Aiming to find the missing link between accounting numbers and stock return volatility, this paper examines how sales growth persistence is related to Extrapolation Hypothesis via the variance of its asset returns. Differentiating from the literature, growth persistence is captured by a mean-reverting state space model. Portfolios formed on the level of growth persistence feature many favourable attributes. Within this framework high-persistent companies are found to realise high sales growth and show signs of predictability. Combining growth persistence, quarterly report announcements and the forecast errors from the state space model as explanatory variables in the conditional variance equation in a GARCH framework, the results show evidence that these variables add to the explanation of realised volatility. The research forms evidence that suggest a difference in reaction to forecast errors along the growth persistence portfolios. Overall the findings of the study represent a first step in the direction of applying company fundamentals in explaining stock return volatility.

Keywords: Sales Growth Persistence, State Space Modeling, Local Linear Mean-Reverting Trend Model, Expectation Hypothesis, GARCHX, Excess Volatility.
List of Tables

1 Number of Companies & Descriptive Statistics 16
2 Economy-wide Average Sales Estimated Parameters 35
3 Formed Portfolios based on the Estimated φ 36
4 Annualised Sales Growth 38
5 Correlation between Returns Around Announcement Period t^* 43
6 GARCH Optimal Model Preferences 44
7 News Effect over the Different Portfolios 48
8 Case Study: Sales Growth Estimation Results 49
9 Case Study: Fundamentals 51
10 Case Study: GARCH Estimation Results 53
11 Case Study: News Effect 54
B.1 Portfolio Fundamentals 75
B.2 Annualised Return Rate 77

List of Figures

1 Workflow Diagram: Relating Fundamentals to Stock Return Volatility 5
2 Distribution of the Number of Companies 15
3 Comparison between Realised Return and Volatility and Leading Indices. 17
4 Persistence Model Overview 29
5 Economy-wide Average Estimated Sales Level, Growth, and Seasonality 35
6 Estimated Level of Growth Persistence, φ 36
7 Time Series of Excess Mean and Median Sales Growth 39
8 Distribution over Industries and Corresponding Average Growth. 41
9 Correlation between Earnings Persistence and Sales Persistence 42
10 GARCH Exogenous Parameter Distributions 45
11 Optimal GARCH Models 46
12 Adjusted R^2 of the Mincer-Zarnowitz Regression 47
13 Case Study: Estimated Sales 50
14 Case Study: Return and Volatility 52
15 Case Study: GJR Series 55
List of Abbreviations

General
- **ML**: Maximum Likelihood
- **EM**: Expectation Maximisation Algorithm
- **OLS**: Ordinary Least-Squares
- **AIC**: Akaike Information Criterion

Data
- **CRSP**: Centre for Research in Security Prices
- **EPS**: Earnings-per-Share
- **DPS**: Dividends-per-Share
- **R&D**: Research and Development
- **SIC**: Standard Industrial Classification
- **GDP**: Gross Domestic Product
- **VIX**: Chicago Board Options Exchange Volatility Index
- **S&P500**: Standard and Poor’s 500 Stock Market Index

State Space Modelling
- **BSTM**: Basic Structural Time Series Model
- **LLM**: Local Level Model
- **LLT**: Local Linear Trend Model
- **AR**: Auto-Regressive Model
- **WGS**: Weighted Average Rank of Sales Growth
- **NP**: Non-Persistent Portfolio
- **LP**: Low-Persistent Portfolio
- **HP**: High-Persistent Portfolio

Volatility Modelling
- **GARCH**: Generalised Auto-Regressive Conditional Heteroskedasticity Model
- **GJR**: Glosten-Jagannathan-Runkle Model
- **PEAD**: Post-Earnings-Announcement Drift
- **SUR**: Earnings Surprise
List of Symbols

General

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>Likelihood</td>
</tr>
<tr>
<td>(\ell)</td>
<td>Log-Likelihood</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Parameter Set</td>
</tr>
<tr>
<td>(p)</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>(\mathcal{I})</td>
<td>Information Matrix</td>
</tr>
<tr>
<td>(i)</td>
<td>Company</td>
</tr>
<tr>
<td>(n)</td>
<td>Total number of companies</td>
</tr>
<tr>
<td>(t)</td>
<td>Time</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Final Time Point</td>
</tr>
</tbody>
</table>

State Space Modelling

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>Observation</td>
</tr>
<tr>
<td>(Z)</td>
<td>Design Vector</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>State Vector</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>Observation Regression Coefficients</td>
</tr>
<tr>
<td>(d)</td>
<td>Exogenous Variable Observation Equation</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Observation Noise</td>
</tr>
<tr>
<td>(H)</td>
<td>Observation Disturbances</td>
</tr>
<tr>
<td>(T)</td>
<td>Transition matrix</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>State Regression Coefficients</td>
</tr>
<tr>
<td>(e)</td>
<td>Exogenous Variable State Equation</td>
</tr>
<tr>
<td>(R)</td>
<td>Selection Matrix</td>
</tr>
<tr>
<td>(\eta)</td>
<td>State Noise</td>
</tr>
<tr>
<td>(Q)</td>
<td>State Disturbances</td>
</tr>
<tr>
<td>(P)</td>
<td>State Estimation Forecast Error</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>Observation Variance</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Level-Component</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Level Disturbance</td>
</tr>
<tr>
<td>(\sigma^2 \eta)</td>
<td>Level Variance</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Trend-Component</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Average Trend</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>Trend Disturbance</td>
</tr>
<tr>
<td>(\sigma^2 \zeta)</td>
<td>Trend Variance</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Seasonal-Component</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Seasonal Disturbance</td>
</tr>
<tr>
<td>(\sigma^2 \nu)</td>
<td>Seasonal Variance</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>Trend Persistence Parameter</td>
</tr>
<tr>
<td>(\omega)</td>
<td>State Noise</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Trend Persistence Parameter</td>
</tr>
<tr>
<td>(q)</td>
<td>Number of Observed Dependent Variables</td>
</tr>
<tr>
<td>(k)</td>
<td>Number of Exogenous Variables in the Observation Equation</td>
</tr>
<tr>
<td>(m)</td>
<td>Unobserved Latent States of the State Space Model</td>
</tr>
<tr>
<td>(s)</td>
<td>Number of Exogenous Variables in the State Equation</td>
</tr>
<tr>
<td>(g)</td>
<td>Number of Error Terms Influencing the State Equations</td>
</tr>
<tr>
<td>(S)</td>
<td>Number of Seasonal Components</td>
</tr>
</tbody>
</table>

Volatility Modelling

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Weekly Return</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Unconditional Average Weekly Return</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Return Innovations</td>
</tr>
<tr>
<td>(z)</td>
<td>White Noise process</td>
</tr>
<tr>
<td>(h)</td>
<td>Time-Varying Conditional Variance</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Unconditional Variance</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Lagged Squared Innovations</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Lagged Conditional Variance</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Estimate Exogenous Variable</td>
</tr>
<tr>
<td>(X)</td>
<td>Exogenous Variable in the Variance Equation</td>
</tr>
<tr>
<td>(a)</td>
<td>Mincer-Zarnowitz Regression Intercept</td>
</tr>
<tr>
<td>(b)</td>
<td>Mincer-Zarnowitz Regression Parameter Estimate</td>
</tr>
<tr>
<td>(e)</td>
<td>log Mincer-Zarnowitz Regression Intercept</td>
</tr>
<tr>
<td>(f)</td>
<td>log Mincer-Zarnowitz Regression Parameter Estimate</td>
</tr>
<tr>
<td>(v)</td>
<td>Disturbance of the Mincer-Zarnowitz Regression</td>
</tr>
<tr>
<td>(w)</td>
<td>Disturbance of the log Mincer-Zarnowitz Regression</td>
</tr>
<tr>
<td>(RV)</td>
<td>Realised Variance</td>
</tr>
<tr>
<td>(R^2)</td>
<td>Adjusted (R^2)</td>
</tr>
</tbody>
</table>
1 Introduction

Will Apple’s, Facebook’s and Google’s revenues ever stop growing? Ever since they are listed on the global stock markets, their market capitalisation and cash flows have grown tremendously, exceeding every rational economic business valuation theory. At the bottom line lies the general assumption that the present value of a company is the expectation about future cash flows at a certain discount rate. This implies two fundamental questions: what would be a reasonable expectation about a company’s upcoming cash flows and at which rate should it be discounted? The main body of financial literature focuses on finding the fair present value of a company and therefore finding the perfect price of its assets. Where forthcoming cash flows show persistence and forecastability, it is widely accepted that the asset prices are best described by a random walk, show very little predictability and exhibit large (clustered) disturbances. Hence rises the question: if the underlying cash flows are to some extent predictable, why are the stock prices so utterly volatile?

Stock return volatility has been a major interest in both academic and business papers, of which Engle (1982), Bollerslev (1986) and Andersen et al. (2001) where among the first to model the time series properties of return volatility. French et al. (1987) and Campbell and Hentschel (1992) examined the relation between asset returns and market volatility and Ang et al. (2006) created a profitable trading strategy out of stock return volatility. The connection between a company’s stock return and its fundamental values originates from studies of Shiller (1981), Summers (1986) and Fama and French (1992), from which the latter find two important risk factors in value and size. The association between cash flows (dividends and earnings) and returns, finds a striking result in the study of Lamont (1998), who shows evidence of predictive power of these cash flows for excess stock returns. Where most academia focus on earnings and dividends as measure of operating performance, they largely overlook sales as insightful fundamental number. As earnings are the main target of investors and financial analysts, they are prompt to various methods of earnings management and/or based on unreliable accrual numbers, making it doubtful estimate of actual operating performance (Richardson et al. (2005)). Sales or revenue on the other hand is a much cleaner proxy of such performance. The preference of sales is further supported by the work of Chan et al. (2003), who find that contrary to earnings, sales are more predictable, due to a greater level of persistence in growth rates and are overall less volatile (Kiger (1974)). It therefore straightforward to relate persistent sales to excessively volatile stock returns. In particular it is interesting to link if more sales persistence leads to less excessive return volatility.

This link splits the problem in two parts. First of all, how persistent is firm revenue growth? And second, does high persistence result in less excess volatility? A partial solution finds its origin in the 1970 paper of Beaver et al. (1970), who were among the first to find a correlation between the variance of
the stock price and the volatility of cash flows. Later Campbell and Shiller (1988) show that stock price volatility cannot only be caused by changes in expectations of future excess return. They decompose the variance into two parts, expectations about returns and expectations about cash flows. Vuolteenaho (2002) provides further evidence that, on a firm level, the largest part of the variance originates from changes in expectations about cash flows rather than the actual level. In other words, the larger part of the variance is caused by different interpretations about how the current state reflects into the expectation of the upcoming cash flows.

Many previous studies that opt to evaluate the expectations of financial analysts conclude a large heterogeneity among the these practitioners and many fail to provide accurate forecasts of upcoming cash flows. As further shown by La Porta (1996) among others, analysts are excessively optimistic about past winners and tend to extrapolate this recent winning streak too far into the future resulting in significant negative portfolio returns. La Porta refers to this phenomenon as the Extrapolation Hypothesis, and constructs portfolios based on their expected earnings growth, to obtain such counter-intuitive results. In the follow-up study La Porta et al. (1997) find that investors actually overestimate the persistence in growth rates and project periods of prolonged growth to far into the future, which has been in line with the earlier study of Lakonishok et al. (1994).

To find the missing link between the persistence in sales growth and the excessive volatility found in stock returns, I aim to find a specific relation between the Extrapolation Hypothesis on one side and the volatility spike occurring at announcements of quarterly reports on the other. This problem statement arose arguing over the hypothesis that if the sales growth is more persistent, investors would have a rather good idea about what the expect regarding the next periods sales growth. This would indicate a smaller volatility shock around a report announcement, than it would with a non-persistent growth rate.

If sales posses some level of persistence, which in the context of this thesis will be formulated as the ability of a company to achieve sales growth that deviates for multiple periods from the economy-wide average growth, they are to some extend predictable. This deviates from the definition used in prior literature. By the definition of Fama and French (2002) and Chan et al. (2003), sales or earnings persistence is defined as consecutive years of growth, concluding that in their empirical studies it is very hard to find significant results. As an example, a firm that outperforms in the first and second year, stagnates in the third consecutive year, and again realises excess growth in the next two years, would be left out of the sample after the second year. Overall they conclude that sales growth can only be endured over a short time period. Based on our definition, the previous example means a relative strong persistence in sales growth over the past 5 years. Therefore using this alternative definition, I aim to find a more complete view of the actual sales persistence. Nevertheless, sales growth persistence is still a rare phenomenon, because on a firm level, sales growth reverts back to the economy average, which is
approximately equal to the growth of the gross domestic product (GDP) (Chan et al. (2003)). And so, only a small fraction of companies is able to realise such continuous out performance.

In contrast to prior literature, this study analyses each individual company with univariate time series techniques, resulting in a data set with both a time series dimension as well as dimension over a large set of companies. So far however, studying growth rates ignored a large part of the companies’ time series properties, whilst some time series research only investigates a small group of companies or a major stock market index. This combination paves the way for clustering companies based unique characteristics and additionally enables us to look at specific events in time or specific companies throughout a certain time period.

Analysing such univariate time series opens the door to a wide range of models and methods. However, finding persistence, mean-reversion and seasonality in sales growth rates drastically reduces the number of suitable models. One of the most general time series models is the basic structural time series model (BSTM) of Harvey (1990). This state space framework can be modified in such a way that it satisfies all the defined features. The preference for the state space framework is primarily due to the ability of estimating a trend without directly model the first differences. The main model of interest is the local linear mean-reverting trend model (LLT), where in the trend equation I added a mean or average growth rate, and a parameter of persistence, which allows the estimated trend to under- or outperform the market average. The LLT model is an extension of a simpler version of BSTM models, a basic local level model (LLM) which restricts the persistence parameter and growth variance at zero, resulting in the addition of a deterministic growth term. As these two models use the sales level as input, one might argue if the sales growth cannot be analysed directly. Therefore a third model intents to capture persistence and mean-reversion straight from the first differences of the sales data. The most common way to describe such a direct relation is by means of Auto-Regressive model of the first order (AR(1)). In total this results in two models which estimate the persistence and one which restrict the persistence at zero. The LLM is primarily used as check to exclude the cases were adding another parameter fails to significantly improve the fit.

The parameter optimisation routine for the first two models starts with finding appropriate staring values based on the auto-covariance structure of the first differences and estimating a local level model, without a deterministic trend with Maximum Likelihood (ML) and Expectation Maximisation (EM) algorithm. This resulting set of parameters is partially used as input for ML and EM estimation of both the LLM and LLT models, as they are also estimated from a diffuse initialisation. For the AR(1) model I also apply a ML approach that uses an uninformative prior. Model selection is done based on natural logarithm of the likelihood function and compared using a likelihood ratio test or the Akaike information criterion.
Following the general idea of this study, I aim to link sales persistence to excessive stock return volatility. Given that a company is highly persistent, this would imply that the market should have a relative good forecast with a small average forecast error about the coming sales. This should have a relation to stock returns or implicitly stock volatility. Could it be so that the market returns faster to its equilibrium and so leaves minimal volatility after a quarterly announcement or could it be that the volatility is consistently lower for such a group of companies? Despite what the exact reason may be, one could see that there is undoubtedly some sort of a relationship between the growth persistence and return volatility.

To further explore this relationship I first discuss two important subjects. Firstly, how does one model the volatility of stock returns and subsequently how help fundamentals improve such models? To start, the most common methodology to model stock return volatility exploits the work Engle (1982) and Bollerslev (1986) of their (Generalised) Auto-Regressive Conditional Heteroskedastic volatility models or simply a GARCH volatility model. This set of models aims to find a more autoregressive structure in the disturbances of stock returns. Numerous empirical studies prove how accurately this framework captures the volatility process, such as French et al. (1987) and Campbell (1991). Various others tried to further improve the model with more technical enhancements, such as an asymmetric reaction to innovations, known as the leverage effect or with non-linear terms, e.g. Glosten et al. (1993) and Nelson (1991). Later, a small number of papers reports extensions that include exogenous variables to the conditional variance equation: Sharma et al. (1996) add trading volume, Engle and Patton (2001) combine it with interest rate levels and Glosten et al. (1993) incorporate the dummy variables for certain months. Andersen and Bollerslev (1998b) obtain a more striking result, when they modelled the volatility of the German exchange rates and found that around announcement moments of US macroeconomic data the volatility significantly increased. A general statement about news response is made by Blasco et al. (2002), who find evidence that bad news is a main cause of asymmetry in the variance. Although, these studies combine the general idea that adding explanatory variables is beneficial, the link with firm fundamentals has hardly been investigated. It is especially worth investigating how the market responses to the moment an accounting report is released. This combines both the market response to news, which has proven to be important and how the market anticipates on a possible forecast surprise. If the market has a relatively good idea about what to expect when a report is released, its response would on average be less violent. This is where the growth persistence of the first part comes at hand.

To investigate the markets’ response, I extend the GARCH framework with exogenous variables which are based on fundamental numbers. The first explanatory variable intends to solely capture the effect of news announcements on the return volatility and is a dummy variable that is true in a week of an announcement moment. To incorporate news about fundamentals in the model, I construct a percentual
forecast error by subtracting the logarithm of observed sales by the log of the predicted sales and dividing by the log observed sales. Here the predicted sales is a direct output of the Kalman filter and a result of the first estimation routines. The second exogenous variable examines the response to absolute value of the forecast error, and the third splits the response between both negative and positive forecast errors, as it is interesting to see if the market responses different to positive and negative prediction errors. With the last variable I consider, I try to isolate the effect of extreme prediction errors. The basic GARCH(1,1) and GJR(1,1) models are in general hard to outperform Hansen and Lunde (2005), that is why adding all announcement moments and forecast errors might minimise its effect. Therefore focusing exclusively on most extreme set of forecast errors, possibly improve the model fit.

To summarise all the above and place the results in the right context, I created workflow overview in Figure 1. From this Figure is easier to see how decisions and limitations early on can have a major influence on the results.

Figure 1: Workflow Diagram: Relating Fundamentals to Stock Return Volatility

A systematic overview of methodology and models.
The first block indicates financial time series data for around 1900 U.S. listed companies. These data are drawn from both the CompuStat and the CRSP databases. The time series start in January 1961 until the end of December 2017, all companies need to report financial data for at least 25 years. This strict limitation is enforced to end up with time series of at least around a hundred observations and so support a solid time series analysis. The data consists of financial fundamental data such as performing indicators, per-share variables, financial ratios and investment numbers seized on a quarterly frequency. Data about the asset returns are sampled on a daily frequency and later transformed into weekly numbers of returns and realized volatility. The data set is further extended with descriptive information about industry, quarterly reporting dates and macro-economic variables such as the U.S. GDP numbers, the returns of the S&P500 Index and the market volatility index, VIX.

The second block shows that from the optimal estimated model, I obtain a classification of the level of persistence. A direct conclusion from the estimation routines is the rejection of the LLT model for two third of the set of companies, fixing persistence at zero. By means of log-likelihood it proves hard to justify the addition of two extra parameters. Based on this classification I form three portfolios, one with non-persistent (NP), one low persistent (LP) and one high persistent (HP) companies. From these portfolios I can conclude that the HP portfolio realises a sales growth than significantly outperform the other two portfolios. This result remains unaffected by time span of the moving window and are consistent over a the whole time period. As a whole I can conclude that for the HP portfolio sales are predictable and high persistence results in high sales growth. The portfolio analysis does not show a significant indication that high persistence is related to realising positive returns. But neither does it point towards negative returns, as was found by Chan et al. (2003) and Chen (2017), who show that portfolios of stocks with high sales growth realise a negative return. Although this is remarkable on its own, it is important to mention that the returns are not corrected for the risk-free interest rate and major market anomalies, such as size, value or momentum. There may be a strong relation between sales and earnings, but after repeating the analysis with the earnings data, I show that there is minimal correlation between both numbers of persistence and in line with Chan et al. (2003), earnings persistence is even less frequent.

Continuing the workflow, I relate the persistence classification to GARCH volatility models. Firstly it is important to review if stock returns are influenced by announcements. Throughout the literature, there are multiple papers finding evidence of post-earnings-announcement drift, the tendency of returns to move in the same direction as the earnings surprise. I altered the earnings surprise measure commonly used in the literature, to the percentual forecast error from the Kalman filter. If I correlate the direction and magnitude of this forecast error to the returns surrounding a week of announcement, I find a meagre, but supporting indication that the proposed forecast error adds to explanation of variance. This indication
is further supported by the results of the model estimation routines, as for two third of the companies it
proves increase the fit. Out of this sub-sample, in one half of the cases only adding information about
announcement data provides an optimal fit. For the other half it is beneficial to include the forecast
error. It is important to highlight that this model preferences largely are indifferent for GARCH or GJR
models, indicating that the addition of a leverage term fails to dissolve the effects. To further check how
much the exogenous variables add to the explanation, I regress the estimated variance on the realised
variance with Mincer-Zarnowitz regression. By means of a percentual difference the R^2 of log regression
is on average increased by around 7 %, taking only the companies into account where adding a variable
is preferred.

The portfolios formed earlier barely reveal differences among the three sub-groups: when I regard
model preferences it shows only minor differences. But with respect to the parameter estimates I conclude
that for the first, second and fourth estimated exogenous variables, their parameter distributions all
follow a similar pattern, and are not significantly different. However referring to the third variable,
which spliced between a positive and negative response, it shows that the HP portfolio shows a strong
effect. This implies that the stock market react stronger, leading to more volatility, when a firm from
the HP portfolio realises even better sales than were predicted. This finding is further confirmed by
significant difference in the news effect. Generally, it can be concluded that an announcement results in
a larger increase in volatility when the company is in the HP portfolio than in would in the NP portfolio.

Summarising over many companies and large time period may give vague intuition about how to
interpreted the results, therefore the last part focuses on a explicit case study between APPLE and
FORD, that provides a more insightful figures and estimation results.

The remainder of this thesis is structured as follows: the next section gives an overview of the related
literature regarding the empirical relevance and motivation. The section after that reports the data, along
with summary statistics and relevant data transformations. Section 4 gives a broad introduction to the
theoretical background of state space modelling. Section 5 further discusses how state space modelling
is applied in this study, along with more methodological details, and it describes the configuration of
the volatility models. Section 6 presents the results, along with a detailed case study of two renowned
companies. Finally, Section 7 concludes this thesis by discussing suggestions for future research.
2 Literature Review

During the past decades, there has been an increasing amount of literature in the field of empirical and quantitative finance regarding the universal questions ‘What strategies can predict stock prices?’; ‘Do fundamentals give insight in stock price behaviour?’ and ‘Can we find the next ‘big thing’ in the stock market?’ A large number of existing studies in a vast field of financial literature have examined these questions, with limited success. In this study I will not claim to find the perfect solutions to the questions stated above, but I aim to find a useful insight in the way financial markets operate. As the main point of this research is to find the missing link between growth persistence in a companies fundamental numbers and variation in stock returns, it covers a broad range of academic papers. To place this research in the right context in the academic literature, the section below discusses the most relevant previous studies.

First, I will summarise the most recent views in the literature concerning the research. Next I will describe the more general ideas about the empirical analysis of asset pricing and how this, and in particularly fundamental sales data, relate to the market valuation of company. This will be followed by further discussion about the persistence of cash flows and how state space modelling can capture this effect. The fourth part will start with an explanation on how stock return volatility can be represented with different types of GARCH models and will further elaborate on the connection between sales persistence and return volatility. Finally, this section covers two market anomalies: an earning surprise that will lead to unexpected returns or Post-Earnings-Announcement Drift and the Extrapolation Hypothesis, where the latter was stated by La Porta (1996) as, the overreaction of investor to recent news.

I will start with recent evidence from a large empirical study of Chen (2017), who argues that contrary of what might sounds reasonable, stocks with a low book-to-market ratio, popularised as growth stocks, fail to pursue higher future cash flow growth rates. Stocks with high future growth rates have a longer cash flow duration. This difference in duration could be seen as an important explanation for the value premium of Fama and French (1992). The major results from Chen (2017) suggests that this difference in duration alone as proposed in previous studies of Lettau and Wachter (2007, 2011) is implausible. The duration explanation of the value premium rests upon two major elements, first the downward sloping term structure of equity, assets with a long duration earn a lower return. And the second explanation concludes that cash flows of growth stocks grow faster in comparison with value stocks. On both points there is still a lot of debate going on in the literature. Regarding the first point it proves that only for a small subset of models the term structure of equity is actually downward sloping, as reviewed in Van Binsbergen et al. (2012). The second point, the relationship between a low book-to-market ratio and a larger cash flow growth, has a lot of supporters as well as opponents. In 2004, Chen published a paper which empirically finds support for this relationship, but e.g. Ang and Liu (2004) and several other
authors find opposing results, for example that dividends grow faster in value stocks. An overlooked detail of his findings is that growth stocks have higher growth rates in sales and earnings in the first year, but disappoint in the following years, which is in line with early work of Lakonishok et al. (1994).

One of the latest papers by Bordalo et al. (2017) extends the work of La Porta (1996), who showed that companies with (over)optimistic long-term forecasts experience negative returns. In this recent study they propose a theory of belief formation, which states that investors are forward looking in their reaction to news items. Stated otherwise, they overreacted to information in the right direction. This effect is captured in their model of formation diagnostic expectations and results in suitable explanations for return anomalies and dynamics in fundamentals and returns.

The link between positive balance sheet fundamentals and negative future excess stock returns lately has been reviewed in the work of Fisher et al. (2016). They reveal that systematic errors in investors’ long-term forecasts are reflected in stock prices and that these are consistent with return anomalies generating mispricing. This bias in long-term growth forecasts relates back to research of La Porta (1996), Dechow and Sloan (1997), Chan et al. (2003) and later Da and Warachka (2011), who find that a strategy that focuses on short-term earnings forecasts is able to generate excess return.

The idea of this study is further motivated by a suggestion made in the paper of Lange and Teulings (2018), where they openly question whether it is reasonable to assume that cash flows behave like a random walk, which proves not the case, contrary to evidence found in early papers by e.g. Sloan (1996) and Dechow et al. (1998). So, if there is predictability in cash flow growth, it also has some level of persistence, but this persistence will not be permanent as it would otherwise suggest that cash flows of current high-growth companies will be unbounded. For that reason it implies the use of a mean-reverting model to capture these cash flow dynamics. This idea was also suggested in Fisher et al. (2016), as their evidence is consistent with the view of professional analysts who believe that profits mean-revert, even though profitability tends to have some level of persistence.

2.1 Empirical Stock Prices and Cash Flows

Relating back to literature of empirical stock pricing and following the timeline in financial economics and financial mathematics, investors and other market participants always tried to find strategies that provide accurate forecasts that are able to outperform the market. However, it was known from the beginning of the nineteenth century that stock prices cannot be that easily predicted. The early work of Fama (1965) on the behaviour stock market prices shows that they basically follow the random walk principle and the following paper of Malkiel and Fama (1970) describes the Efficient Market Hypothesis, which concludes that stock prices should reflect all publicly available information and every participant
interprets this information equally. It was this same Fama who in cooperation with French developed a series of papers that showed that size (market equity) and value (book-to-market ratio) along with market beta are important predictors for the cross-section of average stock returns (Fama and French (1992, 1993)). In their 1995 paper they discuss how these factors can explain expectations in earnings. Although these papers have proven their value, there is still a lot of debate in the literature about certain assumptions underlying these models and about the possibility of other risk factors such as dividend rate, low-volatility or industry. Lakonishok et al. (1994) claim that factors only represent systematic errors in expectation about future returns, for example that excess return of high value stocks is a correction for an irrational price and so that the stock market operates far from fully efficient. It states that investors overprice growth stocks and underprice stocks that have performed poorly in the past, a view widely shared in the field. Jegadeesh and Titman (1993) relate this to the momentum strategy, another well-known market anomaly.

All these possible stock market strategies, essentially, intend to find one fundamental number: the fair value of company. Numerous valuation methods are used in the literature, merely aiming to find the present value of a companies future profitability. In the most general way, the fair value of a company is defined as the expectation of the present value of the discounted future cash flows. Although this might look relatively simple, it deals with two very complex highly uncertain components: future cash flows and the rate at which this should be discounted. One of the early methods is the dividend discount model, generally known as Gordon’s formula, which calculates the current stock price as the net value of all future dividends. This would limit the valuation to only dividend-paying stock, therefore an early adaption, initiated by Miller and Modigliani (1961), replaces dividends with earnings and uses the growth in earnings in the denominator. Nowadays there are numerous papers relating market multiples to company valuation and return e.g. dividend-price, earnings-price, earnings-per-share, sales-price, and book value (Campbell and Shiller (1988), Ohlson and Juettner-Nauroth (2005) and many others). In this research I use the time series properties to examine this specific effect in sales data. Although there is a strong correlation between a companys fundamentals, the literature on the direct influence of sales growth on the market valuation is limited. But depending on the valuation method, consistent sales growth will have a positive effect on the markets view, trading it at higher multiples and possible lead to negative returns, as was seen with other positive balance sheet fundamentals.
2.2 Persistence Sales Growth

An important work in the analysis of persistence in growth rates of companies comes from the paper of Chan et al. (2003). Their work focuses on the question if it is likely that stocks preserve high growth rates over multiple periods and if there is persistence in operating performance growth. They find that long-term growth in earnings is not persistent, but sales to some extent are, and that numerous firms are able to realise above median growth rates for successive years. As a possible explanation to this failing persistence in earnings, Sloan (1996) and later Richardson et al. (2005) show that different earnings’ components have different levels of persistence and more specific that less reliable accruals lower this persistence, while Dechow et al. (2008) find that persistence in the cash flow component solely relies on a sub-component related to debt/equity dynamics. Later Kryzanowski and Mohsni (2014), show that both components are mean-reverting and persistence weakens in a period with unfavourable growth rates. Lacking persistence in earnings and accounting discrepancies causes this study merely to focus on sales persistence.

Market participants always intend to find companies, \textit{ex ante}, that will grow over the coming years, but that remains very difficult. From a broad range of predicting variables, only expenses in R&D and a company’s dividend policy prove to be of some worth. The work of Chan et al. (2001) highlight that high intensive R&D companies tend to have more chances of future growth. While a company’s dividend structure sends out important signals about attractive projects and possible future growth, low current dividends results in high future growth per share. Further they underline that expectations of growth rates should be able to reflect the cross-sectional variation in stock returns, but these market expectations, proxied with analysts’ long-term forecasts, are mostly overly optimistic and these valuation ratios fail to pick future winners or losers. These results are in line with the Extrapolation Hypothesis, which states that current operating growth does not need to be extrapolated into possible future growth; this is later confirmed by a large empirical study on US firms of Kryzanowski and Mohsni (2014).

The lack of major evidence that sales and other operating performers experience consecutive years of growth might be caused by the idea that value companies are more settled in the market and exhibit little volatility in returns or fundamentals, contrary growth stocks are highly volatile. First Lakonishok et al. (1994) find that on a very short term extreme popular growth stocks experience higher growth rates, but this dissolves over a longer time-span and they fall below the growth rates of value stocks. Later, Chen (2017) concludes more generally that, contrary to what may be obvious, there is an insignificant difference between the growth rates of future cash flows of growth stocks and value stocks.

There is a unambiguous relationship between stock price volatility and the volatility of accounting fundamentals. Preliminary work on the high correlation between this relationship was undertaken by
Beaver et al. (1970), who concluded that market risk and risk in accounting measures are reflecting the same underlying events and investors use this in their portfolio strategy. In the early days, the volatility in stock prices ought to have a clear relation with a revision of expected future cash flows. A number of authors recognised the shortcomings of this relation and that stock market volatility is not comparable by for example the volatility of dividend rates (Shiller (1981)).

In the consecutive studies of Campbell and Shiller (1988), Campbell (1991), Campbell and Ammer (1993) and Campbell and Kyle (1993), they find evidence that hints in the direction that stock prices are way to volatile to be only caused by changes in expectation of future excess returns and the variance can be decomposed into expectations about returns and cash flows. News about future cash flows explains one third of the variance, the rest is due to news about unexpected future returns. Although there is a high degree of correlation between both, an increase in the expectation of the future cash flows will lead to a negative returns. Later research of Vuolteenaho (2002) contradicts these results, by claiming that cash flow news is larger than expected return news on a firm level, because news about cash flows is more company specific and can be largely diversified across a portfolio, while expected returns are driven by macroeconomic components that affect the whole market. Callen and Segal (2004) mention that information about accruals dominates expected return news and that changes in future accruals are a primary driver of stock returns. The broader conclusion supported by Hecht and Vuolteenaho (2005) and Sadka (2007) states that it is not possible to focus on the role of earnings on volatility without taking stock returns into account due to the significant correlation between the two, but that stock price volatility can to some extent be explained by the variation in expected earnings. Moreover, stock returns are more altered by the changes in expectations rather than the actual level of earnings or returns.

2.3 Modelling Stock Return Volatility

Before further linking stock return volatility and the importance of a company’s fundamentals, I review some groundbreaking papers that focus more specifically on the univariate modelling of asset price volatility by Engle (1982) and Bollerslev (1986). In these papers the old-fashioned assumption of constant volatility is dropped in favour of a (generalised) autoregressive conditional heteroskedastic volatility process, GARCH, in which the current disturbances are sum of lagged previous squared observations and/or disturbances. This approach rapidly became the industry’s workhorse in financial time series analysis, as it is able to capture the stylised facts of asset pricing theory, such as volatility clustering and leptokurtosis. This resulted in a legion of empirical studies as French et al. (1987), Campbell (1991) amongst others, and model enhancements of which the GJR-model of Glosten et al. (1993) and EGARCH of Nelson (1991) are the most renowned. The last two extensions make use of the fact that stock return
volatility has an asymmetric reaction to news, in which negative returns lead to a higher rise in volatility levels than a positive return, further noticed as the leverage effect of news. A small set of studies extends the model framework with exogenous variables, not in the last place as it proves hard to improve the basic model (Hansen and Lunde (2005)). Sharma et al. (1996) find a significant variable in corresponding trading volume, as a proxy for information arrival. The next to the leverage effect, the analysis of Glosten et al. (1993) reports the significance for dummy variables for specific months. An important conclusion of Andersen and Bollerslev (1998b) outlines the significant effect of U.S. macroeconomic announcement moments to exchange rate volatility. Indicating the importance of announcement news, Blasco et al. (2002) highlight that bad news is the main cause of asymmetric variance, and confirm the early findings of Glosten et al. (1993)’s leverage effect. All these studies share the idea that GARCH models can be improved, with model enhancements or extra variables. The relation with fundamentals has never been fully investigated. With the macroeconomic announcement moments as a starting point, including a companies own reporting announcements also might indicate a positive effect. From here one could alter this announcement dummy with news about fundamentals, such as an adjustment in the amount of realised earnings, a shift in dividend policy or change in investments strategy. A quarterly report will always lead to different interpretations in the market. Most of the time these discrepancies dissolve quickly and the market converges back to its temporary equilibrium. If the view of market participants is not uniform, this will eventually create excessive volatility in the asset returns.

2.4 Extrapolation Hypothesis

The different perception of investors of news is exactly the line of thought that this thesis pursues to find as a possible explanation to excessive volatility. The preliminary work was carried out several years ago by De Bondt and Thaler (1985) with their paper on stock market overreaction, which concludes that the market definitely overreacts in the direction of past out-performers and hence prior losers earn a positive return compared to prior winners. This is later supported by the paper of La Porta (1996), who uses financial analysts’ forecasts as a proxy to answer why the expected growth rates are systematically inaccurate. He showed that these forecasts are too extreme in a sense that they assign multiples to financial ratios that could almost never be realised, for gross of the companies. These high expectations are believed to originate from the idea that investors overvalue recent news. He came up with the Extrapolation Hypothesis, stated in his own words, “it takes time for investors to become aware of new trends, but once they do, they often latch onto these perceived trend for too long”. Although he finds warring results on a portfolio analysis on temporally winners and losers versus value and glamour stocks, it could be concluded that glamour stocks are expected to be overpriced. What might sound reasonable
to some extent is that these glamour stocks carry way more risk. La Porta however provides evidence that a risk based solution is not plausible and that high and low expected growth stocks are exposed to the same levels of risk. Another striking result is that the expectations of predicted growth are very often revised, providing evidence that analysts produce large forecasts errors in their level of earnings.

One might argue that if the growth of cash flows follows a more persistent pattern these revision are less severe, because analysts have a better idea what to expect in the near future. In 1997, La Porta et al. among others find that investors also overestimate the persistence in growth rates and extrapolate these moments of realised growth; a result of Dechow and Sloan (1997) shows that earnings realise only a half of what was expected by the analysts. This misinterpretation of non-existing persistence leads to significant security mis-evaluation and controversy about security pricing undoubtedly results in excessive volatility.

As a measure of excessive volatility I propose the following: if there would be no extrapolation hypothesis in a sense that there is not any persistence in growth rates, every quarterly announcement would be a relatively equal shock to the market and hence they would all be treated and evaluated the same. But if there is at least some persistence in these growth rates, there might actually be a decent guess of what the level of cash flows is going to be at the next announcement, and so the market would exhibit lower excessive volatility. Two phenomena that relate to this are known throughout the literature as earnings surprise and post-earnings-announcement drift (PEAD). Where the first describes the difference between the reported earnings and the investors expectations, the latter describes the upward movement of stock returns after a positive news announcement. It is reasonable to expect that higher persistence in growth rates result into smaller variation between reported and expected fundamental numbers. When a shock happens in these persistent growth rates, it will have a major impact on investors, as it is hard to categorise this one-time shock as a short-term observation shock, a mid-term level shock or a long-term trend shock. Although the interpretation of discrepancies varies, it does result in an increase in volatility around such an announcement. If there is more consensus about the direction of this surprise, many papers, among which Bernard and Thomas (1989), found evidence which conclude a high correlation between this direction and the drift of cumulative returns. As many studies provide different explanations for this abnormal returns I found one particular speculation of Daniel et al. (1998) very notable, were they state that through the trigger of the earnings announcement the overreaction in pre-event information produces the post-earnings-announcement drift. Further research on PEAD is done by Ertimur et al. (2003) who propose that different market reactions to surprises vary consistently between value and growth companies and on the level of sales persistence, and later by Jegadeesh and Livnat (2006), who show that the magnitude in return drift depends heavily on the magnitude of the sales surprise.
3 Data

From the CRSP / CompuStat Merged (North America) Fundamentals Annual Database I first obtain the pre-sample data from all U.S. listed companies from 1950 until early 2018. Following the earlier work of Da and Warachka (2009) and Chen (2017), I exclude companies not listed on one of the major U.S. stock exchanges, other than NYSE, AMEX and NASDAQ, with corresponding exchange codes 11, 12 and 14 and Financial Services companies with SIC codes between 6000 and 6999. As for the sake of this research only the companies which are reasonably long listed are included, I eliminate companies which are delisted as a result of a merger or an acquisition, a default or a company going private. For each company I need a complete data set from at least 25 years of sales data, which corresponds to at least 100 quarterly observations. This restriction inevitable results in a very strong survivorship bias within the data sample. After the elimination this concludes to a list of 1888 potential companies with 5 companies at the beginning of the sample, first quarter of 1961, but this inclines to 232 within a year and 781 companies reporting sales at the last quarter of 2017. The distribution of the number of companies can be found in Figure 2, showing an average of over one thousand companies reporting sales data. All the selected companies carry a Standard Industrial Classification (SIC) code, which sorts them all into 56 major groups. There are six major groups that correspond to over 100 companies: Accounting / Management Services, Photographic / Medical Goods, Manufacturing Industries, Electronic Equipment, Components and Business Services and Chemical Products.

Figure 2: Distribution of the Number of Companies

Starting in first quarter of 1961 until the last fiscal quarter of 2017, it reports the number of companies in the data set that report sales for a given quarter, including time series average, minimum and maximum, rounded to whole numbers.
This first indication of interesting companies is further examined in the Fundamentals Quarterly Database. Not only will this increase the number of observation but it also allows for a detailed look at specific time points. From this database I obtain the full data sample. This includes time series per company on Market Equity, Book Equity, Sales, Earnings, R&D Expenses, Firm-Wide Investments, Q-Ratio and two per share variables, Earnings- and Dividends per share. To elaborate more on the details of the different variables, the section below gives an broader indication, the tickers represent the CompuStat variables and their corresponding item number.

Table 1: **Number of Companies & Descriptive Statistics**

Data availability for the different fundamental measures. Numbers display the total reporting companies and summary statistics such as time series averages, medians and standard deviations.

<table>
<thead>
<tr>
<th>Number of Firms Summary Statistics</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date</td>
<td>1990Q1</td>
<td>2017Q4</td>
<td>Mean</td>
</tr>
<tr>
<td>Sales</td>
<td>1961Q1</td>
<td>5</td>
<td>1543</td>
</tr>
<tr>
<td>Earnings</td>
<td>1961Q1</td>
<td>5</td>
<td>1548</td>
</tr>
<tr>
<td>Market Equity</td>
<td>1962Q2</td>
<td>1</td>
<td>1510</td>
</tr>
<tr>
<td>R&D Expenses</td>
<td>1989Q1</td>
<td>320</td>
<td>339</td>
</tr>
<tr>
<td>Investments</td>
<td>1987Q1</td>
<td>32</td>
<td>1393</td>
</tr>
<tr>
<td>EPS</td>
<td>1961Q1</td>
<td>5</td>
<td>1548</td>
</tr>
<tr>
<td>DPS</td>
<td>1962Q1</td>
<td>2</td>
<td>1005</td>
</tr>
<tr>
<td>Book-to-Market</td>
<td>1966Q4</td>
<td>5</td>
<td>1510</td>
</tr>
<tr>
<td>Q-Ratio</td>
<td>1969Q4</td>
<td>1</td>
<td>1495</td>
</tr>
<tr>
<td>Return</td>
<td>1961Q1</td>
<td>366</td>
<td>1520</td>
</tr>
<tr>
<td>Volatility</td>
<td>1961Q1</td>
<td>366</td>
<td>1520</td>
</tr>
</tbody>
</table>

I define market equity as quarterly closing price (PRCCQ - 14) times the common shares outstanding (CSHOQ - 61), revenue or sales as just the net sales (SALEQ - 2), earnings as income before extraordinary items (IBQ - 8), R&D expenses as research and development expense (XRDQ - 4) and firm-wide investments as investing activities net cash flow (IVNCFY - 111), all stated in millions of dollars. For the value of a companies book equity I follow the structure of Davis et al. (2000) and specify Book Value as the sum of stockholder’s equity (SEQQ - 60), balance sheet deferred taxes and investment tax credit (TXDITCQ - 52) minus preferred stock (PSTKQ - 55). In case the stockholder’s equity value is missing, its value is replaced by adding common equity (CEQQ - 59) to the preferred stock. If neither stockholder’s equity and common equity are reported, the stockholder’s equity is the outcome of subtracting the accounting value of the total assets (ATQ - 6) by total liabilities (LTQ - 44). When both the book value and market value of a company are available, I calculate the Book-to-Market Ratio by dividing the book value by market equity. Following the approximation of Chung and Pruitt (1994) the Q-Ratio or Tobin’s Q is the market equity plus preferred stock and market value of debt divided by book value of the total assets. Earnings-per-Share (EPS) is further defined as the periods Earnings (IBQ - 8) divided
by the shares outstanding and the same holds for the Dividends-per-Share (DPS), where I use dividends preferred (DVPQ - 24) respectively or if either the preferred dividends or common shares outstanding is missing I obtain the DPS value directly from CompuStat (DVPSPQ - 16).

Although the data set is not excessively large, there are still quite some missing observations, which depends on a lot of factors. Table 1 reports the first observation of the different variables, which indicates that from 1989Q1 all the variables are reported and at the beginning of the sample, 1961Q1 - 1971Q1 there is limited availability for most of the variables. Another issue that arises is that not every company pays out dividends or fully reports its quarterly investments. What often occurs is a full series of quarterly observations and occasionally a run of three missing observations and a cumulative sum at the fourth index. It makes sense that this last cumulative observation will have a large impact. Therefore I divide this ‘annual’ number by four to obtain a reasonable ‘quarterly’ number.

To extend the data set with stock return and volatility data, I link the selected companies to a unique CRSP code. From the Daily Stock File I extract stock prices, number of shares outstanding and (delisting) returns from January first 1961 until December 31st 2017. Quarterly (weekly) returns and volatility are calculated as respectively the mean and standard deviation of daily stock returns within a quarter (week) and, if necessary, using the delisting return as last possible observation.

Figure 3: Comparison between Realised Return and Volatility and Leading Indices.

At every time point, all companies that report return data are winsorized at 2.5% and averaged. The data from the S&P500 Index comes directly from the data source. The realised volatility is rescaled to an annual volatility number and calculated over 30 trading days. The grey bars indicate the major financial recessions.
As a validity check I compared the average of the quarterly returns of the companies with the return of the S&P500 Index. At every point in time I exclude returns above the 97.5th and below the 2.5th percentile and calculate the mean over all companies, to minimise the effect of the most extreme observations. Figure 3A shows that the returns tend to follow the pattern of the S&P500 Index, but has more extreme returns, due to the strong presence of the survivorship bias. Likewise I compare the volatility of the stock returns with the CBOE Volatility Index or VIX. First, I rescale the quarterly volatility to an annual volatility number and by definition of the VIX, annualised implied volatility over 30 trading days, multiply the annual volatility by the square-root of 30. In the same way as it does with the return data, the mean of the stock return volatility clearly follows the same pattern (Figure 3B), but is often too extreme.
4 State Space Modelling

To look deeper in the empirical part of this research, I use data which follows various companies with multiple financially descriptive variables over a large time period. The choice to analyse individual firms as univariate time series opens the world to state space modelling, this section gives a brief theoretical background, and is preliminary to methodology used later in this study. As further described below, this method is particularly useful when data is prone to observational noise and seasonal effects. Additionally, it has the possibility to capture growth in a more smoothed way in one of the latent states. Using state space modeling on sales data to capture a firms sales growth has not yet been seen in literature. This is particularly remarkable because in 1974, Lev and Kunitzky showed that sales systematically follow growth trends over time and therefore are favourable to smoothing algorithms. But this absence of later studies is probably due to limited available data: time series analyses lose parameter significance when there are a low number of observations. To partially overcome this issue, I limit the study to companies that have at least 25 years of sales data, between 1961 until December 2017. A downside of this solution is the inevitable survivorship and backfill biases, which should be addressed appropriately. This mainly implies that the reported growth rates should be interpreted with care. To provide further details on state space modeling, the section below strats with the general state space setup, after which it explains the Kalman filtering technique and ends with an estimation routine.

4.1 General State Space Model

Starting with the most general form of a state space model, I choose to follow the notation of Durbin and Koopman (2012) and Harvey (1990). In a General Linear Gaussian State Space Model a time series starting at \(t = 1 \) until \(t = T \) can be described by its observation and state equations:

\[
\begin{align*}
y_t &= Z_t^\prime \alpha_t + \Omega_t d_t + \varepsilon_t, & \varepsilon_t &\sim \mathcal{N}(0, H_t), \\
\alpha_{t+1} &= T_t \alpha_t + \Phi_t c_t + R_t \eta_t, & \eta_t &\sim \mathcal{N}(0, Q_t), \quad t = 1, \ldots, T. \end{align*}
\]

(1)

The observation equation consists of the observation vector \(y_t \), which is a \(q \times 1 \) column vector, where \(q \) is the number of observed dependent variables, \(k \) exogenous variables through a \(k \times 1 \) vector \(d_t \), along with \(q \times k \) matrix \(\Omega_t \) and observations noise via \(\varepsilon_t \) which has the same dimension as \(y_t \). The state vector \(\alpha_t \) is a \(m \times 1 \) vector with \(m \) unobserved latent states, which access the observation vector through a \(q \times m \) row vector \(Z_t^\prime \). In the state equation, the states have a dependence due to the \(m \times m \) transition matrix \(T_t \). It further contains a \(s \times s \) matrix of \(s \) exogenous variables \(c_t \) multiplied by \(m \times s \) matrix \(\Phi_t \) and a disturbance term in which the \(m \times g \) matrix \(R_t \) and \(g \times 1 \) vector \(\eta_t \) adds noise to the states. The observation variance matrix \(H_t \) and the state variance matrix \(Q_t \) are assumed to be independent and serially uncorrelated,
and in case of the Gaussian model, normally distributed. Where the first and second assumption are a key requirement to rightfully identify the model, the last assumption could be dropped and the model in Equation 1 generalises to the General Linear State Space Model. The matrices Z_t', T_t, R_t, H_t, Q_t, Φ_t and Ω_t are the system matrices of the state space model and are generally unknown and result from an estimation routine, further described in the next section. The initial state α_1 is a draw from $N(\alpha_1, P_1)$, independent of the observation and state disturbances and with α_1 and P_1 assumed to be known or diffuse. The subscript t in the system matrices allows them to be time-variant, but for the sake of the scope of this project, the subscript will be dropped at all system matrices, making them constant over time.

4.2 Univariate Time Series Models

The two basic cases of the general state space model are the local level model (LLM) and the local linear trend model (LLT). In the univariate case without exogenous variables, where we observe only a single time series y_t, the LLM has only a single latent state, the level state μ_t, by means of Equation 1:

$$
Z' = 1, \quad H = \sigma^2_e, \quad \Omega = 0, \quad \alpha = 0, \quad Q = \sigma^2_\eta, \quad \Phi = 0, \quad c_t = 0, \quad \alpha_t = \mu_t, \quad T = 1, \quad R = 1,
$$

resulting in:

$$
y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2_e), \\
\mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim N(0, \sigma^2_\eta), \quad t = 1, \ldots, T.
$$

(2)

In this model, μ_t follows a random walk plus drift, as all random variables are normally distributed, all ε_t’s and η_t’s are uncorrelated, serially independent and constant over time. The local level model as described in Equation 2 contains two unknown parameters, σ^2_e and σ^2_η, which need to be estimated from the observed data. It possible to alter the basic LLM to a LLT model with the addition of a stochastic slope term δ_t in the unobserved level equation.

$$
y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2_e), \\
\mu_{t+1} = \mu_t + \delta_t + \eta_t, \quad \eta_t \sim N(0, \sigma^2_\eta), \\
\delta_{t+1} = \delta_t + \zeta_t, \quad \zeta_t \sim N(0, \sigma^2_\zeta), \quad t = 1, \ldots, T.
$$

(3)

The extension of the stochastic slope leaves the model with three instead of two unknown parameters, σ^2_e, σ^2_η and σ^2_ζ. To express this LLT model in the way of the general state space model of Equation 1,
the system matrices become:

\[Z' = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad H = \sigma^2_x, \quad \alpha_t = \begin{pmatrix} \mu_t \\ \delta_t \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} \sigma^2_\eta & 0 \\ 0 & \sigma^2_\zeta \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \]

and further there are no exogenous variables, so \(d_t = 0, \Omega = 0, c_t = 0, \) and \(\Phi = 0. \)

4.3 Kalman Filter and Smoother

From the general state space model in Equation 1, it is generally known that the state space vector is not observed, which limits the ability to directly distinguish important signals from arbitrary short-lasting noise. This contamination of signal and noise is overcome by the use of the Kalman Filter (Kalman, 1960; Kalman and Bucy, 1961). This set of recursive formulas leads to an algorithmic procedure to compute the optimal estimator of the state vector at time point \(t \), using only the available information upon this time point, updating the estimator every time a new observation comes in. The purpose of the filter is to obtain a conditional distribution of \(\alpha_t \) and \(\alpha_{t+1} \) given the information at time \(t \), \(I_t \). The Kalman filter starts with the best possible prediction of the next state via the prediction equations,

\[
\hat{\alpha}_{t+1|t} = T\hat{\alpha}_{t|t} + \Phi c_t, \\
P_{t+1|t} = TP_{t|t}T' + RQR', \quad t = 1, \ldots, T,
\]

and when a new observation \(y_t \) comes in, updates its best prediction via the updating equations,

\[
\hat{\alpha}_{t+1|t+1} = \hat{\alpha}_{t+1|t} + P_{t+1|t}Z(Z'P_{t+1|t}Z + H)^{-1}(y_t - Z'\hat{\alpha}_{t|t} - \Omega d_t) \\
P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t}Z(Z'P_{t+1|t}Z + H)^{-1}Z'P_{t+1|t}, \quad t = 1, \ldots, T.
\]

This set of equations starts with the initial values for the best prediction of \(\hat{\alpha}_{1|0} \) and covariance matrix of the prediction error \(P_{1|0} \) and iterates forward through the data sample. In many cases I use diffuse initialisation, as there is minimal information about the initial state, which implies that initial state is equal to its unconditional mean and the initial covariance is set to the unconditional covariance, \(\hat{\alpha}_{1|0} \sim N(0, \kappa I) \), where \(\kappa \to \infty \). If there is some information about (part of) the initial state, the variance could be reduced or at least shrunk to the same order of magnitude as information about the state. At the end of the sample \(T \), we have information on the complete data set and are able to provide
even better estimates of the states. This is done by the Kalman (fixed-interval) smoothing equations,

\[
\hat{\alpha}_t^{(T)} = \hat{\alpha}_t|t + \mathcal{P}^t_{t+1|t} T_{t+1|t} (\hat{\alpha}_{t+1|T} - \hat{\alpha}_{t+1|t}) \\
\mathcal{P}^{(T)} = \mathcal{P}_t|t - \mathcal{P}_t|t T_{t+1|t}^T (\mathcal{P}_{t+1|t} - \mathcal{P}_{t+1|T}) P_{t+1|T}^T \mathcal{P}_{t+1|T}
\]

(6)

The smoother starts at the end of the data sample and iterates backward to initial values. The option to use both the filter and the smoother provides more accurate state estimates, as can be seen from the second term in Equation 6, which will decrease the current state covariance. The complete derivation of the recursive formulas of the Kalman filter and smoother can be found in Appendix A.1.

4.4 Parameter Estimation

The system matrices, used by the Kalman filter and smoother contain several unknown parameters, which need to be estimated from the data. The estimation of the parameters is done by maximising the Likelihood function and the Expectation Maximisation algorithm.

The theory of Maximum Likelihood (ML) uses the assumption that observations are all independent of each other and the likelihood function or joint probability density function (p.d.f.) of the sample is the product of the individual p.d.f.’s. The function needs to be optimised to obtain the ML estimator. In the case of the state space model, observations are not independent due to dynamics in the state equation via transition matrix \(T \) and hence it is not applicable to use this likelihood function. To obtain a valid ML estimator, the joint p.d.f. can be rewritten as the product of the conditional p.d.f.’s

\[
L(y_1, ..., y_T; \theta) = p(y_1, ..., y_T; \theta) = \prod_{t=1}^{T} p(y_t | \mathcal{I}_{t-1}, ..., \mathcal{I}_1; \theta),
\]

(7)

where \(p(y_t) \) is the p.d.f. of the \(t \)-th observation, \(\mathcal{I}_t \) is all the information available upon time \(t \) and \(\theta \) is parameter vector that maximises the likelihood function. When intensively using the normal distribution, the log-likelihood function \(\ell(y_t; \theta) \) is often preferred instead of the likelihood function in Equation 7, because the sum-product turns into a simple summation,

\[
\ell(y_1, ..., y_T; \theta) = \log(L(y_1, ..., y_T; \theta)) = \sum_{t=1}^{T} \log(p(y_t | \mathcal{I}_{t-1}; \theta)) \\
= -\frac{T}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} \log(\Sigma_t(\theta)) - \frac{1}{2} \sum_{t=1}^{T} (y_t - \mu_t(\theta))^T (\Sigma_t(\theta))^{-1} (y_t - \mu_t(\theta)).
\]

(8)

The application of this concept in the framework of state space models is best described by (Harvey, 1990) and is known as prediction error decomposition. Based on the assumption that all disturbance terms in model Equation 1 are normally distributed and the lemmas associated with handling normal
distributions (Appendix A.1), it follows that the conditional distribution of \(y_t \) given \(I_{t-1} \) is again normal, with optimal prediction as the mean and the variance is its corresponding covariance matrix,

\[
y_t | I_{t-1} \sim N(Z\hat{\alpha}_{t|t-1} + \Omega d_t, Z'P_{t|t-1}Z + H).
\]

When we combine the conditional distribution of the \(y_t \) with log-likelihood Equation 8, we obtain the objective function for the maximisation routine.

\[
\ell(y_1, ..., y_T; \theta) = -\frac{T}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} \log(|Z'P_{t|t-1}Z + H|)
- \frac{1}{2} \sum_{t=1}^{T} (y_t - Z'\hat{\alpha}_{t|t-1} - \Omega d_t)'(Z'P_{t|t-1}Z + H)^{-1}(y_t - Z'\hat{\alpha}_{t|t-1} - \Omega d_t), \quad t = 1, ..., T.
\]

The estimated parameters affect the objective function via the predicted states \(\hat{\alpha}_{t|t-1} \) and state covariance \(P_{t|t-1} \) and are directly extracted from the Kalman filter’s prediction equations. The maximisation routine starts with known or diffuse initial parameter estimates, then it runs the Kalman filter to get the predicted states, evaluates the log-likelihood function and finds a new set of parameters for which the objective function increases. This process iterates until the log-likelihood function is maximised and the estimated parameters have been converged.

Although the ML routine is a solid approach to estimate the state space parameters, the optimisation could remain at a local maximum after which it would stop the process. To avoid this issue I use the Expectation Maximisation (EM) algorithm as both an other optimisation routine as well an alternative for the diffuse initialisation of the ML algorithm. The algorithm originates from the Dempster et al. (1977) paper and was first applied to state space modeling by Shumway and Stoffer (1982) and Watson and Engle (1983). Their methods start with the joint log-likelihood of the data \(y_1, ..., y_T \) and the states \(\alpha_0, ..., \alpha_T \)

\[
\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T; \theta) = -\frac{1}{2} \log(|\Sigma_0|) - \frac{1}{2}(\alpha_0 - \mu_0)'\Sigma_0^{-1}(\alpha_0 - \mu_0)
- \frac{1}{2} \sum_{t=1}^{T} \left\{ \log(|H_t^{-1}|) - (y_t - Z'\alpha_t - \Omega d_t)'H_t^{-1}(y_t - Z'\alpha_t - \Omega d_t)
+ \log(|Q^{-1}|) - (\alpha_t - T\alpha_{t-1} - \Phi c_t)'Q^{-1}(\alpha_t - T\alpha_{t-1} - \Phi c_t) \right\}.
\]

Then they iterate through the E-step (expectation), where they calculate the conditional expectation of the joint log-likelihood function \(E[\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T|\theta, I_T)] \) and the M-step (maximisation), which
maximises the conditional expectation over the parameters,
\[
\frac{\partial}{\partial \theta} E[\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T | \theta, I_T)] = 0. \tag{10}
\]

The derivation of Equation 10 for all the system matrices and vectors of a general state space model is further elaborated in Appendix A.2. The resulting set equations lets the estimated parameters converge relatively quickly into a local maximum and does not depend heavily on the initial starting values.

This proves useful as starting values lead to another problem in the parameter estimation procedure, the initialisation of the state space model. The estimation routine depends on the initial parameter values and has major influences on the convergence of the parameters. Before starting the parameter estimation and the Kalman filter, it proves difficult to find a solid set of initial parameter estimates, e.g. Kitagawa and Gersch (1984) and De Jong (1991). I choose to derive some indication of initial values from the variance and auto-correlation structure of the first differences of the observations. The full derivation is found in Appendix A.3. But results for a univariate local level model, as long as both \(\sigma_\varepsilon^2\) and \(\sigma_\eta^2\) are in the same order, it is useful to set the initialisation approximately to
\[
\sigma_\varepsilon^2 = \frac{1}{4} \text{Var}(y_t - y_{t-1}), \quad \sigma_\eta^2 = \frac{1}{2} \text{Var}(y_t - y_{t-1}).
\]

The same goes for a local linear trend model, if again \(\sigma_\varepsilon^2\), \(\sigma_\eta^2\) and \(\sigma_\zeta^2\) are of equal magnitude a proper starting value is
\[
\sigma_\varepsilon^2 = \frac{1}{6} \text{Var}(y_t - y_{t-1}), \quad \sigma_\eta^2 = \frac{1}{3} \text{Var}(y_t - y_{t-1}), \quad \sigma_\zeta^2 = (1 - \varphi^2) \frac{1}{3} \text{Var}(y_t - y_{t-1}).
\]

Here I use the exponent of the coefficient from the OLS regression of log autocovariance of the first differences on lag-order multiplied by the log of \(\varphi\) as an starting value for \(\varphi\).
5 Methodology

In this chapter I will explain the two main methods used in this study. The first section focuses on the estimation procedure of the state-space model and how this can be implemented to estimate the persistence of sales growth in a mean-reverting local linear trend model. In the second section I use the estimated sales growth to describe how the extrapolation hypothesis leads to a misvaluation in the market and hence, leads to excessive volatility in stock returns.

5.1 Persistence in sales growth

It is widely accepted that sales and through some extent also sales growth show some level of predictability. The chances that high potential glamour stocks as ALPHABET.INC and AMAZON.COM will have expanding revenues in the coming years are much more likely than that large value stock will show recurrent sales growth. In the literature this persistence in (sales) growth is usually captured by the runs of successive years or months of growth and as a result the papers of Chan et al. (2003) and Chen (2017) show a very limited amount of companies that is able to achieve this continuing growth. To step away from this ‘successive-run’ approach I choose a different, yet unexplored approach to measure the sales growth persistence of U.S. companies. At the bottom of this new approach lies the favourable tendency to model time series data by means of a General State Space Model. This model allows to decompose the noisy and seasonally affected sales data into smooth level, trend and seasonal components. The trend component can be interpreted as the sales growth and hence we can extract some measure of persistence from this estimated trend. To give a more economic interpretation at this measure of persistence, I relate the estimated trend component to the average growth of sales in the data sample, which can be seen as the average sales growth of the economy. If a company is able to realise consecutive periods of out (under)performance of the economy’s average sales growth, this can be seen as a strong growth persistence. However, it proves difficult for many companies to achieve such market out-performance, and hence most of the time a company’s sales growth is fluctuating around the market average. Sales growth can be seen as a mean-reverting autoregressive process, with a economy average as a time varying mean and a persistence parameter corresponding with the speed of mean-reversion.

Therefore I consider three different models to find this persistence parameter. Two of them are using the state space approach on the sales observations and the third approach focuses directly on finding a autoregressive relation in realised sales growth. The second state space model is a wider extension of the first, or the first model restricts some model parameters. The third autoregressive model is also nested in the second state space model. A systematic overview can be found in Figure 4.

The first state space model is an extension of the basic local level model. I include seasonal components
and a deterministic trend component in respectively the observation and state equation. This results in four latent states, so α_t consists of a level μ_t and three deterministic seasonal components τ_t, τ_{t-1} and τ_{t-2}, as the data is quarterly based, $S = 4$. Besides I also add a deterministic trend in the level equation, a time-varying economy average growth rate $\bar{\delta}_t$, by the means of the general state space model of Equation 1, the first model becomes:

$$
\begin{align*}
 y_t &= \mu_t + \tau_t + \varepsilon_t, & \varepsilon_t &\sim N(0, \sigma^2_\varepsilon), \\
 \mu_{t+1} &= \mu_t + \delta_t + \eta_t, & \eta_t &\sim N(0, \sigma^2_\eta), \\
 \tau_{t+1} &= -S \sum_{s=1}^{S-1} \tau_{t+1-s} + \upsilon_t, & \upsilon_t &\sim N(0, \sigma^2_\upsilon),
\end{align*}
$$

(11)

The seasonal components could exhibit some disturbances and therefore its effect could behave differently over time, but I choose to restrict σ^2_υ at zero. This is mainly done for two reasons: first the variation is often limited, as the seasonal adjustment is mostly constant over time and secondly, it prevents interference between the different error terms, minimising the effect of ‘pile-up’ problem as described by Stock and Watson (1998). To account for a stochastic trend in the unobserved state, model 1 is extended by adding a trend term δ_t to the level term μ_t, leading to the LLT model. Based on prior literature the sales growth rate is ought to have some mean-reverting properties, as is the case for firm size and stock returns e.g. Fama and French (1988), Poterba and Summers (1988) and Bottazzi et al. (2011). The parameter φ is limited between 0 and 1 to guarantee stationary. The trend equation thereby contains two separate parts, a deterministic trend, denoted by δ_t and a stochastic trend δ_t, in state space form,

$$
\begin{align*}
 y_t &= \mu_t + \tau_t + \varepsilon_t, & \varepsilon_t &\sim N(0, \sigma^2_\varepsilon), \\
 \mu_{t+1} &= \mu_t + \delta_t + \eta_t, & \eta_t &\sim N(0, \sigma^2_\eta), \\
 \delta_{t+1} &= (1 - \varphi)\delta_t + \varphi\delta_t + \zeta_t, & \zeta_t &\sim N(0, \sigma^2_\zeta), \\
 \tau_{t+1} &= -S \sum_{s=1}^{S-1} \tau_{t+1-s} & t = 1, \ldots, T.
\end{align*}
$$

(12)

The extension of the stochastic trend leaves the model with four instead of two unknown parameters, φ, σ^2_ε, σ^2_η and σ^2_ζ. To express this LLT model in the way of the general state space model of Equation 1,
the system matrices and vectors become:

\[
Z' = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad H = \sigma^2_{\zeta}, \quad d_t = 0 \quad \Omega = 0, \quad Q = \begin{pmatrix} \sigma^2_{\eta} & 0 \\ 0 & \sigma^2_{\zeta} \end{pmatrix}, \quad c_t = \delta_t,
\]

\[
T = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & \varphi & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}, \quad \alpha_t = \begin{pmatrix}
\mu_t \\
\delta_t \\
\tau_{1,t} \\
\tau_{2,t-1} \\
\tau_{3,t-2}
\end{pmatrix}, \quad R = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}, \quad \Phi = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}.
\]

The LLT model as described above suggests two limiting cases,

1. If the trend is utterly persistent and \(\varphi \to 1 \), the growth is completely stochastic and follows a random walk with variance \(\sigma^2_{\zeta} \). In this case, there is no mean-reversion and model \(I \) acts as a basic local linear trend model.

2. If the mean-reversion parameter \(\varphi = 0 \), the dependence structure on the previous growth is altered and becomes \(\delta_t = \delta_t + \zeta_t \) and the state equation converts to \(\mu_t = \mu_{t-1} + \delta_t + \eta_t + \zeta_t \). In this particular situation, both the error terms \(\sigma^2_{\eta} \) and \(\sigma^2_{\zeta} \) are not separately identified and the model produces uninterpretable estimates, unless we restrict \(\sigma^2_{\zeta} \) to zero. If both \(\varphi = 0 \) and \(\sigma^2_{\zeta} = 0 \) the local linear trend model is exactly the same as the local level model with the deterministic trend in model \(I \).

In the third approach to find a persistence parameter \(\varphi \), I directly apply an auto-regressive model of the first order AR(1) on the growth in sales, \(\Delta y_t = y_t - y_{t-1} \), resulting in model 3:

\[
\Delta y_t = \varphi \Delta y_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, \sigma^2_{\zeta})
\]

(13)

It proves an easy exercise to convert this AR(1) model into a state space form:

\[
Z' = 1, \quad H = 0, \quad d_t = 0, \quad \Omega = 0, \quad Q = \sigma^2_{\zeta}, \quad c_t = 0, \quad \Phi = 0, \quad \alpha_t = \Delta y_{t-1}, \quad T = \varphi, \quad R = 1.
\]

To estimate the unknown parameters for the three different models, I start with finding reasonable initial starting values for the optimisation routine, as further described in Section 4. For the first two models, the step-by-step approach is listed below. After the determination of good initial starting values, I estimate a simplistic local level model without any trend to update the initial values and optimise model I. Likewise I use the estimates from model I to update the initial values for model II. This proves useful as
it speeds up the calculation, but on the other hand could restrain the optimisation in a local minimum. Therefore every model is estimated twice with maximum likelihood, with updated initials and with diffuse initialisation and also once with the EM algorithm. With the EM algorithm I iterate 500 times, a number at which most parameters have converged\(^1\). Although the parameters mostly converged, the EM algorithm turns out to be of limited success, because the model implies certain parametric restrictions, which do not come trivial within the EM algorithm. To summarise the estimation routine for the two state space models, the four steps below are repeated for every company:

Step 1: Find initial starting values based on the autocorrelation structure and variance of the first differences.

Step 2: Model 0 : Estimate a Local Level Model with \(\delta_t = 0\), implying that the trend is zero.

Step 3: Estimate model I : use model 0 as updated initialisation.

Step 4: Estimate model II : use model I as updated initialisation.

The estimation routine for the AR(1) model, differs a bit from the above in a sense that I use two different approaches, in the first I use a regression estimate and the second approach uses the state space setup.

1. Regression Approach: to find the OLS estimate for the persistence, I regress \(\Delta y_t\) on \(\Delta y_{t-1}\) and residuals lead to an estimate for the variance.

2. State Space Approach: rewrite the AR(1) model in state space form and evaluate the likelihood function as with the other two models.

Both approaches rest upon the same set of assumptions, but in the regression approach it comes unnatural to restrict model coefficients; therefore it is often not applicable for the purpose of this research.

After all the optimisation routines, it results in a total of 8 sets of estimated parameters per company, three models with two or three routines. First I select is best set of parameters within each model based on the highest likelihood and if all parameter restrictions are met. This is equal to a selection based on Akaike Information Criteria, where there is no difference in the number of parameters. In the ideal case, all likelihoods are generally the same, and the difference is purely a numerical issue.

Next I choose the model that fits best to the data. Figure 4 shows how this is done. Due to the fact that model I is nested in model II, a Likelihood Ratio test provides a good way to select the best model based on goodness of fit on the data. The same accounts for selecting model III or model I. In

\(^{1}\text{Sample-wise I have increased the number of iterations above 500 to increase the algorithms performance, but these results were limited and unnecessary increased the computational burden.}\)
both cases the number of restricted parameters is two, and so are the degrees of freedom of Chi-squared distribution and significance level $\alpha = 0.05$. To compare between model I and II, one could argue that only restricting φ to zero, results into a LLM, but this leaves both state error terms separately unidentified, and therefore a second restriction limits σ^2_γ to zero. If for example model I and III give a better fit than model II, again I use Akaike Information Criteria to make a final selection.

Figure 4: Persistence Model Overview

Starting with a Local Linear Mean-Reverting Trend Model as the alternative hypothesis H_1, with four partially unrestricted parameters. Compare the alternative hypothesis with null hypothesis of the Local Level Model with a Likelihood Ratio Test, imposing two restriction upon the parameter set, as well as with the null hypothesis of the AR(1) model again bound two parameter at zero. As a final check compare the Local Level Model with the AR(1) model by means of the AIC, as these models are not directly nested.

$y_t = \mu_t + \tau_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2_\epsilon)$

$\mu_{t+1} = \mu_t + \delta_t + \eta_t, \quad \eta_t \sim N(0, \sigma^2_\eta)$

$\delta_{t+1} = (1 - \varphi) \bar{\delta}_t + \varphi \delta_t + \zeta_t, \quad \zeta_t \sim N(0, \sigma^2_\zeta)$

$\tau_{t+1} = - \sum_{s=1}^{t-1} \tau_{t+1-s}, \quad t = 1, ..., T.$

After the evaluation of every company and its corresponding optimal model, I form three portfolios based on the level of persistence. Whereas in many previous literature companies are sorted into deciles at every point in time, based on the feature of interest such as size (market equity), value (book-to-market) or momentum (past returns), sales persistence is more of a time-invariant label. As persistence is fixed company label, just like an industry label, companies that are sorted into a high-persistence portfolio will remain in this portfolio for the complete timeframe. With this label it is important that

Varying the significance level has minor influences on the results.

29
the portfolios are not too meagre, otherwise it could be that only a small number of companies represent a whole portfolio at a certain time point, which would make it very susceptible to possible extreme observations. To examine most of the insightful portfolio features, the portfolios are later double sorted according to the weighted average rank of sales growth (WGS), so every portfolio is split again into three sub-portfolios. For example, for the annualised one year sales growth, every company within the portfolio that has reported sales over the previous year is ranked at every time point \(t \). This rank is weighted and averaged over the last 2 years, or 8 quarterly observations, according to a weight of \(8/36 \) for \(t - 1 \), \(7/36 \) for \(t - 2 \) and so on, to reduce the possible seasonal effects and aberrant observations. Based on this weighted average rank, the sub-portfolios are constructed according to a 30/40/30 percent principle and a restriction of a least a numerous amount of reporting companies at the specific time point and portfolio.

5.2 Extrapolation Hypothesis

The major goal of the research is to link the persistence of and predicted sales growth to possible stock misvaluation. As finding the ‘true’ value of stock is providing work for a whole industry, a good proxy for this matter is to look at role of post-earnings-announcement drift (PEAD) in stock return volatility. If the whole market is sure about a company’s future expectation, return and hence stock volatility remain close to the conditional average. But if there is any inconsistency in the market about how to react to the newly announced report, this will lead to discrepancy in the stock return and consequently to higher volatility. In short, post-earnings-announcement drift leads to a drift in the cumulative stock returns in the direction of the earnings surprise. To link this to differences in sales persistence, one would expect that for companies with a higher sales persistence, the market is more consistent about the upcoming report and so will have a lower earnings surprise and is less affected by post-earnings-announcement drift.

To model the volatility of stock returns I use the popular generalised autoregressive conditional heteroskedasticity framework from Bollerslev (1986). This class of models is able to explain most of the stylised facts of empirical asset returns, non-normal distribution and no correlation in the returns and strong correlation in the absolute returns. In the most general setup for a model to capture volatility clustering, the weekly return \(r_t \) is represented by a GARCH(1,1) model,

\[
\begin{align*}
 r_t &= \psi + \nu_t \\
 \nu_t &= z_t \sqrt{h_t}, \quad z_t \sim \text{N}(0, 1) \\
 h_t &= \omega + \lambda_1 \nu_{t-1}^2 + \beta_1 h_{t-1} \\
 &\quad t = 1, \ldots, T,
\end{align*}
\]

(14)
with an unconditional mean ψ, a standard random walk process ν_t and a time-varying conditional variance h_t, with the restriction that $\omega > 0$, $\lambda_1 \geq 0$, $\beta_1 \geq 0$, so that the volatility will be positive for every t and $\lambda_1 + \beta_1 < 1$ to ensure the model is covariance stationary.

A common extension of the ‘simple’ GARCH(1,1) model is the introduction of asymmetric GARCH models. In this research I use a Threshold GARCH model from Glosten et al. (1993), further noted as the GJR model. The main idea behind asymmetric models is that positive and negative returns have different effect on the volatility, and it is basically known that (large) negative returns lead to an increased volatility, also known as the leverage effect. For the GJR model, the h_t equation from the standard GARCH model of Equation 14 is replaced by Equation 15,

$$h_t = \omega + \lambda_1 \nu_t^2 + \lambda_2 \nu_{t-1}^2 \mathbb{1}_{[\nu_{t-1} < 0]} + \beta_1 h_{t-1}, \quad t = 1, \ldots, T,$$

where, $\mathbb{1}$ is an indicator function that gives $\mathbb{1}_{[\nu_{t-1} > 0]} = 1$ if $\nu_{t-1} > 0$ and zero otherwise. To restrict that the volatility process is always positive and covariance stationary, ω, λ_1, $\lambda_2 > 0$, $\beta_1 \geq 0$ and $\lambda_1 + \gamma_1/2 + \beta_1 < 1$. To incorporate an additional regressor to the different variance equations, the above equations are altered to,

GARCH : $$h_t = \omega + \lambda_1 \nu_t^2 + \beta_1 h_{t-1} + \gamma X_t$$

GJR : $$h_t = \omega + \lambda_1 \nu_t^2 + \lambda_2 \nu_{t-1}^2 \mathbb{1}_{[\nu_{t-1} < 0]} + \beta_1 h_{t-1} + \gamma X_t,$$

where regression estimate γ is $k \times 1$ row vector and X_t is an exogenous regressor and a $1 \times k$ column vector, with k possible variables.

The allowance of an exogenous regressor in the volatility models, opens the door to further look at reaction to an announcement in the stock returns. In many previous literature scholars incorporate macroeconomic variables into these models, but I look independently to four different kind of exogenous variables, which are only present at the week of an announcement, in general case this means, four times a year. The first is simply a 1 upon the announcement week, this would not distinguish possible sales surprises, but only reveals if there is a positive correlation between a (short-lived) volatility increase and an announcement. In the second, I add the absolute value of the sales surprise, which I estimate not from analyst’s forecasts as often described in the literature, but from the relative prediction error of the log realised sales and prediction from the Kalman Filter as a result of 5.1,

$$SalesSup_{t^*} = \frac{\log (Sales_{t^*}) - \log (\hat{Sales}_{t^*})}{\log (Sales_{t^*})},$$

with t^* as a moment of an announcement. The term sales surprise can therefore be converted to prediction
or forecast error. In the third exogenous variable I split between negative and positive sales surprises, and better look a possible ‘leverage’ effect, within sales surprises and if negative surprises result in higher volatility. The fourth is more a check to see if effects fade out because of many minor surprises, and limits to ‘extreme’ sales surprises where the surprise rises above one time the standard deviation. The above is shortly summarised below in the four exogenous variables, $X_1, ..., X_4$.

X_1: An indicator function, $1_{t=t^*}$, which is 1 when there is an announcement week t^* and zero otherwise, implies parameter restriction $\gamma_1 \geq 0$.

X_2: The absolute value of the forecast error, so $1_{t=t^*}$, which is equal to $|SalesSup_{t^*}|$ at $t = t^*$, and the parameter restriction implies that, $\gamma_1 \geq 0$.

X_3: A two dimensional regressor, that splits between $1_{t=t^*} 1_{|SalesSup_{t^*}| > 0}$ in the first row and in the second row, $1_{t=t^*} 1_{|SalesSup_{t^*}| < 0}$, so this gives two parameter restrictions: $\gamma_1 \geq 0$ and $\gamma_2 \leq 0$.

X_4: Only look at large sales surprises, $1_{t=t^*} 1_{|SalesSup_{t^*}| \gg 0}$, where $|SalesSup_{t^*}| > \sigma_{SalesSup}$ and the only restriction is that $\gamma_1 \geq 0$.

The independent variables described above and the two different GARCH models result in the estimation of 10 models, four with an exogenous variable and one without.

The parameter of GARCH models can be estimated just like state space models, with maximum likelihood and optimisation of log-likelihood function, by means of the model parameters. Just as with state space estimation, the observations are not independent of each other. Therefore when taking the natural logarithm, the product of the conditional p.d.f.’s of Equation 7, turn into a summation,

$$
\ell(r_1, ..., r_T; \theta) = \log(L(r_1, ..., r_T; \theta)) = \sum_{t=1}^{T} \log(p(r_t|I_{t-1}; \theta)) = -\frac{T}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} \log(h_t(\theta)) - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \psi)^2}{h_t(\theta)}, \quad t = 1, ..., T.
$$

(17)

The vector θ contains all the model parameters, the various conditional variance equations, h_t, unconditional mean of the return series, ψ and the returns itself, r_t. The optimisation routine, rests upon numerical evaluations of the Equation 17 and starts with GARCH(1,1) with diffuse initial starting values, $\hat{\lambda}_0^0 = 0.05$, $\hat{\beta}_0^0 = 0.80$ and $\hat{\omega}_0^0 = 0.15 \text{Var}(r_t)$. The other four models, which include the exogenous variables, have two sets of priors: the same diffuse prior and the estimated parameters from the original model, e.g. GARCH(1,1), as an ‘educated guess’ for the initial starting values. In both cases I add $\hat{\gamma}_0^0 = 1 \times 10^{-6}$ as initial value for the estimate of the exogenous variable. From the two different initialisations, I prefer the one with the highest likelihood value.
Further in-sample evaluation of GARCH type models is done by comparing the AIC, which uses the likelihood of the data and penalises for adding more parameters. Another way to compare these volatility models is to regress them against the ‘real’ volatility and examine how much is explained by means of the R^2 or the adjusted R^2. These Mincer-Zarnowitz regressions need the ‘real’ variance of stock return, but as this is a latent variable, realised volatility serves as a good proxy. Due to the fact that we use weekly average returns from daily data, realised volatility is defined as the variance of the corresponding week. This proves to be a much better estimate than the squared weekly returns, which are too noisy. By the Mincer-Zarnowitz formulation I will regress h_t on the weekly realised variance (RV_t), and also evaluate the difference between the logarithmic evaluation variant, which is less sensitive to outliers, as stated by Pagan and Schwert (1990) and Engle and Patton (2001). This results in the two regression formula’s,

\[
RV_t = a + bh_t + v_t, \quad v_t \sim N(0, \sigma_v^2),
\]

\[
\log(RV_t) = e + f\log(h_t) + w_t, \quad w_t \sim N(0, \sigma_w^2), \quad t = 1, \ldots, T
\]

where v_t and w_t follow a standard normal distribution, a and e are intercept of the regression and b and f are the regression coefficients. If the model is perfectly specified, the intercept will be zero and the regression coefficient should be unity, however this is often violated in empirical data, e.g. Andersen and Bollerslev (1998a), among others.

In the last part of this thesis I will combine the portfolios based on the sales persistence parameter of first section with the output of the GARCH estimation to distinguish any differences in parameter estimates or preferences for specific model types.
6 Results

In this section I will present the results of this study, following the same analogy as described in the methodology section, I will start with the estimation results of the first set of models, to find the growth persistence parameter. In the next part I describe the implications and results of forming portfolios based on the sales persistence with regards to realised sales growth, fundamental characteristics and stock returns. The second section covers the correlation between earnings growth and sales growth persistence. In the following section I show the estimation results of the GARCH type models and how these behave across various levels of persistence. In the last section, I demonstrate how the different methods work within a case study comparing Apple and Ford.

6.1 Persistence in Sales Growth

Aiming to find a mean-reverting growth parameter, the first step ought to be the construction and estimation of an economy-wide sales growth average. As described in the methodology section, I estimate both a LLM and a LLT model, but based on the log-likelihood, 481.7 and 553.3 respectively, the stochastic trend of the LLT model is clearly favoured. The likelihood ratio test statistic exceeds the critical value of the chi-squared distribution, with one degree of freedom, at different significance levels. The estimated parameters are summarised in Table 2 and the smoothed states are shown in Figure 5(A,C,D). Figure 5B presents the direct result of the Kalman filter including a 95% confidence interval, after smoothing in sub-Figure 5C, the uncertainty of the estimated state greatly decreased. The seasonal component follows a deterministic pattern as the model allows no seasonal variance. To confirm the results of Chan et al. (2003) and as a validity check I compared the smoothed sales growth with the growth of the U.S. GDP, and I find that both time series are highly correlated.

After running all the optimisation routines, with the average economy-wide sales growth as average trend in the models, every company has large set of estimated parameters and a corresponding goodness of fit to the data. For every model I used multiple optimising routines and starting values, I first choose the routine with the highest likelihood without losing the restriction on φ, as it is restrained between zero and one. Although the EM algorithm converged in most of the cases, it proved useful to further optimise its results with ML as it was able to further increase the fit to the data, by means of a higher likelihood. For every company I selected the model with the optimal fit based on the results of the likelihood ratio test and the Akaike Information Criteria. Figure 6A shows the distribution along the three different models in absolute numbers. For most of the companies, a LLM with a deterministic trend gives the best model fit, as it seems hard for the LLT model to outperform by means of a higher likelihood, and raise above the critical value of the likelihood ratio test. The AR(1) model is least favoured, only for
At every time point \(t \), take the difference between logarithmic sales observations for every individual company \(i \) and take the economy wide average \(g_t \) as the average over all \(i \)'s (Companies should have a valid observation at \(t - 1 \)). Create an economy wide average with setting the log sales level at \(t = 0 \) to \(\log (Sales_{t=0}) = 1 \) and \(\log (Sales_t) = \log (Sales_{t-1}) \exp (g_t) \), for \(t = 2, \ldots, T \). Both LLM and the LLT model are estimated with the EM-algorithm creating optimal starting values for ML optimisation. The figure displays the estimated states from the LLT model, sub-Figure A shows the level state over the time period, sub-Figure B and C are the respectively the filtered and smoothed growth states with a 95% confidence interval and sub-Figure D shows the first seasonal state. The log-likelihood, estimated parameters and corresponding standard errors of both models are summarised in Table 2, where brackets indicate a negative number. Note that contrary to the company estimation, Table 2 does not report the results AR(1) estimation.

Table 2: Economy-wide Average Sales Estimated Parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>LLM</th>
<th>LLT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Std. Error</td>
<td>Estimate</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\hat{\sigma}_\epsilon^2)</td>
<td>(4.43 \times 10^{-11})</td>
<td>(3.22 \times 10^{-6})</td>
</tr>
<tr>
<td></td>
<td>(\hat{\sigma}_\eta^2)</td>
<td>(8.40 \times 10^{-3})</td>
<td>(5.22 \times 10^{-6})</td>
</tr>
<tr>
<td></td>
<td>(\hat{\sigma}_\zeta^2)</td>
<td>(1.02 \times 10^{-6})</td>
<td>(8.92 \times 10^{-18})</td>
</tr>
<tr>
<td>Starting-values</td>
<td>(\hat{\mu}_0)</td>
<td>(3.34)</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>(\hat{\delta}_0)</td>
<td>(2.24 \times 10^{-2})</td>
<td>(1.42 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>(\hat{\gamma}_{1,0})</td>
<td>(1.07 \times 10^{-3})</td>
<td>(1.42 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>(\hat{\gamma}_{2,0})</td>
<td>(5.99 \times 10^{-3})</td>
<td>(1.42 \times 10^{-4})</td>
</tr>
</tbody>
</table>
about 3.5% of the whole sample it is able to beat the other two models. The use of the AR(1) model comes at a cost of losing the first two observations, which has also influence on the inferior performance. Further Figure 6B describes the results of the distribution of φ, which shows a large peak in the first bin corresponds with 1211 model preferences for the LLM, where φ was restricted at zero. In the other two models, φ is gradually distributed, with limited estimates between 0.1 and 0.5 and large bulk at the last bins. This is probably due to the fact that for many companies with low values of φ, adding two other parameters barely improves the model regarding the likelihood ratio test.

Figure 6: **Estimated Level of Growth Persistence, φ**

Estimated level of sales growth persistence from the optimal model choice. Sub-Figure A shows the absolute frequency of the preferred models and in sub-Figure B the displayed values show the distribution of φ and how these fill the three different portfolios, (NP, LP and HP).

![Graph showing distribution of φ](image)

Table 3: **Formed Portfolios based on the Estimated φ**

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Description</th>
<th>$LB \leq \varphi < UB$</th>
<th>Number of firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>No - Persistence</td>
<td>$0.00 \leq \varphi < 0.05$</td>
<td>1271</td>
</tr>
<tr>
<td>LP</td>
<td>Low - Persistence</td>
<td>$0.05 \leq \varphi < 0.83$</td>
<td>310</td>
</tr>
<tr>
<td>HP</td>
<td>High - Persistence</td>
<td>$0.83 \leq \varphi \leq 1.00$</td>
<td>307</td>
</tr>
</tbody>
</table>
In all further results, unless explicitly stated, I bootstrap 310 companies from the NP portfolio to reduce the effect that almost two thirds of the sample does not show persistence. Otherwise the NP portfolio would just behave like the sample average and this provides a more intuitive way to compare across the different portfolios. The bootstrapping procedure guards against randomly creating a selection bias.

After the formation of the three portfolios, I examined several portfolio features, summarised in the table below and in Appendix B. Annualised sales growth is displayed in Table 4, different fundamental values in Table B.1 and portfolio returns in Table B.2. In each table there is double portfolio sort, where the second sort is on the weighted average rank of sales growth (WGS) and further divided into three portfolios of lowest 30, middle 40 and highest 30 percent. A double portfolio sort is a common way in the literature, used for example by Fama and French (1992) or La Porta (1996). To look with more detail at the differences within a formed portfolios and to even further distinguish differences I redid the analysis for three time periods, full time sample from 1971Q1 until 2017Q4 and both halves, with a split at 1995Q2. As a reference, I included the economy average for the variable of interest.

The results of Table 4 demonstrate two things. First, the three non-persistence portfolios (NP) realise a much lower annualised sales growth than the two upper high-persistence portfolios. Second, this results remains unaffected by the time span of the moving window and the results are relative consistent over both halves of the sample period. Over ten year period, the top third of the HP portfolio are able to grow annually with an average of 1.82%, in contrary with 0.13% and 0.25% for the upper of the NP and LP portfolios respectively. These results vague out in the lowest third portfolios, were the difference between NP and HP is less impressive. This pattern continues for other time periods. It is noteworthy to mention that the difference between the mean and median increases when the time span of the moving window decreases, which is due to the greater impact of extreme growth companies. The LP portfolios are less excessive, the lowest third performs generally worse than the NP portfolios and on the other side the upper third realises growth equal to the middle portfolio of the HP portfolio. When we compare with the complete economy, the results show that apart from middle portfolio of NP, all other middle and high portfolio out grow the market average.

In addition to these results, I determined the quarterly mean and median sales growth per time point, per portfolio and subtracted the market average. As displayed in Figure 7, high-persistence is generating approximately ten percent excessive sales growth over most of the time periods. While NP is mostly around the market average and therefore experiences some negative excessive sales growth. Again the LP portfolio is heavily influenced by extreme high (low) realised sales growth, hence the mean is approximately equal to the market average, while the median reports some excess sales growth over almost the complete time period. From these results I can conclude that for a subset of the sample sales
Table 4: Annualised Sales Growth

From the estimated smoothed sales growth, the data is winsorized at both the highest and lowest 2.5% quantiles and all companies are sorted in three portfolios based on their level of persistence. At every point t for every company i the sales growth rate is summed over the last ten, five or one year(s) and annualised, because of quarterly data, these time series start respectively, at 41th, 21th and 5th available observation. Every portfolio is double sorted according to the 2-year weighted average rank of sales growth (WGS) and sorted again in three portfolios, in deciles of 30/40/30 percent. As a reference the economy is the average of the whole data sample. The results are time series averages, medians and standard errors over the full time frame, the first half (1971Q1 - 1995Q2) and the second half (1995Q3 - 2017Q4) in percentages.

Panel A: Annualised Sales Growth Rate over 10 Years

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.085</td>
<td>0.017</td>
<td>0.079</td>
<td>0.130</td>
</tr>
<tr>
<td>Median</td>
<td>0.089</td>
<td>0.036</td>
<td>0.092</td>
<td>0.138</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.097</td>
<td>0.001</td>
<td>0.066</td>
<td>0.123</td>
</tr>
<tr>
<td>Median</td>
<td>0.095</td>
<td>0.006</td>
<td>0.077</td>
<td>0.131</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.073</td>
<td>0.036</td>
<td>0.095</td>
<td>0.136</td>
</tr>
<tr>
<td>Median</td>
<td>0.081</td>
<td>0.002</td>
<td>0.073</td>
<td>0.126</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Panel B: Annualised Sales Growth Rate over 5 Years

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.086</td>
<td>0.003</td>
<td>0.079</td>
<td>0.145</td>
</tr>
<tr>
<td>Median</td>
<td>0.091</td>
<td>0.022</td>
<td>0.093</td>
<td>0.153</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.102</td>
<td>-0.018</td>
<td>0.064</td>
<td>0.136</td>
</tr>
<tr>
<td>Median</td>
<td>0.097</td>
<td>-0.010</td>
<td>0.078</td>
<td>0.147</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.068</td>
<td>0.022</td>
<td>0.083</td>
<td>0.150</td>
</tr>
<tr>
<td>Median</td>
<td>0.070</td>
<td>-0.019</td>
<td>0.063</td>
<td>0.144</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Panel C: Annualised Sales Growth Rate over 1 Year

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.101</td>
<td>-0.009</td>
<td>0.093</td>
<td>0.184</td>
</tr>
<tr>
<td>Median</td>
<td>0.109</td>
<td>0.013</td>
<td>0.112</td>
<td>0.199</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.126</td>
<td>-0.032</td>
<td>0.072</td>
<td>0.167</td>
</tr>
<tr>
<td>Median</td>
<td>0.125</td>
<td>-0.008</td>
<td>0.099</td>
<td>0.187</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.075</td>
<td>0.008</td>
<td>0.113</td>
<td>0.192</td>
</tr>
<tr>
<td>Median</td>
<td>0.084</td>
<td>-0.018</td>
<td>0.091</td>
<td>0.183</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Figure 7: **Time Series of Excess Mean and Median Sales Growth**

All smoothed sales growth data is winsorised at 2.5% and sorted into three portfolios. At every time point t the mean and median are calculated over all companies inside the portfolios and the average growth is subtracted. Sub-Figure B and D displays the average mean and median over a ten year period, (apart from the last period, respectively 7 years).

are really predictable. Based on information about growth persistence, it follows that high-persistent companies will realise excessive future sales growth. It is insightful to relate this conclusion to the recent study of Chen (2017), who concludes that cash flows of growth stocks do not grow faster than those of value stocks. Panel B of Table B.1 summarises the time series average Book-to-Market ratio over the different portfolios. The general declining structure of the double portfolio sort highlights that low Book-to-Market stocks actually experience more sales growth. Unlike the study of Chen (2017), this study cannot account for the survivorship bias. Using less than 25 years of time series data, might resolve the survivorship bias and will make it more comparable to this earlier study, but comes at the cost of parameter uncertainty in the time series estimation.

The above findings hint that some of the results depend heavily on the industry, as some industries over- or underperform. If one industry is overly represented in one of the portfolios, this could have unwanted results. As a check I look at the distribution of the Standard Industry Code (SIC) over the three portfolios and the average growth rate of these industries within the data sample, depicted in Figure 8. As the two-thirds of the companies fall within the NP portfolio, it is the most diversified over
all scale of industries and the LP and HP are a bit more clustered in specific industries. Concerning the average growth of the industries, it comes clear that only a few reach far above the economy average, and this mostly limits to small very specific industries and a small number of companies associated with it. Therefore it can be easily rejected that high-persistence is an industry specific feature or that a cluster of industries are accountable for large sales growth.

From an investors’ perspective it would be important to know if these persistent growth companies are able to outperform the market by means of a positive return strategy. Following the same approach as with the annualised sales growth, I calculate the annualised return rates over 10, 5 and 1 year(s), with the double sort based on the WGS. Despite the idea that companies which encounter large sales growth should have some kind of positive return, the data provides evidence that it is not the case. The highest growing portfolio of the non persistent group performs similarly to the third sub-portfolio of the high-persistent group. This is in line with evidence provided by Chan et al. (2003) and Chen (2017), who also find that stocks with high revenue or earnings growth not necessarily excessive returns. Partially this outcome corresponds to results of the analysis of the fundamentals of these double sorted portfolios. The return rates are not corrected for basic asset pricing factors such as Value: High-Minus-Low, Size: Small-Minus-Large or momentum, which might resolve any possible profitable strategy. Some minor findings regarding the portfolio fundamentals are the decline in size and incline over Tobin’s Q Ratio over all the first sorted portfolios, indicating that higher sales growth mainly occurs in growth companies of which the market value exceeds to book value. Further panels with R&D, earnings and dividend per share do not show such a straightforward pattern and the same goes for market equity. It is however noteworthy to mention the high market equity value for the high-growth portfolio. A hypothesis for the result might be that experiencing high past growth in sales will develop into a large market cap also this further implies the strong affection by the survivorship bias. It would, on the other side at least be a remarkable result as the first sort on sales persistence is a time invariant label. Many studies linking fundamental numbers to returns do not approach this with permanent labels, but allow for time variation in the explanatory variables.
Figure 8: Distribution over Industries and Corresponding Average Growth.

On the left axis for the three portfolios, NP, LP and HP the distribution of the Standard Industry Codes as a percentage of the whole portfolio. On the right axis, the time series average of industry’s mean sales growth over whole time period, with the size of the circles depicting the absolute number of companies in the data sample. The dotted line represents the economy average of 0.0202 % per quarter. Note that only industries are displayed which were present within the data.
6.2 Persistence in Earnings Growth

Despite the fact that the main focus of this study is on the persistence of sales growth, I redid the estimation routines on earnings data to obtain a similar set of results as with sales. The preference for sales data mainly come from the results of the leading work of Chan et al. (2003), who literally state “there is essentially no persistence or predictability in growth of earnings across all firms” and they do find it to some extend in net sales growth. This lack of persistence makes interpretation of the earnings estimation results not that straightforward, not on the first place, because the economy-wide smoothed average earnings growth does not a show a similar pattern as would the average sales growth. In Figure 9, I display the estimated persistence in sales on the x-axis and for the earnings on the y-axis, and sort them both in portfolios with the same breakpoints. The table in sub-Figure (B) shows that over a thousand companies basically have non-persistent growth in both sales and earnings, and small groups of around fifty companies are sorted correctly for the low- and high-persistent portfolios. That the non-persistent portfolio again exhibits most of companies, concludes that growth persistence in earnings is even less frequent than it is sales.

Figure 9: Correlation between Earnings Persistence and Sales Persistence

After running the estimation routines for both sales and earnings, the companies are sorted according to their estimated persistence parameter φ. On the x-axis the results are equal to those of Figure 6 and the results from the estimated earnings are not displayed. Figure (A) shows how many times a company is sorted in the same portfolio based on both persistence parameters, and the table in sub-Figure (B) displays the net results.

![Figure 9: Correlation between Earnings Persistence and Sales Persistence](image-url)

<table>
<thead>
<tr>
<th>Earnings</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>1027</td>
<td>220</td>
<td>225</td>
</tr>
<tr>
<td>LP</td>
<td>125</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>HP</td>
<td>119</td>
<td>37</td>
<td>52</td>
</tr>
</tbody>
</table>
6.3 Extrapolation Hypothesis

Before jumping into the estimation results of the different GARCH models with the many different variables. I first examine if sign and magnitude of the created measure for sales surprises correlate with the returns in an announcement week. Looking at the formal definition in post-earnings-announcement drift literature, it is stated as the phenomenon that after a day of announcement, streaks of abnormal returns accumulate in the direction of the surprise. Following this definition, the measure for earnings surprise used most studies is the difference between the I/B/E/S analysts’ forecasts and the realised earnings-per-share. Because this study is not using the common measure for the earnings surprise, but the difference between observed sales and predicted sales from the Kalman filter, Equation 16, I conduct the following to show that the sign and magnitude of this surprise also have a positive correlation with the return in week of announcement, several weeks before the announcement and a couple of weeks following the announcement. At a moment of announcement t^* for company i, we know the sign of the surprise, and returns for t^*-3 until t^*+8, where t is in weeks. A popular stylised fact for stock returns is the absence of correlation between two periods, hence theoretically the correlation between t^* and any other t^* plus or minus a period should be zero. For every company I determine the correlation matrix of the returns of t^*-3 until t^*+8 along with the correlation with the sign and magnitude of the surprise. Table 5 summarises the Pearson’s correlation coefficients with the return of the moment of an announcement, as many of the correlations between e.g. t^*-2 and t^*+4 are approximately zero. It shows that the correlation between the announcement period and almost every other week is zero, apart from the negative correlation with the week prior to the announcement and the sign and magnitude of the surprise. Although the results are not extreme, this gives an indication to expect a certain relationship between the returns at an announcement and the direction and size of the sales surprise.

<table>
<thead>
<tr>
<th></th>
<th>Magnitude</th>
<th>Sign</th>
<th>t^*-2</th>
<th>t^*-1</th>
<th>t^*</th>
<th>t^*+1</th>
<th>t^*+2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Std. Er. ($\times1000$)</td>
<td>Mean τ</td>
<td>Mean ρ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.052</td>
<td>0.050</td>
<td>0.065</td>
<td>0.043</td>
<td>0.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.051</td>
<td>0.048</td>
<td>0.064</td>
<td>0.045</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Er. ($\times1000$)</td>
<td>0.069</td>
<td>0.075</td>
<td>0.000</td>
<td>0.008</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean τ</td>
<td>-0.004</td>
<td>-0.034</td>
<td>-0.004</td>
<td>-0.008</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ρ</td>
<td>-0.006</td>
<td>-0.049</td>
<td>-0.011</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Correlation between Returns Around Announcement Period t^*

At every announcement period t^*, for every company i, determined the weekly returns for t^*-3 until t^*+8 and the sign and magnitude of the sales surprise. Calculated the Pearson’s correlation matrix for every company and summarised by means of the average, median and standard error. Only showing the summary statistics of the correlation with the return of the announcement week t^*, therefore row t^* is perfectly correlated. Note that Mean τ and Mean ρ are respectively the average of Kendall’s τ and Spearman’s ρ rank correlation coefficient and not all time period correlations are reported.
When I alter the sales surprise measure to a more widely used scale, the difference between \(\text{EPS}_t^* \), and the \(\text{EPS}_{t^* - 4} \), a year prior to the current announcement (Bernard and Thomas (1989)). It concludes a similar pattern, apart from a higher correlation between the sign or magnitude and the return at \(t^* \), respectively 0.142 and 0.126. Finding such a connection provides evidence that the sales surprise measure I propose is not that distinct from the literature’s standard and hints on finding evidence of PEAD.

Concluding that there is an indication that news does have an impact on the return and therefore also volatility of stock prices, it opens the way to implement this into the GARCH framework. The second set of results are obtained from the estimation routines for GARCH type models. For every company this univariate approach produces ten estimated models, chosen from the optimal initialisation, solely based on log-likelihood evaluation, mostly the differences are minor and an outcome of numerical discrepancies. Out of the ten estimated models I neglect the ones where the exogenous parameter(s) estimate(s) are insignificant at 5% level, as all other GARCH estimates are significant for most of the companies. When I compare different models in such a case, I always choose the model without the addition of an extra variable. Table 6 displays the cases where the coefficient of the exogenous variable is insignificant between brackets. For example, when I compare model preferences between the basic GARCH model and the addition of \(X_1 \), for 399 companies the parameter is insignificant, hence only for 578 companies adding \(X_1 \) does not directly improve the fit to the data. This explains why the base case model, is not preferred for a fixed amount of companies, for every model set, a different number of models has insignificant parameters. Another example, adding \(X_1 \) leaves 399 companies and in which cases the base case is always preferred, and so only adding \(X_2 \) excludes more than 322 companies, but when we compare the set, base case, \(X_1 \) and \(X_2 \), only 183 companies are left out of the sample, showing a minor inclusion of the number of models that have insignificant parameters for both exogenous variables.

Table 6: GARCH Optimal Model Preferences

Based on the AIC, the numbers display the times that a certain model is optimal above the base set \(X_0 \) or other models in the set. The number between brackets in the first column is the sum of the number of models at which the exogenous parameters is insignificant at a 5% level, so where the base case always is optimal model. Only relevant models sets are displayed.

<table>
<thead>
<tr>
<th>Model Set</th>
<th>GARCH</th>
<th>GJR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X_0)</td>
<td>(X_1)</td>
</tr>
<tr>
<td>1. (X_1)</td>
<td>977 (399)</td>
<td>911</td>
</tr>
<tr>
<td>2. (X_2)</td>
<td>1015 (322)</td>
<td>873</td>
</tr>
<tr>
<td>3. (X_3)</td>
<td>1145 (646)</td>
<td></td>
</tr>
<tr>
<td>4. (X_4)</td>
<td>1127 (366)</td>
<td>761</td>
</tr>
<tr>
<td>5. (X_1) - (X_2)</td>
<td>781 (183)</td>
<td>640</td>
</tr>
<tr>
<td>6. (X_1) - (X_3)</td>
<td>836 (262)</td>
<td>663</td>
</tr>
<tr>
<td>7. (X_2) - (X_3)</td>
<td>950 (276)</td>
<td>550</td>
</tr>
<tr>
<td>8. (X_2) - (X_4)</td>
<td>943 (211)</td>
<td>634</td>
</tr>
<tr>
<td>9. (X_1) - (X_2) - (X_3) - (X_4)</td>
<td>698 (130)</td>
<td>562</td>
</tr>
</tbody>
</table>
First I solely examine the effect of a report announcement, where I added the first exogenous variable, X_1, which is a one at a moment of announcement, to both the GARCH and GJR models. For half of companies it increases the fit in terms of likelihood, so that it is preferred by the likelihood ratio test. In both GARCH and GJR the ratio at which X_1 is preferred is roughly the same, so its relatively unaffected by the leverage component of the GJR model and the relative increase in R^2 is equivalent. The relative increase is what the exogenous variable adds to the explanation of the total realised variance, which is the adjusted R^2 of the Mincer-Zarnowitz regressions from Equation 18, compared with the base case, GARCH(1,1), which is exponential decaying line, just as in Figure 12C, but here its on average is 8.87 % with a median of 3.87 %. The same goes for the distribution of the estimated parameter associated with the X_1 and its distribution does not depend on the portfolios formed earlier as can be shown from the histograms in Figure 10A.

Adding the absolute value of the sales surprise depicted as variable X_2, results in two different model sets, in the first, Table 6 set 2, I compare it with the base case model, without any exogenous variables.

Figure 10: GARCH Exogenous Parameter Distributions

The distribution of the estimated exogenous parameter after a log transformation for which the model outperform the base case GARCH. The three fitted normal distributions are respectively subsets formed based on the portfolios from Table 3. Sub-Figures A, B and C correspond respectively to model sets 1, 2 and 4. As model set 3 contains a positive (D) and negative (E) parameter distribution, these plots are split, note that before the log transformation, take the absolute value of the negative parameter. Sub-figure F shows the parameter distributions of complete population of set 2 and model set 4.
In the second model set, Table 6 set 5, I choose from three models, base case, including X_1 or including X_2. In the first set, the results are very similar to the latter case with variable X_1. Table 6 shows evidence that adding the absolute number of the sales surprise provides more additional information than purely the news of an announcement. There are more cases in which one of the parameters is significant and for over 400 companies there is a considerable difference between the two variables. This extra effect is not influenced by leverage and its parameter distribution remains the same for every portfolio. It is also interesting to see that the parameter distributions of X_2 and X_1 of the first section are similar, except for the heavy tails in distribution of X_2, Figure 10B, which could be explained by the fact that in some cases the earning surprises might be relatively high or low. These high (low) sales surprises might result in more excessive volatility increments, to distinguish all relative surprises and only the extreme cases I used X_4 to separate the effect. Generally speaking, the results did not show any significant difference between the fit or the parameter distribution, Figure 10B, C and F. As one of the hypothesis was, that when all announcements are taken into account the effect of exceptional surprises would fade out, therefore can be rejected in favour of the hypothesis that every announcement on its own adds to the volatility increase. From Table 6 it follows that extreme surprisings are even less favourable than when we add all absolute surprisings.

Figure 11: Optimal GARCH Models

The optimal model based on all possible exogenous variables or model set 9 from Table 6 for GARCH in B, GJR in D and the combined in A evaluation based on the AIC. The Table in C presents the underlying numbers for sub-Figure A. The total sum varies one from total number of considered companies, because of the absence of reliable return data.

![Optimal GARCH Models](image)

The most striking results emerge when I introduce the third exogenous variable that splits the sales surprise between a positive and a negative component. A positive sales surprise would indicate that
the realised sales in a certain quarter is better than the state space model would predict, and for a negative surprise vice versa. In Table 6 we see that for the GARCH model over 740 companies show a significant effect of positive and negative sales surprises on the volatility. Crucially, there is a difference in the parameter distribution between the constructed portfolios. The parameter corresponding with the positive earning surprises shows a stronger effect for high- and low-persistent portfolios compared with the non-persistent portfolio. These findings, that show the difference between these parameters, are consistent when GARCH is exchanged for GJR or when we choose the optimal model from a greater set of models. This could imply for example, that the stock market reacts more, leading to more volatility, when a firm in the HP portfolio realises even better sales than was the predicted. In contrast to our hypothesis, the analysis did not show a significant differences between the portfolios for the negative parameter, in which case an announcement with a negative sales forecast error, leads to excessive volatility.

Finally, I selected the best model that fits the data according to the AIC, choosing from all the exogenous variables and both GARCH and GJR, Table 6 model set 9. As displayed in A and C of Figure 11 and what has been shown in the literature numerous times is that asymmetric GJR models perform generally better than just the basic GARCH models. From here we see that adding extra announcement information fails to outperform the standard case in more than 30 percent of the companies.

Figure 12: Adjusted R^2 of the Mincer-Zarnowitz Regression

After choosing the optimal GARCH model, calculate the adjusted R^2 of forecast Equation 18, as shown in sub-figures A and B. Sub-figures C and D display the relative increase in adjusted R^2 as a percentage number relative to the base case model without exogenous variable. Where A and C represent the results of the level regression, picture B and D the outcome of the log regression. The red and the green dashed lines depict respectively the mean and median of the adjusted R^2 or relative increase.
The addition of only announcements results in the second largest group of preferred models, suggesting that without specifying any sales surprises, announcements periods in general signal higher volatility. The last three variables, with different definitions of sales surprises, are all around the same order of magnitude, cumulative responsible for the last third of the companies. Sub-figures B and D provide additional evidence that the preference for a certain exogenous variable is relatively independent of the type of GARCH specification.

From the results of Figure 11, I evaluate the Mincer-Zarnowitz forecast regressions to determine how much explanation of the realised variance the estimated models contain. The results are summarised in Figures 12A and B, the level regression finds an average \bar{R}^2 around 10%, while the log regression produces an much higher average of 18.2%. This difference is well described in the literature and concludes that the regression is quite sensitive to extreme observations which reduce the level of \bar{R}^2. Also I find that the regression coefficient differs from one, which is according to the many studies in the literature, such as Pagan and Schwert (1990), Engle and Patton (2001). Increasing the sampling frequency of the data might overcome this issue, a weekly number is generally a rough measure.

To finally relate these results back to question whether the reaction to news depends on the persistence parameter φ, I created estimated volatility series with all the estimated parameters, except for the ones with insignificant parameters for one of the exogenous variables or which fail to beat the AIC of the base case GARCH. From these series I constructed the net and absolute differences3 with the base GARCH series, to solely extract the impact of adding extra parameter which includes the ‘news’.

Table 7: News Effect over the Different Portfolios

The net differences between GARCH models with exogenous variables and the basic GARCH(1,1) model. For every portfolio the values depict mean, median and standard errors of the time series summation, average and median from the companies within in the portfolio.

\begin{center}
\begin{tabular}{lcccccccc}
\hline
 & \multicolumn{3}{c}{Time Series Sum} & & \multicolumn{3}{c}{Time Series Average ($\times 1000$)} & & \multicolumn{3}{c}{Time Series Median ($\times 1000$)} \\
 & NP & LP & HP & & NP & LP & HP & & NP & LP & HP \\
\hline
X1 & & & & & & & & & & & \\
Mean & 0.0089 & 0.0072 & 0.0101 & & 0.0048 & 0.0041 & 0.0057 & & 0.0010 & 0.0011 & 0.0010 \\
Median & 0.0021 & 0.0026 & 0.0033 & & 0.0011 & 0.0012 & 0.0019 & & 0.0002 & 0.0001 & 0.0008 \\
Std. Er. & 0.0007 & 0.0011 & 0.0020 & & 0.0004 & 0.0007 & 0.0010 & & 0.0003 & 0.0006 & 0.0007 \\
\hline
X2 & & & & & & & & & & & \\
Mean & 0.0091 & 0.0094 & 0.0076 & & 0.0050 & 0.0053 & 0.0047 & & -0.0011 & -0.0002 & 0.0001 \\
Median & 0.0015 & 0.0024 & 0.0022 & & 0.0009 & 0.0015 & 0.0014 & & -0.0012 & -0.0005 & 0.0001 \\
Std. Er. & 0.0011 & 0.0018 & 0.0015 & & 0.0007 & 0.0009 & 0.0009 & & 0.0002 & 0.0005 & 0.0005 \\
\hline
X3 & & & & & & & & & & & \\
Mean & 0.0092 & 0.0083 & 0.0095 & & 0.0049 & 0.0046 & 0.0053 & & -0.0014 & -0.0008 & -0.0002 \\
Median & 0.0019 & 0.0032 & 0.0023 & & 0.0011 & 0.0018 & 0.0013 & & -0.0016 & -0.0009 & 0.0000 \\
Std. Er. & 0.0011 & 0.0016 & 0.0025 & & 0.0005 & 0.0009 & 0.0012 & & 0.0002 & 0.0006 & 0.0007 \\
\hline
X4 & & & & & & & & & & & \\
Mean & 0.0035 & 0.0055 & 0.0056 & & 0.0019 & 0.0030 & 0.0032 & & -0.0020 & -0.0018 & 0.0001 \\
Median & 0.0008 & 0.0016 & 0.0020 & & 0.0004 & 0.0009 & 0.0011 & & -0.0014 & -0.0014 & 0.0000 \\
Std. Er. & 0.0004 & 0.0013 & 0.0008 & & 0.0002 & 0.0006 & 0.0005 & & 0.0001 & 0.0004 & 0.0004 \\
\hline
\end{tabular}
\end{center}

3Absolute results are not reported.
In the theoretical scenario, the other parameter estimates vary minimal from the base case. For every company, I summarise these differences by total sum, time series average and median and examine their portfolio summary statistics displayed in Table 7. Although it might seem that the HP portfolio in general has a higher response to news, it is hard to find a significant differences among the portfolios, not least, because of large differences between individual companies. To overcome this, I also reported the median of the distribution to news effects, in which the parallel between portfolios is hard to distinguish. These results indicate that there are negligible differences between the reaction to announcement news among the different portfolios. Finding a possible explanation in the fact that the portfolio sort on persistence can not expose significant differences in news reactions.

6.4 Case Study: Apple Inc. vs. Ford Motor Company

In this section I perform a case study to elaborate on the estimation results and robustness, and provide illustrative figures that address similarities and differences. I choose two large, well-known U.S. based companies that come from a completely different industry, Apple Inc. and Ford Motor Company. Where the first is one of the major producer of consumer electronics and the latter is the fifth largest car manufacturer of the world.

Table 8: Case Study: Sales Growth Estimation Results

A summary of the of estimation results evaluating the quarterly sales of Panel A, Apple and Panel B, Ford with three different models and three different techniques for each model. EM stands for the Expectation Maximisation method, the two different ML (Maximum Likelihood) methods, have a different initialisation, the first uses the EM as prior and the second column starts with a diffuse prior. The AR(1) model display one column with OLS regression estimates and and two columns with (Un)Restricted state space estimates, in which \(\varphi \) is restricted between zero and one. All models and techniques are further described in the Section 5. LogL represents the score of the log likelihood function, \(\varphi \) the persistence parameter, and further contains the three state variance terms.

<table>
<thead>
<tr>
<th></th>
<th>LLM</th>
<th>LLT</th>
<th>AR(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EM</td>
<td>ML</td>
<td>EM</td>
</tr>
<tr>
<td>Panel A: Apple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogL</td>
<td>36.04</td>
<td>64.49</td>
<td>64.48</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>-0.257</td>
<td>0.000</td>
<td>0.934</td>
</tr>
<tr>
<td>(\sigma_\varepsilon^2)</td>
<td>0.026</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>(\sigma_\eta^2)</td>
<td>0.022</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>(\sigma_\zeta^2)</td>
<td>0.033</td>
<td>0.018</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LLM</th>
<th>LLT</th>
<th>AR(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EM</td>
<td>ML</td>
<td>EM</td>
</tr>
<tr>
<td>Panel B: Ford</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogL</td>
<td>164.63</td>
<td>223.71</td>
<td>223.09</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>-0.993</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(\sigma_\varepsilon^2)</td>
<td>0.017</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>(\sigma_\eta^2)</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>(\sigma_\zeta^2)</td>
<td>0.000</td>
<td>0.003</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Starting with sales growth persistence and following the estimation routine described in Section 5. The first results in Table 8 are obtained from optimising Model I and II, for three different cases, EM and ML with diffuse starting values and ML with EM starting values. For both companies EM on its own performs much worse compared to the ML approaches. However, Panel B shows that using the EM estimates as a prior to the ML routine obtains a higher log-likelihood than the diffuse case, although the (parameter) differences are minimal. In the LLT column of the Apple case, the EM prior traps the ML routine in a local maximum and staring with a diffuse prior is able to find a better global optimum. The main difference is in the parameter space of \(\varphi \) were the EM prior optimises the parameter around zero and therefore greatly increase the trend variance \(\sigma_\zeta^2 \), does the diffuse prior increases \(\varphi \) to 0.934 and redistribute the variances. There is an increase in the observation and level variance, but the long-lasting estimated trend variance shrinks.

The second set of results comes from optimising the third model, the AR(1) variant. The first column displays the results of the OLS regression based approach, which are parallel to the results of

Figure 13: Case Study: Estimated Sales

For Apple sales data is available since the first quarter of 1981 and the data of Ford is quarterly available since 1962. Based on the optimal model parameters, it displays the predicted and smoothed sales level and growth from the Kalman filter, along with observed sales and corresponding growth rates (first differences). In the lower sub-Figures, the green dashed line is the economy-wide average sales growth, identical to Figure 5.
the unrestricted state space approach in the third column, but this approach allows \(\varphi \) to be negative which is restricted in the second column. In this second column the log-likelihood score is much lower, than the unrestricted variants and the AR(1) model in general has a poor performance.

When I compare the three models it comes clear that, Model III will be easily rejected in both cases in favour of model I or II. To compare these two models, I perform a likelihood ratio test with two degrees of freedom at a significance level of 0.05 \%, Model I implies two restrictions and hence the critical value of LR test will come from the \(\chi^2 \)-distribution, which is approximately 6. In the first case, the test statistic is 9.996 with a \(p \)-value of 0.0068 and therefore fails to reject the LLT model and in the second case the test statistic is \(-3.342\) with a \(p \)-value of 1 and hence clearly rejects the LLT model in favour of the LLM.

Figure 13 shows: sales observations, realised growth rates and predicted and smoothed states from the preferred models. When I compare the growth rates, it shows evidence why the persistence parameter \(\varphi \) of Apple is \(0.9342 \) and is zero for Ford, which moves more or less around the economy-wide average.

Table 9 reports some fundamental characterises of both companies, it clearly distinguishes the two firms as, Apple being a ‘growth’ firm and Ford being ‘value’ firm, because of the lower book-to-market ratio and the large difference between the mean and median of the market capitalisation, indicating a large increase over the last thirty years. The difference in average earnings-per-share shows evidence that there might be a major difference. But the main reason is that Apple’s realised excessive company growth over the last 15 years, while Ford performed relatively at the same level.

Table 9: Case Study: Fundamentals

A short summary of fundamental characteristics. SG10, SG5 and SG1 are respectively the annualised sales growth over ten, five and one year(s). Accordingly, Ret10, Ret5 and Ret1 are annualised stock returns over ten, five and one year(s). The value of the firms is proxied by the book-to-market ratio, B/M, the same goes for size, which is proxied by MEQ, the market capitalisation in billions of U.S. dollars and EPS is a prominent financial ratio, earnings-per-share. All numbers are respectively time series averages, medians and standard errors.

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th></th>
<th>Ford</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Std. Error</td>
<td>Mean</td>
</tr>
<tr>
<td>SG10</td>
<td>0.2832</td>
<td>0.2945</td>
<td>0.0007</td>
<td>0.0550</td>
</tr>
<tr>
<td>SG5</td>
<td>0.2975</td>
<td>0.3102</td>
<td>0.0008</td>
<td>0.0554</td>
</tr>
<tr>
<td>SG1</td>
<td>0.3536</td>
<td>0.3421</td>
<td>0.0012</td>
<td>0.0645</td>
</tr>
<tr>
<td>Ret10</td>
<td>0.0046</td>
<td>0.0046</td>
<td>0.0000</td>
<td>0.0016</td>
</tr>
<tr>
<td>Ret5</td>
<td>0.0047</td>
<td>0.0051</td>
<td>0.0000</td>
<td>0.0016</td>
</tr>
<tr>
<td>Ret1</td>
<td>0.0054</td>
<td>0.0055</td>
<td>0.0001</td>
<td>0.0018</td>
</tr>
<tr>
<td>B/M</td>
<td>0.382</td>
<td>0.312</td>
<td>0.001</td>
<td>0.860</td>
</tr>
<tr>
<td>MEQ</td>
<td>123.181</td>
<td>6.182</td>
<td>1.457</td>
<td>27.912</td>
</tr>
<tr>
<td>EPS</td>
<td>1.610</td>
<td>0.759</td>
<td>0.021</td>
<td>1.075</td>
</tr>
</tbody>
</table>

51
Figure 14: Case Study: Return and Volatility

Over the whole data sample daily returns are averaged within the corresponding week, the associated standard deviation is the weekly realised volatility. In panel A it display the return and volatility series of APPLE and in panel B the series for FORD, both horizontal axes correspond to year with week numbers.

In the second part of this case study, I focus on the volatility of the weekly stock returns of both companies. In Figure 14 we see the distinctive pattern of a return series, which is centred around zero and shows noisy volatility clusters, which are depicted with the dotted lines and are displayed on the right y-axis. It is clear to see how APPLE was strongly effected by the Dot-com crisis in the early 2000 and how FORD had harsh times during the Financial Crisis of 2008 as did many car manufacturing companies.

Again following the structure from the methodology section, I first estimate the two different models, GARCH and GJR, one base case and four estimates with the inclusion of the different exogenous variables. I estimate all the models with both the diffuse and ‘educated guess’ initialisation, the first model selection is done based on the highest log-likelihood of the two estimates. This is to guard against the issue of ending up in local maximum and so result in 10 parameter sets with corresponding likelihoods.

From this point, I compare the models based on the AIC and likelihood ratio test. Only when I compare the initial model with a model including one exogenous variable the model are nested and hence the likelihood ratio test is applicable. This results in the three ‘best’ models, the overall favourite, the optimal GARCH model and the optimal GJR model, where the first is of course a choice between GARCH and GJR. Generally, GJR provides a better fit in most empirical situations, as it does here. To
compare both companies, I only report the estimation results of the base model and the addition of the first two exogenous variables, which correspond to a unit vector at the moment of announcement and the absolute sales surprise. Table 10 is split into four panels, panel A shows the estimation results of the three GARCH models and corresponding standard errors, likewise panel C adds the leverage effect, encapsulated in the GJR models, and displays the corresponding estimated values and standard errors. Panel B and D present the results of the Mincer-Zarnowitz regression of the estimated models on the realised volatility, with intercept a and slope coefficient b. As previous studies mentioned, the theoretical values of $a = 0$ and $b = 1$ are again violated in this case study, most likely due to the rough measure of the realised volatility. The measure of explained variance in regressions, R^2, we see the empirical preference for the log version, because it is less sensitive to extreme observations. From the AIC we see that the GJR models is preferred in favour of the standard GARCH model and the addition of extra announcement variable adds just a little bit to the overall explained variance. Despite that the results seem minor, based on the GJR case, for APPLE the first exogenous variable adds 6.7% and 2.1% to R^2 of the level and log regression and regarding X_2 it adds 2.2% and 1.7% and in the same way, in the FORD case it adds 0.5% and 1.8% for X_1 to the explained realised variance and roughly the same for the second variable.

Table 10: Case Study: GARCH Estimation Results

<table>
<thead>
<tr>
<th></th>
<th>Panel A</th>
<th></th>
<th></th>
<th>Panel B</th>
<th></th>
<th></th>
<th>Panel C</th>
<th></th>
<th>Panel D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GARCH</td>
<td>GARCH-X1</td>
<td>GARCH-X2</td>
<td>GARCH</td>
<td>GARCH-X1</td>
<td>GARCH-X2</td>
<td>GARCH</td>
<td>GARCH-X1</td>
<td>GARCH-X2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Est. SE</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>5.695 x 10^-7, 7.956 x 10^-10</td>
<td>2.069 x 10^-7, 3.447 x 10^-10</td>
<td>2.794 x 10^-7, 4.865 x 10^-10</td>
<td>1.048 x 10^-3, 1.123 x 10^-10</td>
<td>2.652 x 10^-3, 9.197 x 10^-10</td>
<td>4.81 x 10^-3, 9.197 x 10^-10</td>
<td>9.197 x 10^-3, 5.875 x 10^-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>9.52 x 10^-7, 7.956 x 10^-10</td>
<td>9.65 x 10^-7, 9.65 x 10^-10</td>
<td>9.54 x 10^-7, 1.556 x 10^-10</td>
<td>9.17 x 10^-3, 6.52 x 10^-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.047 x 10^-7, 7.956 x 10^-10</td>
<td>0.057 x 10^-7, 4.419 x 10^-10</td>
<td>0.066 x 10^-7, 9.65 x 10^-10</td>
<td>0.069 x 10^-3, 1.71 x 10^-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>2.595 x 10^-9, 7.956 x 10^-10</td>
<td>2.394 x 10^-9, 5.674 x 10^-10</td>
<td>3.109 x 10^-9, 5.674 x 10^-10</td>
<td>2.413 x 10^-4, 1.94 x 10^-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_1</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
</tr>
<tr>
<td>Level: R^2</td>
<td>0.035</td>
<td>0.035</td>
<td>0.036</td>
<td>0.036</td>
<td>0.035</td>
<td>0.036</td>
<td>0.036</td>
<td>0.036</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Log - R^2</td>
<td>0.239</td>
<td>0.315 - 1.068</td>
<td>0.423</td>
<td>0.245</td>
<td>0.191</td>
<td>0.191</td>
<td>0.224</td>
<td>0.224</td>
<td>0.224</td>
<td></td>
</tr>
</tbody>
</table>

Estimation results and standard errors for GARCH and GJR with and without the first two exogenous variables, X_1 and X_2 in Panel A and C, p-values are not reported, but are all smaller than 0.01. Panel B and D report the estimation results of the Mincer-Zarnowitz regression with HAC standard errors, along with the adjusted R^2 of both the level and log regression and the Akaia Information Criteria.

53
As a final aspect to look at the differences between Apple and Ford I plot the time series of the estimated GJR models in Figure 15, along with realised volatility and the difference between both the GJR models for both companies. The black asterisks indicate a announcement moment. In panel C of Table 10, we see that the estimate of γ_1 for both companies differs by a factor 4, which implies that Apple’s reaction to news announcements results in four times more volatility than it would with Ford.

The more structured pattern in the bottom figure of Apple indicates that the estimated parameters with GJR-X2 do not vary much from the base case GJR, and so nicely extract the news effect. To further extend this claim, I compare this different parameter estimates for the second exogenous variable, here the estimates are more in the same order of magnitude. The question is whether this also results into a similar reaction to the absolute sales surprise, as the latter could vary a lot per announcement and also per company. Table 11 summarises the time series summation, average and median of the differences between the series including a exogenous variable and the base case GARCH(1,1). From Panel A we can conclude that the net difference Apple is in total positive and with Ford it is negative, for almost all extra variables. When I compare the absolute differences, it further proves that the reaction to news announcements for Apple result in much more excess volatility than is the case with Ford. When I combine the results of Figure 15 and Table 11, there still is quite a distinction between both companies, the news effect is systematically five times larger for Apple than it is for Ford.

Table 11: Case Study: News Effect

Differences between GARCH models with exogenous variables and the basic GARCH(1,1) model. For both firms the values depict time series summation, average and median for the different variables. Apart from the net differences in Panel A, shows Panel B the absolute differences between $GARCH_X^{j}$ and the base case, for $j \in 1,...,4$. Note that estimates of Apple in combination with $X3$ are not significant.

<table>
<thead>
<tr>
<th>Panel A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apple</td>
<td></td>
<td></td>
<td>Ford</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
<td>X4</td>
<td>X1</td>
<td>X2</td>
<td>X3</td>
<td>X4</td>
</tr>
<tr>
<td>Sum</td>
<td>0.0092</td>
<td>0.0078</td>
<td>0.0082</td>
<td>-0.0002</td>
<td>-0.0003</td>
<td>-0.0008</td>
<td>0.0002</td>
</tr>
<tr>
<td>Mean (×10⁻⁶)</td>
<td>4.6957</td>
<td>3.9794</td>
<td>4.1849</td>
<td>-0.0623</td>
<td>-0.0937</td>
<td>-0.2561</td>
<td>0.0830</td>
</tr>
<tr>
<td>Median (×10⁻⁶)</td>
<td>2.8569</td>
<td>2.9079</td>
<td>3.1413</td>
<td>0.2026</td>
<td>-0.4177</td>
<td>-1.7081</td>
<td>-0.5969</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>0.0155</td>
<td>0.0118</td>
<td>0.0166</td>
<td>0.0035</td>
<td>0.0054</td>
<td>0.0145</td>
<td>0.0042</td>
</tr>
<tr>
<td>Mean (×10⁻⁶)</td>
<td>7.9574</td>
<td>6.0534</td>
<td>8.5013</td>
<td>1.1595</td>
<td>1.8133</td>
<td>4.8475</td>
<td>1.3896</td>
</tr>
<tr>
<td>Median (×10⁻⁶)</td>
<td>5.1166</td>
<td>4.3420</td>
<td>6.3108</td>
<td>0.9280</td>
<td>1.3011</td>
<td>2.6548</td>
<td>0.7748</td>
</tr>
</tbody>
</table>
Estimated volatility of the two GJR models obtained with the parameter set in panel C of Table 10. The blue markers are the realised weekly volatility, constructed from a daily frequency. The black asterisks indicated a week with a quarterly announcement. The green and red line in the bottom four subplots show the difference between GJR-X1 and GJR-X2 and GJR respectively. Note that in Apple’s first year announcement data is not reported.

7 Discussion and Conclusion

In this last section I conclude on the results from the previous section, highlight the limitations of the proposed methods and suggest further research extensions. When describing the results and point out the limitations, I repeatedly refer back to the Workflow Diagram in Figure 1. Before concluding the results, I restate the main aim of this thesis. As mentioned in the Introduction, the research was conducted in order to find the missing link between sales growth persistence and stock return volatility. Returning to this hypothetical relationship, it is now possible to report that the results in this paper gain considerable insight with regards to this matter.

The evidence from this study support the idea that a state space framework is a powerful methodology to find a robust measure for sales growth persistence. The estimates are found to be consistent over several optimisation routines that exploit the advantages in a combinational approach and hence, reduce the effect of technical shortcomings. The results show that three portfolios formed based on this measure
of persistence differ in numerous ways. Of these portfolio implications, the striking difference in realised sales growth is the most significant, showing almost a ten-fold difference between the high-growth companies in the high-persistence portfolio and the high-growth firms of the non-persistent portfolio. I have demonstrated that these comprehensive results are unaffected by time span of the growth period, data sample period or rest upon differences of overabundance of fast growing industries along the portfolios. Thus, this concludes that for a subset of companies sales are predictable. Growing companies sorted in the HP portfolio are on average able to realise and annual sales growth of 1.8%. This in comparison to the unpredictable NP portfolio in which case the annual sales growth for high-growth companies is 0.13% on average.

Following the workflow of this paper, I devised a second methodology that added sales surprises as exogenous variables to GARCH volatility models. The findings indicate that, in two thirds of the companies, news about the quarterly reports adds multiple percentages to the explanatory power of GARCH model in a regression on the realised volatility. Adding extra information about sales surprises at these announcement moments, results in model preferences, which are mainly unaltered by the extension of a leverage adjusted GARCH models. In terms of confirming the hypothesis that the different portfolios might have a different reaction to announcement news, the evidence is mixed. The parameter distributions follow a similar pattern in four out five estimates except for parameter associated with positive forecast errors. This parameter distribution differentiates in two ways, it has heavy tails and the mean is significantly higher compared with the other two portfolios. The higher average parameter estimate relates high-persistence to more volatility at an announcement with positive news. On the other side, the results of Table 7, are not convincing that there is a significant difference in news reaction along the portfolios.

Every block, link or definition from the workflow that relates fundamentals to return volatility has influence on the findings of this study. On one side, every component implies a limiting factor, and so the findings must be regarded with all the assumptions taken into account, while on the other side, all the choices made early on open many different doors to future extensions. The specific choice for the minimal number of reporting years is such an important limitation made early on and incorporate a strong survivorship bias. All companies that exist for more than 25 years have had a period of expanding sales, mostly in the early years or after a large merger or acquisition. The essence is that only a particular subset of companies is able to maintain such outperformance over a different years, and will get placed in the high-persistence portfolio. Decreasing the minimal reporting period to 5 or ten years greatly expands the company dimension in the data set, but the question is to what extent this increases the parameter uncertainty around the persistence parameter. As methodology in this set up focuses on a univariate time series approach for every unique company, it would be a valuable research project, to
see if these results are consistent with our findings. A reasonable hypothesis would be that companies that persistently grow below the market average or even shrink their net sales, will face default much sooner, and so in this study would fall out of the data sample, resulting in an upward bias towards larger annualised growth numbers in the high-persistent portfolio.

The results of section 6.2 indicate finding growth persistence in other cash flow measures, such as earnings, will not perfectly correlate with the sales growth persistence mainly discussed in this paper. It might be insightful to check if similar portfolio features exist for earnings or dividends.

The fact that the high-persistence portfolio was able to outperform the market average growth so excessively, rests partially on the assigned definition of sales growth persistence. Where the conventional literature awards persistence to consecutive years of growth, this paper considers persistence from a more state space point of view, a mean-reverting parameter in a local linear trend model. The choice for such a specific definition makes a bit more challenging to directly compare our results to other studies in the field. This could be a partial explanation of why the annual returns of the portfolios do not show a pattern consistent with the studies of Chan et al. (2003) or Chen (2017), in which high-growth portfolios actually underperform the low growth portfolios evaluated at returns basis. One could argue that this proposed measure is better in capturing the ‘real’ growth, because the state space model filters the noisy growth rates. To differentiate from the standard first differences growth-rate measure is one of the main reasons to implement the state space framework. And so it can be concluded that perhaps the earlier studies are too much influenced by noisy growth rates. Repeating the analysis of Chan et al. (2003) and Chen (2017) with filtered growth rates might confirm this hypothesis.

Overall the results are clearly influenced by the portfolio formation, which is based on the estimated persistent parameter ϕ. The lack of comparable studies make it hard to give solid explanation for this relative arbitrary choice of portfolio breakpoints other than the preference of an equally-sized portfolios. Mainly because the LLT model is rejected for two thirds of all the companies, it not possible split the data set in three, five or ten equally sized portfolios as is more of a custom throughout financial literature, except for the industry formed portfolios. Sales growth persistence can be regarded as more of a company specific label which does not fluctuate though time and therefore makes it hard to have an exact number of reporting firms at each specific point in time. As a robustness check I altered the breakpoints to a more equally spaced ϕ-spectrum, with thresholds for the NP portfolio from 0 to 0.3, for the LP portfolio from 0.3 until 0.8 and the HP portfolio from 0.8 up to 1 among several other combination, as well as the addition of a middle-persistent (MP) portfolio between LP and HP. But after bootstrapping and hence creating equal sized portfolios, these new sets of results did not lead to significantly different conclusions. So I believe the results to be robust to the precise definition of the portfolio thresholds.

Apart from the different portfolio thresholds based on growth persistence, I sort the portfolios a
second time based on the WGS, weighted average rank of sales growth. Finding an upward structure of over the double sort is inevitable. Other possible valuable sorts include size and value. It would be interesting to see if a double sort with size reveals return patterns more in line with Chan et al. (2003) and growth patterns according to Chen (2017).

Following Figure 1 to the second block, that relates growth persistence to the Expectation Hypothesis. The extension of the GARCH framework with company specific exogenous variables proves to be a beneficial approach. For a large group of companies increases the direct explanation with regards to the realised volatility. It is known from previous literature that the adjusted R^2 that was found, is not as low as it might seem, and so adding multiple percentages is actually considerable. An important limitation was the frequency of the return data on which I estimated the realised volatility. Calculating the weekly realised volatility from daily observations, generally results in a rough estimate of the underlying variance. This estimate is a much higher number, than when it is calculated on a smaller intraday frequency, as shown e.g. by Andersen and Bollerslev (1998a). It is straightforward to see the main reason behind this phenomenon. When the weekly variance is calculated from an hourly return sample it will result in much lower variance, as the sample size is increased by its tenfold. Working with a higher data frequencies also allows a more detailed look in the days surrounding a quarterly announcement, which could be another future extension of this study.

As an addition to the general GARCH model, this study further adds the GJR model that includes a leverage component. Table 1 from Hansen and Lunde (2005) gives a nice overview of the GARCH universe and, apart from GARCH and GJR-GARCH, shows 14 other different GARCH specifications. This demonstrates that there are countless other model specifications, not covered in this study, from which Nelson (1991)’s EGARCH model deserves to be further investigated, because of the absence of parameter restrictions. It is also important to mention that the evaluation of the different volatility models is not always obvious. I choose among the different models based on the AIC and \bar{R}^2 of the Mincer-Zarnowitz regression, other measures could include mean-squared error or mean-absolute error. Although I expect the results to be generally the same.

The results of this study further indicate that adding fundamental information adds to the performance of a GARCH model. The definition of this fundamental information is very important for additional performance. Where this study uses the forecast error from observed sales minus the Kalman predicted sales, there are many other potential additional variables. I think the general idea should remain the same: deviation from the market’s expectation will influence volatility. Good proxies for the market’s expectations can be found in the I/B/E/S Database. An earnings surprise measure defined in the literature subtracts the realised EPS by the analysts’ forecast. The database also contains information about expectation of long-term growth (LTG), an exogenous variable could include the differences between the
LTG expectation of two periods. Periods in which this differences are larger should be related to market’s uncertainty about long-term perspective. As Glosten et al. (1993) find a significant dummy variable for specific months, adding a specific dummy variables might also be noteworthy. For example, the appointment of a new CEO, starting operations in a different country or more drastically, a merger or acquisition.

Regarding the analysis of the explanatory variables in the GARCH framework, it can be implemented in two ways. First, there is direct implication which is applied in this study, adding the exogenous variable to the variance equation. The second approach starts with estimation of a normal GARCH model and uses the residuals as independent variable in regression framework that incorporates these explanatory variables. Although this approach has been left aside in thesis, future studies should also try to evaluate the effect with this second approach.

Given the results on the current data set, I would have expected more major differences between the estimated parameters of the different portfolios, as were found in the first part of the study. This belief relies heavily on the hypothesis that, the market reacts different to quarterly news announcements of high-persistent companies in comparison to low- or non-persistent companies. One could argue that, for a high-persistent company, the market would have a relatively good idea about what to expect at a certain point in time, whereas for a non-persistent firm it always remains a relative big surprise. On the other hand, a large deviation from what would be expected for such a high-persistent company might increase the uncertainty among the market participants on how to interpret such an aberrant observation, as a short-term, mid-term or long-term change? If the question remains, you can always wonder did we propose the right methods? Did we use the right exogenous variables in the GARCH specification? Or is the question simply to complex to provide us with a simple answer? Finding a solution or specified formula that explains why asset prices are so volatile, which is applicable for every company, multiple countries outside the U.S., market regime, time period and with reasonable forecasting power, might be beyond the scope of the thesis. Nonetheless, the findings of the study represent a first step in the direction of applying company fundamentals in explaining stock return volatility.

Acknowledgements

My special thanks goes out towards Rutger-Jan Lange for his encouragement, inspiration and guidance over the course of this thesis. I am grateful for the quick feedback and comments of Sebastiaan Vermeulen. I wish to thank my friends and family for their motivation and support, without whose help this work would never have been possible. Finally, in particular I thank Mathijs Verhagen and Ferdinand Boers for their proofreading and valuable discussions.
References

A Appendix A: Proofs and Derivations

A.1 Derivation of the Kalman Filter and Smoother

The derivation of the Kalman filter and smoother are based on the three Lemma’s of the (joint) normal distribution.

Lemma 1 When X and Y are independent normally distributed random variables, their sum is also normally distributed:

$$ N(\mu_X, \Sigma_X) + N(\mu_Y, \Sigma_Y) \sim N(\mu_X + \mu_Y, \Sigma_X + \Sigma_Y). $$

Lemma 2 Pre-multiplying a normal random variable with a non-stochastic matrix C:

$$ C \cdot N(\mu, \Sigma) \sim N(C \mu, C \Sigma C'). $$

Lemma 3 Suppose X and Y are jointly normally distributed random variables with:

$$
\begin{bmatrix}
X \\
Y
\end{bmatrix} \sim N
\begin{bmatrix}
\mu_X \\
\mu_Y \\
\Sigma_{XX} & \Sigma_{XY} \\
\Sigma_{YX} & \Sigma_{YY}
\end{bmatrix}.
$$

Then the conditional distribution of X given Y is normal with mean and variance:

$$
\begin{align*}
E[X|Y] &= \mu_X + \Sigma_{XY} \Sigma_{YY}^{-1}(Y - \mu_Y), \\
Var(X|Y) &= \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX}.
\end{align*}
$$

(A.1)

Note: Even if X and Y are not normally distributed, equation A.1 is still the Minimum Variance Linear Unbiased Estimator (MVLUE), with corresponding variance matrix $Var(X|Y)$

To derive the formulas in the Kalman algorithm, let $\hat{\alpha}_t$ be the optimal estimator of the state vector α_t conditional of all information up to, and including observation y_t, also referred to as and P is the corresponding covariance matrix of the estimation error. Then by means of the joint normal distribution, $\alpha_t|I_t \sim N(\hat{\alpha}_t|t, P_{t|t})$, where

$$
\begin{align*}
\hat{\alpha}_{t|t} &= E[\alpha_t|I_t], \\
P_{t|t} &= Var(\alpha_t|I_t) = E[(\alpha_t - \hat{\alpha}_t)(\alpha_t - \hat{\alpha}_t)'|I_t].
\end{align*}
$$

(A.2)
When we recall the state equation, from equation 1 and combine it with Lemma 1 and 2, we obtain the distribution of $\alpha_{t+1}|I_t$ and the best possible prediction for the next time point $t + 1$,

$$
\begin{align*}
\alpha_{t+1}|I_t & \sim N(T\hat{\alpha}_t|t + \Phi c_t, TP_t|tT + RQR'), \\
\alpha_{t+1}|I_t & \sim N(\hat{\alpha}_{t+1}|t, P_{t+1}|t),
\end{align*}
$$

(A.3)

with the corresponding prediction equations,

$$
\begin{align*}
\hat{\alpha}_{t+1}|t &= T\hat{\alpha}_t|t + \Phi c_t, \\
P_{t+1}|t &= TP_t|tT' + RQR'.
\end{align*}
$$

(A.4)

Once the best predictions are known, the optimal forecast of y_{t+1} given I_t is,

$$
E[y_{t+1}|I_t] = Z'\hat{\alpha}_{t+1}|t + \Omega d_t
$$

(A.5)

the corresponding one-step ahead prediction error $v_{t+1}|t$ and prediction error variance $F_{t+1}|t$,

$$
\begin{align*}
v_{t+1}|t &= y_{t+1} - Z'\hat{\alpha}_{t+1}|t - \Omega d_t, \\
F_{t}|t &= Z'P_{t+1}|tZ + H.
\end{align*}
$$

(A.6)

The covariance between the prediction error $v_{t+1}|t$ and the estimated state $\alpha_{t+1}|t$ is,

$$
\text{Cov}(\alpha_{t+1}, v_{t+1}|I_t) = \text{Cov}(\alpha_{t+1}, y_{t+1} - Z'\hat{\alpha}_{t+1}|t - \Omega d_t)
\begin{align*}
&= \text{Cov}(\alpha_{t+1}, Z'\alpha_{t+1} + \Omega d_t + \epsilon_{t+1} - Z'\hat{\alpha}_{t+1}|t - \Omega d_t) \\
&= Z'P_{t+1}|t
\end{align*}
$$

When a new observation becomes available, the best estimate can be updated. From the joint distribution of both α_{t+1}, y_{t+1} conditional on the information at t, I_t,

$$
\begin{pmatrix}
y_{t+1} \\
\alpha_{t+1}
\end{pmatrix}
| I_t \sim N \left[\begin{pmatrix} Z'\hat{\alpha}_{t+1}|t + \Omega d_t \\
\hat{\alpha}_{t+1}|t
\end{pmatrix}, \begin{pmatrix} Z'P_{t+1}|tZ + H & Z'P_{t+1}|t \\
P_{t+1}|tZ & P_{t+1}|t
\end{pmatrix} \right],
$$

(A.7)

using equation A.1 from Lemma 3 it follows that the new distribution of $\alpha_{t+1}|y_{t+1}, I_t$ is,

$$
\alpha_{t+1}|y_{t+1}, I_t \sim N(\hat{\alpha}_{t+1}|t+1, P_{t+1}|t+1),
$$

(A.8)
where both $\hat{\alpha}_{t+1|t+1}$ and $P_{t+1|t+1}$ follow from the updating equation 5, where $v_{t|t}$ is the one-step ahead forecast error and $F_{t|t}$ its corresponding forecast error matrix.

$$\alpha_{t+1|t+1} = \hat{\alpha}_{t+1|t} + P_{t+1|t} Z F_{t+1}^{-1} v_{t|t} \quad (A.9)$$

$$P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t} Z F_{t+1}^{-1} Z' P_{t+1|t} \quad (A.10)$$

Once the Kalman Filter reaches the end of the series, it is possible to derive a conditional density of α_t given all the observations. The smoother iterates backwards through the sample and updates the predicted estimates, based on all available information I_T, this specific type of smoother is known as the classical fixed-interval smoother. The smoothed state vector α_t follows a normal distribution with expected state $\hat{\alpha}_{t|T}$ and state variance $P_{t|T}$ defined as,

$$\hat{\alpha}_{t|T} = E[\alpha_t|I_T] \quad P_{t|T} = \text{Var}(\alpha_t|I_T). \quad (A.11)$$

Following from the tower property, we can rewrite the expected state vector to,

$$\hat{\alpha}_{t|T} = E[\alpha_t|I_T] = E_{\alpha_{t+1}}[E[\alpha_t|\alpha_{t+1}, I_T]|I_T]. \quad (A.12)$$

The inner expectation of the above relation, can again be rewritten to $E[\alpha_t|\alpha_{t+1}, I_T] = E[\alpha_t|\alpha_{t+1}, I_T]$, because we know that the information in α_{t+1} contains all the relevant information that is needed for α_t.

Again using equation A.1 from Lemma 3 the joint conditional distribution of α_t and α_{t+1} on information set I_t becomes,

$$\left(\begin{array}{c} \alpha_t \\ \alpha_{t+1} \end{array} \right) \bigg| I_t \sim N \left(\left(\begin{array}{c} \hat{\alpha}_{t|t} \\ \hat{\alpha}_{t+1|t} \end{array} \right), \left(\begin{array}{cc} P_{t|t} & P_{t|t} T' \\ T P_{t|t} & P_{t+1|t} \end{array} \right) \right) \quad (A.12)$$

where the covariance term is the result of the inner product of the expectation of α_t and α_{t+1},

$$\text{Cov}((\alpha_t, \alpha_{t+1}|I_t)) = \text{Cov}(\alpha_t, T \alpha_t + \Phi \epsilon_t + R \eta_t) = P_{t|t} T'. \quad (A.13)$$

Focusing on the conditional expectation of α_t given both α_{t+1} and the complete information set I_T, with the result of joint distribution A.12 and the tower property ($\hat{\alpha}_{t+1|T} = E[\alpha_{t+1}|I_T]$),

$$E[\alpha_t|\alpha_{t+1}, I_T] = \hat{\alpha}_{t|t} + P_{t|t} T' P_{t+1|t}^{-1} (\alpha_{t+1} - \hat{\alpha}_{t+1|t})$$

$$\hat{\alpha}_{t|T} = E_{\alpha_{t+1}}[\hat{\alpha}_{t|t} + P_{t|t} T' P_{t+1|t}^{-1} (\alpha_{t+1} - \hat{\alpha}_{t+1|t})|I_T]$$

$$\hat{\alpha}_{t|T} = \hat{\alpha}_{t|t} + P_{t|t} T' P_{t+1|t}^{-1} (\hat{\alpha}_{t+1|T} - \hat{\alpha}_{t+1|t}). \quad (A.13)$$
The derivation of the state variance follows the same line of thought,

\[
P_{t|T} = \text{Var}(\alpha_t|I_T) = \mathbb{E}[(\alpha_t - \hat{\alpha}_t|T)(\alpha_t - \hat{\alpha}_t|T)']|I_T]
= \mathbb{E}[\alpha_t|I_T] - \hat{\alpha}_t|T\hat{\alpha}_t|T',
\]

but requires an expression for the last term, \(\mathbb{E}[\alpha_t\alpha_t'|I_T]\), which by means of the tower property in equation A.11 results in,

\[
\mathbb{E}[\alpha_t\alpha_t'|I_T] = \mathbb{E}_{\alpha_{t+1}}[\mathbb{E}[\alpha_t\alpha_t'|\alpha_{t+1}, I_t]|I_T],
\]

the inner expectation in the above, is a bit less straightforward, but ends up with two terms,

\[
\mathbb{E}[\alpha_t\alpha_t'|\alpha_{t+1}, I_t] = \mathbb{E}[\alpha_t|\alpha_{t+1}, I_t]\mathbb{E}[\alpha_t'|\alpha_{t+1}, I_t]' + \text{Var}(\alpha_t|\alpha_{t+1}, I_t)
= \mathbb{E}[\alpha_t|\alpha_{t+1}, I_t]\mathbb{E}[\alpha_t'|\alpha_{t+1}, I_t]' + P_{t|t} - P_{t|t}T'P_{t+1|t}^{-1}TP_{t|t}
= [\hat{\alpha}_t|t + P_{t|t}T'P_{t+1|t}(\alpha_{t+1} - \hat{\alpha}_{t+1}|t)]^2 + P_{t|t} - P_{t|t}T'P_{t+1|t}^{-1}TP_{t|t},
\]

using these two terms in the original equation A.15,

\[
\mathbb{E}[\alpha_t\alpha_t'|I_T] = \mathbb{E}_{\alpha_{t+1}}[\mathbb{E}[\alpha_t\alpha_t'|\alpha_{t+1}, I_t]|I_T]
= \mathbb{E}_{\alpha_{t+1}}[\hat{\alpha}_t|t + P_{t|t}T'P_{t+1|t}(\alpha_{t+1} - \hat{\alpha}_{t+1}|t)]^2
+ \mathbb{E}_{\alpha_{t+1}}[P_{t|t} - P_{t|t}T'P_{t+1|t}^{-1}TP_{t|t}]
= \hat{\alpha}_t|T\hat{\alpha}_t'|T + \mathbb{E}_{\alpha_{t+1}}[P_{t|t}T'P_{t+1|t}(\alpha_{t+1} - \hat{\alpha}_{t+1}|T)(\alpha_{t+1} - \hat{\alpha}_{t+1}|T)'P_{t+1|t}TP_{t|t}]
+ P_{t|t} - P_{t|t}T'P_{t+1|t}^{-1}TP_{t|t}
\]

\[
\mathbb{E}[\alpha_t\alpha_t'|I_T] - \hat{\alpha}_t|T\hat{\alpha}_t'|T = P_{t|t}T'P_{t+1|t}(P_{t+1|T}P_{t+1|T}^{-1}TP_{t|t} + P_{t|t} - P_{t|t}T'P_{t+1|t}^{-1}TP_{t|t}
= P_{t|t} + P_{t|t}T'P_{t+1|t}(P_{t+1|T} - P_{t+1|t})P_{t+1|t}TP_{t|t},
\]

together, equation A.13, A.14 and A.17 result in the Kalman smoothing equations,

\[
\hat{\alpha}_t|T = \hat{\alpha}_t|t + P_{t|t}T'P_{t+1|t}(\hat{\alpha}_{t+1|T} - \hat{\alpha}_{t+1}|t)
\]

\[
P_{t|T} = P_{t|t} - P_{t|t}T'P_{t+1|t}(P_{t+1|T} - P_{t+1|t})P_{t+1|t}T'P_{t|t}
\]

69
A.2 Derivation of the EM Algorithm

The derivation of the formulas evaluated in the EM algorithm start with the joint log-likelihood of a general state space model from data \(y_1, ..., y_T \) and states \(\alpha_0, ..., \alpha_T \)

\[
\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T | \theta) = -\frac{1}{2} \log(|\Sigma_0|) - \frac{1}{2} (\alpha_0 - \mu_0)' \Sigma_0^{-1} (\alpha_0 - \mu_0) \\
- \frac{1}{2} \sum_{t=1}^{T} \log(|H^{-1}|) - (y_t - Z\alpha_t - \Omega d_t)' H^{-1} (y_t - Z\alpha_t - \Omega d_t) \\
+ \log(|Q^{-1}|) - (\alpha_t - T\alpha_{t-1} - \Phi c_t)' Q^{-1} (\alpha_t - T\alpha_{t-1} - \Phi c_t).
\]
(A.19)

Note the addition of two row vectors, \(\Phi \) and \(\Omega \) which are associated with time varying constant column vectors \(c_t \) and \(d_t \). In the first step we take the conditional expectation over this joint log-likelihood for a given parameter set conditional on all the data,

\[
E[\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T | \theta, I_T)] ,
\]
(A.20)

and in the second step we maximise over all the parameters \(\theta \), such that,

\[
\frac{\partial}{\partial \theta} E[\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T | \theta, I_T)] = 0.
\]
(A.21)

The parameter set \(\theta \) basically contains all system matrices and vectors, and hence all are prompt to a specific partial derivative. Assume for a moment that for a certain parameter set and all information on the data, the expectation of the log-likelihood, \(E[\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T | \theta, I_T)] \) resolves into just \(\ell(y_1, ..., y_T, \alpha_0, ..., \alpha_T) \), or simply abbreviated to \(\ell \). To derive all the partial derivatives of \(\ell \) with respect to the system vectors, matrices we start with \(H \) and \(Q \) the observation and state variance terms respectively,

\[
\frac{\partial \ell}{\partial H^{-1}} = \frac{T}{2} H - \frac{1}{2} \sum_{t=1}^{T} (y_t - Z'\alpha_t - \Omega d_t)(y_t - Z'\alpha_t - \Omega d_t)' = 0, \\
H = \frac{1}{T} \sum_{t=1}^{T} (y_t - Z'\alpha_t - \Omega d_t)(y_t - Z'\alpha_t - \Omega d_t)',
\]
(A.22)

\[
\frac{\partial \ell}{\partial Q^{-1}} = \frac{T}{2} Q - \frac{1}{2} \sum_{t=1}^{T} (\alpha_t - T\alpha_{t-1} - \Phi c_t)(\alpha_t - T\alpha_{t-1} - \Phi c_t)' = 0, \\
Q = \frac{1}{T} \sum_{t=1}^{T} (\alpha_t - T\alpha_{t-1} - \Phi c_t)(\alpha_t - T\alpha_{t-1} - \Phi c_t)'.
\]
(A.23)
The transition matrices Z and T require rules of differentiating matrices with use traces.

\[
\frac{\partial \ell}{\partial Z'} = -\frac{1}{2} \frac{\partial}{\partial Z'} \text{Tr} \left[H^{-1} \sum_{t=1}^{T}(y_t - Z'\alpha_t - \Omega d_t)(y_t - Z'\alpha_t - \Omega d_t)' \right] = 0,
\]

\[
\frac{1}{2} \frac{\partial}{\partial Z'} \text{Tr} \left[H^{-1} \sum_{t=1}^{T}(y_t y_t' - Z'\alpha_t y_t' - y_t\alpha_t' Z + Z'\alpha_t\alpha_t' Z + ...)
- y_t d_t' \Omega' - \Omega d_t y_t' + \Omega d_t d_t' Z + Z'\alpha_t d_t' + \Omega d_t d_t' \right] = 0,
\]

\[
\frac{1}{2} \sum_{t=1}^{T} \left[(-\alpha_t y_t' H^{-1})' - (H^{-1} y_t\alpha_t') + (\alpha_t\alpha_t' Z H^{-1})' + ...)
+ (H^{-1} Z'\alpha_t\alpha_t' + (\alpha_t d_t' \Omega' H^{-1})' + (H^{-1} \Omega d_t)\alpha_t') \right] = 0,
\]

\[
Z' = \left(\sum_{t=1}^{T} y_t\alpha_t' + \Omega d_t\alpha_t' \right) \left(\sum_{t=1}^{T} \alpha_t\alpha_t' \right)^{-1},
\]

\[
\frac{\partial \ell}{\partial T} = -\frac{1}{2} \frac{\partial}{\partial T} \text{Tr} \left[Q^{-1} \sum_{t=1}^{T}(\alpha_t - T\alpha_{t-1} - \Phi c_t)(\alpha_t - T\alpha_{t-1} - \Phi c_t)' \right] = 0,
\]

\[
\frac{1}{2} \frac{\partial}{\partial T} \text{Tr} \left[Q^{-1} \sum_{t=1}^{T} \alpha_t\alpha_t' - \alpha_t\alpha_t' T' - T\alpha_{t-1}\alpha_t' + T\alpha_{t-1}\alpha_t' T' + ...
- \Phi c_t\alpha_t' - \alpha_t c_t' \Phi' + T\alpha_{t-1} c_t' \Phi' + \Phi c_t\alpha_{t-1} T' + \Phi c_t c_t' \Phi' \right] = 0,
\]

\[
\frac{1}{2} \sum_{t=1}^{T} \left[(-Q^{-1} \alpha_t\alpha_t' - \alpha_t\alpha_t' Q^{-1} - (\alpha_t\alpha_t' T' Q^{-1})' + ...
+ Q^{-1} T \alpha_{t-1} + Q^{-1} c_t' \Phi' + \Phi c_t\alpha_{t-1} Q^{-1} \right] = 0,
\]

\[
T = \left(\sum_{t=1}^{T} \alpha_t\alpha_t' - \alpha_t\alpha_t' - \Phi c_t\alpha_{t-1} \right) \left(\sum_{t=1}^{T} \alpha_t\alpha_t' \right)^{-1},
\]

The last two derivations are for the system matrices, Ω and Φ.

\[
\frac{\partial \ell}{\partial \Omega} = -\frac{1}{2} \frac{\partial}{\partial \Omega} \text{Tr} \left[H^{-1} \sum_{t=1}^{T}(y_t - Z'\alpha_t - \Omega d_t)(y_t - Z'\alpha_t - \Omega d_t)' \right] = 0,
\]

\[
\frac{1}{2} \frac{\partial}{\partial \Phi} \text{Tr} \left[H^{-1} \sum_{t=1}^{T}(y_t y_t' - Z'\alpha_t y_t' - y_t\alpha_t' Z + Z'\alpha_t\alpha_t' Z + ...
- y_t d_t' \Omega' - \Omega d_t y_t' + \Omega d_t d_t' Z + Z'\alpha_t d_t' + \Omega d_t d_t' \right] = 0,
\]

\[
\frac{1}{2} \sum_{t=1}^{T} \left[(-H^{-1} d_t y_t' - y_t d_t' H^{-1} + Z'\alpha_t d_t H^{-1} + H^{-1} d_t d_t' Z + ...
+ d_t d_t' \Omega' H^{-1} + H^{-1} \Omega d_t d_t \right] = 0,
\]

\[
\Omega = \left(\sum_{t=1}^{T} y_t d_t' + Z'\alpha_t d_t' \right) \left(\sum_{t=1}^{T} d_t d_t' \right)^{-1},
\]
\[
\frac{\partial \ell}{\partial \Phi} = \frac{1}{2} \frac{\partial}{\partial \Phi} \left[Q^{-1} \sum_{t=1}^{T} (\alpha_t - T\alpha_{t-1} - \Phi c_t)(\alpha_t - T\alpha_{t-1} - \Phi c_t)' \right] = 0, \\
= -\frac{1}{2} \frac{\partial}{\partial \Phi} \left[\sum_{t=1}^{T} \left(-Q^{-1} \alpha_t c_t' + T\alpha_{t-1} c_t' Q^{-1} + Q^{-1} c_t \alpha_{t-1} T' + c_t c_t' \right) \right] = 0, \quad (A.27) \\
\Phi = \left(\sum_{t=1}^{T} -\alpha_t c_t' + T\alpha_{t-1} c_t' \right) \left(\sum_{t=1}^{T} c_t c_t' \right)^{-1}.
\]

For the sake of simplicity, I have made an assumption about the expectation of the log-likelihood resulting in the six equations above. When we now explicitly calculate the conditional expectation, equation A.22 until equation A.27 can be easily altered. The output of the Kalman smoothing equations, provide the expression for the conditional expectation of \(\alpha_t \) given the complete information set, \(E[\alpha_t | I_T] = \hat{\alpha}_{t|T} \), \(E[\alpha_t \alpha_t' | I_T] = \hat{\alpha}_{t|T} \hat{\alpha}_{t|T}' + P_{t|T} \) and \(E[\alpha_t \alpha_{t-1} | I_T] = \hat{\alpha}_{t|T} \hat{\alpha}_{t-1|T} + P_{t,t-1|T} \), where \(P_{t,t-1|T} \) is the covariance between \(\alpha_t \) and \(\alpha_{t-1} \), this results in,

\[
H = E \left[\frac{1}{T} \sum_{t=1}^{T} \left(y_t - Z'\alpha_t - \Omega d_t \right) \left(y_t - Z'\alpha_t - \Omega d_t \right)' \mid I_T \right], \\
= E \left[\frac{1}{T} \sum_{t=1}^{T} \left(y_t y_t' - y_t \alpha_t Z - y_t d_t' \Omega' - Z'\alpha_t y_t' - Z'\alpha_t \alpha_t' Z + \ldots \right) \mid I_T \right], \\
= \frac{1}{T} \sum_{t=1}^{T} \left(y_t y_t' - y_t \alpha_t' Z - y_t d_t' \Omega' - Z'\alpha_t y_t' - Z'\alpha_t \alpha_t' Z + \ldots \right) \mid I_T \right), \quad (A.28)
\]

\[
Q = E \left[\frac{1}{T} \sum_{t=1}^{T} \left(\alpha_t - T\alpha_{t-1} - \Phi c_t \right) \left(\alpha_t - T\alpha_{t-1} - \Phi c_t \right)' \mid I_T \right], \\
= E \left[\frac{1}{T} \sum_{t=1}^{T} \left(\alpha_t \alpha_t' - \alpha_t \alpha_t' T - \alpha_t c_t' \Phi' - T\alpha_{t-1} \alpha_{t-1}' T + \ldots \right) \mid I_T \right], \\
= \frac{1}{T} \sum_{t=1}^{T} \left(\alpha_t \alpha_t' - \alpha_t \alpha_t' T - \alpha_t c_t' \Phi' - T\alpha_{t-1} \alpha_{t-1}' T + \ldots \right) \mid I_T \right), \quad (A.29)
\]
\[Z' = \mathbb{E} \left[\left(\sum_{t=1}^{T} y_t \alpha_t' + \Omega d_t \alpha_t' \right) \left(\sum_{i=1}^{T} \alpha_i \alpha_i' \right)^{-1} \right | I_T, \right] \\
= \left(\sum_{t=1}^{T} y_t \alpha_t' + \Omega d_t \alpha_t' \right) \left(\sum_{i=1}^{T} \alpha_i \alpha_i' \right)^{-1} \left(\sum_{i=1}^{T} \alpha_i \alpha_i' \right)^{-1} \left(\sum_{i=1}^{T} \alpha_i \alpha_i' \right)^{-1}, \tag{A.30} \]

\[T = \mathbb{E} \left[\left(\sum_{t=1}^{T} \alpha_i \alpha_i' + \Phi c, \alpha_i' \right) \left(\sum_{t=1}^{T} \alpha_{t-1} \alpha_t' \right)^{-1} \right | I_T, \right] \\
= \left(\sum_{t=1}^{T} \alpha_{t-1} \alpha_t + P_{t-1 | T} + \Phi c, \alpha_{t-1} \right) \left(\sum_{t=1}^{T} \alpha_{t-1} \alpha_t' + P_{t-1 | T} \right)^{-1}, \tag{A.31} \]

\[\Omega = \mathbb{E} \left[\left(\sum_{t=1}^{T} -y_t d_t' + Z' \alpha_t d_t' \right) \left(\sum_{t=1}^{T} d_t d_t' \right)^{-1} \right | I_T, \right] \\
= \left(\sum_{t=1}^{T} -y_t d_t' + Z' \alpha_{t | T} d_t' \right) \left(\sum_{t=1}^{T} d_t d_t' \right)^{-1}, \tag{A.32} \]

\[\Phi = \mathbb{E} \left[\left(\sum_{t=1}^{T} -\alpha_t c_t' + T \alpha_{t-1} c_t' \right) \left(\sum_{t=1}^{T} c_t c_t' \right)^{-1} \right | I_T, \right] \\
= \left(\sum_{t=1}^{T} -\alpha_{t-1} c_t' + T \alpha_{t-1} c_t' \right) \left(\sum_{t=1}^{T} c_t c_t' \right)^{-1}. \tag{A.33} \]

In the latter four system matrices, the last term in a matrix inverse. If the dimensions of the problem increase, and if not all states are connected resulting in many empty off diagonal elements, computation of these matrix inverses gets problematic. To provide stable numerical results it is often replaced by the Moore-Penrose inverse or matrix pseudoinverse.

The log-likelihood function also depends on the prior state \(\alpha_0 \), which is assumed to be normally distributed, \(\alpha_0 \sim N \left(\mu_0, \Sigma_0 \right) \), and therefore the same first order conditions apply as to the other system matrices. Differentiating the log-likelihood function with respect to \(\mu_0 \) and \(\Sigma_0 \) yield,

\[\mu_0 = \alpha_0, \quad \Sigma_0^{-1} = \left(\alpha_0 - \mu_0 \right) \left(\alpha_0 - \mu_0 \right)' \tag{A.34} \]

Taking the expectation conditional on the complete data set results in the best estimates for the prior states,

\[\mathbb{E} \left[\mu_0 \mid I_T \right] = \hat{\alpha}_{0 | T} \quad \mathbb{E} \left[\Sigma_0 \mid I_T \right] = \mathbb{E} \left[\left(\alpha_0 - \hat{\alpha}_0 \right) \left(\alpha_0 - \hat{\alpha}_0 \right)' \right] = P_{0 | T}. \tag{A.35} \]
A.3 Optimising Initial Values

It starts with the variance of the first differences, for a univariate local level model,

\[\text{Var}(\Delta y_t) = \text{Var}(y_t - y_{t-1}) = \text{Var}(\eta_t + \epsilon_t - \epsilon_{t-1}) = \sigma^2_\eta + 2 \sigma^2_\epsilon, \]

if both \(\sigma^2_\epsilon \) and \(\sigma^2_\eta \) are in the same order, it is useful to set the initialisation to,

\[\sigma^2_\eta = \frac{1}{2} \text{Var}(y_t - y_{t-1}), \quad \sigma^2_\epsilon = \frac{1}{4} \text{Var}(y_t - y_{t-1}). \]

For the local linear mean-reverting trend model, the trend \(\delta_t \) has the similar structure as an AR(1) process, for which it known that the variance in steady state is given by,

\[\text{Var}(\delta_t) = \phi^2 \text{Var}(\delta_{t-1}) + \sigma^2_\zeta = \sigma^2_\zeta. \]

Using the above, the variance of the first differences becomes,

\[\text{Var}(\Delta y_t) = \text{Var}(y_t - y_{t-1}) = \text{Var}(\delta_{t-1} + \eta_t + \epsilon_t - \epsilon_{t-1}) = \frac{\sigma^2_\zeta}{1 - \phi^2} + \sigma^2_\eta + 2 \sigma^2_\epsilon. \]

If again \(\sigma^2_\epsilon \), \(\sigma^2_\eta \) and \(\sigma^2_\zeta \) are of equal magnitude a proper starting value is,

\[\sigma^2_\epsilon = \frac{1}{6} \text{Var}(y_t - y_{t-1}), \quad \sigma^2_\eta = \frac{1}{3} \text{Var}(y_t - y_{t-1}), \quad \sigma^2_\zeta = (1 - \phi^2) \frac{1}{3} \text{Var}(y_t - y_{t-1}). \]

To find a decent starting value for the \(\phi \) without using the Kalman filter, I examine the auto-covariance structure of the trend, following from the AR(1) structure,

\[\text{Cov}(\delta_t, \delta_{t-n}) = \frac{1}{1 - \phi^2} \phi^n \sigma^2_\zeta. \]

The auto-covariance structure of the first differences,

\[\mathbb{E}[(y_{t+1} - y_t)(y_{t-n} - y_{t-n-1})] = \text{Cov}(\delta_t, \delta_{t-1}) + \mathbb{E}[-\epsilon^2_t] = \frac{1}{1 - \phi^2} \phi \sigma^2_\zeta - \sigma^2_\epsilon \]

\[\mathbb{E}[(y_{t+1} - y_t)(y_{t-n} - y_{t-n-1})] = \text{Cov}(\delta_t, \delta_{t-1-n}) = \frac{1}{1 - \phi^2} \phi^n \sigma^2_\zeta, \quad \text{for } n > 0. \]

We find that \(\text{Cov}(y_{t+1} - y_t)(y_{t-n} - y_{t-n-1}) \) declines exponentially with the rate \(\phi \). Therefore the natural logarithm of this covariance, \(\log(\text{Cov}(y_{t+1} - y_t)(y_{t-n} - y_{t-n-1})) \), should be somewhat linear and \(\log(\phi) \)

74
will be the slope coefficient of the regression of the covariance and the lag as explanatory variable.

$$\log \left(\text{Cov}(y_{t+1} - y_t)(y_{t-n} - y_{t-n-1}) \right) = \log \left(\frac{1}{1 - \varphi^2} \varphi^n \sigma^2(\zeta) n_{n=0} \right)$$

$$= \log \left(\frac{1}{1 - \varphi^2} \right) + \log (\sigma^2(\zeta)) + n \log(\varphi), \quad n > 0.$$
Table B.1: Portfolio Fundamentals (continued)

Panel D: R&D Expenses

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>WGS</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Full</td>
<td>Mean</td>
<td>74.03</td>
<td>108.97</td>
<td>108.70</td>
<td>60.35</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.36</td>
<td>0.73</td>
<td>0.54</td>
<td>0.29</td>
</tr>
<tr>
<td>1971-1995 Mean</td>
<td>27.91</td>
<td>39.05</td>
<td>44.12</td>
<td>24.23</td>
<td>14.12</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.29</td>
<td>0.95</td>
<td>0.45</td>
<td>0.29</td>
</tr>
<tr>
<td>1995-2017 Mean</td>
<td>86.71</td>
<td>128.18</td>
<td>126.44</td>
<td>70.28</td>
<td>61.40</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.42</td>
<td>0.94</td>
<td>0.64</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Panel E: Earnings-per-Share

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>WGS</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Full</td>
<td>Mean</td>
<td>0.434</td>
<td>0.342</td>
<td>0.498</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1971-1995 Mean</td>
<td>0.504</td>
<td>0.422</td>
<td>0.614</td>
<td>0.576</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>1995-2017 Mean</td>
<td>0.360</td>
<td>0.256</td>
<td>0.374</td>
<td>0.472</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Panel F: Dividends-per-Share

<table>
<thead>
<tr>
<th>Economy</th>
<th>φ</th>
<th>WGS</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Full</td>
<td>Mean</td>
<td>0.165</td>
<td>0.163</td>
<td>0.180</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1971-1995 Mean</td>
<td>0.157</td>
<td>0.139</td>
<td>0.177</td>
<td>0.149</td>
<td>0.166</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1995-2017 Mean</td>
<td>0.173</td>
<td>0.189</td>
<td>0.183</td>
<td>0.167</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
From the raw stock returns, the data is winsorized at both the highest and lowest 0.5% quantiles and all companies are sorted in three portfolios based on their level of persistence. At every point \(t \) for every company \(i \) the return rate is summed over the last ten, five or one year(s) and annualised, because of quarterly data, these time series start respectively, at 41Th, 21Th and 5Th available observation. Every portfolio is double sorted according to the 2-year weighted average rank of sales growth (WGS) over the length of the summation and sorted again in three portfolios, in subsets of 30/40/30 percent. As a reference the economy is the average of the whole data sample. The results are time series averages, medians and standard errors over the full time frame, the first half (1971Q1 - 1995Q2) and the second half (1995Q3 - 2017Q4) in percentages.

Table B.2: Annualised Return Rate

<table>
<thead>
<tr>
<th>Panel A : Annualised Return Rate over 10 Years</th>
<th>Economy</th>
<th>(\varphi)</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Mean</td>
<td>0.277</td>
<td>0.204</td>
<td>0.224</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.302</td>
<td>0.214</td>
<td>0.241</td>
<td>0.334</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td>Mean</td>
<td>0.243</td>
<td>0.168</td>
<td>0.188</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.263</td>
<td>0.174</td>
<td>0.215</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td>Mean</td>
<td>0.313</td>
<td>0.237</td>
<td>0.257</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.325</td>
<td>0.238</td>
<td>0.255</td>
<td>0.356</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B : Annualised Return Rate over 5 Years</th>
<th>Economy</th>
<th>(\varphi)</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Mean</td>
<td>0.287</td>
<td>0.201</td>
<td>0.235</td>
<td>0.332</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.310</td>
<td>0.193</td>
<td>0.255</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td>Mean</td>
<td>0.257</td>
<td>0.168</td>
<td>0.200</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.292</td>
<td>0.168</td>
<td>0.221</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td>Mean</td>
<td>0.319</td>
<td>0.236</td>
<td>0.271</td>
<td>0.387</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.338</td>
<td>0.264</td>
<td>0.275</td>
<td>0.391</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C : Annualised Return Rate over 1 Year</th>
<th>Economy</th>
<th>(\varphi)</th>
<th>NP</th>
<th>LP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Mean</td>
<td>0.350</td>
<td>0.231</td>
<td>0.293</td>
<td>0.440</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.380</td>
<td>0.248</td>
<td>0.323</td>
<td>0.450</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>1971 - 1995</td>
<td>Mean</td>
<td>0.339</td>
<td>0.219</td>
<td>0.265</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.368</td>
<td>0.248</td>
<td>0.282</td>
<td>0.435</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>1995 - 2017</td>
<td>Mean</td>
<td>0.362</td>
<td>0.243</td>
<td>0.322</td>
<td>0.476</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.387</td>
<td>0.258</td>
<td>0.356</td>
<td>0.499</td>
</tr>
<tr>
<td></td>
<td>Std. Error</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>