables can be done through
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duality. Recall the dual variable definitions in Formulation 1. Given a solution to
the RMP, dual values of constraints can be computed. Next, these can be used to
determine the reduced costs of an operation o ∈ O, which is an indication of the effect
of increasing xo on the objective value. In a minimisation problem negative reduced
costs imply that the objective value potentially improves if the corresponding decision
variable is added to the RMP.

Determining the reduced costs forms the basis of the pricing problem. To express
the reduced costs of some o ∈ O it is convenient to decompose it into a direct and
indirect effect component. The respective components correspond to co, the cost of an
operation, and the effect that arises from the dual values. The latter may be interpreted
as the effect that is caused by changing the current solution to adopt a new operation
in the solution.

To structure the pricing problem, the dual values are aggregated into effects. By
the structure of Formulation 1, the coefficients that represent a decision variable xo in
the RMP depend on whether the operation is part of O(v), O−(v), O+(v) or O+(S),
for v ∈ V and S ⊆ V \ {v0}. Stated differently, it depends on the nodes that o covers,
but also on the particular start node uo and end node wo. Moreover, as implied by
O+(S), it depends on the start and end node simultaneously. Denote these effects by
πv, π−v , π+v and π±vv ′ for v, v ′ ∈ V , which define, respectively, the effect of including
v as a truck or drone node, choosing v as the start node, choosing v as the end node,
and simultaneously choosing v and v ′ as the start and end node, respectively. In the
following expressions the effects are quantified.

πv = λv (11)

π−v = λv − µv (12)

π+v = µv − ηv (13)

π±vv ′ =
∑

{S⊆V\{v0}:v ′∈S,v/∈S}

∑
i∈S

ηiS − 1{v=v ′}λv (14)

Now, consider the reduced costs ro of an operation o ∈ O. It follows that the
reduced costs depend on the direct effect and an indirect effect consisting of the four
components discussed before. Given some operation o = < u,w,d, T ,V , c >, the
reduced cost is defined as

ro = c−
(
π−u + π+w + π±uw + πd +

∑
v∈T

πv

)
. (15)

The pricing problem is that of finding operations o ∈ O for which ro is negative.
In essence, it is a problem that finds a path in the graph G for the drone and truck.
For column generation it suffices to find any operation with negative ro to advance.
However, to guarantee that a solution is optimal with respect to the entire sufficient
subset O it must be proven that no operations exist with ro below zero. The apparent
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way to do so is by solving an optimisation problem which has the additional benefit
that the operation with the most potential is found.

It should be noted that optimisation approaches for the pricing problem are mostly
extensions of elementary shortest path problems as the partial effect of ro ascribed to
individual arcs in G may assume negative values. This makes the problem hard to
solve because so-called negative cycles have to be dealt with. A potential way to solve
the problem more easily is by reducing the feasible region, for example, by introducing
resource constraints. In the context of operations, this makes the formulation of a
proper sufficient subset O an important aspect of developing pricing algorithms.

Desirable properties for a pricing algorithm are that it is fast, exact and flexible. It
is common that column generation takes a fair number of iterations to find an optimal
solution. Therefore, it can be beneficial if the pricing algorithm provides multiple
operations with negative reduced costs so that potentially fewer iterations are needed.
Besides, it may be taken into account that finding o for which ro is minimal is not
required until the last iteration.

The pricing algorithm has a considerable influence on the overall performance of the
branch-cut-and-price algorithm. Therefore, two approaches are proposed in this paper.
The first uses mixed integer programming and the second is a labelling algorithm. For
a background reading on elementary shortest path problems and its solutions, such as
labelling algorithms, the reader can turn to Irnich and Desaulniers (2005).

4.3.1 Mixed Integer Programming Formulation

The first method uses mixed integer programming. Formulation 3 elaborates this ap-
proach and aims to find the operation with minimal reduced costs. The formulation is
presented in its most extensive form to account for all possible operations in O ′ such
as simple operations. In practice it would be better to include all simple operations be-
forehand as it will reduce the difficulty of solving Formulation 3. Besides, techniques
are introduced later that shift the focus of the formulation towards a smaller sufficient
subset of operations.

Formulation 3, makes a decision on variables zij, di and Ti which represent nodes.
Here, zij corresponds to the joint decision of the start node i and end node j, and di
and Ti, respectively, describe whether the drone and truck visit node i. In addition,
decision variables aij and adij indicate whether the truck or drone uses arc (i, j), re-
spectively, and help to ensure that proper paths are constructed. Finally, ti captures
the arrival time of the truck at node i, whereas M is a constant that is set sufficiently
large to ensure that the formulation behaves as desired. More details on the value of
M are provided later.

The objective (16) minimises the reduced costs specified in (15). Together, (17) and
(18) capture the direct component as the maximum between the costs of the drone
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Minimise co −
∑
i∈V

πi(Ti + di) −
∑
i∈V

∑
j∈V

(π−i + π+j + π±ij)zij (16)

Subject to

co >
∑

i∈V
∑

j∈V c
d
ija

d
ij −M(1−

∑
j∈V dj) (17)

co >
∑

i∈V
∑

j∈V cijaij (18)

∑
i∈V

∑
j∈V zij = 1 (19)∑
i∈V di 6 1 (20)∑
j∈V a

d
ij =

∑
j∈V zij + di, ∀i ∈ V (21)∑

j∈V a
d
ji =

∑
j∈V zji + di, ∀i ∈ V (22)

Ti =
∑

j∈V aji −
∑

j∈V zji, ∀i ∈ V (23)

Ti + di 6 1−
∑

j∈V zji −
∑

j∈V\{i} zij, ∀i ∈ V (24)∑
j∈V aji −

∑
j∈V aij =

∑
j∈V zji −

∑
j∈V zij, ∀i ∈ V (25)

zii > aii, ∀i ∈ V (26)

ti + cij 6 tj +M(1+ zii − aij), ∀i, j ∈ V (27)

∑
i∈V Ti 6 n

∑
i∈V di, (28)

d0, T0 = 0 (29)

adii = 0, ∀i ∈ V (30)

aij,adij, zij ∈ {0, 1}, ∀i, j ∈ V (31)

Ti,di, ti > 0, ∀i ∈ V (32)

Formulation 3: The pricing problem formulation.

path and truck path. Besides, in (17) the term with M in it accounts for the special
case where no drone node is chosen, which makes the drone path irrelevant.

Next, constraints (19)-(22) describe the actions of the drone. The first two ensure
that a single start and end node, and at most one drone node is chosen. Furthermore,
(21) and (22) construct a path along the start node, drone node and end node, and if
no drone node is chosen the path consists of a single arc.

The next set of constraints, (23)-(26), account for the actions of the truck. A truck
node is identified by constraints (23). Next, (24) states that a chosen node can be
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designated as a start node, end node, drone node or a truck node only once. The path
of the truck is described by (25). Here, for node i ∈ V , the right-hand side equals -1
if i is the start node, 1 if i is the end node and 0 otherwise. Therefore, the number
of arrivals and departures in each node must be equal except for the start and end
node. In these cases, only a departure and arrival occurs at the start and end node,
respectively. Besides, (26) ensures that the truck may only stay at a node if it is both
the start and end of the operation. Lastly, (27) capture the arrival time of the truck at
each node. They also act as subtour elimination constraints and allow the truck route
to be either a path or a tour.

For the final constraint recall that n represents the number of locations in the prob-
lem. (28) enforces the operation to be simple if no drone node is chosen. Furthermore,
(29)-(32) describe the range of the decision variables. Here, note that the binary restric-
tions of Ti and di are relaxed as the variables are artificial to the problem. Furthermore,
the depot cannot be a drone or truck node and the drone cannot stay at the same node.

Turning to the value of M, the value of the most expensive operation in the problem
suffices for M in order to allow constraints involving M to be non-restrictive to the
problem when desired. In the implementation the maximum of twice the distance of
maxi,j∈V c

d
ij and n times maxi,j∈Vcij is used.

To improve the pricing algorithm enhancements are made to Formulation 3. As a
start, all simple operations can be provided beforehand to the RMP. This removes the
need to account for simple operations. The implications for the model are that the
second term in constraint (17) and the entirety of constraint (28) can be removed. In
addition, the inequality in (20) becomes and equality. Next, constraints are introduced
so that the possible solutions constitute a smaller sufficient subset. More specifically,
compactness and balancedness are imposed. The benefits of this are twofold. Firstly,
there is a potential that Formulation 3 can be solved more quickly. On top of that, the
lower bound obtained from the RMP may increase which is beneficial for branch-and-
bound.

Before turning to compactness and balancedness, the artificial variable W+ is in-
troduced. W+ defines the time the truck has to wait for the drone at the end of the
operation. Besides, it will be required that ti is set to the earliest arrival time of the
truck at a node i ∈ V . In Formulation 3, this was not necessarily the case.

W+ >
∑

i∈V
∑

j∈V c
d
ija

d
ij −

∑
i∈V

∑
j∈V cijaij (33)

W+ > 0 (34)

ti 6
∑

i∈V
∑

j∈V cijaij, ∀i ∈ V (35)

With the addition of constraints (33)-(35) the values of W+ and ti are uniquely de-
fined. For W+, this can be seen by the fact that the objective stated by (16) implicitly
minimises the value for W+.
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In (36)-(38) the constraints for compactness and balancedness are provided. Here,
ε is a small constant that is used to achieve the strict inequality of the constraints.
Therefore, ε can be set to the highest precision amongst cij and cdij. For example, ε
equals 0.1 if all costs are reported with at most 1 decimal place.

ti +W
+ + ε 6 cdji +

∑
k∈V c

d
kja

d
kj +M(2− Ti − dj), ∀i, j ∈ V (36)

co − ti + ε 6 cdij +
∑

k∈V c
d
jka

d
jk +M(2− Ti − dj), ∀i, j ∈ V (37)

W+ + ε 6 cik + ckj − cij +M(1+ Tk − aij),

∀k ∈ V \ {v0} ∀i, j ∈ V (38)

The above constraints (36) and (37) impose compactness. The former collection states
that the waiting time of the truck must increase if the drone would return to the truck
earlier, at some truck node i. In turn, this would imply the total costs to increase.
Also, by the latter constraints, the total costs must increase if the drone were to depart
at a truck node i instead. In both cases the last terms, that include M, require the
constraint to hold only if i is a truck node and j is a drone node. Next, (38) requires
operations to be balanced. The constraints state that the costs of the operation increase
if an additional node is inserted on the path of the truck. Similarly, here the terms with
M require the expression to hold only if the truck uses the arc (i, j) and k is a node that
is not covered by the operation. Besides, the value of M introduced before remains
sufficient with the addition of the foregoing constraints.

As only a small number of the constraints in (36)-(38) are relevant, the best perfor-
mance is achieved by including these constraints dynamically. As the number of com-
pactness constraints is manageable, they are implemented as lazy constraints, meaning
constraints are created but only added to the problem if they are violated. However,
the number of balancedness constraints can grow unnecessarily large while the non-
negativity of πv implies that the constraints are only required for k for which πk is
zero. Therefore, it is wiser to create such constraints on the fly by explicitly inspecting
a non-balanced solution.

Two final remarks are discussed. Firstly, it may occur that pricing out certain op-
erations must be avoided due to branching. Provided that this does not occur too
often, a quick fix is to reject the solution. This option is available in commercial inte-
ger programming software packages such as CPLEX. Secondly, in column generation
often multiple columns are added instead of only the best column. The most obvious
way to accomplish this is to consider all feasible solutions obtained during the pro-
cess of solving Formulation 3. All feasible solutions with negative reduced costs that
are found can be added to the RMP or a selection can be made. Alternatively, the
problem can be split up by setting di, zij or both beforehand to find more solutions.
Unfortunately, such a good performing approach could not be established through
preliminary experiments.
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4.3.2 Labelling Algorithm

The second method adopts labelling techniques for elementary shortest path problems
with resource constraints. A label-correcting algorithm will be presented that is based
on finding the shortest path from a provided start node to all other nodes in the
network. In essence, this path is related to the truck and is subject to restrictions
that depend on some pre-decided drone node. Thereby, the algorithm considers every
possible combination of the start and drone node. However, the labelling algorithm
does not search for simple operations which should be taken into account by the
overall algorithm.

The key feature of the technique is that paths are represented by a chain of labels
and extended through dynamic programming. Due to possible negative arc costs, the
number of nodes on the path can grow large. In an attempt to increase computational
efficiency, compactness with respect to the drone return is imposed in the form of
resource constraints. Denote a label by L and let PL be the path that L represents
which is found by going back along the chain of preceding labels. The notation for a
label is as follows.

L ≡ (j,uL,dL,RL, tL, rL) (39)

Each label corresponds to a node j ∈ V . This is the node where the path PL ends.
Furthermore, uL and dL, respectively, represent the start node and drone node that
are set during the creation of the initial labels. For this reason, they will be called the
prefix of L. The resource consumption of the label is stated by RL and tL. Here, RL is
the set of nodes that L covers and tL are the costs of the truck path PL. Finally, rL is
an indication of the reduced costs. Until completion, this value accounts for the start
node, drone node and truck path. Only when the end node is chosen explicitly the
drone path and end node are accounted for.

New labels are created by extending existing labels. If no more labels can be ex-
tended the operation with the smallest reduced costs can be found among the com-
pleted labels. Optionally, labelling techniques may rule out redundant labels while
searching for the optimal solution. Such algorithms are in the class of label-correcting
algorithms which typically use a dominance rule to establish that a label is redun-
dant. For the pricing problem, a dominance rule based on efficiency is introduced in
Definition 6.

Definition 6. Consider two labels L1 = (j,u,d,R, t1, r1) and L2 = (j,u,d,R, t2, r2)
defined on the same node with identical prefixes. Then, L2 is dominated by L1 if
r1 6 r2.

In words, a label L2 is dominated if a label, say L1, with reduced costs r1 below
r2 exists that has the same start, end and drone node, and covers the same nodes as
L2. The above conditions suggest that L1 can always be extended in the same way as
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L2, hence L2 can never produce a better solution than L1 and is redundant. Another
implication of the conditions is that the indirect component of the indicated reduced
costs must be equal. As a consequence, differences between r1 and r2 must be due
to differing direct components. In particular, for the considered labels t1 < t2. Since
these represent the costs for the truck path, it follows that Definition 6 eliminates
inefficient truck paths.

Aside from dominance, a lower bound on the possible reduced costs may be com-
puted to discard labels that appear to be unable to produce an operation with negative
reduced costs. A possible way to do so involves estimating for how much longer a la-
bel can be extended and overestimating the reduced costs for successive labels. In turn,
the former requires a measure of expandability to be chosen, such as travel time or the
number of truck nodes on the truck path. Both of the aforementioned measures were
considered but it was decided to go with the latter as the estimated bounds turned out
to be better.

Consider a label L = (j,u,d,R, t, r) and let r̄ denote an estimated lower bound on
the reduced costs for labels that have L in their chain of preceding labels. Next, let ρ
be an estimate on the maximum possible number of nodes in a compact operation, not
less than the true value. The details on determining ρ are provided in Appendix A for
it being too comprehensive for the main text. Finally, denote cmin = mini,j∈V ,j6=0{cij −

πj, 0}, which can be interpreted as the value of the best arc in the pricing problem, and
denote ωu = minj,w∈V ,j6=0{cjw − π+w − π±uw}, which represents the value of the best
possible change in reduced costs for the explicit choice of the last arc conditional on
the start node. Now, a possible lower bound is given by

r̄ = r+ cmin(ρ− |R|) +ωu. (40)

The expression assumes that labels are extended using the most profitable arc and
completed by the best last arc conditional on the start node. In the multiplication with
the number of nodes, implicitly 1 is subtracted as one node is reserved for the end
node and 1 is added to correct for the fact that R contains the drone node. Besides,
cmin is at least zero as the truck path does not have to be extended by truck nodes if
this is not beneficial. Note that the possible waiting time for the truck can be ignored
as this overestimates the reduced costs.

Pseudocode for the label-correcting algorithm is provided in Algorithm 1. Here, Λv

is the set of labels that are defined on node v ∈ V and Λ∗ is the set of completed labels
with negative reduced costs. Furthermore, H and W are local values that represent,
respectively, the nodes that a label can be extended to and the waiting time for the
truck if a rendezvous with the drone occurs at the next node.

The algorithm starts with initialising data structures and creating initial labels for
all possible combinations of the start node and drone node. Next, the queued labels
are processed sequentially. First, each considered label is subject to a completion
procedure that ends the truck path with every possible end node. Here, the reduced
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Algorithm 1 Pseudocode for the label-correcting algorithm.

Input: Graph (V ,E), with arc costs cdij for the drone and modified arc costs c ′ij =
cij − πj with associated resource consumption cij for the truck.

Output: Operation with minimal reduced costs.
1: procedure Initialization

2: Q = new queue of labels;
3: (P∗,d∗, r∗) = best operation with corresponding reduced costs;
4: Λ∗ = new set of completed labels;
5: for all u ∈ V do
6: Λu = new node of labels;
7: for all d ∈ V do
8: L = (u,u,d, {u,d}, 0,−π−u − πd);
9: Λu = Λu ∪ {L};

10: add L to Q;
11:
12: while Q 6= ∅ do
13: take L = (j,u,d,R, t, r) representing path P in front of the queue;
14: H = new set of nodes;
15: procedure Label Completion

16: for all w ∈ V \ R∪ {u} do
17: W = cdud + cddw − t− cjw;
18: r ′ = r+ cjw − π+w − π±uw + max(W, 0);
19: if W > 0 and w 6= v0 then
20: H = H∪ {w};
21: if r ′ < 0 and the operation is compact and balanced then
22: L ′ = (w,u,d,R∪ {w}, t+ cjw, r ′);
23: Λ∗ = Λ∗ ∪ L ′;
24: if r ′ < r∗ then
25: (P∗,d∗, r∗) = (P ∪ {w},d, r ′);
26: procedure Label Extending

27: for all v ∈ H do
28: L ′ = (v,u,d,R∪ {v}, t+ cjv, r+ c ′jv);
29: estimate r̄ for L ′;
30: check for dominance relations between L ′ and labels in Λv;
31: if r̄ > 0 or L ′ is dominated then
32: continue;
33: delete labels dominated by L ′;
34: Λv = Λv ∪ {L ′};
35: add L ′ to Q;
36: return (P∗,d∗, r∗);
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costs r ′ are corrected if the truck incurs waiting time W at the end node. Besides,
labels that can still be extended, so that compactness with respect to the drone return is
maintained, are marked through lines 19 and 20. The result is a completed label, which
is kept if the associated operation has negative reduced costs. Operations that violate
compactness or balancedness are filtered out, which is reasonable as explicit checks
can be done quickly so that it is unlikely to worsen the overall algorithm. Whenever a
label is kept and improves upon the best-found solution, this solution is updated.

Next, a label extending procedure is followed by the completion procedure. Here,
the path of the truck is extended only if the drone cannot arrive prior to the truck at the
next node. In addition, the new label must show a potential to produce an operation
with negative reduced costs and cannot be a dominated label. If the label is qualified,
it will be queued and possibly be further extended later. Moreover, all labels that are
dominated by the new label are removed.

These two procedures repeat until all labels have been processed after which the
operation with minimum reduced costs can be identified. Subsequently, all operations
with negative reduced costs can be added to the RMP or a selection among these
operations can be made.

4.4 Branch-and-Bound

Up to this point, it has been discussed how the linear relaxation of Formulation 1 can
be solved by cutting planes and column generation. The next step is to apply branch-
and-bound to work towards an integer feasible solution. The outline of branch-and-
bound is briefly discussed followed by the specific strategies that are proposed for the
problem at hand.

Branch-and-bound gradually partitions and cuts downs the feasible region in such
a way that the integer feasible region is preserved. Branching operates on a tree struc-
ture of nodes where each node represents a restricted version of the problem in the
preceding node. To expand the tree a node selection strategy is needed to choose a
node in the tree to branch on, together with a branching strategy that describes how
to create new node problems. Furthermore, the method keeps track of an upper and
a lower bound to explore the tree more efficiently and to gain an understanding of
the quality of a feasible solution. In the context of Formulation 1, an upper bound is
provided by the best feasible solution and the lower bound corresponds to the least
lower bound among the leaf node problems, which are the nodes that have not yet
been branched.

The node selection strategy that is considered is the best-bound strategy. This strat-
egy selects the node with the smallest lower bound to branch on, ensuring that nodes
are never explored unnecessarily after updating the upper bound. Besides, depth-first-
search is a strategy that branches on the longest branch in the tree and is often used
to put emphasise towards finding a feasible solution to the problem. However, for the
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TSP-D problem this would not be effective as the available heuristics already perform
relatively well.

The branching strategy that is most common is branching on fractional variables.
In Formulation 1 the decision variables are binary so that two branches are created
that restrict the variable to zero or one. Branching strategies that choose the fractional
variable closest to either zero, a half and one will be considered. In addition, a strong
branching extension to these rules is considered that selects multiple fractional vari-
ables, creating tentative branches. After solving the branches, only the tentative branch
that provides the best lower bound is kept. Despite the fact that more problems have
to be solved, strong branching can significantly reduce the size of the tree.

In branching strategies special attention has to be paid to the underlying problem.
Formulation 1 exhibits a large number of xo variables. As a result, branching on a xo
is very inefficient as fixing xo to zero hardly restricts the problem, whereas requiring
xo to be one is very restrictive. Branching on yv seems to be plausible as it would,
respectively, require and forbid a node to be a combined node. Still, binary valued
yv do not guarantee binary decisions on xo, therefore, it can only be achieved by
branching on fractional yv with greater priority than xo. Preliminary experiments
confirm that this works well as integer solutions can be found relatively fast while
branching on xo is rarely needed.

Since the strategy performs so well an alternative strategy that branches on arcs will
not be considered. Intuitively, this method is expected to not outperform branching
on combined nodes as the branching decisions are well balanced for the latter strat-
egy. Besides, the proposed branching strategy requires almost no synergy with the
pricing problem in the context of the branch-cut-and-price algorithm. Restrictions on
yv are fully handled by the formulation while carrying over the restriction for xo to
the pricing problem requires little effort as explained in the previous subsection.

4.5 Additional Procedures and Considerations

The discussion of the branch-cut-and-price algorithm is finalised with a discussion of
some important steps involved. These include finding an initial solution, the creation
of initial operations, maintaining a candidate pool of operations, column and row
management, and a local search procedure that attempts to find feasible solutions
outside the node problems. In the flow chart in Figure 2 a detailed overview of the
complete branch-cut-and-price algorithm is provided. Here, the main components
have already been discussed and the other aspects will be further explained in the
remainder of this subsection.

First, consider the initialisation steps in Figure 2. An initial solution that provides
a strong upper bound for branch-and-bound significantly cuts computation times.
In Agatz et al. (2016) route first-cluster second heuristics were introduced that have
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Figure 2: Flowchart of the in-depth functioning of the exact branch-cut-and-price algorithm.
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shown to be fast and perform well. The TSP-ep-all configuration showed to produce
the best results and will be used in this paper for obtaining initial solutions.

In addition, initial operations can be provided to the problem. Smaller operations,
being relatively cheap, are expected to be useful and can be created relatively easily.
Though, it would be inefficient to simply add such operations to the RMP as many
operations will still turn out to be redundant. A better approach would be to maintain
a candidate pool of operations that is checked prior to invoking the pricing algorithm.
Thereby, the reduced costs of all operations in the pool can be checked in the order
of less than a second. In this way, the possible bottlenecks occur from external fac-
tors such as the computational effort that is required to create initial operations and
memory resources.

Sufficient subsets of initial operations are created through an adjusted version of
Algorithm 1 that essentially removes the elements involving reduced costs. Note that
in Bouman et al. (2017) sufficient subsets were created in a truck first-drone second
fashion, while here a drone first-truck second labelling approach is used. Afterwards,
equivalence relations are ruled out which results in an almost equivalent subset of
minimal costs. This is because sometimes an ineffective operation cannot be ruled out
as the equivalent operation with smaller costs is in violation with compactness and
has already been discarded. In order to create only a part of the sufficient subset a
restriction can be introduced for the number of labels created or the number of truck
nodes in an operation.

Next, Figure 2 shows the order of execution for column and constraint generation.
It is decided to apply cutting planes prior to column generation as it is plausible to
only generate new columns on solutions that are feasible with respect to the subtour
elimination constraints. Otherwise, there is a chance that column generation leads into
an infeasible direction, resulting in redundant computations. Moreover, preliminary
results show that constraint generation is less intensive than column generation.

In the shaded boxes in Figure 2 memory management procedures are described. If the
algorithm runs for a long time the model can grow large while some rows and columns
that were added will rarely be used for future node problems. The box at the left
describes this for the subtour elimination constraints. If a specified limit is exceeded
all constraints that are not binding are simply removed from the problem. Similarly,
for the box at the right, it is decided to transfer operations with large reduced costs
to the pool. As a side note, the specific limits are not of great importance as cutting
planes and searching in the candidate pool are relatively fast procedures.

As the number of locations grows, it becomes more difficult to find feasible solu-
tions during branch-and-bound. A local search procedure is proposed that solves a
subproblem periodically as a TSP-D problem under a restricted set of operations with
branch-and-cut. Here, the number of selected operations should preferably be large
while still being able to solve the subproblems fast. Selecting operations can be based
on a measure of quality such as the recent occurrence in the solution of a node problem.
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Consequently, a separate set of operations is maintained for the local search routine
and the TSP-D subproblem is solved every time significant alterations have been made
to this set. As a side note, the procedure is not displayed in Figure 2 because local
search will only be considered outside exact settings.

Finally, the use of branch-cut-and-price is motivated for large problems. Prob-
lems become intractable for mainly two reasons: the branch-and-bound tree becomes
too large and the pricing problem becomes significantly hard to solve. Nonetheless,
branch-cut-and-price can be used as an optimiser to look for good quality solutions
by restricting the solution space, while a trade-off has to be made between enhanced
computational efficiency and potential quality of the solution.

5 results

The goal of this section is to assess the performance of branch-cut-and-price and to
benchmark it against branch-and-cut. Mostly, attention will be paid to solving prob-
lems optimally but experiments with an emphasis on feasibility are also considered.
An outline of the experiments together with the parametrisation choices for the models
will follow now. Thereafter, the results are shown and discussed.

5.1 Experimental Framework

Broadly speaking, three exact methods are considered which all operate on a suffi-
cient subset of balanced and compact operations. The first is the branch-cut-and-price
algorithm (BCP) for which two different pricing algorithms were discussed. Second,
a pooled branch-and-cut (PBC) variant is considered that creates the entire sufficient
subset beforehand but preserves memory by storing the operations in a candidate pool
instead of adding them directly to the RMP. Finally, the third method is a full branch-
and-cut (FBC) approach and uses a commercial branch-and-cut solver for the entirety
of Formulation 1. The idea behind the three methods is that BCP can be benchmarked
against PBC to assess the value of column generation. In addition, comparing PBC
and FBC allows assessing the efficiency of the branch-and-cut implementation.

Before turning to the main experiments, sufficient subsets are to be created for sev-
eral instances to study the value of the properties introduced in Section 3. This in-
cludes a comparison between two possible approaches to creating initial operations:
the truck first-drone second (TFDS) procedure from Bouman et al. (2017) and the truck
first-drone second (DFTS) approach adopted from Algorithm 1 in this paper. Further-
more, small experiments will be conducted to compare various implementations of
the main methods. For BCP these are related to the branching rule, the pricing algo-
rithm and pool of initial operations, while for PBC only the branching rule needs to
be considered and for FBC the commercial solver fully controls the implementation.
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At last, experiments are conducted for large instances in a heuristic setting. The
exact methods are extended with the local search routine (LS), discussed at the end
of Section 4.5, and the solution space is restricted by restricting the creation of initial
operations through the number of labels created in the DFTS labelling method. Be-
sides, LS keeps track of a set of operations that were most recently part of the solution
to a node problem and solves a subproblem for these operations every time this set
has changed sufficiently. Different limits on the size of this set are considered together
with different values for the threshold that triggers the routine.

Instances of the problem are created randomly by allocating locations on a plane uni-
formly. Consequently, travel costs are determined by Euclidean distances. To study
the sufficient subsets and the computational complexity of the problem, various travel
speeds of the drone relative to the truck are considered. For the main experiments,
however, the drone travel speed is assumed to be twice that of the truck as it provides
a realistic setting for the TSP-D. For each problem size, 10 instances are created and
solved by each of the methods. Besides, separate instances are used to tune the im-
plementation for the methods which allows for a fair comparison between the final
implementations. It should also be noted that results are shown for the number of
locations which excludes the depot.

5.2 Technical Details

Preliminary results have shown that a sensible limit for the number of rows and
columns in the RMP is 10,000 which is based on the observation that the limits are not
reached often. Furthermore, resetting the rows and columns is inexpensive compared
to the increased efficiency for solving node problems. For the column management
procedure it is reasonable to keep a small portion of the operations in the RMP during
a reset which is decided to be 10% of the limit.

During column generation all operations that have been found by the pricing mod-
els are added to the RMP, up to a limit of 100 operations per iteration to prevent a large
number of operations with small negative reduced costs to be added. Besides, there
is a chance that a node problem is irregular with a solve time that is well above aver-
age. To make the algorithm more robust a time limit of 10 minutes is given to node
problems. Instances that often require more than 10 minutes per node problem are
unlikely to be solved within a reasonable time anyway because of the number of node
problems. Furthermore, the same time limit applies to the local search routine. Lastly,
recall that the cutting planes procedure tries to find a violated constraint through a set
S ⊆ V \ {v0} and a specific element v ∈ S. For efficiency, the constraints corresponding
to all v ∈ S are checked and the violated constraints are added to the RMP.

For the main experiments the initialisation procedures must be done within 3 hours,
else the algorithm is terminated as computational resources are likely to be insufficient,
and for the remainder of the algorithm a time limit of 12 hours is used. Besides, a
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maximum of 5 minutes is provided to estimate the truck node bound ρ as discussed
in Appendix A which both pricing algorithms can exploit to narrow down the set of
possible solutions.

The framework is implemented in Java 8 and uses CPLEX 12.6.3 as a linear pro-
gramming solver and as a black box branch-and-cut solver for FCP. Experiments are
conducted on nodes of the Lisa computer cluster of SURFsara. Every experiment is
run on a single core @ 2.6GHz (Intel® Xeon® E5-2650 v2) and is provided 4GB of RAM.

5.3 Experimental Results

This subsection is structured as follows. First, the construction of sufficient subsets
is considered and the computational complexity of the problem is explored. In ad-
dition, the performance of the estimator for a bound on the number of truck nodes
amongst operations in a sufficient subset is examined. Next, the exact algorithms are
compared. Finally, the exact algorithms are extended by a local search routine and the
performance on large problems is discussed.

5.3.1 Sufficient Subsets

Sufficient subsets are constructed through TFDS introduced in Bouman et al. (2017)
and DFTS proposed in this paper. For both approaches, results are collected for in-
stances ranging from 5 to 35 locations and a drone travel speed relative to the truck,
of 1:1, 2:1 and 3:1.

It turns out that DFTS consistently outperforms TFDS in terms of the time required
to construct the sufficient subset and the size of this set, thus favouring the newly
proposed approach. Generally speaking, the size of the sufficient subset grows expo-
nentially in the number of locations, however, for TFDS this occurs at a larger rate. The
difference in performance can be explained by the fact that with DFTS the operations
in the sufficient subset are compact and balanced, whereas TFDS merely guarantees
for efficient operations. Selected results from the experiments are provided in Table
1, showing only results for instances for which the maximum run-time among 10 in-
stances did not exceed 1 hour. The largest number of locations for which this condition
holds are reported in the upper part of the table.

For the purpose of illustration, consider a relative travel speed of 2:1 and 20 lo-
cations in the table. The first part of the table shows that DFTS managed instances
up to 27 locations, while TFDS was not able to go beyond 20 locations. In addition,
the difference in performance can be deduced from the second part in the table by
recalling that DFTS constructs compact and balanced operations. Consequently, the
sufficient subset created by DFTS is 1.1% of the size created by TFDS, averaged over
10 instances. This large reduction is mostly due to compactness, seeing that only 1.5%
of the operations were compact for TFDS. A plausible explanation is that compactness
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Table 1: Results for the creation of an entire sufficient subset derived from 10 instances, show-
ing results for the largest instances that TFDS handled within 1 hour.

Relative drone travel speed:
1:1 2:1 3:1

Locations in the largest instance managed
TFDS - Bouman et al. (2017) 15 20 26

DFTS - this paper 17 27 35

Sufficient subset characteristics of TFDS∗†

Operations created 2,467,762 8,556,474 8,318,534

Compact operations 19.9% 1.5% 1.3%
Balanced operations 87.2% 99.6% 99.7%
Compact and balanced operations 7.1% 1.1% 1.0%

Largest number of truck nodes observed∗††

TFDS - Bouman et al. (2017) 12.6 9.5 7.8
DFTS - this paper 10.5 7.4 6.6
∗ Statistics are related to the largest instances managed by TFDS (first row of results) and
averaged over 10 instances.
† For example, assuming relative speed 1:1 and averaged over ten instances with 15 locations,
TFDS created 2,467,762 operations of which 87.2% were balanced.
†† For example, assuming relative speed 2:1 and averaged over ten instances with 20 locations,
the largest operation had 9.5 truck nodes for TFDS opposed to 7.4 for DFTS.

significantly limits the size of operations, which is supported by the bottom part of the
table showing that the largest operation in DFTS had on average 1.9 fewer truck nodes
than in TFDS. Lastly, note that 99.6% of the operations were balanced, which is rather
large, however, the reduction from 1.5% to 1.1% that is possible through balancedness
is still significant. Overall, the contribution of compactness seems to increase as the
drone speed increases, while the opposite holds true for balancedness.

Figure 3 shows the average number of operations created by DFTS. The plot shows
that the size of the sufficient subset increases exponentially in the number of locations,
and at a lower degree as the drone travels faster. Particularly, the results for a travel
speed of 2:1 are promising as entire sufficient subsets can be created for relatively
large instances. For example, with 20 locations the sufficient subsets consisted of
94,369 operations on average. It is likely that such problems can be solved by just
branch-and-cut which would not have been possible before.

Besides, the bound on the number of truck nodes ρ, which is defined in Section
4.3.2 and elaborated in Appendix A, is estimated and compared to the true value. The
largest maximum error averaged over 10 similar instances was 1.2 among the various
instances for which results were available. This justifies that the estimation procedure
in Appendix A is a suitable approach to obtain a good estimate within a short period
of time, being five minutes.
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Figure 3: Number of operations in the sufficient subset created by DFTS.

5.3.2 Optimal Setting

In the remainder of the experiments the various algorithms will be studied. Here at-
tention is restricted to a relative drone travel speed of 2:1. First the branching rules
will be compared. This is done through PBC as the branching dynamics are mostly
independent of solving individual node problems. In the first stage of the experiment,
fractional rules, thus considering a single candidate, that choose the variables closest
to zero, a half and one are compared. In the second stage, the best performing frac-
tional rule is extended into a strong branching rule and studied for several numbers
of branching candidates. In Table 2 the average solve times for instances with 10, 15

and 20 customer locations are shown for both stages at once.

Table 2: Results, displaying solve times averaged over 10 instances for PBC, for the two stages
of branching experiments, exploring the fractional rule and the strong branching rule
extended from the best fractional rule, respectively.

Stage 1 (fractional) Stage 2 (strong on fraction 1)
Fraction: Candidates:

Locations 0 1/2 1 2 3 4 5

10 6 4 4 4 5 6 7

15 43 41 43 33 26 26 26

20 1:18:19 14:47 12:29 5:35 1:52 1:51 1:42
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The left part of Table 2 shows that the performance of the fractional branching rules
are similar for the smaller instances. For the instances with 20 locations, however, the
closest to 1/2 and 1 rules clearly outperform the closest to 0 rule. In turn, the closest to
1 rule performs slightly better, therefore, it will be considered for the strong branching
extension.

The right part of the table shows that the solve time decreases as a result of strong
branching. It appears that beyond choosing up to 3 branching candidates only slight
efficiency gains are realised. Therefore, it is decided to go with the strong branching
rule with 3 candidates in combination with the closest to 1 fractional rule.

Secondly, the two pricing algorithms and different pools of initial operations are
compared for BCP. Operation pools are created for all operations with up to 0, 1 or 2

truck nodes so that the initialisation time is kept small. The performance measure is
the average time to solve a node problem. This is computed as the total time, including
initialisation time, divided by the number of node problems solved. This also allows
for studying larger instances which can take a long time to solve. Experiments are
conducted for instances ranging from 10 to 35 locations in increments of 5 and are
subject to a time limit of one hour, excluding the initialisation time.

In Table 3 the average times on node problems for the labelling approach with
different pools of operations are shown. The mixed integer programming approach is
omitted as it was consistently outperformed by the labelling approach. As an example,
the latter succeeded in solving all instances with 15 and 20 locations, whereas a 15

location instance was rarely solved with the mixed integer programming approach.

Table 3: Average time, computed as the total time including initialisation time divided by the
number of node problems solved, and size of the operation pool for the labelling
algorithm used for BCP, under different truck node limit restrictions on the initial
operations, averaged over 10 instances.

Truck node limit:

0 1 2
Locations time pool time pool time pool

10 0 769 0 2,117 0 2,909

15 0 2,307 0 9,994 0 16,317

20 1 5,114 1 29,514 1 60,359

25 5 9,643 5 67,190 4 162,728

30 46 16,281 38 134,096 33 380,917

35 5:22 25,450 4:39 242,673 4:30 796,650

According to the reported average times in the table, adding operations with more
truck nodes to the initial set of operations is beneficial as the average times are the
smallest for a truck node limit of 2, despite the extra time spent on constructing the
sufficient subset. In addition, the average size of the initial set of operations provides
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a sense for the trade-off that exists between increasing memory requirements versus
realising greater efficiency. For example, with 30 locations the average time can be
decreased from 38 to 33 seconds, but the initial pool of operations almost triples in
size. Besides, it is worth noting that solving instances beyond 30 locations seems
to become challenging for branch-cut-and-price as the average solve time for node
problems starts to increase rapidly.

Altogether, it is decided to configure BCP with the labelling algorithm and an initial
operation pool with all operations having no more than 2 truck nodes. Larger pools
may require substantial memory, while only slight performance increases are expected.

Now that the implementation is finalised the three methods can be compared. Re-
sults will be provided for instances ranging from 20 up to 34 locations in increments of
2. Experiments that run out of memory or take longer than 3 hours during the initial-
isation phase are excluded. Results on the performance of the methods are provided
in Table 4.

Table 4: Comparison of the exact methods measured on 10 instances showing, respectively, the
number of instances solved to optimality, the number of completed solves and the
average solve time of completed solves.

Method:

BCP PBC FBC
Locations opt. tot. time∗ opt. tot. time∗ opt. tot. time∗

20 10 10 27:17 10 10 02:43 10 10 2:33

22 9 10 1:49:01 10 10 13:41 10 10 5:27

24 8 10 3:20:46 10 10 1:06:15 10 10 12:46

26 2 10 10:32:22 5 10 7:26:50 7 7 45:31

28 1 10 11:37:57 5 10 7:36:18 8 8 1:17:58

30 0 10 12:10:47 2 9 10:41:17 3 3 1:33:23

32 0 10 12:16:20 0 8 12:41:17 6 6 5:03:21

34 0 10 12:25:00 2 8 11:13:21 2 2 5:04:08

∗ Averages exclude instances that failed to complete due to an out of memory error or exceedance
of the initialisation time limit.

First, in Table 4 it is observed that PBC and FBC ran into problems while solving
some of the instances. By inspection of the experiments it turns out that an exceedance
of the initialisation time limit was the cause for the issues for PBC, whereas for FBC
out of memory errors frequently occurred as well. Nevertheless, all methods perform
relatively well as optimal solutions were found for a reasonable number of instances.
The fact that all methods perform fairly well suggests that the decision to branch on
combined nodes accounts largely to the success of the methods. Further inspection of
the results also shows that among all instances solved by PBC only two experiments
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required an operation to be branched on. In other words, branching on operations
appears on a rare occasion.

Second of all, the average solving times are reported in Table 4. For the instances
with 22, 24 and 26 locations a comparison of the methods shows that PBC significantly
outperforms BCP. This suggests that it never occurs that the pricing algorithm beats
a construction of the entire sufficient subset, however, it should be noted that this
result could have been different in absence of the properties based on equivalence that
were introduced. Recalling from Table 1, beyond 20 locations it becomes increasingly
difficult to create a sufficient subset in absence of the properties based on equivalence.
In this case BCP could be more efficient than PBC. On the other hand, FBC, which uses
a black box branch-and-cut solver, in turn significantly outperforms PBC in terms of
computation time.

In Table 5 additional results are provided which allows for a better comparison
between the methods. More specifically, the solution quality for larger problems can
be compared. The statistics are based on the problems that were solved successfully,
as described in Table 4.

Table 5: Statistics for the quality of the final solution, deduced from successful solves* and
showing, respectively, the average and maximum percentage gap between the final
solution and the best obtained bound and the average percentage savings of the final
solution relative to the initial solution.

Method:

BCP PBC FBC
% gap % save % gap % save % gap % save

Locations avg. max. avg. avg. max. avg. avg. max. avg.

20 0 0 1.9 0 0 1.9 0 0 1.9
22 5 4.7 1.5 0 0 1.6 0 0 1.6
24 2.2 21.0 1.3 0 0 1.8 0 0 1.8
26 4.9 24.4 0.9 2.0 14.7 1.6 0 0 2.2
28 7.3 25.3 0.8 3.5 16.2 1.8 0 0 2.7
30 11.2 33.4 0.2 4.1 11.9 1.7 0 0 4.4
32 16.0 37.2 0.0 7.4 11.8 1.5 0 0 3.1
34 12.8 38.1 0.0 5.5 12.0 0.2 0 0 1.5

∗ Averages and maxima exclude instances that failed to complete due to an out of memory error or
exceedance of the initialisation time limit.

Table 5 shows averages and maxima for the percentage gap between the final so-
lution and the best obtained bound. The most remarkable result is that FBC found
optimal solutions to all instances for which it did not run into issues. In addition, the
relative savings in costs of the final solution over the initial solution from the TSP-ep-
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all heuristic are shown. The results suggest that this heuristic from Agatz et al. (2016)
performs fairly well as the improvements are rather small.

For the comparison between the methods, consider Table 4 and Table 5 jointly. It
is clear that BCP is consistently outperformed by the branch-and-cut methods PBC
and FBC. Not only are the optimality gaps relatively large but the savings on initial
solutions with 32 and 34 locations show that BCP did not succeed to find a better
solution. On the other hand, the ranking of the methods PBC and FBC is less apparent
when considering the solution quality. It appears that, based on the number of optimal
solutions found, FBC performs better on instances that are tractable for the method,
whereas PBC is the more robust choice according to the fact that issues occurred less
frequently.

From another point of view, the results suggest that PBC can be improved to match
the performance of FBC without compromising the robustness. It remains unclear how
this can be achieved but it is probable that a noticeable difference can be made with
a generally more efficient branch-and-bound procedure or by including an effective
family of valid cuts.

5.3.3 Local Search Extension

Finally, the methods are extended with local search to solve instances with 30, 50 and
70 locations but first a grid search is performed to decide on different parameters. In
the initialisation step maxima of 2, 5 and 10 million created labels are considered. For
the local search routine a maximum set of 500, 1000 or 2000 operations is maintained
and the threshold on the number of updates for this set that triggers the routine is
considered to be 5%, 10% or 20% of its maximum size. Under these settings the
performance of PBC-LS and FBC-LS are studied by solving instances with 70 locations
for one hour, excluding initialisation time.

For the sake of brevity, the results of the grid search will not be discussed in detail. A
remarkable result is that the potential memory issues for the FBC-LS method appear to
be problematic as more than half of the experiments ran into memory issues, therefore,
the method will be omitted from future experiments. For PBC-LS the improvement
over the initial solution, averaged over 10 instances, ranged from 0.8% to 2.2% while
22 out of 27 configurations showed a small improvement below 1.5% averaged over
10 instances. The best performance was obtained with 5 million labels, a maximum
subproblem size of 500 operations and a trigger set at 20% of this maximum. Moreover,
the configuration seems to be plausible as the average time to solve a node subproblem
was only 33 seconds while the number of initial operations was on average below 1.7
million.

Results corresponding to the above configuration for the PBC-LS method are pro-
vided in Table 6. In addition, the results of PBC for the instances with 30 locations are
provided for comparison.
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Table 6: Percentage saving of the final solution over the initial solution for PBC-LS considering
different instance sizes and PBC for instances with 30 locations in parenthesis for
comparison.

Instance:

Locations 1 2 3 4 5 6 7 8 9 10

30 3.8 4.9 4.7 3.1 0.6 0 2.7 0.4† 4.6 0.8
(0) (4.9) (0.6) (3.1) (0.6) (0) (2.1) (0) (4.4) (0)

50 4.6† 2.5 1
†

3.2 1.3 3.7 1.2 1.9 1.1 2.8
70 2.9† 4.4† 3.2† 2.6 6.0 1.4† 3

†
0.2 2.1† 4.7

† The experiment terminated early due to running out of memory.

Comparing the final solution of PBC-LS and PBC for the instances with 30 locations
provides evidence for the effectiveness of the local search procedure as PBC-LS never
found a worse solution. Furthermore, significant improvements were found over the
initial TSP-ep-all solution for the instances with 50 and 70 locations which are on
average 2.3% and 3.1%, respectively. This suggests that PBC-LS is a reliable method
to find solutions of good quality. On the other hand, a number of experiments ran
unexpectedly into memory issues. A potential explanation for this could be that the
number of initial operations is too large as on average 1,298,280 and 1,673,486 initial
operations were created for the instances with 50 and 70 locations. Consequently, the
observed memory issues indicate that more consideration has to be put into choosing
the limits for the number of rows and columns in the RMP.

Experiments with BCP-LS were also conducted but the method remains to be in-
ferior. For the instances with 30 locations the effort put into generating additional
operations could not be justified by the results and the pricing algorithm hardly found
any additional operations with negative reduced costs for instances with 50 and 70

locations.

6 conclusion

Methods have been studied that aim to find an optimal solution to the travelling sales-
man problem with drone minimising the execution time. A framework was introduced
for the concept of operations introduced in Agatz et al. (2016) that could be used to
refine the solution space without compromising the potential solution value. In addi-
tion, the binary programming formulation from the same paper was improved, and
a branch-cut-and-price algorithm was proposed to deal with larger problems. More-
over, a mixed integer programming formulation and a labelling algorithm were used
to solve the pricing problem.

Due to the contributions of this paper a branch-and-cut method was able to solve
problems with up to 35 nodes. Despite, the column generation framework did not
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appear to add any value to solving the problem in an exact nor heuristic way. Further
research has to be conducted to study whether this framework can be implemented
more effectively. Branch-and-cut shows to be suited for finding high quality solutions
to large problems for which heuristics leave room for improvement. Experiments
have shown that the operational costs decreased by several percentage points for large
instances with 50 and 70 nodes, excluding the depot.

The main conclusion that branch-cut-and-price is ineffective has to be interpreted
with care as multiple improvements were proposed alongside in this paper. It is prob-
able that a different conclusion would have been drawn in the absence of some of
these. In addition, a commercial branch-and-cut solver appeared to be more success-
ful in solving instances of reasonable size. This provides the promising perspective
that the methods can still be significantly improved.

For future research that wants to improve the methods introduced in this paper
the following research directions are proposed. Firstly, it may be studied whether
bi-directionality can be applied to improve the pricing algorithm. Next, including
effective families of cuts seems to be a promising way to make branch-and-bound
more efficient. Lastly, the methods may be parametrised more carefully to allow for a
more efficient and robust implementation.
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appendix a

Here, details are provided on the estimation of ρ, the maximum possible number of
nodes on the truck path among operations that are compact with respect to the drone
return. The estimate is used in the labelling algorithm in Section 4 to discard labels
early on. A mixed integer programming formulation is provided that approximates
ρ and is intended to be fast. More accurate estimates can be found by including
additional constraints but this comes at the expensive of slower convergence towards
the optimal solution.

As before, let aij be binary decisions for the truck arcs and zij for the joint decision
on the start and end node. In addition, let τi be auxiliary variables for the subtour elim-
ination constraints. Furthermore, consider the parameters cmax

ij = maxd∈V\{v0}{c
d
id +

cddj} which represent the maximum possible travel time for the drone given the start
node i and end node j. In Formulation 4 an integer programming formulation is pro-
vided. In essence, it loosely requires operations to be compact with respect to the
drone return.

Maximise ρ = 2+
∑
i∈V

∑
j∈V

aij (49)

Subject to

∑
j∈V aij 6 1, ∀i ∈ V (50)∑

i∈V
∑

j∈V zij 6 1 (51)∑
j∈V aj0 +

∑
j∈V a0j 6 1+ z00 (52)∑

j∈V aji −
∑

j∈V aij =
∑

j∈V zji −
∑

j∈V zij, ∀i ∈ V (53)

τi − τj +naij 6 n− 1, ∀i, j ∈ V (54)∑
i∈V

∑
j∈V cijaij 6

∑
i∈V

∑
j∈V c

max
ij zij (55)

aii = 0, ∀i ∈ V (56)

aij, zij ∈ {0, 1}, ∀i, j ∈ V (57)

τi > 0, ∀i ∈ V (58)

Formulation 4: Estimation of the maximum number of nodes on the truck path.

Beginning with the constraints, (50)-(53) represent the decisions on the nodes. Here,
(50) describes that a node may be visited only once, (51) states that a start and end
node can only be chosen once, and (52) states that the depot can only be a start or
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end node. Next, constraints (53) construct a path covering the selected nodes and
(54) ensure that the path is connected. Constraint (55) is a relaxation of the condition
that the operation is compact with respect to the drone return. Instead of requiring a
corresponding drone node to be chosen explicitly, it is assumed that the selected drone
node provides the longest possible travel time for the drone.

The objective (49) maximises the number of arcs on the truck path. By (55), com-
pactness with respect to the drone return is guaranteed to be violated if this path is ex-
tended with an additional arc, therefore, one is added to the objective value. Moreover,
this number is corrected by adding one again to obtain the number of nodes, which
shows that ρ in (49) provides an upper bound on the maximum number of nodes on
the truck path. Besides, the linear relaxation of Formulation 4 also provides an upper
bound which may be rounded down. Therefore, an estimate is always available and
solving Formulation 4 can be terminated if the solution converges too slowly.


