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Abstract

Over recent years, patterns in yield data have proven to raise difficulties in mod-
elling them. Levels of yields are currently at a lower bound and are very persistent.
However, many developments have taken place into the modelling techniques of these
yields in the past few years. This paper investigates if a Bayesian estimation of a
term structure model can be improved by adding Macro-Economic Factors to the
model. Both a simulation and empirical study were used to access the performance
of the model. The simulation study was not able to generate stable results for the
model with economic variables. For the empirical study, a dataset on Euribor yield
data from 2008 to 2017 were used. It shows that the extension of the parameter
space leads to stable results when some tuning parameters are used. Nonetheless, the
economic variables add an improvement to the forecasting of yields and are able to
predict changing patterns in the yield curve when extreme scenarios are considered
at a one year horizon.
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1 Introduction

Measurement and management of interest rate risk in the banking book is one the main
objectives for risk departments of banks. This is mostly due to the fact that all interest-
bearing objects on balance-sheets are affected by this risk. The focus of this paper lies
mainly on the risk that occurs when the entire yield curve for different tenors changes, the
so-called Gap Risk. This risk type is parted in two different sub-types, namely parallel
Gap Risk and non-parallel Gap Risk. With parallel Gap Risk the entire yield curve is
affected by the same change and therefore just one quantity of shock needs to be deter-
mined that will be applied to the entire yield curve. On the other hand, with non-parallel
Gap Risk also the slope and shape of the yield curve change. Subsequently, for each level
of maturity a different shock is applied to this yield curve. Essential to both approaches,
regardless of their differences, is that an underlying model is used to correctly predict
those shocks. Given old sets of data on interest rates, existing models have been able
to adequately predict shocks. However, with the most recent data these kind of models
are not able to do this anymore, because of a persistent and downwards trend in the
data. So in essence, the question remains as to how to quantify shocks on the yield curve
realistically, given the recent data on interest rates.

A first step in answering the question of how to measure Gap Risk is to model interest
rates to be able to obtain shocks in the yield curve. Arguably if a model is developed
that is able to correctly describe the structure of interest rates, then it could also be
used to derive reasonable shocks in the yield curve. On the other hand, it needs to be
examined if a model that perhaps could deliver the best forecasts of the interest rate also
could model the tails of the distribution correctly. These tails ultimately determine the
shocks that will be applied in a scenario and not in the forecast of the interest rate for the
next period. Therefore, in this thesis I do not only focus on the out-of-sample forecasting
performance of the models, but also on the model as a whole. Can it be concluded from
the distribution that follows from the estimated model that this model can be used to
adequately derive shocks for the application of calibrating Gap Risk?

The contribution of this thesis to the already existing literature is explained in two
ways. First of all, Macro-Economic Factors are incorporated into the model of Bauer
(2017), which uses a Bayesian approach in estimating a term structure model. The usage
of these factors is already proven by numerous papers, but, to my knowledge, has not yet
been used alongside a Bayesian approach in estimating a term structure model. Second,
this research uses the European market for the examination of the Gap Risk. This could
possibly lead to new insights in the literature, because most papers on this topic only
investigate U.S. data. Next to that, a recent sample in this research will be considered
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namely starting from 2009 till 2018 which will give new insights to the existing literature
for the proposed methods.

Ang and Piazzesi (2003) were the first to include Macro-Economic Factors such as
inflation and economic growth rates in a term structure model. Others such as Koop-
man and van der Wel (2013) and De Pooter et al. (2010) follow this approach in their
models, but used more variables. To reduce the dimensionality of their panel they used
Principal Component Analysis. Bauer and Rudebusch (2016b) stresses the importance
of adding Macro-Economic Factors to term structure by resolving criticism that arose in
the literature over the previous years. Literature on the term structure of interest rates
has empirically proven to deliver inconsistent results over time (De Pooter et al., 2010).
When the structure in interest rates changes, the performance of term structure models
also changes. Also, where most models proposed in the literature tend to focus on one
aspect, such as using Macro-Economic Factors or imposing a lower bound for decreasing
interest rates, there are not many models that try to combine aspects from each other.
Mostly these combinations are understandably left out for future research. This paper,
however, will further expand the model posed by Bauer (2017) by also including Macro-
Economic Factors following a similar approach as to Ang and Piazzesi (2003).

As mentioned before, the model of Bauer (2017) uses a Bayesian framework to es-
timate a term structure model. He chooses for this technique to address the problems
of model uncertainty and a large parameter space in term structure models. Therefore,
in this thesis I also follow the Bayesian methodology because the same problems could
arise with a different dataset. Moreover, by also adding the Macro-Economic Factors
the problem of parameter space will enlarge. Within this framework a decision needs to
be made about the priors for the different parameters of the model. The priors used in
Bauer (2017) tend to lead to optimal outcomes, so in this setting the same priors will be
used. However, the parameters for the Macro-Economic Factors have a more economic
interpretation and a different set of priors could be used. Wright (2013) shows that when
estimating autoregressive models of macro economic variables with a Bayesian approach,
the use of democratic priors improves the forecast performance. These priors are con-
structed by using a Normal distribution with as mean the average of long-term Blue Chip
forecasts. In this paper, due to the scoping of the research for the Macro-Economic Fac-
tors the same priors as for the risk factors are used.

As previously mentioned, a major problem with existing models in estimating yield
data comes from recent structures in the data. A Bayesian approach could lead to a
model that is able to cope with European data over the past few years by considering
model uncertainty. Kim and Orphanides (2005) show that a sufficient long data sample
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is needed to obtain multiple mean-reversions. If European data is used, the sample will
presumably be too short to avoid this problem. In addition, after the housing crisis of
2008 the term structure has drastically changed, so data from before that year is arguably
not that useful anymore. If, just like other researchers, data from before 2008 is consid-
ered, the practical application of the proposed method is less relevant. For the proposed
method to be practical it needs to be able to cope with recent historical data of interest
rates.

There is abundant literature available on the topic of the proposed method in this pa-
per that discusses various alternative approaches of modelling term structure models. One
of the first that made significant breakthroughs on this topic are Vasicek (1977) and Cox
et al. (1985), who propose models for estimating interest rates that are still applicable,
but tend to be outperformed by newer methods.Nelson and Siegel (1987) also propose
a method for modeling the yield curve, but its application was developed by Diebold
and Li (2006). This adaptation is used as the well-known Nelson-Siegel model and uses
the level, slope and curvature of interest rates as explaining factors to describe the yield
curve. A paper that is worth mentioning as an alternative in this paper is that of Laurini
and Hotta (2010), because they use a Bayesian approach to estimate a Nelson-Siegel curve.

Finally, Joslin et al. (2011) proves that the estimation of the affine term structure
models could be done in a more simpler way. They argue that some risk factors could be
numerically solved and that this leads to a lower dimension of the parameters that are to
be estimated. Moreover, they showed that the way of solving as done by previous papers
(Duffie and Kan, 1996; Dai and Singleton, 2000), only leads to local optima and not to
estimated coefficients that are globally optimal. In recent years, the model derived from
Joslin et al. (2011) remains one that is widely used in the literature as a starting point for
affine term structure models. An illustration of this is that Bauer (2017) also estimates
this model but with a different approach.

In recent years, further adaptations of the general affine term structure model were
developed that focus on the structure of interest rates from most recent years. In these
years the short rate in Europe and America has remained at a constant small negative
level. This has led to poor performance of modeling this structure in the previously
described conventional affine term structure models (Bauer and Rudebusch, 2016a). Be-
cause of this, an adaptation of these models has been derived by some that introduce a
Zero Lower Bound (ZLB). This ZLB is used as a minimum for forecasts of the short rate
and lets these forecasts stay for a period at this level. Examples of this approach include
Hamilton and Wu (2012); Kim and Singleton (2012); Monfort et al. (2017).
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Others have taken a different road in improving the forecasting performance, not by
developing a new method that is more sophisticated, but by using a set of models that
all have their own advantages. Bates and Granger (1969) already show that this is in-
deed the case when making forecasts for airline passenger data. This finding is further
proved by Diebold and Pauly (1987) and Aiolfi et al. (2010) for making combinations of
more general economic applications. Moreover, De Pooter et al. (2010) also show that
combinations can significantly improve the performance for the forecasting of the term
structure of interest rates.

Bauer (2017) is not the first to use a Bayesian way of estimating a term structure
model, others are for example: Jones (1998, 2003); Elerian et al. (2001); Eraker (2001);
Sanford and Martin (2005). However, these researchers try to estimate more general
term structure models, such as one without the formulation of Joslin et al. (2011). This
leads to more complex models in which the estimates are harder to compute analytically,
which is due to the fact that when using a Bayesian approach, a Markov Chain Monte
Carlo (MCMC) algorithm is needed and the dimension of the parameters is not reduced
as in Bauer (2017). He also proposes a variant of the MCMC algorithm by dividing the
parameters in different blocks so that some blocks can be computed in a more efficient way.

In this paper I show that the proposed Bayesian approach of estimating a term struc-
ture model of European yields is suitable for the purpose of generating extreme scenarios
of the yield curve. For the same specification as in Joslin et al. (2011) the Bayesian esti-
mation results are reliable and fit the dynamics of the yield curve rather well. Because this
setup only uses historic data of the yield curve itself, it is only possible to further predict
a continuation of the current patterns in the data. Therefore, I also investigate the exten-
sion of adding Macro-Economic Factors to the term structure model. This enlargement
of the parameter space does cause the estimation results to be less stable, because tuning
parameters are needed to tailor the Bayesian drawings of the parameters. Still, the addi-
tional factors help in explaining the shape of the yield curve, which becomes visible when
extreme scenarios of this curve are generated. Concluding, the Macro-Economic Factors
do not improve the reliability of the estimates but do help in anticipating a change in the
shape of the yield curve, which is not possible when only historic data of the yields are
used.

2 Data

In this section, information is given regarding the choices that I make for using data in
the research. I use two different parts of data in this research, specifically one set of
data on interest rate yields and another set consisting data on Macro-Economic variables.
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Additionally, descriptive statistics on both sets are given and for the yield data stylized
facts are also discussed.

2.1 Yield Data

As the research in this paper is mostly relevant for European banks, the data that I use
is from the European markets. The reference yield curve that is most suitable for the
measurement of Gap Risk is the 6 month Euribor rate. Therefore, Euribor based yields
from the fixed-for-variable rate swap market will be considered in this paper. The data
on these yields are available on a Bloomberg terminal1. Data are available for all different
types of maturities, but due to the high consistency of yields with similar maturities a set
has been chosen to overcome this problem2. Therefore, maturities have been chosen that
are not that similar to each other. The resulting set of maturities represents a sufficient
set of maturities that both exhibit short term and long term maturities. However, I am
aware that this set has not been widely used by other researchers. Most of them used a
set of data for the U.S., where, in comparison with European data, the problem is less
present. The following maturities are used in this paper: 6 months, 1 year, 3 years, 5
years, 7 years, 9 years and 10 years. These yields are plotted in figure 1, where a clear
trend across maturities can be noted. The yields are steeply increasing in the beginning
of the year 2008 and then all yields decreased sharply in the years thereafter. Eventually,
the different yields reached a lower bound which stabilized them, and with the short rates
with a maturity of 6 months or 1 year even became negative.

Figure 1: Overview of monthly yields throughout the period that is examined in this paper. The period starts at 01-01-
2008 and ends at 01-12-2017. The amount of years in the legend represent the different maturities of the different time
series.

1The names for these time series are the following: "EUR006M INDEX", "EUR012M INDEX" and
"EUSAx Curncy" where x stands for the amount of years till maturity.

2To further illustrate this problem I ran standard regressions for each pair of two maturities and this
resulted in R2 of more than 0.9999 for yields with maturities that were adjacent in the set
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In table 1 some summary statistics are given for this dataset. From this table, problems
of the current historic yield data can already be noted, if the stylized facts of the yield
curve are kept in mind. First of all, in figure 2 the average yield curve over time is given
which does not satisfy the first stylized fact, implying that the average yield curve should
be increasing and concave. Furthermore, the shape of the yield curve is very persistent
and therefore it is not able to generate different forms of the curve. Next to that, the
short end of the yield curve is not more volatile than the long end, which can also be
noted from table 1. However, the other stylized facts are mostly satisfied. All different
time-series are rather persistent with the smallest autocorrelation equal to 0.9302 for 3
lags. Because all autocorrelations are rather high, the difference between shorter tenors
and larger tenors is not that high.

Table 1: This table contains the different central moments for data on 6 months Euribor with different maturities. Also,
their first three autocorrelations are given in the three most right columns.

Central Moments Autocorrelations
Mean Std. Dev. Skewness Kurtosis AutoCorr. 1 AutoCorr. 2 AutoCorr. 3

6 Months 0.9880 1.4020 1.8377 2.8644 0.9928 0.9746 0.9487
1 Year 1.1813 1.4069 1.6731 2.4034 0.9926 0.9736 0.9464
3 Years 1.2272 1.3347 1.1645 0.8520 0.9904 0.9754 0.956
5 Years 1.5397 1.3371 0.7731 -0.2375 0.9901 0.978 0.963
7 Years 1.8286 1.3223 0.5491 -0.7162 0.9902 0.9793 0.9663
9 Years 2.0670 1.2951 0.4322 -0.9079 0.9895 0.9787 0.9664
10 Years 2.1658 1.2842 0.3904 -0.9595 0.9894 0.9782 0.9661

Figure 2: In this figure the average yield curve over time is plotted. It is clearly increasing over the tenors, but presumably
not concave.
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For the last stylized fact the cross correlations of the yields are given in table 2 and they
show that these yields are highly correlated with each other. Therefore, the data supports
the last stylized fact. The historic data are not able to satisfy all stylized facts on yield
data, which further illustrates the kind of problems that could arise when this data is
used for modelling a term structure.

Table 2: Table containing the cross correlations of the different tenors. Only for selected tenors are the correlations given.

6 Months 1 Year 3 Years 5 Years 7 Years 9 Years 10 Years

6 Months 1.0000 0.9978 0.9531 0.9172 0.8905 0.8730 0.8665
1 Year 0.9978 1.0000 0.9612 0.9294 0.9052 0.8887 0.8825
3 Years 0.9531 0.9612 1.0000 0.9919 0.9791 0.9690 0.9649
5 Years 0.9172 0.9294 0.9919 1.0000 0.9968 0.9920 0.9896
7 Years 0.8905 0.9052 0.9791 0.9968 1.0000 0.9988 0.9978
9 Years 0.8730 0.8887 0.9690 0.9920 0.9988 1.0000 0.9998
10 Years 0.8665 0.8825 0.9649 0.9896 0.9978 0.9998 1.0000

To model the data, Principal Components are used in this paper. More specifically, the
first 3 factors on the yield data are used. This factorization ensures that the dimension of
the model is not too large, but is still able to use data on several maturities. The loadings
of the Principal Components are rescaled in the same manner as in Joslin et al. (2014) in
order to work with the same setup.

2.2 Macro-Economic Variables

Data on Macro-Economic Factors are also needed for this research, but first I have to de-
termine which kind of variables to include. Most papers, on the topic of Macro-Economic
variables, apply their research to U.S. interest rates and, unsurprisingly, use U.S. data
on macroeconomic time series. Following the approach of Ang and Piazzesi (2003) data
on two groups of variables will be used and these can be extracted from Eurostat. The
data from Eurostat ensures that for the same region data is used as for the interest rates.
The first group of variables represents European inflation and consists of the Consumer
Price Index growth rate and the Producer Price Index growth rate. The second group is
based on the real European economic growth and is based on the Unemployment Rate,
Employment growth rate and the Industrial Production growth rate. All growth rates
are calculated by taking the logarithm of the current index divided by the index of a year
ago: log It

It´12
.
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Some descriptive statistics are given in table 3. Similar to the data on yields the Macro-
Economic variables are rather persistent. For example, the variable with the highest
persistence is the unemployment rate with 0.9843. The two variables that represent
inflation are quite similar to each other, but the Producer Price Index is more volatile
and its higher moments are also more negative. The other variables are more distinct
to each other and seem to therefore cover different aspects of how European economic
growth behaves. Similar to the paper of Ang and Piazzesi (2003) the individual variables
are normalized to have a mean of zero and unit variance. The two groups of variables are
also linear decomposed to construct the Macro-Economic Factors. For both groups only
one Principal Component is used so this results in two extra variables that will help to
model the term structure of yields.

Table 3: This table contains the values of the first four central moments and autocorrelations of the macro-economic
variables in the Euro-zone that are used in this research to obtain the factors. CPI stands for the growth rate of Consumer
Price Index, PPI for the growth rate of Producer Price Index, UE for the unemployment rate in percentages of the working
population, Employ for the growth rate of the percentage of employment, and IP for the growth rate Industrial Production.
All growth rates are calculated by taking the logarithm of the yearly change of one variable.

Central Moments Autocorrelations
Mean Std Dev Skewness Kurtosis AutoCorr1 AutoCorr2 AutoCorr3

CPI 0.7846 0.4324 -0.2119 -0.0951 0.9747 0.9356 0.8872
PPI 0.7634 1.5040 -0.3250 -0.3294 0.9765 0.9285 0.8627
UE (%) 9.0245 1.1253 -0.2253 -0.4406 0.9833 0.9532 0.9164
EMPLOY 0.0300 0.3828 -0.8261 0.3011 0.9843 0.9642 0.9357
IP 0.2686 2.1880 -2.3584 6.7276 0.9590 0.9140 0.8461

3 Methodology

In the following section information is given on the models that are used in this paper.
In addition, derivations and other formulas that are needed to generate the results are
given. The first part of the section elaborates on the modeling of a Gaussian Dynamic
Term Structure model. The second part elaborates how the Bayesian approach is applied
to estimate the model in sections 3.1. Thereafter, it is explained how the adding of the
Macro-Economic factors to the model will change the dynamics of the model and the
estimation procedure. The last part of this section explains how the estimated model is
used to generate the extreme scenarios of the yield curve.

3.1 Gaussian Dynamic Term Structure Model

Following the works of Joslin et al. (2011) and Bauer (2017) I estimate a Gaussian Dy-
namic Term Structure Model to the data described in section 2. The model of Joslin et al.
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(2011) is called JSZ in the remainder of this paper. The canonical form of JSZ is used
to start the Bayesian approach of the model, by taking the Maximum Likelihood (ML)
estimates as starting values for the parameters. The generic representation of the model
by Joslin et al. (2014) is defined by the following set of equations:

Xt “ KP
0X `K

P
1XXt´1 ` ΣXε

P
t , (1a)

Xt “ KQ
0X `K

Q
1XXt´1 ` ΣXε

Q
t (1b)

and
rt “ ρ0X ` ρ1XXt, (2)

where Xt is the vector of latent risk factors, ΣXΣ1X is the conditional covariance matrix of
Xt, εPt , ε

Q
t „ N p0, IN q, P and Q stand for respectively the historical and the risk-neutral

measure, K0X is the level of the risk factor andK1X is the autoregressive component of the
risk factors under the two different measures. Furthermore, rt stands for the one-period
interest rate, and because monthly data is considered in this paper rt represents the one-
month interest rate. According to Joslin et al. (2011), KP

0X , K
P
1X can be simply estimated

by the Ordinary Least Squares method which is used in obtaining the ML parameters for
the model.

3.1.1 Stochastic discount factor

When a world of no-arbitrage is assumed for the interest rates, there must exist a proba-
bility measure, Q, that prices all financial assets. This measure is related to the historical
measure, P, by the Stochastic Discount Factor (SDF). Following Bauer (2017) I use the
same exponentially affine function for the SDF

´ logSt`1 “ rt `
1

2
λ1tλt ` λ

1
tεt`1, (3)

where St`1 is the change of measure at time t` 1 and λt represents the market prices of
risk at time t. The vector of λt is of dimension pNˆ1q and is priced under the P measure.
This pricing, first posed in Duffee (2002), results in the affine risk-price specification

λt “ Σ´1
X pλ0 ` λ1Xtq, (4)

where λ0, also a pN ˆ 1q vector, represents the difference in level of the two measures and
λ1, a pN ˆ Nq matrix, represents the difference in the autoregressive component of the
measures.
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Additional to the affine function of equation (3), any one-period pricing kernel is
implied by

St`1 “ expp´rtq
fQpXt`1|Xtq

fPpXt`1|Xtq
, (5)

where fQpXt`1|Xtq

fPpXt`1|Xtq
is a Radon-Nikodym derivative and translates to the following together

with equation (3):

fQpXt`1|Xtq

fPpXt`1|Xtq
“
dP
dQ
pXt`1;λtq “ expp

1

2
λ1tλt ` λ

1
tεt`1q. (6)

Further pursuing the same derivation as in Bauer (2017), the innovations εQt from equation
(1b) are related to the pricing innovations by

εQt “ εPt ` λt´1. (7)

Likewise, the relations of KQ
0X and KQ

1X are also given by equations

KQ
0X “ KP

0X ´ λ0, (8a)

KQ
1X “ KP

1X ´ λ1. (8b)

Just as in Bauer (2017) measurement errors should be included to the observed bond
yields because a N dimensional factor model is not able to perfectly price J ą N yields.
Those are measured by

Yt “ pYt ` et, (9)

where et represent the vector with measurements errors at time t and Yt the vector of
observed yields. σ2

e will denote the variance of this measurement error that will be used
in the remainder of this research as a free parameter that needs to be estimated.

Given all previous definitions in this section, the set of parameters to be estimated is
divided in five different groups: pλ, γq, KQ

0X , K
Q
1X , Σ and σ2

e . In the following sections it
is explained in which way this set is estimated. Also in the remainder of this paper the
full set of parameters to be estimated is be denoted by θ.

3.1.2 Bond pricing

When the model, given in equations (1a) till (2), is estimated for the remaining parameters
the model-implied yields can be determined by

yt,m “ Ampθ
Q
Xq `Bmpθ

Q
XqXt, (10)
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where θQX “ pK
Q
0X , K

Q
1X ,ΣX , ρ0X , ρ1Xq is the set of parameters under the Q measure that

needs to be estimated. Furthermore, yt,m represents the model-implied yield at time t for
maturity m, and Am and Bm are the implied loadings of the yields on the risk factors Xt

which satisfy Ricatti difference equations, and are computed by the recursive equations

Am`1 “ Am ` pK
Q
0Xq

1Bm `
1

2
B1mΣΣ1Bm ´ ρ0X ,

Bm`1 “ pK
Q
1Xq

1Bm ´ ρ1X .
(11)

These equations have starting values of A0 “ 0 and B0 “ 0, and the relations Am “

´m´1Am, Bm “ ´m´1Bm. As I have shown in equations 11, the loadings are fully
determined by the Q parameters and will not be affected by changes in the P measure.

3.1.3 Likelihood function

Following Bauer (2017) I use the same likelihood function in this paper for the model
without Macro-Economic Factors. Nonetheless, the full conditional likelihood function is
defined as

LpYt|Yt´1; θ, γq “LpYt|Xt; k
Q
8,Σ, σ

2
eq

ˆ LpXt|Xt´1; kQ8, K
Q
1X , λ, γ,Σq.

(12)

Equation (12) can be parted in two parts, namely the first term that represents the Q
measure part of the equation and the second term that is P measure part. Both parts
are then evaluated separately which allows for an easily implementation of the Macro-
Economic Factors. Firstly, the part of the Q measure is given by

log
`

LpYt|Xt; k
Q
8,Σ, σ

2
eq
˘

“const´ pJ ´Nq logpσeq

´ 0.5||W K et||{σ
2
e ,

(13)

where const stands for a constant part which will drop out of the equation when the
likelihood is evaluated, ||v|| stands for the Euclidean norm of vector v, and et is the
residual from equation (10). The second part of the likelihood function is affected by
solely the P measure, it is denoted by

log
`

LpXt|Xt´1; kQ8, K
Q
1X , λ, γ,Σq

˘

“

const´ 0.5 logp|ΣΣ1|q ´ 0.5||Σ´1
pXt ´K

P
0X ´K

P
1XXt´1q||.

(14)

Together with equations (13) and (14) the joint log likelihood function can be established
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by taking the sum over the two different evaluated log likelihoods.

3.2 Bayesian Approach

In this paper, I use a Bayesian approach for estimating the term structure posed in section
3.1. In this section, the different steps that are needed for this approach are elaborated on.
First, I will explain the methods used to generate drawings from the posterior distribution
for the different groups of parameters except for λ. Second, the different model selection
algorithms that generate drawings for only the λ parameters are discussed. Finally, the
manner of choosing priors for the parameters is given.

3.2.1 Markov Chain Monte Carlo Algorithm

The model in equations (1a) until (2) can be estimated by solving the state space model
by applying a Kalman Filter. However, Bauer (2017) showed, along with others, that
this state space model also can be estimated by applying the MCMC algorithm to the
posterior distribution

P pθ|X, γq 9 P pX|θ, γqP pθ|γq, (15)

where X represents the principal components of data on observed yields. The advantage
of using a Bayesian approach versus a Kalman Filter is two-sided in this setting. By the
usage of γ a lot of different models need to be compared with each other if the Kalman Fil-
ter is applied. Bayesian estimation can estimate the values of γ, which leads to a reduced
amount of models to be compared. Additionally, the selection of which elements of γ to
restrict results in model uncertainty. Techniques that involve Bayesian estimation cope
with this problem by also investigating the Bayes factors of the different specifications.
Disadvantages of Bayesian estimation are of the nature of complexity and computation-
ality. For most researchers Bayesian techniques do not belong to standard methods of
estimation regression models or even state space models. Also, by design the estimation
of a Bayesian model takes longer by drawing a sufficient amount of parameters to form
the distribution.

If all restrictions on the risk price parameters should be evaluated, then in total 2pN`N
2q

different models need to be estimated. However, Bauer (2017) uses his Bayesian approach
to cope with this problem by letting γ be a vector of indicator variables where each entry
corresponds with an element of λ ” pλ10, vecpλ1q

1q1. This definition gives the possibility to
only validate the most plausible restrictions by Bayesian variable selection if γ is included
in the set of parameters.
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Draws for one block of parameters are made from this posterior distribution given
the current values for other blocks of parameters. Following Bauer (2017), a block-wise
Metropolis-Hastings algorithm will be used to iteratively sample draws for the following
blocks: KQ

0X , K
Q
1X and Σ. The other groups (λ and σ2

e) can be sampled by a Gibbs
sampler because their full conditional posterior distribution is known. In the following
sections I will elaborate more on the procedures to obtain draws for the different blocks
of parameters.

3.2.1.1 Generating draws for λ

For generating draws of the parameters for λ a convenient step can be taken due to the
formulation of the model. Namely, conditional on all other parameters the drawing of
λ boils down to the estimation of a restricted vector autoregression model. Therefore,
a Gibbs step is used to generate a drawing for λ which tends to be an efficient way of
sampling parameters. If a natural conjugate prior for λ is chosen with N pλγ, V γq the
posterior distribution can be found by using similar derivations present in most Bayesian
literature. The kernel is a Normal distribution with mean and covariance

λγ “ V γpV
´1
γ γ

γ
` S 1pZ b Ω´1

qzq,

V γ “ pV
´1
γ ` S 1pXfullX

1
full b Ω´1

qSq´1,
(16)

where the objects with an underline represent prior values and object with an overline
posterior values. The subscript γ represent those values for which the corresponding
value of γ is equal to 1. Further, S represents a matrix of ones and zeros with dimension
NpN ` 1q ˆ a, where a stands for the amount of unrestricted risk prices (equal to the
sum of γ). Additional Xfull is the full set of regressors so Xfull,t “ p1, X 1

tq
1, and z “

pZ 1 b INqSλγ ` u stands for the

3.2.1.2 Generating draws for kQ8 and KQ
1X

Due to their high correlation kQ8 and KQ
1X are drawn in the same block and therefore also

in the same manner. Just as in Chib and Ergashev (2009) I use the same Independence
Metropolis-Hastings sampler approach. For this approach I use the same proposal distri-
bution, namely a t-distribution with 5 degrees of freedom. Next to that, parameters for
this proposal density are needed, which are represented by the ML estimates. They will
be used as the mean for the proposal density and the negative of the inverse of the Hes-
sian matrix of the conditional posterior at the proposed values. The resulting acceptance
probability is
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αpχj´1, χ˚q “ min t
P pX|χ˚, θ´, γqP pχ˚, θ´qfpvechpχ

j´1qq

P pX|χj´1, θ´, γqP pχj´1, θ´qfpvechpχ˚qq
, 1u, (17)

where f stands for the proposal density which is the t-distribution and χ˚ stands for the
proposed values of kQ8 and KQ

1X .

3.2.1.3 Generating draws for Σ

This block of parameters is efficiently drawn by only drawing values for the Choleski de-
composition of the variance matrix Σ, this decomposition can then be vectorized and is
denoted by vechpΣq. In this way, the amount of values that has to be drawn is further
reduced. The method of generating draws then for the vectorized triangular matrix is
the same as for the kQ8, K

Q
1X block of parameters. So again, the proposal distribution

is a multivariate t-distribution with 5 degrees of freedom. Also its mean is equal to the
ML estimation of the vectorized triangular matrix, and its covariance matrix equal to the
negative inverse of the Hessian matrix of the conditional posterior. This should be only
done for the first iteration however and it turns out that the resulting matrix was not
positive definite. This problem was overcome by adding very small increments to this
matrix in order to make it positive definite. After this correction was performed 2 times
at the beginning of the algorithm the resulting covariance matrix was usable to generate
drawings for the covariance matrix.

After a draw Σ˚ has been made its acceptance probability is given as

αpΣj´1,Σ˚q “ min
 P pX|Σ˚, θ´qP pΣ˚, θ´qfpvechpΣ

j´1qq

P pX|Σj´1, θ´qP pΣj´1, θ´qfpvechpΣ˚qq
, 1
(

, (18)

where θ´ represents the all parameters except for the draw of Σ, and f represents the
proposed multivariate t-distribution.

3.2.1.4 Generating draws for σ2
e

The drawings for the last block of parameters can also be generated by using a Gibbs
step. It is possible because the measurement errors can be seen as regression residuals
conditioned on all other parameters. Then again the closed-form posterior of σ2

e is known
and therefore the Gibbs step can be used. Just as Bauer (2017) shows that with an
Inverse-Gamma prior consisting of shape parameter 0 and scale parameter 0 (the prior of
σ2
e is taken completely diffuse), the conditional posterior becomes also an Inverse-Gamma

distribution with shape n and scale ssr. The shape n is equal to T pJ ´Nq and ssr is the
sum of squared residuals of Y .
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3.2.2 Model Selection Samplers

For the posterior draws for the parameter pair pγi, λiq, different extensions of the MCMC
algorithm can be used. In this paper 3 different alternatives to the basic MCMC algorithm
are considered to investigate if another method can make robust improvements to the
model. Those algorithms will be explained in this section briefly, also for each algorithm
the model priors for γ are given. The 3 different sampling algorithms are in the same way
used as Bauer (2017) used.

3.2.2.1 Gibbs Variable Selection

The first adaptation, Gibbs Variable Selection (GVS) treats all different models (for differ-
ent γ1s) as nested models, therefore the product-space is only the space of the unrestricted
model. This space can become large as the amount of parameters increases but it will be
used intensively for all other nested models. It is first fully described in Dellaportas et al.
(2002) and based on the work of Carlin and Chib (1995). They define the model prior

P pλ|γq “ P pλγ|γqP pλzγ|λγ, γq, (19)

where λγ represent the elements of λ which are defined so where γ is set to 1, and likewise
λzγ represents the elements of λ which are not included. The second term in equation
(19) is the so-called pseudo-prior because it is used to describe the elements not present
in the current evaluated model specification. Following the reasoning of Bauer (2017) for
the pseudo-prior specification I use independent Normal distributions with the parame-
ters equal to the conditional moments of λ, given the ML estimates of all other parameters.

In the GVS algorithm for each iteration first a draw of λγ is made from its conditional
posterior distribution. This distribution is already explained in equation (16). For the
other parameters, λzγ, the drawings are directly taken from the pseudo-prior. To deter-
mine the likelihood of the drawing the acceptance rate for γ is determined. This rate is
a success probability for a Bernoulli conditional posterior of γi and defined by

P pγ
pjq
i “ 1|λpjq, θ

pj´1q
´ , γ

pjq
´i , Y q

P pγ
pjq
i “ 0|λpjq, θ

pj´1q
´ , γ

pjq
´i , Y q

“
P pY |γ

pjq
i “ 1, λpjq, θ

pj´1q
´ , γ

pjq
´i q

P pY |γ
pjq
i “ 0, λpjq, θ

pj´1q
´ , γ

pjq
´i q

ˆ
P pλ

pjq
i |γ

pjq
i “ 1q

P pλ
pjq
i |γ

pjq
i “ 0q

ˆ
P pγ

pjq
i “ 1, γ

pjq
´ q

P pγ
pjq
i “ 0, γ

pjq
´i q

.

(20)

The first term in equation (20) is the ratio of likelihoods of both included and excluded
elements of γ, the second term is the ratio of model priors for the two sets of elements,
and the third term is the is the ratio of priors for γ. To determine the first term on the
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right-hand side of the equation only the P-likelihoods need to be evaluated because the
Q-likelihoods are not affected by γ and therefore cancels out. The middle term The last
term cancels out as a whole because for both sets of elements the same prior probabilities
are used (probability of 0.5).

3.2.2.2 Reversible-jump Markov Chain Monte Carlo

The Reversible-jump Markov Chain Monte Carlo (RJMCMC) model selection sampler,
developed by Green (1995), is designed to evaluate different parameter spaces by making
jumps in the drawings of γ. A lot of different approaches can be taken in modelling
the jumps but in this paper the local reversible-jump sampler of Dellaportas and Forster
(1999) is used. The current state of the chain is denoted by pλpjq, γpjq, θpjq´ q. For each
jump two possibilities are available, a null move where γ does not change or a jump
move where only 1 element of γ changes. The probability that the model doesjump to
another parameter space is set equal to 75%. The current element of γ that changes is
chosen randomly, and is set to either 0 or 1 dependant of its initial value. Whenever an
element of γ is added to the model its proposal is λ1 “ gpλpjq, uq, where gp9q is an identity
transformation to ensure that λ1i “ u, and u represents a scalar drawn from the proposal
density equal to N pµi, σ2

i q and denoted by qipuq. Given that a element of γ is added to
the model, the acceptance probability is

αpλpjq, γpjq, θ
pjq
´ , λ1, γ1q “

P pY |λ1, γ1, θpjqq

P pY |λpjq, γpjq, θ
pjq
´ q

ˆ
P pλ1|γ1q

P pλpjq|γpjqq
ˆ

P pγ1q

P pγpjqq
ˆ

1

qipuq

“
P pY |λ1, γ1, θpjqq

P pY |λpjq, γpjq, θ
pjq
´ q

ˆ
v0.5
i expp´u2{viq

σi expp´pu´ µiq2{σ2
i q
,

(21)

where the derivation is reasoned in the same way as with the GVS sampler because the
prior model probability is the same. Moreover, the prior of γ is conditional independent
and therefore together with the third term the second line of equation (21). When instead
an element of γ is excluded from the model, the expressions do change, pλ1, u1q “ g´1pλpjq

which implies that λ1 has a 0 at the i-th position. The acceptance probability for excluding
an element of λ then becomes

αpλpjq, γpjq, θ
pjq
´ , λ1, γ1q “

P pY |λ1, γ1, θpjqq

P pY |λpjq, γpjq, θ
pjq
´ q

ˆ
σi expp´pu1 ´ µiq

2{σ2
i q

v0.5
i expp´u12{viq

. (22)

3.2.2.3 Stochastic Search Variable Selection

The last sampler used in this paper is the first MCMC algorithm ever designed for vari-
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able selection purposes. The Stochastic Search Variable Selection (SSVS) approach was
developed by George and McCulloch (1993). It uses the idea that the drawings for the
parameters, excluded from the model, are drawn from a tight distribution around 0. This
results in a parameter prior defined by

P pλi|γiq “ p1´ γiqNp0, τ
2
0,iq ` γiNp0, τ

2
1,iq, (23)

where τ 2
0 is the prior variance for λj of excluded elements and τ 2

1 the variance for included
elements. The usage of the τ parameters are in the same way used as in Bauer (2017)
who ensures a high value for τ 2

1 and a value close to 0 for τ 2
0 . In more detail, they are

defined as τk,i “ ckσ̂λi for k “ 0, 1 with c0 or c1 two tuning parameters. I set c1 “
?
g and

c0 “
1
c1

with g the hyperparameter for λ.

Just as with the GVS sampler the success probability of a Bernoulli distribution is
used to evaluate the likelihood of the drawing for γ. This probability is given as

P pγ
pjq
i “ 1|λpjq, θ

pj´1q
´ , γ

pjq
´i q

P pγ
pjq
i “ 0|λpjq, θ

pj´1q
´ , γ

pjq
´i q

“
P pλpjq|γ

pjq
i “ 1, θ

pj´1q
´ , γ

pjq
´i q

P pλpjq|γ
pjq
i “ 0, θ

pj´1q
´ , γ

pjq
´i q

ˆ
P pγ

pjq
i “ 1q

P pγ
pjq
i “ 0q

“
τ´1

1i expp´0.5pλ
pjq
i {τ1iq

2q

τ´1
0i expp´0.5pλ

pjq
i {τ0iq

2q
,

(24)

where again the same derivations of prior conditional independence and equal prior model
probabilities are used to derive the second line of equation (24). For this sampler the ratio
does not depend on any data because the likelihood of γ is fully described by λ.

3.2.3 Prior Selection

Recall that the set of parameters given in section 3.1 needs to be estimated and this set
will be denoted by θFull in the remainder of this paper. For each different group of param-
eters in the full set a different choice can be made on the priors to use. Some Bayesian
researchers choose to use priors that heavily influence the outcomes of the results and
also to guide the drawings of the parameters to a certain degree. Especially, priors for
the Macro-Economic Factors can be used because of an abundance of forecasts on these
factors. An example for this approach that relies on priors to predict Macro-Economic
variables is Wright (2013). Other researchers choose for largely uninformative or even
diffuse priors. This way little to none information is imposed on the parameters and the
resulting coefficients are mostly derived by the data itself. The manner of using unin-
formative priors mirrors the priors Bauer (2017) proposes and this approach is also used
in this paper. Therefore, the priors for the kQ8, Σ and σ2

e are diffuse and totally unin-
formative. However the prior for the eigenvalues of KQ

1X needs to ensure the stationarity

17



of this autoregressive component, thus the elements of this vector are a priori uniformly
distributed over the 0 ´ 1 interval. Only the priors for the pair pλ, γq are left then. I
assume an a priori uniform distribution between the different model specification that
are defined by γ, and this leads to a prior of independent Bernoulli distributions with a
success probability of 0.5.

3.3 Macro Economic Factors

Besides the Bayesian estimation of the term structure model, an extension will be made
by adding Macro-Economic Factors to the model. This extension will, following the
literature, help to better describe the short-end of the yield curve (Ang and Piazzesi,
2003). If those factors are constructed they can be added to the term structure model
by following Joslin et al. (2014) in modifying the specification of the pricing measure of
equation (1a) by

Zt`1 “

˜

Xt`1

Mt`1

¸

“

˜

KP
0X

KP
0M

¸

`

«

KP
XX KP

XM

KP
MX KP

MM

ff˜

Xt

Mt

¸

`
a

ΣZ

˜

εPt

εMt

¸

, (25)

most variables in equation (25) are already defined butMt stands for the Macro-Economic
Factors at time t. Just as in equation (1a), εPt and εMt are multivariate standard normal
distributed. With the adding of these factors the shape of all parameters described in
section 3.1 under the pricing measure P change accordingly.

The adding of these factors does however increase the dimension of parameters that
needs to be estimated. This should be kept in mind when applying the MCMC algorithm,
and it needs to be examined if the algorithm is still able to converge for the set of
parameters. In this research the approach of Ang and Piazzesi (2003) will be followed in
using two Macro-Economic Factors, namely one that represents inflation growth rate and
another that stands for the economic growth rate. Just as for the parameters groups of
kQ8, Σ and σ2

e diffuse priors will be assumed for the added elements in order to ensure that
the results are mostly driven by the data.

3.3.1 Change of Measure

Due to the adding of the Macro-Economic Factors the relation between the P and Q
measure has also changed. Fortunately this relation is only slightly changed as is shown
in Joslin et al. (2014). The same derivation of the SDF is applied and therefore only
equations (8) changed to the new set
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λ1 ” KP
XZ ´ rK

Q
1X , 03x2s,

λ0 ” KP
0X ´K

Q
0X ,

(26)

where KP
XZ are the first N rows of KP

Z and therefore the size of λ1 has become p3ˆ5q. The
measure relation for the intercept terms in the model is not changed by the new variables
and for the autoregressive component only the dimension is adjusted for the P measure.

3.3.2 Likelihood Function

By adding the Macro-Economic Factors to the term structure model also the likelihood
function changes. However, due to the fact that only the part under the pricing measure
P in equation (25) changes, only the part in equation (14) of the likelihood function is
adjusted. The new log likelihood is then given by

log
`

LpZt|Zt´1; kQ8, K
Q
1X , λ, γ,ΣZq

˘

“

const´ 0.5 logp|ΣZΣ1Z |q ´ 0.5||Σ´1
pZt ´K

P
0Z ´K

P
1ZZt´1q||,

(27)

where K0Z stands for the level matrix and K1Z for the autoregressive matrix of Zt from
equation (25).

3.3.3 Bayesian estimation

By adding the Macro-Economic Factors to the term structure model, the dimension of the
covariance matrix is increased from 3 to 5, and therefore the amount of parameters that are
drawn each iteration also increases from 6 to 15 due to the vectorization of the Choleski
decomposition. This increase results in some inefficiencies in the drawing procedures.
This is mostly caused by the fact that the estimation of the Hessian matrix became
less accurate. In order to overcome this problem the parameters of Σ are parted in two
groups, with the first group the same size of the original model (so without the Macro-
Economic Factors). The second group of vechpΣq represents the covariances between
the Macro-Economic Factors and risk factors and also the variances of only the Macro-
Economic Factors, and therefore this group only consists of 9 parameters. However, I still
evaluate them as one block of parameters due to their high posterior correlation because
they jointly explain the cross-sectional covariance of the model. This approach results in
drawings that are only accepted if both groups have reasonable drawings.
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3.4 Extreme Scenarios

For the purpose of extreme scenario calibration a method has to be used that is able
to approximate the distribution of possible outcomes for the yield curve. In this paper
scenarios are considered that will consider yields over a year. Following the approach of
Chib and Ergashev (2009), the following algorithm is used to obtain the predictive density
of the yields.

Algorithm 1 Algorithm to generate extreme scenarios for the yield curve
1: for j “ 1, 2, ...,M do
2: Determine the loads: Aj&BJ and estimate the coefficients in equations (1a) till (4).
3: for h “ 1, 2, ..., H do
4: X̂P,j

T`h “ KP,j
X

ˆ
XP,j
T`h´1 ` η

j
T`h

5: with ηjT`h „ N p0,Σj
Xq

6: yjT`h “ Aj `BjX̂P,j
T`h ` e

j
T`h

7: with ejT`h „ N p0, diagpσjeqq

8: Store yjT`H
9: Return y1

T`H , ..., y
M
T`H

If all the draws are collected a distribution is made of the predicted yields. The two
different type of risks, considered in this paper, use different approaches to establish the
quantiles that determine the height of the shocks to the yield curve. For non-parallel Gap
Risk different quantiles are determined for each different maturity and a new yield curve
is constructed from these quantiles. This way the entire yield curve gets a different shock
for different maturities. For parallel shocks different approaches can be taken. I will show
the different outcomes when the shock is determined by only the short rate, only the 10
years rate, or using a weighted average of the shocks for each maturity. After the shock
is determined the same effect is applied to the entirety of the yield curve. Following this
approach only the level of the yield curve changes.

4 Results

In this section results of the model without and the model with Macro-Economic Factors
will be discussed. First they will be examined in a simulation study. After that, historical
data of 2008 till 2017 will be used to examine their performance.
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4.1 Simulation Study

The same way of simulating data is used as in Bauer (2017). In short, the data is sampled
by first estimating a term-structure model with 2 risk-factors. This model is estimated
by maximum-likelihood estimation and from the resulting point estimates, the data on
yields is simulated by using the autoregressive model from equation (1a). Then for each
of 100 iterations a new dataset is generated of 300 observations and for this new set
the Bayesian estimation is performed. For the extended model with Macro-Economic
Factors, the same approach is used but then a term-structure model is estimated with
2 risk-factors and 2 Macro-Economic Factors. I choose for this different model, that
results in different simulated data, because the data on the Macro-Economic factors also
needs to be simulated. Moreover, in this way the dataset allows for retrieving the Data-
Generating Parameters (DGP) that are used to generate the simulated data. In this
section the robustness of the different model selection samplers are evaluated by this
ability of retrieving the DGP, and therefore the simulated data should allow for that.

4.1.1 Base Model

Table 4: The following table shows whether the different model selection samplers are able to retrieve the correct model
accordingly to the DGP. The first row depicts the vector of γ that is used to generate the simulated data. For the row with
MCMC the values represent the percentage of iterations where the corresponding element of λ was significant in a Bayesian
way, and this means that its confidence interval did to contain zero. The other rows represent the posterior means for the
elements of γ because they do in fact estimate the element of γ in contrary to the unrestricted model which is represented
by the second row. The most right column of the table gives the frequencies of iterations that the different methods were
able to retrieve the exact same specification used for the DGP.

Element of γ Freq. of
(1) (2) (3) (4) (5) (6) corr. model

DGP 0 0 1 0 0 0

MCMC 0.07 0.05 0.99 0.09 0.06 0.04 76%
SSVS 0.05 0.01 0.84 0.02 0.06 0.01 89%
GVS 0.14 0.07 0.91 0.09 0.17 0.06 88%
RJMCMC 0.13 0.08 0.90 0.10 0.13 0.07 90%

In table 4 the first results are depicted, they show if the different model selection samplers
are able to retrieve the model specification that is used to generate the data. The table
shows that indeed all different algorithms are mostly able to generate the correct model.
However, the MCMC sampler is less efficient in doing this, because in only 76% of the
iterations each element of λ was correctly significant or not according to the DGP. This
could be due to the amount of draws that are less than for the other samplers (15.000
versus 50.000 draws). The other samplers, that use γ to determine which elements of λ
to use have percentages of around the 90% of the iterations that they correctly estimated
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γ according to the DGP.

The results of table 4 for individual elements of γ are also in line with the percent-
ages found in the most right column. For the elements that are used in the DGP the
posterior means for γ of the different samplers are close to 1, the GVS sampler yields a
mean of 0.91 for the third element of γ which correspond with the element of λ that is
term premium of the autoregressive element for the risk-factor. Also the posterior means
for the elements of γ, that are not used in the DGP and therefore equal to zero, are
close to zero. The means are between 0.01 till 0.17 which is rather low. The table shows
that the applied framework so the parameters are either rather conclusively taken 1 or 0
throughout the iterations. This indicates that for the dataset that is used in this research,
the framework of estimating the term structure is sufficient in discovering the underlying
structures. Throughout the sample it is rather clear that there is not much variation
between different models, which is also due to the fact that over the last few years the
variances in yield data in Europe are quite low. Therefore, in the simulation approach
that I show in this study the resulting dataset does also not contain a lot of volatility.

Table 5: The results in this table depict the maximum absolute eigenvalue of the persistence component (KQ
1Xq of equation

(1a) for the different samplers. Also the values for the impulse-response function are given that represent the effect of shocks
to the level factor at a 5-year horizon. The last two columns contain the implied volatilities for the 5-10 year risk-neutral
forward rates (which are the expectations of the short rates) and also for the forward term premium. Both are scaled to
annualized percentage points. The rows below the rows with posterior means depict the frequencies of iterations that the
value of the DGP was present in the confidence interval.

Persistence Volatilities
max. eigenv. IRF(5y) ∆f̃t ∆ftpt

DGP 0.9674 0.1538 0.0255 0.2105
MCMC posterior mean 0.9606 0.1273 0.0253 0.2156

CI contains DGP 99% 93% 91% 92%
SSVS posterior mean 0.9674 0.2842 0.0634 0.1729

CI contains DGP 94% 94% 94% 86%
GVS posterior mean 0.9629 0.2108 0.0432 0.1935

CI contains DGP 95% 95% 94% 90%
RJMCMC posterior mean 0.9650 0.2219 0.0457 0.1921

CI contains DGP 99% 99% 98% 97%

In table 5 results are given for the autoregressive components in the model for the
simulated data. It shows the values that are used in the DGP in the first row, and shows
if the different samplers are able to approximate those specific values. The unrestricted
MCMC sampler is already able to almost entirely retrieve the autoregressive component.
This sampler is also able to correctly retrieve the implied volatilities of the forward rates.
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The other samplers however are even better at it for this value, the posterior mean of
the SSVS sampler is coincidentally the same as the DGP value. In contrary to this
finding, the unrestricted model is better able at estimating the other aspects of the model.
And therefore the values of the impulse-response function and both volatilities are better
estimated when all elements of γ are set to 1.

4.1.2 Extended Model with Macro-Economic Factors

For the simulation study of the model with Macro-Economic Factors again the same 2-
factor specification is used as with the base model. This means that γ has now 4 more
elements included that represent the dependence of the two yield factors from the two
Macro-Economic Factors. All other specifications such as the number of iterations and
the different sampling algorithms were kept the same as with the base model.

During the simulation procedure all algorithms showed difficulties with retrieving cor-
rect acceptance rates for the different draws. This resulted in estimations that were not
stable and were sometimes just incorrect. In this section I will illustrate this problem by
showing the same results as for the specification without Macro-Economic Factors. Also
the tuning parameters for the drawing algorithm of Chib and Ergashev (2009) could not
solve the problem because the simulation study showed that for each different iteration
a different set of tuning parameters was needed. Later on, in the section where I will
discuss the empirical results I will show that for the data a suitable set of parameters can
easily be found and used. However, this set was not applicable for the simulation study
because each iteration a new dataset is used.

Nonetheless in table 6 the results are given for the different sampling algorithms.
Immediately this table points out the implications of the problem with the simulation
that is described before. All different sampling algorithms were not able to adequately
retrieve the DGP parameters. In all different iterations this proved to be too difficult
and therefore the percentages in the most right column of the table are equal to 0. The
table also shows a probable cause of the problem. The amount of risk-parameters that
the DGP includes is much higher than with the base model. For the base model only one
element of λ was included to generate the data, but for the extended model now 7, out of
possible 10, elements of λ are included in the DGP. The different algorithms clearly failed
at retrieving this rather unrestricted specification, which is also shown by the posterior
means of the individual parameters. The posterior means are much further away from
1 when an element is included in the DGP or from 0 when the element is not included.
Also the different sampling algorithms are not consistent for which elements the posterior
means are close to their DGP values. The RJMCMC algorithm however, used the full
unrestricted model for each iteration. Apparently this algorithm ensured a very strong

23



specification of the model for which it did not deviate in each iteration or drawing. One
could argue that this specification is more in line with the DGP specification than for the
other algorithms but it is not preferable that only one specification is evaluated for each
drawing in each iteration.

Table 6: The following table shows whether the different model selection samplers are able to retrieve the correct model
accordingly to the DGP when also Macro-Economic Factors are included in the model. The first row depicts the vector of
γ that is used to generate the simulated data. For the row with MCMC the values represent the percentage of iterations
where the corresponding element of λ was significant in a Bayesian way, and this means that its confidence interval did
not contain zero. The other rows represent the posterior means for the elements of γ because they do in fact estimate the
element of γ in contrary to the unrestricted model which is represented by the second row. The most right column of the
table gives the frequencies of iterations that the different methods were able to retrieve the exact same specification used
for the DGP.

Element of γ Freq. of
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) corr. model

DGP 1 1 1 0 0 1 1 1 1 0

MCMC 0.13 0.26 0.96 0.05 0.09 0.57 0.25 0.20 0.55 0.20 0%
SSVS 0.22 0.31 0.76 0.41 0.20 0.43 0.24 0.63 0.89 0.52 0%
GVS 0.38 0.58 0.49 0.62 0.55 0.61 0.36 0.59 0.75 0.15 0%
RJMCMC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0%

Some additional results of the simulation study are given in table 7 that provide more
details on the posterior persistence and volatilites of the different models. Whereas with
the base model all different sampling algorithms were able to retrieve the values from the
DGP, now only the unrestricted model is able of estimating those values in some degree.
These values are however somewhat lower than before, for example the percentage of iter-
ations where the confidence interval of the maximum eigenvalue contained the DGP value
is equal to 87% instead of 99%. Also for all different algorithms except the RJMCMC
sampler, the impulse-response function became very extreme. This is another indication
that the simulations are not stable because the effect of shocks to the level factor were
too large. For the RJMCMC algorithm the posterior means seem to be rather close to the
DGP values, but because the different drawings of this algorithm are all closely dependant
on each other, which was already shown in table 6, the percentage of confidence interval
that included the DGP value is very low. This lead to percentages that were equal to 1%

for both volatilities.

4.1.3 Conclusion of Simulation Study

The simulation study shows that the Bayesian estimation of the term structure model
is able to retrieve the DGP parameters rather well when the parameter space is not too
large. When the Macro-Economic Factors are added to the specification the estimation
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requires tuning parameters that need to be different for each dataset in order to produce
stable results. With this simulation study it was not possible to manually adjust these
parameters each iteration and therefore the results, discussed in this section, show a
negative image of the approach.

Table 7: The results in this table depict the maximum absolute eigenvalue of the persistence component (KQ
1Xq of equation

(25) for the different samplers. Also the values for the impulse-response function are given that represent the effect of shocks
to the level factor at a 5-year horizon. The last two columns contain the implied volatilities for the 5-10 year risk-neutral
forward rates and also for the forward term premium. Both are scaled to annualized percentage points. The rows below
the rows with posterior means depict the frequencies of iterations that the value of the DGP was present in the confidence
interval.

Persistence Volatilities
max. eigenv. IRF(5y) ∆f̃t ∆ftpt

DGP 1.0050 -0.0254 0.0219 0.1832
MCMC posterior mean 1.1122 ´ inf 0.0286 0.2165

CI contains DGP 87% 93% 94% 74%
SSVS posterior mean 1.0563 ` inf 0.1126 0.1843

CI contains DGP 12% 20% 10% 17%
GVS posterior mean 1.0339 ´ inf 0.1164 0.1737

CI contains DGP 34% 31% 25% 32%
RJMCMC posterior mean 1.0039 -0.0630 0.0267 0.2088

CI contains DGP 52% 68% 1% 1%

4.2 Empirical Data

In this section, real empirical data is used, as described in section 2. The data is then
used to construct principal components of it. First only these factors are used to model
to term-structure. Later in this section also the empirical results for the extended model
with Macro-Economic Factors will be discussed.

4.2.1 Base Model

The results in table 8 show us what happens to the parameters when the full model is
evaluated with only 3 risk factors. Most posterior means of the different parameters are
significant in the Bayesian framework. Examples are the autoregressive components in
the risk-neutral part of the model. Those all turned out to be significant and so shows the
strong persistence in the risk factors. Also the acceptance percentages seem to be quite
in line in what literature suggests to be good acceptance rates (Gelman et al., 1996).
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Table 8: This table contains the posterior results for the unrestricted model without Macro-Economic Factors included,
so each element of γ is equal to 1. Significant results are printed bold and they are significant when their confidence
interval does not contain zero. The standard errors of the posterior means are given in parentheses in the row below. In
the last two columns of the table the average acceptance rates and an inefficiency factor are given. The acceptance rates
are calculated by the various equation given in section 3.2.1. The inefficiency factors are calculated by determining the
Newey-West adjusted first autocorrelations of the drawings. The parameters kQ8, λ0, Σ and σe are all scaled by 1200 to
represent annualized percentage points.

Parameter Prior Posterior Acc. Ineff.

kQ8 0.0586 27.6 11.9
(0.0095)

KQ
1X 0.5000 0.5000 0.5000 0.9872 0.9751 0.9751 27.6 10.3

(0.2887) (0.2887) (0.2887) (0.0025) (0.0028) (0.0028)
λ0 0 0 0 0.1028 -0.0083 0.0391 1.0

(0.5065) (0.7695) (0.1538) (0.0509) (0.0760) (0.0155)
λ1 0 0 0 -0.0233 -0.0120 -0.4123 1.0

(0.0942) (0.1644) (1.7126) (0.0094) (0.0166) (0.1736)
0 0 0 0.0007 -0.0103 0.0002

(0.1430) (0.2497) (2.6019) (0.0141) (0.0238) (0.2623)
0 0 0 0.0053 -0.0010 -0.1801

(0.0286) (0.0499) (0.5201) (0.0029) (0.0050) (0.0527)
Σ 0.1411 0 0 23.2 13.1

(0.0052)
0.0502 0.2068 0
(0.0125) (0.0088)
-0.0120 0.0029 0.0402
(0.0023) (0.0023) (0.0017)

σe 0.0896 0.8
(0.0029)

Furthermore, the restrictions on the risk premium are moderately restrictive because 5
out of 12 parameters tend to be significant for the unrestricted model. This indicates that
quite some restrictions are needed in order to define the term premium. Bauer (2017)
finds an opposite finding in this and comes to the conclusion that his data supports a
specification where many risk-prices are set to 0. Apparently the data of yields on 6-
months Euribors needs a different kind of model. A model where the relations between
the risk-neutral and the pricing measure are more present and have a greater effect on
the outcomes of the model.

In table 9 results are given for each individual element of γ, the vector that consist
of indicator variables indicating if the corresponding element of λ is taken into account
or not. The differences between the various sampling algorithms already becomes visible.
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Especially, the SSVS sampler is not able to accurately estimate the γ parameters which
resulted in high inefficiency factors. This leads to the conclusion that this sampler does
not evaluate many different models, a result which will be further illustrated by table 10.
The other two samplers have overall lower inefficiencies and have visited more different
versions of the model. In this way they are better at estimating the different parameters
and this is also shown by the fact that they produced lower standard errors than the SSVS
sampler.

Table 9: This table contains posterior results for the γ parameter for each different sampling algorithm. The first three rows
of γ correspond with the intercept of the risk factors (λ0) and the other rows the change in measures for the autoregressive
component (λ1) in equations (8). Posterior means and their standard deviations are given in each first two columns. Also
inefficiency factors are given that are determined by taking the Newey-West adjusted first order autocorrelations. These
factors indicate if different types of drawings are evaluated, a high factor means that consecutive drawings were similar to
each other.

SSVS GVS RJMCMC

Mean MCSE Ineff. Mean MCSE Ineff. Mean MCSE Ineff.

1 0.164 0.034 410.8 0.189 0.013 51.1 0.117 0.014 91.6
2 0.003 0.002 63.1 0.045 0.001 2.0 0.040 0.005 30.9
3 0.170 0.037 475.0 0.887 0.025 303.4 0.917 0.025 402.8
4 0.063 0.024 468.8 0.668 0.009 18.1 0.611 0.027 151.7
5 0.007 0.003 54.4 0.070 0.001 1.6 0.072 0.007 31.8
6 0.015 0.008 214.3 0.318 0.006 7.0 0.316 0.018 73.9
7 0.154 0.035 467.4 0.118 0.003 3.6 0.127 0.011 53.3
8 0.010 0.005 109.5 0.076 0.001 1.1 0.081 0.007 31.4
9 0.007 0.003 72.2 0.092 0.002 2.6 0.097 0.008 33.2
10 0.743 0.043 477.5 0.463 0.016 48.5 0.445 0.029 175.3
11 0.003 0.002 89.3 0.044 0.001 1.8 0.046 0.006 39.6
12 0.164 0.036 482.7 0.908 0.023 313.3 0.937 0.022 400.3

After some results for specific parameters are considered in the previous tables now
results will be discussed of all different models that were visited in the algorithm. In table
10 those results are given and one can easily notice that the problems with the SSVS
sampler as discussed for table 9 are further illustrated. This sampler has only visited
a rather small fraction of possible models (only 47 out of 4096). Moreover, the models
that it did visit do not correspond with the performance of the other two samplers in
terms of their frequency. This can either indicate that the SSVS sampler finds other
restrictions that are more important, or that this sampler is not able to find the correct
specifications. When looking at the criterions given for each different model, one could
only conclude that the SSVS sampler is not finding the right restrictions. This is due
to the fact that the ordering of best models, accordingly to the GVS sampler, corre-
sponds with the ordering of the ML estimates of the model. Together with the findings
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found at 9 and the fact that the GVS and RJMCMC sampler visited more than 10% of
the total models, shows that the SSVS sampler tends to give the wrong restrictions a
lot of weight. Also the restrictions that it does enforce ensure that the sample tends to
overdraw them and therefore is not able to visit an adequately fraction of the total models.

The GVS sampler seems to produce also more stable results than the RJMCMC sam-
pler which can be concluded by for example how the posterior odds are given for each
different model. Where for the GVS sampler the odds gradually decline as the frequencies
decline, the RJMCMC sampler does show a slightly more steep decline. The exception
is off course the model where the first, fourth and tenth elements of γ are set to 1. Ap-
parently that set of parameters is extremely not favored by the RJMCMC sampler and
in approximation only visited a total of 5 times throughout the algorithm. Just as in
Bauer (2017) the GVS sampler shows the most stable results and as I will show later on
the same conclusion can be drawn for the extended model. Therefore the results for this
sampler will be further discussed throughout the remainder of this paper.

Table 10: In this table posterior results are given on the different specifications of γ. In total there are 212 different models,
but only the 10 best models are given here in terms of the frequency they are visited by the algorithm. The ordering of
specifications is given according to the GVS sampler. The numbers in the first column correspond with the elements of γ
that are equal to 1. Each first column represent the fraction of drawings the sampler visited that model. The second row
for that sampler gives then the relative odds ratios compared with the model that is visited the most. In the two most
right columns Aikake information criterion and the Schwartz-Bayes information criterion are given that are retrieved from
the ML estimates for that model. Below the table the amount of different specifications that are evaluated are given.

GVS SSVS RJMCMC AIC SBIC

3,4,12 0.1632 1.0000 0.0562 1.0000 0.1481 1.0000 -13286.9494 -13250.7120
3,10,12 0.1229 1.3282 0.0846 0.6638 0.1464 1.0115 -13288.1642 -13251.9268
3,4,6,12 0.1145 1.4247 0.0000 Inf 0.1220 1.2140 -13289.0947 -13250.0698
3,4,10,12 0.0356 4.5786 0.0026 21.6000 0.0311 4.7553 -13288.6795 -13249.6546
3,6,10,12 0.0224 7.2979 0.0016 36.0000 0.0287 5.1668 -13287.6062 -13248.5813
3,4,7,12 0.0217 7.5337 0.0000 Inf 0.0239 6.1855 -13286.5169 -13247.4920
1,3,4,10,12 0.0187 8.7169 0.0000 Inf 0.0087 17.0599 -13289.8852 -13248.0729
1,3,10,12 0.0183 8.9169 0.0055 10.2482 0.0144 10.2976 -13287.6076 -13248.5827
1,4,10 0.0182 8.9561 0.0000 Inf 0.0001 2468.0000 -13281.6479 -13245.4105
3,4,9,12 0.0165 9.9017 0.0013 42.5455 0.0143 10.3264 -13285.1524 -13246.1275

models 773 / 4096 47 / 4096 436 / 4096
visited 18.9 % 1.1 % 10.6 %

In table 11 the stability of the GVS sampler is further accessed. Namely for the
stability for the prior of λ which is the same prior as used in Bauer (2017). A higher value
for the g-value leads to less different models that are visited but a higher frequency for
the model that is favored the most. This also leads to a lower amount of the posterior
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mean of the amount of parameters for λ that are included. However this table shows
again with the previous models that the data that is used in this research asks for a
moderate amount of risk-price parameters to be taken into account. For example, when
the posterior probabilities are considered that at most 3 parameters are included in the
model, the percentages quickly drop to low amounts. This implies that indeed more than
3 parameters are needed to efficiently estimate the term structure.

Table 11: This table contains the posterior results for different model priors of λ. These results are examined by looking
at the GVS model selection sampler. The first column depicts the frequency that the best model according to table 10
is visited for the different priors. The second column represent the amount of model specifications that were visited for a
minimum of at least 1% percent. The third column gives the total amount of models visited. The last two column give
results for the amount of restrictions that the GVS sampler imposes. The first column gives the average amount of elements
of γ that were equal to 1, and the last column gives the percentage of drawings where the amount of included risk-prices
were at most equal to 3.

Models visited Posterior
g Frequency M1 freq ě 1% total Epaq P pa ď 3q

10,000 32.3% 10 176 1.7 96.9%
1,000 26.1% 13 364 2.9 77.4%
100 16.3% 23 773 3.9 39.2%
10 4.8% 14 1409 5.5 7.0%

4.2.2 Extended Model with Macro-Economic Factors

In this section the same results will be shown as for the model without Macro-Economic
Factors. However, only some differences will be discussed to avoid that similar conclu-
sions will be drawn. I also want to point that I endured some difficulties in estimating
the extended models with those factors. For the setting that I used the algorithm of
Chib and Ergashev (2009) did not work optimal anymore. One of the motivations of that
algorithm was that it did not had to use tuning parameters anymore to generate draws
from the proposal distribution. However, I experienced that this resulted in draws that
gave extremely low acceptance rates. Therefore I had to reinstate tuning parameters in
the algorithm to come up with the results I will present in the following sections.

Again in table 12 posterior results are given for the full unrestricted model. For the
results not much has changed for the amount of parameters that are significant for this
model. All elements of the covariance matrix are now significant and roughly the same
percentage of risk-price parameters are significant (8/18 instead of 5/12). However the
acceptance rate for the both the autoregressive component of the risk-neutral measure
and the short-rate have increased. They are still in what many researchers find to be
sufficient. What we also can notice is that their inefficiency has also greatly increased.
This is rather surprising because the procedure of estimating those parameters has not
changed when compared to the model without Macro-Economic Factors. Apparently due
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to the extended parameter space in the historic measure part also the parameters in the
risk-neutral measure became harder to estimate.

On the other hand, table 12 also shows us that for the unrestricted model the effect of
the Macro-Economic Factors have a significant effect on the risk-factors. The first factor,
that represents the inflation, has an positive effect on the first risk-factor which is the one
that is linked with the level of the yield curve. The other factor, which stands for the real
economic growth, has a significant negative effect on the second risk factor, the one that
is associated with the slope of the yield curve.

Table 13: This table contains posterior results for the γ parameter for each different sampling algorithm. The first
three rows of γ correspond with the intercept of the risk factors (λ0) and the other rows the change in measures for
the autoregressive component (λ1) in equation (26). Posterior means and their standard deviations are given in each
first two columns. Also inefficiency factors are given that are determined by taking the Newey-West adjusted first order
autocorrelations. These factors indicate if different types of drawings are evaluated, a high factor means that consecutive
drawings were similar to each other.

SSVS GVS RJMCMC

Mean MCSE Ineff. Mean MCSE Ineff. Mean MCSE Ineff.

1 0.026 0.009 149.0 0.112 0.009 38.4 0.129 0.019 153.2
2 0.008 0.003 54.7 0.080 0.004 8.9 0.071 0.010 73.6
3 1.000 0.000 0.906 0.027 418.3 1.000 0.000
4 0.500 0.048 455.7 0.733 0.013 46.0 0.824 0.026 229.8
5 0.047 0.013 188.8 0.104 0.003 3.7 0.086 0.010 64.0
6 0.012 0.005 112.2 0.144 0.009 30.8 0.114 0.012 68.9
7 0.013 0.004 76.8 0.097 0.003 4.0 0.093 0.011 69.3
8 0.147 0.031 381.1 0.759 0.006 9.3 0.709 0.018 76.8
9 0.008 0.003 40.1 0.079 0.002 2.1 0.092 0.009 50.0
10 0.116 0.028 385.2 0.280 0.015 58.1 0.211 0.026 197.0
11 0.007 0.003 61.3 0.065 0.002 4.1 0.060 0.008 54.8
12 1.000 0.000 0.906 0.027 433.6 1.000 0.000
13 0.108 0.027 391.6 0.522 0.010 19.0 0.612 0.024 125.8
14 0.037 0.011 160.7 0.153 0.002 2.1 0.147 0.011 44.2
15 0.258 0.039 401.5 0.547 0.010 21.4 0.559 0.016 52.9
16 0.241 0.038 402.2 0.252 0.010 24.1 0.205 0.018 95.1
17 0.870 0.033 470.3 0.996 0.001 9.9 0.999 0.000 13.0
18 0.008 0.002 28.9 0.084 0.002 4.0 0.071 0.008 46.5

Table 13 shows that even by increasing the dimensionality of the parameter space
for the risk-prices the individual results for estimating the elements of γ have not really
changed. Again the GVS seems to be most efficient in estimating those which can be
reasoned by looking at the standard errors and inefficiency factors that are both lower
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than for the other samplers.

Table 14: In this table posterior results are given on the different models that are examined. In total there are 218 different
models, but only the 10 best models are given here in terms of the frequency they are visited by the algorithm. The numbers
in the first column correspond with the elements of γ that are equal to 1.

GVS SSVS RJMCMC AIC SBIC

3,4,8,12,13,17 0.0772 1.0000 0.0368 1.0000 0.1085 1.0000 -13331.3662 -13286.7663
3,4,8,12,13,14,17 0.0716 1.0783 0.0020 18.2277 0.0869 1.2493 -13334.5 -13287.2
3,4,8,12,15,17 0.0306 2.5183 0.0517 0.7116 0.0306 3.5424 -13328.3 -13283.7
3,8,10,12,15,17 0.0241 3.2043 0.0000 Inf 0.0119 9.0905 -13329.9 -13285.3
3,4,8,12,14,15,17 0.0198 3.8930 0.0141 2.6188 0.0213 5.1054 -13330.7 -13283.3
3,4,6,8,12,13,17 0.0160 4.8105 0.0000 Inf 0.0193 5.6297 -13332.1 -13284.8
3,4,12,14,16 0.0143 5.4034 0.1101 0.3344 0.0177 6.1322 -13326.5 -13284.6
3,8,10,12,15,16,17 0.0140 5.5272 0.0000 Inf 0.0101 10.7465 -13331.9 -13284.5
3,8,10,12,17 0.0131 5.8721 0.0056 6.5986 0.0059 18.4592 -13324.6 -13282.8
3,4,12,13,15,17 0.0104 7.4335 0.0079 4.6373 0.0202 5.3733 -13330.6 -13286.0

models 4312 / 262144 146 / 262144 1288 / 262144
visited 1.6 % 0.1 % 0.5 %

When all different models are compared with each other some effects that were earlier
discussed seem to strengthen. In table 14 the percentages of models that are visited are
given. The SSVS sampler seems to be even less efficient when the extra variables are added
to the model. The problem of tightly restricting itself to only a few possible specifications
have led to the occurrence that only 83 out of 262144 total models are evaluated. The
other two samplers also seem to have this problem of visiting not that many different
models. However, the models that both the GVS and the RJMCMC sampler do visit do
not differ that much from each other. In terms of their criterions they seem to perform
almost even well. What is also notable is the fact that for all models that are depicted in
table 14 the seventeenth element of γ is equal to 1. Again this element corresponds with
the effect of the second Macro-Economic Factors on the slope of the yield curve. This
finding indicates that the adding of these factors does indeed change the models that are
estimated.
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Table 15: This table contains the posterior results for different model priors of λ. These results are examined by looking
at the GVS model selection sampler. The first column depicts the frequency that the best model according to table 14
is visited for the different priors. The second column represent the amount of model specifications that were visited for a
minimum of at least 1% percent. The third column gives the total amount of models visited. The last two column give
results for the amount of restrictions that the GVS sampler imposes. The first column gives the average amount of elements
of γ that were equal to 1, and the last column gives the percentage of drawings where the amount of included risk-prices
were at most equal to 6.

Models visited Posterior
g Frequency M1 freq ě 1% total E(a) P pa ď 6q

10,000 20.4% 16 725 2.6 99.6%
1,000 5.2% 22 2068 4.2 92.3%
100 7.7% 12 4312 6.8 39.7%
10 2.2% 2 8257 9.0 4.6%

4.3 Economic Implications

In the following section more detailed results are discussed that follow from the predicted
model. Namely some economic consequences will be of importance in this section. There-
fore, the most robust sampler has been used and as I have showed this is the GVS sampler.
Also for the three best models accordingly to table 10 and 14 the standard MCMC sampler
has again been used to validate those specified models.

4.3.1 Base Model

In table 16 results are given for the autoregressive results. In order to let the implied
yields be stationair all eigenvalues need to below 1. If this is not the case out of sample
multiple period ahead forecasts will explode and therefore not be feasible. Correctly, all
different model specifications ensure that all eigenvalue are below 1. For most of the dif-
ferent specifications of the MCMC sampler the persistence under pricing measure becomes
lower than for the risk-neutral measure. However for the second model specification the
persistence becomes higher under the pricing measure, which could be caused by the fact
that for this model specification also the volatility in implied risk-neutral forward rates
(which refer to the expectations of short rates) is rather high compared to the posterior
means of the other model specifications.

Onwards from this section, the GVS sampler is called the Bayesian Model Average
(BMA) due to the fact that it has the highest performance as shown in the previous
section. For this BMA model the maximum persistence becomes almost equal for both
measures in table 16. Again the volatility in the risk-neutral rates is higher than for
example the unrestricted model so this indicates that even between different model spec-
ifications different economic implications can be noticed from the resulting model.
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Table 16: This table contains details for the autoregressive component of the term structure model, but only the maximum
eigenvalues are shown. Where the first value represents the posterior mean and the value between parentheses the posterior
median. The different models depicted by M1, M2 and M3 correspond with the three best models following table 10. The
M0 model stands for the unrestricted model so where all elements of γ are set to 1. Also the volatilities of changes in
implied 5-10 forward rates, changes in risk-neutral forward rates and risk premiums are given in the 3 columns to the right.
Below the posterior means and medians, 95% confidence intervals are given in the square brackets below.

Model Max. eigenvalue Volatilities
Q P ∆f̂t ∆f̃t ∆ftpt

M0 0.9871 (0.9873) 0.9713 (0.9728) 0.22 (0.21) 0.03 (0.02) 0.21 (0.21)
[0.9821, 0.9918] [0.9345, 0.9975] [0.20, 0.24] [0.00, 0.15] [0.15, 0.26]

M1 0.9874 (0.9875) 0.9732 (0.9734) 0.22 (0.22) 0.04 (0.03) 0.19 (0.19)
[0.9827, 0.9918] [0.9579, 0.9867] [0.21, 0.24] [0.02, 0.08] [0.15, 0.22]

M2 0.9839 (0.9836) 0.9989 (0.9989) 0.22 (0.22) 0.23 (0.23) 0.16 (0.16)
[0.9801, 0.9893] [0.9984, 0.9997] [0.20, 0.24] [0.21, 0.26] [0.14, 0.20]

M3 0.9803 (0.9802) 0.9797 (0.9800) 0.20 (0.20) 0.03 (0.03) 0.18 (0.18)
[0.9782, 0.9827] [0.9696, 0.9891] [0.19, 0.22] [0.01, 0.07] [0.15, 0.20]

BMA 0.9874 (0.9876) 0.9845 (0.9832) 0.21 (0.21) 0.11 (0.05) 0.19 (0.18)
[0.9823, 0.9919] [0.9618, 0.9996] [0.19, 0.23] [0.01, 0.34] [0.12, 0.39]

In figure 3 graphical results for the posterior results of the implied yields are given.
In the top subfigure implied yields for the risk-neutral measureare plotted along with the
actual yields and implied yields by the pricing measure. The implied risk-neutral yields
for the unrestricted model are very persistent and therefore stay at a stable level slightly
above the 0% threshold. It remains rather unchanged by the downwards trend noticed
in the actual yields. The implied yields by the pricing meausure however do follow the
downwards trend and seem to fit the yield over time rather well. On the other hand the
implied risk-neutral yields from the BMA model are indeed affected by the downwards
trend in yields and from the year 2012 they are even fitted to be negative. Because this
implication is rather not that sensible I decided to not adjust the scales in order to let
them still be visible.

In the bottom panel of figure 3 the implied term-premium is plotted which follows
from fitting the λ matrix. In this subfigure we can draw almost the same conclusions as
from the top subfigure. Because the term premium of the unrestricted almost fits the
observed yields beginning at mid 2012, the implied risk-neutral yields becomes almost
zero. This can easily be argued when their relation is considered in equation (1b). The
same reasoning can be taken for the observation that the risk-premium for the BMA
model is at a higher level than the implied yields. This also ensures that the implied
risk-neutral become negative as is again already illustrated by the top panel.
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Figure 3: Figures of the expected risk-neutral yields and the term premiums over the used time period for the 10-year
yield. The plotted model-implied yields are not that much visible but that is caused by the fact that the fitted yields are
rather close to the actual ones. The fitted yields are obtained by the unrestricted model. In the left panel additional to
the implied yields under the pricing measure P also the implied yields under the risk-neutral measure Q are plotted. In the
right panel the values of the term premium is plotted, which is calculated by taking the difference between the two implied
yields under measures Q and P. The time periods that are depicted gray represent the crisis period, to further illustrate
the movements during this period.

In figure 4 actual and fitted yields are plotted for a maturity of 5 years. For this
maturity the implied risk-neutral yields are more substantial than for a maturity of 10
years. This also implies that the term premium has become lower which the lower sub-
figure also shows. However eventually when the yields become lower, beginning in 2013,
the risk-neutral yields again end up at a lower bound of almost zero for the unrestricted
model and negative for the BMA model.
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Figure 4: Same figure as for figure 3 but in this figure yields are plotted with a maturity of 5 years.

During the crisis of 2008 the yields with a maturity of 6 months declined the most
steepest as is shown in figure 5. This figure also shows that the implied yield for a 6-
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months maturity is almost fully declared by the implied risk-neutral yield. For both the
unrestricted model as the BMA model is this the case.
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Figure 5: Same figure as for figure 3 but in this figure yields are plotted with a maturity of 6 months.

In figure 6 also the posterior results for the estimated volatilities are plotted. In the
upper subfigure results for the unrestricted model are given and in the lower one results
results for the BMA model are given. The unrestricted model is able to produce a rather
tight confidence interval of the risk-neutral yields which even slightly becomes more tighter
as maturities increases. The posterior mean of the volatility is for both models almost the
same, very stable throughout the different maturities and only slowly increasing when the
horizon increases. The BMA model however, does implicate a larger confidence interval
around the risk-neutral yields. The lower bound of this interval seems to be similar for
both models but the upper bound is approximately two times higher. This could be
attributed to the fact that the unrestricted model uses all elements of λ which leads to a
stricter specification where there is less room for deviation for the implied yields. Also the
length of this interval for the BMA model seems to increases for longer maturities than
for the unrestricted model. For the unrestricted model the interval becomes tighter when
the maturity is 18 months or longer, but for the BMA model the interval only becomes
tighter when the the maturity is 36 months or longer.
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Figure 6: Figures of the posterior means of the volatilities in changes over the fitted forward rates, that are denoted by
a solid black line for the different maturities that are given in months. In the top panel these means are given for the
unrestricted model and in the lower panel for the BMA model. Also risk-neutral forward rates are plotted in a blue line,
together with their credibility intervals that are represented by the blue dashed lines.

At last, the results in table 17 represent the ability of the different models in forecast-
ing the yields. Because a rather small dataset is used in this research of only 10 years,
their ability has also been accessed by simulating yields and evaluating if the model is
able to declare the variation in bond returns. A good model should be able to explain
the variation in the yields, as is also shown in other papers that research term structure
models (Dai and Singleton, 2002).

What we can actually see from the results in table 17 is that the simulating procedure
is quite necessary to see the potential of the proposed method in this paper. This is proven
by the fact that the amount of variation that the models can actual declare is much higher
when one looks at the simulated samples. This is also the case for the different maturities.
However where the observed yield data is better able at predicting bond returns for higher
maturities, the other models show the opposite effect.
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Table 17: This table contains the predictability for some selected maturities. These predictabilities are denoted by the
R2 implied by the different models in declaring the variance in bond returns. The Data column represents the percentage
of variation in bond returns that the observed yield data can declare. The Pop. columns represent the odds for the used
sample period and the Smpl. columns are generated by simulating yields. For these simulated returns also their standard
errors are given in brackets.

M0 M1 M2 M3 BMA
Maturity Data Pop. Smpl. Pop. Smpl. Pop. Smpl. Pop. Smpl. Pop. Smpl.

3 years 0.09 0.23 0.45 0.27 0.47 0.01 0.35 0.31 0.49 0.18 0.42
(0.17) (0.16) (0.18) (0.15) (0.17)

5 years 0.13 0.22 0.46 0.21 0.45 0.00 0.36 0.24 0.47 0.14 0.42
(0.16) (0.15) (0.17) (0.15) (0.16)

7 years 0.18 0.20 0.45 0.15 0.42 0.00 0.36 0.18 0.44 0.11 0.41
(0.16) (0.16) (0.17) (0.15) (0.16)

10 years 0.23 0.21 0.45 0.12 0.41 0.05 0.36 0.13 0.41 0.10 0.40
(0.15) (0.16) (0.17) (0.16) (0.16)

4.3.2 Extended Model with Macro-Economic Factors

Again in this section not all results will be discussed very detailed. Only differences in
respect to the model without Macro-Economic Factors will be handled. As I also will
show in this section, the problems with stationarity for the extended model became were
also present in some degree just as with the simulation study. However due to the use of
the tuning parameters the implications were far less severe for this section.

In table 18 results are again given of the persistence of the extended model with Macro-
Economic Factors. These show that indeed the persistence in the risk-neutral measure has
increased very highly, even to the point where some are basically equal to 1. For the M2
model specification it even ensured that one eigenvalue always stayed at exactly 1. One
would maybe expect those changes to happen in the yields for the other measure because
only that measure is directly affected by the Macro-Economic Factors (see equation (25)).
This table shows that those effects indeed affect the structure of the estimates in the
risk-neutral measure. In the results for the volatilities of model implied forward rates
not much changes can be seen. Except for the fact that we already can see the effects of
stationarity of the second model specification. Because the persistence is equal to one for
that specification the implied rates tend to vary much more which seems problematic and
not a good estimate of the volatility.
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Table 18: This table contains details for the autoregressive component of the term structure model with the Macro-
Economic Factors added, but only the maximum eigenvalues are shown. Where the first value represents the posterior mean
and the value between parentheses the posterior median. The different models depicted by M1, M2 and M3 correspond
with the three best models following table 10. The M0 model stands for the unrestricted model so where all elements of γ
are set to 1. Also the volatilities of changes in implied 5-10 forward rates, changes in risk-neutral forward rates and risk
premiums are given in the 3 columns to the right. Below the posterior means and medians, 95% confidence intervals are
given in the square brackets below.

Model Max. eigenvalue Volatilities
Q P ∆f̂t ∆f̃t ∆ftpt

M0 0.9831 (0.9831) 0.9452 (0.9465) 0.23 (0.23) 0.02 (0.00) 0.23 (0.23)
[0.9829, 0.9835] [0.8937, 0.9927] [0.22, 0.24] [0.00, 0.12] [0.19, 0.25]

M1 0.9816 (0.9816) 0.9658 (0.9657) 0.22 (0.22) 0.01 (0.01) 0.20 (0.21)
[0.9815, 0.9818] [0.9516, 0.9789] [0.21, 0.22] [0.00, 0.04] [0.19, 0.21]

M2 0.9824 (0.9823) 0.9642 (0.9641) 0.22 (0.22) 0.01 (0.01) 0.21 (0.21)
[0.9822, 0.9827] [0.9515, 0.9774] [0.21, 0.22] [0.00, 0.03] [0.19, 0.21]

M3 0.9860 (0.9859) 0.9708 (0.9709) 0.22 (0.22) 0.02 (0.02) 0.20 (0.20)
[0.9846, 0.9873] [0.9597, 0.9815] [0.22, 0.22] [0.01, 0.05] [0.18, 0.21]

BMA 0.9830 (0.9830) 0.9773 (0.9744) 0.22 (0.22) 0.07 (0.03) 0.20 (0.20)
[0.9830, 0.9832] [0.9528, 0.9993] [0.21, 0.23] [0.01, 0.25] [0.13, 0.27]

Not much can be said about the effects of adding the Macro-Economic Factors by
looking at the figures in figure 7, and this is also the case when implied yields with a
maturity of 5 years and 6 months are regarded. Therefore only the figure for the fitted
10-year yields is given in this section.
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Figure 7: Figure of the plotted term premiums over the used time period with a maturity of 10 years. The plotted actual
yields are not that much visible but that is caused by the fact that plotted fitted yields are rather close to the actual ones.
The fitted yields are obtained by the unrestricted model.

Next to the implied yields in figure 7 also the posterior results of the volatilities
are plotted in figure 8. The first thing that can be noticed from this figure is that the
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confidence intervals of the implied volatility for the unrestricted model is much lower
than for the BMA model. Only for short-term yields the BMA sampler is able to produce
estimates that are not too volatile. Quickly for maturities of longer than 1 year the
interval widens greatly. The unrestricted model is better able at producing stable results
for the volatilities of the model. This relation stays in place even for long-term rates.
Apparently, the Macro-Economic Factors give the model some extra room to let the
estimates be more volatile instead of the stable results in the base model. This effect
becomes even stronger when also a model selection sampler is applied which can more
precisely denote the relations between the two different meausures in the model.
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Figure 8: Figures of the posterior means of the volatilities in changes over the fitted forward rates. Also risk-neutral
forward rates are plotted, together with their credibility intervals in squared brackets.

In table 19 again results on the predictabilities of the different models are given. If this
table is compared with table 17 it is shown that the amount of variation in excess bond
returns that is declared is slightly higher when the Macro-Economic Factors are included.
This is as expected because more regressors are now used (5 instead of 3) but it also shows
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a more stable pattern across the different specifications and for the different maturities.
For example the R2 for the unrestricted model is equal to 0.24 for the maturities of 3,5
and 7 years and equal to 0.26 for a maturity of 10 years. Due to the earlier described
problems with simulating data from the extended model with Macro-Economic Factors
the R2s are flawed. More specifically for the M1 specification the model is fully able to
declare all variation in the excess bond returns. For the other models these percentages
are at more normal levels but then again they are retrieved from fitting the model on
simulated data that proved to have several problems.

Table 19: This table contains the predictability for some selected maturities. These predictabilities are denoted by the
R2 implied by the different models in declaring the variance in bond returns. The Data column represents the percentage
of variation in bond returns that the observed yield data can declare. The Pop. columns represent the odds for the used
sample period and the Smpl. columns are generated by simulating yields. For these simulated returns also their standard
errors are given in brackets. Implications of the problems of overfitting that are described earlier are also visible in this
table. Therefore the R2 with simulated yields is very high for the M1 model.

M0 M1 M2 M3 BMA
Maturity Data Pop. Smpl. Pop. Smpl. Pop. Smpl. Pop. Smpl. Pop. Smpl.

3 years 0.15 0.24 0.45 0.28 1.00 0.28 0.90 0.25 0.47 0.20 0.54
(0.15) (0.00) (0.04) (0.16) (0.17)

5 years 0.17 0.24 0.45 0.23 1.00 0.24 0.88 0.21 0.45 0.16 0.52
(0.15) (0.00) (0.05) (0.15) (0.17)

7 years 0.21 0.24 0.45 0.19 1.00 0.20 0.87 0.17 0.43 0.13 0.50
(0.15) (0.00) (0.05) (0.15) (0.17)

10 years 0.25 0.26 0.45 0.17 1.00 0.18 0.86 0.14 0.41 0.12 0.49
(0.15) (0.00) (0.06) (0.15) (0.18)

4.4 Extreme Scenarios

As a last part of the results, the scenarios that are generated by the algorithm described in
section 3.4 will be discussed. In this section I will discuss the results obtained by making
forecasts for a year ahead of the yield curve. Those are plotted in figure 9. For each
different maturity a distribution has been made and from the 7 different quantiles the
resulting yield curve. An important observation that I draw from the figure is that of the
effect of the Macro-Economic Factors on the yield curve. These factors are able to change
the shape of the yield curve as a whole. This even leads to a slightly inverse relation
at the short-end of the yield curve which is a rather strange phenomenon but became
less unlikely in recent periods. It should be noted however, that in the used dataset this
pattern was not visible yet and that it is driven by the Macro-Economic Factors.

The base model without Macro-Economic Factors is not able to change the shape of
the yield curve as a whole, largely because it is only dependant on historic data. This
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can cause quite a problem because the model can only then predict a difference in the
structure of the yield curve when those changes have actually already been happened.
Obviously it will always predict a change in structure too late by default. When the
model also uses other variables such as those factors it can better predict those changes
in the structure as I have shown in figure 9. This stresses the importance of using also
other kind of variables instead of only using historic yield data when models are needed
for the purpose of predicting forecasts or establishing extreme scenarios. In the figure also
observations for the yield curve are given of the first of June 2018, because they illustrate
how the yield curve develops in 2018. It shows that the yield curve is very persistent and
does not abbreviate much from the latest observation in 2017.
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Figure 9: This figure shows the extreme scenarios for the GVS sampler, the quantiles that were used are 0.9, 0.5 and
0.1. The highest pair of lines corresponds with the highest quantile. The blue lines depict the scenarios for the base model
and the red lines for the scenarios resulting from the models that also included the Macro-Economic Factors. Also the last
observation of the yield curve is plotted as the black line. The asterisks that are plotted are the latest available observations
namely that of the first of June 2018. These are not used in the sample of the model but are given to illustrate how the
yield curve develops on wards from the latest observation in 2017.
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Figure 10: Figure showing the extreme scenarios for the GVS sampler, the quantiles that were used are 0.9, 0.5 and 0.1.
The blue lines depict the scenarios for the base model and the red lines for the scenarios resulting from the models that
also included the Macro-Economic Factors. Also the last observation of the yield curve is plotted as the black line. The
asterisks that are plotted are the latest available observations namely that of the first of june 2018. These are not used
in the sample of the model but are given to illustrate how the yield curve develops onwards from the latest observation in
2017.

In figures 11 until 13 quantiles are plotted of separate forecasts for yields of some
maturities. These include 6 months, 5 years and 10 years to compare the same data
as in section 4.3. Forecasts that are made with the GVS sampler are plotted next to
forecasts implied by the unrestricted model. The unrestricted model obviously uses more
parameters and therefore it seems to overfit the predictions to the fact that the adding
of Macro-Economic Factors has no clear effect anylonger. Only for the more volatile
maturity, namely that of 6 months, the effects of these factors are still visible.
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Figure 11: These figures have plotted the quantiles of individual forecasts for yields per month as out-of-sample forecasts
with a maturity of 6 months. The used quantiles are 0.1, 0.5 and 0.9. The left panel gives the forecasts for the GVS
sampler while the right panel is constructed with the unrestricted model. The blue lines depict the basis model and the red
lines depict the extended model with Macro-Economic Factors. Also the observations for the first 6 months are given with
asterisks used as symbols.

Figure 11 shows that the unrestricted model has a higher trend throughout the pre-
dictions, because the forecasts increase more for each quantile when out-of-sample period
increases. For both different methods the adding of the Macro-Economic Factors leads to
higher predictions of the 6 month yield. Also the predictions tend to follow a non-linear
trend in contrary to the base model that only uses historic yield data. However, when
looking at the actual observations of 2018 it seems that the base model is better able to
predict the short term yields, when the 50th percentile is used. This pattern is mosltly
due to the fact that the actual data is very persistent and does not change much which is
also reflected in line for the 50th quantile of the base model.
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Figure 12: These figures have plotted the quantiles of individual forecasts for yields per month as out-of-sample forecasts
with a maturity of 5 years. The used quantiles are 0.1, 0.5 and 0.9. The left panel gives the forecasts for the GVS sampler
while the right panel is constructed with the unrestricted model. The blue lines depict the basis model and the red lines
depict the extended model with Macro-Economic Factors. Also the observations for the first 6 months are given with
asterisks used as symbols.

In figure 12 the individual forecasts of yields with a maturity of 5 years are plotted.
For the unrestricted model the adding of the Macro-Economic Factors does not have a
large effect anymore, which is due to the overfitting that has occurred. The unrestricted
model without Macro-Economic Factors already uses 26 different parameters. For the
GVS sampler however the adding of those factors still does have an impact. It diminishes
the level of all three quantiles and this difference becomes larger when a prediction has to
be made further away in the future. Also the pattern of the actual observations in 2018
is different than the one shown in figure 11. According to the models the more recent
observations all fall below the 0.9 quantile, which makes them not much extreme.
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Figure 13: These figures have plotted the averages of individual forecasts for yields per month as out-of-sample forecasts
with a maturity of 10 years. The used quantiles are 0.1, 0.5 and 0.9. The left panel gives the forecasts for the GVS sampler
while the right panel is constructed with the unrestricted model. The blue lines depict the basis model and the red lines
depict the extended model with Macro-Economic Factors. Also the observations for the first 6 months are given with
asterisks used as symbols.

Figure 13 does not have many differences with figure 12 except for the fact that
the effect of adding Macro-Economic Factors in combination with the GVS sampler is
strengthened. Therefore the difference in for example the 0.1 quantile between the two
models is around 0.8 percentage point. Again the more recent observations of yields with
a maturity of 10 years fall below the 0.9 quantile of both models.

4.4.1 Parallel Scenarios

In this section I show some results of the different models for parallel extreme scenarios.
These scenarios are not realistic to actually happen because the same shock is applied
to the entire yield curve. However, this approach of establishing extreme scenarios is
widely used by both regulators and private parties such as banks. Therefore, I show the
outcomes of these kind of scenarios implied by the proposed models, of equations 1a and
25, in this paper. In the figures, discussed in this section, also scenarios are plotted that are
generated by estimating a simple AR(1) model with the data. For the quantiles a Normal
distribution is assumed with parameters µ “ 12˚µsample and σ2 “

ř12
i“1

ř12
j“1 φ̂

|i´j|˚σ2
sample.

The two sample parameters are estimated from the used dataset and the φ parameter is
estimated from the AR(1) model. For a parallel shift of the yield curve a method needs
to be used when determining an equal shock for all maturities. I chose for an approach
by determining the shock for just one certain maturity and then applying that shock to
the entire curve. Other methods such as using averages of non-parallel shocks can also
be used. For both a maturity of 6 months and 10 years scenarios are generated in this
section.
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Figure 14: This figure shows the parallel extreme scenarios for both the GVS sampler and the unrestricted model. The
shock is determined by looking at the quantiles of the forecasts for yields with a maturity of 6 months. The used quantiles
are 0.1, 0.5 and 0.9 where the highest set of lines corresponds with the highest quantile. The blue lines again stand for
the basis model and the red lines for the model with Macro-Economic Factors. Next to that, the asterisks depict the
actual observations of the yield curve on the first of June 2018. In both panels the green lines depict the scenarios that
are generated by the AR(1) method described in this section. For this method the outcomes varied much and therefore the
lines for the 0.1 quantile are not visible.

In figure 14 scenarios are plotted that are generated by determining the shock for
the 6 month maturity and then applying that shock to the entire curve. The adding of
the Macro-Economic Factors contributes to a higher level of the curve for the different
quantiles for both the GVS sampler as for the unrestricted model. Also the figure shows
that when only historical data is used to model the short rate a downwards trend in the
yield curve is to be expected. The adding of Macro-Economic Factors helps to fight off
this trend and to actually model a upwards movement in the yield curve. The AR(1)
model tends to model scenarios at a whole different level than the term structure models.
Those implied scenarios look less realistic, as for example the 0.5 quantile scenario is way
off the last observation and also the observation of June 2018. Also the width of the
different quantiles is much higher which also contributes to the lower performance of the
more basic method.
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Figure 15: This figure shows the parallel extreme scenarios for both the GVS sampler and the unrestricted model. The
shock is determined by looking at the quantiles of the forecasts for yields with a maturity of 10 years. The used quantiles
are 0.1, 0.5 and 0.9 where the highest set of lines corresponds with the highest quantile. The blue lines again stand for
the basis model and the red lines for the model with Macro-Economic Factors. Next to that, the asterisks depict the
actual observations of the yield curve on the first of June 2018. In both panels the green lines depict the scenarios that are
generated by the AR(1) method described in this section.

In figure 15 the parallel scenarios are shown that are determined by forecasting yields
with a maturity of 10 years. It shows the opposite effect when compared with figure 14,
namely that the scenarios for the base model are at higher level for the GVS sampler. So
when a longer maturity is used to obtain a parallel shock the Macro-Economic Factors
actually lower the level of the scenarios. However, for the unrestricted model the levels of
both term structure models are quite in vicinity of each other. Again, the AR(1) model
predicts the scenarios at a lower level than the other models.

5 Conclusion and Discussion

In this paper I showed that the Bayesian framework of estimating a Gaussian Dynamic
Term Structure Model produced stable results. The approach performed well in a simu-
lation study by being able to mostly correctly retrieve the parameters on which the data
was simulated. Furthermore, different model selection samplers were used and compared
to each other. The simulation study showed that the three different methods all improved
the performance of retrieving the data generating process parameters when compared to
an unrestricted model where all risk price parameters were taken into account. There
were only small differences between the methods that did not give enough evidence to
conclude on which sampler method performs best.

When Macro-Economic Factors are added to the model the simulation study shows
a different conclusion. Due to the extended parameter space, the different drawing al-

48



gorithms are not able to produce stable results anymore. For each different simulated
dataset a different set of tuning parameters is needed for making the draws of the dif-
ferent parameters. Because these parameters should be created manually, in a way that
these fit the dataset, a simulation study is not able to generate stable results for the
extended model.

After the simulation study, both models are evaluated with a dataset on Euribor yield
data. Section 4.2 shows that the estimated model without Macro-Economic Factors al-
ready asks for a reasonable amount of restrictions on risk prices. This leads to a model
that is able to estimate the structure of the yield data rather well. Moreover, the results
also uncover the differences between the different model selection samplers. I explained
the differences by looking at the posterior results of the γ parameter, which is an indicator
variable for λ. The GVS and RJMCMC samplers both generated consistent results for
the elements of γ. The SSVS sampler was not able to perform as consistently as the other
samplers and this resulted in posterior estimates of γ that were overall inefficient for all
elements. Furthermore, the different samplers were evaluated by looking at how many
models they did evaluate and how well those particular models are in terms of Bayes
factors. It showed why the SSVS sampler is performing worse than the other samplers,
because it only evaluated a very small amount of different model specifications. The top
ten best performing models for the GVS algorithm also show that there is a consistent
pattern in the different specifications. Due to delivering the most consistent performance,
the GVS sampler is used in other sections as well to benchmark its performance against
the three best model specifications.

The adding of the Macro-Economic Factors did not only contribute to the amount of
parameters, but it also led to significant parameters of the effects on the risk prices of
those economic variables. However, the estimated model became less stable by adding the
two factors. This resulted in extreme low fractions of different model specifications that
were evaluated. Also, between the top candidate specifications, in terms of their frequency
being visited by the algorithm, the differences disappeared and were almost performing as
good as each other. Additionally, the model also became even more persistent because the
eigenvalues of the autoregressive component were even closer to 1 than before. Inevitably
this also led to higher volatilities and more fluctuating in-sample forecasts.

When looking at economic implications the results showed that the problems of sta-
bility for the extended model did not automatically lead to weaker forecasts of this model
when compared to the model without Macro-Economic Factors. The differences were
rather small between the two different models and the forecast performance slightly im-
proved by adding the Macro-Economic Factors. The extended model also used a more
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unrestricted specification which led to a lower volatility in the fitted forward rates. Also
the extended model became less stationary with maximum eigenvalues of the autoregres-
sive component that were closer to 1.

In the last results section the different models were used to generate extreme scenarios
of the yield curve with a forecast horizon of 12 months. This application showed the main
difference when using Macro-Economic Factors instead of only historic yield data. When
the model only used yield data, it was only able to establish scenarios that led to curves
that still had the same shape as the last observed curve. However, for the extended model
the extreme scenarios indicated a large increase in the short end of the yield curve. The
quantiles for the part of the yield curve with longer maturities were more similar for both
models and therefore the shape of the implied scenarios changed. Furthermore, because of
the characteristics of the historic data on Euribor yields, any model that solely uses these
yields is not able to predict any changes in patterns of the data. When other variables,
such as inflation or economic growth, are used to model the term structure, changing
patterns could be predicted and modelled. The extended model in this paper showed
that yield factors are dependant on factors of these variables and that they contribute in
predicting a changing shape of the yield curve.

A main limitation of the research, presented in this paper, was that of the stability of
the model that also included Macro-Economic Factors. It led to a Bayesian estimation
that was not stable, so that tuning parameters, that were not needed for other datasets,
were needed for an algorithm (Bauer, 2017; Chib and Ergashev, 2009). Further research
is therefore needed in which the drawing procedure can be set up in a way that for several
different datasets no tuning parameters are needed. If such manner could be established,
then the proposed method of estimating a term structure could lead to suitable acceptance
rates when making draws of the parameter distribution. Also, the use of more sophis-
ticated computer systems could attribute to this, as I found that due to the expanded
parameter space the estimation of several matrix computations became less accurate.
Additional, the scope of this paper did not focus on the use of priors for the different
parameters of the term structure model. Possible a more extensive use of priors can help
to address some om the problems that were present in this paper. Especially for the
Macro-Economic Factors a more specified set of priors could be used such as democratic
priors proposed by Wright (2013).
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