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Abstract

This paper evaluates the finite-sample performances of six extreme quantile estimators in
the heavy-tailed series under serial dependence. Through Monte Carlo simulations, we show
that the performances of the estimators are related to the degree of the serial dependence
and the linearity /nonlinearity of the serial dependence. The maximum likelihood estimator
based on the sliding block maxima is optimal to handle the linear serial dependence in data.
The probability-weighted moment estimators are likely to be distorted by strong linear serial
dependence. When the serial dependence is nonlinear, the excess kurtosis would affect the
quantile estimation. The Weissman estimator outperforms when data has nonlinear serial
dependence and a low excess kurtosis. The probability-weighted moment estimators based
on the disjoint blocks is preferable when the data has a relatively high excess kurtosis. Addi-
tionally, this paper investigates an approach to improve the maximum likelihood estimators

based on the block maxima in the GARCH models.

Key words: peaks-over-threshold; block maxima; maximum likelihood estimation; probability-

weighted moment; heavy tails; Monte Carlo simulation



1 INTRODUCTION

One of the popular traditional market risk measures is the volatility. The main drawback of volatility,
however, is that it ignores the direction of the investment’s movement, i.e. gain or loss. By contrast,
Value-at-Risk (VaR) sheds light on risk management by focusing on portfolio’s losses only. It is defined
as the high quantile of the negative log-returns, and it measures the potential bad scenario for a given
low probability over a certain time period that a investor wants to be aware of. Mathematically, given a

confidence level « € (0, 1), the probability that a loss L exceeds its VaR is no higher than 1 — a:

VaR,, = inf{l;Pr(L >1) <1-—a}.

There are some existing methods to estimate VaR, for instance, historical simulation, Monte Carlo
simulation method, delta-normal method, variance-covariance method, etc. One of the limitations of
these methods, except for historical simulation, is that they all make parametric assumptions on the
loss distribution (Linsmeier & Pearson, 2000). For example, Monte Carlo simulation method requires a
pre-determined distribution (e.g. normal mixture model) to generate a large number of samples. Delta-
normal method and variance-covariance method assume a Gaussian distribution on the loss. However,
since financial time series are usually not normally distributed, the estimation based on parametric
assumptions is problematic if the assumption fails to capture the underlying distribution of the data.
Although historical simulation releases the normality restriction, the high quantile is estimated by an
ordered statistic at the cost of inaccuracy, especially if the sample size is low. In order to make inference
about the tail behavior without specifying a global parametric form for the distribution function, one
may use the extreme value theory (EVT) which makes rather mild structural assumptions on the tail of
the distribution of loss.

There are two prevailing approaches to implement EVT for extreme quantile estimation, the peaks-
over-threshold (POT) and the block maxima (BM). More specifically, the POT extracts the ordered
statistics above a high threshold (referred as exceedances) and the exceedances approximately follow
a scaled generalized Pareto distribution (GPD). Differently, the BM splits the sample into blocks and
collects the block maxima. And the distribution of the scaled block maxima converges to the generalized
extreme-value (GEV) distribution.

The extreme quantile estimator in EVT framework is constructed through extrapolation, requiring
estimations for the parameters of the approximated distribution (GPD or GEV). Several parameter esti-
mation methods have been employed, such as the maximum likelihood estimation (MLE), the probability-
weighted moments (PWM) estimation and the method of moment. Although there are multiple parameter
estimators available, one should be careful about the choices by considering the tail behaviour of the se-
ries, which can be measured by the extreme value index. For example, the moment estimator in Hosking
and Wallis (1987) needs that the exceedances or block maxima have a finite variance, meanwhile, some
estimators are proposed for the heavy-tailed behaviour and others can be adopted in a more general case.
Moreover, the asymptotic normalities of the parameter estimators are usually established under a more

restrictive condition on the range of the extreme value index as briefly discussed in Section 2. In gen-



eral, the asymptotic normalities of the parameter estimators are proved in the identical and independent
distributed (i.i.d.) sample. The asymptotic property of extreme quantile estimator follows consequently.
However, the real time series of log-returns usually exhibits serial dependence such as volatility clustering.
Hence independence is not a realistic assumption for application to financial data. The extreme quantile
estimators remain consistent under weak serial dependence!, while the asymptotic variance usually has a
complex structure. Drees (2003) proved the asymptotic normality of a class of the POT extreme quantile
estimators for stationary [-mixing time series. However, to the best of my knowledge, the closed-form
asymptotic variance of the BM extreme quantile estimators under serial dependence is not derived yet.
This is because within the BM framework, the extreme quantile estimation requires the estimation of an
extremal index (Leadbetter, 1983), which quantifies the serial dependence of extremes.

The performance of the POT and the BM extreme quantile estimators under serial dependence are
therefore of interest. On the one hand, the finite-sample bias is non-negligible though the consistency can
be obtained theoretically. On the other hand, the asymptotic variances in both the POT and the BM
methods blow up due to serial dependence. Heuristically, it is straightforward to follow the POT estima-
tors, but the estimating uncertainty is higher due to the serial dependence of the exceedances. For the
BM method, the additional estimation of extremal index is expected to induce extra uncertainty, though
the block maxima are still considered to be i.i.d.. The asymptotic variances of parameter estimators of
the GEV remain unchanged. A sliding blocks approach may gain efficiency compared to the disjoint BM
thanks to this approximate i.i.d. structure.

As mentioned above, the performances of the estimators may relate to their conditions on the extreme
value index. Since there is no a universal rule to decide the optimal estimator based on that, it is
the motivation of this paper to compare the MLE estimator with the PWM estimator. Overall, there
are six extreme quantile estimators considered here, i.e. the POT-MLE/PWM estimator, the disjoint
BM-MLE/PWM estimator, and the sliding BM-MLE/PWM estimator.

Given a theoretical comparison of the POT and the BM estimators under serial dependence is cur-

rently unavailable, we address the following research question by simulations:

In the existence of serial dependence, which extreme quantile estimator outperforms in a finite sample?

We evaluate six extreme quantile estimators under linear and nonlinear serial dependence. And we take
different degrees of the serial dependence into consideration. Furthermore, we allow the excess kurtosis
varying across the data generating processes where the serial dependence is nonlinear. The superiority of
the extreme quantile estimator is determined by the minimum squared error. The simulation results show
that the sliding BM-MLE estimator is preferable in most scenarios when the serial dependence is linear.
Under nonlinear serial dependence, the POT-MLE estimator (referred as the Weissman estimator in the
rest of the paper) outperforms when the excess kurtosis is low, and the disjoint BM-PWM estimator

is preferred when the excess kurtosis is high. Besides the performance examination, we investigate a

!The conditions on serial dependence are different for the POT and the BM methods, see Section 2.2 for
details.



procedure to improve the performances of the disjoint and sliding BM-MLE estimators under nonlinear
serial dependence. The simulation results present that the procedure we propose reduces the bias and
variance of the quantile estimator with proper block sizes.

The paper is organized as follows. Section 2 contains the literature reviews focusing on the extreme
quantile estimation methods and serial dependence. Section 3 provides the POT and the BM estimators,
moreover, demonstrates the evaluation criteria and the data generating processes. Section 4 presents
the finite-sample performances which are evaluated via Monte Carlo simulation. Section 5 depicts the
procedure which improves the performances of the BM-MLE estimators under nonlinear serial depen-
dence. The corresponding simulation results are shown in Section 5 as well. The final section discusses

the implications and limitations of this paper and concludes.

2 LITERATURE REVIEW

2.1 EXTREME VALUE THEORY

Classical Extreme Value Theory shows that if the maximum
M, = max(Xy,...,X,)

of n i.i.d. random variables (with cumulative distribution function F') has a non-degenerate limiting
distribution G as n — oo, then G must be one of the GEV distribution function. That is, for some

normalizing constants a,, > 0 and b,,,

lim Pr(M) = lim F"(an,z + b,) = G,(z), (1)

n— 00 Ap n— 00

where G, is the GEV distribution function with extreme value index -, i.e.
Gv(x):exp(—(l—i—fya:)fi)7 1+~vz >0, veR. (2)

It is also called that a continuous distribution F' is in the domain of attraction of a GEV distribution
denoted by F' € D(G,). Obviously, the extreme value index is essential to capture the tail behaviour of a
distribution. Pickands (1975) proved that a continuous distribution function F' has a generalized Pareto
upper tail is equivalent to F € D(G,), and showed that the shape parameters of two distributions are
identical.? Specifically, the building block of the POT is that given a high threshold ¢, the excesses X —t
are asymptotically generalized Pareto distributed. Denote the conditional distribution function of X —¢

given X >t as
F(t+x)— F(t)

Fi(z) =Pr(X —t<z|X >t) = 1= F{)

2The condition of the equivalence is presented in Theorem 3.1.



with 1 — F(¢t) > 0, t < z* and x > 0 where z* := sup{z : F(z) < 1} < oo is the upper endpoint of F.

Then there exists a normalizing function o(¢) > 0, such that

1—(1+72)77, 7#0,

1- exp(i‘x% Y= 07

for all 14~z > 0 and > 0, where H, is the GPD function and the Pareto distribution is obtained when
v > 0.

Within the POT framework, estimation methods such as the MLE and the PWM estimation are well-
explored. Hill (1975) proposed a semiparametric maximum likelihood approach to infer the tail behavior
of a Zipf type distribution, i.e. the case v > 0. Suppose that an observed sequence (X,,)necz has a
cumulative distribution function F'. Then consider the ordered statistics Xi., < Xo.,..., < X, and
a high threshold X,,_, .n. Since the exceedances are asymptotically Pareto distributed, the exponential

distribution with mean  provides an approximation to the distribution of the logarithm-transformed

excess ratio log(%m), i=1,...,k,, that is,
Xt 1
Prlog(S2=FE) < 4] &1 — exp(——2), x> 0.
Xn—kn:n Y
The weak consistency of the Hill estimator is achieved for any sequence k, — oo, % — 0asn —
(Mason, 1982) and strong consistency is proved for any sequence logklggn — 0, % — 0asn — o0

(Deheuvels, Haeusler, & Mason, 1988). Moreover, Haeusler and Teugels (1985) proved that under certain
extra conditions, the Hill estimator is asymptotically normally distributed with convergence rate v/k,,
and its asymptotic variance is ¥2. Given that the Hill estimator is only appropriate for v > 0, Dekkers et
al. (1989) proposed a moment estimator which handles the general case v € R and provided its asymptotic
normality. Furthermore, Drees et al. (2004) showed a MLE estimator that can be applied for v > —% by
constructing the GPD likelihood functions based on the empirical excesses Y; := X,,_i11:n, — Xn—k,,:n for
i=1,...,k,. Zhou (2009) showed the existence and consistency of the solution of likelihood equations in
Drees et al. (2004) using the first order condition only. Additionally, the second order condition implies
the asymptotic theory of the MLE estimator for v > —% (Drees et al., 2004). Furthermore, Zhou (2010)
proved the asymptotic normality for —1 < v < f%. As an alternative of the MLE estimator, Hosking
and Wallis (1987) motivated the PWM estimators for the GPD parameters. The existence of unbiased
estimators for probability-weighted moments are given when 7 < 1, and the asymptotic normality is
obtained when v < % Via simulations in the i.i.d. case, they suggested that the PWM parameter
estimators would be preferable when v > % due to a smaller bias.

Another prevailing approach to estimate the extreme value index is the BM method. Different from
the POT, the BM firstly divides the i.i.d. sample into k, blocks with constant block size m,. Then
from the domain of attraction condition (1), the block maxima are asymptotically i.i.d. GEV distributed

with extreme value index . By fitting the block maxima into the GEV distribution in (2), one obtains

the MLE estimators for the GEV parameters. The existence of consistent MLE estimators is proved



by Dombry (2015) under the first order extreme value condition with v > —1 and for any sequence

m(n)
logn

m := m(n) such that — o0 as n — o0o. Moreover, Dombry and Ferreira (2017) established the
asymptotic normality of the MLE estimators under both the first order condition (with v > —1) and
the second order condition. Particularly, when v is positive, the distribution function G, is the Fréchet
distribution. Biicher and Segers (2018b) proved the unique existence of the solution of the likelihood
function based on the Fréchet distribution. The consistent PWM parameter estimators for the BM
approach are established by Hosking et al. (1985), given v < 1. The asymptotic normality of the PWM
estimators are proved for v < % Ferreira and de Haan (2015) established the asymptotic normality
for the disjoint BM-PWM extreme quantile estimator in the i.i.d. case and carried out a theoretical
comparison with the POT-PWM estimator in terms of the extreme value index estimation and quantile
estimation. The disjoint BM-PWM estimator is suggested to be more efficient. Furthermore, Dombry
and Ferreira (2017) theoretically compared the MLE/PWM estimators under the POT/BM (the disjoint
BM) methods in the i.i.d. case. In light of extreme value index estimation, it is indicated that the

BM-MLE estimator is the most efficient, while the POT-MLE estimator has the smallest asymptotic bias

and the minimal optimal asymptotic mean squared error.

2.2 SERIAL DEPENDENCE

As mentioned in the introduction, the assumption of an i.i.d. underlying sequence may be restrictive and
unrealistic in practice. We weaken the i.i.d. assumption to a strictly stationary sequence, that is, for any
heZ,

d

(Xiu cee aXin) = (Xil-‘rha cee 7Xin+h)'

For the POT approach, Drees (2003) showed that if the serial dependence of the underlying sequence
is weak, i.e. the underlying sequence is S-mixing, then the POT estimators are still consistent. Recall
that the S-coefficients are defined as

meN,A; €A, B;EB, 1,

I J
1
Bo) = sup 5> > |Pr(Ain By) — Pr(4;) Pr(B;)],
(]

where A" := o(X1,..., X;,) is the o-algebra generated by (X1,..., X,,) and By, = 0(Xpmpey1, Xnyer2, - - 2)
is the o-algebra generated by (X,1¢+1, Xm+e+2,-..). Then the sequence is called S-mixing (or absolute
regular) if

lim 3(¢) = 0. (3)

{— 00

By dividing Pr(A4;) on the both sides of (3), we obtain

€200 meN,A; €A B;€BS, 1y Z

I J
1
lim sup 3 E E |Pr(Bj|Ai) - Pr(Bj)| =0.
J

Note that A; is a set containing past events and B; is a set containing future events. Therefore, if a strictly

stationary sequence is S-mixing, the dependence between the past and future events vanishes as the time



interval increases. Furthermore, the condition (C1) in Drees (2003) ensures that the dependence vanishes
sufficiently fast such that it is considered as weak. Many time series models satisfy these conditions. For
instance, the autoregressive moving average (ARMA), the autoregressive conditional heteroskedasticity
(ARCH) and the generalized ARCH (GARCH) time series are geometrically S-mixing. Furthermore,
the asymptotic normality of the extreme quantile estimator is established under such serial dependence
conditions.

Within the BM framework, Leadbetter (1983) proved that if the underlying strictly stationary sequence
satisfies some mixing condition, then the normalized block maxima extracted from the stationary sequence
with extremal index 6 (6 € [0,1]) are asymptotically i.i.d. GEV distributed with shape parameter
~. Consequently, the asymptotic normality of the MLE estimator based on the block maxima extracted
from a stationary sequence is established for the two-parameter Fréchet distribution by Biicher and Segers
(2018b). The serial dependence does not affect the consistency and efficiency of the MLE estimator under
certain conditions. Moreover, the shape parameter is the same as in the i.i.d. case, only the scale and
location parameters are affected by the extremal index (McNeil, 1998). Therefore, the estimation of
the extremal index is required for the extrapolation for extreme quantile estimation. Northrop (2015)
constructed a semiparametric maxima estimator 0N for the extremal index and showed that it is more
efficient than parametric counterparts via simulation. Since the asymptotic distribution of the Northrop
estimator AV is difficult to derive, Berghaus and Biicher (2018) proposed an asymptotic equivalent variant
68 of OV and improved the bias reduction scheme. The consistency and asymptotic normalities of the
MLE estimator 68 based on both disjoint blocks and sliding blocks are proved. It is also verified that 68
based on sliding blocks can be substantially more efficient than based on disjoint blocks. The reduction
in asymptotic variance is independent of the value of shape parameter.

The sliding blocks approach can also be applied to the PWM estimators and the MLE estimator to
gain efficiency for the BM approach. The consistency and other asymptotic property of the sliding BM-
PWM estimator require further research. It is reasonable to expect that the sliding PWM estimators may
be distorted, causing a larger asymptotic bias compared to the disjoint PWM estimators or the sliding
PWM estimators in the i.i.d. case. This is because that on the one hand, the sliding block maxima are
heavily correlated and not asymptotically independent, not even for an i.i.d. underlying sequence. On
the other hand, the situation is worse under serial dependence. Hence, the degree of serial dependence
in sliding block maxima is "doubled” in a way, which introduces a further approximation between F' and
G,. Nevertheless, Biicher and Segers (2018a) proved the asymptotic normality of the sliding BM-MLE
estimator for the Fréchet distribution under serial dependence. Actually it should be referred as maximum
quasi-likelihood estimator, since the log-likelihood is constructed by taking the sliding block maxima as
asymptotic independent. It is shown that the asymptotic variance of the sliding BM-MLE estimator is
substantially smaller than the disjoint BM-MLE estimator, while the asymptotic bias is the same.

The main contribution of this paper is that it focuses on the estimation of the extreme quantile, rather
than the single extreme value index estimation, under serial dependence. In applications, it is often the
extreme quantile that is of interest. And there are still some gaps between the asymptotic properties of

the extreme quantile estimators and the asymptotic normalities of the parameter estimators, especially for



the BM method where the extremal index involves into the quantile estimation under serial dependence.
Therefore, this paper presents the finite-sample performance comparisons of six widely-used extreme

quantile estimators in order to provide some insights.

3 METHODOLOGY

In this section, we review the EVT at first, then introduce the POT approach and the BM approach
in the i.i.d. case. The extrapolation follows by a discussion of the estimations under serial dependence.
Consequently, the sliding BM method is employed to gain efficiency. Lastly, the six competing extreme

quantile estimators are summarized and the evaluation criteria are listed.

3.1 EXTREME VALUE THEORY
The necessary and sufficient condition for F' € D(G.,) with v € R can be presented in various ways, and

one of them is the following criterion.

Theorem 3.1 Let F be a common but unknown continuous distribution function. Then F € D(G,), if

and only if for some v € R, the following condition holds

iy inf_ sup [[L~ Filo)] - exp(- [ 11+ yy) 4] M| = 0, (1)

t—=z*0<a<oop<r <00
where for any y, y, = max(0,y).>

When and only when the condition (4) holds, it follows that

lim sup |[1— Fi(zo(t))] - exp{— / (4 )ty = o,

=2 0< g <00

which means that if ¢ is sufficiently large, the conditional distribution of excesses X — ¢ given X > t is

very nearly of the GPD function form

lim sup |Fi(zo(t)) — Hy(z)| =0, 1+~z>0. (5)

=2 0< g <o

In the case v > 0, G is the Fréhcet distribution and (1) becomes

M, 1
lim Pr(— < z) = lim F"(apz) = exp(—z "1’)7 (6)

n—oo a"fL n—r oo
for x > 0, and some scale constants a, > 0. Further, F € D(G,) with v > 0 is equivalent to

. 1—F(tx) 1
1 —_— vy
e 1 — F(t) T @

x—b
°It is showed that the extremal distribution functions have the form G, (z) = exp{— [, = [(1+vy)+] 'dy},
where a, b and v are the scale, location and shape parameter respectively, with 0 < a < 00, —00 < b, v < ©
(Pickands, 1975).



for all x > 0. From (7), the excess ratios X/t are asymptotically i.i.d. Pareto distributed with shape
parameter %, that is,

X
lim Pr(?>x|X>t):x7%, x> 1

t—o00

And it follows that the log excess ratio log(§) is asymptotically i.i.d. exponentially distributed with
mean vy, i.e.

Pr[log(%) <z]=1- exp(—%m), x> 0. (8)

3.2 ESTIMATION IN THE IDENTICAL AND INDEPENDENT DISTRIBUTED CASE

3.2.1 ESTIMATION BASE ON THE POT APPROACH

Let (X, )nez be an iid. sequence with cumulative distribution function F, and Xi.,, < Xoum,..., <
Xn:n be the ordered statistics. Naturally, X,,_x, ., can be considered as a high threshold as if k,, is an

intermediate sequence of integers

ky
k,, — o0, — — 0, as n — oo. (9)
n

Now consider the PWM estimator based on the POT approach. The PWM’s of a continuous random
variable X with distribution function F' are the quantities

Mprs = E[XP(F(X))"(1 = F())].

s

For the GPD, it is convenient to work with the quantities
Qs = Ml,(),s = E[X(l - F(x))SL

which exist for v < 1. Consequently, the scale parameter o(t) and the shape parameter v for the GPD
are respectively computed by

2&00[1 (67))

a(t) = v=2-

050—20417 040—2041.

From (5), the PWM estimators 6 (¢) and 4 are obtained when replacing ag and a; above by their empirical

estimators (Ferreira & de Haan, 2015)

k,
1 n
Vo = — Xn—i m Xn— n 10
Qo . ;( +1 knin) (10)
and
1 eni—1
021 = k‘i k (Xn—i—i-lzn - Xn—kn:n)~ (11)



Therefore, the scale estimator and the extreme value index estimator are respectively given as

2606 éo

5(t) = y=2-

d0—2d17 d0_2d1'
Differently, the Hill estimator, a MLE estimator designed for the Pareto distribution (i.e. the GPD

with v > 0), is obtained by solving the following log-likelihood equation based on (8)

n

1 n—1 1 Xn—i—i—ln n z+1 n
(5) exp(f;ZIH 7Xn7kn:n — 721 ) =0,

i—1 n knn

that is,

1 kn
H_i nz+1n
IPIEE

n nkn

3.2.2 ESTIMATION BASED ON THE BM APPROACH

Split the ii.d. sequence (X,)necz into k, disjoint blocks with block size m, where m satisfying the

following condition

. 12
Tog 00, n — 0o (12)

And the ith disjoint block maximum is defined as

ME

i,m

:maX(X(i_l)m+1,...,Xim), ’L:1,7kn

The PWM estimators of the GEV distribution for v # 0 are given by

By = wmfi$a70wwwmlfwm v <1,

where a,, > 0 and b,,, are the scale and the location parameter of the GEV distribution, respectively. An

empirical estimator of 3, is based on the ordered block maxima M{{kn < Mg:kn <...< Mgn:kn’

Lol (i-1)(-2)...(i—1)
- (kn—l)(kn—Z)...(kn—r)Md

and Gy =kt Zf;l M¢, . Ferreira and de Haan (2015) provided an estimator of 4 as

1 n 45 — Bo

223 — ﬂo_l)’

’3/:

which is the solution of (483 — 80)(281 — Bo) ™' = (1 — 47)(1 — 27)~L. Given 4, the scale parameter can

be computed as X R
P (281 — Bo)7y
T rA=A) 2

Consequently, the location estimator, which regarded as the estimator of the intermediate quantile in the

10



extrapolation discussed in Section 3.3, is given by

- 5 1-T(1-4
by = /60 + dm#
Y
As an alternative, the MLE for the case v > 0 is defined as fitting the block maxima to the Fréchet
log-likelihood function:

kn
Lwpx) =) fu(w),  w=(y,am) € (0,00 =, (13)

i=1

where z; = M¢ \ ¢, ¢ > 0 is the left-truncated block maximum, and where

i,m

f() = log(——) — ()74 — (£ + 1) log(-2)

Yam Qm Y Qm

is the individual contribution to the Fréchet log-likelihood. The existence and uniqueness of the MLE
estimator are provided that if the scalars z1,...,x;, € (0,00) are not all identical, then there exists a

unique maximizer parameter vector

w(x) = ((x), am(x)) = argmaz L(w|x).
weN

Specifically, 4(x) is the unique solution of

1

LS T log(a) 1 I

Wy, (1) =7+ = = 2 ) log(w) =0, (14)
. ZI-C" x, n =1

kn =1

From (14), the MLE estimator of «y is also scale invariant : 4(cx) = 4(x).

3.3 EXTRAPOLATION

Another characterization of the necessary and sufficient condition for ' € D(G,) with v € R is the

so-called first order condition (15).

Theorem 3.2 Let U = (25)* be the left continuous inverse function of 2. Then F € D(G.) if and

only if there exists a function a(t) > 0 such that

for all x > 0.

By taking tz = p% and t = - with k, satisfying the condition (9), (15) implies that for the extreme
quantile x, = F~1(1 - p,) with np, = O(1), the extrapolation is as

11



and the extreme quantile estimator is the following
X e A npn
i, = U() + () 22— a7)

where U(ﬁ), a(z-) and 4 are proper estimators of U(g:), a(-) and v, respectively. In the POT
approach, U (ﬁ) is estimated by the empirical intermediate quanitle X,,_, .,, meanwhile the estimates
of a(y-) and v are provided by the estimators 6(;-) and 4 in methods like the PWM method and
the MLE. Under the condition (9), the estimators &(;-) and ¥ respectively converge to a(3-) and v in
probability as n — co.*

This extrapolation approach is used in the general case v € R. Regarding the estimators of a(ﬁ) and
v, the PWM is built-in to be applied in the case v < 1, thus one should always use the extrapolation
in (16) for the PWM estimator, so do the MLE estimator proposed by Drees et al. (2004), the moment
estimator constructed by Dekkers et al. (1989) and the moment estimator in Hosking and Wallis (1987).

If F' exhibits heavy tails, i.e. 7 > 0, a possible choice for the auxiliary function a(t) is a(t) = yU(t)
(Dombry, 2015). Then the extrapolation turns to be

WP (Lpa =3

kn L kn ’
n

which implies a quantile estimator as

ok
Zp, =U(—)(—)". 18
= UG ) (18)
The quantile estimator in (18) can be regarded as a special case of (17), where there is a linear relationship
between the location parameter and the scale parameter. This expression can be employed by the Hill
estimator, and the corresponding quantile estimate is referred as the Weissman estimator (Weissman,
1978).

In the BM framework, we consider the extrapolation in the following way. Let m satisfy the condition

(12), and (1) can be written as

1

1
li =(1 v 19
mayeo —mlog F(amz + by,) (L+72)7, (19)
for all 1 +~yx > 0, and v € R. Define V = (ﬁgF)‘_ as the left continuous inverse function of TlgF’
then by taking
. 1 (1+ )L
1m =1, xr)r =y,
m—oo —m log F(amx + by,) Y K Y

one obtains
. V(my) — by Yy -1
r= lim —————, T = .
m—o0 A, ¥

4The condition (9) is obviously not the only condition of the convergence. For different estimators, the range
of v matters as well. For instance, the first order condition (15) supposes to hold for v > —1 and v # 0 for the
MLE estimator proposed by Drees et al. (2004) (Zhou, 2009), and for v < 1 for the PWM estimator in Hosking
and Wallis (1987).

12



Consequently, F' € D(G,) with v € R is equivalent to

_ v _
lim V(mz) — by, T 1'
m— oo Am ol

Recall that F'(z,,) = 1—py, then define g,, := —log(1—p,) = —log(F(zp, )), and therefore, x,,, = V(q%)'
The quantile estimator is as A
&, = bm + &mw. (20)
Y
Note that for any distribution function F, —log F(z) ~ (1 — F(x)) as F(z) — 1, and thus mg, =
—mlog(l — p,) ~1— (1 —p,)™ as 1 — p, — 1. Further, taking the first order Taylor expansion of

1—(1—=p,)™ at p, = 0, the quantile estimator becomes

(mp,) =7 — 1.

5 (21)

Ep, = l;m + G,
(21) is sufficiently close to (20) and is adopted in several papers such as Ferreira and de Haan (2015).
And it is attractive since it simplifies the theoretical comparison of the POT method and the BM method
in extreme quantile estimation. With m = -, (21) shares the same structure as (17) except that the
distribution parameters are estimated in the BM framework.

If v > 0, the GEV distribution G, is the Fréchet distribution in (6). As a consequence, (19) becomes

1
li — 1/
myG0 —mlog F(a,x) T

for all x > 0, and thus,

V(mz
lim (ma) =2a.
m—roo am
Similarly, one carries out a quantile estimator as
Ty, = CAlm(mCIn)_;y' (22)

In (20) to (22), dm, bm and 4 are respectively the suitable estimators for a,,, b, and v that can be
provided by the PWM method and the MLE.

Overall, in the POT approach, the location parameter is estimated by the empirical intermediate
quantile, and if v > 0, one can estimate the scale parameter via multiplying the empirical intermediate
quantile by the estimated extreme value index. However, in the BM framework, the location parameter is
ignored if v > 0. Moreover, the estimate of the scale parameter equals to the estimate of the intermediate

quantile.

3.4 ESTIMATION UNDER SERIAL DEPENDENCE

o0

Denote a strictly stationary sequence as ()~(n)n:1 and the corresponding maximum of the sequence as

M,.
Under serial dependence, Drees (2003) established the asymptotic normality of a class of the POT
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extreme quantile estimators, including the Hill estimator and the PWM estimator applied in this paper.
Under the mild structural conditions on (X'n)zo:l, the estimation procedure is in line with the i.i.d. case.
The estimator can be applied for time series that are geometrically S-mixing, such as ARMA models with
balanced heavy tails and (G)ARCH models.

However, the quantile estimation in the BM approach is modified. The following theorems hold when

the serial dependence exhibits.

Theorem 3.3 Let (X)) be a strictly stationary sequence with marginal distribution function F, and a

sequence of constants u,, satisfies the distributional mizing condition D(uy) in Leadbetter (1983). Then
Pr(M, <u,) — e~ if and only if n[l — F(u,)] = 7, (23)

where M, is the mazimum of the stationary sequence. The series (f(n);l’ozl 1s said to have the extremal

index 0, 6 € [0,1]. If the sequence (un) also satisfies the anti-cluster condition D' (uy,) in Leadbetter

(1983), it implies that the extremal index 6 equals to unity.

Theorem 3.4 Suppose that the stationary sequence (Xn);l’ozl has extremal index 6, 8 € (0,1]. Denote

its associate i.i.d. sequence as (X)L, with the corresponding mazimum M,,. Then

. Mn - bn _
holds for a non-degenerate G- (x) if and only if
. Mn - bn 0
< e
nh_)rrgo Pr( e S z) =G () (24)

with Gg(x) also non-degenerate.

The two theorems show that if the long-range dependence in the stationary time series is weak, and there
is no tendency to form clusters of large values, then the normalized block maxima of stationary series and
associate 1.i.d. series have the same type of limiting distribution. Moreover, the normalization constants
are the same for the two series. However, the anti-cluster condition D' (u,) may not be tenable for a
financial series, for instance in a stationary (G)ARCH process, the clusters of volatility lead to clusters
of extreme values (McNeil, 1998). Then the clustering of extreme values leads to the modifications of the
location and the scale parameters in the i.i.d. case, such that the limiting distributions of block maxima
of both the stationary and the associate i.i.d. series are of the same type. It can be verified that condition

(24) is equivalent to the following condition

with normalization constants a), and b}, given by

at =and’, b =207 — 1)+ by
y

n
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Thus, in order to use the extreme quantile estimator in (21) and (22), besides the necessary estimation
for GEV parameters, an additional extremal index 6 needs to be estimated.

Let u, = F* (1 —£), then nF(u,) = x as n — 0o where F' = 1 — F. From (23), it can be shown that
Zn =n(1—N,) with N,, = F(Mn) is asymptotically exponential distributed with mean é as follows: for
any x > 0,

lim Pr(n(1—N,) > z) = lim Pr(M, < u,)

n— oo n—oo

= lim Pr(nF(M,) > nF(uy,)) (25)

n—oo

= exp(—0x).

Berghaus and Biicher (2018) provided a MLE 0 for the extremal index based on a sample of block maxima.
More precisely, consider the disjoint block maxima extracted from (Xn)n€Z7 that is
Mé

i,m

:max(X(i_l)m+1,...,Xim), ’L:].,,kn

Let Nf, = F(Md ) and Z¢, = m(1 — N2 ). If m is sufficiently large, then by (25), the limiting

distribution of the unobserved random variables Z¢ A is the exponential distribution with

1,m> - kn,m
mean %. As a consequence, the pseudo-likelihood function is given by taking the block maxima as
asymptotically independent (Northrop, 2015),
k‘n,
Ly (6; Zd = GWexp(—GZfom). (26)

Since the distribution function F' is unknown, one can use the empirical cumulative distribution function
Ep(x) =n"13"_ 1(X, < ) where 1(-) is an indicator function as an estimate of F'. The MLE estimator
for 0 is then

k
A 1 <& - _
=1

where Z¢,, = m(1 — N2,) and N¢, = F,(M¢,,). Furthermore, a bias correction is necessary since
an asymptotic bias term may appear. In this paper, we adopt the bias reduction scheme suggested by
Berghaus and Biicher (2018). Define 79 = Z " Zd . Since VEp (T — 071) ~» N(0,0?) °, through

the Taylor expansion of 771 — 6 at 7! = 9, a bias-reduced estimator is as following
Ope = 0 — k710 — k16°62, (28)

where the first bias-component is due to the use of the empirical cumulative distribution function and 62

is the variance estimator. Define

R . 1 & zd R
Bl = 2l + 3 - (O L(F(X) > 1= =) — 21y
n 1

mo
sel; 7

ko

SHEI‘G, (vaUQ) € {(Tgmo-g)v (T;leo-zl)}
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where I; = {(i — 1)k, +1,...,ik,} is the ith block of indices. Then denote 62 based on the disjoint block

maxima as 63, it is estimated as
k
1 K-

d \2

n

i—1

65 =

<

By correcting the dominating bias-components in é, the estimations of the location and scale parameters

are more accurate, so does the extreme quantile estimation.

3.5 SLIDING BLOCK MAXIMA

As mentioned before, the serial dependence in the time series enlarges the asymptotic variance of extreme
quantile estimators. In order to gain efficiency, a sliding block approach is considered. Now the series

(Xn)nez is divided into kg = n — m + 1 sliding blocks with block length m. Then, define the sliding

block maximum as following

Mi%:m@x(xi,...,Xﬁm_l), i=1,....n—m+1.

The sample of sliding block maxima is stationary but not asymptotically independent. Nevertheless, the
limiting distribution of a single sliding block maximum is still Fréchet. Biicher and Segers (2018a) consid-
ered a maximum quasi-likelihood function by taking the sliding block maxima as independent. Then the
sliding BM-MLE estimator is given by maximizing (13) where x; = M;"lm \/ ¢ with ¢ an arbitrary positive
truncation constant. Similarly, via replacing disjoint block maxima by sliding block maxima, one obtains
the sliding BM-PWM estimators. While the asymptotic biases of the disjoint and the sliding BM-MLE
estimators are the same, the efficiency gain of using sliding blocks is substantial. The asymptotic variances

of the sliding BM-MLE estimator of shape and scale parameters are 0.4#9;16 and 0.9578v2, respectively,

whereas those of the disjoint BM-MLE estimator are 0'2# and 1.1087+2, respectively (Biicher & Segers,
2018a). Note the efficiency improvement is independent of the values of « and 6.

In addition, the sliding BM estimator for the extremal index is modified based on (27):

n—m-+1
~ 1 5 _ 55 n TS
b= (=7 ; Z8)7Y 23, = m(L = (M),

The use of sliding block maxima induces a further approximation in the pseudo-likelihood function (26)
since the blocks are dependent. Similar to the other sliding block estimators, Berghaus and Biicher
(2018) showed that both ésl and éd are consistent and converge at the same rate to a normal distribution.
Furthermore, 0 is proved to be more efficient than 64 and the variance reduction does not affected by
the value of ~. Precisely,

6% =62-0,%(3—4n2). (29)

3.6 SUMMARY

To clarify the six extreme quantile estimators that are evaluated in this paper, we wrap them up as

follows.
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(i) the POT-MLE estimator (the Weissman estimator)

N k-
T =X, 5 . (—)7
Lp, n kn-n(npn) ’

where v is estimated by the Hill estimator

lk
A b nz+1n
(e

n n—kp:n

xl

(ii) the POT-PWM estimator

k"L Yy
A % A (npn ) -1
l'p - n+ J( ) ~ )
n
where

., n 2@05[1 N dO
Oy =0T —9___ "0

)" e —2ay o — 24,

with & and & respectively estimated by (10) and (11) based on the ordered statistics ankn:ny o, Xnne

(iii) the disjoint BM-MLE estimator

where

P

and (94, a,) are the MLE estimators by maximizing the log-likelihood function(13) based on the

left-truncated disjoint block maxima Mﬁm fori=1,...,k,.

(iv) the sliding BM-MLE estimator

Tp, = dm(m%)_%la

where
—m+1
. R 1 T
A Ak N—HsL o sl \—1
U = Gy, 0,77, Oy = (——— E Zim)
_ 1 ;
n—m-+ =

and (Y1, a7,) are the MLE estimators by maximizing the log-likelihood function(13) based on the

left-truncated sliding block maxima, Mflm fori=1,...,.n—m+ 1.

(v) the disjoint BM-PWM estimator

N —Yd — 1
g = by g IS L
Yd

The modifications of the scale and location estimators are

0,7, by =0 — amA (0] - 1).
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And the parameter estimators for the GEV distribution are

1 b2 (2b1 — bo)Aa . L 1-T(1—4)
- Ip(=3 T I br = by +ar — )
s RS Ty e Ll e v b e EL B U - v

where bg,b; and b3 are computed by Z\Zid fori=1,...,k,.

,m
(vi) the sliding BM-PWM estimator

(mqn)fﬁsl —1

i:pn :Bm+dm ’S/l
S

The modifications of a,, and by, are of the same form as disjoint blocks. And all parameters are

estimated based on Mflm fori=1,...,n—m+ 1.

The extremal index estimators 6, and 6 are bias-reduced as in (28), and for the sliding BM, the

variance estimator is 62 in (29).

3.7 EVALUATION CRITERIA

The evaluation of the methods is done in three aspects: the accuracy, the efficiency, and the bias-
variance tradeoff. Furthermore, the three measurements are scaled by true extreme quantile in order to

be comparable across different models. The squared bias is computed by

bias® = (zp” —1)%
Tpn

The efficiency of an estimator is measured by the its sample variance

1 & &
variance = 5 g (o  TPny2
i=1 Lp, Tp

n

And the mean squared error (MSE) captures the bias-variance tradeoff, which is defined as

MSE = bias® + variance =

0|+~

Lp,

S ey
Z( “Pn 1)2
i=1

3.8 DATA GENERATING PROCESSES

In this section we evaluate the performance of the above six extreme quantile estimators under serial
dependence. Since many asset returns have the stylized facts such as excess kurtosis, we focus on the
heavy-tailed case i.e. v > 0 here. Consider three time series models for (X,)nez: independent and
identical distributed random variables (r.v.s), the heavy-tailed ARMA(1,1) time series and the symmetric
GARCH(1,1) time series. In the first two models, three choices are considered for the distribution r.v.s in
the first model and the innovations in the second model: absolute value of a student ¢ distribution with
degree of freedom 3, Pareto distribution and Fréchet distribution with shape parameter % The shape

parameter is chosen to have a finite variance, since an infinite variance is unrealistic in practice.
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For the ARMA(1,1) model
Xi=MXi—1 + e+ dreiq,

the parameter vector (A1, ¢1) is set to be each of the following
(i) A\ =0.95,¢1 = 0.9,
(ii) A1 =0.9,¢91 = 0.3,
(iii) Ay =0.9,¢1 = —0.6,
(iV) )\1 = 0.3, ¢1 = 0.9,
which partially based on the settings in Drees (2003). The degree of dependence is declining from setting
(i) to (iii), and it is dominated by the autoregressive parameter A;. In setting (iv), the dependence has

short memory but it is locally strong. Note for A\; = —¢q, the i.i.d. R.V.s are observed.
For the GARCH(1,1) model, the innovation are standard Gaussian distributed, that is

Xi = 0;€4, € ~ N(O) 1)7

ol =vtpX ol
= v+ (pre;_y +91)oiy,
with
(v) v=10.5,p1 =0.07,91 = 0.55,
(vi) v =0.5,p1 = 0.08,¢; = 0.91,
(vii) v =0.5,p1 = 0.55,¢7 = 0.07,
(viii) v = 0.5,p1 = 0.6, = 0.25.

The tuning parameters p; and 1, are chosen to satisfy p; +1 < 1 such that the time series is covariance
stationary.® And the parameters are non-negative to ensure the positivity of o2.

Unlike in the linear models where the clustering of extreme values is due to the auto-correlations
in observations, in the GARCH models, the clustering of extremes is caused by volatility clustering.
Since p; and vy simultaneously decide the degree of volatility clustering and the coefficient of excess
kurtosis measured relative to the Gaussian distribution, we choose the values of p; and 7 such that both
aspects are concerned. The PWM estimation would probably fail to capture the heavy-tail behaviour if
the excess kurtosis is positively small. Hence, we consider the excess kurtosis to be varying in models.
It increases from Model (v) to Model (vii). By contrast, Model (viii) has an infinite excess kurtosis.
Furthermore, we measure the degree of volatility clustering by the the second moment of the random

parameter (p1e2_; + 1) in (30), that is,

E(prel_y +11)* = (p1 +¢1)* + 2p.

5This is a sufficient but not necessary condition for strict stationarity.
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Then, a preliminary ascending order of the degree of volatility is Model (v) < Model (vii) < Model (viii)
< Model (vi).

The quantiles x,, are estimated for p,, = 0.001 and p,, = 0.0005. Since the true quantile is unknown for
all models, they are computed by pre-simulation. We simulate S = 1000 time series of length n = 5 x 10°
and estimate z,, by the median of empirical (1 — p,) quantiles. Next, we conduct S = 1000 simulation
runs for each of the above-mentioned models with the fixed sample sizes n = 1000 and n = 2000.
Here we choose the sample sizes in a plausible way. For many assets we are capable to collect 1000 or
2000 observations. Also the sample sizes are sufficient high allowing the block size to be large enough.
When sample size n = 1000, it is about four-year trading days of New York Stock Exchange (NYSE)
and National Association of Securities Dealers Automated Quotations (NASDAQ). Via Monte Carlo
simulations, we obtain the empirical estimates of the scaled squared bias, variance and MSE of the six
candidate estimators. For n = 1000, the disjoint block size m is calculated by the integer part of n/kg
with k¢ ranging from 10 to 150 with a step 2. The POT estimators are based on the respective values
kn = [+]. And for n = 2000, ko ranges from 20 to 200 with a step 5.

4 RESULTS

The scaled MSE, squared bias and variance are depicted as the functions of the effective sample size k,,.
k,, refers to the number of upper ordered statistics in the POT methods, and the number of disjoint blocks
in the BM methods. For the sliding BM estimators, the actual effective sample size is n —m + 1. Here we
plot the sliding BM estimators together with other competing estimators, such that it presents the MSE
curves when the block size decreases. The finite-sample performances of six estimators are evaluated by
the MSE. Since the MSE equals to the sum of the squared bias and the variance, we decompose the MSE

to provide more insights of the estimators performances.

4.1 IDENTICAL AND INDEPENDENT RANDOM VARIABLES

4.1.1 MSE COMPARISON

Figure 1 shows the finite-sample performances of six extreme quantile estimators for the i.i.d. samples.
The first row indicates that the sliding BM-MLE estimator outperforms the competing estimators for all
three distributions. For the i.i.d. Fréchet sample, the BM-MLE estimators (the disjoint and the sliding
BM-MLE estimators) have a monotonically declining MSE curve since the BM-MLE estimators are based
on the Fréchet likelihood function, and the MSE curve of the Weissman estimator is slightly U-shaped.
For the i.i.d. Pareto sample, the Weissman estimator has a decreasing MSE curve, while the MSE curves
of the BM-MLESs are U-shaped. Furthermore, the U shapes of the MSE curves of the BM-MLE estimators
and the Weissman estimator are more obvious when the sample follows the i.i.d. student ¢ distribution.
Although the MSEs of the BM-MLE estimators climb faster than the MSE of the Weissman estimator as
ky increases, the lowest MSEs at the optimal k,, are lower. The POT-PWM estimator performs almost
identically for the three i.i.d. samples, as well as the BM-PWM estimators (the disjoint and sliding BM-
PWM estimators). When k,, increases, the MSE curves of the POT-PWM estimator and the BM-PWM
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estimators tend to coincide.
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Figure 1: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 1000, p,, = 0.001

4.1.2 MSE DECOMPOSITION

The second and the third rows of Figure 1 show the decomposition of MSE into the squared bias and
the variance. The sliding BM-MLE processes the lowest variance for the i.i.d. Fréchet sample. The
bias of the Weissman estimator is increasing in k,, while the variance is decreasing. The disjoint BM-
PWM estimator has a decreasing bias curve since its y estimates are closer to the true -, i.e. %; see the
accompany figures on the v estimates in the forth row. It has a higher variance than the POT-PWM
estimator, although the variance differences among the three PWM estimators are minor. Since the MSE
is dominated by the variance instead of the bias for the i.i.d. Fréchet case, the MSE of the disjoint BM-
PWM estimator is higher than of the Weissman estimator and the BM-MLE estimators due to the high
variance. Moreover, the POT-PWM estimator fails to capture the heavy-tailed feature in the series when
ky is low. There is an uptrend in the bias curves of the POT-PWM estimator and the sliding BM-PWM
estimator. Both peaks appear when the 7 estimates are adjacent to zero. One possible explanation is

that the extrapolation for the POT-PWM estimator and the BM-PWM estimators requires the 4 to be
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non-zero, thus the POT-PWM estimator and the BM-PWM estimators have a high bias when the ¥ is
zero or close to zero.

For the i.i.d. Pareto sample, the BM-MLE estimators have the increasing bias curves and decreasing
variance curves in k,. Therefore, the MSE decomposition suggests that the U shape is induced by the
bias-variance tradeoff. Since the variance is dominant in the MSE, the U shape is not clearly presented.
It also indicates that the sliding BM-MLE estimator outperforms the other estimator due to its low
variance.

For the i.i.d. student t sample, the Weissman estimator and the BM-MLE estimators have higher
biases than the POT-PWM estimator and the BM-PWM estimators with high values of k,,. Though the
Weissman estimator has a lower variance with a larger effective sample size, the variance reduction is
higher than in the other two samples. The variance reduction is negligible when the BM-MLE estimators
overestimate . The variance increases faster in k,, if the overestimation is more serious. The overestima-
tion of 7 indicates a heavier tail than it actually is. Therefore, the estimation variances of the BM-MLE
estimators are higher. Consequently, the variance reduction becomes negligible in this case. The biases
and the variances of the POT-PWM estimator and the BM-PWM estimators are almost identical in three

samples, thus we skip detailed discussion.

4.1.3 ROBUSTNESS CHECK

Figure 2, 3 and 4 present the simulation results in the i.i.d. case for n = 1000 p,, = 0.0005, n = 2000 p,, =
0.001 and n = 2000 p,, = 0.0005, respectively. Here we compare the results in Figure 1 with the results
under different sample sizes n and probability levels p,. The MSE, squared bias and variance reduce
when estimating a less extreme quantile or using a sample with a larger sample size n. Theoretically,
pr should not affect the performance of the quantile estimators as long as p,, = o(n). Nevertheless, we
observe that higher p,, corresponds to a lower empirical bias and variance. Moreover, the sample with
a large n would make the asymptotic theory on the estimator work better, consequently improve the
finite-sample performances of the quantile estimators. In Figure 3, the POT-PWM estimator is able to
estimate the heavy tails for low k, as long as the sample size is sufficiently large. Also, the BM-PWM
estimators do not yield « estimates close to zero for low k,. In the rest of this section, we provide the
simulation results of the ARMA models and the GARCH models with n = 1000 and p,, = 0.001, the

results under other combinations of n and p,, are in Appendix B.

4.2 ARMA MODELS

4.2.1 MSE COMPARISON

We consider the performances of the quantile estimators under linear serial dependence. Figure 5 depicts
the MSEs of six estimators in the ARMA models. Firstly, the first column shows the results with
Fréchet innovations. The sliding BM-MLE estimator is always the optimal quantile estimator, regardless
of whether the serial dependence is strong, weak, or locally strong. The advantage of low variance of

the sliding BM-MLE estimator over the disjoint BM-MLE estimator is insignificant. The Weissman
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Figure 2: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 1000, p,, = 0.0005
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Figure 4: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the i.i.d. samples as a function of the effective sample size, respectively. n = 2000, p,, = 0.0005

estimator has a hump-shaped MSE curve under (relatively) strong serial dependence as in the ARMA (i)
and ARMA (ii) models. The hump shape is not observed when the serial dependence is weaker as in the
ARMA (iii) and ARMA (iv) models. We shall discuss the reason behind in the MSE decomposition below.
The MSE curve of the sliding BM-PWM estimator has a similar downward trend as the disjoint BM-
PWM estimator, but smoother. The BM-PWM estimators are not preferable compared to the Weissman
estimator and the BM-MLE estimators in the four ARMA models. Note that the POT-PWM yields an
increasing MSE curve in k, under strong serial dependence in the ARMA (i) model. When the serial
dependence is weaker from the ARMA (i) to the ARMA (iii) model, the MSE curve is more horizontal.
The MSE decreases with &, increases in the ARMA (iv) model. For this model, the serial dependence
which is locally strong but not persistent.

Secondly, the second column presents the results with Pareto innovations. The MSE curves of the six
quantile estimators are similar as these in the first column. The sliding BM-MLE estimator outperforms
the other candidate estimators under different degrees of serial dependence. Note that in the ARMA
(iii) and (iv) models, the U-shaped MSE curves of the BM-MLE estimators are more pronounced, which
suggests that the BM-MLE estimators have higher biases with Pareto innovations.

Lastly, consider the results with student ¢ innovations in the third column. The POT-PWM estimator
and the BM-PWM estimators have almost identical performances across the three different innovation
distributions. By contrast, the BM-MLE estimators provide the minimal MSEs only when the serial

dependence is rather strong. Once the serial dependence is weaker as in the ARMA (ii) models, the
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Figure 5: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 1000, p, = 0.001

Weissman estimator has the best performance given k,, is large. When the serial dependence reduces
further in the ARMA (iii) model, the Weissman estimator outperforms the BM-MLE estimators. For
this model, the BM-MLE estimators have higher MSEs than that for the models with Fréchet or Pareto
innovations. In the ARMA (iv) model where the serial dependence has short memory, the MSEs of
the BM-MLE estimators rise rapidly after a small decrease. We conclude that the BM-MLE estimators
require the block size to be sufficiently large. Again, the Weissman estimator is recommended in this case

and it reaches the minimal MSE with relatively low k.

4.2.2 MSE DECOMPOSITION

Figure 6 and Figure 7 demonstrate the variance and bias of each quantile estimator, respectively. Figure
8 reflects the effect of serial dependence on the v estimation. The true v equals to the extreme value
index of the innovations, which is % The first column of Figure 6, 7 and 8 show the results for the ARMA
models with Fréchet innovations. The sliding BM-MLE is the most efficient method under all coefficient
settings, since one of the advantages of the BM approach is its low variance by taking the block maxima
as independent. Since the variances of the BM-MLE estimators dominate their MSEs, the bias-variance

tradeoff is not well-observed in the MSE curves. The BM-MLE estimators are relatively accurate due to
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Figure 6: Scaled variances in the ARMA models as a function of the effective sample size. n = 1000, p, = 0.001

low biases, although they generally have increasing biases in k,,. When the serial dependence is strong,
the BM-MLE estimators underestimate v even if the block size is sufficiently large. The underestimation
is less pronounced when the serial dependence is weaker as in ARMA (i), (ii) and (iii) models. Compared
to the first three ARMA models, the BM-MLE estimators are more accurate for the v estimation due to
lower biases, if the serial dependence is locally strong and not persistent as in the ARMA (iv) model.

Different from the other estimators, the variance curve of the Weissman estimator is hump-shaped
which leads to the hump-shaped MSE curve, when the serial dependence is relatively persistent in the
ARMA (i) and ARMA (ii) models. One possibility is that, when k, is low and the sample is strongly
dependent, the variance reduction is not sufficient to eliminate the serial dependence in the effective
sample. With k,, increases, the variance reduction is greater. Therefore, there is no hump shape in
the ARMA (iii) and ARMA (iv) models where the serial dependence is rather weak. Furthermore, the
Weissman estimator is less accurate than the BM-MLE estimators in the first three ARMA models due
to a higher bias, unless the threshold is considerably high. It is in line with the v estimation results. The
accuracy of the Weissman estimator is positively related to the Hill estimator, and the Hill estimator has
a higher bias than the BM-MLE estimators except in the ARMA (iv) model.

Note that the POT-PWM estimator fails to capture the heavy-tailed feature if the serial dependence
is persistent. The POT-PWM estimator provides negative 7 estimates for all k,, values in the ARMA

(i) and ARMA (ii) models. Hence, one observes an increasing variance curve and a declining bias curve
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Figure 7: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 1000,
pn, = 0.001

due to the wrong ~v estimates. The POT-PWM estimator is able to estimate the heavy tails if the serial
dependence is weak or only locally strong, however, it requires a sufficiently large effective sample size.
The hump shape in the bias curve of the POT-PWM estimator appears in the ARMA (iii) and ARMA
(iv) models due to the same reason as explained in the i.i.d. cases. The serial dependence distorts the y
estimation of the BM-PWM as well but less serious than what is does for the POT-PWM. The sliding
BM-PWM estimator fails to capture the heavy-tailed feature when the serial dependence is persistent
as in the ARMA (i) model. The disjoint BM-PWM estimator yields positive v estimates when k&, is
low, however, the v estimates are close to zero. The BM-PWM estimators have better performance in
the v estimation when the serial dependence is weaker in the ARMA (ii) model. The bias and variance
curves of the BM-PWM estimators are similar in the ARMA (i) and ARMA (ii) models. Overall, if the v
estimates of the BM-PWM method are not sufficiently positive, the bias of the extreme quantile estimator
is considerable and likely to be as the same magnitude as the bias under the negative ~ estimates. The
BM-PWM estimators can estimate the heavy tails under weak serial dependence and with relatively large
effective sample size. Although the hump shape in the bias curves appears in the ARMA (iii) model,
the BM-PWM estimators have lower biases than the POT-PWM estimator if &, is high. In the ARMA
(iv) model where the serial dependence is only locally strong, the BM-PWM estimators have lower biases

than the other estimators. The POT-PWM estimator and the BM-PWM estimators are not preferable in
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Figure 8: Extreme value index estimates in the ARMA models as a function of the effective sample size. n = 1000,

pn, = 0.001

the ARMA (iii) and ARMA (iv) model, due to the high variances compared to the Weissman estimator

and the BM-MLE estimators.

The second column of Figure 6, 7 and 8 present the results with Pareto innovations, which are quite

similar to with Fréchet innovations. Thus the detailed discussion is skipped. Note that the BM-MLE

estimators have higher biases with Pareto innovations.

Now we consider the results with student ¢ innovations in the third column of Figure 6, 7 and 8. As

mentioned in the MSE comparison section, the Weissman estimator outperforms the sliding BM-MLE

estimator except in the ARMA (i) model. The sliding BM-MLE estimator has a lower variance than

the Weissman estimator under strong serial dependence. However, its bias increases fast in k,. By

contrast, the Weissman estimator has a declining bias curve. The bias differences between the sliding

BM-MLE estimator and the Weissman estimator further enlarge in the ARMA (ii) and ARMA (iii) model.
Moreover, in the ARMA (iii) model with student ¢ innovations, the variance reduction of the BM-MLE

estimators is less than with Fréchet or Pareto innovations, such that the Weissman estimator becomes

the most efficient quantile estimator. The variance curves of the BM-MLE estimators are U-shaped in

the ARMA (iv) model. The biases rise rapidly due to the overestimation of , which is in line with the

results in the i.i.d. student ¢ sample. The POT-PWM estimator and the BM-PWM estimators have

similar performances in the ARMA models with student ¢ innovations as in the models with Fréchet and
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Pareto innovations.

Finally, we observe that the performances and the ~ estimations of six quantile estimators in the
ARMA (iv) model are similar to the i.i.d. cases. When the serial dependence is locally strong but lack of
persistence, each cluster of extreme values is relatively independent. Consequently, the serial dependence
in the effective sample is weak. By contrast, if the serial dependence is persistent, either the block
maxima from the BM method or the excesses from the POT method are strongly dependent. Under this

circumstance, the quantile estimators are affected to a larger extent.

4.3 GARCH MODELS

Next we consider the GARCH models. Based on the results in the ARMA models, the POT-PWM
and BM-PWM estimators may fail to capture the heavy-tailed feature. Therefore, the MSE should not
solely decide the superiority of the quantile estimators based on the PWM method. We also take the ~y
estimation into consideration. In the following MSE comparison, a quantile estimator based on the PWM
method is said to be optimal only if it provides the minimal MSE, and meanwhile a positive v estimate.
The true - varies across the four GARCH models. Since we impose the GARCH models to be covariance
stationary, the true v of each GARCH model is in the range of 0 to 1

3"

4.3.1 MSE COMPARISON

Figure 9 presents the simulation results in the GARCH models. The first three rows show the scaled
MSE, scaled squared bias and scaled variance, respectively. The last row presents the v estimates across
the GARCH models. First of all, the POT-PWM estimator and the BM-PWM estimators fail to estimate
the heavy tails in the GARCH (v) model where the nonlinear dependence is rather weak. So we would not
consider the corresponding quantile estimators. Among the rest, the Weissman estimator outperforms
the BM-MLE estimator, although the MSE increases fast as k,, increases. Secondly, the serial dependence
is quite strong in the GARCH (vi) model. The Weissman estimator is again preferred. The POT-PWM
estimator still fails to capture the heavy-tailed feature. The minimal MSEs of the Weissman estimator
and the sliding BM-PWM estimator are comparable. The MSE curves of the BM-PWM estimators are
more stable than the Weissman estimator. The BM-MLE estimators have increasing MSE curves. The
MSEs have a large magnitude which cannot be fitted in the same graph with the MSEs of other estimators
in the GARCH (vi) model when n = 1000 and p,, = 0.001. The results for other combinations of n and
pr, show the MSEs of the BM-MLE estimators in the GARCH (vi) model.

Thirdly, the serial dependence is relatively weak in the GARCH (vii) model. The disjoint BM-PWM
is the optimal method in this case. The BM-MLE estimators require a sufficiently large block size to
perform well. On the contrary, the POT-PWM estimator provides the positive v estimates only for high
k.. The MSE curves of the POT-PWM estimator and the BM-PWM estimators are flat. The Weissman
estimator and the BM-MLE estimators have U-shaped MSE curves. Moreover, the minimal MSEs of
the BM-MLE estimators are lower than that of the Weissman estimator. Finally, the disjoint BM-PWM

estimator outperforms the other quantile estimators when the serial dependence becomes stronger from
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Figure 9: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value index
estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, p, = 0.001

the GARCH (vii) model to GARCH (viii) model. Note that the POT-PWM estimator still fails to
estimate the heavy tails for low k,,. The MSE curves of six quantile estimators have similar behaviours in
the GARCH (vii) and the GARCH (viii) models. The magnitude of the MSEs is higher in the GARCH

(viii) model due to the stronger serial dependence.

4.3.2 MSE DECOMPOSITION

The second and third rows in Figure 9 present the MSE decomposition into the squared bias and variance.
First of all, the Weissman estimator has a lower bias and variance than the BM-MLE estimators in the
GARCH (v) model where the degree of volatility clustering is low. The biases of the Weissman estimator
and the BM-MLE estimators increase rapidly in k,. The variance reduction is not observed as well. One
possible explanation is as following. The true -y is positively related to the excess kurtosis. The excess
kurtosis equals to 0.0049 which is close to zero in the GARCH (v) model. Thus, the true + is small
and overestimated by the Hill estimator and the BM-MLE estimators. The variance reduction is non-
negligible only if v is not overestimated, which is in line with the results in the i.i.d. student ¢ sample and
in the ARMA (iv) model with student ¢ innovations. Moreover, the -y overestimation is more pronounced

for the BM-MLE estimators than for the Hill estimator. The ~ estimates based on the BM-MLE exceed
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% for high k,. By contrast, the Hill estimator provides the v estimates that are less than % The POT-
PWM estimator and the BM-PWM estimators in contrast to underestimate v by providing the negative
~ estimates. Consequently we would not take the corresponding quantile estimators into consideration.
It suggests there is relatively high bias in the 7 estimation of the POT-PWM and BM-PWMs. The small
excess kurtosis could be the main contributor to the bias since the serial dependence is weak in this case.

The nonlinear serial dependence is persistent in the GARCH (vi) model. The excess kurtosis in this
GARCH model is higher than in the GARCH (v) model, too. The biases and the variances of the BM-MLE
estimators increase in k,. Moreover, the BM-MLE estimators lose the advantage of low variance due to
the overestimation of . Since the corresponding v estimation is more accurate, the Weissman estimator
outperforms the BM-PWM estimators due to a lower bias and variance. The POT-PWM estimator and
the BM-PWM estimator fail to capture the heavy-tailed feature in the GARCH (vi) model. Thus, we
do not consider the performances of their quantile estimations. By comparing the results in the GARCH
(v) and (vi) models, it is the excess kurtosis that mainly affects the v estimation rather than the degree
of nonlinear serial dependence.

The excess kurtosis in the GARCH (vii) model is higher than in the GARCH (v) and (vi) models. The
biases of the Weissman estimator and the BM-MLE estimators increase as k,, increases. The Weissman
estimator has a lower bias than the BM-MLE estimators. The variance curve of the Weissman estimator
is flat. By contrast, the variances of the BM-MLE estimators increase fast when k,, increases, as long as
v is overestimated. The BM-PWM estimators capture the heavy-tailed feature as the excess kurtosis is
high. The disjoint BM-PWM estimator has a lower bias and a higher variance than its sliding counterpart.
Nevertheless, the variance differences between the disjoint BM-PWM estimator and the sliding BM-PWM
estimator are insignificant since the serial dependence in the GARCH (vii) model is relatively weak. The
POT-PWM estimator is able to estimate the heavy tails when k, is sufficiently high, though the ~
estimates are close to zero.

Lastly, there are an infinite excess kurtosis and the relatively strong serial dependence in the GARCH
(viii) model. The candidate quantile estimators have similar behaviours as in the GARCH (vii) model.
Due to the true v is closer to %, the BM-MLE estimators demand a higher block size such that v is
not overestimated. Since the overestimation of «y is less pronounced for the Weissman estimator in the
GARCH (viii) model, the variance reduction is larger than in the first three GARCH models. The disjoint

BM-PWM estimator outperforms the other quantile estimators due to a lower bias.

4.4 SUMMARY

Figure 10 provides a brief summary on which extreme quantile estimator is preferable for different types
of data. The sliding BM-MLE estimator outperforms in the i.i.d. sample due to its low variance. Its
variance decreases as k,, increases, given <y is not overestimated. Thus, we suggest to apply the sliding
BM-MLE estimator with high k,, in the i.i.d. sample. The simulation results show that serial dependence
affects the estimators for high quantiles substantially. When the data are serial dependent, we consider
the linear serial dependence and the nonlinear serial dependence separately. First of all, if the serial

dependence is linear and weak, the sliding BM-MLE estimator is preferred. We can employ it with high
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ky, since the variance reduction is larger than the increase of bias. Given the minimal variances of the
sliding BM-MLE estimator and of the Weissman estimator are comparable, the Weissman estimator is
competitive in this case due to the low bias. When the the linear serial dependence is persistent, the
sliding BM-MLE estimator performs best with a low variance. Similarly, we suggest to estimate the
extreme quantile with high k,,.

Next, consider the nonlinear serial dependence. The excess kurtosis has a greater effect on the perfor-
mance of the extreme quantile estimator than the degree of nonlinear dependence. If the excess kurtosis
is low, the Weissman estimator outperforms the other estimators. Since the Hill estimator overestimates
~ with high k,,, the Weissman estimator is preferable with low k,. However, when the excess kurtosis
is high or infinite, the disjoint BM-PWM estimator is the optimal extreme quantile estimator. It has a
lower bias than other estimator and a lower variance than the Weissman estimator and the BM-MLE
estimators. The disjoint BM-PWM estimator requires a sufficiently high k,, such that ~ is not underes-
timated. A plot of the v estimates of the POT-PWM can be an indicator of the magnitude of the excess
kurtosis. If the « estimates are always below zero for all values of k,,, then the excess kurtosis are likely
to be low. Otherwise, if the v estimates are positive for high k,,, the excess kurtosis can be considered as

high.
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Figure 10: Preferable extreme quantile estimators in different scenarios

5 AN EFFICIENCY IMPROVEMENT OF THE BM-MLE ESTIMATORS IN THE GARCH

MODELS

In the quantile estimation procedure above, the block size m is identical across the estimation of 8, v and
Zp, . We refer this situation to the I-m procedure in order to distinguish from the approach we propose
below. Notice that in the simulation results for the GARCH model using the BM-MLE method, only
a few large block sizes are valid for estimations. The variances of quantile estimators increase fast in
k,, once the BM-MLE estimators overestimate . In order to improve the efficiency of the BM-MLE
estimators, we consider a §-m procedure that using different m for 6, v and z,,, estimations, namely my,
m., and m,. We select the optimal mg and m., that provide the minimal variances of 0 and 4, respectively.
There are two reasons to employ the minimal variance criterion instead of the MSE criterion. Firstly,

the calculation of the true v of the GARCH model is not straightforward even if the GARCH model is
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correctly specified. It requires to correctly fit the sample into the GARCH model, as well as specify the
distribution of the innovations. Secondly, the results for the GARCH model show that the variance is
the main contributor to the MSE. Hence, variance deduction is a second best choice. Last but not least,
no true v is known for application.

We present some simulation results to verify that the 3-m procedure can indeed improve the finite-
sample performances of the BM-MLE estimators in the GARCH models. The same GARCH model
settings are adopted as in Section 3.8. We set the simulation runs to S = 500, the sample size to
n = 1000, and the extreme quantiles x,, are estimated for p,, = 0.001.

Figure 11 compares the BM quantile estimators based on the 7-m procedure and the 3-m procedure. It

.2
bzasg_m
bias]

variances.,
variance_,

plots the MSE ratio 25Esn the squared bias ratio and the variance ratio

MSEm

against m,
in the first, second and third rows respectively. The results are similar across different GARCH models.
The first row shows that the BM-MLE estimators have better performances based on the 3-m procedure,
and the MSE reduction is substantial when m, is low. However, the 3-m procedure fails to improve the
performance of the disjoint BM-PWM estimator. The sliding BM-PWM estimator based on the 3-m
procedure outperforms the counterpart based on the 1-m procedure only if m, is low. The second row
suggests that the minimal variance criterion does not always lead to a high bias. The bias ratios of the
BM-MLE estimators are lower than one as long as m, is at a low level. However, the 8-m procedure
distorts the BM-PWM estimators. More biases are introduced when m, is higher. Next, consider the
variance reduction by using the 3-m procedure. As presented in the third row, the 3-m procedure reduces
the variances of the BM-MLE estimators and the BM-PWM estimators. The variance ratios of the BM-
PWM estimators decrease as m, increases, which means that the variances decrease more rapidly in the
3-m procedure. However, the variance reduction is not sufficient to decrease the MSEs of the BM-PWM
estimators, due to the MSEs are dominated by the biases.

Since the 8-m procedure is not appropriate for the BM-PWM estimators, we compare the performances
of the BM-MLE estimators based on the 3-m procedure and the BM-PWM estimators based on the I1-
m procedure in Figure 12. The scaled MSE, scaled squared bias and scaled variance of each quantile
estimator are depicted as functions of m,. Although the BM-PWM estimators fail to capture the heavy-
tailed feature in the first two GARCH models, we plot their performance curves as an indicator. The
first row in Figure 12 shows the MSEs of corresponding quantile estimators. The BM-MLE estimators
based on the 1-m procedure have declining MSE curves in the GARCH (v) model. The level of MSEs
is close to of the BM-PWM estimators as m, increases. The MSE curves become U-shaped if the serial
dependence is stronger in the GARCH (vi), (vil) and (viii) models. The disjoint BM-MLE estimator
based on the 1-m procedure is preferred when the serial dependence is persistent as in the GARCH (vi)
model. The sliding BM-MLE estimator outperforms the disjoint counterpart when the serial dependence
is less persistent in the GARCH (vii) and GARCH (viii) models.

The second and third rows show the decomposition of the MSE into the squared bias and variance.
The BM-MLE estimators based on the 3-m procedure have lower biases when my, is higher in the GARCH
(v) model. When the serial dependence is stronger and the excess kurtosis is higher in the GARCH (vi),

(vii) and (viii) models, the U shape in the bias curve induces the similar shaped MSE curve. Since the

33



GARCH (v) GARCH (vi) GARCH (vii) GARCH (viii)

15 15 R 15 15
1 1 oo 1 1
2 ] 2 2
g g g g
w w w w
2] 2] 2] (2]
= = = =
05 05 05 05
0 0 0 0
0 0 0 0 20 40 60 80 100
m m
x x
GARCH (v) GARCH (viii)
2 2 2 2 T
o 15 o 15 o 15 o 15
< g 8 <
w w w w
s 3 3 3
[t -t -t -t
= = = =
o | —— o o 1
< P ~.o < < <
] i . . ] ] ]
j=2 e N o o j=2
R P ~ D 05 D 05 D 05
p
[
V
0 0 0 0
0 20 40 60 80 100 o 0 0 60 80 100
m m m m
x x x x
1 1 1 1
08 08 08 08
2 2 2 2
06 €06 o6 €06
g g g g
] ] ] ]
£ 04 < 04 £ 04 < 04
s s s s
0.2 0.2 0.2 0.2
0 0 o 0
0 o 0 0
m m m m
x x x x
[—disjoint BM-MLE —-—- sliding BM-MLE —— disjoint BM-PWM —-— sliding BM-PWM |

. . MSE . . bia52 . . i e o .
Figure 11: MSE ratio 22Esm squared bias ratio =22 and variance ratio 274%<sn jp the GARCH models as
MSE;.py’ bias variance .,

a function of the block size of the quantile estimation, respectively. n = 1000, p,, = 0.001

BM-MLE estimators are declining functions of the m, when 6 and 4 are fixed, the U shape suggests
that x,, is overestimated for low m, but underestimated for high m,. The z,, estimates decrease in
mg, consequently the bias reduces. As m, further increases, the z, estimates keep decreasing in m,.
Eventually the bias is high again after the z,, estimates is lower than the true z,,,.

The third row presents that the 3-m procedure improves the efficiency of the BM-MLE in the GARCH
model by variance reduction, such that the BM-MLE becomes the most efficient method unless the serial
dependence is weak as in the GARCH (v) model. Note that the disjoint BM-MLE estimator based on the
3-m procedure has a lower variance than the sliding BM-MLE estimator in the GARCH (vi) model. We

consider the reason as follows. Denote the optimal m. of the disjoint and sliding BM-MLE estimators

as m}, , and m7 ., respectively. The resulting effective sample sizes of disjoint blocks and sliding blocks
are k7, = ﬁ and kJ  =n—m} 4+ 1, individually. The corresponding scale estimators are dy, ;.

and d;“n’sl, and the modified scale estimators are G, q; and @, s. Regarding the v and a,, estimations,
the sliding BM-MLE is asymptotically more efficient than the disjoint BM-MLE. Meanwhile, we observe
the advantage of efficiency of the sliding BM-MLE estimator in simulation results, when applying the
same m. to the disjoint and sliding BM-MLE estimators. However, ., s does not necessarily have
a lower variance than @, ¢; in the 3-m procedure. Define the asymptotic variance of an estimator as

0%(+). From the asymptotic theory of the BM-MLE, o%(%) is a decreasing function of 4. By contrast,

*

o?(az,) is an increasing function of 4. There may exist some m>

4 and m? o yielding 45 > 94, such that
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Figure 12: Performances (the scaled MSEs, scaled squared biases and scaled variances) of the BM-MLE estimators
based on 3-m procedure and of the BM-PWM estimators based on 1-m procedure in the GARCH models as a
function of the block size of the quantile estimation, respectively. n = 1000, p,, = 0.001.

02(Ys1) < 0(4q5) and 02(&7*717“) > JQ(d;’dj) hold. Consequently, 0%(G, s) could be larger than o2 (@, 4;),
~ ~ 2/ .
although there is 02(6y) < 0%(4;). The variances of @, 4 and d, s are approximately W and
dj
o2 (@m,s1) e
k:,sl

this circumstance, the disjoint BM-MLE can have a lower variance than the sliding BM-MLE in the

; respectively. Still, @, q; could have a lower variance than an, q given that &7 ,; <k ;. Under
extreme quantile estimation.

Heuristically, the asymptotic properties of 6 are established by splitting the ith block into a small
block of length ¢,, and a big block of length mgy — ¢,,. Then the Condition 2.1 in Berghaus and Biicher
(2018) restricts the dependence between block maxima. It ensures that the mixing coefficients of both big
block and small block decay at least with a hyperbolic rate. Furthermore, the size of ¢,, ensures that the
big blocks that are not adjacent are asymptotically independent and the contributions of the small blocks
are negligible (Robert, 2009). Such restrictions are not necessary to establish the asymptotic normalities
of v estimators. Define m, and mg as n™ and n™ where 7 € (0, 1), respectively. In the future research,
it could be possible to compare the lower-bounds of 7., and 75 which may give a concrete relationship

between m. and my.
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6 CONCLUSION

We conduct Monte Carlo simulations in order to compare the finite-sample performances of six extreme
quantile estimators under serial dependence. The POT method and the BM methods under the dis-
joint blocks and the sliding blocks are included in the comparison. We employ the probability-weighted
moments and the maximum likelihood as estimation methods. Moreover, we consider different degrees
of linear and nonlinear serial dependence in the data generating processes. Since we observe the large
variances for the BM-MLE estimators under nonlinear serial dependence, we further investigate a 3-m
procedure allowing different block sizes for the extreme quantile estimation, the extreme value index
estimation and the extremal index estimation for the BM-MLEs.

The sliding BM-MLE estimator outperforms other quantile estimators due to a low variance, in the
i.i.d. sample or when the serial dependence is linear. Note that when the random variables or the in-
novations of the ARMA models are student ¢ distributed, the disjoint and sliding BM-MLE estimators
overestimate v if the block size is sufficiently low. The POT-PWM estimator and the BM-PWM esti-
mators fail to capture the heavy-tailed feature under strong linear serial dependence. When the serial
dependence is not persistent, they require sufficiently high k, to estimate heavy tails. Under nonlinear
serial dependence, the biases and variances of the Weissman estimator and the BM-MLE estimators are
high when they overestimate . The POT-PWM estimator and the BM-PWM estimators are able to
estimate the heavy tails only if the excess kurtosis is large or infinite. Both the ~y overestimation of the
Weissman estimator and the BM-MLE estimators and the v underestimation of the POT-PWM estimator
and the BM-PWM estimators are less pronounced when the excess kurtosis is higher.

The 3-m procedure is able to improve the performances of the BM-MLE estimators under nonlinear
serial dependence. The sliding BM-MLE estimator based on the 3-m procedure outperforms the disjoint
BM-PWM estimator in the GARCH models. The bias reduction and variance reduction by using the
3-m procedure are substantial when the block size for the quantile estimation is low. Once we observe the
serial dependence in data, we can test the linearity of the serial dependence (Giannerini, Maasoumi, &
Dagum, 2015). If the serial dependence is nonlinear, we suggest to apply the sliding BM-MLE estimator
based on the 3-m procedure. Afterwards, the selection of the block size of quantile estimation is essential.
The extreme quantile is overestimated if the block size is low and underestimated if the block size is high.
In order to find a good block size, we can plot the variance of the quantile estimator against the block
size. Then we choose the block size that gives a large slope of the variance curve. The reason behind is
as follows. The variance dominates the MSE when the block size is at a low level. Therefore, the MSE is
lower with a higher block size, if the variance reduction by increasing the block size is large. When the
block size increases further, the variance is low and the variance reduction is negligible. Consequently
the bias becomes dominant, and the bias increases in the block size.

There are some limitations in this paper. First of all, the models in simulations can be enriched. For
instance, the AR-MAX models, the asymmetric GARCH models and the GARCH models with different
innovation distributions are of interests. Second, this paper does not provide an exact boundary between

the weak and strong serial dependence, as well as the boundary between the small and large excess
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kurtosis. It is left for future research. Lastly, the simulations are focused on the heavy-tailed series with
a finite variance. Some more general cases where v € R and the variance is infinite are also worthy to

investigate.

37



APPENDIX A: NOTATION LIST

Here we list the important notations appeared in this paper and their explanations.
F: the continuous distribution function.
F}: the conditional distribution function of excesses.
v: the extreme value index.
0: the extremal index.
&2: the asymptotic variance estimator for 6.
G.: the GEV distribution function with the extreme value index +.
H,: the GPD function with shape parameter 1/7.
an: the scale parameter of the GEV distribution.
bn: the location parameter of the GEV distribution.
o(t): the scale of the GPD.
Zp,: the true extreme quantile.
T the true intermediate quantile.
(X5)521: an i.i.d. sequence or the associate i.i.d. sequence of a stationary sequence.
(X )nez: an observed i.i.d. sequence.
Xp—im: the i + 1th largest ordered statistic from (X, )nez.
M,,: the maximum of (X,,)5° ;.
Mfm: the ith disjoint i.i.d. block maximum extracted from (X,,),ecz with the block size m.
Mgkn: the ¢ + 1th largest disjoint i.i.d. block maximum.

(X,,)%,: an strictly stationary sequence.

(X,)nez: an observed strictly stationary sequence.
X, _in: the i+ 1th largest ordered statistic from (Xn)nez.

M,,: the maximum of (X,)52 ;.
Mgm: the ith disjoint block maximum extracted from (Xn)nEZ with the block size m.
Mfﬁn the ith sliding block maximum extracted from (X,,),ez with the block size m.
mg: the block size that is used in the extreme quantile estimation based on the BM method.

m~: the block size that is used in «y estimations based on the BM method.

myg: the block size that is used in 0 estimation based on the BM method.
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APPENDIX B: ADDITIONAL SIMULATION RESULTS

ARMA (i) Fréchet ARMA (i) Pareto ARMA (i) student t (absolute value)

0.5 T 0.25 T 15
0.4 \
1 /
w 03 w
%) 4] \
=3 0.2 =
0.5
0.1 -
0 0 [ ——
0 50 100 150 0 50 100 150 0 | 50 100 150
k. 3 | k
n n n
03 ARMA (ii) Fréchet ARMA (i) Pareto ) | ARMA (ii) student t (absolute value)
15
0.2 /
w w /A
0 o 1 | \
= = | N
0.1 N
0.5
0 0
0 0
0.4 0.5
03 0.4
w w 03
002 (%}
= =02
01 0.1
0 0 0
0 50 100 150 0 50 100 150 0
k k
n n
ARMA (iv) Fréchet ARMA (iv) Pareto
0.4 T . 0.4 — T . 0.5
03 | 03t | 04
w \ w \ w 03
wo2r |\ 002 o]
= S = =02
0.1 0.1 01
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
3 3 k.
n n n
‘7 — Weissman estimator —— disjoint BM-MLE —-—-sliding BM-MLE — — POT-PWM ——disjoint BM-PWM —-—-sliding BM-PWM ‘

Figure 13: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 1000, p, = 0.0005
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Figure 14: Scaled variances in the ARMA models as a function of the effective sample size. n = 1000, p,, = 0.0005
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Figure 15: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 1000,

pn = 0.0005
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Figure 16: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 2000, p,, = 0.001
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Figure 17: Scaled variances in the ARMA models as a function of the effective sample size. n = 2000, p,, = 0.001
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Figure 18: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 2000,
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Figure 19: Scaled MSEs in the ARMA models as a function of the effective sample size. n = 2000, p,, = 0.0005
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Figure 20: Scaled variances in the ARMA models as a function of the effective sample size. n = 2000, p, = 0.0005
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Figure 21: Scaled squared biases in the ARMA models as a function of the effective sample size. n = 2000,
pn = 0.0005
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Figure 22: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value index
estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, p,, = 0.0005

48



GARCH (v) GARCH (vi) GARCH (vii) GARCH (viii)

0.05 08 02
/ e
0.04 06 7 015
W 0.03 e m
4] 0 04 P 0 01
=002 / s
/
001 P 0.2 0.05
0 — n 0 0 0
0 50 100 150 200 0 50 100 150 200 0 200 0
k k
n n
GARCH (v) GARCH (vi)
0.01 - 0.2 v 0.05 0.05
,, 0008 / » 015 ) L, 004 L 004
< < , 8 8
2 0.006 2 / 2003 20,03
k=] k=] el o
° © 01 / ° °
S 0.004 / g / € 0.02 S 0.02
3 ! 3 005 - @ g
0.002 / - i 001 001
LS ——— — — —— —_ —_—— — = —
0 E —— ol— S 0 0
0 50 100 150 200 0 50 100 0 200 0
k k
n n
GARCH (vi)
0.05 05 — 02 05
)
'/
0.04 0.4 / 015 0.4
/ /
8 8 z 8 8
€ 003 203 > e 203
g g 7 g 01 g
3 3 / 3 3
Soo02 So2 8 So2
0.01 01 = 005 01
0 0 0 0
0 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
k k k
n n n
GARCH (vi) GARCH (vii) GARCH (viii)
1 1 1 1
x x x x
Q [} Q [}
=} o T T
£ < £ £
o 05 o 05 o 05 o 05
= = =] E
[ [ [} [
> > > >
[} [} o [}
E 0 E 0 E 0 E o0
L g I e
] < ] =
w w w w
-0.5 -0.5 -0.5 -0.5
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
k k k k
n n n n
‘7 — Weissman estimator —— disjoint BM-MLE —-—-sliding BM-MLE — — POT-PWM ——disjoint BM-PWM —-—-sliding BM-PWM ‘

Figure 23: Performances (the scaled MSEs, scaled squared biases and scaled variances) and the extreme value
index estimates in the GARCH models as a function of the effective sample size, respectively. n = 2000, p,, = 0.001

49



GARCH (v) GARCH (vi) GARCH (vii)

01 2 1
0.08 / 15 08
w 0.06 / u w 06
%] 0 1 %)
Zo04f | = =04
y
0.02 05 02
0 0 0
0 0 150 0
K
n
GARCH (vii)
0.05 03 - 01
0.04 0.08
%) 123 1%} 1%}
© 802 8 8
2003 2 2 2 0,06
o ° o o
o 2 4 o
g 0.02 £, g 8 0.04
o o V. o o
" n n %]
0.01 0.02
0= ——————— 0 0
0 50 100 150 0 0
K
"
01 2 1
0.08 15 08
8 006 8 / 803 806
c c c c
8 g1 / g 3
g g P g g
Som 3 o So2 So4
J
0.02 05 01 02
0 0 0 0
0 0 0 0
1 1 1 1
x X x x
Q Q Q Q
=} he=} he=} k=]
H g g g
o 05 o 05 o 05 o 05
El Ei Ei E
© © © [
> > > >
[ Q [} [}
£ 0 E o E o E o
g g g g
H 2 £ £
w w w w
05 05 051 05
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
K K K K
" n n "
‘* — Weissman estimator ——disjoint BM-MLE —-—sliding BM-MLE — — POT-PWM —— disjoint BM-PWM —-—-sliding BM-PWM ‘
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estimates in the GARCH models as a function of the effective sample size, respectively. n = 1000, p,, = 0.0005
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