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Abstract 

This paper examines the forecast performances of several GARCH models at different horizons for 

equity indices from developed markets and emerging markets. It tries to find out which GARCH mod-

els are best for short-term volatility forecasts and which ones perform best at longer horizons. Fur-

thermore, we also study the underlying features that drive the forecast performance of GARCH mod-

els at multiple horizons. We use the ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, and GARCHX mod-

els to forecast out-of-sample conditional variances of S&P 500, HSI, IPC, and KOSPI. The forecast per-

formances are evaluated with MSE and QLIKE. Additionally, we test the significance of forecast losses 

with the Diebold-Mariano test and Model Confidence Set (MCS). The empirical findings of this paper 

are mixed, since there is not a single model that shows superior performance in each case. The 

GARCHX model, which incorporates the VIX, tends to generate superior forecasts at multiple horizons 

for the S&P 500, whereas in most cases CGARCH and APARCH are preferred under the remaining 

indices. Overall, we can conclude that conjoining a precise volatility proxy of an index to an ordinary 

GARCH model significantly improves the forecast performance, yet there are other factors as well that 

may influence the predictive ability of models.  

Keywords: Forecasting, ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, GARCHX, Realised Volatility, VIX 
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§1. Introduction 

“We really can’t forecast all that well, and yet we pretend that we can, but we really can’t.”  

─ Alan Greenspan 

 

Volatility forecasting of financial assets such as bonds and equities is a common practice for scholars 

and practitioners in the field of corporate finance.1 As mentioned in Poon and Granger (2005), vola-

tility forecasting has a significant role, for instance, in risk management, investment analysis, and 

pricing of derivatives. Especially in option pricing theory, the volatility of an underlying asset is one 

of the key parameters in the notorious Black-Scholes-Merton formula, where one can determine the 

theoretical value of an option contract (Figlewski, 1997). Besides its essential role in option pricing, 

it also has a key role in risk management where volatility is an element of Value-at-Risk models (Hull, 

2012). Undoubtedly, finance professionals are faced with different types of financial risks on a daily 

basis. Therefore, a forward-looking volatility measure of asset prices over a holding period can be 

considered as a good starting point for evaluating investment risk (Poon & Granger, 2003). 

 From an academic perspective, many studies have conducted research on forecasting models and 

their predictive abilities. In addition, studies have directly compared the forecasting performances of 

economic variables of these forecasting models. For example, Poon and Granger (2003) delineate the 

results of forecast performances of various volatility-forecasting models from 66 studies. However, a 

sceptical reader may question the validity of mathematical and statistical models for forecasting pur-

poses. Firstly, can we predict future movements of economic variables such as volatility of a financial 

asset exactly? Secondly, which model is considered as the best model for volatility forecasting? The 

first question sounds rather naïve since economists often regard the future as uncertain, which of 

course complicates the matter of making a precise prediction of the future. According to the renowned 

essayist Nassim Nicholas Taleb, extreme events such as the 9/11 terrorist attacks in the U.S. are un-

known unknowns.2 These rare events defy any prediction made by statistical models because these 

events are one-off (Kay, 2007). Thus, future movements of economic variables are unlikely to be pre-

dicted exactly by existing forecast models. Then, the answer to the second question is rather ambigu-

ous due to the mixed results of forecast performances reported in previous studies, which will be 

explained in more detail in the next section. Moreover, asset returns often do not contain sufficient 

                                                             
1 In this paper, the words volatility, 𝜎, and variance, 𝜎2, are interchangeable. This should not lead to conceptual 
confusion since these two statistical measures are related to each other through a monotonic transformation. 
2 Taleb labels unknown unknowns as “black swans”. 



Evaluating Multi-Horizon Volatility-Forecasting Performances of GARCH-Type Models 

2 
 

information to pinpoint a generic forecast model as “best” (Hansen et al., 2003). Therefore, it is hard 

to find a clear winner when it comes to forecasting economic variables.  

The global financial crisis of 2007-2008 clearly revealed that heavy reliance on complex mathemat-

ical and statistical models do not necessary lead to correct predictions of future market movements. 

Despite the frequent criticism of forecasting models, it is important to note that economic and finan-

cial outlooks are necessary for executives, institutional investors, investment bankers, and policy-

makers because they need to anticipate certain shocks. They need mathematical and statistical tools 

to understand the nature of uncertainty to make well-informed decisions. Therefore, many mathe-

matical models are still used for forecasting purposes nowadays.  

The aim of this paper is mainly to evaluate the forecast performance of several GARCH-type models 

at different horizons, also known as multi-horizon forecasting. Further, it studies the underlying fea-

tures that drive the forecasting performance of these GARCH models at multiple horizons. Based on 

this, the following research questions can be formulated: (1) “Which of the following GARCH-type mod-

els generate the best volatility forecasts in the short term: ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, 

or GARCHX?”, (2) “Which of the following GARCH-type models generate the best volatility forecasts in 

the medium term: ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, or GARCHX?”, and (3) “What key fea-

tures drive the forecast performance of these GARCH-type models at multiple horizons?” The abovemen-

tioned research questions can be answered through evaluations of forecast results of these models at 

multiple horizons, and by using several goodness-of-fit measures to determine the model’s signifi-

cance and predictive ability. Further, this study uses equity indices from both developed markets and 

emerging markets.  

Why is it worth to examine the abovementioned research questions? Firstly, from institutional in-

vestors’ perspective, it is important to know which forecast models are best applicable to different 

types of financial assets or even within the same asset class. Secondly, it is important to examine and 

compare the predictive abilities of both simple and sophisticated models. This paper studies the vol-

atility-forecasting performances and abilities of the ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, 

and GARCHX models. Finally, this study adds to existing literature by comparing the volatility-fore-

casting models’ performances of developed and emerging markets equity indices over horizons rang-

ing from one day to one quarter. Furthermore, it examines the underlying features of these GARCH-

type models that drive the forecast performance at different horizons. 
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§2. Literature 

Previous studies related to multistep forecasting will be examined in this section, thus providing us 

with more insights on volatility forecasting at different horizons and the well-known empirical regu-

larities of asset return volatility. 

2.1. Multi-horizon forecasting 

Throughout the years, numerous studies have done research on the use of distinct forecast models 

and their ability to generate multistep forecasts of economic variables. For example, Marcellino et al. 

(2006) compared out-of-sample forecasts of 170 different macroeconomic variables at multiple ho-

rizons, meanwhile Clark and McCracken (2005) focused their empirical study on a single macroeco-

nomic variable, namely core CPI inflation. Other studies like Ghysels et al. (2009), Brownlees et al. 

(2011) and Quaedvlieg (2018) focused their research on volatility forecasting of securities by using 

various forecast models. Moreover, Brownlees et al. (2011) also investigated how different forecast-

ing procedures, e.g. forecast window length, innovation distribution, and frequency of model param-

eter re-estimations, could affect the predictive ability of those GARCH models.  

Surprisingly, consensus regarding which forecast model performs the best has not been reached 

yet. For instance, Hansen and Lunde (2005) analysed more than 300 GARCH-type models in terms of 

their ability to predict conditional variances of the Deutsche Mark-USD currency rate and IBM stock 

returns. According to the authors, specifying the standard GARCH(1,1) model into a more complex 

form does not necessarily lead to outperformance compared to the standard form. However, as re-

ported in the extensive literature review by Poon and Granger (2003), some empirical studies have 

demonstrated evidence that even a simple historical volatility model, e.g. historical moving average 

or random walk model, can beat a complex GARCH-type model.  

There are two common methods to conduct multistep forecasts. One could use either the direct or 

the iterated approach, which is also called recursive forecast. The former uses a horizon-specific fore-

cast model in which the response variable is the ℎ-steps ahead direct forecast at a certain time, 

whereas the latter uses one-step ahead forecasts of a model to determine the ℎ-steps ahead forecast 

recursively (Marcellino et al., 2006; Ghysels et al., 2009). In other words, ℎ-steps ahead iterated fore-

casts are based on a function of lagged one-step ahead forecasts. Interestingly, some previous studies 

have demonstrated that multistep iterated forecasts tend to outperform direct forecasts in terms of 

forecast accuracy, although improvements are relatively small for some horizons, see Marcellino et 

al. (2006), Proietti (2011), and McCracken and McGillicuddy (2017). 
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2.2. Empirical regularities of asset return volatility 

Finance literature has documented several important empirical regularities regarding historical as-

set returns and market volatility. For example, one of the characteristics is that asset return volatility 

tends to persist and cluster (Poon & Granger, 2005). Another important characteristic is the asym-

metric nature of asset return volatility. The next subsubsections will briefly introduce some of these 

empirical regularities from previous literature.   

• 2.2.1. Fat-tailed distributions 

As documented in Mandelbrot (1963), Fama (1965), and Bollerslev et al. (1994), asset returns tend 

to be distributed in a leptokurtic way, i.e. a return distribution with positive excess kurtosis that con-

tains more observations in the extreme tails (Tsay, 2005). Similar results for stock index returns can 

be found in Figure 1 (see Section 4.1) of this paper. This empirical regularity is also known as fat-

tailed distribution, or heavy tails, in finance literature.      

• 2.2.2. Volatility clustering 

Other empirical regularities are clustering of volatility and persistence of asset returns (Poon & 

Granger, 2005). An example of volatility clustering is provided in Figure 2, where periods of relatively 

high volatility tend to cluster with each other, and low-volatility periods tend to be trailed by periods 

of relatively low volatility (Mandelbrot, 1963). In other words, there are cycles of substantial disper-

sion in asset returns and cycles of relative tranquillity. Although the figure illustrates hefty shocks in 

asset return volatility over time, volatility tends to be mean reverting in general (Engle & Patton, 

2001). According to Engle (1993), if substantial adjustments in markets tend to be tracked by similar-

sized changes, in either direction, then volatility must be predictably high after hefty changes. 

• 2.2.3. Long-memory property  

Persistence in volatility, or long memory, means that volatility shocks tend to decay slowly over 

time. In other words, volatility is said to be persistent if today’s asset return not only has a significant 

impact on conditional variance forecast of the next period, but also on the variance estimates many 

periods in the future (Engle & Patton, 2001). Ding et al. (1993) and Ding and Granger (1996) have 

demonstrated that the long-memory property exists for some speculative asset returns, such as the 

S&P 500 and the DM/USD currency pair. Although speculative asset returns hold slight autocorrela-

tion, the absolute returns and their power transformations tend to be serially correlated (Conrad et 

al., 2011). To detect this phenomenon, autocorrelations of variance estimates can be used to figure 

out the persistence level of volatility. An example of this is demonstrated in Figure 3.       
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• 2.2.4. Leverage effect 

The leverage effect refers to the tendency for asset price adjustments to be inversely correlated 

with asset volatility changes (Bollerslev et al., 1994; Andersen et al., 2006). In other words, declining 

asset prices are often accompanied by rising volatility, and vice versa (Aït-Sahalia et al., 2013). The 

impact of asset returns on volatility tend to be relatively weaker in bull markets than in bear markets, 

i.e. volatility is asymmetric over time (Poon & Granger, 2005). A common explanation for this effect 

is the change in a company’s financial leverage, or its debt-to-equity ratio. In case when the enterprise 

value of a firm falls, the company with debt and equity outstanding typically becomes mechanically 

more levered (Bollerslev et al., 1994; Aït-Sahalia et al., 2013). Yet, the magnitude of the impact of a 

stock price drop on future volatilities seems too substantial to be explained merely by adjustments in 

company’s financial leverage (Bollerslev et al., 2006; French et al., 1987). Still, according to Christie 

(1982), the inverted relationship between volatility and stock price is to a substantial degree attribut-

able to financial leverage. Christie (1982), Bouchaud et al. (2001), and Aït-Sahalia et al. (2013) have 

tested the leverage effect empirically. 

• 2.2.5. Volatility-spillover effect 

In the past decades, globalisation of financial markets and financial integration have led to inter-

twined capital markets on a massive scale. Nowadays, global markets are becoming increasingly in-

terdependent, meaning that information flows instantaneously from one market to another, and thus 

affecting the securities market abroad. This phenomenon is also known as volatility spillover in fi-

nance literature. Previous studies have documented volatility-spillover effects in distinct financial 

markets. For instance, Hamao et al. (1990), Susmel and Engle (1994), Koutmos and Booth (1995), Ng 

(2000), and Baele (2005) studied the price volatility spillovers between various stock markets, mean-

while Skintzi and Refenes (2006) and Christiansen (2007) conducted their research mainly on the 

European bond markets. In addition, Tse (1999) and Yarovaya et al. (2017) investigated several stock 

index futures markets for spillover effects. 

• 2.2.6. Commonality in volatility changes 

Another empirical regularity that is widely reported is the commonality in volatility changes, or the 

comovements in asset return volatility across distinct financial assets and even across international 

financial markets (Bollerslev et al., 1994). For example, changes in the volatility of equities and bonds 

tend to comove in the same direction (Schwert, 1989). This empirical regularity is closely linked with 

volatility-spillover effects. 
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§3. Methodology 

3.1. Volatility proxies 

A common issue in volatility forecasting is that conditional variance is not directly observable, 

which complicates the evaluation and comparison of predictions (Andersen & Bollerslev, 1998). For-

tunately, there are ways to resolve this issue partially if an unbiased estimator of variance is available 

(Patton, 2011b). Empirical studies have proposed numerous proxies for conditional variance such as 

squared return, realised variance, and range-based variance, also called high-low range. Nevertheless, 

using a conditionally unbiased variance proxy does not necessarily result in the same outcome as if 

the true variance were used, as volatility proxies tend to be rather noisy in practice. Moreover, previ-

ous studies, such as Andersen et al. (1999) and Poon and Granger (2003), noted that a few outliers in 

sample data might substantially affect the outcomes of forecast evaluation and comparison tests. One 

way to tackle this issue, for example, is to use loss functions that are relatively less sensitive to outli-

ers. However, Patton (2011b) found that many of those loss functions are not robust and thus can 

potentially result in erroneous rankings of conditional variance estimates. Throughout the years, no 

clear consensus has been reached yet on the treatment of outliers by academics (Poon & Granger, 

2003). 

This paper uses realised variance and range-based variance as volatility proxies. These estimators 

are described in the following subsubsections. The reason why we use these volatility proxies is be-

cause of forecast evaluation later. Before we move on to these subsubsections, we will first briefly 

discuss about the squared return.  

• 3.1.1. Squared return 

According to Patton (2011a), the daily squared return of a financial asset is considered as an unbi-

ased volatility proxy that is simple and widely available for investors and researchers. However, de-

spite the convenience of this proxy measure, squared return is also considered as a very noisy indi-

cator of volatility (Andersen et al., 2001). While squared return is an unbiased estimator for the latent 

variable of interest, the idiosyncratic error term causes the inaccuracy of this proxy (Andersen & 

Bollerslev, 1998). As demonstrated in Lopez (2001), the squared error, 𝜀𝑡
2, is 50% greater or smaller 

than the conditional variance, 𝜎𝑡
2, for nearly three-fourths of the time. As a result, the squared return 

approach often leads to severe volatility forecasts. Hence, this method will not be used in this paper 

as it is expected to underperform other variance proxies. 
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• 3.1.2. Realised variance 

An alternative proxy for volatility is realised variance, or realised volatility (henceforth RV), which 

is based on intraday returns. The availability of high-frequency data led to better estimates of daily 

volatility, due to increased number of intraday observations. As described in Christoffersen (2012) 

and Patton (2011b), the realised variance is simply the sum of all the intraday squared log returns. 

Mathematically, it can be written as 

 𝑅𝑉𝑡
𝑚 = ∑ 𝑟𝑡−1+𝑖 𝑚⁄

2

𝑚

𝑖=1

, (1) 

where 𝑚 is the amount of observations available within a day assuming that those observations are 

equally spaced, and 𝑖 denotes the 𝑖th intraday return on day 𝑡. Contrary to the daily squared return, 

RV is a proxy that can illustrate the daily variance in multiple ways through changes in the time inter-

val, i.e. one can determine realised variance by using intraday observations that are sampled at, for 

instance, 𝑘-minute or hourly intervals. As a result, numerous estimates of RV are available. According 

to Poon and Granger (2005), from all the available RV estimates, studies have demonstrated that 5-

minute or 15-minute interval produces the best results. This paper uses 5-minute and 10-minute re-

alised volatilities since these time series are retrievable from Oxford-Man Institute’s realised library. 

Like the daily squared return, RV is a valid proxy of the daily conditional variance (Patton, 2011b). 

What characterises this volatility estimator is that in absence of market microstructure noise it is a 

more efficient estimator than the daily squared return (Martens & van Dijk, 2007). Moreover, RV is 

extremely persistent, which implies that volatility may be forecastable at short horizons if the infor-

mation in intraday returns is used (Christoffersen, 2012). According to Andersen et al. (2006), the 

key feature of RV is that it provides a consistent nonparametric estimation of the variability of price 

that has occurred over a given discrete interval. 

Unfortunately, the presence of market microstructure frictions significantly affects the estimation 

of realised variance. For example, in a univariate case, a bounce in the bid-ask spread of a financial 

asset tends to increase the measured volatility of the asset’s high-frequency intraday returns. As a 

result, the volatility proxy under Eq. (1) tends to be upwardly biased due to the cumulated bias in 

intraday returns (Alizadeh et al., 2002). Market microstructure noise causes serial correlation in the 

intraday returns and therefore makes the RV estimator biased (Hansen & Lunde, 2006). To diminish 

the impact of market microstructure noise on volatility estimate, RV estimator can be constructed at 

a moderate frequency. However, according to Christensen and Podolskij (2007), this leads to loss of 

information. 



Evaluating Multi-Horizon Volatility-Forecasting Performances of GARCH-Type Models 

8 
 

• 3.1.3. Range-based variance 

In presence of market microstructure noise, the construction of periodic realised volatilities be-

comes an arduous task, for example, due to inconsistent or lack of clean high-frequency data. In con-

trast to RV estimator, the range-based variance proxy, or range proxy (henceforth RP), is relatively 

less susceptible to market microstructure frictions (Christoffersen, 2012). This estimator reveals rel-

atively more information about the actual volatility than intraday returns sampled at fixed intervals, 

since the daily range values are formed from the entire price process (Christensen & Podolskij, 2007). 

Similar to Christoffersen (2012), assuming that log returns are normally distributed with mean and 

variance equal to zero and 𝜎2, respectively, the range proxy can be defined as 

 𝑅𝑃𝑡 =
1

4 ln(2)
(ln (

𝑃𝑡
𝐻𝑖𝑔ℎ

𝑃𝑡
𝐿𝑜𝑤 ))

2

, (2) 

where 𝑃𝑡
𝐻𝑖𝑔ℎ

 and 𝑃𝑡
𝐿𝑜𝑤 are the highest and lowest observed prices at time 𝑡, respectively. The ratio 

𝑃𝑡
𝐻𝑖𝑔ℎ

𝑃𝑡
𝐿𝑜𝑤⁄  illustrates the high-low range of an asset. In addition, the constant 1 (4 ln(2))⁄  is a scaling 

factor, which represents the second moment of range of a Wiener process (Bannouh et al., 2009). 

However, Eq. (2) does not incorporate the financial asset’s opening and closing prices on day 𝑡, 

despite that they may improve the estimation of 24-hour volatility. Therefore, a more accurate range 

proxy is available, assuming again that log returns are normally distributed, namely 

 𝑅𝑃𝑡
∗ =

1

2
(ln (

𝑃𝑡
𝐻𝑖𝑔ℎ

𝑃𝑡
𝐿𝑜𝑤 ))

2

− (2 ln(2) − 1) (ln (
𝑃𝑡

𝐶𝑙𝑜𝑠𝑒

𝑃𝑡
𝑂𝑝𝑒𝑛))

2

. (3) 

Note that 𝑃𝑡
𝐶𝑙𝑜𝑠𝑒 and 𝑃𝑡

𝑂𝑝𝑒𝑛
 are the observed closing and opening prices at time 𝑡, respectively. Alt-

hough the inclusion of opening and closing prices can improve the variance estimator, the gains are 

not necessarily realised in practice because of the effects of market microstructure noise on asset 

prices (Alizadeh et al., 2002; Martens & van Dijk, 2007). Yet, we will use these two RP measures in 

this research as alternatives to the realised variance estimators. 

As stated in Alizadeh et al. (2002) and Bannouh et al. (2009), the range-based approach has been 

known as a volatility estimator for a long time. Parkinson (1980) has demonstrated that the extreme 

value method, or high-low range, is noticeably more efficient as a variance estimator compared to the 

squared return method. Other studies have exploited this result for development of volatility proxy 

based on intraday high-low prices that appears to be far more efficient than the realised variance, see 

Martens and van Dijk (2007) and Christensen and Podolskij (2007). 



Master’s Thesis Financial Economics   H. Hu 

9 
 

3.2. Forecasting models 

Throughout the years, literature has propounded numerous forecast models that are to a certain 

extent applicable to applied economic and financial research. As discussed in Christoffersen (2012), 

the goal of a volatility-forecasting model is to predict future variance as precisely as possible to apply 

necessary risk measures. In the past decades, many researchers have evaluated and analysed the fore-

casting performance of distinct volatility-forecasting models, ranging from simple moving average to 

sophisticated stochastic models. An extensive review of 93 empirical studies can be found in Poon 

and Granger (2003). We will focus on six GARCH-type models, namely the ARCH, GARCH, GJR-GARCH, 

CGARCH, APARCH, and GARCHX models. We will discuss these forecast models in more detail in the 

next subsubsections.     

• 3.2.1. ARCH 

In 1982, Engle introduced a new class of stochastic process called the Autoregressive Conditional 

Heteroskedasticity (ARCH) process, which allows the conditional variance to be time varying as a 

linear function of lagged errors, leaving the unconditional variance constant over time (Engle, 1982; 

Bollerslev, 1986). ARCH was one of the first econometric models that provided a convenient way to 

model conditional heteroskedasticity in variance. First, to model an ARCH process, let 𝜉𝑡 denote the 

disturbance term, which depends on a stochastic component 𝑧𝑡 and a time-varying standard devia-

tion 𝜎𝑡 (Nelson, 1991). Mathematically, it can be written as 

   𝜉𝑡 = 𝜎𝑡𝑧𝑡 ,  

where 𝑧𝑡 ~ i.i.d. 𝒩(0,1). By definition, 𝜉𝑡 is serially uncorrelated with mean zero and conditional var-

iance equal to 𝜎𝑡
2. In mathematical terms, 𝜉𝑡|𝜓𝑡−1 ~ 𝒩(0, 𝜎𝑡

2) where 𝜓𝑡 denotes the set of all infor-

mation available at time 𝑡 (Engle, 1982). The conditional variance, 𝜎𝑡
2, is modelled as follows 

 𝜎𝑡
2 = 𝜔0 + ∑ 𝛼𝑗𝜉𝑡−𝑗

2

𝑞

𝑗=1

, (4) 

where 𝜔0 > 0 and 𝛼𝑗 ≥ 0 ∀𝑗 ∈ {1,2, … , 𝑞}. In this model, 𝜎𝑡
2 is expressed as a linear function of lagged 

squared errors where recent disturbances matter more for current period’s conditional variance than 

distant errors (Bollerslev et al., 1992). Hence, this model is referred as the 𝐴𝑅𝐶𝐻(𝑞) model. 

The main strengths of the ARCH model are its simplicity and ability to incorporate well-known em-

pirical regularities such as heavy tails, volatility clustering, and mean reversion (Bera & Higgins, 

1993). Eq. (4) captures the conditional and unconditional variances in 𝜎𝑡
2 and 𝜔0, respectively. The 

latter ensures that the model incorporates the mean reverting characteristic of the data. Despite its 
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novelty at that time, the model has several limitations as well. First, ARCH requires a high order of lag 

variables to capture the dynamic behaviour of conditional variance in practice, see Bollerslev (1986), 

Bollerslev et al. (1992), Bera and Higgins (1993), and Bollerslev et al. (1994). This is simply a compu-

tational burden for the modeller due to the estimations of many parameters that are subject to ine-

quality restrictions. Second, Engle’s model assumes the conditional variance to be a linear function of 

lagged squared error terms that does not take into account the leverage effect (Nelson, 1991; Bera & 

Higgins, 1993). In other words, 𝜎𝑡
2 is affected only by the magnitude and not by the sign of 𝜉𝑡−𝑗. Ac-

cordingly, the ARCH model is not able to incorporate the asymmetric behaviour of volatility shocks. 

• 3.2.2. GARCH 

Not long after the introduction of Engle’s ARCH model, Bollerslev proposed a more generalised ver-

sion of this model in 1986, also called the Generalised Autoregressive Conditional Heteroskedasticity 

(GARCH) model. Bollerslev’s GARCH model is an extension of Engle’s ARCH model that allows for 

more flexible lag structure, i.e. the GARCH model requires less parameters to be estimated than the 

ARCH model to forecast conditional variances (Bollerslev, 1986). Since the properties of the ARCH 

and GARCH models are reasonably similar, 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) is defined as 

 𝜎𝑡
2 = 𝜔0 + ∑ 𝜑𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛼𝑗𝜉𝑡−𝑗
2

𝑞

𝑗=1

, (5) 

where 𝜔0, 𝜑𝑖 , and 𝛼𝑗 are nonnegative parameters. For a stable conditional variance process, we re-

quire the weights to be ∑ ∑ (𝜑𝑖 + 𝛼𝑗) < 1
𝑞
𝑗=1

𝑝
𝑖=1  (Hull, 2012). In this case, the conditional variance, 𝜎𝑡

2, 

is a linear function of past estimates of variance rates and past squared errors, where more recent 

observations of both parameters get relatively higher weights compared to more distant observa-

tions. Interestingly, the conditional variance of 𝜉𝑡 behaves like an ARMA process (Enders, 2015). No-

tice that Eq. (4) is a special case of Eq. (5). 

As noted by Nelson (1991), GARCH models elegantly capture the volatility clustering in asset re-

turns. Another important feature is that these models can be fitted to data that have excess kurtosis 

(Franses & Ghijsels, 1999). Furthermore, these models recognise the mean-reverting dynamics of as-

set return volatility, which implies that the variance tends to converge to a long-run average variance 

rate (Hull, 2012). More importantly, the GARCH model is often considered as a parsimonious model 

since it uses less lag variables compared to the ARCH models in empirical applications (Enders, 2015). 

The above features accentuate the key strengths of this econometric model.  
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Unfortunately, the GARCH model has its limitations as well. Similar to the ARCH model, the standard 

GARCH model lacks the ability to incorporate the volatility asymmetry of positive and negative re-

turns (Nelson, 1991). Another limitation results from the nonnegativity constraints on the variance 

equation parameters, see Eq. (5), which rule out any stochastic oscillatory behaviour in the 𝜎𝑡
2 pro-

cess and can complicate the estimation of GARCH models. Lastly, the interpretation of the persistence 

of volatility shocks may be questionable. If volatility shocks persist continuously, they may stir the 

entire term structure of risk premia, and therefore are likely to affect significantly the investment in 

tangible assets (Poterba & Summers, 1986). 

• 3.2.3. GJR-GARCH 

As stated previously, the standard GARCH model does not incorporate the asymmetric dynamics of 

asset return shocks. Fortunately, a commonly used asymmetric GARCH-type model that captures this 

leverage effect phenomenon is called the GJR-GARCH model, proposed by Glosten et al. (1993). Com-

pared to the normal GARCH model, GJR-GARCH is a richer model since it augments the GARCH model 

with a dummy variable 𝐼𝑡−𝑗 that takes either a value of one or zero (Brailsford & Faff, 1996). Hence, 

𝐼𝑡−𝑗 is mathematically defined as 

 𝐼𝑡−𝑗 = {
 1 ⟸ 𝜉𝑡−𝑗 < 0 

 0 ⟸ 𝜉𝑡−𝑗 > 0.
  

As a result, we can specify the 𝐺𝐽𝑅-𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model as 

 𝜎𝑡
2 = 𝜔0 + ∑ 𝜑𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑(𝛼𝑗 + 𝜆𝑗𝐼𝑡−𝑗)𝜉𝑡−𝑗
2

𝑞

𝑗=1

, (6) 

where 𝜔0, 𝜑𝑖 , 𝛼𝑗, and 𝜆𝑗 are nonnegative parameters. Besides, for a stable conditional variance pro-

cess, we set ∑ ∑ (𝜑𝑖 + 𝛼𝑗) < 1
𝑞
𝑗=1

𝑝
𝑖=1 . When the indicator variable 𝐼𝑡−𝑗 > 0, it simply implies that past 

negative return shocks have a larger impact on the future conditional standard deviations than past 

positive return shocks (Andersen et al., 2006). Note that Eq. (6) turns into Eq. (5) when 𝐼𝑡−𝑗 = 0. 

• 3.2.4. CGARCH 

Another GARCH-type model that we will introduce is the component GARCH (henceforth CGARCH) 

model. This model tries to decompose volatility into a short-run component and long-run component 

(Engle & Lee, 1999; McMillan & Speight, 2004). Shocks of the long-run volatility component are highly 

persistent, whereas shocks of the transitory component are relatively less persistent (Watanabe & 

Harada, 2006). Normally, in a standard GARCH model, the conditional variance tends to mean revert 
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to its long-run variance component, 𝜔0, over time. In contrast, CGARCH allows mean reversion to a 

time-varying trend (Engle & Lee, 1999). Thus, the 𝐶𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model is specified as 

 𝜎𝑡
2 = 𝜔̃𝑡 + ∑ 𝜑𝑖(𝜎𝑡−𝑖

2 − 𝜔̃𝑡−𝑖)

𝑝

𝑖=1

+ ∑ 𝛼𝑗(𝜉𝑡−𝑗
2 − 𝜔̃𝑡−𝑗)

𝑞

𝑗=1

, (7) 

where  𝜔̃𝑡 and (𝜎𝑡−𝑖
2 − 𝜔̃𝑡−𝑖) are the time-varying trend and short-run component of 𝜎𝑡

2, respectively. 

This time-varying long-run variance rate is formally defined as 

 𝜔̃𝑡 = ℎ0 + 𝑥𝜔̃𝑡−1 + 𝑦(𝜉𝑡−1
2 − 𝜎𝑡−1

2 ).  

In this case, the forecasting error (𝜉𝑡−1
2 − 𝜎𝑡−1

2 ) drives the time-dependent movement of the trend 

variable. Importantly, to achieve stationarity, we set (𝜑 + 𝛼)(1 − 𝑥) + 𝑥 < 1, which in turn requires 

𝑥 < 1 and (𝜑 + 𝛼) < 1. As a result, the short-run component then converges to zero with powers of 

𝜑 + 𝛼, while the long-run component converges to  𝜔̃𝑡 with powers of 𝑥 (McMillan & Speight, 2004). 

• 3.2.5. APARCH 

Ding et al. (1993) proposed a general class of forecast model that includes Engle’s ARCH, Bollerslev’s 

GARCH, and five other GARCH-type models as special cases. This polyvalent forecast model is also 

called the Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH) model. Thus, 

the standard 𝐴𝑃𝐴𝑅𝐶𝐻(𝑝, 𝑞) model is formally defined as 

 𝜎𝑡
𝛿 = 𝜔0 + ∑ 𝜑𝑖𝜎𝑡−𝑖

𝛿

𝑝

𝑖=1

+ ∑ 𝛼𝑗(|𝜉𝑡−𝑗| − 𝜆𝑗𝜉𝑡−𝑗)
𝛿

𝑞

𝑗=1

 (8) 

where 𝜔0, 𝛿, 𝜑𝑖 , and 𝛼𝑗 are nonnegative parameters, meanwhile parameter 𝜆𝑗 ∈ (−1,1). Notice that 𝛿 

is the Box-Cox transformation, or exponentiation, of the conditional variance and the asymmetric ab-

solute residuals (Ding et al., 1993; Laurent, 2004). This transformation is convenient for linearising 

nonlinear models. Furthermore, parameter 𝜆𝑗  reflects the so-called leverage effect (Brooks et al., 

2000). When 𝜆𝑗 > 0, past negative shocks have a deeper effect on 𝜎𝑡 than past positive shocks. Mean-

while, 𝜆𝑗 < 0 implies that past positive shocks have a greater impact on 𝜎𝑡 than past negative shocks.  

The key strength of the APARCH model is its ability to incorporate well-known empirical regulari-

ties, such as volatility clustering, leverage effect, and long-memory property, due to the flexible struc-

ture of the model which nests at least seven different ARCH-type models (Laurent, 2004). By changing 

the underlying parameters of APARCH, we obtain the ARCH, GARCH, TS-GARCH, GJR-GARCH, TARCH, 

NARCH, and Log-ARCH models (Ding et al., 1993). However, despite the model’s novelty and versatil-

ity, the APARCH model does not allow fractional integration of conditional variance. Consequently, 
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conditional variance shocks either dispel exponentially or persist indefinitely (Degiannakis, 2004). 

Baillie et al. (1996) and Tse (1998) proposed extensions to the APARCH model to address this limita-

tion by expressing the conditional variance equation as a function of lagged shocks that decay at a 

gradual hyperbolic rate.3 

• 3.2.6. GARCHX 

Throughout the years, many extensions to the classic GARCH model, ranging from nonlinear asym-

metric power modifications to multivariate class models, have been proposed in the finance litera-

ture. Just like the Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin, 1966), Arbitrage 

Pricing Theory (Ross, 1976), and Black-Scholes-Merton Model (Black & Scholes, 1973; Merton, 1973), 

the GARCH model can be easily extended to a more complex form by adding external regressors into 

the equation. In this paper, we will extend the 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) by adding a covariate linked to the Cboe 

Volatility Index, or VIX, and call it the 𝐺𝐴𝑅𝐶𝐻𝑋(𝑝, 𝑞, 𝑟) model.4 The VIX Index reflects investors’ ex-

pectation of the volatility of the S&P 500 over the next month, which is implied by the current prices 

of S&P 500 index options (Kambouroudis & McMillan, 2016).5 Thus, it can be seen as a forward-look-

ing volatility measure. Therefore, including VIX as an additional independent variable may signifi-

cantly improve the forecastability of a standard GARCH-type model (Christoffersen, 2012). Earlier 

empirical studies by Fleming et al. (1995), Hol (2003), Blair et al. (2010), and Kambouroudis and 

McMillan (2016) provided supportive evidence for VIX in providing accurate volatility forecasts. 

Our 𝐺𝐴𝑅𝐶𝐻𝑋(𝑝, 𝑞, 𝑟) model is formally defined as 

 𝜎𝑡
2 = 𝜔0 + ∑ 𝜑𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛼𝑗𝜉𝑡−𝑗
2

𝑞

𝑗=1

+ ∑ 𝜐𝑘𝜁𝑡−𝑘

𝑟

𝑘=1

, (9) 

where variable 𝜁𝑡 =
1

252
(

𝑉𝐼𝑋𝑡

100
)

2
 is defined as a variance proxy for 𝑉𝐼𝑋𝑡 . The daily VIX variance proxy 

is in accordance with Hao and Zhang’s (2013) approach. Further, 𝜐𝑘 is a weight of covariate 𝜁𝑡. Hence, 

the conditional variance equation of GARCHX is now a linear function of lagged variances, squared 

errors, and VIX variance proxy. Fortunately, we can estimate covariate 𝜁𝑡−1 with univariate maximum 

likelihood estimation. 

                                                             
3 Baillie et al. (1996) and Tse (1998) introduced the FIGARCH and FIAPARCH, respectively, which are fraction-
ally integrated extensions of the GARCH-type models. 
4 Cboe: Chicago Board Options Exchange. 
5 The Cboe VIX is often called “investor fear gauge” by financial news media. According to Cboe’s website, the 
VIX Index can be considered as the world’s premier barometer of investor sentiment and market volatility.  
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3.3. Model fitting & forecast evaluation 

To assess the quality and predictive ability of forecast models, one should consider several tests for 

both short- and medium-term predictions of conditional variance. Therefore, we will discuss more 

about goodness-of-fit and forecast evaluation tests in the following subsubsections. 

• 3.3.1. Information criteria tests 

A typical goodness-of-fit test indicates whether a forecast model is statistically significant, but it 

does not tell us how we should select between these models (Bozdogan, 1987; Kuha, 2004). Neither 

does it penalise for potential overfitting when additional parameters are added to the model. Fortu-

nately, there are better equipped tests that avoid these types of issues such as the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), see Burnham & Anderson (2004). These in-

sample fitting tests penalise for the number of model parameters to avoid possible overfitting issues. 

AIC and BIC are used as relative quality measures for selecting the best-fitting model amongst others. 

The forecast model with the smallest information criterion coefficient is preferred since it fits best 

with the in-sample data. Thus, the AIC is formally defined as 

 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝜃), (10) 

where 𝑘 is the number of model parameters and 𝜃 is the maximum value of the forecast model’s like-

lihood function (Bozdogan, 1987), meanwhile the BIC is defined as 

 𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2 ln(𝜃), (11) 

 where 𝑛 describes the quantity of sample information (Kuha, 2004).  

• 3.3.2. Mean squared error 

Similar to Brownlees et al. (2011), Bollerslev et al. (2016), and Quaedvlieg (2018), we will use the 

mean squared error (henceforth MSE), or quadratic loss, measure to assess our conditional variance 

forecasts. As discussed in Patton (2011b), mean squared error is a robust loss function. According to 

Lopez (2001), MSE is a commonly used forecast evaluation tool for both in-sample and out-of-sample 

forecasts. Simply put, MSE is the average squared difference between the realised conditional vari-

ance and the corresponding volatility forecast. Mathematically, 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑉𝐴𝑅̂𝑡+𝑖 − 𝜎̂𝑡+ℎ|𝑡

2 )
2

𝑛

𝑖=1

, (12) 

where 𝑉𝐴𝑅̂𝑡+𝑖  and 𝜎̂𝑡+ℎ|𝑡
2  are the unbiased ex-post estimate of conditional variance and ℎ-step(s) 

ahead forecast of conditional variance, respectively. Squaring the difference results in larger weights 

for possible outliers. Dismally, this makes MSE sensitive to potential outliers. Eventually, the forecast 
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model with the lowest MSE loss coefficient is preferred. In our case, we scale the loss coefficients for 

convenience sake by taking the square root of MSE, also known as root mean squared error (RMSE).    

Unfortunately, basing forecast evaluation on the MSE approach results in two shortcomings. Firstly, 

despite that 𝑉𝐴𝑅̂𝑡+𝑖 is an unbiased variance estimator, it is technically still an imprecise estimator 

(Lopez, 2001). Secondly, MSE penalises conditional variance estimates that are distinct from the re-

alised conditional variance in a fully symmetrical way. It does not penalise for negative or zero esti-

mates of the conditional variance (Bollerslev et al., 1994). In practice, however, one may reckon con-

trastingly about negative and positive forecast errors of the same magnitude, as underestimation of 

volatility may be costlier than overestimation by the same amount (Christoffersen, 2012). 

• 3.3.3. Quasi-likelihood 

To allow for asymmetric loss when evaluating volatility forecasts, one can use the quasi-likelihood 

(henceforth QLIKE) loss function, which is another commonly used robust loss function in empirical 

studies. Like mean squared error, forecast model with the lowest QLIKE loss is preferred. The QLIKE 

is mathematically defined as  

 𝑄𝐿𝐼𝐾𝐸 =
𝑉𝐴𝑅̂𝑡+𝑖

𝜎̂𝑡+ℎ|𝑡
2 − log (

𝑉𝐴𝑅̂𝑡+𝑖

𝜎̂𝑡+ℎ|𝑡
2 ) − 1. (13) 

Note that this loss function depends on a relative forecast error, 𝑉𝐴𝑅̂𝑡+𝑖 𝜎̂𝑡+ℎ|𝑡
2⁄ , whereas MSE depends 

on an absolute forecast error (Brownlees et al., 2011). QLIKE will always penalise biased forecasts of 

conditional variance, i.e. underestimation of volatility, more heavily than MSE (Christoffersen, 2012). 

Here we first determine the model’s QLIKE losses for the entire out-of-sample period and then esti-

mate the model’s mean loss. 

According to Brownlees et al. (2011), there are reasons why someone prefers QLIKE to MSE for 

forecast comparison. First, since the QLIKE loss function depends on a relative volatility forecast er-

ror, the loss series is i.i.d. under the null, assuming that the forecast model is specified properly. MSE 

on the other hand, which depends entirely on 𝑉𝐴𝑅̂𝑡+𝑖 − 𝜎̂𝑡+ℎ|𝑡
2 , will have a variance that is propor-

tional to the square of the variance of asset returns (Patton, 2011b), and thus consists of high levels 

of serial dependence even under the null. Second, MSE has a bias that is proportional to the square of 

the true variance, whereas QLIKE bias is independent of the volatility level (Brownlees et al., 2011). 

Amidst severe market turmoil, sizable MSE loss coefficients will be a repercussion of high volatility 

regime without necessarily corresponding to the decay of a model’s predictive ability. QLIKE avoids 

this vagueness, making it simpler to study forecast errors across different volatility regimes. 
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Nevertheless, both MSE and QLIKE loss functions do not tell anything about the statistical signifi-

cance of forecast performances, making predictive comparisons incomplete (Diebold, 2015). The dif-

ference between loss coefficients may not be significantly different from zero (Choudhry & Wu, 2008). 

Therefore, to draw any meaningful inferences about the predictive ability of forecast models, we also 

need suitable significance tests.  

• 3.3.4. Diebold-Mariano test 

The Diebold-Mariano (DM) test is a commonly used significance test for pairwise comparisons of 

competing forecasts at different horizons (Diebold & Mariano, 1995). Compared to the abovemen-

tioned loss functions, the DM test allows one to assess the statistical significance of apparent predic-

tive superiority (Diebold, 2015). This method relies on assumptions made directly on the difference 

between two loss functions, also called loss differential. The DM test requires the loss differential to 

be covariance stationary, but it may not be strictly necessary in some cases (Diebold, 2015). For any 

loss function, the loss differential, 𝑑𝑖𝑗,𝑡, can be defined as 

 𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡 , (14) 

with 𝐿𝑖,𝑡 and 𝐿𝑗,𝑡 as loss functions of forecast models 𝑖 and 𝑗, respectively, at time 𝑡. In case when the 

disparity in the accuracy of two competing models is zero, then 𝔼(𝐿𝑖,𝑡) = 𝔼(𝐿𝑗,𝑡), or 𝔼(𝑑𝑖𝑗,𝑡) = 0. This 

corresponds with the equal predictive accuracy null hypothesis, which states that the population 

mean of a loss differential series is equal to zero (Diebold & Mariano, 1995). To test this null hypoth-

esis, a simple asymptotic 𝑧-test can be used. Therefore, the DM test statistic can be obtained through 

 𝐷𝑀 =
𝑑̅𝑖𝑗

𝜎̂𝑑̅𝑖𝑗

, (15) 

where 𝑑̅𝑖𝑗 =
1

𝑇
∑ 𝑑𝑖𝑗,𝑡

𝑇
𝑡=1 , or sample mean loss differential, and 𝜎̂𝑑̅𝑖𝑗

 is a consistent estimator of the 

standard deviation of 𝑑̅𝑖𝑗 . Under the null hypothesis, the DM test statistic has an asymptotic standard 

normal distribution (Harvey et al., 1997). Importantly, the DM statistic can be obtained by regression 

of the loss differential on a constant, using Newey-West standard errors (Diebold, 2015).6 

However, just like other statistical metrics, the DM test is subject to flaws as well. Firstly, the initial 

DM test was found to be oversized for moderate numbers of sample observations (Harvey et al., 

1997). Yet, the DM test is found considerably more versatile than other tests of equal forecast accu-

racy. When forecast errors are not normally distributed, the Morgan-Granger-Newbold test (1977) 

                                                             
6 Newey-West standard errors are also called heteroskedasticity and autocorrelation consistent (HAC) robust 
standard errors (Newey & West, 1994). 
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and Meese-Rogoff test (1988) for equal MSE are severely missized in both large and small samples. 

The DM test, on the other hand, maintains approximately correct size for all but moderate-sized sam-

ples (Mariano, 2002). Secondly, reporting results of pairwise comparisons becomes rather laborious 

when the set of models increases, since one must perform 𝑛(𝑛 − 1) 2⁄  tests (Hansen et al., 2003).  

• 3.3.5. Model Confidence Set 

Contrary to the widely used Diebold-Mariano test, the Model Confidence Set (MCS), introduced by 

Hansen et al. (2003), allows for comparison of multiple forecast models at once. This model selection 

method is an innovative way to deal with the issue of selecting the “best” forecast model(s) using out-

of-sample evaluation under a specified loss function. As defined in Hansen et al. (2011), an MCS, or 

ℳ∗, is a subset of a collection of candidate models, ℳ0, which consists of superior forecast models 

for a given significance level. The set of superior forecast models is formally defined as 

 ℳ∗ = {𝑖 ∈ ℳ0: 𝜇𝑖𝑗 ≤ 0, ∀ 𝑗 ∈ ℳ0}, (16) 

where 𝜇𝑖𝑗 = 𝔼(𝑑𝑖𝑗,𝑡) is finite and does not depend on 𝑡 for all 𝑖, 𝑗 ∈ ℳ0. Note that 𝑑𝑖𝑗,𝑡 is the loss dif-

ferential.  The aim of this method is to determine the set of superior models, which can be done via a 

sequence of significance tests where models that are found to be significantly inferior to other models 

of ℳ0  are eliminated (Hansen et al., 2011). Hence, MCS can be viewed as a sequential DM test 

(Quaedvlieg, 2018), or as a confidence interval of a parameter (Samuels & Sekkel, 2013). It is appeal-

ing to use a set of forecast models rather than an individual model, since there is no generic model 

that will consistently outperform other models in all conceivable scenarios. 

This procedure is constructed from an equivalence test, 𝛿ℳ , and an elimination rule, 𝑒ℳ , that are 

assumed to have certain properties (Hansen et al., 2011). The former is used to test whether the null 

𝐻0,ℳ: 𝜇𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∈ ℳ with ℳ ⊆ ℳ0, while the latter identifies an inferior model from ℳ and re-

moves it when 𝐻0 is rejected. Eventually, the surviving models end up in  ℳ̂∗ after sequentially trim-

ming ℳ0 whilst holding the significance level, 𝛼, fixed at each procedural step (Hansen et al., 2003). 

The algorithm for constructing  ℳ̂1−𝛼
∗  is as follows 

Step I. Initiate the procedure by setting ℳ = ℳ0. 

Step II. Test null hypothesis by using 𝛿ℳ  at level 𝛼. 

a. If 𝐻0,ℳ is not rejected, define ℳ̂1−𝛼
∗ = ℳ. 

b. If 𝐻𝑎,ℳ: 𝜇𝑖𝑗 ≠ 0 is accepted, then use 𝑒ℳ  to remove forecast model 𝑖 from ℳ, and 

reiterate Step II of this procedure. 
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To test the null hypothesis, we need to define 𝛿ℳ , which is simply based on the well-known Diebold-

Mariano test, see Eq. (15). In this case, 𝜎̂𝑑̅𝑖𝑗

2  is a bootstrapped estimate of the variance of the sample 

mean loss differential that can be computed through a block bootstrap method of 𝐵 resamples with a 

certain block length of ℒ (Bernardi & Catania, 2018). Moreover, 𝑒ℳ is defined as 

 𝑒𝑚𝑎𝑥,ℳ = arg max
𝑖∈ℳ

𝑑̅𝑖

𝜎̂𝑑̅𝑖

. (17) 

Interestingly, this procedure yields 𝑝-values for all forecast models under consideration (Hansen et 

al., 2003). These MCS 𝑝-values are useful since then it is clear which forecast models are included in 

ℳ̂1−𝛼
∗  for any significance level. The 𝑝-value for 𝑒ℳ𝑗

∈ ℳ0, or forecast model 𝑗, is formally defined by 

𝑝̂𝑒ℳ𝑗
= max

𝑖≤𝑗
 𝑝𝐻0,ℳ𝑖

, where 𝑝𝐻0,ℳ𝑖
 stands for the 𝑝-value that is associated with 𝐻0,ℳ𝑖

. Forecast models 

with relatively modest 𝑝-values are not probable to be contained in ℳ̂1−𝛼
∗ , because 𝑝̂𝑖 ≥ 𝛼 for any 𝑖 ∈

ℳ0 in order to be part of ℳ̂1−𝛼
∗ , see Hansen et al. (2011). 

One of the benefits of the Model Confidence Set is that it acknowledges the limitations of the data 

(Hansen et al., 2003, 2011). In other words, informative data will lead to ℳ∗ that holds only the best 

model, whereas less informative data make it hard to differentiate between forecast models. Hence, 

this method is dissimilar to other model selection criteria that select a single model and disregard the 

surprisal of the underlying data. Another benefit is that this procedure makes it feasible to make state-

ments regarding the significance that are valid in the conventional sense, a characteristic which is not 

satisfied by the frequently used approach of listing 𝑝-values from various pairwise comparison tests 

(Hansen et al., 2011). Furthermore, the MCS approach allows for the possibility that ℳ∗ contains 

more than one superior model. Lastly, ℳ∗ does not discard a forecast model unless it is found to be 

significantly inferior in comparison with other models (Hansen et al., 2003).  

3.4. Forecasting procedure 

Before we start using these GARCH-type models, the forecasting procedure needs to be outlined 

first. We split the data sample into two separate periods, namely in-sample and out-of-sample peri-

ods. The in-sample period starts from January 5, 2000, to August 6, 2004, whereas the out-of-sample 

starts from August 9, 2004, to March 27, 2018. The former results in 1,000 daily observations that 

covers periods of relatively large and small movements in volatility, meanwhile the latter has 3,078 

out-of-sample observations. Hence, there are 4,078 daily observations in total (see Table 1). Model 

predictions that are based entirely on in-sample data are susceptible to potential overfitting, as in-

sample forecast evaluations tend to spuriously indicate the existence of predictability when there is 
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none (Inoue & Kilian, 2005). In other words, in-sample forecasts draw an unduly optimistic picture 

of a model’s predictive power. Including out-of-sample observations will improve the predictions of 

a forecast model, as the power of forecast evaluation tests is strongest with long out-of-sample peri-

ods (Hansen & Timmermann, 2012). Therefore, to avoid potential overfitting issues, we will split the 

sample into two separate periods. 

Table 1. – Data sample 

Data sample Begin date End date Observations 

Full sample 01/05/2000 03/27/2018 4,078 

In-sample period 01/05/2000 08/06/2004 1,000 

Out-of-sample period 08/09/2004 03/27/2018 3,078 

Table 1. – Brief summary of the different sample periods used in this paper. 

 

Next, we will specify the following volatility-forecasting models in R by using the “rugarch” package: 

ARCH(1), GARCH(1,1), GJR-GARCH(1,1), CGARCH(1,1), APARCH(1,1), and GARCHX(1,1,1).7 Since the 

order structure of these conditional variance equations offer numerous combinations, we focus only 

on parsimonious forecast models because of their computational efficiency and simplicity. Notice that 

this paper tries to find out what makes a specific GARCH model so good in volatility forecasting rather 

than discovering a superior model that has the best specifications by chance. Therefore, we will use 

only one lag order for all forecast models. 

Thereafter, we will conduct rolling window direct forecasts with daily re-estimations of model pa-

rameters under Gaussian distribution to predict ℎ-step(s) ahead out-of-sample conditional variances, 

or  𝜎̂𝑡+ℎ|𝑡
2 . According to Christoffersen (2012), a general rule of thumb is to use a forecasting origin of 

at least 1,000 observations. Therefore, for the re-estimations of model parameters, we will use a roll-

ing window of 1,000 observations that moves one-step forward each time. We are interested to fore-

cast 𝜎̂𝑡+ℎ|𝑡
2  at different horizons to evaluate the short- and medium-term predictive ability of several 

GARCH models. The horizons used in this paper are one-day, one-week, one-month, and one-quarter.8  

Lastly, we will evaluate 𝜎̂𝑡+ℎ|𝑡
2  series by using RMSE and QLIKE, and eventually assess the significance 

of these evaluation tests by using DM tests and MCS. 

                                                             
7 See Ghalanos (2019) for documentation of this R package. 
8 Here we assume that a week has five trading days, whereas a month and a quarter have, on average, 21 and 
63 trading days, respectively, see Christoffersen (2012).  
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§4. Data 

In this paper, we will use major equity indices from four different countries, of which two from 

developed markets and two from emerging markets. Therefore, we will use the S&P 500, HSI, IPC, and 

KOSPI indices in our research, respectively. Time series data such as index prices and realised vola-

tility estimations are retrieved from Oxford-Man Institute’s realised library. The database illustrates 

a variety of realised volatility estimations that are based on different sampling methods. This paper 

uses the 5-minute and 10-minute subsampled realised variances as proxies. Furthermore, to deter-

mine the range-based variance proxies, the high and low prices of these four equity indices are re-

trieved from Bloomberg. The daily log returns of equity indices are calculated as 𝑟𝑡 = ln(𝑃𝑡 𝑃𝑡−1⁄ ), see 

Hull (2012). Lastly, daily prices of the Cboe Volatility Index, or VIX, are retrieved from Bloomberg as 

well. The sample period of this novel dataset starts from January 5, 2000, to March 27, 2018, which 

yields 4,078 daily observations in total, as Oxford-Man Institute’s database starts from January 2000 

onwards. Importantly, due to market holidays and possible mistakes in data entry, all rows that con-

tain at least one missing value are left out from the sample. In other words, if a certain equity index 

has a missing value at time 𝑡 + 𝑘, then the corresponding row including the non-missing values of 

other equity indices will be omitted. 

Table 2 illustrates the general information of the equity indices that are used in this paper. The New 

York Stock Exchange (NYSE) and Stock Exchange of Hong Kong (SEHK) are considered developed 

markets, whereas Bolsa Mexicana de Valores (BMV) and Korea Exchange (KRX) are labelled as emerg-

ing markets (MSCI, 2018). 

Table 2. – List of stock indices 

Country Stock exchange Major stock index Constituents 

Hong Kong Stock Exchange of Hong Kong Hang Seng Index (HSI) 50 

Mexico Bolsa Mexicana de Valores Índice de Precios y Cotizaciones (IPC) 35 

South Korea Korea Exchange Korea Composite Stock Price Index (KOSPI) 751 

United States New York Stock Exchange Standard & Poor’s 500 (S&P 500) 500 

Table 2. – The first, second, third, and fourth columns display the country, stock exchange, stock index, and num-

ber of constituents, respectively. The New York Stock Exchange and Stock Exchange of Hong Kong are considered 

developed markets, while the remaining two are labelled as emerging markets according to MSCI (2018).   

 

In the next subsection, descriptive statistics of the sample data will be explained in more detail. 

Additional descriptions of certain time series and their corresponding tables and graphs can be found 

in the Appendix sections. 
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4.1. Descriptive statistics 

Table 3 displays summary statistics of the daily logarithmic returns of these stock indices. We ob-

serve that return distributions of these stock indices tend to follow a leptokurtic distribution since 

the kurtosis estimates are all greater than three. Further, the average logarithmic returns and stand-

ard deviations of these indices tend to be close to zero and one, respectively. In addition, the Jarque-

Bera test statistics show that normality assumption of the sample data is rejected at a 1% significance 

level in every case, which implies that the sample stock returns are likely to follow a non-normal dis-

tribution.9 In addition, Figure 1 illustrates the kernel density plots of return distributions of these 

equity indices. These kernel density plots confirm the leptokurtic shape of the return distributions, 

which is not surprising because stock returns tend to have fat tails (see Section 2.2.1). Note that the 

return distribution of the KOSPI (see Panel D) is slightly skewed to the left compared to other indices. 

Table 3. – Summary statistics of stock index returns 

Indices Mean (%) Std. dev. (%) Min. (%) Max. (%) Skewness Kurtosis Jarque-Bera 

S&P 500 0.015 1.280 -9.930 10.642 -0.279 11.404 12,054 

HSI 0.014 1.584 -14.695 13.407 -0.392 12.625 15,846 

IPC 0.048 1.380 -12.126 10.441 -0.176 10.251 8,955 

KOSPI 0.021 1.606 -16.935 11.245 -0.739 11.613 12,976 

Table 3. – This table illustrates the summary statistics of the daily logarithmic returns of various stock indices. The sample 

period of these stock index returns starts from January 5, 2000, to March 27, 2018, which in turn gives 4,078 observations of 

daily trading returns. Note that the above Jarque-Bera test statistics reject the null hypothesis, which states that the sample 

data is normally distributed, in each case at a significance level of 1%. 

 

The correlations of the four equity indices returns are demonstrated in Table 4. From the table, we 

observe that returns of equity indices from the same continent tend to be stronger correlated with 

each other than equity indices from other continents. For instance, S&P 500 has a positive correlation 

coefficient of 0.69 with IPC, while the correlations with HSI and KOSPI are significantly weaker. One 

could suggest using dynamic conditional correlations but that is beyond the scope of this paper.  

Table 4. – Correlations of stock indices returns 

Indices HSI IPC KOSPI S&P 500 

HSI 1.00    
IPC 0.33 1.00   
KOSPI 0.63 0.30 1.00  
S&P 500 0.27 0.69 0.22 1.00 

Table 4. – This matrix displays the correlation coefficients of equity indices returns. 

The data sample period starts from January 5, 2000, to March 27, 2018, which contains 

4,078 observations in total. 

                                                             
9 Further explanation about the Jarque-Bera normality test is provided in Appendix Section A.1. 
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Figure 1. – Kernel density plots of stock index returns 

 

Figure 1. – This graph illustrates the return distribution of the S&P 500, IPC, HSI, and KOSPI indices. In each panel, the navy-

blue curve illustrates the standard normal distribution meanwhile the red-coloured dashes display the kernel density. The 

sample period of these stock returns starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 

 

Furthermore, Table 5 illustrates the summary statistics of the realised and range-based volatility 

proxies. The distributions of both RV and RP tend to show a non-normal shape as the skewness and 

kurtosis figures are significantly large. This also confirmed by the significantly large Jarque-Bera test 

statistics. Notice that the standard deviation of 5-minute and 10-minute subsampled realised volatil-

ity series of the S&P 500 is substantially larger compared to other indices in Panels A and B, mean-

while in Panels C and D the two range-based variance proxies of the KOSPI seem to have the largest 

standard deviations. Besides, it seems that the outliers of range-based variance proxies of these eq-

uity indices tend to be relatively more dispersed than the realised variance ones. 
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Table 5. – Summary statistics of volatility proxies 

Indices Mean (%) Std. dev. (%) Min. (%) Max. (%) Skewness Kurtosis Jarque-Bera 

Panel A: RV (5-min)      
S&P 500 1.118 2.583 0.012 77.477 11.671 239.684 9,611,194 
HSI 1.019 1.775 0.048 43.730 10.280 172.901 4,976,700 
IPC 0.871 1.890 0.044 52.248 12.491 249.963 10,469,385 
KOSPI 1.271 2.256 0.057 59.437 9.297 161.995 4,354,140 

Panel B: RV (10-min)      
S&P 500 1.139 2.616 0.013 77.841 11.228 228.166 8,700,413 
HSI 1.018 1.832 0.038 55.101 12.163 259.519 11,281,405 
IPC 1.016 2.093 0.041 45.485 9.757 144.092 3,447,227 
KOSPI 1.278 2.266 0.041 62.899 9.674 181.920 5,503,042 

Panel C: RP (Eq. 2)      
S&P 500 1.030 2.490 0.008 42.884 9.164 115.932 2,224,133 
HSI 1.010 2.679 0.029 112.325 22.467 799.842 108,232,879 
IPC 1.181 2.220 0.021 43.812 7.593 95.862 1,504,436 
KOSPI 1.275 2.880 0 90.512 13.316 308.202 15,947,958 

Panel D: RP (Eq. 3)      
S&P 500 0.912 2.272 0.008 59.205 11.526 199.766 6,668,932 
HSI 0.964 2.440 0.030 103.590 22.301 810.743 111,199,939 
IPC 1.014 1.841 0.023 42.914 8.171 113.806 2,131,610 
KOSPI 1.235 2.891 -0.432 102.172 15.047 410.165 28,323,237 

Table 5. – This table illustrates the summary statistics of different volatility proxies, namely the realised and range-based vari-

ances. The sample period starts from January 5, 2000, to March 27, 2018, which results in 4,078 daily observations for all proxies. 

Note that the Jarque-Bera test statistics reject the null hypothesis in every case at a significance level of 1%. 

 

Since the aim of this paper is to find out the properties of different forecast models, we are highly 

interested in the underlying volatility of these equity indices. For the sake of brevity, figures of S&P 

500 will be demonstrated in this subsection. Figure 2 illustrates the annualised volatility of the S&P 

500 index on a daily basis over the period January 5, 2000, to March 27, 2018. The computations of 

annualised volatilities are done similarly as in Patton (2011a) using 𝜎𝑡
𝐴 = √252 × 𝑉𝐴𝑅̂𝑡, where  𝑉𝐴𝑅̂𝑡 

is the variance proxy at time 𝑡. The figure illustrates volatility spikes that are scattered over the sam-

ple period. However, the magnitude of these volatility spikes varies among the four volatility proxies 

at certain moments. For instance, Panels A and B tend to display larger volatility spikes during the 

financial crisis of 2008 compared to Panels C and D. Additionally, the panels illustrate the clustering 

of volatility in certain periods as well. It seems that sizable changes in variance tend to be followed by 

relatively large changes, while small changes in variance tend to be followed by relatively small 

changes.10 Similar results for volatility clustering can be found for other equity indices as well. The 

                                                             
10 Mandelbrot (1963) used equivalent words to outline the observation of volatility clustering of price variation. 
His exact words were: “…large changes tend to be followed by large changes – of either sign – and small changes 
tend to be followed by small changes…” (p. 418). 
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corresponding line plots of these equity indices are reported in Appendix Section C (see Figure C1, 

Figure C2, and Figure C3). 

Figure 2. – Annualised volatility proxies of S&P 500 index 

 

Figure 2. – This figure displays volatility estimates of the S&P 500 index based on four different proxies, namely the 5-minute 

and 10-minute RV, and the two range-based variances based on Eq. (2) and Eq. (3). The volatility estimates are annualised, 

using the following formula from Patton (2011a): 𝜎𝑡
𝐴 = √252 × 𝑉𝐴𝑅̂𝑡. Furthermore, the vertical axes in all panels are scaled up 

by 1/100. The sample period starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 

 

In addition, Figure 3 illustrates the autocorrelation plots, or correlograms, of the four variance es-

timators of the S&P 500. We observe a significant decay in the autocorrelation coefficients of the re-

alised variance and range-based variance proxies after dozens of lags. After a while, the autocorrela-

tion of these volatility proxies tends to converge to zero in all four panels. Similar patterns can be 

found for the other equity indices as well; see Figure C4, Figure C5, and Figure C6 in the Appendix. 

These correlograms suggest that asset return volatility of the S&P 500, HSI, IPC, and KOSPI indices 

tends to be persistent, given the relatively high autocorrelation values in the panels below. Hence, the 

existence of long-memory property for these equity indices is probable. 
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Figure 3. – Autocorrelations of S&P 500 volatility proxies 

 

Figure 3. – In this figure, correlograms of the four different volatility proxies of the S&P 500 are demonstrated in the above 

panels. A window of 500 lags is used in all four panels. Furthermore, the grey dashes represent the Bartlett’s formula for 𝑀𝐴(𝑞) 

95% confidence bands, i.e. 5% significance limits. 

 

We find the partial autocorrelation plots of the four different variance estimators of the S&P 500 

index in Figure 4. Again, we observe clear signs of serial correlation from the graph panels, but com-

pared to the previous figure the partial autocorrelation function illustrates a relatively fast decaying 

pattern in these four panels. The serial correlation coefficients of these volatility proxy series con-

verge to zero just after several lags and remain relatively stable thereafter. Similar patterns can be 

found for other equity indices as well; see Figure C7, Figure C8, and Figure C9 in the Appendix. 

Compared to the previous correlograms, the partial autocorrelation plots suggest that persistence in 

asset return volatility does not last very long.  
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Figure 4. – Partial autocorrelations of S&P 500 volatility proxies 

 

Figure 4. – In this figure, partial autocorrelations of the four different volatility proxies of the S&P 500 are demonstrated in the 

above panels. A window of 40 lags is used in all four panels. Furthermore, the grey dashes represent the 95% confidence bands, 

which can be calculated as 𝑠𝑒 = 1 √𝑛⁄ . 

 

Moreover, to check quantitatively the occurrence of serial correlation in time series, we can use the 

Ljung-Box Q-test.11 The results are demonstrated in Table A3 in the Appendix. In short, based on 

these test results, there is sufficient statistical evidence to conclude that these variance estimators 

exhibit serial correlation. As an alternative to the Ljung-Box Q-test, this paper also uses Engle’s ARCH 

test to check for serial dependence in the squared residual series.12 In addition, Table A4 illustrates 

the results of Engle’s ARCH test. We find sufficient statistical evidence to conclude that the squared 

errors of the equity indices returns tend to be serially correlated. 

                                                             
11 Further description regarding the Ljung-Box test is provided in Appendix Section A.3. 
12 Engle’s ARCH test is described in more detail in Appendix Section A.4. 
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Figure 6, on the next page, illustrates the index price level, logarithmic returns, and squared returns 

of the S&P 500, which are displayed in Panels A, B, and C, respectively. Interestingly, it seems that a 

downward trend in the index price causes significant spikes in the daily returns, which tend to concur 

with the considerable jumps in the volatility series, or squared return in this case. Notice that squared 

return is a noisy proxy measure of volatility. Yet, squared return does stress the dispersion of asset 

returns in a convenient way. This graphical finding seems to coincide with the notion of leverage ef-

fect, which is explained earlier in Section 2.2.4. Similar results can be found for the other equity in-

dices as well; see Figure C10, Figure C11, and Figure C12 in the Appendix. Additionally, Figure 5 

displays the historical price pattern of the VIX. It seems that the VIX Index has the tendency to follow 

the opposite trend relative to the S&P 500. The VIX can be used as a variance proxy as well, which is 

shown in Figure C13 from the Appendix. We observe that the VIX variance proxy closely tracks the 

realised variance and range-based variance proxies. 

Figure 5. – Historical behaviour of the VIX Index 

 

Figure 5. – Cboe Volatility Index, or VIX. The sample period starts from January 5, 2000, to March 27, 2018, which 

contains 4,078 observations. This results in a sample mean price of $19.83 with minimum and maximum prices of 

$9.14 and $80.86, respectively, and a standard deviation of $8.80. 
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Figure 6. – S&P 500 index 

 

Figure 6. – This figure illustrates the historical data of the S&P 500 index price level, log returns, and squared returns. These are displayed in 

Panels A, B, and C, respectively. The sample period starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 
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§5. Empirical results 

5.1. In-sample fitting results 

Table 6 illustrates the in-sample fitting results of the GARCH-type models. Based on the goodness-

of-fit tests, the overall results seem to be mixed as there is no single model that fits the equity indices 

best in all cases. We observe that GARCHX(1,1,1) is the best-fitting model in our subset of volatility-

forecasting models for S&P 500, meanwhile the APARCH(1,1) model fits the in-sample data of IPC and 

KOSPI best. For HSI, the APARCH(1,1) model is preferred under the log-likelihood criteria but the 

information criteria tests suggest that GJR-GARCH(1,1) is a better fitting model. 

Table 6. – Results of in-sample goodness-of-fit tests 

Forecast model Log-likelihood AIC BIC 

Panel A: S&P 500    
ARCH(1) -1,768.47 3.543 3.558 
GARCH(1,1) 2,918.10 -5.828 -5.809 
GJR-GARCH(1,1) 2,930.49 -5.851 -5.826 
CGARCH(1,1) 2,917.74 -5.824 -5.794 
APARCH(1,1) 2,936.22 -5.860 -5.831 
GARCHX(1,1,1) 2,951.96*** -5.894*** -5.869*** 

Panel B: IPC    
ARCH(1) 2,687.13 -5.368 -5.354 
GARCH(1,1) 2,757.79 -5.508 -5.488 
GJR-GARCH(1,1) 2,768.45 -5.527 -5.502 
CGARCH(1,1) 2,772.69 -5.533 -5.504 
APARCH(1,1) 2,776.79*** -5.542*** -5.512*** 
GARCHX(1,1,1) 2,759.08 -5.508 -5.484 

Panel C: HSI    
ARCH(1) 2,726.03 -5.446 -5.431 
GARCH(1,1) 2,764.30 -5.521 -5.501 
GJR-GARCH(1,1) 2,786.66 -5.563*** -5.539*** 
CGARCH(1,1) 2,773.50 -5.535 -5.506 
APARCH(1,1) 2,786.91*** -5.562 -5.532 
GARCHX(1,1,1) 2,765.63 -5.521 -5.497 

Panel D: KOSPI    
ARCH(1) 2,362.99 -4.720 -4.705 
GARCH(1,1) 2,387.86 -4.768 -4.748 
GJR-GARCH(1,1) 2,401.64 -4.793 -4.769 
CGARCH(1,1) 2,400.67 -4.789 -4.760 
APARCH(1,1) 2,408.77*** -4.806*** -4.776*** 
GARCHX(1,1,1) 2,403.11 -4.796 -4.772 

Table 6. – This table illustrates the results of in-sample goodness-of-fit tests for the above-

mentioned volatility-forecasting models. The in-sample period starts from January 5, 2000, 

to August 6, 2004, resulting in 1,000 observations. *** indicates the most preferred fore-

casting model in terms of in-sample fit under the log-likelihood, AIC, and BIC criteria.   

 

Furthermore, Table B1 from the Appendix illustrates the in-sample estimations of model param-

eters of all forecasting models. The results show mixed results for some GARCH-type models. For in-

stance, we observe that the APARCH(1,1) model has several statistically significant parameters for all 
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equity indices, meanwhile the GARCHX(1,1,1) model has in some cases only a few statistically signif-

icant parameters. The former result can possibly be explained by the model’s flexibility that allows 

for many forms. It is important to mention that these in-sample estimations do not say anything about 

predictive ability of our GARCH-type models.  

5.2. Forecast evaluation 

This subsection discusses the direct forecast results of the GARCH-type models at multiple horizons. 

Again, only tables and figures related to the results of S&P 500 will be presented here for the sake of 

brevity. The rest can be found in the Appendix sections.  

• 5.2.1. Results of loss functions 

Table 7 illustrates the forecast loss coefficients of the GARCH-type models of S&P 500 at multiple 

horizons. Similar to Brownlees et al. (2011), when ℎ increases, the loss coefficients tend to show 

larger discrepancies in forecast errors due to the uncertainty over longer horizons. From all the fore-

casting models, we clearly observe that the GARCHX(1,1,1) model has the lowest loss coefficients in 

all cases, suggesting that this model predicts relatively more accurate forecasts of both short- and 

medium-term conditional variances for the S&P 500 index than other models in this sample. Reason 

why the GARCHX model performs relatively well here has probably to do with the inclusion of the VIX 

variance proxy, since it tracks the RV and RP proxies relatively well (see Figure C13 in the Appendix), 

resulting in sharper volatility forecasts and thus smaller discrepancies in forecast errors. In contrast, 

the forecast results of the ARCH(1) model are relatively weak compared to other models in all cases. 

Yet, it is no surprise that the ARCH(1) model underperforms here, since other forecast models are 

extensions of the ARCH model, see Section 3.2.  

Moreover, APARCH(1,1) seems to be a good alternative, as in second best model, for GARCHX(1,1,1) 

when it comes to one-step ahead forecasts, as both RMSE and QLIKE coefficients of APARCH(1,1) are 

second lowest for all variance proxies in this sample. However, for ℎ > 1, other forecasting models 

are preferred as alternative for the GARCHX(1,1,1) model, due to their relatively small loss coeffi-

cients. For instance, the CGARCH(1,1) model has the second lowest RMSE coefficients for all variance 

proxies. Meanwhile, QLIKE ranks the ordinary GARCH(1,1) model as second best under both the RV 

and RP criteria for ℎ = 21 and ℎ = 63. For one-week ahead forecasts, QLIKE ranks APARCH(1,1) and 

GJR-GARCH(1,1) as second best based on RV proxies and RP proxies, respectively.  

Figure 7 and Figure 8 (see pages 34 and 35) illustrate the one-step ahead conditional variance 

forecasts of the S&P 500. Notice that the red and blue lines display the in-sample forecasts and out-

of-sample forecasts, respectively. The ARCH(1) forecasts are substantial in size compared to other 



Master’s Thesis Financial Economics   H. Hu 

31 
 

GARCH models. In contrast to other GARCH forecasts, the ARCH(1) series seems to be less refined as 

well, which is not surprising since the ARCH model is only a linear function of past squared errors. In 

addition, we observe that the GARCHX(1,1,1) forecasts tend to be relatively small compared to the 

other GARCH models in this sample. 

Table 7. – Forecast loss coefficients of S&P 500 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 6.280 1.139 6.617 1.139 6.807 1.258 6.963 1.481 
GARCH(1,1) 2.238 0.352 2.568 0.437 3.143 0.601 3.648 0.754 
GJR-GARCH(1,1) 2.062 0.319 2.534 0.421 3.181 0.623 3.728 0.770 
CGARCH(1,1) 2.170 0.334 2.477 0.429 3.014 0.635 3.495 0.775 
APARCH(1,1) 2.045 0.315 2.498 0.416 3.162 0.677 3.708 0.772 
GARCHX(1,1,1) 1.915*** 0.267*** 2.281*** 0.375*** 2.705*** 0.567*** 3.047*** 0.720*** 

Panel B: RV (10-min)         
ARCH(1) 6.262 1.151 6.616 1.156 6.798 1.279 6.958 1.475 
GARCH(1,1) 2.238 0.371 2.547 0.452 3.133 0.613 3.638 0.761 
GJR-GARCH(1,1) 2.069 0.338 2.508 0.433 3.175 0.638 3.720 0.775 
CGARCH(1,1) 2.166 0.353 2.453 0.443 3.002 0.648 3.485 0.780 
APARCH(1,1) 2.045 0.334 2.471 0.431 3.156 0.694 3.700 0.776 
GARCHX(1,1,1) 1.907*** 0.286*** 2.265*** 0.387*** 2.700*** 0.578*** 3.031*** 0.726*** 

Panel C: RP (Eq. 2)         
ARCH(1) 6.529 1.270 6.596 1.319 6.788 1.520 6.925 1.593 
GARCH(1,1) 2.313 0.539 2.557 0.601 3.053 0.749 3.585 0.877 
GJR-GARCH(1,1) 2.177 0.505 2.529 0.577 3.103 0.769 3.673 0.886 
CGARCH(1,1) 2.227 0.522 2.436 0.589 2.914 0.780 3.422 0.888 
APARCH(1,1) 2.148 0.502 2.486 0.578 3.083 0.833 3.653 0.896 
GARCHX(1,1,1) 1.864*** 0.438*** 2.171*** 0.528*** 2.566*** 0.701*** 2.926*** 0.832*** 

Panel D: RP (Eq. 3)         
ARCH(1) 6.438 1.270 6.630 1.286 6.758 1.379 6.907 1.560 
GARCH(1,1) 2.380 0.535 2.645 0.587 3.071 0.723 3.521 0.827 
GJR-GARCH(1,1) 2.274 0.502 2.627 0.564 3.129 0.737 3.604 0.828 
CGARCH(1,1) 2.258 0.513 2.509 0.572 2.918 0.752 3.347 0.830 
APARCH(1,1) 2.245 0.501 2.591 0.568 3.109 0.798 3.583 0.836 
GARCHX(1,1,1) 1.843*** 0.437*** 2.137*** 0.514*** 2.485*** 0.661*** 2.788*** 0.770*** 

Table 7. – This table displays the empirical loss coefficients of various GARCH-type models of the S&P 500 index at multiple horizons under 

different variance proxies. For the one-step, five-steps, 21-steps, and 63-steps ahead direct forecasts, we obtained 3,078, 3,074, 3,058, and 

3,016 out-of-sample observations, respectively. Note that RMSE coefficients have been scaled up for convenience sake. *** indicates the 

preferred forecasting model that yields the lowest loss function coefficient, and thus illustrates the best out-of-sample forecast performance 

in this sample.  

 

In contrast to the S&P 500 predictions, the forecast results of HSI, IPC, and KOSPI display a slightly 

different picture (see Table B2, Table B3, and Table B4 from the Appendix). To make the results 

more concise and accessible for the reader, Table 8 summarises the forecast results of the above-

mentioned tables in which only the outperforming models are demonstrated for each horizon. Purely 

observing the loss coefficients of these tables, we conclude that CGARCH(1,1) tends to outperform 

GARCHX(1,1,1) in most cases, whilst APARCH(1,1) is superior in only a few cases.  
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These outcomes could possibly be explained by the VIX component in GARCHX, which is closely 

linked with the implied volatilities of the S&P 500. This covariate seems to explain the dispersion of 

S&P 500 returns more accurately than the asset return volatilities of other equity indices, and there-

fore underperforming models like CGARCH and APARCH in some cases. Table B5 confirms this con-

jecture by showing the adjusted 𝑅2 of the out-of-sample regressions of various volatility proxies of 

the indices on the VIX variance proxy, suggesting that the VIX component explains a larger proportion 

of the variability in S&P 500 variance proxies than the ones of HSI, IPC, and KOSPI. 

Table 8. – Summary of forecast models with the lowest loss coefficients 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
S&P 500 GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX 
HSI CGARCH GARCHX CGARCH GARCHX CGARCH CGARCH CGARCH GARCHX 
IPC APARCH CGARCH CGARCH APARCH CGARCH CGARCH CGARCH APARCH 
KOSPI APARCH CGARCH APARCH CGARCH CGARCH CGARCH CGARCH CGARCH 

Panel B: RV (10-min)         
S&P 500 GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX 
HSI CGARCH GARCHX CGARCH GARCHX CGARCH CGARCH CGARCH GARCHX 
IPC APARCH CGARCH CGARCH CGARCH CGARCH CGARCH CGARCH APARCH 
KOSPI APARCH CGARCH APARCH CGARCH CGARCH CGARCH CGARCH CGARCH 

Panel C: RP (Eq. 2)         
S&P 500 GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX 
HSI CGARCH GARCHX CGARCH GARCHX CGARCH CGARCH CGARCH GARCHX 
IPC APARCH APARCH CGARCH APARCH CGARCH CGARCH CGARCH APARCH 
KOSPI APARCH CGARCH APARCH CGARCH CGARCH CGARCH CGARCH CGARCH 

Panel D: RP (Eq. 3)         
S&P 500 GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX GARCHX 
HSI CGARCH GARCHX CGARCH GARCHX CGARCH CGARCH CGARCH GARCHX 
IPC CGARCH CGARCH CGARCH CGARCH CGARCH CGARCH CGARCH APARCH 
KOSPI APARCH CGARCH APARCH CGARCH CGARCH CGARCH CGARCH CGARCH 

Panel E: Statistics         
CGARCH 5 7 8 6 12 12 12 4 
APARCH 7 1 4 2 − − − 4 
GARCHX 4 8 4 8 4 4 4 8 

Table 8. – This table summarises the forecast results of Table 7, Table B2, Table B3, and Table B4 by showing only the models with the 

lowest RMSE and QLIKE losses. Further, Panel E counts the number of times a model is mentioned in the corresponding column. CGARCH, 

GARCHX, and APARCH models are mentioned 66, 44, and 18 times in total, respectively. By further decomposing these statistics into four 

horizons, we gain additional insights. For one-step ahead, CGARCH, GARCHX, and APARCH are mentioned 12, 12, and 8 times, respectively. 

For one-week ahead, CGARCH, GARCHX, and APARCH are mentioned 14, 12, and 6 times, respectively. For one-month ahead, CGARCH and 

GARCHX are mentioned 24 and 8 times, respectively. Lastly, for one-quarter ahead, CGARCH, GARCHX, and APARCH are mentioned 16, 12, 

and 4 times, respectively. 

 

Besides comparing forecast performances of models, it is also interesting to examine the average 

losses across different equity indices at multiple horizons, because it may shed some light on the dis-

similarities of volatility forecasts between developed markets and emerging markets. Hence, Table 9 

illustrates the average forecast losses of the four indices for each horizon and variance proxy. We 
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observe that the mean forecast losses of S&P 500 tend to be lower than other indices for all cases 

under RMSE, whereas the Hang Seng Index tends to have the highest mean forecast loss compared to 

the rest. Nonetheless, the QLIKE-based mean losses are mixed for each horizon. For instance, indices 

from emerging markets tend to have the lowest mean forecast losses at longer horizons, but only 

occasionally at short horizons. Meanwhile, the S&P 500 has the lowest mean losses only at ℎ = 1 and 

ℎ = 5 in Panels A and B under QLIKE. However, the QLIKE-based mean losses of S&P 500 deteriorate 

significantly at longer horizons. Ultimately, the results below are rather ambiguous, since it is not 

apparent whether volatility forecasts of developed markets indices are likely to have lower losses 

compared to emerging markets indices, or vice versa. Therefore, further research may provide clearer 

picture on this, but that is beyond the scope of this paper.       

Table 9. – Average forecast losses 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
S&P 500 2.785 0.454 3.163 0.536 3.669 0.727 4.098 0.879 
HSI 4.664 0.598 4.922 0.623 5.236 0.665 5.615 0.688 
IPC 4.649 0.565 4.847 0.602 5.141 0.662 5.361 0.732 
KOSPI 3.407 0.565 3.697 0.699 4.261 0.716 4.637 0.686 

Panel B: RV (10-min)         
S&P 500 2.781 0.472 3.143 0.550 3.661 0.742 4.089 0.882 
HSI 4.695 0.624 4.962 0.627 5.276 0.696 5.658 0.701 
IPC 4.539 0.535 4.768 0.575 5.111 0.643 5.360 0.721 
KOSPI 3.473 0.583 3.779 0.682 4.300 0.716 4.648 0.694 

Panel C: RP (Eq. 2)         
S&P 500 2.876 0.629 3.129 0.699 3.585 0.892 4.031 0.995 
HSI 5.052 0.771 5.334 0.812 5.677 0.913 6.088 0.880 
IPC 4.536 0.571 4.721 0.611 5.066 0.686 5.347 0.765 
KOSPI 3.857 0.713 4.202 0.861 4.758 0.859 5.059 0.854 

Panel D: RP (Eq. 3)         
S&P 500 2.906 0.626 3.190 0.682 3.578 0.842 3.958 0.942 
HSI 5.097 0.745 5.329 0.782 5.641 0.805 6.001 0.848 
IPC 4.470 0.571 4.684 0.606 4.996 0.666 5.210 0.738 
KOSPI 3.900 0.682 4.212 0.892 4.778 0.870 5.063 0.835 
Table 9. – This table displays the average forecast losses across different equity indices at multiple horizons. The averages are based on the 

loss coefficients of GARCH-type models in Table 7, Table B2, Table B3, and Table B4.  

 

Note that the reported forecast losses vary moderately under the 5-minute and 10-minute subsam-

pled realised volatility proxies and the two range-based variance proxies. It is important to use sev-

eral unbiased variance estimators when evaluating the validity and reliability of out-of-sample fore-

casts, because consistency between variance estimators leads to better understanding of a model’s 

predictive ability. Therefore, excluding a variance proxy because of unfavourable forecast losses may 

potentially lead to unrepresentative conclusions. 
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Figure 7. – One-step ahead volatility forecasts of S&P 500 

 

Figure 7. – This figure illustrates the rolling one-step ahead volatility forecasts of ARCH(1), GARCH(1,1), and GJR-GARCH(1,1) models. Each 

panel illustrates the in- and out-of-sample conditional variances, which is separated by the grey dashed line. The in-sample period starts from 

January 5, 2000, to August 6, 2004, resulting in 1,000 observations, whereas the forecast period starts from August 9, 2004, to March 27, 2018, 

resulting in 3,078 observations. 
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Figure 8. – One-step ahead volatility forecasts of S&P 500 

 

Figure 8. – This figure illustrates the rolling one-step ahead volatility forecasts of CGARCH(1), APARCH(1,1), and GARCHX(1,1,1) models. Each 

panel illustrates the in- and out-of-sample conditional variances, which is separated by the grey dashed line. The in-sample period starts from 

January 5, 2000, to August 6, 2004, resulting in 1,000 observations, whereas the forecast period starts from August 9, 2004, to March 27, 2018, 

resulting in 3,078 observations. 
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• 5.2.2. Results of Diebold-Mariano tests 

To check whether the forecast results under the RMSE and QLIKE loss functions are statistically 

significant, we conduct Diebold-Mariano tests for only the S&P 500 in order to perform pairwise com-

parisons of GARCH-type models. The DM test statistics for each horizon, which are obtained by re-

gression of 𝑑𝑖𝑗,𝑡 on a constant with HAC standard errors, are reported in the Appendix section; see 

Table B6, Table B7, Table B8, and Table B9. From these tables, we observe positive and negative 

DM test statistics. A positive DM test statistic means that the column model tends to be less accurate 

compared to the corresponding row model, whereas a negative DM test statistic implies that the col-

umn model tends to predict more accurately than the corresponding row model.  

According to these four tables, ARCH(1) seems to be the least desired model for volatility forecast-

ing, as other GARCH models tend to generate more accurate forecasts. Further, the test statistics of 

medium-term horizons, ℎ > 5, under QLIKE tend to be less significant than the ones of short-term 

horizons, suggesting that medium-term forecast outperformance of a pair of models happens mostly 

by chance. In other words, the two competing models are inclined to perform equally well, or bad, 

under QLIKE when it comes to one-month or one-quarter ahead forecasts of conditional variances of 

the S&P 500. This is obviously not remarkable due to the uncertain nature of long-term forecasts. 

What is striking is that for shorter horizons the combinations of APARCH(1,1) and GJR-GARCH(1,1), 

and CGARCH(1,1) and GJR-GARCH(1,1) models tend to be statistically insignificant under both RMSE 

and QLIKE. Note that the GJR-GARCH model can be derived from APARCH, since it is a special case of 

the latter. This fact may explain to some extent the insignificant DM test statistics of the APARCH/GJR-

GARCH combination.   

Nonetheless, by placing each forecast model in juxtaposition as a pair, we cannot effortlessly point 

out which forecast models are superior to other forecast models for all horizons. In fact, the Diebold-

Mariano test does not provide clear answers to the overall performance of models for a specific hori-

zon. Therefore, the use of Model Confidence Sets is more convenient in this case. 

• 5.2.3. Results of MCS 

This paper uses the “MCS” package in R to determine the MCS 𝑝-values.13 We use the block boot-

strap procedure and set the parameters to 𝐵 = 1,000 resamples, block length ℒ = ℎ, and significance 

level 𝛼 = 5%. The block length of this bootstrap procedure not only depends on the horizon of our 

forecast losses, but also on the potential serial correlation of these losses. Thus, the larger the forecast 

horizon, the larger the block length of the bootstrap. Note that we set block length ℒ ≠ ℎ only for the 

                                                             
13 See Catania and Bernardi (2017) for documentation of this R package. 
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one-step ahead forecasts, in order to take into account any possible serial correlated forecast errors. 

Hence, for ℎ = 1, we set ℒ = 2. The MCS results of the S&P 500 are reported in Table 10, whereas the 

results of the remaining equity indices are illustrated in the Appendix, as usual. Forecast models that 

are included in ℳ̂0.95
∗ , or 95% Model Confidence Set, are identified by asterisks. 

Table 10. – Results of MCS for S&P 500 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0.488*** 0 0.679*** 
GJR-GARCH(1,1) 0 0 0 0 0 0.169*** 0 0.478*** 
CGARCH(1,1) 0 0 0 0 0 0.084*** 0 0.350*** 
APARCH(1,1) 0 0 0 0 0 0.185*** 0 0.548*** 
GARCHX(1,1,1) 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

Panel B: RV (10-min)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0.431*** 0 0.595*** 
GJR-GARCH(1,1) 0 0 0 0 0 0.155*** 0 0.483*** 
CGARCH(1,1) 0 0 0 0 0 0.091*** 0 0.284*** 
APARCH(1,1) 0 0 0 0 0 0.149*** 0 0.521*** 
GARCHX(1,1,1) 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

Panel C: RP (Eq. 2)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0.206*** 0 0.394*** 
GJR-GARCH(1,1) 0 0 0 0 0 0.087*** 0 0.359*** 
CGARCH(1,1) 0 0 0 0 0 0.107*** 0 0.271*** 
APARCH(1,1) 0 0 0 0 0 0.084*** 0 0.296*** 
GARCHX(1,1,1) 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

Panel D: RP (Eq. 3)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0.052*** 0 0.105*** 
GJR-GARCH(1,1) 0 0 0 0 0 0.057*** 0 0.108*** 
CGARCH(1,1) 0 0 0 0 0 0.115*** 0 0.077*** 
APARCH(1,1) 0 0 0 0 0 0.050*** 0 0.079*** 
GARCHX(1,1,1) 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

Table 10. – This table provides the 𝑝-values of Model Confidence Sets for the S&P 500 forecast losses at multiple horizons. A block bootstrap 

approach of 1,000 resamples, block length equal to forecast horizon, and 5% significance level are used to determine these coefficients. Note 

that we set ℒ = 2 for the one-step ahead forecasts. *** denotes the forecast model is part of ℳ̂0.95
∗ .    

 

From the table above, GARCHX seems to be the only model included in ℳ̂0.95
∗  for all horizons under 

RMSE, whereas ARCH is the only model excluded from ℳ̂0.95
∗  for ℎ = 21 and ℎ = 63 under QLIKE. In 

contrast to Quaedvlieg’s (2018) results, the QLIKE-based MCS for the S&P 500 expands for ℎ > 5 in 

this paper. At first, the results of this study seem conflicting, but there may be a logical explanation 

for these findings. It could be that due to the likelihood of increased forecast uncertainty at longer 

horizons, various GARCH models are considered to be superior in this case. In other words, they tend 

to perform equally well for longer horizons. Altogether, the results of Table 10 seem to suggest that 
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the customised GARCHX model is a superior model for both short- and medium-term forecasting of 

conditional variances of the S&P 500. Again, it seems that adding an accurate variance proxy to the 

standard GARCH model improves the predictive ability in this case. 

Furthermore, Table B10 reports the MCS results related to the Hang Seng Index. Here we observe 

a slightly different picture in which CGARCH tends to be the sole superior model for all horizons under 

RMSE. Although the component GARCH is included in ℳ̂0.95
∗  for all horizons under QLIKE, the custom-

ised GARCHX model is ranked higher in terms of MCS 𝑝-value in most cases. It is remarkable that 

ARCH is part of the 95% MCS in Panels B and C for ℎ = 21 under QLIKE, since the forecast errors of 

ARCH tend to be relatively large compared to other models, see previous subsubsections. Despite this, 

the CGARCH and GARCHX models are mostly preferred due to the ranking of MCS 𝑝-values. 

Results related to the Mexican IPC index are reported in Table B11, where only the component 

GARCH model is part of ℳ̂0.95
∗  for almost all horizons under RMSE. However, when using either the 

10-minute subsampled realised variance proxy or the range proxy based on Eq. (2), the APARCH 

model is preferred for one-step ahead forecasts under RMSE. It seems that ℳ̂0.95
∗  tends to expand over 

the horizons under the QLIKE loss function, including forecast models such as CGARCH, APARCH, GJR-

GARCH, GARCHX, and even GARCH in ℳ̂0.95
∗ . Altogether, depending on the loss functions, the results 

suggest that CGARCH and APARCH, and sometimes GJR-GARCH and GARCHX as well, are the most 

preferred models for volatility forecasting, since they are ranked highest in terms of MCS 𝑝-value.  

Lastly, Table B12 illustrates the results of MCS for the Korea Composite Stock Price Index. In this 

case, the APARCH model tends to be the sole superior model for short horizons under RMSE, while 

the component GARCH model seems to be the only model in ℳ̂0.95
∗  for longer horizons under the same 

loss function. Based on the QLIKE loss function, almost all models are included in ℳ̂0.95
∗  across the 

horizons. Models that are frequently included in the 95% MCS are CGARCH, APARCH, GJR-GARCH, 

and GARCHX. For some horizons under QLIKE, the simple GARCH(1,1) model or even ARCH(1) are 

included as well. As a whole, both APARCH and CGARCH are preferred for shorter horizons, while 

CGARCH and GARCHX tend to be better models for long-term forecasting.  
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§6. Research limitations 

Like all other research studies, this paper has its limitations in terms of empirical research as well. 

Therefore, it is important to address several of those limitations here. Firstly, the split of sample data 

into an in-sample and out-of-sample period is done arbitrarily in this study, i.e. without additional 

robustness tests. The current approach in this paper might affect the out-of-sample forecast results 

to a certain extent. Whether this has large implications for the validity of this empirical study is not 

entirely clear yet. On the other hand, finance literature has hitherto not synthesised a proper meth-

odological guidance on the issue of selecting the right split point that separates the sample data into 

two parts for forecasting purposes (Hansen & Timmermann, 2012).  

Secondly, this paper did not use the iterated approach next to the direct method for out-of-sample 

forecasts, since the former approach requires advanced programming skills. Using both methods 

would make a comparison between competing forecast models complete, in the sense that one should 

not only focus on the prediction models, but also on the forecast procedure itself. Unfortunately, the 

“rugarch” package in R does not have a built-in function yet for computing iterated forecasts, hence 

leaving it as a cumbersome programming exercise to the researcher.  

Moreover, the model parameters were estimated under the classic Gaussian distribution, which is 

often criticised in finance literature. Mandelbrot (1963), Fama (1965), and Poon and Granger (2005) 

have shown evidence that the returns of financial assets tend to follow a non-normal distribution. 

Despite its convenience, the Gaussian distribution does not appropriately capture the heavy tails of 

asset return distributions (Christoffersen, 2012). As a result, it understates the probability of extreme 

changes in asset returns (Hull, 2015), which eventually affects the forecast accuracy of models.  

Finally, this paper evaluated the direct forecast results of GARCH-type models individually at each 

horizon. It does not use specific evaluation tests for joint multistep testing of out-of-sample forecasts, 

due to lack of popular joint multi-horizon forecast evaluation tests in finance literature. Despite this, 

Quaedvlieg (2018) proposed an extension to the MCS approach of Hansen et al. (2011), which allows 

for joint multi-horizon testing of forecast models at once. A potential drawback of evaluating multi-

horizon forecast performances of various models individually is that it may potentially lead to spuri-

ous outcomes, and thus resulting in faulty conclusions about the predictive ability of forecast models. 

Accordingly, caution should be exercised when examining the empirical results of volatility fore-

casts in this research paper due to its limitations. 
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§7. Suggestions for further research 

Throughout the years, several empirical studies have conducted research on volatility-forecasting 

models and their performances. Many have tried to come up with novel mathematical models and 

better proxy measures of market volatility to improve the predictive power of models so that more 

accurate trajectory of future dispersions of asset returns can be forecasted. Regardless of all the em-

pirical studies that have been done in the past, research in volatility forecasting is still far from com-

plete due to the complex nature of this topic. In addition, advances in the field of computer science 

may potentially lead to new applications and techniques for volatility-forecasting research, which 

might lead to new insights. Hence, further research in this field is still relevant.   

For instance, one could use more complex univariate GARCH-type models, such as the Fractionally 

Integrated GARCH (FIGARCH) or Fractionally Integrated APARCH (FIAPARCH) models. Additionally, 

one could extend the GARCHX model by adding additional external regressors, such as a covariate 

that captures volatility-spillover effects from other financial markets (Diebold & Yilmaz, 2009), or 

volatility of volatility measure of an underlying equity index, e.g. Cboe VVIX Index, to pick up early 

signals of market volatility.14 Furthermore, one could also evaluate forecasting performances of mul-

tivariate GARCH-type models at multiple horizons. This is interesting for investment managers who 

manage large multi-asset funds since they invest across a number of different asset classes, such as 

cash equities and FICC-related instruments. When it comes to both active and passive management 

of portfolios, multivariate forecast models could help asset managers with their decisions on the 

funds’ strategic and tactical asset allocation. 

From a theoretical point of view, researchers could focus on novel ways to improve the computa-

tional efficiency of estimations of nonlinear model parameters. Any improvement in computational 

speed can potentially lead to a short-term competitive edge for high-frequency traders who are spe-

cialised in volatility-linked exchange traded products. Moreover, to make well-informed decisions 

based on multi-horizon forecasts, it is necessary to have common measures of predictive ability to 

evaluate direct or iterated forecasts at multiple horizons jointly rather than considering them indi-

vidually. Because evaluating multi-horizon forecasting performances of various models individually 

may potentially lead to spurious results, and thus premature conclusions (Quaedvlieg, 2018). 

                                                             
14 According to Cboe’s website, the VVIX is a volatility of volatility measure in that it represents the expected 
volatility of the 30-day forward price of the VIX. 
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§8. Summary and conclusion 

This paper evaluates the multi-horizon forecast performances of six GARCH-type models, namely 

the ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, and GARCHX models, using four equity indices of 

which two developed markets indices (S&P 500 and HSI) and two emerging markets indices (IPC and 

KOSPI). Additionally, we use several variance proxies, namely realised volatilities and range-based 

volatilities, to assess the forecast performances of these GARCH-type models. We evaluate the fore-

cast performances with MSE and QLIKE loss functions. Further, we introduce the Diebold-Mariano 

test statistic (Diebold & Mariano, 1995) and Model Confidence Set (Hansen et al., 2011) to test the 

significance of forecast losses at multiple horizons. The aim of this paper is to find out which forecast 

models generate the most accurate out-of-sample direct forecasts of conditional variances in the 

short run and in the medium term. In addition, this paper studies the underlying features that drive 

the performance of GARCH models at multiple horizons. Thus, the research questions are (1) “Which 

of the following GARCH-type models generate the best volatility forecasts in the short term: ARCH, 

GARCH, GJR-GARCH, CGARCH, APARCH, or GARCHX?”, (2) “Which of the following GARCH-type models 

generate the best volatility forecasts in the medium term: ARCH, GARCH, GJR-GARCH, CGARCH, APARCH, 

or GARCHX?”, and (3) “What key features drive the forecast performance of these GARCH-type models 

at multiple horizons?” 

To answer the research questions properly, we cannot draw general conclusions for all equity indi-

ces based on the forecast results due to the variations in variance proxies, forecast horizons, loss 

functions, and significance tests. Therefore, we need to answer these questions independently for 

each equity index. For the S&P 500, the undisputed forecast model for both short and longer horizons 

is the customised GARCHX(1,1,1) model, which incorporates an external regressor based on the VIX 

Index, irrespective of the loss function. Although the 95% MCS of the S&P 500 includes other forecast 

models as well for longer horizons under QLIKE, GARCHX is still ranked the highest in terms of MCS 

𝑝-value. For the Hang Seng Index, depending on the loss function, CGARCH and GARCHX perform well 

when it comes to short- and medium-term volatility forecasts. Both models are frequently included 

in ℳ̂0.95
∗  under QLIKE. Meanwhile, RMSE-based ℳ̂0.95

∗  considers CGARCH as the sole superior model.  

In addition, for IPC, we observe mixed results based on the Model Confidence Sets. Under RMSE, the 

CGARCH is considered as the sole superior model for all horizons in almost all cases, except for the 

10-minute subsampled realised proxy and the range proxy based on Eq. (2) at ℎ = 1, where APARCH 

is part of ℳ̂0.95
∗ . However, under QLIKE loss function, a variety of models are selected for the 95% 
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MCS of IPC at multiple horizons, including CGARCH, APARCH, GJR-GARCH, and GARCHX. Still, the 𝑝-

value ranks the first two models as highest in almost all cases. Based on the results of forecast losses 

and depending on the loss function, the component GARCH model tend to generate the lowest forecast 

errors in most cases. Although in some cases, the APARCH model performs better. For KOSPI, the 

results of forecast losses favour CGARCH for all horizons under QLIKE, while under RMSE APARCH 

tends to be the better model for short-term forecasts but is surpassed by CGARCH at longer horizons. 

Based on the MCS results, APARCH tends to be the sole superior model for short horizons under 

RMSE, whereas CGARCH seems to be the only model in ℳ̂0.95
∗  for horizons larger than a week. Under 

QLIKE however, many models are included in ℳ̂0.95
∗  for all horizons.  

Ultimately, we can conclude that the empirical results of the conditional variance forecasts of these 

equity indices are rather mixed, since there is no generic forecast model that shows superior perfor-

mance in every case for all financial assets. Thus, the accuracy of volatility forecasts are mainly de-

pendent upon factors such as forecast procedure, type of variance estimators, loss functions, signifi-

cance tests, and even underlying data. Yet, from the results of forecast losses, we can conclude that 

one model consistently underperforms other GARCH models for all equity indices, namely ARCH(1). 

This can be explained by the fact that the conditional variance equation of ARCH is simply a linear 

function of past errors that does not incorporate past conditional variances (Engle, 1982). However, 

in some cases, the uncomplicated ARCH model is part of ℳ̂0.95
∗ , but it does not necessarily mean that 

it is preferred over other GARCH-type models when it comes to volatility forecasting.   

Altogether, we can conclude that several factors affect the forecast performance of GARCH models. 

For instance, adding an external regressor to the GARCH(1,1) model significantly improves the con-

ditional variance forecasts for the S&P 500, but not necessarily for IPC and KOSPI. Admittedly, we 

extended the standard GARCH model only with the VIX variance proxy and not with similar volatility 

indices for the other equity indices, resulting in GARCHX being surpassed by APARCH and CGARCH in 

terms of forecast performance. In addition, the structure of a conditional variance equation affect the 

out-of-sample volatility forecasts to some extent. For example, the flexible conditional variance equa-

tion of APARCH provides relatively accurate forecasts compared to GARCH(1,1), since APARCH is able 

to capture empirical regularities related to asset return volatility and nests multiple GARCH-type 

models (Laurent, 2004). Moreover, the CGARCH decomposes volatility into a long-run component and 

a short-run component (McMillan & Speight, 2004), allowing the conditional variance to mean revert 

to a time-varying long-run variance rate (Engle & Lee, 1999). Hence, this could possibly explain the 

forecast results of APARCH and CGARCH for some emerging markets indices in this paper.    
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This study adds to existing literature by comparing multi-horizon forecast performances of GARCH-

type models based on equity indices from developed markets and emerging markets. Additionally, 

this paper uses several variance proxies for evaluation of forecast results, such as the 5-minute and 

10-minute subsampled realised proxies and two range-based proxies. Furthermore, it examines the 

underlying features of GARCH models that drive the forecast performance at different horizons.  

More importantly, what are the implications of this study? First, finance practitioners, such as quant 

traders, investment managers, and risk managers, should work with a framework where one con-

ducts volatility forecasts and assesses forecast performances in a holistic manner by using multiple 

GARCH models, forecast approaches, variance proxies, loss functions, and significance tests. This is 

necessary due to the variations in forecast performances and likelihood of conflicting results. Thus, 

this framework can provide a comprehensive overview of forecast results to finance practitioners so 

that they can make deliberate decisions amidst severe market turmoil. Second, to make the most of 

mixed forecast results, one could use forecast combinations next to individual forecasts, since com-

bining predictions leads to possible diversification benefits. Compared to individual forecasts, fore-

cast combinations are more robust against misspecification biases and measurement errors in the 

datasets underlying the individual forecasts (Timmermann, 2006). Third, adding the VIX to a forecast 

model does not necessarily improve the forecast performance for other equity indices. Therefore, it 

is essential to include an index-specific volatility measure to the model.   

Despite the comprehensive study on GARCH-type models, this paper, unfortunately, has its research 

limitations as well. For instance, the data sample split is done randomly without any further robust-

ness tests. We also did not use the iterated approach for estimations of conditional variances. Further, 

the model parameters are all estimated under the normal distribution. Additionally, we evaluated the 

direct forecasts of GARCH-type models individually at each horizon. This paper does not use specific 

tests in order to test multistep out-of-sample forecasts jointly at once. Hence, these limitations may 

have resulted in a one-sided view on the evaluation of forecast performances. 

Finally, further research is still relevant in this particular field due to the complexity of this topic. 

For instance, one could use convoluted nonlinear GARCH models and even extend them with covari-

ates that may improve the models’ predictive ability. Additionally, evaluating multivariate GARCH 

models may provide unique solutions to issues related to multi-asset portfolio management, which is 

beneficial to institutional investors. Besides, one could focus on novel estimation methods and tech-

niques to improve the computational efficiency of model parameter estimates, or on evaluation tests 

that allows for joint multi-horizon testing of forecast models at once. 
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Appendix 

Section A – Significance tests 

• A.1. Jarque-Bera normality test 

To find out whether a statistical dataset is normally distributed, one can conduct tests for normality 

of observations such as the Jarque-Bera test (Jarque & Bera, 1987). The null hypothesis, 𝐻0, of this 

test states that the sample data is normally distributed, i.e. a joint hypothesis in which skewness and 

kurtosis coefficients are equal to zero and three, respectively. Meanwhile, the alternative hypothesis, 

𝐻𝑎, states that the sample data is not normally distributed. As described in Jarque and Bera (1987), 

the Lagrange multiplier (LM) test statistic, or Jarque-Bera test statistic, is defined by 

 𝐿𝑀 = 𝑁 (
(√𝑏1)

2

6
+

(𝑏2 − 3)2

24
), (A.1) 

where 𝑁 is the number of sample observations, and √𝑏1 and 𝑏2 are the sample skewness and kurtosis 

coefficients, respectively. It turns out that this test statistic can be compared asymptotically with a 

chi-squared, 𝜒2, distribution with two degrees of freedom. For large samples, 𝐻0 is rejected if the LM 

test statistic exceeds a critical value from the 𝜒(2)
2  distribution (Jarque & Bera, 1987). These critical 

values can be easily obtained from online sources.15 With two degrees of freedom, the 1% significance 

level results in a critical value of 9.21. 

• A.2. Augmented Dickey-Fuller test 

An issue that frequently occurs in time series analysis is the occurrence of nonstationary processes 

in economic time series. To examine whether unit roots are present in economic time series, the aug-

mented Dickey-Fuller (ADF) test can be conducted (Dickey & Fuller, 1979). The ADF test can be de-

scribed in two steps. First, consider a simple first order autoregressive (AR) model 

 𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜀𝑡 , (A.2) 

where 𝑥𝑡 stands for value of series in period 𝑡, while 𝜌 is a coefficient. A unit root is present in a time 

series when 𝜌 = 1, which implies that the series follows a nonstationary process (Harris, 1992). Sta-

tionary time series are usually obtained by simply taking the first order, or even second order, differ-

ence of the variable of interest. Hence, the next step of the ADF test is 

 Δ𝑥𝑡 = 𝜙𝑥𝑡−1 + 𝜀𝑡 , (A.3) 

                                                             
15 𝜒2 distribution table source: “http://www.socr.ucla.edu/Applets.dir/ChiSquareTable.html”. 
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which is the first order difference. In this case, the 𝐻0 of the ADF test states that a unit root is present 

if 𝜙 = 0, which is equivalent to testing 𝜌 = 1. The alternative hypothesis is 𝜙 < 0, which states that a 

unit root is not present, i.e. the variable of interest follows a stationary process. 

The results of the unit root tests are illustrated in Table A1, in which sample data of equity indices 

are tested on both index price level and return level. The ADF test coefficients from Panel A show 

insignificant results for the two Asian equity indices, whereas the two indices from the Americas are 

statistically significant at the 10% level. Hence, we fail to reject the null hypothesis for the Asian indi-

ces, suggesting that these equity indices tend to follow a unit root process on an index price level. 

Furthermore, Panel B displays the ADF test coefficients of logarithmic returns. All of them are statis-

tically significant at the 1% level, which implies that the logarithmic returns of these stock indices 

tend to follow a stationary process. 

Table A1. – Unit root tests for price levels and log returns 

Indices Coefficient Std. error 𝒕-stat 𝒑-value 

Panel A: Price level    
S&P 500 -0.002* 0.001 -1.853 0.064 
HSI -0.001 0.002 -0.463 0.643 
IPC -0.003* 0.002 -1.680 0.093 
KOSPI -0.002 0.002 -1.451 0.147 

Panel B: Log returns    
S&P 500 -1.092*** 0.017 -66.133 0 
HSI -1.059*** 0.016 -68.238 0 
IPC -0.929*** 0.016 -57.487 0 
KOSPI -1.018*** 0.016 -62.674 0 

Table A1. – This table illustrates the ADF test coefficients of the stock indices based on price levels 

and log returns, which are represented in Panels A and B, respectively. In total, 2,948 observations 

were used in this test. *** and * denote significance at 1% and 10% level, respectively. 

 

In addition, we perform the augmented Dickey-Fuller test on the volatility proxies of these stock 

indices as well, which are reported in Table A2. From this table, we observe statistically significant 

ADF coefficients at the 1% significance level in each panel. These results suggest that there is suffi-

cient statistical evidence to reject the null hypothesis for all variance proxies in every case. Hence, the 

variance proxies tend to follow a stationary process because we do not find statistical evidence of the 

presence of unit roots in these series. 
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Table A2. – Unit root tests for volatility proxies 

Indices Coefficient Std. error 𝒕-stat 𝒑-value 

Panel A: RV (5-min)    
S&P 500 -0.154*** 0.014 -10.799 0 
HSI -0.380*** 0.011 -33.297 0 
IPC -0.586*** 0.017 -35.311 0 
KOSPI -0.262*** 0.013 -19.919 0 

Panel B: RV (10-min)    
S&P 500 -0.173*** 0.015 -11.715 0 
HSI -0.384*** 0.011 -33.562 0 
IPC -0.476*** 0.018 -27.175 0 
KOSPI -0.303*** 0.014 -21.266 0 

Panel C: RP (Eq. 2)   
S&P 500 -0.411*** 0.014 -29.993 0 
HSI -0.551*** 0.010 -55.733 0 
IPC -0.532*** 0.014 -37.981 0 
KOSPI -0.332*** 0.016 -21.021 0 

Panel D: RP (Eq. 3)   
S&P 500 -0.350*** 0.016 -22.084 0 
HSI -0.715*** 0.012 -60.927 0 
IPC -0.492*** 0.014 -35.290 0 
KOSPI -0.374*** 0.014 -26.338 0 

Table A2. – This table illustrates the ADF test coefficients of the 5 and 10-minutes realised vari-

ances and range-based variances of the four equity indices. In total, 2,948 observations were used 

in this test. *** denotes significance at 1% level. 

 

• A.3. Ljung-Box portmanteau test 

Qualitative tools such as the sample autocorrelation and partial autocorrelation functions can easily 

assess the presence of serial correlation at individual lags. On the other hand, quantitative tools like 

the Ljung-Box portmanteau test, or Q-test, can be used for testing serial correlation jointly at multiple 

lags, i.e. it tests the overall randomness of series based on a number of lags instead of testing random-

ness at each distinct lag (Ljung & Box, 1978). The null of Ljung-Box Q-test states that the first 𝓀 serial 

correlations of a series are jointly equal to zero, which means that the series is independently distrib-

uted. In other words, 𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝓀 = 0. Meanwhile, the alternative hypothesis states that 

the series exhibits autocorrelation. The Q-test statistic is formally defined as 

 𝑄̃(𝓀) = 𝑛(𝑛 + 2) ∑
𝜌̂𝑚

𝑛 − 𝑚

𝓀

𝑚=1

, (A.4) 

where 𝑛 is the sample size,  𝜌̂𝑚 is the sample autocorrelation at lag 𝑚, and 𝓀 is the number of lags 

being tested. When the sample size is sufficiently large, 𝑄̃ could be distributed approximately as 𝜒(𝓀)
2  

with 𝓀 degrees of freedom (Box & Pierce, 1970). In this case, the null is rejected with significance 

level 𝛼 if the Ljung-Box 𝑄̃ > 𝜒(𝓀),1−𝛼
2 , in which 𝜒(𝓀),1−𝛼

2  is the 1 − 𝛼 quantile of the 𝜒(𝓀)
2  distribution. 
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In Table A3, we observe the Ljung-Box Q-test statistics of the variance estimators. We can conclude 

that there is sufficient statistical evidence to reject the null hypothesis for all cases, which indicates 

that these volatility proxy series tend to be serially correlated. In accordance with the autocorrelation 

and partial autocorrelation plots from Section 4.1, the Ljung-Box Q-test confirms the occurrence of 

serial correlation in these series. 

Table A3. – Ljung-Box test statistics 

 Lag = 1 
 

Lag = 20 
 

Lag = 40 

Indices 𝑸̃(𝓴 = 𝟏) 𝒑-value  𝑸̃(𝓴 = 𝟐𝟎) 𝒑-value  𝑸̃(𝓴 = 𝟒𝟎) 𝒑-value 

Panel A: RV (5-min)         
S&P 500 1,041.86*** 0  9,641.91*** 0  14,777.99*** 0 
HSI 1,116.47*** 0  8,443.70*** 0  12,823.92*** 0 
IPC 278.00*** 0  2,858.52*** 0  4,011.57*** 0 
KOSPI 1,357.33*** 0  11,293.16*** 0  15,761.83*** 0 

Panel B: RV (10-min)         
S&P 500 1,022.73*** 0  9,464.34*** 0  14,578.30*** 0 
HSI 1,049.04*** 0  7,580.12*** 0  11,435.60*** 0 
IPC 348.04*** 0  3,906.69*** 0  5,604.53*** 0 
KOSPI 1,198.31*** 0  10,030.04*** 0  14,046.23*** 0 

Panel C: RP (Eq. 2)        
S&P 500 880.63*** 0  8,271.80*** 0  12,941.21*** 0 
HSI 629.84*** 0  3,221.93*** 0  4,749.52*** 0 
IPC 537.13*** 0  4,941.63*** 0  7,449.07*** 0 
KOSPI 1,012.11*** 0  5,457.85*** 0  7,370.89*** 0 

Panel D: RP (Eq. 3)        
S&P 500 752.20*** 0  6,659.52*** 0  10,328.59*** 0 
HSI 261.47*** 0  2,473.92*** 0  3,828.09*** 0 
IPC 586.12*** 0  4,806.33*** 0  7,145.75*** 0 
KOSPI 1,156.94*** 0  5,260.44*** 0  6,980.69*** 0 
Table A3. – This table illustrates the results of Ljung-Box Q-test statistics of the volatility proxies. We use three different 

lag periods in this test, namely one lag, 20 lags, and 40 lags. The critical values corresponding to one, 20, and 40 degrees of 

freedom at 1% significance level from a 𝜒(𝓀)
2  distribution are 6.635, 37.566, and 63.691, respectively. Furthermore, *** de-

notes significance at 1% level. 

 

• A.4. Engle’s ARCH test 

A time series revealing serial correlation in the disturbances, also known as conditional heteroske-

dasticity, is said to have ARCH effects. This phenomenon causes uncorrelated time series to be serially 

dependent because of a dynamic conditional variance process. To gauge the significance of ARCH ef-

fects in economic time series, we can use a Lagrange multiplier test called the ARCH test (Engle, 1982). 

The null propounds that the squared errors, 𝜉𝑡
2, are not serially dependent, i.e. 𝐻0: 𝛼0 = 𝛼1 = ⋯ =

𝛼𝑛 = 0. In contrast, the alternative hypothesis of this test simply states that 𝜉𝑡
2 are serially correlated 

(Tsay, 2005), given by the following regression model 𝐻𝑎: 𝜉𝑡
2 = 𝛼0 + ∑ 𝛼𝑖

𝑘
𝑖=1 𝜉𝑡−𝑖

2 + 𝑢𝑡. Engle’s ARCH 

test statistic is the common 𝐹-statistic for the regression on squared errors. Under the null, the 𝐹-
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statistic follows a chi-squared distribution with 𝑚 degrees of freedom (Tsay, 2005). A substantially 

large critical value suggest rejection of the null in favour of the alternative hypothesis. 

As described in Engle (1982), to obtain the ARCH test statistics, we perform the following steps: 

Step I. Regress the log return series on a constant using ordinary least squares (OLS). 

Step II. Predict the residuals of the logarithmic return series. 

Step III. Regress the predicted residuals on a constant using OLS. 

Step IV. Perform the ARCH LM test. 

In Table A4, we find the test statistics of Engle’s ARCH LM tests. We use three different lag periods to 

check for distant ARCH effects in our time series data. The results below suggest that there is sufficient 

statistical evidence to reject the null for some cases. Note that the ARCH test statistics for IPC and 

KOSPI indices are statistically insignificant only for the first lag, whereas these ARCH test statistics 

tend to be significant after five lag periods. Still, these results suggest that the squared residuals of 

these equity indices tend to be serially dependent, which implies that forecast models that allow for 

conditional heteroskedasticity could potentially generate more accurate volatility estimates. 

Table A4. – ARCH LM test statistics 

 Lag = 1  Lag = 5  Lag = 10 

Indices Test statistic 𝒑-value  Test statistic 𝒑-value  Test statistic 𝒑-value 

S&P 500 8.305*** 0.004  40.076*** 0  46.021*** 0 
HSI 4.126*** 0.042  19.303*** 0.017  31.568*** 0.001 
IPC 1.072 0.301  38.834*** 0  41.608*** 0 
KOSPI 1.959 0.162  13.289*** 0.021  16.485* 0.087 
Table A4. – This table illustrates the in-sample results of the ARCH LM test. In this test, we use three different lag periods, 

namely one, five, and ten lags. The critical values for one, five, and ten degrees of freedom at 1% significance level from a 

𝜒(𝓀)
2  distribution are 6.635, 15.086, and 23.209, respectively. Furthermore, *** and * denote the significance at 1% and 

10% levels, respectively. 
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Section B – Supplementary tables 

 

Table B1. – In-sample estimates of model parameters 

Forecast model  𝝎𝟎  𝜶𝒋  𝝋𝒊  𝝀𝒋   𝒙  𝒚  𝜹  𝝊𝒌 

Panel A: S&P 500         

ARCH(1) 0 

(0) 

[0.998] 

0.932*** 

(0.025) 

[0] 

      

         

GARCH(1,1) 0 

(0) 

[0.931] 

0.069 

(0.115) 

[0.548] 

0.928*** 

(0.112) 

[0] 

     

         

GJR-GARCH(1,1) 0 

(0) 

[0.950] 

0.012 

(0.120) 

[0.923] 

0.938*** 

(0.174) 

[0] 

0.096 

(0.118) 

[0.418] 

    

         

CGARCH(1,1) 0 

(0) 

[0.728] 

0 

(0.146) 

[1.000] 

0.406 

(0.820) 

[0.621] 

 0.996*** 

(0.009) 

[0] 

0.067 

(0.055) 

[0.228] 

  

         

APARCH(1,1) 0 

(0) 

[0.271] 

0.046*** 

(0.001) 

[0] 

0.950*** 

(0.005) 

[0] 

1.000*** 

(0) 

[0] 

  1.129*** 

(0.198) 

[0] 

 

         

GARCHX(1,1,1) 0 

(0) 

[1.000] 

0.015 

(0.020) 

[0.464] 

0.393 

(0.373) 

[0.292] 

    0.458 

(0.299) 

[0.126] 

Panel B: IPC         

ARCH(1) 0*** 

(0) 

[0] 

0.171* 

(0.091) 

[0.059] 

      

         

GARCH(1,1) 0 

(0) 

[0.980] 

0.048 

(0.538) 

[0.930] 

0.945 

(0.582) 

[0.104] 

     

         

GJR-GARCH(1,1) 0*** 

(0) 

[0] 

0.019 

(0.014) 

[0.170] 

0.857*** 

(0.021) 

[0] 

0.181*** 

(0.062) 

[0.004] 

    

         

CGARCH(1,1) 0 

(0) 

[0.993] 

0.150 

(0.339) 

[0.658] 

0.668*** 

(0.084) 

[0] 

 1.000*** 

(0.004) 

[0] 

0.020 

(0.042) 

[0.633] 

  

         

APARCH(1,1) 0.001 

(0.002) 

[0.581] 

0.102*** 

(0.029) 

[0] 

0.881*** 

(0.036) 

[0] 

0.687*** 

(0.225) 

[0.002] 

  0.908** 

(0.394) 

[0.021] 

 

         

GARCHX(1,1,1) 0 

(0) 

[0.995] 

0.048 

(2.085) 

[0.982] 

0.945 

(2.446) 

[0.699] 

    0 

(0.198) 

[1.000] 

Continued on next page 
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Forecast model  𝝎𝟎  𝜶𝒋  𝝋𝒊  𝝀𝒋   𝒙  𝒚  𝜹  𝝊𝒌 

Panel C: HSI         

ARCH(1) 0*** 

(0) 

[0] 

0.144 

(0.117) 

[0.215] 

      

         

GARCH(1,1) 0 

(0) 

[0.702] 

0.056 

(0.041) 

[0.170] 

0.924*** 

(0.022) 

[0] 

     

         

GJR-GARCH(1,1) 0*** 

(0) 

[0] 

0 

(0.005) 

[1.000] 

0.919*** 

(0.009) 

[0] 

0.105*** 

(0.030) 

[0] 

    

         

CGARCH(1,1) 0 

(0) 

[0.994] 

0.044 

(0.180) 

[0.808] 

0.903*** 

[0.082] 

[0] 

 1.000*** 

(0.007) 

[0] 

0.016 

(0.030) 

[0.606] 

  

         

APARCH(1,1) 0*** 

(0) 

[0] 

0.032*** 

(0.007) 

[0] 

0.921*** 

(0.024) 

[0] 

1.000*** 

(0.001) 

[0] 

  1.785*** 

(0.097) 

[0] 

 

         

GARCHX(1,1,1) 0 

(0) 

[0.845] 

0.059 

(0.083) 

[0.477] 

0.912*** 

(0.162) 

[0] 

    0.014 

(0.046) 

[0.765] 

Panel D: KOSPI         

ARCH(1) 0*** 

(0) 

[0] 

0.039 

(0.047) 

[0.407] 

      

         

GARCH(1,1) 0 

(0) 

[0.854] 

0.011*** 

(0.002) 

[0] 

0.986*** 

(0.003) 

[0] 

     

         

GJR-GARCH(1,1) 0*** 

(0) 

[0] 

0 

(0.010) 

[1.000] 

0.945*** 

(0.011) 

[0] 

0.075*** 

(0.026) 

[0.003] 

    

         

CGARCH(1,1) 0 

(0) 

[0.986] 

0.075*** 

(0.121) 

[0.537] 

0.822*** 

(0.031) 

[0] 

 1.000*** 

(0.001) 

[0] 

0.011 

(0.040) 

[0.787] 

  

         

APARCH(1,1) 0.001 

(0.002) 

[0.482] 

0.074*** 

(0.025) 

[0.003] 

0.893*** 

(0.034) 

[0] 

0.880** 

(0.349) 

[0.012] 

  0.975*** 

(0.308) 

[0.002] 

 

         

GARCHX(1,1,1) 0 

(0) 

[0.798] 

0.097*** 

(0.024) 

[0] 

0.770*** 

(0.124) 

[0] 

    0.290 

(0.255) 

[0.256] 

Table B1. – This table illustrates the in-sample parameter estimates of the forecast models. Values in parentheses are 

robust standard errors while values in brackets report 𝑝-values of these parameters. The in-sample period starts from 

January 5, 2000, to August 6, 2004, resulting in 1,000 observations. *** denotes significance at 1% level, ** denotes sig-

nificance at 5% level, and * denotes significance at 10% level. Note that the parameters are estimated under Gaussian 

distribution. 
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Table B2. – Forecast loss coefficients of HSI 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 9.043 1.212 9.255 1.244 9.293 1.338 9.305 1.119 
GARCH(1,1) 3.745 0.481 3.992 0.506 4.353 0.532 4.810 0.603 
GJR-GARCH(1,1) 3.795 0.487 4.078 0.511 4.446 0.542 4.909 0.615 
CGARCH(1,1) 3.471*** 0.462 3.727*** 0.487 4.082*** 0.516*** 4.535*** 0.588 
APARCH(1,1) 4.068 0.494 4.335 0.516 4.749 0.546 5.181 0.619 
GARCHX(1,1,1) 3.859 0.451*** 4.145 0.475*** 4.493 0.516 4.951 0.581*** 

Panel B: RV (10-min)         
ARCH(1) 9.078 1.235 9.288 1.131 9.284 1.389 9.311 1.079 
GARCH(1,1) 3.781 0.506 4.035 0.532 4.404 0.560 4.860 0.628 
GJR-GARCH(1,1) 3.826 0.514 4.119 0.539 4.494 0.569 4.960 0.638 
CGARCH(1,1) 3.509*** 0.487 3.773*** 0.513 4.137*** 0.543*** 4.587*** 0.612 
APARCH(1,1) 4.090 0.522 4.369 0.545 4.797 0.574 5.227 0.642 
GARCHX(1,1,1) 3.886 0.477*** 4.186 0.501*** 4.541 0.543 5.000 0.606*** 

Panel C: RP (Eq. 2)         
ARCH(1) 9.268 1.262 9.512 1.387 9.413 1.810 9.560 1.260 
GARCH(1,1) 4.206 0.680 4.444 0.704 4.864 0.735 5.332 0.807 
GJR-GARCH(1,1) 4.198 0.686 4.516 0.711 4.944 0.745 5.424 0.819 
CGARCH(1,1) 3.975*** 0.659 4.221*** 0.683 4.626*** 0.716*** 5.084*** 0.791 
APARCH(1,1) 4.401 0.693 4.736 0.716 5.229 0.749 5.672 0.821 
GARCHX(1,1,1) 4.265 0.647*** 4.576 0.673*** 4.985 0.721 5.458 0.784*** 

Panel D: RP (Eq. 3)         
ARCH(1) 9.248 1.281 9.445 1.368 9.409 1.326 9.548 1.262 
GARCH(1,1) 4.240 0.643 4.445 0.671 4.821 0.702 5.229 0.767 
GJR-GARCH(1,1) 4.265 0.650 4.521 0.678 4.905 0.713 5.320 0.780 
CGARCH(1,1) 3.998*** 0.623 4.210*** 0.650 4.572*** 0.683*** 4.974*** 0.750 
APARCH(1,1) 4.500 0.658 4.760 0.683 5.194 0.716 5.577 0.782 
GARCHX(1,1,1) 4.330 0.612*** 4.593 0.641*** 4.946 0.687 5.358 0.744*** 

Table B2. – This table displays the empirical loss coefficients of various GARCH-type models of the Hang Seng Index at multiple horizons 

under different variance proxies. For the one-step, five-steps, 21-steps, and 63-steps ahead direct forecasts, we obtained 3,078, 3,074, 3,058, 

and 3,016 out-of-sample observations, respectively. Note that RMSE coefficients have been scaled up for convenience sake. *** indicates the 

preferred forecasting model that yields the lowest loss function coefficient, and thus illustrates the best out-of-sample forecast performance 

in this sample. 

 

 

 

 

 

 

 



Master’s Thesis Financial Economics   H. Hu 

57 
 

 

Table B3. – Forecast loss coefficients of IPC 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 16.969 1.278 17.003 1.243 17.094 1.241 17.266 1.248 
GARCH(1,1) 2.114 0.437 2.306 0.481 2.622 0.549 2.876 0.642 
GJR-GARCH(1,1) 2.048 0.421 2.302 0.466 2.667 0.545 2.919 0.628 
CGARCH(1,1) 1.987 0.417*** 2.168*** 0.466 2.441*** 0.535*** 2.666*** 0.625 
APARCH(1,1) 1.979*** 0.418 2.232 0.464*** 2.617 0.542 2.801 0.606*** 
GARCHX(1,1,1) 2.797 0.421 3.069 0.492 3.407 0.562 3.635 0.642 

Panel B: RV (10-min)         
ARCH(1) 16.922 1.252 16.948 1.216 17.049 1.214 17.223 1.226 
GARCH(1,1) 2.004 0.404 2.223 0.453 2.596 0.528 2.891 0.633 
GJR-GARCH(1,1) 1.906 0.390 2.216 0.441 2.639 0.529 2.930 0.620 
CGARCH(1,1) 1.904 0.385*** 2.107*** 0.439*** 2.429*** 0.516*** 2.687*** 0.617 
APARCH(1,1) 1.848*** 0.388 2.157 0.440 2.601 0.526 2.813 0.598*** 
GARCHX(1,1,1) 2.649 0.393 2.955 0.463 3.351 0.542 3.617 0.630 

Panel C: RP (Eq. 2)         
ARCH(1) 16.868 1.235 16.962 1.249 17.016 1.277 17.171 1.242 
GARCH(1,1) 2.021 0.445 2.164 0.486 2.561 0.563 2.884 0.678 
GJR-GARCH(1,1) 1.938 0.430 2.174 0.475 2.582 0.563 2.940 0.663 
CGARCH(1,1) 1.928 0.433 2.068*** 0.477 2.412*** 0.558*** 2.693*** 0.671 
APARCH(1,1) 1.857*** 0.428*** 2.113 0.472*** 2.558 0.562 2.827 0.643*** 
GARCHX(1,1,1) 2.602 0.453 2.842 0.509 3.268 0.593 3.568 0.690 

Panel D: RP (Eq. 3)         
ARCH(1) 16.857 1.238 16.986 1.244 17.012 1.260 17.196 1.250 
GARCH(1,1) 1.922 0.443 2.109 0.480 2.468 0.546 2.705 0.643 
GJR-GARCH(1,1) 1.875 0.434 2.116 0.472 2.510 0.545 2.769 0.632 
CGARCH(1,1) 1.777*** 0.427*** 1.965*** 0.467*** 2.284*** 0.536*** 2.492*** 0.634 
APARCH(1,1) 1.779 0.430 2.043 0.469 2.459 0.542 2.648 0.612*** 
GARCHX(1,1,1) 2.611 0.451 2.884 0.502 3.241 0.568 3.451 0.655 

Table B3. – This table displays the empirical loss coefficients of various GARCH-type models of the IPC index at multiple horizons under 

different variance proxies. For the one-step, five-steps, 21-steps, and 63-steps ahead direct forecasts, we obtained 3,078, 3,074, 3,058, and 

3,016 out-of-sample observations, respectively. Note that RMSE coefficients have been scaled up for convenience sake. *** indicates the 

preferred forecasting model that yields the lowest loss function coefficient, and thus illustrates the best out-of-sample forecast performance 

in this sample. 
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Table B4. – Forecast loss coefficients of KOSPI 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 10.137 1.374 10.186 2.024 10.241 1.845 10.438 1.324 
GARCH(1,1) 1.967 0.403 2.314 0.431 2.959 0.481 3.321 0.556 
GJR-GARCH(1,1) 1.918 0.400 2.352 0.436 3.128 0.499 3.542 0.564 
CGARCH(1,1) 1.859 0.383*** 2.222 0.413*** 2.852*** 0.467*** 3.218*** 0.544*** 
APARCH(1,1) 1.789*** 0.402 2.180*** 0.437 2.875 0.501 3.250 0.559 
GARCHX(1,1,1) 2.770 0.427 2.925 0.451 3.509 0.500 4.051 0.568 

Panel B: RV (10-min)         
ARCH(1) 10.116 1.408 10.189 1.838 10.245 1.750 10.429 1.274 
GARCH(1,1) 2.069 0.418 2.404 0.448 2.996 0.501 3.335 0.576 
GJR-GARCH(1,1) 2.004 0.414 2.467 0.452 3.178 0.519 3.558 0.583 
CGARCH(1,1) 1.963 0.399*** 2.314 0.432*** 2.891*** 0.488*** 3.233*** 0.565*** 
APARCH(1,1) 1.869*** 0.416 2.292*** 0.453 2.926 0.521 3.267 0.577 
GARCHX(1,1,1) 2.819 0.440 3.007 0.467 3.565 0.518 4.065 0.587 

Panel C: RP (Eq. 2)         
ARCH(1) 10.200 1.383 10.230 2.096 10.396 1.760 10.600 1.409 
GARCH(1,1) 2.610 0.583 2.961 0.614 3.526 0.669 3.813 0.742 
GJR-GARCH(1,1) 2.358 0.574 2.963 0.616 3.698 0.689 4.011 0.749 
CGARCH(1,1) 2.531 0.564*** 2.897 0.597*** 3.435*** 0.654*** 3.723*** 0.730*** 
APARCH(1,1) 2.319*** 0.574 2.819*** 0.616 3.484 0.692 3.754 0.742 
GARCHX(1,1,1) 3.126 0.601 3.341 0.629 4.009 0.689 4.453 0.752 

Panel D: RP (Eq. 3)         
ARCH(1) 10.305 1.298 10.238 2.372 10.405 1.929 10.621 1.406 
GARCH(1,1) 2.605 0.561 2.980 0.594 3.548 0.648 3.809 0.718 
GJR-GARCH(1,1) 2.398 0.554 2.960 0.597 3.722 0.670 4.013 0.729 
CGARCH(1,1) 2.524 0.541*** 2.914 0.576*** 3.456*** 0.634*** 3.719*** 0.704*** 
APARCH(1,1) 2.374*** 0.555 2.809*** 0.598 3.500 0.673 3.758 0.724 
GARCHX(1,1,1) 3.194 0.582 3.370 0.613 4.036 0.668 4.458 0.730 

Table B4. – This table displays the empirical loss coefficients of various GARCH-type models of KOSPI at multiple horizons under different 

variance proxies. For the one-step, five-steps, 21-steps, and 63-steps ahead direct forecasts, we obtained 3,078, 3,074, 3,058, and 3,016 out-

of-sample observations, respectively. Note that RMSE coefficients have been scaled up for convenience sake. *** indicates the preferred 

forecasting model that yields the lowest loss function coefficient, and thus illustrates the best out-of-sample forecast performance in this 

sample. 

 

Table B5. – Coefficients of determination 

 RV (5-min) RV (10-min) RP (Eq. 2) RP (Eq. 3) 

Indices 𝑹𝟐 𝑹𝟐 𝑹𝟐 𝑹𝟐 

S&P 500 0.594 0.591 0.548 0.480 

HSI 0.429 0.409 0.270 0.245 

IPC 0.294 0.339 0.349 0.347 

KOSPI 0.478 0.460 0.341 0.316 

Table B5. – This matrix illustrates the adjusted 𝑅2 coefficients of the out-of-sample 

regressions of various volatility proxies on the VIX variance proxy. 3,078 out-of-sam-

ple observations were used in these regressions. 
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Table B6. – Diebold-Mariano test statistics of one-day ahead forecasts of S&P 500 

Forecast model RMSE QLIKE 

Panel A: RV (5-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.02*** -     8.46*** -     

GJR-GARCH(1,1) 4.96*** 3.62*** -    8.80*** 7.37*** -    

CGARCH(1,1) 4.98*** 3.39*** -3.72*** -   8.96*** 2.38** -1.51 -   

APARCH(1,1) 4.93*** 3.36*** 0.90 3.34*** -  9.14*** 3.91*** 0.36 2.88*** -  

GARCHX(1,1,1) 4.89*** 3.53*** 3.25*** 3.57*** 3.75*** - 9.48*** 3.49*** 1.93* 3.59*** 2.14** - 

Panel B: RV (10-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 4.98*** -     8.90*** -     

GJR-GARCH(1,1) 4.94*** 3.65*** -    9.27*** 6.19*** -    

CGARCH(1,1) 4.94*** 3.34*** -3.78*** -   9.42*** 2.32** -1.37 -   

APARCH(1,1) 4.90*** 3.38*** 1.18 3.38*** -  9.63*** 4.23*** 0.37 2.92*** -  

GARCHX(1,1,1) 4.84*** 3.46*** 3.03*** 3.50*** 3.49*** - 9.79*** 3.62*** 1.92* 3.77*** 2.16** - 

Panel C: RP (Eq. 2) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 4.93*** -     13.14*** -     

GJR-GARCH(1,1) 4.89*** 3.55*** -    14.50*** 5.90*** -    

CGARCH(1,1) 4.89*** 3.36*** -3.59*** -   13.57*** 2.27** -1.71* -   

APARCH(1,1) 4.85*** 3.24*** 1.21 3.12*** -  14.38*** 3.65*** 0.28 2.49** -  

GARCHX(1,1,1) 4.76*** 3.45*** 3.34*** 3.47*** 3.57*** - 12.21*** 4.16*** 2.42** 4.36*** 2.61*** - 

Panel D: RP (Eq. 3) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.01*** -     13.39*** -     

GJR-GARCH(1,1) 4.98*** 3.50*** -    14.86*** 5.45*** -    

CGARCH(1,1) 4.96*** 3.40*** -0.81 -   13.83*** 2.70*** -1.04 -   

APARCH(1,1) 4.93*** 3.11*** 0.94 1.85* -  14.92*** 3.02*** 0.10 1.29 -  

GARCHX(1,1,1) 4.80*** 3.45*** 3.40*** 3.47*** 3.59*** - 11.72*** 3.75*** 2.24** 3.66*** 2.39** - 

Table B6. – This table illustrates the Diebold-Mariano test results of one-day ahead forecasts of S&P 500 for various GARCH-type models. As explained in Diebold (2015), this test statistic can 

be calculated through regression of the loss differential on a constant with Newey-West standard errors. A positive DM test statistic implies that the column model has the tendency to generate 

less accurate forecasts compared to the corresponding row model, whereas a negative DM test statistic implies that the column model tends to predict more accurately than the corresponding 

row model. Statistical significance of the Diebold-Mariano test statistics are determined by the conventional two-tailed critical values of a standard normal distribution. *, **, and *** denote 

significance at 10%, 5%, and 1% levels, respectively. For the one-step ahead forecasts, 3,078 out-of-sample observations were used to determine the corresponding DM test statistics.   
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Table B7. – Diebold-Mariano test statistics of one-week ahead forecasts of S&P 500 

Forecast model RMSE QLIKE 

Panel A: RV (5-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.02*** -     9.26*** -     

GJR-GARCH(1,1) 5.03*** 3.51*** -    9.48*** 2.05** -    

CGARCH(1,1) 4.97*** 3.38*** 1.84* -   9.65*** 2.00** -0.92 -   

APARCH(1,1) 4.97*** 3.04*** 0.90 -4.77*** -  9.52*** 2.25** 0.32 1.51 -  

GARCHX(1,1,1) 4.88*** 3.39*** 3.17*** 3.39*** 3.52*** - 9.93*** 2.62*** 1.49 2.44** 2.05** - 

Panel B: RV (10-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 4.98*** -     9.41*** -     

GJR-GARCH(1,1) 4.99*** 3.57*** -    9.65*** 2.67*** -    

CGARCH(1,1) 4.94*** 3.36*** 1.63 -   9.79*** 2.04** -1.18 -   

APARCH(1,1) 4.94*** 3.09*** 0.89 -4.09*** -  9.59*** 2.24** 0.12 1.54 -  

GARCHX(1,1,1) 4.85*** 3.37*** 3.09*** 3.36*** 3.47*** - 9.92*** 2.69** 1.51 2.56** 2.18** - 

Panel C: RP (Eq. 2) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.00*** -     10.83*** -     

GJR-GARCH(1,1) 5.01*** 3.35*** -    11.63*** 3.13*** -    

CGARCH(1,1) 4.95*** 3.38*** 2.81*** -   11.42*** 2.51** -1.36 -   

APARCH(1,1) 4.96*** 2.92*** 1.34 -4.38*** -  11.42*** 2.44** -0.07 1.37 -  

GARCHX(1,1,1) 4.83*** 3.37*** 3.26*** 3.36*** 3.50*** - 10.98*** 2.44** 1.41 2.23** 1.83* - 

Panel D: RP (Eq. 3) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.05*** -     12.18*** -     

GJR-GARCH(1,1) 5.06*** 3.12*** -    13.72*** 3.31*** -    

CGARCH(1,1) 4.99*** 3.39*** 3.10*** -   12.76*** 2.96*** -0.94 -   

APARCH(1,1) 5.01*** 2.66*** 0.87 -4.15*** -  12.74*** 1.95* -0.34 0.45 -  

GARCHX(1,1,1) 4.83*** 3.40*** 3.35*** 3.40*** 3.52*** - 10.08*** 2.35** 1.39 2.01** 1.84* - 

Table B7. – This table illustrates the Diebold-Mariano test results of one-week ahead forecasts of S&P 500 for various GARCH-type models. As explained in Diebold (2015), this test statistic 

can be calculated through regression of the loss differential on a constant with Newey-West standard errors. A positive DM test statistic implies that the column model has the tendency to 

generate less accurate forecasts compared to the corresponding row model, whereas a negative DM test statistic implies that the column model tends to predict more accurately than the 

corresponding row model. Statistical significance of the Diebold-Mariano test statistics are determined by the conventional two-tailed critical values of a standard normal distribution. *, **, 

and *** denote significance at 10%, 5%, and 1% levels, respectively. For the one-week ahead forecasts, 3,074 out-of-sample observations were used to determine the corresponding DM test 

statistics.   
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Table B8. – Diebold-Mariano test statistics of one-month ahead forecasts of S&P 500 

Forecast model RMSE QLIKE 

Panel A: RV (5-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.16*** -     5.52*** -     

GJR-GARCH(1,1) 5.18*** -2.37** -    5.22*** -2.43** -    

CGARCH(1,1) 5.09*** 3.33*** 3.43*** -   4.93*** -2.54** -1.23 -   

APARCH(1,1) 5.14*** -4.89*** -0.18 -3.77*** -  4.17*** -1.58 -1.36 -1.04 -  

GARCHX(1,1,1) 4.92*** 3.32*** 3.36*** 3.32*** 3.46*** - 6.46*** 1.68* 2.81*** 2.56** 2.37** - 

Panel B: RV (10-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.13*** -     5.67*** -     

GJR-GARCH(1,1) 5.15*** -2.70*** -    5.35*** -2.65*** -    

CGARCH(1,1) 5.06*** 3.32*** 3.40*** -   5.10*** -2.65*** -1.10 -   

APARCH(1,1) 5.11*** -5.95*** -0.18 -3.72*** -  4.26*** -1.70* -1.43 -1.16 -  

GARCHX(1,1,1) 4.89*** 3.30*** 3.33*** 3.29*** 3.44*** - 6.71*** 1.70* 2.81*** 2.53** 2.44** - 

Panel C: RP (Eq. 2) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.10*** -     5.12*** -     

GJR-GARCH(1,1) 5.13*** -2.98*** -    4.89*** -1.88* -    

CGARCH(1,1) 5.03*** 3.32*** 3.40*** -   4.77*** -2.40** -1.36 -   

APARCH(1,1) 5.08*** -5.95*** -0.12 -3.76*** -  4.00*** -1.54 -1.43 -1.14 -  

GARCHX(1,1,1) 4.85*** 3.32*** 3.35*** 3.32*** 3.46*** - 5.87*** 2.31** 3.20*** 3.29*** 2.52** - 

Panel D: RP (Eq. 3) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.15*** -     8.83*** -     

GJR-GARCH(1,1) 5.17*** -3.65*** -    8.47*** -1.54 -    

CGARCH(1,1) 5.07*** 3.35*** 3.50*** -   7.60*** -2.05** -1.35 -   

APARCH(1,1) 5.12*** -5.96*** -0.19 -3.82*** -  6.14*** -1.58 -1.54 -1.13 -  

GARCHX(1,1,1) 4.86*** 3.34*** 3.39*** 3.34*** 3.48*** - 9.69*** 2.89*** 3.57*** 3.55*** 2.87*** - 

Table B8. – This table illustrates the Diebold-Mariano test results of one-month ahead forecasts of S&P 500 for various GARCH-type models. As explained in Diebold (2015), this test statistic 

can be calculated through regression of the loss differential on a constant with Newey-West standard errors. A positive DM test statistic implies that the column model has the tendency to 

generate less accurate forecasts compared to the corresponding row model, whereas a negative DM test statistic implies that the column model tends to predict more accurately than the 

corresponding row model. Statistical significance of the Diebold-Mariano test statistics are determined by the conventional two-tailed critical values of a standard normal distribution. *, **, 

and *** denote significance at 10%, 5%, and 1% levels, respectively. For the one-month ahead forecasts, 3,058 out-of-sample observations were used to determine the corresponding DM test 

statistics.   
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Table B9. – Diebold-Mariano test statistics of one-quarter ahead forecasts of S&P 500 

Forecast model RMSE QLIKE 

Panel A: RV (5-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.23*** -     3.79*** -     

GJR-GARCH(1,1) 5.27*** -3.60*** -    3.54*** -0.78 -    

CGARCH(1,1) 5.15*** 3.35*** 3.44*** -   3.35*** -0.95 -0.25 -   

APARCH(1,1) 5.22*** -4.39*** 0.79 -3.61*** -  3.43*** -0.57 -0.08 0.17 -  

GARCHX(1,1,1) 4.89*** 3.29*** 3.32*** 3.27*** 3.38*** - 4.39*** 1.40 1.32 1.26 1.12 - 

Panel B: RV (10-min) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.19*** -     4.06*** -     

GJR-GARCH(1,1) 5.23*** -3.56*** -    3.78*** -0.67 -    

CGARCH(1,1) 5.11*** 3.34*** 3.42*** -   3.58*** -0.88 -0.25 -   

APARCH(1,1) 5.18*** -4.31*** 0.79 -3.59*** -  3.65*** -0.49 -0.05 0.19 -  

GARCHX(1,1,1) 4.86*** 3.29*** 3.32*** 3.27*** 3.37*** - 4.71*** 1.47 1.26 1.26 1.06 - 

Panel C: RP (Eq. 2) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.20*** -     5.08*** -     

GJR-GARCH(1,1) 5.25*** -3.63*** -    4.85*** -0.48 -    

CGARCH(1,1) 5.12*** 3.33*** 3.44*** -   4.57*** -0.61 -0.14 -   

APARCH(1,1) 5.19*** -4.40*** 0.67 -3.62*** -  4.64*** -0.60 -0.61 -0.34 -  

GARCHX(1,1,1) 4.85*** 3.29*** 3.32*** 3.27*** 3.38*** - 6.03*** 1.56 1.33 1.30 1.33 - 

Panel D: RP (Eq. 3) ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX ARCH GARCH GJR-GARCH CGARCH APARCH GARCHX 

ARCH(1) -      -      

GARCH(1,1) 5.21*** -     6.09*** -     

GJR-GARCH(1,1) 5.25*** -3.77*** -    6.04*** -0.09 -    

CGARCH(1,1) 5.12*** 3.34*** 3.48*** -   5.63*** -0.19 -0.09 -   

APARCH(1,1) 5.19*** -4.74*** 0.68 -3.67*** -  5.82*** -0.36 -0.68 -0.35 -  

GARCHX(1,1,1) 4.82*** 3.30*** 3.34*** 3.28*** 3.39*** - 7.02*** 2.08** 1.52 1.55 1.52 - 

Table B9. – This table illustrates the Diebold-Mariano test results of one-quarter ahead forecasts of S&P 500 for various GARCH-type models. As explained in Diebold (2015), this test statistic 

can be calculated through regression of the loss differential on a constant with Newey-West standard errors. A positive DM test statistic implies that the column model has the tendency to 

generate less accurate forecasts compared to the corresponding row model, whereas a negative DM test statistic implies that the column model tends to predict more accurately than the 

corresponding row model. Statistical significance of the Diebold-Mariano test statistics are determined by the conventional two-tailed critical values of a standard normal distribution. *, **, 

and *** denote significance at 10%, 5%, and 1% levels, respectively. For the one-quarter ahead forecasts, 3,016 out-of-sample observations were used to determine the corresponding DM test 

statistics.   
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Table B10. – Results of MCS for HSI 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0 0 0 
GJR-GARCH(1,1) 0 0 0 0 0 0 0 0 
CGARCH(1,1) 1.000*** 0.381*** 1.000*** 0.487*** 1.000*** 1.000*** 1.000*** 0.744*** 
APARCH(1,1) 0 0 0 0 0 0 0 0 
GARCHX(1,1,1) 0 1.000*** 0 1.000*** 0 1.000*** 0 1.000*** 

Panel B: RV (10-min)         
ARCH(1) 0 0 0 0 0 0.265*** 0 0 
GARCH(1,1) 0 0 0 0 0 0 0 0 
GJR-GARCH(1,1) 0 0 0 0 0 0.016 0 0 
CGARCH(1,1) 1.000*** 0.480*** 1.000*** 0.506*** 1.000*** 1.000*** 1.000*** 0.738*** 
APARCH(1,1) 0 0 0 0 0 0.044 0 0 
GARCHX(1,1,1) 0 1.000*** 0 1.000*** 0 1.000*** 0 1.000*** 

Panel C: RP (Eq. 2)         
ARCH(1) 0 0 0 0 0 0.419*** 0 0 
GARCH(1,1) 0 0 0 0 0 0 0 0 
GJR-GARCH(1,1) 0 0 0 0 0 0.010 0 0 
CGARCH(1,1) 1.000*** 0.458*** 1.000*** 0.580*** 1.000*** 1.000*** 1.000*** 0.679*** 
APARCH(1,1) 0 0 0 0 0 0.035 0 0 
GARCHX(1,1,1) 0 1.000*** 0 1.000*** 0 1.000*** 0 1.000*** 

Panel D: RP (Eq. 3)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0 0 0 
GJR-GARCH(1,1) 0 0 0 0 0 0 0 0 
CGARCH(1,1) 1.000*** 0.398*** 1.000*** 0.592*** 1.000*** 1.000*** 1.000*** 0.723*** 
APARCH(1,1) 0 0 0 0 0 0 0 0 
GARCHX(1,1,1) 0 1.000*** 0 1.000*** 0 0.968*** 0 1.000*** 

Table B10. – This table provides the 𝑝-values of Model Confidence Sets for the Hang Seng Index forecast losses at multiple horizons. A block 

bootstrap approach of 1,000 resamples, block length equal to forecast horizon, and 5% significance level are used to determine these coef-

ficients. Note that we set ℒ = 2 for the one-step ahead forecasts. *** denotes the forecast model is part of ℳ̂0.95
∗ .    
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Table B11. – Results of MCS for IPC 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0.002 0 0.024 0 0.147*** 
GJR-GARCH(1,1) 0 0.729*** 0 0.942*** 0 0.804*** 0 0.099*** 
CGARCH(1,1) 1.000*** 1.000*** 1.000*** 0.999*** 1.000*** 1.000*** 1.000*** 0.811*** 
APARCH(1,1) 0 0.999*** 0 1.000*** 0 0.978*** 0 1.000*** 
GARCHX(1,1,1) 0 0.986*** 0 0.216*** 0 0.416*** 0 0.497*** 

Panel B: RV (10-min)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0 0 0.001 0 0.024 0 0.302*** 
GJR-GARCH(1,1) 0 0.918*** 0 0.996*** 0 0.701*** 0 0.211*** 
CGARCH(1,1) 0 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 0.864*** 
APARCH(1,1) 1.000*** 0.982*** 0 1.000*** 0 0.955*** 0 1.000*** 
GARCHX(1,1,1) 0 0.836*** 0 0.141*** 0 0.487*** 0 0.519*** 

Panel C: RP (Eq. 2)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0.008 0 0.082*** 0 0.638*** 0 0.600*** 
GJR-GARCH(1,1) 0 0.944*** 0 0.978*** 0 0.968*** 0 0.251*** 
CGARCH(1,1) 0 0.930*** 1.000*** 0.975*** 1.000*** 1.000*** 1.000*** 0.613*** 
APARCH(1,1) 1.000*** 1.000*** 0 1.000*** 0 1.000*** 0 1.000*** 
GARCHX(1,1,1) 0 0.296*** 0 0.067*** 0 0.205*** 0 0.155*** 

Panel D: RP (Eq. 3)         
ARCH(1) 0 0 0 0 0 0 0 0 
GARCH(1,1) 0 0.002 0 0.031 0 0.038 0 0.617*** 
GJR-GARCH(1,1) 0 0.917*** 0 0.969*** 0 0.844*** 0 0.227*** 
CGARCH(1,1) 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 0.757*** 
APARCH(1,1) 0 0.993*** 0 1.000*** 0 0.986*** 0 1.000*** 
GARCHX(1,1,1) 0 0.234*** 0 0.065*** 0 0.168*** 0 0.221*** 

Table B11. – This table provides the 𝑝-values of Model Confidence Sets for the IPC forecast losses at multiple horizons. A block bootstrap 

approach of 1,000 resamples, block length equal to forecast horizon, and 5% significance level are used to determine these coefficients. Note 

that we set ℒ = 2 for the one-step ahead forecasts. *** denotes the forecast model is part of ℳ̂0.95
∗ .    
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Table B12. – Results of MCS for KOSPI 

 𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟏 𝒉 = 𝟔𝟑 

Forecast model RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE 

Panel A: RV (5-min)         
ARCH(1) 0 0 0 0.369*** 0 0.275*** 0 0 
GARCH(1,1) 0 0 0 0 0 0.004 0 0.045 
GJR-GARCH(1,1) 0 0.209*** 0 0.013 0 0.045 0 0.377*** 
CGARCH(1,1) 0 1.000*** 0.750*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 
APARCH(1,1) 1.000*** 0.306*** 1.000*** 0.050*** 0 0.077*** 0 0.776*** 
GARCHX(1,1,1) 0 0.209*** 0 0.369*** 0 1.000*** 0 1.000*** 

Panel B: RV (10-min)         
ARCH(1) 0 0 0 0.316*** 0 0.280*** 0 0 
GARCH(1,1) 0 0 0 0 0 0.003 0 0.205*** 
GJR-GARCH(1,1) 0 0.333*** 0 0.085*** 0 0.057*** 0 0.451*** 
CGARCH(1,1) 0 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 
APARCH(1,1) 1.000*** 0.385*** 0.235*** 0.135*** 0 0.098*** 0 0.862*** 
GARCHX(1,1,1) 0 0.333*** 0 0.316*** 0 1.000*** 0 1.000*** 

Panel C: RP (Eq. 2)         
ARCH(1) 0 0 0 0.379*** 0 0 0 0 
GARCH(1,1) 0 0 0 0 0 0.001 0 0.069*** 
GJR-GARCH(1,1) 0 0.606*** 0 0.213*** 0 0.057*** 0 0.420*** 
CGARCH(1,1) 0 1.000*** 0 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 
APARCH(1,1) 1.000*** 0.723*** 1.000*** 0.415*** 0 0.092*** 0 0.893*** 
GARCHX(1,1,1) 0 0.606*** 0 1.000*** 0 1.000*** 0 1.000*** 

Panel D: RP (Eq. 3)         
ARCH(1) 0 0 0 0.493*** 0 0.274*** 0 0 
GARCH(1,1) 0 0 0 0 0 0.003 0 0.044 
GJR-GARCH(1,1) 0 0.404*** 0 0.048 0 0.053*** 0 0.165*** 
CGARCH(1,1) 0 1.000*** 0 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 
APARCH(1,1) 1.000*** 0.478*** 1.000*** 0.140*** 0 0.096*** 0 0.575*** 
GARCHX(1,1,1) 0 0.404*** 0 0.493*** 0 1.000*** 0 1.000*** 

Table B12. – This table provides the 𝑝-values of Model Confidence Sets for the KOSPI forecast losses at multiple horizons. A block bootstrap 

approach of 1,000 resamples, block length equal to forecast horizon, and 5% significance level are used to determine these coefficients. Note 

that we set ℒ = 2 for the one-step ahead forecasts. *** denotes the forecast model is part of ℳ̂0.95
∗ .    
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Section C – Supplementary graphs 

 

Figure C1. – Annualised volatility proxies of HSI index 

 

Figure C1. – This figure displays volatility estimates of the HSI index based on four different proxies, namely the 5-minute and 

10-minute RV, and the two range-based variances based on Eq. (2) and Eq. (3). The volatility estimates are annualised, using 

the following formula from Patton (2011a): 𝜎𝑡
𝐴 = √252 × 𝑉𝐴𝑅̂𝑡. Furthermore, the vertical axes in all panels are scaled up by 

1/100. The sample period starts from January 5, 2000, to March 27, 2018. 
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Figure C2. – Annualised volatility proxies of IPC index 

 

Figure C2. – This figure displays volatility estimates of the IPC index based on four different proxies, namely the 5-minute and 

10-minute RV, and the two range-based variances based on Eq. (2) and Eq. (3). The volatility estimates are annualised, using 

the following formula from Patton (2011a): 𝜎𝑡
𝐴 = √252 × 𝑉𝐴𝑅̂𝑡. Furthermore, the vertical axes in all panels are scaled up by 

1/100. The sample period starts from January 5, 2000, to March 27, 2018. 
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Figure C3. – Annualised volatility proxies of KOSPI index 

 

Figure C3. – This figure displays volatility estimates of the KOSPI index based on four different proxies, namely the 5-minute 

and 10-minute RV, and the two range-based variances based on Eq. (2) and Eq. (3). The volatility estimates are annualised, 

using the following formula from Patton (2011a): 𝜎𝑡
𝐴 = √252 × 𝑉𝐴𝑅̂𝑡. Furthermore, the vertical axes in all panels are scaled 

up by 1/100. The sample period starts from January 5, 2000, to March 27, 2018. 
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Figure C4. – Autocorrelations of HSI volatility proxies 

 

Figure C4. – In this figure, correlograms of the four different volatility proxies of the HSI index are demonstrated in the above 

panels. A window of 500 lags is used in all four panels. Furthermore, the light grey dashes represent the Bartlett’s formula for 

𝑀𝐴(𝑞) 95% confidence bands, i.e. 5% significance limits. 
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Figure C5. – Autocorrelations of IPC volatility proxies 

 

Figure C5. – In this figure, correlograms of the four different volatility proxies of the IPC index are demonstrated in the above 

panels. A window of 500 lags is used in all four panels. Furthermore, the light grey dashes represent the Bartlett’s formula for 

𝑀𝐴(𝑞) 95% confidence bands, i.e. 5% significance limits. 
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Figure C6. – Autocorrelations of KOSPI volatility proxies 

 

Figure C6. – In this figure, correlograms of the four different volatility proxies of the KOSPI index are demonstrated in the above 

panels. A window of 500 lags is used in all four panels. Furthermore, the light grey dashes represent the Bartlett’s formula for 

𝑀𝐴(𝑞) 95% confidence bands, i.e. 5% significance limits. 
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Figure C7. – Partial autocorrelations of HSI volatility proxies 

 

Figure C7. – In this figure, partial autocorrelations of the four different volatility proxies of the HSI index are demonstrated in the 

above panels. A window of 40 lags is used in all four panels. Furthermore, the light grey dashes represent the 95% confidence 

bands, which can be calculated as 𝑠𝑒 = 1 √𝑛⁄ . 
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Figure C8. – Partial autocorrelations of IPC volatility proxies 

 

Figure C8. – In this figure, partial autocorrelations of the four different volatility proxies of the IPC index are demonstrated in 

the above panels. A window of 40 lags is used in all four panels. Furthermore, the light grey dashes represent the 95% confidence 

bands, which can be calculated as 𝑠𝑒 = 1 √𝑛⁄ . 
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Figure C9. – Partial autocorrelations of KOSPI volatility proxies 

 

Figure C9. – In this figure, partial autocorrelations of the four different volatility proxies of the KOSPI index are demonstrated 

in the above panels. A window of 40 lags is used in all four panels. Furthermore, the light grey dashes represent the 95% confi-

dence bands, which can be calculated as 𝑠𝑒 = 1 √𝑛⁄ . 
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Figure C10. – HSI index 

 

Figure C10. – This figure illustrates the historical data of the HSI index price level, log returns, and squared returns. These are displayed in Panels 

A, B, and C, respectively. The sample period starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 
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Figure C11. – IPC index 

 

Figure C11. – This figure illustrates the historical data of the IPC index price level, log returns, and squared returns. These are displayed in Panels 

A, B, and C, respectively. The sample period starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 
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Figure C12. – KOSPI index 

 

Figure C12. – This figure illustrates the historical data of the KOSPI index price level, log returns, and squared returns. These are displayed in 

Panels A, B, and C, respectively. The sample period starts from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 
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Figure C13. – Historical behaviour of variance proxies of S&P 500 

 

Figure C13. – This graph plot illustrates the historical behaviour of the variance proxies of the S&P 500. We observe that the VIX 

variance proxy, which is calculated as 𝜁𝑡 = (1 252⁄ )(𝑉𝐼𝑋𝑡 100⁄ )2, tracks other variance proxies rather well. The sample period starts 

from January 5, 2000, to March 27, 2018, which contains 4,078 observations. 

 

 



 

 

 


