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Abstract

This paper evaluates the finite-sample performances of six extreme quantile estimators in

the heavy-tailed series under serial dependence. Through Monte Carlo simulations, we show

that the performances of the estimators are related to the degree of the serial dependence

and the linearity/nonlinearity of the serial dependence. The maximum likelihood estimator

based on the sliding block maxima is optimal to handle the linear serial dependence in data.

The probability-weighted moment estimators are likely to be distorted by strong linear serial

dependence. When the serial dependence is nonlinear, the excess kurtosis would affect the

quantile estimation. The Weissman estimator outperforms when data has nonlinear serial

dependence and a low excess kurtosis. The probability-weighted moment estimators based

on the disjoint blocks is preferable when the data has a relatively high excess kurtosis. Addi-

tionally, this paper investigates an approach to improve the maximum likelihood estimators

based on the block maxima in the GARCH models.

Key words: peaks-over-threshold; block maxima; maximum likelihood estimation; probability-

weighted moment; heavy tails; Monte Carlo simulation



1 Introduction

One of the popular traditional market risk measures is the volatility. The main drawback of volatility,

however, is that it ignores the direction of the investment’s movement, i.e. gain or loss. By contrast,

Value-at-Risk (VaR) sheds light on risk management by focusing on portfolio’s losses only. It is defined

as the high quantile of the negative log-returns, and it measures the potential bad scenario for a given

low probability over a certain time period that a investor wants to be aware of. Mathematically, given a

confidence level α ∈ (0, 1), the probability that a loss L exceeds its VaR is no higher than 1− α:

VaRα := inf{l; Pr(L > l) ≤ 1− α}.

There are some existing methods to estimate VaR, for instance, historical simulation, Monte Carlo

simulation method, delta-normal method, variance-covariance method, etc. One of the limitations of

these methods, except for historical simulation, is that they all make parametric assumptions on the

loss distribution (Linsmeier & Pearson, 2000). For example, Monte Carlo simulation method requires a

pre-determined distribution (e.g. normal mixture model) to generate a large number of samples. Delta-

normal method and variance-covariance method assume a Gaussian distribution on the loss. However,

since financial time series are usually not normally distributed, the estimation based on parametric

assumptions is problematic if the assumption fails to capture the underlying distribution of the data.

Although historical simulation releases the normality restriction, the high quantile is estimated by an

ordered statistic at the cost of inaccuracy, especially if the sample size is low. In order to make inference

about the tail behavior without specifying a global parametric form for the distribution function, one

may use the extreme value theory (EVT) which makes rather mild structural assumptions on the tail of

the distribution of loss.

There are two prevailing approaches to implement EVT for extreme quantile estimation, the peaks-

over-threshold (POT) and the block maxima (BM). More specifically, the POT extracts the ordered

statistics above a high threshold (referred as exceedances) and the exceedances approximately follow

a scaled generalized Pareto distribution (GPD). Differently, the BM splits the sample into blocks and

collects the block maxima. And the distribution of the scaled block maxima converges to the generalized

extreme-value (GEV) distribution.

The extreme quantile estimator in EVT framework is constructed through extrapolation, requiring

estimations for the parameters of the approximated distribution (GPD or GEV). Several parameter esti-

mation methods have been employed, such as the maximum likelihood estimation (MLE), the probability-

weighted moments (PWM) estimation and the method of moment. Although there are multiple parameter

estimators available, one should be careful about the choices by considering the tail behaviour of the se-

ries, which can be measured by the extreme value index. For example, the moment estimator in Hosking

and Wallis (1987) needs that the exceedances or block maxima have a finite variance, meanwhile, some

estimators are proposed for the heavy-tailed behaviour and others can be adopted in a more general case.

Moreover, the asymptotic normalities of the parameter estimators are usually established under a more

restrictive condition on the range of the extreme value index as briefly discussed in Section 2. In gen-
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eral, the asymptotic normalities of the parameter estimators are proved in the identical and independent

distributed (i.i.d.) sample. The asymptotic property of extreme quantile estimator follows consequently.

However, the real time series of log-returns usually exhibits serial dependence such as volatility clustering.

Hence independence is not a realistic assumption for application to financial data. The extreme quantile

estimators remain consistent under weak serial dependence1, while the asymptotic variance usually has a

complex structure. Drees (2003) proved the asymptotic normality of a class of the POT extreme quantile

estimators for stationary β-mixing time series. However, to the best of my knowledge, the closed-form

asymptotic variance of the BM extreme quantile estimators under serial dependence is not derived yet.

This is because within the BM framework, the extreme quantile estimation requires the estimation of an

extremal index (Leadbetter, 1983), which quantifies the serial dependence of extremes.

The performance of the POT and the BM extreme quantile estimators under serial dependence are

therefore of interest. On the one hand, the finite-sample bias is non-negligible though the consistency can

be obtained theoretically. On the other hand, the asymptotic variances in both the POT and the BM

methods blow up due to serial dependence. Heuristically, it is straightforward to follow the POT estima-

tors, but the estimating uncertainty is higher due to the serial dependence of the exceedances. For the

BM method, the additional estimation of extremal index is expected to induce extra uncertainty, though

the block maxima are still considered to be i.i.d.. The asymptotic variances of parameter estimators of

the GEV remain unchanged. A sliding blocks approach may gain efficiency compared to the disjoint BM

thanks to this approximate i.i.d. structure.

As mentioned above, the performances of the estimators may relate to their conditions on the extreme

value index. Since there is no a universal rule to decide the optimal estimator based on that, it is

the motivation of this paper to compare the MLE estimator with the PWM estimator. Overall, there

are six extreme quantile estimators considered here, i.e. the POT-MLE/PWM estimator, the disjoint

BM-MLE/PWM estimator, and the sliding BM-MLE/PWM estimator.

Given a theoretical comparison of the POT and the BM estimators under serial dependence is cur-

rently unavailable, we address the following research question by simulations:

In the existence of serial dependence, which extreme quantile estimator outperforms in a finite sample?

We evaluate six extreme quantile estimators under linear and nonlinear serial dependence. And we take

different degrees of the serial dependence into consideration. Furthermore, we allow the excess kurtosis

varying across the data generating processes where the serial dependence is nonlinear. The superiority of

the extreme quantile estimator is determined by the minimum squared error. The simulation results show

that the sliding BM-MLE estimator is preferable in most scenarios when the serial dependence is linear.

Under nonlinear serial dependence, the POT-MLE estimator (referred as the Weissman estimator in the

rest of the paper) outperforms when the excess kurtosis is low, and the disjoint BM-PWM estimator

is preferred when the excess kurtosis is high. Besides the performance examination, we investigate a

1The conditions on serial dependence are different for the POT and the BM methods, see Section 2.2 for
details.
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procedure to improve the performances of the disjoint and sliding BM-MLE estimators under nonlinear

serial dependence. The simulation results present that the procedure we propose reduces the bias and

variance of the quantile estimator with proper block sizes.

The paper is organized as follows. Section 2 contains the literature reviews focusing on the extreme

quantile estimation methods and serial dependence. Section 3 provides the POT and the BM estimators,

moreover, demonstrates the evaluation criteria and the data generating processes. Section 4 presents

the finite-sample performances which are evaluated via Monte Carlo simulation. Section 5 depicts the

procedure which improves the performances of the BM-MLE estimators under nonlinear serial depen-

dence. The corresponding simulation results are shown in Section 5 as well. The final section discusses

the implications and limitations of this paper and concludes.

2 Literature review

2.1 Extreme value theory

Classical Extreme Value Theory shows that if the maximum

Mn = max(X1, . . . , Xn)

of n i.i.d. random variables (with cumulative distribution function F ) has a non-degenerate limiting

distribution G as n → ∞, then G must be one of the GEV distribution function. That is, for some

normalizing constants an > 0 and bn,

lim
n→∞

Pr(
Mn − bn

an
) = lim

n→∞
Fn(anx+ bn) = Gγ(x), (1)

where Gγ is the GEV distribution function with extreme value index γ, i.e.

Gγ(x) = exp(−(1 + γx)−
1
γ ), 1 + γx > 0, γ ∈ R. (2)

It is also called that a continuous distribution F is in the domain of attraction of a GEV distribution

denoted by F ∈ D(Gγ). Obviously, the extreme value index is essential to capture the tail behaviour of a

distribution. Pickands (1975) proved that a continuous distribution function F has a generalized Pareto

upper tail is equivalent to F ∈ D(Gγ), and showed that the shape parameters of two distributions are

identical.2 Specifically, the building block of the POT is that given a high threshold t, the excesses X − t

are asymptotically generalized Pareto distributed. Denote the conditional distribution function of X − t

given X > t as

Ft(x) := Pr(X − t ≤ x|X > t) =
F (t+ x)− F (t)

1− F (t)
,

2The condition of the equivalence is presented in Theorem 3.1.

4



with 1 − F (t) > 0, t < x∗ and x > 0 where x∗ := sup{x : F (x) < 1} ≤ ∞ is the upper endpoint of F .

Then there exists a normalizing function σ(t) > 0, such that

lim
t→x∗

Ft(xσ(t)) = Hγ(x) :=


1− (1 + γx)−

1
γ , γ 6= 0,

1− exp(−x), γ = 0,

for all 1 +γx > 0 and x > 0, where Hγ is the GPD function and the Pareto distribution is obtained when

γ > 0.

Within the POT framework, estimation methods such as the MLE and the PWM estimation are well-

explored. Hill (1975) proposed a semiparametric maximum likelihood approach to infer the tail behavior

of a Zipf type distribution, i.e. the case γ > 0. Suppose that an observed sequence (Xn)n∈Z has a

cumulative distribution function F . Then consider the ordered statistics X1:n ≤ X2:n, . . . ,≤ Xn:n and

a high threshold Xn−kn:n. Since the exceedances are asymptotically Pareto distributed, the exponential

distribution with mean γ provides an approximation to the distribution of the logarithm-transformed

excess ratio log(Xn−i+1:n

Xn−kn:n
), i = 1, . . . , kn, that is,

Pr[log(
Xn−i+1:n

Xn−kn:n
) < x] ≈ 1− exp(− 1

γ
x), x > 0.

The weak consistency of the Hill estimator is achieved for any sequence kn → ∞, knn → 0 as n → ∞

(Mason, 1982) and strong consistency is proved for any sequence kn
log logn → 0, knn → 0 as n → ∞

(Deheuvels, Haeusler, & Mason, 1988). Moreover, Haeusler and Teugels (1985) proved that under certain

extra conditions, the Hill estimator is asymptotically normally distributed with convergence rate
√
kn,

and its asymptotic variance is γ2. Given that the Hill estimator is only appropriate for γ > 0, Dekkers et

al. (1989) proposed a moment estimator which handles the general case γ ∈ R and provided its asymptotic

normality. Furthermore, Drees et al. (2004) showed a MLE estimator that can be applied for γ > − 1
2 by

constructing the GPD likelihood functions based on the empirical excesses Yi := Xn−i+1:n−Xn−kn:n for

i = 1, . . . , kn. Zhou (2009) showed the existence and consistency of the solution of likelihood equations in

Drees et al. (2004) using the first order condition only. Additionally, the second order condition implies

the asymptotic theory of the MLE estimator for γ > − 1
2 (Drees et al., 2004). Furthermore, Zhou (2010)

proved the asymptotic normality for −1 < γ ≤ − 1
2 . As an alternative of the MLE estimator, Hosking

and Wallis (1987) motivated the PWM estimators for the GPD parameters. The existence of unbiased

estimators for probability-weighted moments are given when γ < 1, and the asymptotic normality is

obtained when γ < 1
2 . Via simulations in the i.i.d. case, they suggested that the PWM parameter

estimators would be preferable when γ > 1
5 due to a smaller bias.

Another prevailing approach to estimate the extreme value index is the BM method. Different from

the POT, the BM firstly divides the i.i.d. sample into kn blocks with constant block size mn. Then

from the domain of attraction condition (1), the block maxima are asymptotically i.i.d. GEV distributed

with extreme value index γ. By fitting the block maxima into the GEV distribution in (2), one obtains

the MLE estimators for the GEV parameters. The existence of consistent MLE estimators is proved

5



by Dombry (2015) under the first order extreme value condition with γ > −1 and for any sequence

m := m(n) such that m(n)
logn → ∞ as n → ∞. Moreover, Dombry and Ferreira (2017) established the

asymptotic normality of the MLE estimators under both the first order condition (with γ > − 1
2 ) and

the second order condition. Particularly, when γ is positive, the distribution function Gγ is the Fréchet

distribution. Bücher and Segers (2018b) proved the unique existence of the solution of the likelihood

function based on the Fréchet distribution. The consistent PWM parameter estimators for the BM

approach are established by Hosking et al. (1985), given γ < 1. The asymptotic normality of the PWM

estimators are proved for γ < 1
2 . Ferreira and de Haan (2015) established the asymptotic normality

for the disjoint BM-PWM extreme quantile estimator in the i.i.d. case and carried out a theoretical

comparison with the POT-PWM estimator in terms of the extreme value index estimation and quantile

estimation. The disjoint BM-PWM estimator is suggested to be more efficient. Furthermore, Dombry

and Ferreira (2017) theoretically compared the MLE/PWM estimators under the POT/BM (the disjoint

BM) methods in the i.i.d. case. In light of extreme value index estimation, it is indicated that the

BM-MLE estimator is the most efficient, while the POT-MLE estimator has the smallest asymptotic bias

and the minimal optimal asymptotic mean squared error.

2.2 serial dependence

As mentioned in the introduction, the assumption of an i.i.d. underlying sequence may be restrictive and

unrealistic in practice. We weaken the i.i.d. assumption to a strictly stationary sequence, that is, for any

h ∈ Z,

(Xi1 , . . . , Xin)
d
= (Xi1+h, . . . , Xin+h).

For the POT approach, Drees (2003) showed that if the serial dependence of the underlying sequence

is weak, i.e. the underlying sequence is β-mixing, then the POT estimators are still consistent. Recall

that the β-coefficients are defined as

β(`) := sup
m∈N,Ai∈Am1 ,Bj∈B

∞
m+`+1

1

2

I∑
i

J∑
j

|Pr(Ai ∩Bj)− Pr(Ai) Pr(Bj)|,

whereAm1 := σ(X1, . . . , Xm) is the σ-algebra generated by (X1, . . . , Xm) and B∞m+`+1 := σ(Xm+`+1, Xm+`+2, . . .)

is the σ-algebra generated by (Xm+`+1, Xm+`+2, . . .). Then the sequence is called β-mixing (or absolute

regular) if

lim
`→∞

β(`) = 0. (3)

By dividing Pr(Ai) on the both sides of (3), we obtain

lim
`→∞

sup
m∈N,Ai∈Am1 ,Bj∈B

∞
m+`+1

1

2

I∑
i

J∑
j

|Pr(Bj |Ai)− Pr(Bj)| = 0.

Note that Ai is a set containing past events and Bj is a set containing future events. Therefore, if a strictly

stationary sequence is β-mixing, the dependence between the past and future events vanishes as the time
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interval increases. Furthermore, the condition (C1) in Drees (2003) ensures that the dependence vanishes

sufficiently fast such that it is considered as weak. Many time series models satisfy these conditions. For

instance, the autoregressive moving average (ARMA), the autoregressive conditional heteroskedasticity

(ARCH) and the generalized ARCH (GARCH) time series are geometrically β-mixing. Furthermore,

the asymptotic normality of the extreme quantile estimator is established under such serial dependence

conditions.

Within the BM framework, Leadbetter (1983) proved that if the underlying strictly stationary sequence

satisfies some mixing condition, then the normalized block maxima extracted from the stationary sequence

with extremal index θ (θ ∈ [0, 1]) are asymptotically i.i.d. GEV distributed with shape parameter

γ. Consequently, the asymptotic normality of the MLE estimator based on the block maxima extracted

from a stationary sequence is established for the two-parameter Fréchet distribution by Bücher and Segers

(2018b). The serial dependence does not affect the consistency and efficiency of the MLE estimator under

certain conditions. Moreover, the shape parameter is the same as in the i.i.d. case, only the scale and

location parameters are affected by the extremal index (McNeil, 1998). Therefore, the estimation of

the extremal index is required for the extrapolation for extreme quantile estimation. Northrop (2015)

constructed a semiparametric maxima estimator θ̂N for the extremal index and showed that it is more

efficient than parametric counterparts via simulation. Since the asymptotic distribution of the Northrop

estimator θ̂N is difficult to derive, Berghaus and Bücher (2018) proposed an asymptotic equivalent variant

θ̂B of θ̂N and improved the bias reduction scheme. The consistency and asymptotic normalities of the

MLE estimator θ̂B based on both disjoint blocks and sliding blocks are proved. It is also verified that θ̂B

based on sliding blocks can be substantially more efficient than based on disjoint blocks. The reduction

in asymptotic variance is independent of the value of shape parameter.

The sliding blocks approach can also be applied to the PWM estimators and the MLE estimator to

gain efficiency for the BM approach. The consistency and other asymptotic property of the sliding BM-

PWM estimator require further research. It is reasonable to expect that the sliding PWM estimators may

be distorted, causing a larger asymptotic bias compared to the disjoint PWM estimators or the sliding

PWM estimators in the i.i.d. case. This is because that on the one hand, the sliding block maxima are

heavily correlated and not asymptotically independent, not even for an i.i.d. underlying sequence. On

the other hand, the situation is worse under serial dependence. Hence, the degree of serial dependence

in sliding block maxima is ”doubled” in a way, which introduces a further approximation between F and

Gγ . Nevertheless, Bücher and Segers (2018a) proved the asymptotic normality of the sliding BM-MLE

estimator for the Fréchet distribution under serial dependence. Actually it should be referred as maximum

quasi-likelihood estimator, since the log-likelihood is constructed by taking the sliding block maxima as

asymptotic independent. It is shown that the asymptotic variance of the sliding BM-MLE estimator is

substantially smaller than the disjoint BM-MLE estimator, while the asymptotic bias is the same.

The main contribution of this paper is that it focuses on the estimation of the extreme quantile, rather

than the single extreme value index estimation, under serial dependence. In applications, it is often the

extreme quantile that is of interest. And there are still some gaps between the asymptotic properties of

the extreme quantile estimators and the asymptotic normalities of the parameter estimators, especially for
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the BM method where the extremal index involves into the quantile estimation under serial dependence.

Therefore, this paper presents the finite-sample performance comparisons of six widely-used extreme

quantile estimators in order to provide some insights.

3 Methodology

In this section, we review the EVT at first, then introduce the POT approach and the BM approach

in the i.i.d. case. The extrapolation follows by a discussion of the estimations under serial dependence.

Consequently, the sliding BM method is employed to gain efficiency. Lastly, the six competing extreme

quantile estimators are summarized and the evaluation criteria are listed.

3.1 Extreme value theory

The necessary and sufficient condition for F ∈ D(Gγ) with γ ∈ R can be presented in various ways, and

one of them is the following criterion.

Theorem 3.1 Let F be a common but unknown continuous distribution function. Then F ∈ D(Gγ), if

and only if for some γ ∈ R, the following condition holds

lim
t→x∗

inf
0<a<∞

sup
0≤x<∞

|[1− Ft(x)]− exp{−
∫ x

a

0

[(1 + γy)+]−1dy}| = 0, (4)

where for any y, y+ = max(0, y).3

When and only when the condition (4) holds, it follows that

lim
t→x∗

sup
0≤x<∞

|[1− Ft(xσ(t))]− exp{−
∫ x

0

[(1 + γy)+]−1dy}| = 0,

which means that if t is sufficiently large, the conditional distribution of excesses X − t given X > t is

very nearly of the GPD function form

lim
t→x∗

sup
0<x<∞

|Ft(xσ(t))−Hγ(x)| = 0, 1 + γx > 0. (5)

In the case γ > 0, Gγ is the Fréhcet distribution and (1) becomes

lim
n→∞

Pr(
Mn

an
≤ x) = lim

n→∞
Fn(anx) = exp(−x−

1
γ ), (6)

for x > 0, and some scale constants an > 0. Further, F ∈ D(Gγ) with γ > 0 is equivalent to

lim
t→∞

1− F (tx)

1− F (t)
= x−

1
γ , (7)

3It is showed that the extremal distribution functions have the form Gγ(x) ≡ exp{−
∫ x−b

a
0

[(1 + γy)+]−1dy},
where a, b and γ are the scale, location and shape parameter respectively, with 0 < a < ∞, −∞ < b, γ < ∞
(Pickands, 1975).
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for all x > 0. From (7), the excess ratios X/t are asymptotically i.i.d. Pareto distributed with shape

parameter 1
γ , that is,

lim
t→∞

Pr(
X

t
> x|X > t) = x−

1
γ , x > 1.

And it follows that the log excess ratio log(Xt ) is asymptotically i.i.d. exponentially distributed with

mean γ, i.e.

Pr[log(
X

t
) < x] = 1− exp(− 1

γ
x), x > 0. (8)

3.2 Estimation in the identical and independent distributed case

3.2.1 Estimation base on the POT approach

Let (Xn)n∈Z be an i.i.d. sequence with cumulative distribution function F , and X1:n ≤ X2:n, . . . ,≤

Xn:n be the ordered statistics. Naturally, Xn−kn:n can be considered as a high threshold as if kn is an

intermediate sequence of integers

kn →∞,
kn
n
→ 0, as n→∞. (9)

Now consider the PWM estimator based on the POT approach. The PWM’s of a continuous random

variable X with distribution function F are the quantities

Mp,r,s = E[Xp(F (X))r(1− F (x))s].

For the GPD, it is convenient to work with the quantities

αs = M1,0,s = E[X(1− F (x))s],

which exist for γ < 1. Consequently, the scale parameter σ(t) and the shape parameter γ for the GPD

are respectively computed by

σ(t) =
2α0α1

α0 − 2α1
, γ = 2− α0

α0 − 2α1
.

From (5), the PWM estimators σ̂(t) and γ̂ are obtained when replacing α0 and α1 above by their empirical

estimators (Ferreira & de Haan, 2015)

α̂0 =
1

kn

kn∑
i=1

(Xn−i+1:n −Xn−kn:n) (10)

and

α̂1 =
1

kn

kn∑
i=1

i− 1

kn
(Xn−i+1:n −Xn−kn:n). (11)
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Therefore, the scale estimator and the extreme value index estimator are respectively given as

σ̂(t) =
2α̂0α̂1

α̂0 − 2α̂1
, γ̂ = 2− α̂0

α̂0 − 2α̂1
.

Differently, the Hill estimator, a MLE estimator designed for the Pareto distribution (i.e. the GPD

with γ > 0), is obtained by solving the following log-likelihood equation based on (8)

(
1

γ
)n−1 exp(− 1

γ

n∑
i=1

ln
Xn−i+1:n

Xn−kn:n
)(n− 1

γ

n∑
i=1

ln
Xn−i+1:n

Xn−kn:n
) = 0,

that is,

γ̂H =
1

kn

kn∑
i=1

ln
Xn−i+1:n

Xn−kn:n
.

3.2.2 Estimation based on the BM approach

Split the i.i.d. sequence (Xn)n∈Z into kn disjoint blocks with block size m, where m satisfying the

following condition
m(n)

log n
→∞, n→∞. (12)

And the ith disjoint block maximum is defined as

Md
i,m = max(X(i−1)m+1, . . . , Xim), i = 1, . . . , kn.

The PWM estimators of the GEV distribution for γ 6= 0 are given by

βr =
1

r + 1
[bm −

am
γ

(1− (r + 1)γΓ(1− γ))], γ < 1,

where am > 0 and bm are the scale and the location parameter of the GEV distribution, respectively. An

empirical estimator of βr is based on the ordered block maxima Md
1:kn
≤Md

2:kn
≤ . . . ≤Md

kn:kn
,

β̂r =
1

kn

kn∑
i=1

(i− 1)(i− 2) . . . (i− r)
(kn − 1)(kn − 2) . . . (kn − r)

Md
i:kn ,

and β̂0 = k−1
n

∑kn
i=1M

d
i:kn

. Ferreira and de Haan (2015) provided an estimator of γ̂ as

γ̂ =
1

ln 2
ln(

4β̂3 − β̂0

2β̂1 − β̂0

− 1),

which is the solution of (4β3 − β0)(2β1 − β0)−1 = (1− 4γ̂)(1− 2γ̂)−1. Given γ̂, the scale parameter can

be computed as

âm =
(2β̂1 − β̂0)γ̂

Γ(1− γ̂)(2γ̂−1)
.

Consequently, the location estimator, which regarded as the estimator of the intermediate quantile in the
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extrapolation discussed in Section 3.3, is given by

b̂m = β̂0 + âm
1− Γ(1− γ̂)

γ̂
.

As an alternative, the MLE for the case γ > 0 is defined as fitting the block maxima to the Fréchet

log-likelihood function:

L(ω|x) =

kn∑
i=1

`ω(xi), ω = (γ, am) ∈ (0,∞)2 = Ω, (13)

where xi = Md
i,m

∨
c, c > 0 is the left-truncated block maximum, and where

`ω(x) = log(
1

γam
)− (

x

am
)−

1
γ − (

1

γ
+ 1) log(

x

am
)

is the individual contribution to the Fréchet log-likelihood. The existence and uniqueness of the MLE

estimator are provided that if the scalars x1, . . . , xkn ∈ (0,∞) are not all identical, then there exists a

unique maximizer parameter vector

ω̂(x) = (γ̂(x), âm(x)) = argmax
ω∈Ω

L(ω|x).

Specifically, γ̂(x) is the unique solution of

Ψkn(γ|x) = γ +
1
kn

∑kn
i=1 x

− 1
γ

i log(xi)

1
kn

∑kn
i=1 x

− 1
γ

i

− 1

kn

kn∑
i=1

log(xi) = 0. (14)

From (14), the MLE estimator of γ is also scale invariant : γ̂(cx) = γ̂(x).

3.3 Extrapolation

Another characterization of the necessary and sufficient condition for F ∈ D(Gγ) with γ ∈ R is the

so-called first order condition (15).

Theorem 3.2 Let U = ( 1
1−F )← be the left continuous inverse function of 1

1−F . Then F ∈ D(Gγ) if and

only if there exists a function a(t) > 0 such that

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
, (15)

for all x > 0.

By taking tx = 1
pn

and t = n
kn

with kn satisfying the condition (9), (15) implies that for the extreme

quantile xpn := F−1(1− pn) with npn = O(1), the extrapolation is as

npn
kn

= (γ
xpn − x kn

n

a( nkn )
+ 1)−

1
γ , (16)

11



and the extreme quantile estimator is the following

x̂pn = Û(
n

kn
) + â(

n

kn
)
( kn
npn

)γ̂ − 1

γ̂
, (17)

where Û( nkn ), â( nkn ) and γ̂ are proper estimators of U( nkn ), a( nkn ) and γ, respectively. In the POT

approach, U( nkn ) is estimated by the empirical intermediate quanitle Xn−kn:n, meanwhile the estimates

of a( nkn ) and γ are provided by the estimators σ̂( nkn ) and γ̂ in methods like the PWM method and

the MLE. Under the condition (9), the estimators σ̂( nkn ) and γ̂ respectively converge to a( nkn ) and γ in

probability as n→∞.4

This extrapolation approach is used in the general case γ ∈ R. Regarding the estimators of a( nkn ) and

γ, the PWM is built-in to be applied in the case γ < 1, thus one should always use the extrapolation

in (16) for the PWM estimator, so do the MLE estimator proposed by Drees et al. (2004), the moment

estimator constructed by Dekkers et al. (1989) and the moment estimator in Hosking and Wallis (1987).

If F exhibits heavy tails, i.e. γ > 0, a possible choice for the auxiliary function a(t) is a(t) = γU(t)

(Dombry, 2015). Then the extrapolation turns to be

npn
kn
≈ (

xpn
x kn
n

)−
1
γ ,

which implies a quantile estimator as

x̂pn = Û(
n

kn
)(
kn
npn

)γ̂ . (18)

The quantile estimator in (18) can be regarded as a special case of (17), where there is a linear relationship

between the location parameter and the scale parameter. This expression can be employed by the Hill

estimator, and the corresponding quantile estimate is referred as the Weissman estimator (Weissman,

1978).

In the BM framework, we consider the extrapolation in the following way. Let m satisfy the condition

(12), and (1) can be written as

lim
m→∞

1

−m logF (amx+ bm)
= (1 + γx)

1
γ , (19)

for all 1 + γx > 0, and γ ∈ R. Define V = ( 1
− logF )← as the left continuous inverse function of 1

− logF ,

then by taking

lim
m→∞

1

−m logF (amx+ bm)
= y, (1 + γx)

1
γ = y,

one obtains

x = lim
m→∞

V (my)− bm
am

, x =
yγ − 1

γ
.

4The condition (9) is obviously not the only condition of the convergence. For different estimators, the range
of γ matters as well. For instance, the first order condition (15) supposes to hold for γ > −1 and γ 6= 0 for the
MLE estimator proposed by Drees et al. (2004) (Zhou, 2009), and for γ < 1 for the PWM estimator in Hosking
and Wallis (1987).
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Consequently, F ∈ D(Gγ) with γ ∈ R is equivalent to

lim
m→∞

V (mx)− bm
am

=
xγ − 1

γ
.

Recall that F (xpn) = 1−pn, then define qn := − log(1−pn) = − log(F (xpn)), and therefore, xpn = V ( 1
qn

).

The quantile estimator is as

x̂pn = b̂m + âm
(mqn)−γ̂ − 1

γ̂
. (20)

Note that for any distribution function F , − logF (x) ∼ (1 − F (x)) as F (x) → 1, and thus mqn =

−m log(1 − pn) ∼ 1 − (1 − pn)m as 1 − pn → 1. Further, taking the first order Taylor expansion of

1− (1− pn)m at pn = 0, the quantile estimator becomes

x̂pn = b̂m + âm
(mpn)−γ̂ − 1

γ̂
. (21)

(21) is sufficiently close to (20) and is adopted in several papers such as Ferreira and de Haan (2015).

And it is attractive since it simplifies the theoretical comparison of the POT method and the BM method

in extreme quantile estimation. With m = n
kn

, (21) shares the same structure as (17) except that the

distribution parameters are estimated in the BM framework.

If γ > 0, the GEV distribution Gγ is the Fréchet distribution in (6). As a consequence, (19) becomes

lim
m→∞

1

−m logF (amx)
= x1/γ ,

for all x > 0, and thus,

lim
m→∞

V (mx)

am
= xγ .

Similarly, one carries out a quantile estimator as

x̂pn = âm(mqn)−γ̂ . (22)

In (20) to (22), âm, b̂m and γ̂ are respectively the suitable estimators for am, bm and γ that can be

provided by the PWM method and the MLE.

Overall, in the POT approach, the location parameter is estimated by the empirical intermediate

quantile, and if γ > 0, one can estimate the scale parameter via multiplying the empirical intermediate

quantile by the estimated extreme value index. However, in the BM framework, the location parameter is

ignored if γ > 0. Moreover, the estimate of the scale parameter equals to the estimate of the intermediate

quantile.

3.4 Estimation under serial dependence

Denote a strictly stationary sequence as (X̃n)∞n=1 and the corresponding maximum of the sequence as

M̃n.

Under serial dependence, Drees (2003) established the asymptotic normality of a class of the POT
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extreme quantile estimators, including the Hill estimator and the PWM estimator applied in this paper.

Under the mild structural conditions on (X̃n)∞n=1, the estimation procedure is in line with the i.i.d. case.

The estimator can be applied for time series that are geometrically β-mixing, such as ARMA models with

balanced heavy tails and (G)ARCH models.

However, the quantile estimation in the BM approach is modified. The following theorems hold when

the serial dependence exhibits.

Theorem 3.3 Let (X̃n)∞n=1 be a strictly stationary sequence with marginal distribution function F, and a

sequence of constants un, satisfies the distributional mixing condition D(un) in Leadbetter (1983). Then

Pr(M̃n ≤ un)→ e−θτ if and only if n[1− F (un)]→ τ, (23)

where M̃n is the maximum of the stationary sequence. The series (X̃n)∞n=1 is said to have the extremal

index θ, θ ∈ [0, 1]. If the sequence (un) also satisfies the anti-cluster condition D
′
(un) in Leadbetter

(1983), it implies that the extremal index θ equals to unity.

Theorem 3.4 Suppose that the stationary sequence (X̃n)∞n=1 has extremal index θ, θ ∈ (0, 1]. Denote

its associate i.i.d. sequence as (Xn)∞n=1 with the corresponding maximum Mn. Then

lim
n→∞

Pr(
Mn − bn

an
≤ x) = Gγ(x)

holds for a non-degenerate Gγ(x) if and only if

lim
n→∞

Pr(
M̃n − bn

an
≤ x) = Gθγ(x) (24)

with Gθγ(x) also non-degenerate.

The two theorems show that if the long-range dependence in the stationary time series is weak, and there

is no tendency to form clusters of large values, then the normalized block maxima of stationary series and

associate i.i.d. series have the same type of limiting distribution. Moreover, the normalization constants

are the same for the two series. However, the anti-cluster condition D
′
(un) may not be tenable for a

financial series, for instance in a stationary (G)ARCH process, the clusters of volatility lead to clusters

of extreme values (McNeil, 1998). Then the clustering of extreme values leads to the modifications of the

location and the scale parameters in the i.i.d. case, such that the limiting distributions of block maxima

of both the stationary and the associate i.i.d. series are of the same type. It can be verified that condition

(24) is equivalent to the following condition

lim
n→∞

Pr(
M̃n − b∗n

a∗n
≤ x) = Gγ(x)

with normalization constants a∗n and b∗n given by

a∗n = anθ
γ , b∗n =

an
γ

(θγ − 1) + bn.

14



Thus, in order to use the extreme quantile estimator in (21) and (22), besides the necessary estimation

for GEV parameters, an additional extremal index θ needs to be estimated.

Let un = F←(1− x
n ), then nF̄ (un) = x as n→∞ where F̄ = 1−F . From (23), it can be shown that

Zn = n(1−Nn) with Nn = F (M̃n) is asymptotically exponential distributed with mean 1
θ as follows: for

any x > 0,

lim
n→∞

Pr(n(1−Nn) ≥ x) = lim
n→∞

Pr(M̃n ≤ un)

= lim
n→∞

Pr(nF̄ (M̃n) ≥ nF̄ (un))

= exp(−θx).

(25)

Berghaus and Bücher (2018) provided a MLE θ̂ for the extremal index based on a sample of block maxima.

More precisely, consider the disjoint block maxima extracted from (X̃n)n∈Z, that is

M̃d
i,m = max(X̃(i−1)m+1, . . . , X̃im), i = 1, . . . , kn.

Let Nd
i,m = F (M̃d

i,m) and Zdi,m = m(1 − Nd
i,m). If m is sufficiently large, then by (25), the limiting

distribution of the unobserved random variables Zd1,m, . . . , Z
d
kn,m

is the exponential distribution with

mean 1
θ . As a consequence, the pseudo-likelihood function is given by taking the block maxima as

asymptotically independent (Northrop, 2015),

Lexp(θ;Z
d
i,m) = θγexp(−θ

kn∑
i=1

Zdi,m). (26)

Since the distribution function F is unknown, one can use the empirical cumulative distribution function

F̂n(x) = n−1
∑n
s=1 1(Xs ≤ x) where 1(·) is an indicator function as an estimate of F . The MLE estimator

for θ is then

θ̂d = (
1

kn

kn∑
i=1

Ẑdi,m)−1, (27)

where Ẑdi,m = m(1 − N̂d
i,m) and N̂d

i,m = F̂n(M̂d
i,m). Furthermore, a bias correction is necessary since

an asymptotic bias term may appear. In this paper, we adopt the bias reduction scheme suggested by

Berghaus and Bücher (2018). Define T̂ dm = 1
kn

∑kn
i=1 Ẑ

d
i,m. Since

√
kn(T̂m − θ−1)  N(0, σ2) 5, through

the Taylor expansion of T̂−1
m − θ at T̂−1

m = θ, a bias-reduced estimator is as following

θ̂bc = θ̂ − k−1
n θ̂ − k−1

n θ̂3σ̂2, (28)

where the first bias-component is due to the use of the empirical cumulative distribution function and σ̂2

is the variance estimator. Define

B̂di,m = Ẑdi,m +
∑
s∈Ii

1

kn
(

kn∑
i=1

1(F̂n(X̃s)) > 1−
Ẑdi,m
m

)− 2T̂ dm,

5Here, (T̂m, σ
2) ∈ {(T̂ dm, σ2

d), (T̂ slm , σ
2
sl)}.
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where Ii = {(i−1)kn+ 1, . . . , ikn} is the ith block of indices. Then denote σ̂2 based on the disjoint block

maxima as σ̂2
d, it is estimated as

σ̂2
d =

1

kn

kn∑
i=1

(B̂di,m)2.

By correcting the dominating bias-components in θ̂, the estimations of the location and scale parameters

are more accurate, so does the extreme quantile estimation.

3.5 Sliding block maxima

As mentioned before, the serial dependence in the time series enlarges the asymptotic variance of extreme

quantile estimators. In order to gain efficiency, a sliding block approach is considered. Now the series

(X̃n)n∈Z is divided into ksl = n − m + 1 sliding blocks with block length m. Then, define the sliding

block maximum as following

M̃sl
i,m = max(X̃i, . . . , X̃i+m−1), i = 1, . . . , n−m+ 1.

The sample of sliding block maxima is stationary but not asymptotically independent. Nevertheless, the

limiting distribution of a single sliding block maximum is still Fréchet. Bücher and Segers (2018a) consid-

ered a maximum quasi-likelihood function by taking the sliding block maxima as independent. Then the

sliding BM-MLE estimator is given by maximizing (13) where xi = M̃sl
i,m

∨
c with c an arbitrary positive

truncation constant. Similarly, via replacing disjoint block maxima by sliding block maxima, one obtains

the sliding BM-PWM estimators. While the asymptotic biases of the disjoint and the sliding BM-MLE

estimators are the same, the efficiency gain of using sliding blocks is substantial. The asymptotic variances

of the sliding BM-MLE estimator of shape and scale parameters are 0.4946
γ2 and 0.9578γ2, respectively,

whereas those of the disjoint BM-MLE estimator are 0.6080
γ2 and 1.1087γ2, respectively (Bücher & Segers,

2018a). Note the efficiency improvement is independent of the values of γ and θ.

In addition, the sliding BM estimator for the extremal index is modified based on (27):

θ̂sl = (
1

n−m+ 1

n−m+1∑
i=1

Ẑsli,m)−1, Ẑsli,m = m(1− F̂n(M̃sl
i,m)).

The use of sliding block maxima induces a further approximation in the pseudo-likelihood function (26)

since the blocks are dependent. Similar to the other sliding block estimators, Berghaus and Bücher

(2018) showed that both θ̂sl and θ̂d are consistent and converge at the same rate to a normal distribution.

Furthermore, θ̂sl is proved to be more efficient than θ̂d and the variance reduction does not affected by

the value of γ. Precisely,

σ̂2
sl = σ̂2

d − θ̂−2
sl (3− 4 ln 2). (29)

3.6 Summary

To clarify the six extreme quantile estimators that are evaluated in this paper, we wrap them up as

follows.
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(i) the POT-MLE estimator (the Weissman estimator)

x̂pn = X̃n−kn:n(
kn
npn

)γ̂ ,

where γ is estimated by the Hill estimator

γ̂ =
1

kn

kn∑
i=1

ln
X̃n−i+1:n

X̃n−kn:n

.

(ii) the POT-PWM estimator

x̂pn = X̃n−kn:n + σ̂(
n

kn
)
( kn
npn

)γ̂ − 1

γ̂
,

where

σ̂(
n

kn
) =

2α̂0α̂1

â0 − 2α̂1
, γ̂ = 2− α̂0

α̂0 − 2α̂1

with α̂0 and α̂1 respectively estimated by (10) and (11) based on the ordered statistics X̃n−kn:n, . . . , X̃n:n.

(iii) the disjoint BM-MLE estimator

x̂pn = âm(mqn)−γ̂d ,

where

âm = â∗mθ̂
−γ̂d
d , θ̂d = (

1

kn

kn∑
i=1

Ẑdi,m)−1,

and (γ̂d, â
∗
m) are the MLE estimators by maximizing the log-likelihood function(13) based on the

left-truncated disjoint block maxima M̃d
i,m for i = 1, . . . , kn.

(iv) the sliding BM-MLE estimator

x̂pn = âm(mqn)−γ̂sl ,

where

âm = â∗mθ̂
−γ̂sl
sl , θ̂sl = (

1

n−m+ 1

n−m+1∑
i=1

Ẑsli,m)−1

and (γ̂sl, â
∗
m) are the MLE estimators by maximizing the log-likelihood function(13) based on the

left-truncated sliding block maxima M̃sl
i,m for i = 1, . . . , n−m+ 1.

(v) the disjoint BM-PWM estimator

x̂pn = b̂m + âm
(mqn)−γ̂d − 1

γ̂d
.

The modifications of the scale and location estimators are

âm = â∗mθ̂
−γ̂d
d , b̂m = b̂∗m − âmγ̂−1

d (θ̂γ̂dd − 1).
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And the parameter estimators for the GEV distribution are

γ̂d =
1

ln 2
ln(

4b3 − 2b1
2b1 − b0

), â∗m =
(2b1 − b0)γ̂d

(2γ̂d − 1)Γ(1− γ̂d)
, b̂∗m = b0 + â∗m

1− Γ(1− γ̂d)
γ̂d

,

where b0,b1 and b3 are computed by M̃d
i,m for i = 1, . . . , kn.

(vi) the sliding BM-PWM estimator

x̂pn = b̂m + âm
(mqn)−γ̂sl − 1

γ̂sl
.

The modifications of âm and b̂m are of the same form as disjoint blocks. And all parameters are

estimated based on M̃sl
i,m for i = 1, . . . , n−m+ 1.

The extremal index estimators θ̂d and θ̂sl are bias-reduced as in (28), and for the sliding BM, the

variance estimator is σ̂2
sl in (29).

3.7 Evaluation criteria

The evaluation of the methods is done in three aspects: the accuracy, the efficiency, and the bias-

variance tradeoff. Furthermore, the three measurements are scaled by true extreme quantile in order to

be comparable across different models. The squared bias is computed by

bias2 = (
x̂pn
xpn
− 1)2.

The efficiency of an estimator is measured by the its sample variance

variance =
1

S

S∑
i=1

(
x̂i,pn
xpn

− x̂pn
xpn

)2.

And the mean squared error (MSE) captures the bias-variance tradeoff, which is defined as

MSE = bias2 + variance =
1

S

S∑
i=1

(
x̂i,pn
xpn

− 1)2.

3.8 Data generating processes

In this section we evaluate the performance of the above six extreme quantile estimators under serial

dependence. Since many asset returns have the stylized facts such as excess kurtosis, we focus on the

heavy-tailed case i.e. γ > 0 here. Consider three time series models for (Xn)n∈Z: independent and

identical distributed random variables (r.v.s), the heavy-tailed ARMA(1,1) time series and the symmetric

GARCH(1,1) time series. In the first two models, three choices are considered for the distribution r.v.s in

the first model and the innovations in the second model: absolute value of a student t distribution with

degree of freedom 3, Pareto distribution and Fréchet distribution with shape parameter 1
3 . The shape

parameter is chosen to have a finite variance, since an infinite variance is unrealistic in practice.
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For the ARMA(1,1) model

Xi = λ1Xi−1 + εi + φ1εi−1,

the parameter vector (λ1, φ1) is set to be each of the following

(i) λ1 = 0.95, φ1 = 0.9,

(ii) λ1 = 0.9, φ1 = 0.3,

(iii) λ1 = 0.9, φ1 = −0.6,

(iv) λ1 = 0.3, φ1 = 0.9,

which partially based on the settings in Drees (2003). The degree of dependence is declining from setting

(i) to (iii), and it is dominated by the autoregressive parameter λ1. In setting (iv), the dependence has

short memory but it is locally strong. Note for λ1 = −φ1, the i.i.d. R.V.s are observed.

For the GARCH(1,1) model, the innovation are standard Gaussian distributed, that is

Xi = σiεi, εi ∼ N(0, 1),

σ2
i = ν + ρ1X

2
i−1 + ψ1σ

2
i−1

= ν + (ρ1ε
2
i−1 + ψ1)σ2

i−1,
(30)

with

(v) ν = 0.5, ρ1 = 0.07, ψ1 = 0.55,

(vi) ν = 0.5, ρ1 = 0.08, ψ1 = 0.91,

(vii) ν = 0.5, ρ1 = 0.55, ψ1 = 0.07,

(viii) ν = 0.5, ρ1 = 0.6, ψ1 = 0.25.

The tuning parameters ρ1 and ψ1 are chosen to satisfy ρ1 +ψ1 < 1 such that the time series is covariance

stationary.6 And the parameters are non-negative to ensure the positivity of σ2
i .

Unlike in the linear models where the clustering of extreme values is due to the auto-correlations

in observations, in the GARCH models, the clustering of extremes is caused by volatility clustering.

Since ρ1 and ψ1 simultaneously decide the degree of volatility clustering and the coefficient of excess

kurtosis measured relative to the Gaussian distribution, we choose the values of ρ1 and ψ1 such that both

aspects are concerned. The PWM estimation would probably fail to capture the heavy-tail behaviour if

the excess kurtosis is positively small. Hence, we consider the excess kurtosis to be varying in models.

It increases from Model (v) to Model (vii). By contrast, Model (viii) has an infinite excess kurtosis.

Furthermore, we measure the degree of volatility clustering by the the second moment of the random

parameter (ρ1ε
2
i−1 + ψ1) in (30), that is,

E(ρ1ε
2
i−1 + ψ1)2 = (ρ1 + ψ1)2 + 2ρ2

1.

6This is a sufficient but not necessary condition for strict stationarity.
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Then, a preliminary ascending order of the degree of volatility is Model (v) < Model (vii) < Model (viii)

< Model (vi).

The quantiles xpn are estimated for pn = 0.001 and pn = 0.0005. Since the true quantile is unknown for

all models, they are computed by pre-simulation. We simulate S = 1000 time series of length n = 5×106

and estimate xpn by the median of empirical (1− pn) quantiles. Next, we conduct S = 1000 simulation

runs for each of the above-mentioned models with the fixed sample sizes n = 1000 and n = 2000.

Here we choose the sample sizes in a plausible way. For many assets we are capable to collect 1000 or

2000 observations. Also the sample sizes are sufficient high allowing the block size to be large enough.

When sample size n = 1000, it is about four-year trading days of New York Stock Exchange (NYSE)

and National Association of Securities Dealers Automated Quotations (NASDAQ). Via Monte Carlo

simulations, we obtain the empirical estimates of the scaled squared bias, variance and MSE of the six

candidate estimators. For n = 1000, the disjoint block size m is calculated by the integer part of n/k0

with k0 ranging from 10 to 150 with a step 2. The POT estimators are based on the respective values

kn = b nmc. And for n = 2000, k0 ranges from 20 to 200 with a step 5.

4 Results

The scaled MSE, squared bias and variance are depicted as the functions of the effective sample size kn.

kn refers to the number of upper ordered statistics in the POT methods, and the number of disjoint blocks

in the BM methods. For the sliding BM estimators, the actual effective sample size is n−m+ 1. Here we

plot the sliding BM estimators together with other competing estimators, such that it presents the MSE

curves when the block size decreases. The finite-sample performances of six estimators are evaluated by

the MSE. Since the MSE equals to the sum of the squared bias and the variance, we decompose the MSE

to provide more insights of the estimators performances.

4.1 Identical and independent random variables

4.1.1 MSE comparison

Figure 1 shows the finite-sample performances of six extreme quantile estimators for the i.i.d. samples.

The first row indicates that the sliding BM-MLE estimator outperforms the competing estimators for all

three distributions. For the i.i.d. Fréchet sample, the BM-MLE estimators (the disjoint and the sliding

BM-MLE estimators) have a monotonically declining MSE curve since the BM-MLE estimators are based

on the Fréchet likelihood function, and the MSE curve of the Weissman estimator is slightly U-shaped.

For the i.i.d. Pareto sample, the Weissman estimator has a decreasing MSE curve, while the MSE curves

of the BM-MLEs are U-shaped. Furthermore, the U shapes of the MSE curves of the BM-MLE estimators

and the Weissman estimator are more obvious when the sample follows the i.i.d. student t distribution.

Although the MSEs of the BM-MLE estimators climb faster than the MSE of the Weissman estimator as

kn increases, the lowest MSEs at the optimal kn are lower. The POT-PWM estimator performs almost

identically for the three i.i.d. samples, as well as the BM-PWM estimators (the disjoint and sliding BM-

PWM estimators). When kn increases, the MSE curves of the POT-PWM estimator and the BM-PWM
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estimators tend to coincide.
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Figure 1: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 1000, pn = 0.001

4.1.2 MSE decomposition

The second and the third rows of Figure 1 show the decomposition of MSE into the squared bias and

the variance. The sliding BM-MLE processes the lowest variance for the i.i.d. Fréchet sample. The

bias of the Weissman estimator is increasing in kn, while the variance is decreasing. The disjoint BM-

PWM estimator has a decreasing bias curve since its γ estimates are closer to the true γ, i.e. 1
3 ; see the

accompany figures on the γ estimates in the forth row. It has a higher variance than the POT-PWM

estimator, although the variance differences among the three PWM estimators are minor. Since the MSE

is dominated by the variance instead of the bias for the i.i.d. Fréchet case, the MSE of the disjoint BM-

PWM estimator is higher than of the Weissman estimator and the BM-MLE estimators due to the high

variance. Moreover, the POT-PWM estimator fails to capture the heavy-tailed feature in the series when

kn is low. There is an uptrend in the bias curves of the POT-PWM estimator and the sliding BM-PWM

estimator. Both peaks appear when the γ estimates are adjacent to zero. One possible explanation is

that the extrapolation for the POT-PWM estimator and the BM-PWM estimators requires the γ̂ to be
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non-zero, thus the POT-PWM estimator and the BM-PWM estimators have a high bias when the γ̂ is

zero or close to zero.

For the i.i.d. Pareto sample, the BM-MLE estimators have the increasing bias curves and decreasing

variance curves in kn. Therefore, the MSE decomposition suggests that the U shape is induced by the

bias-variance tradeoff. Since the variance is dominant in the MSE, the U shape is not clearly presented.

It also indicates that the sliding BM-MLE estimator outperforms the other estimator due to its low

variance.

For the i.i.d. student t sample, the Weissman estimator and the BM-MLE estimators have higher

biases than the POT-PWM estimator and the BM-PWM estimators with high values of kn. Though the

Weissman estimator has a lower variance with a larger effective sample size, the variance reduction is

higher than in the other two samples. The variance reduction is negligible when the BM-MLE estimators

overestimate γ. The variance increases faster in kn if the overestimation is more serious. The overestima-

tion of γ indicates a heavier tail than it actually is. Therefore, the estimation variances of the BM-MLE

estimators are higher. Consequently, the variance reduction becomes negligible in this case. The biases

and the variances of the POT-PWM estimator and the BM-PWM estimators are almost identical in three

samples, thus we skip detailed discussion.

4.1.3 Robustness check

Figure 2, 3 and 4 present the simulation results in the i.i.d. case for n = 1000 pn = 0.0005, n = 2000 pn =

0.001 and n = 2000 pn = 0.0005, respectively. Here we compare the results in Figure 1 with the results

under different sample sizes n and probability levels pn. The MSE, squared bias and variance reduce

when estimating a less extreme quantile or using a sample with a larger sample size n. Theoretically,

pn should not affect the performance of the quantile estimators as long as pn = o(n). Nevertheless, we

observe that higher pn corresponds to a lower empirical bias and variance. Moreover, the sample with

a large n would make the asymptotic theory on the estimator work better, consequently improve the

finite-sample performances of the quantile estimators. In Figure 3, the POT-PWM estimator is able to

estimate the heavy tails for low kn as long as the sample size is sufficiently large. Also, the BM-PWM

estimators do not yield γ estimates close to zero for low kn. In the rest of this section, we provide the

simulation results of the ARMA models and the GARCH models with n = 1000 and pn = 0.001, the

results under other combinations of n and pn are in Appendix B.

4.2 ARMA models

4.2.1 MSE comparison

We consider the performances of the quantile estimators under linear serial dependence. Figure 5 depicts

the MSEs of six estimators in the ARMA models. Firstly, the first column shows the results with

Fréchet innovations. The sliding BM-MLE estimator is always the optimal quantile estimator, regardless

of whether the serial dependence is strong, weak, or locally strong. The advantage of low variance of

the sliding BM-MLE estimator over the disjoint BM-MLE estimator is insignificant. The Weissman
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Figure 2: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 1000, pn = 0.0005
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Figure 3: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 2000, pn = 0.001
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Figure 4: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 2000, pn = 0.0005

estimator has a hump-shaped MSE curve under (relatively) strong serial dependence as in the ARMA (i)

and ARMA (ii) models. The hump shape is not observed when the serial dependence is weaker as in the

ARMA (iii) and ARMA (iv) models. We shall discuss the reason behind in the MSE decomposition below.

The MSE curve of the sliding BM-PWM estimator has a similar downward trend as the disjoint BM-

PWM estimator, but smoother. The BM-PWM estimators are not preferable compared to the Weissman

estimator and the BM-MLE estimators in the four ARMA models. Note that the POT-PWM yields an

increasing MSE curve in kn under strong serial dependence in the ARMA (i) model. When the serial

dependence is weaker from the ARMA (i) to the ARMA (iii) model, the MSE curve is more horizontal.

The MSE decreases with kn increases in the ARMA (iv) model. For this model, the serial dependence

which is locally strong but not persistent.

Secondly, the second column presents the results with Pareto innovations. The MSE curves of the six

quantile estimators are similar as these in the first column. The sliding BM-MLE estimator outperforms

the other candidate estimators under different degrees of serial dependence. Note that in the ARMA

(iii) and (iv) models, the U-shaped MSE curves of the BM-MLE estimators are more pronounced, which

suggests that the BM-MLE estimators have higher biases with Pareto innovations.

Lastly, consider the results with student t innovations in the third column. The POT-PWM estimator

and the BM-PWM estimators have almost identical performances across the three different innovation

distributions. By contrast, the BM-MLE estimators provide the minimal MSEs only when the serial

dependence is rather strong. Once the serial dependence is weaker as in the ARMA (ii) models, the
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Figure 5: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 1000, pn = 0.001

Weissman estimator has the best performance given kn is large. When the serial dependence reduces

further in the ARMA (iii) model, the Weissman estimator outperforms the BM-MLE estimators. For

this model, the BM-MLE estimators have higher MSEs than that for the models with Fréchet or Pareto

innovations. In the ARMA (iv) model where the serial dependence has short memory, the MSEs of

the BM-MLE estimators rise rapidly after a small decrease. We conclude that the BM-MLE estimators

require the block size to be sufficiently large. Again, the Weissman estimator is recommended in this case

and it reaches the minimal MSE with relatively low kn.

4.2.2 MSE decomposition

Figure 6 and Figure 7 demonstrate the variance and bias of each quantile estimator, respectively. Figure

8 reflects the effect of serial dependence on the γ estimation. The true γ equals to the extreme value

index of the innovations, which is 1
3 . The first column of Figure 6, 7 and 8 show the results for the ARMA

models with Fréchet innovations. The sliding BM-MLE is the most efficient method under all coefficient

settings, since one of the advantages of the BM approach is its low variance by taking the block maxima

as independent. Since the variances of the BM-MLE estimators dominate their MSEs, the bias-variance

tradeoff is not well-observed in the MSE curves. The BM-MLE estimators are relatively accurate due to
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Figure 6: Scaled variances in the ARMA models as a function of the effective sample size. n = 1000, pn = 0.001

low biases, although they generally have increasing biases in kn. When the serial dependence is strong,

the BM-MLE estimators underestimate γ even if the block size is sufficiently large. The underestimation

is less pronounced when the serial dependence is weaker as in ARMA (i), (ii) and (iii) models. Compared

to the first three ARMA models, the BM-MLE estimators are more accurate for the γ estimation due to

lower biases, if the serial dependence is locally strong and not persistent as in the ARMA (iv) model.

Different from the other estimators, the variance curve of the Weissman estimator is hump-shaped

which leads to the hump-shaped MSE curve, when the serial dependence is relatively persistent in the

ARMA (i) and ARMA (ii) models. One possibility is that, when kn is low and the sample is strongly

dependent, the variance reduction is not sufficient to eliminate the serial dependence in the effective

sample. With kn increases, the variance reduction is greater. Therefore, there is no hump shape in

the ARMA (iii) and ARMA (iv) models where the serial dependence is rather weak. Furthermore, the

Weissman estimator is less accurate than the BM-MLE estimators in the first three ARMA models due

to a higher bias, unless the threshold is considerably high. It is in line with the γ estimation results. The

accuracy of the Weissman estimator is positively related to the Hill estimator, and the Hill estimator has

a higher bias than the BM-MLE estimators except in the ARMA (iv) model.

Note that the POT-PWM estimator fails to capture the heavy-tailed feature if the serial dependence

is persistent. The POT-PWM estimator provides negative γ estimates for all kn values in the ARMA

(i) and ARMA (ii) models. Hence, one observes an increasing variance curve and a declining bias curve
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Figure 7: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 1000,
pn = 0.001

due to the wrong γ estimates. The POT-PWM estimator is able to estimate the heavy tails if the serial

dependence is weak or only locally strong, however, it requires a sufficiently large effective sample size.

The hump shape in the bias curve of the POT-PWM estimator appears in the ARMA (iii) and ARMA

(iv) models due to the same reason as explained in the i.i.d. cases. The serial dependence distorts the γ

estimation of the BM-PWM as well but less serious than what is does for the POT-PWM. The sliding

BM-PWM estimator fails to capture the heavy-tailed feature when the serial dependence is persistent

as in the ARMA (i) model. The disjoint BM-PWM estimator yields positive γ estimates when kn is

low, however, the γ estimates are close to zero. The BM-PWM estimators have better performance in

the γ estimation when the serial dependence is weaker in the ARMA (ii) model. The bias and variance

curves of the BM-PWM estimators are similar in the ARMA (i) and ARMA (ii) models. Overall, if the γ

estimates of the BM-PWM method are not sufficiently positive, the bias of the extreme quantile estimator

is considerable and likely to be as the same magnitude as the bias under the negative γ estimates. The

BM-PWM estimators can estimate the heavy tails under weak serial dependence and with relatively large

effective sample size. Although the hump shape in the bias curves appears in the ARMA (iii) model,

the BM-PWM estimators have lower biases than the POT-PWM estimator if kn is high. In the ARMA

(iv) model where the serial dependence is only locally strong, the BM-PWM estimators have lower biases

than the other estimators. The POT-PWM estimator and the BM-PWM estimators are not preferable in
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Figure 8: Extreme value index estimates in the ARMA models as a function of the effective sample size. n = 1000,
pn = 0.001

the ARMA (iii) and ARMA (iv) model, due to the high variances compared to the Weissman estimator

and the BM-MLE estimators.

The second column of Figure 6, 7 and 8 present the results with Pareto innovations, which are quite

similar to with Fréchet innovations. Thus the detailed discussion is skipped. Note that the BM-MLE

estimators have higher biases with Pareto innovations.

Now we consider the results with student t innovations in the third column of Figure 6, 7 and 8. As

mentioned in the MSE comparison section, the Weissman estimator outperforms the sliding BM-MLE

estimator except in the ARMA (i) model. The sliding BM-MLE estimator has a lower variance than

the Weissman estimator under strong serial dependence. However, its bias increases fast in kn. By

contrast, the Weissman estimator has a declining bias curve. The bias differences between the sliding

BM-MLE estimator and the Weissman estimator further enlarge in the ARMA (ii) and ARMA (iii) model.

Moreover, in the ARMA (iii) model with student t innovations, the variance reduction of the BM-MLE

estimators is less than with Fréchet or Pareto innovations, such that the Weissman estimator becomes

the most efficient quantile estimator. The variance curves of the BM-MLE estimators are U-shaped in

the ARMA (iv) model. The biases rise rapidly due to the overestimation of γ, which is in line with the

results in the i.i.d. student t sample. The POT-PWM estimator and the BM-PWM estimators have

similar performances in the ARMA models with student t innovations as in the models with Fréchet and
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Pareto innovations.

Finally, we observe that the performances and the γ estimations of six quantile estimators in the

ARMA (iv) model are similar to the i.i.d. cases. When the serial dependence is locally strong but lack of

persistence, each cluster of extreme values is relatively independent. Consequently, the serial dependence

in the effective sample is weak. By contrast, if the serial dependence is persistent, either the block

maxima from the BM method or the excesses from the POT method are strongly dependent. Under this

circumstance, the quantile estimators are affected to a larger extent.

4.3 GARCH models

Next we consider the GARCH models. Based on the results in the ARMA models, the POT-PWM

and BM-PWM estimators may fail to capture the heavy-tailed feature. Therefore, the MSE should not

solely decide the superiority of the quantile estimators based on the PWM method. We also take the γ

estimation into consideration. In the following MSE comparison, a quantile estimator based on the PWM

method is said to be optimal only if it provides the minimal MSE, and meanwhile a positive γ estimate.

The true γ varies across the four GARCH models. Since we impose the GARCH models to be covariance

stationary, the true γ of each GARCH model is in the range of 0 to 1
2 .

4.3.1 MSE comparison

Figure 9 presents the simulation results in the GARCH models. The first three rows show the scaled

MSE, scaled squared bias and scaled variance, respectively. The last row presents the γ estimates across

the GARCH models. First of all, the POT-PWM estimator and the BM-PWM estimators fail to estimate

the heavy tails in the GARCH (v) model where the nonlinear dependence is rather weak. So we would not

consider the corresponding quantile estimators. Among the rest, the Weissman estimator outperforms

the BM-MLE estimator, although the MSE increases fast as kn increases. Secondly, the serial dependence

is quite strong in the GARCH (vi) model. The Weissman estimator is again preferred. The POT-PWM

estimator still fails to capture the heavy-tailed feature. The minimal MSEs of the Weissman estimator

and the sliding BM-PWM estimator are comparable. The MSE curves of the BM-PWM estimators are

more stable than the Weissman estimator. The BM-MLE estimators have increasing MSE curves. The

MSEs have a large magnitude which cannot be fitted in the same graph with the MSEs of other estimators

in the GARCH (vi) model when n = 1000 and pn = 0.001. The results for other combinations of n and

pn show the MSEs of the BM-MLE estimators in the GARCH (vi) model.

Thirdly, the serial dependence is relatively weak in the GARCH (vii) model. The disjoint BM-PWM

is the optimal method in this case. The BM-MLE estimators require a sufficiently large block size to

perform well. On the contrary, the POT-PWM estimator provides the positive γ estimates only for high

kn. The MSE curves of the POT-PWM estimator and the BM-PWM estimators are flat. The Weissman

estimator and the BM-MLE estimators have U-shaped MSE curves. Moreover, the minimal MSEs of

the BM-MLE estimators are lower than that of the Weissman estimator. Finally, the disjoint BM-PWM

estimator outperforms the other quantile estimators when the serial dependence becomes stronger from
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Figure 9: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value index
estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, pn = 0.001

the GARCH (vii) model to GARCH (viii) model. Note that the POT-PWM estimator still fails to

estimate the heavy tails for low kn. The MSE curves of six quantile estimators have similar behaviours in

the GARCH (vii) and the GARCH (viii) models. The magnitude of the MSEs is higher in the GARCH

(viii) model due to the stronger serial dependence.

4.3.2 MSE decomposition

The second and third rows in Figure 9 present the MSE decomposition into the squared bias and variance.

First of all, the Weissman estimator has a lower bias and variance than the BM-MLE estimators in the

GARCH (v) model where the degree of volatility clustering is low. The biases of the Weissman estimator

and the BM-MLE estimators increase rapidly in kn. The variance reduction is not observed as well. One

possible explanation is as following. The true γ is positively related to the excess kurtosis. The excess

kurtosis equals to 0.0049 which is close to zero in the GARCH (v) model. Thus, the true γ is small

and overestimated by the Hill estimator and the BM-MLE estimators. The variance reduction is non-

negligible only if γ is not overestimated, which is in line with the results in the i.i.d. student t sample and

in the ARMA (iv) model with student t innovations. Moreover, the γ overestimation is more pronounced

for the BM-MLE estimators than for the Hill estimator. The γ estimates based on the BM-MLE exceed
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1
2 for high kn. By contrast, the Hill estimator provides the γ estimates that are less than 1

2 . The POT-

PWM estimator and the BM-PWM estimators in contrast to underestimate γ by providing the negative

γ estimates. Consequently we would not take the corresponding quantile estimators into consideration.

It suggests there is relatively high bias in the γ estimation of the POT-PWM and BM-PWMs. The small

excess kurtosis could be the main contributor to the bias since the serial dependence is weak in this case.

The nonlinear serial dependence is persistent in the GARCH (vi) model. The excess kurtosis in this

GARCH model is higher than in the GARCH (v) model, too. The biases and the variances of the BM-MLE

estimators increase in kn. Moreover, the BM-MLE estimators lose the advantage of low variance due to

the overestimation of γ. Since the corresponding γ estimation is more accurate, the Weissman estimator

outperforms the BM-PWM estimators due to a lower bias and variance. The POT-PWM estimator and

the BM-PWM estimator fail to capture the heavy-tailed feature in the GARCH (vi) model. Thus, we

do not consider the performances of their quantile estimations. By comparing the results in the GARCH

(v) and (vi) models, it is the excess kurtosis that mainly affects the γ estimation rather than the degree

of nonlinear serial dependence.

The excess kurtosis in the GARCH (vii) model is higher than in the GARCH (v) and (vi) models. The

biases of the Weissman estimator and the BM-MLE estimators increase as kn increases. The Weissman

estimator has a lower bias than the BM-MLE estimators. The variance curve of the Weissman estimator

is flat. By contrast, the variances of the BM-MLE estimators increase fast when kn increases, as long as

γ is overestimated. The BM-PWM estimators capture the heavy-tailed feature as the excess kurtosis is

high. The disjoint BM-PWM estimator has a lower bias and a higher variance than its sliding counterpart.

Nevertheless, the variance differences between the disjoint BM-PWM estimator and the sliding BM-PWM

estimator are insignificant since the serial dependence in the GARCH (vii) model is relatively weak. The

POT-PWM estimator is able to estimate the heavy tails when kn is sufficiently high, though the γ

estimates are close to zero.

Lastly, there are an infinite excess kurtosis and the relatively strong serial dependence in the GARCH

(viii) model. The candidate quantile estimators have similar behaviours as in the GARCH (vii) model.

Due to the true γ is closer to 1
2 , the BM-MLE estimators demand a higher block size such that γ is

not overestimated. Since the overestimation of γ is less pronounced for the Weissman estimator in the

GARCH (viii) model, the variance reduction is larger than in the first three GARCH models. The disjoint

BM-PWM estimator outperforms the other quantile estimators due to a lower bias.

4.4 Summary

Figure 10 provides a brief summary on which extreme quantile estimator is preferable for different types

of data. The sliding BM-MLE estimator outperforms in the i.i.d. sample due to its low variance. Its

variance decreases as kn increases, given γ is not overestimated. Thus, we suggest to apply the sliding

BM-MLE estimator with high kn in the i.i.d. sample. The simulation results show that serial dependence

affects the estimators for high quantiles substantially. When the data are serial dependent, we consider

the linear serial dependence and the nonlinear serial dependence separately. First of all, if the serial

dependence is linear and weak, the sliding BM-MLE estimator is preferred. We can employ it with high
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kn, since the variance reduction is larger than the increase of bias. Given the minimal variances of the

sliding BM-MLE estimator and of the Weissman estimator are comparable, the Weissman estimator is

competitive in this case due to the low bias. When the the linear serial dependence is persistent, the

sliding BM-MLE estimator performs best with a low variance. Similarly, we suggest to estimate the

extreme quantile with high kn.

Next, consider the nonlinear serial dependence. The excess kurtosis has a greater effect on the perfor-

mance of the extreme quantile estimator than the degree of nonlinear dependence. If the excess kurtosis

is low, the Weissman estimator outperforms the other estimators. Since the Hill estimator overestimates

γ with high kn, the Weissman estimator is preferable with low kn. However, when the excess kurtosis

is high or infinite, the disjoint BM-PWM estimator is the optimal extreme quantile estimator. It has a

lower bias than other estimator and a lower variance than the Weissman estimator and the BM-MLE

estimators. The disjoint BM-PWM estimator requires a sufficiently high kn such that γ is not underes-

timated. A plot of the γ estimates of the POT-PWM can be an indicator of the magnitude of the excess

kurtosis. If the γ estimates are always below zero for all values of kn, then the excess kurtosis are likely

to be low. Otherwise, if the γ estimates are positive for high kn, the excess kurtosis can be considered as

high.

Data

Identical and independent

the sliding BM-MLE
estimator

with high kn

Serial dependent

Linear dependence

Weak dependence

the sliding BM-MLE
estimator

with high kn

Strong dependence

the sliding BM-MLE
estimator

with high kn

Nonlinear dependence

Low excess kurtosis

the Weissman
estimator

with low kn

High excess kurtosis

the disjoint BM-PWM
estimator

with high kn

Figure 10: Preferable extreme quantile estimators in different scenarios

5 An efficiency improvement of the BM-MLE estimators in the GARCH

models

In the quantile estimation procedure above, the block size m is identical across the estimation of θ, γ and

xpn . We refer this situation to the 1-m procedure in order to distinguish from the approach we propose

below. Notice that in the simulation results for the GARCH model using the BM-MLE method, only

a few large block sizes are valid for estimations. The variances of quantile estimators increase fast in

kn, once the BM-MLE estimators overestimate γ. In order to improve the efficiency of the BM-MLE

estimators, we consider a 3-m procedure that using different m for θ, γ and xpn estimations, namely mθ,

mγ and mx. We select the optimal mθ and mγ that provide the minimal variances of θ̂ and γ̂, respectively.

There are two reasons to employ the minimal variance criterion instead of the MSE criterion. Firstly,

the calculation of the true γ of the GARCH model is not straightforward even if the GARCH model is
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correctly specified. It requires to correctly fit the sample into the GARCH model, as well as specify the

distribution of the innovations. Secondly, the results for the GARCH model show that the variance is

the main contributor to the MSE. Hence, variance deduction is a second best choice. Last but not least,

no true γ is known for application.

We present some simulation results to verify that the 3-m procedure can indeed improve the finite-

sample performances of the BM-MLE estimators in the GARCH models. The same GARCH model

settings are adopted as in Section 3.8. We set the simulation runs to S = 500, the sample size to

n = 1000, and the extreme quantiles xpn are estimated for pn = 0.001.

Figure 11 compares the BM quantile estimators based on the 1-m procedure and the 3-m procedure. It

plots the MSE ratio MSE3-m

MSE1-m
, the squared bias ratio

bias23-m
bias21-m

and the variance ratio variance3-m
variance1-m

against mx

in the first, second and third rows respectively. The results are similar across different GARCH models.

The first row shows that the BM-MLE estimators have better performances based on the 3-m procedure,

and the MSE reduction is substantial when mx is low. However, the 3-m procedure fails to improve the

performance of the disjoint BM-PWM estimator. The sliding BM-PWM estimator based on the 3-m

procedure outperforms the counterpart based on the 1-m procedure only if mx is low. The second row

suggests that the minimal variance criterion does not always lead to a high bias. The bias ratios of the

BM-MLE estimators are lower than one as long as mx is at a low level. However, the 3-m procedure

distorts the BM-PWM estimators. More biases are introduced when mx is higher. Next, consider the

variance reduction by using the 3-m procedure. As presented in the third row, the 3-m procedure reduces

the variances of the BM-MLE estimators and the BM-PWM estimators. The variance ratios of the BM-

PWM estimators decrease as mx increases, which means that the variances decrease more rapidly in the

3-m procedure. However, the variance reduction is not sufficient to decrease the MSEs of the BM-PWM

estimators, due to the MSEs are dominated by the biases.

Since the 3-m procedure is not appropriate for the BM-PWM estimators, we compare the performances

of the BM-MLE estimators based on the 3-m procedure and the BM-PWM estimators based on the 1-

m procedure in Figure 12. The scaled MSE, scaled squared bias and scaled variance of each quantile

estimator are depicted as functions of mx. Although the BM-PWM estimators fail to capture the heavy-

tailed feature in the first two GARCH models, we plot their performance curves as an indicator. The

first row in Figure 12 shows the MSEs of corresponding quantile estimators. The BM-MLE estimators

based on the 1-m procedure have declining MSE curves in the GARCH (v) model. The level of MSEs

is close to of the BM-PWM estimators as mx increases. The MSE curves become U-shaped if the serial

dependence is stronger in the GARCH (vi), (vii) and (viii) models. The disjoint BM-MLE estimator

based on the 1-m procedure is preferred when the serial dependence is persistent as in the GARCH (vi)

model. The sliding BM-MLE estimator outperforms the disjoint counterpart when the serial dependence

is less persistent in the GARCH (vii) and GARCH (viii) models.

The second and third rows show the decomposition of the MSE into the squared bias and variance.

The BM-MLE estimators based on the 3-m procedure have lower biases when mx is higher in the GARCH

(v) model. When the serial dependence is stronger and the excess kurtosis is higher in the GARCH (vi),

(vii) and (viii) models, the U shape in the bias curve induces the similar shaped MSE curve. Since the
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Figure 11: MSE ratio MSE3-m
MSE1-m

, squared bias ratio
bias23-m
bias21-m

and variance ratio variance3-m
variance1-m

in the GARCH models as

a function of the block size of the quantile estimation, respectively. n = 1000, pn = 0.001

BM-MLE estimators are declining functions of the mx when θ̂ and γ̂ are fixed, the U shape suggests

that xpn is overestimated for low mx but underestimated for high mx. The xpn estimates decrease in

mx, consequently the bias reduces. As mx further increases, the xpn estimates keep decreasing in mx.

Eventually the bias is high again after the xpn estimates is lower than the true xpn .

The third row presents that the 3-m procedure improves the efficiency of the BM-MLE in the GARCH

model by variance reduction, such that the BM-MLE becomes the most efficient method unless the serial

dependence is weak as in the GARCH (v) model. Note that the disjoint BM-MLE estimator based on the

3-m procedure has a lower variance than the sliding BM-MLE estimator in the GARCH (vi) model. We

consider the reason as follows. Denote the optimal mγ of the disjoint and sliding BM-MLE estimators

as m∗γ,dj and m∗γ,sl, respectively. The resulting effective sample sizes of disjoint blocks and sliding blocks

are k∗γ,dj = n
m∗γ,dj

and k∗γ,sl = n −m∗γ,sl + 1, individually. The corresponding scale estimators are â∗m,dj

and â∗m,sl, and the modified scale estimators are âm,dj and âm,sl. Regarding the γ and am estimations,

the sliding BM-MLE is asymptotically more efficient than the disjoint BM-MLE. Meanwhile, we observe

the advantage of efficiency of the sliding BM-MLE estimator in simulation results, when applying the

same mγ to the disjoint and sliding BM-MLE estimators. However, âm,sl does not necessarily have

a lower variance than âm,dj in the 3-m procedure. Define the asymptotic variance of an estimator as

σ2(·). From the asymptotic theory of the BM-MLE, σ2(γ̂) is a decreasing function of γ̂. By contrast,

σ2(â∗m) is an increasing function of γ̂. There may exist some m∗γ,dj and m∗γ,sl yielding γ̂sl > γ̂dj , such that
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Figure 12: Performances (the scaled MSEs, scaled squared biases and scaled variances) of the BM-MLE estimators
based on 3-m procedure and of the BM-PWM estimators based on 1-m procedure in the GARCH models as a
function of the block size of the quantile estimation, respectively. n = 1000, pn = 0.001.

σ2(γ̂sl) < σ2(γ̂dj) and σ2(â∗m,sl) > σ2(â∗m,dj) hold. Consequently, σ2(âm,sl) could be larger than σ2(âm,dj),

although there is σ2(θ̂sl) < σ2(θ̂dj). The variances of âm,dj and âm,sl are approximately
σ2(âm,dj)
k∗γ,dj

and

σ2(âm,sl)
k∗γ,sl

, respectively. Still, âm,dj could have a lower variance than âm,sl given that k∗γ,dj < k∗γ,sl. Under

this circumstance, the disjoint BM-MLE can have a lower variance than the sliding BM-MLE in the

extreme quantile estimation.

Heuristically, the asymptotic properties of θ̂ are established by splitting the ith block into a small

block of length `n and a big block of length mθ − `n. Then the Condition 2.1 in Berghaus and Bücher

(2018) restricts the dependence between block maxima. It ensures that the mixing coefficients of both big

block and small block decay at least with a hyperbolic rate. Furthermore, the size of `n ensures that the

big blocks that are not adjacent are asymptotically independent and the contributions of the small blocks

are negligible (Robert, 2009). Such restrictions are not necessary to establish the asymptotic normalities

of γ estimators. Define mγ and mθ as nτγ and nτθ where τ ∈ (0, 1), respectively. In the future research,

it could be possible to compare the lower-bounds of τγ and τθ which may give a concrete relationship

between mγ and mθ.
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6 Conclusion

We conduct Monte Carlo simulations in order to compare the finite-sample performances of six extreme

quantile estimators under serial dependence. The POT method and the BM methods under the dis-

joint blocks and the sliding blocks are included in the comparison. We employ the probability-weighted

moments and the maximum likelihood as estimation methods. Moreover, we consider different degrees

of linear and nonlinear serial dependence in the data generating processes. Since we observe the large

variances for the BM-MLE estimators under nonlinear serial dependence, we further investigate a 3-m

procedure allowing different block sizes for the extreme quantile estimation, the extreme value index

estimation and the extremal index estimation for the BM-MLEs.

The sliding BM-MLE estimator outperforms other quantile estimators due to a low variance, in the

i.i.d. sample or when the serial dependence is linear. Note that when the random variables or the in-

novations of the ARMA models are student t distributed, the disjoint and sliding BM-MLE estimators

overestimate γ if the block size is sufficiently low. The POT-PWM estimator and the BM-PWM esti-

mators fail to capture the heavy-tailed feature under strong linear serial dependence. When the serial

dependence is not persistent, they require sufficiently high kn to estimate heavy tails. Under nonlinear

serial dependence, the biases and variances of the Weissman estimator and the BM-MLE estimators are

high when they overestimate γ. The POT-PWM estimator and the BM-PWM estimators are able to

estimate the heavy tails only if the excess kurtosis is large or infinite. Both the γ overestimation of the

Weissman estimator and the BM-MLE estimators and the γ underestimation of the POT-PWM estimator

and the BM-PWM estimators are less pronounced when the excess kurtosis is higher.

The 3-m procedure is able to improve the performances of the BM-MLE estimators under nonlinear

serial dependence. The sliding BM-MLE estimator based on the 3-m procedure outperforms the disjoint

BM-PWM estimator in the GARCH models. The bias reduction and variance reduction by using the

3-m procedure are substantial when the block size for the quantile estimation is low. Once we observe the

serial dependence in data, we can test the linearity of the serial dependence (Giannerini, Maasoumi, &

Dagum, 2015). If the serial dependence is nonlinear, we suggest to apply the sliding BM-MLE estimator

based on the 3-m procedure. Afterwards, the selection of the block size of quantile estimation is essential.

The extreme quantile is overestimated if the block size is low and underestimated if the block size is high.

In order to find a good block size, we can plot the variance of the quantile estimator against the block

size. Then we choose the block size that gives a large slope of the variance curve. The reason behind is

as follows. The variance dominates the MSE when the block size is at a low level. Therefore, the MSE is

lower with a higher block size, if the variance reduction by increasing the block size is large. When the

block size increases further, the variance is low and the variance reduction is negligible. Consequently

the bias becomes dominant, and the bias increases in the block size.

There are some limitations in this paper. First of all, the models in simulations can be enriched. For

instance, the AR-MAX models, the asymmetric GARCH models and the GARCH models with different

innovation distributions are of interests. Second, this paper does not provide an exact boundary between

the weak and strong serial dependence, as well as the boundary between the small and large excess
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kurtosis. It is left for future research. Lastly, the simulations are focused on the heavy-tailed series with

a finite variance. Some more general cases where γ ∈ R and the variance is infinite are also worthy to

investigate.
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Appendix A: notation list

Here we list the important notations appeared in this paper and their explanations.

F : the continuous distribution function.

Ft: the conditional distribution function of excesses.

γ: the extreme value index.

θ: the extremal index.

σ̂2: the asymptotic variance estimator for θ.

Gγ : the GEV distribution function with the extreme value index γ.

Hγ : the GPD function with shape parameter 1/γ.

an: the scale parameter of the GEV distribution.

bn: the location parameter of the GEV distribution.

σ(t): the scale of the GPD.

xpn : the true extreme quantile.

x n
kn

: the true intermediate quantile.

(Xn)∞n=1: an i.i.d. sequence or the associate i.i.d. sequence of a stationary sequence.

(Xn)n∈Z: an observed i.i.d. sequence.

Xn−i:n: the i+ 1th largest ordered statistic from (Xn)n∈Z.

Mn: the maximum of (Xn)∞n=1.

Md
i,m: the ith disjoint i.i.d. block maximum extracted from (Xn)n∈Z with the block size m.

Md
i:kn

: the i+ 1th largest disjoint i.i.d. block maximum.

(X̃n)∞n=1: an strictly stationary sequence.

(X̃n)n∈Z: an observed strictly stationary sequence.

X̃n−i:n: the i+ 1th largest ordered statistic from (X̃n)n∈Z.

M̃n: the maximum of (X̃n)∞n=1.

M̃d
i,m: the ith disjoint block maximum extracted from (X̃n)n∈Z with the block size m.

M̃sl
i,m: the ith sliding block maximum extracted from (X̃n)n∈Z with the block size m.

mx: the block size that is used in the extreme quantile estimation based on the BM method.

mγ : the block size that is used in γ estimations based on the BM method.

mθ: the block size that is used in θ estimation based on the BM method.
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Appendix B: additional simulation results
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Figure 13: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 1000, pn = 0.0005
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Figure 14: Scaled variances in the ARMA models as a function of the effective sample size. n = 1000, pn = 0.0005
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Figure 15: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 1000,
pn = 0.0005
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Figure 16: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 2000, pn = 0.001
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Figure 17: Scaled variances in the ARMA models as a function of the effective sample size. n = 2000, pn = 0.001
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Figure 18: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 2000,
pn = 0.001
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Figure 19: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 2000, pn = 0.0005
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Figure 20: Scaled variances in the ARMA models as a function of the effective sample size. n = 2000, pn = 0.0005

46



0 50 100 150 200

k
n

0

0.01

0.02

0.03

S
q
u
a
re

d
 b

ia
s

ARMA (i) Fréchet

0 50 100 150 200

k
n

0

0.005

0.01

0.015

0.02

0.025

S
q
u
a
re

d
 b

ia
s

ARMA (i) Pareto

0 50 100 150 200

k
n

0

0.01

0.02

0.03

0.04

0.05

S
q
u
a
re

d
 b

ia
s

ARMA (i) student t (absolute value)

0 50 100 150 200

k
n

0

0.005

0.01

0.015

0.02

0.025

S
q
u
a
re

d
 b

ia
s

ARMA (ii) Fréchet

0 50 100 150 200

k
n

0

0.005

0.01

0.015

0.02

0.025

S
q
u
a
re

d
 b

ia
s

ARMA (ii) Pareto

0 50 100 150 200

k
n

0

0.02

0.04

0.06

0.08

S
q
u
a
re

d
 b

ia
s

ARMA (ii) student t (absolute value)

0 50 100 150 200

k
n

0

0.01

0.02

0.03

0.04

S
q
u
a
re

d
 b

ia
s

ARMA (iii) Fréchet

0 50 100 150 200

k
n

0

0.01

0.02

0.03

0.04

S
q
u
a
re

d
 b

ia
s

ARMA (iii) Pareto

0 50 100 150 200

k
n

0

0.02

0.04

0.06

0.08

S
q
u
a
re

d
 b

ia
s

ARMA (iii) student t (absolute value)

0 50 100 150 200

k
n

0

2

4

6

8

S
q
u
a
re

d
 b

ia
s

#10 -3 ARMA (iv) Fréchet

0 50 100 150 200

k
n

0

0.01

0.02

0.03

S
q
u
a
re

d
 b

ia
s

ARMA (iv) Pareto

0 50 100 150 200

k
n

0

0.005

0.01

0.015

0.02

S
q
u
a
re

d
 b

ia
s

ARMA (iv) student t (absolute value)

Weissman estimator disjoint BM-MLE sliding BM-MLE POT-PWM disjoint BM-PWM sliding BM-PWM

Figure 21: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 2000,
pn = 0.0005
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Figure 22: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value index
estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, pn = 0.0005
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Figure 23: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the GARCH models as a function of the effective sample size, respectively. n = 2000, pn = 0.001
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Figure 24: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value index
estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, pn = 0.0005
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