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Abstract

This thesis compares the Block Maxima and Peak over Threshold methods in esti-

mating the Value-at-Risk, for portfolios constructed from assets with different levels

of serial dependence, volatility clustering and cross-sectional dependence. The serial

dependence is modeled via an ARMA-GARCH process with volatility clustering,

while the cross-sectional dependence is modeled by a Clayton copula. The results

show that the Peak over Threshold outperforms the Block Maxima for lower levels

of serial dependence. For higher levels of serial dependence, especially after intro-

ducing volatility clustering, the Block Maxima is the superior method. The presence

of cross-sectional dependence has no significant effect on either method. The back-

testing result of estimating the Value-at-Risk on a portfolio consisting of European

stocks and bonds is in favor of the Block Maxima method.
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1 Introduction

A major aspect of quantitative risk management focuses on measuring risk. Over the

years, this has resulted in the development of a range of risk measures. The focus of

this paper is primarily on the Value-at-Risk (VaR). The VaR measure is widely accepted

within the banking industry as the preferred method for quantifying market risk. It plays

an important role in the Basel Accords because the capital requirements of the banks are

dependent on market risk. The accuracy of the VaR estimation is of great importance: an

overestimation of the risk can lead to unnecessarily large capital allocations which could

have been used elsewhere, while an underestimation could lead to extreme losses or even

bankruptcy. However, during the financial crisis of 2008, it became apparent that this

popular risk measure was not without flaws. As with many risk measures, the calculation

of the VaR is based on assumptions which are often invalid with financial data. Another

point of criticism is that the VaR is not able to implement other risk factors that influ-

ence the market risk, such as liquidity, cash flow, counter-party and political risk. Hence,

improving the estimation of the VaR is not only relevant from an academic standpoint,

but is also valuable to the financial industry.

This paper will calculate the VaR for a diversified investment portfolio in European

stocks and bonds. However, this portfolio contains serial dependence, which is generally

the case for financial returns, and violates one of the assumptions used in calculating

the VaR: that the observed data are independent and identically distributed (IID). The

existing methods for calculating the VaR are analyzed and compared after allowing for

serial dependence. The comparison of the traditional VaR and the VaR after correcting

for serial dependency is particularly interesting in times of extreme values, such as the

2008 financial crisis.

Extreme Value Theory (EVT) has become increasingly popular in financial risk man-

agement because it only focuses on the distribution of the tail rather than the whole

distribution. Within EVT, the two dominant methods to estimate tail probabilities are

the Block Maxima (BM) and the Peak over Threshold (POT) approach. Both methods

attempt to derive the limiting distribution of extreme values, but they differ in how the
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extreme values are chosen. The BM method divides the sample set into blocks of equal

size and only considers the maximum values of these blocks, whereas the POT method

only uses the extreme values that exceed a certain threshold. Both the BM and POT

methods provide ways to infer high quantiles of the original data sample using the esti-

mated distribution of the tails. However, one of the assumptions involved in estimating

the VaR using the classical POT or BM method is that the data sample is IID or exhibits

weak dependence.

Various studies have analyzed the application of the POT or BM method on serially

dependent observations to estimate the tail distributions and calculate the VaR. It has

become apparent that both methods are able to deal with the serial dependency, albeit

with both advantages and disadvantages. Drees (2003) demonstrated that the POT can

still be used in the same approach as in the IID case to estimate the VaR when deal-

ing with a serially dependent data sample and is therefore straightforward to implement.

However, the estimates usually bear a higher asymptotic variance. The estimation of the

VaR with serially dependent data can also be achieved using the BM method. In contrast

to the POT method, the asymptotic properties of the estimators actually remain valid as

the block maxima itself is arguably IID. However, McNeil (1998) showed that estimating

the VaR using BM requires the additional step of estimating the extremal index first. The

extremal index is a parameter that characterizes the serial dependence as it indicates the

clustering of extreme values; see Leadbetter (1983), for example.

Theoretically, it seems that the advantages and disadvantages of using the POT and

BM approaches to estimate the VaR under serially correlated data are roughly balanced.

This conjecture needs to be proven, hence the following research question:

“Which method is empirically the most appropriate for estimating high quan-

tiles under serial dependence?”

This research paper compares the BM and POT methods and aims to determine which

method is the most appropriate for estimating high quantiles under serial dependence. The

research is based on a simulation study and an empirical study. We begin with the simula-
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tion in order to fully analyze the performance of both methods on different levels of serial

dependence. The data is generated using a Monte Carlo simulation in which the level of

serial dependence is controlled. The simulation stays close to the empirical application

by generating two time-series resembling stock and bond returns, respectively. We first

simulate two Autoregressive Moving Average (ARMA) processes to mimic the univariate

return series of the stock and bond returns, each containing serial dependence. We then

use a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model for the

innovations of each time-series to allow for the volatility clustering that is often present

in financial returns. On each given day, the pair of innovations from the two time-series,

are simulated from a Clayton copula model to allow for cross-sectional dependence. This

allows us to incorporate conditional tail dependency, which is in line with the joint distri-

bution of the returns of a stock and bond portfolio. The BM and POT methods are then

applied to estimate the 99.99% VaR of the portfolio which invests in the two return series

with equal weighting. To estimate the VaR at such a high probability level, it is neces-

sary to estimate the risk measures using EVT because a non-parametric estimation is not

possible. The estimated VaR for every simulation sample is then compared with the true

VaR which is obtained via a pre-simulation. To evaluate the BM and POT methods for

each risk measure estimate, the root mean squared error (RMSE) and root mean squared

percentage error (RMSPE) are calculated over the simulated samples.

In the empirical study, we apply the same BM and POT methods as in the simulation

study to an investment portfolio that closely resembles the typical portfolio of a large

bank. To evaluate the VaR estimates, we use the binomial method; see Christoffersen

(1998). The binomial method is based on the number of observations that exceed the es-

timated VaR. Under the null hypothesis, the number of observations exceeding the 99.99%

VaR follows a binomial distribution where the probability of success equals 0.01%.

For the empirical application, we consider an investment portfolio consisting of the

STOXX Europe 600 index and the Barclays Euro Aggregate Treasury Total Return Index,

to represent the stock and bond markets respectively. The data consists of daily observa-

tions starting from January 1, 2000 until December 31, 2017. This period is interesting

as it contains two major financial crises: the burst of the dot-com bubble and the 2008
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global financial crisis.

The simulation application revealed that for lower levels of serial dependence, the

BM method is more accurate than POT when excluding volatility clustering and cross-

sectional dependence. However, the POT method ultimately outperformed the BM

method for extreme levels of serial dependence. Introducing volatility clustering had

a major negative impact on both methods: a clear linear trend in error could be seen

when the level of volatility clustering was increased. However, the POT method seemed

more affected at high levels of volatility clustering than the BM method. Cross-sectional

dependence had no visible effect on estimating the VaR for either method. The financial

application demonstrated that both methods were fairly comparable in terms of cover-

age and that both methods failed to reject the null hypothesis under the binomial method.

The remainder of this paper is structured as follows. Section 2 discusses the current

literature. The methodology is outlined in section 3, where the POT and BM methods

are discussed and the simulation setup is described. Section 4 closely examines the em-

pirical data. The results of the simulation are considered and outlined in Section 5. The

performance of both methods in the financial application is analyzed and discussed in

Section 6, before Section 7 concludes the research.
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2 Literature

EVT is a field of research within statistics that primarily focuses on the stochastic be-

havior of extreme values in a process. The history of EVT dates all the way back to

Bernoulli in 1709 as demonstrated by Kotz and Nadarajah (2000). Over the years, EVT

has evolved and currently relies mainly on two distinct methods to model the distribution

of extreme values: the BM method and the POT method. Of the two, the BM method

has been established for longer. Fundamental to the BM method is the probability theory

of maxima, and this needs to be discussed first. It was first mentioned by Fisher and

Tippett (1928), who indicated that the limiting behavior of maxima can be described by

a set of three extreme value distributions: the Gumbel, Fréchet and the inverse Weibull

distributions.

Denote X1, . . . , Xn as the IID observations with cumulative distribution function

(CDF) F and Mn = max (X1, . . . Xn). Then, assume that

Pr

(
Mn − bn
an

≤ x

)
= F n (anx+ bn)→ H (x) , (1)

for some constants an and bn as n → ∞. Similar to the Central Limit Theorem, the

normalized maxima converge to the distributionH. The Extremal Types Theorem (Fisher

and Tippett (1928); Gnedenko (1943)) states that the limit distribution H can only be

one of the following types:

Type I: H(x) = exp
(
− exp (−x)

)
, for x ∈ R,

Type II: H(x) =


0 if x < 0,

exp
(
−x−a

)
if x ≥ 0,

Type III: H(x) =


exp

(
− (−x)a

)
if x < 0,

1 if x ≥ 0,

where for type II and III it holds that a > 0. These three types are referred to as the

Gumbel, Fréchet and the inverse Weibull distributions, respectively. Gnedenko (1943)

shows that these three CDFs can be generalized into one distribution function, which is
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called the Generalized Extreme Value (GEV) distribution, see equation (4) below. Hence,

the maxima obtained from a sample of observations approximately follow the GEV dis-

tribution, and the type of distribution is dependent on the shape parameter ξ.

The BM method naturally follows the limit behavior of maxima. The block maxima

are constructed by dividing the sample of observations into k blocks. They approximately

follow the GEV distribution, and can therefore be used to estimate the shape, scale and

location parameters. The most popular methods of estimating the parameters of the GEV

distribution are the maximum likelihood (ML) estimation by Prescott and Walden (1980)

and the probability weighted moments (PWM) by Hosking, Wallis, and Wood (1985).

More recently, Bücher and Segers (2018) derived the ML estimators of the Fréchet distri-

bution and established the consistency and asymptotic normality. After fitting the GEV

distribution to the block maxima using ML, the obtained parameters are used to estimate

high quantiles of the block maxima.

McNeil (1998) demonstrates that the relation between the high quantile of the block

maxima, sometimes referred to as the return level, and a high quantile of the observations

depends only on the probability level and the block size of the block maxima. In the

same paper, the estimation of high quantiles on serially dependent data is analyzed. The

BM method can still be applied directly to the serially dependent case, but the relation

between the quantile of the block maxima and the quantile of the original observations

breaks down. This is due to the extremal index parameter, which indicates the degree

of clustering of extreme values; see Leadbetter (1983) for a more detailed theoretical

interpretation. The relation between the high quantiles of the block maxima and the

high quantiles of the observations also depends on this extremal index. Hence, the ex-

tremal index needs to be estimated first in order to obtain a high quantile of serially

dependent data. The estimation of the extremal index under stationary and weak de-

pendence has been performed by Hsing (1993) and Smith and Weissman (1994). More

recently, Berghaus and Bücher (2018) provided an improved version of the ML estimator

suggested by Northrop (2015), by incorporating sliding block maxima.

The POT method has recently gained significant popularity over the BM method. The
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POT differs from the BM method in the way that the extreme values (from which we try

to obtain the limiting distribution) are chosen. The POT only considers those extreme

values that exceed a certain threshold. One of its advantages, which has been mentioned

repeatedly, for example Ferreira and De Haan (2015) and the references thereinafter, is

the fact that the POT method uses all of the extreme values. As the BM method only

considers the maximum in a range of values, it may waste extreme values. This feature

is even more strongly present in the case of non-IID data, as extreme values are usually

more clustered together. Assume X − u to be the excess losses. Then, using the general

rules of conditional probability, the distribution of the excess losses can be described as

Fu(x) = P (X − u ≤ x|X > u) = F (x+u)−F (u)
1−F (u)

. If and only if the distribution of the

observations, F , is in the maximum domain of attraction of the GEV distribution, then it

follows that the excess distribution function Fu can be approximated by the Generalized

Pareto Distribution (GPD); see equation (7). The theorem behind this relation is derived

from Balkema and De Haan (1974) and Pickands (1975). Hence, the excess losses above

a high threshold approximately follow the GPD distribution. The shape parameter in the

GPD distribution is identical to the shape parameter of the GEV distribution.

As with the BM method, the most important estimators for estimating the parameters

of the GPD distribution are the ML and PWM estimators, which are both discussed in

Hosking andWallis (1987). Smith (1987) extensively investigated the tail estimation based

on IID data and has derived the theoretical properties of the ML estimator based on POT.

High quantiles of the data can then be estimated through the estimated parameters of the

GPD and the inverse CDF. When the limit of the maxima is of type II, another applicabbl

method to estimate the shape parameters is the Hill estimator, by Hill (1975). As the

data is now considered to be heavy-tailed, the tails approximately follow the Pareto

distribution, and the VaR can be estimated by extrapolating a less extreme quantile

to a high quantile using the reciprocal of the shape parameter. Both VaR estimators

are described by McNeil, Frey, Embrechts, et al. (2005). In the case of non-IID data,

Drees (2003) has demonstrated that the derived methods can still be used. However, the

asymptotic variance is different from, and usually higher than, the IID case. Drees (2003)

also provides a theoretical estimator for the asymptotic variance.
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3 Methodology

3.1 Value-at-Risk

Before discussing the BM and POT methods in further detail, a formal definition of the

VaR is required. The VaR is a quantitative risk measure that is usually applied on the

loss distribution. In probabilistic terms, the VaR can be interpreted as the quantile of this

loss distribution. A comprehensive definition is given by McNeil et al. (2005) as follows:

Definition 1. (Value-at-Risk). Given some confidence level p ∈ (0, 1). The VaR of

the losses at the confidence interval p is given by the smallest number l such that the

probability that the loss L exceeds l is no larger than (1− p). Formally,

V aRp = inf{l ∈ R : P (L > l) ≤ 1− p} = inf{l ∈ R : FL (l) ≥ p}. (2)

It is common to use high values for p such as p = 0.95 or p = 0.99. The focus of this paper

lies in extreme values and inferring high quantiles using EVT. Therefore, the confidence

level of interest throughout this paper is chosen to be p = 0.9999. The major drawback

of the VaR as a risk measure is that the VaR does not provide any information about the

extreme losses that occur with a probability of less than 1− p.

3.2 Extreme Value Theory

It is essential to discuss the probability theory behind the convergence of maxima be-

fore deriving the estimators in the BM method. Assume a set of IID random vari-

ables denoted as X1, X2, . . . with distribution function F and define the maximum as

Mn = max (X1, . . . , Xn). The EVT considers the limiting distribution of Mn. Assume

that with normalizing constants an and bn, Mn converge in distribution as n→∞, i.e.

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
F n (anx+ bn) = H (x) , (3)

whereH (x) is a non-degenerate distribution function. Here, a non-degenerate distribution

function is a limiting distribution that is not concentrated on a single point. If condition

(3) holds, then F is said to be in the maximum domain of attraction of H, which can

be written as F ∈ MDA (H). In a similar manner as the Central Limit Theorem for

averages, the Extremal Types Theorem for maxima of Fisher and Tippett (1928) and
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Gnedenko (1943) states that in case the distribution of a normalized maximum converges,

the limiting distribution has to be one of a particular class of distributions.

Theorem 1. (Fisher-Tippett, Gnedenko). If F ∈MDA (H) for some non-degenerate

distribution function H, then H must be a GEV distribution distribution defined as

Hξ(x) =


exp

(
− (1 + ξx)−

1
ξ

)
for ξ 6= 0,

exp
(
− exp (−x)

)
for ξ = 0

(4)

where 1+ξx > 0. A three-parameter family is obtained by defining Hξ,µ,σ (x) := Hξ

(
x−µ
σ

)
where σ > 0 and µ, ξ ∈ R. The parameters µ, σ and ξ are referred to as the location, scale

and shape parameters, respectively. Two examples of obtaining the GEV are provided in

Appendix A.1, with F following the exponential distribution and the Pareto distribution.

Depending on the value of ξ, the distribution Hξ defines a type of distribution. There are

three possible states of ξ, each of which correspond to one of the three types of extreme

value distributions. Figure 1 illustrates the three different extreme value distribution

families for which it holds that:

• ξ = 0: Gumbel or type I extreme value distribution

• ξ > 0: Fréchet or type II extreme value distribution

• ξ < 0: Weibull or type III extreme value distribution.
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Figure 1: The probability density function (PDF) and CDF for three different values of ξ and

µ = 0 and σ = 1. The solid line corresponds to ξ = 0 (Gumbel); the dashed line ξ = 0.5

(Fréchet); and the dotted-dashed line ξ = −0.5 (Weibull).

When F ∈ MDA (G) with G the Weibull distribution, we say that F is in the max-

imum domain of attraction of the Weibull distribution. The same definition holds for

the Gumbel and Fréchet domains. The distributions that are in the maximum domain

of attraction of the Weibull distribution are considered short-tailed distributions with a

finite right endpoint, denoted by xF = sup{x ∈ R : F (x) < 1}. This class of distributions

is usually not that interesting when quantifying financial risk, as the distribution of losses

is often considered heavy-tailed. Both the Gumbel and Fréchet distributions are heavy-

tailed distributions with infinite right endpoints. However, the class of distributions that

is in the maximum domain of attraction of the Gumbel distribution can have either infi-

nite or finite right endpoints. Within the Gumbel domain there are many distributions;

for example, the normal, lognormal, gamma and chi-squared distributions. The Fréchet

distribution has a slower decay of the right tail than the Gumbel distribution, and in

its maximum domain of attraction are heavy-tailed distributions with infinite right end

points, for example the Pareto distribution. These distributions are also known as the

power-tailed distributions and are often the preferred choice for modeling financial losses.

In order to derive the estimators under the POT, it is essential to establish the prob-

ability theory used to model the tail distribution. Let the losses X be a random variable
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with possibly unknown distribution function F such that F (x) = P (X ≤ x). We then de-

fine the CDF Fu(x) for the excess losses X−u, given that the losses exceed the threshold

u as

Fu(x) = P (X − u ≤ x|X > u)

=
F (x+ u)− F (u)

1− F (u)
,

(5)

for 0 ≤ x < xF − u, where xF ≤ ∞ is the right endpoint of F . The theorem of Pickands-

Balkema-de Haan, derived in Balkema and De Haan (1974) and Pickands (1975), states

that the distributions for which normalized maxima converge to a GEV distribution estab-

lish a set of distributions for which the excess distribution converges to the GPD whenever

the threshold u is increased.

Theorem 2. (Pickands-Balkema-de Haan). It is possible to obtain a positive mea-

surable function σ (u), such that

lim
u→xF

sup
0≤x<xF−u

∣∣Fu (x)−Gσ(u),ξ (x)
∣∣ = 0, (6)

if and only if F ∈MDA
(
Hξ

)
with ξ ∈ R.

Here, Gσ,ξ is the GPD and is defined as

Gσ,ξ(x) =


1− (1 + ξ x

σ
)−

1
ξ for ξ 6= 0,

1− e− xσ for ξ = 0,

(7)

where σ > 0 and ξ ∈ R. It also holds that x ≥ µ when ξ ≥ 0 and µ ≤ x ≤ −σ
ξ
when

ξ ≤ 0. Again, the parameters σ and ξ are referred to as the scale,= and shape parame-

ters, respectively. The parameter ξ is equal to the shape parameter of the GEV. Figure

2 displays the GPD distribution for different values of the scale and shape parameters.

Among others, De Haan and Ferreira (2006) show that equation (6) further implies

that

lim
u→xF

Fu

(
x

σ (u)

)
= G1,ξ (x) ⇐⇒ F ∈MDA

(
Hξ

)
. (8)
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In addition, Gnedenko (1943) demonstrates that when the observations are approximately

heavy-tailed distributed, the following relation holds

F ∈MDA
(
Hξ>0

)
⇐⇒ F̄ (x) = x−

1
ξL (x) , (9)

Figure 2: The PDF and CDF for three different values of ξ and two different values of σ.

where L (x) is a slowly varying function. The definitions of slowly and regularly varying

functions can be found in Appendix A.2. The decay of the tails is a power function

in which the rate of decay, denoted by 1
ξ
, is often referred to as the tail index of the

distribution. De Haan and Ferreira (2006) also show that if F belongs to the maximum

domain of attraction of the Fréchet distribution, then for σ (u) = ξu equation (9) is

equivalent to

lim
u→∞

Fu

(
x

σ (u)

)
= G1,ξ (x) ⇐⇒ lim

u→∞

1− F (ux)

1− F (x)
= x−

1
ξ . (10)

3.3 Block Maxima

This section first examines the BM method for the IID case, before the theory is extended

to serially dependent data. The BM method has been fundamental and is considered to

be one of the oldest models within EVT.

In order to estimate the parameters, the BM method divides the data with total num-

ber of observations N into k equally sized blocks, each containing n observations. Taking
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the maximum of each block generates a new sample that contains extreme values. Define

the sample of block maxima formally as Mn = {Mn,1, . . . ,Mn,k} where Mn,i denotes the

ith block maximum. Then, the block maxima approximately follow a GEV distribution

Hξ,µ,σ. The choice of block size, n, and the corresponding number of blocks, k, have a

significant impact when estimating the parameters of the GEV distribution. A large block

size leads to a more accurate approximation of the block maxima distribution by a GEV

following the limit relation. Consequently, the parameter estimates have a lower bias.

Meanwhile, adopting a large k increases the number of block maxima. As a result, the

estimated parameters have a low variance. A visual interpretation of the BM method is

presented in Figure 3.

Figure 3: Visual interpretation of the BM method. The total number of observations N equals

100 and is divided into k = 10 blocks of n = 10 observations where only the maximum values

per block size are considered.

To estimate the parameters of the GEV distribution, either of the following two esti-

mators is generally used: the ML estimators, see Prescott and Walden (1980) and Bücher

and Segers (2018); and the PWM estimators, see Hosking and Wallis (1987) and Ferreira

and De Haan (2015). In this study we use ML both in the BM and POT approaches

in order to make a fair comparison. The aim of this paper is to infer high quantiles on

financial losses containing serial dependence. Mandelbrot (1963) argued that financial

losses are heavy-tailed and provided the evidence in a later publication, see Mandelbrot

(1997). Therefore, since financial losses are known to be heavy-tailed, we restrict the

14



research to the class of Fréchet distributions, or equivalently ξ > 0. This paper adopts

the estimators derived in Bücher and Segers (2018), where the Fréchet distribution is used

and the location parameter is set to zero. Here, we first explain the application of the

ML estimators for the Fréchet distribution in detail.

The CDF of the Fréchet distribution can be obtained via the GEV distribution (4) by

using ξ > 0 and y = 1 + ξx, and is defined as

Fξ(y) =


exp

(
−y−

1
ξ

)
for y > 0,

0 for y ≤ 0

(11)

We focus on the two-parameter Fréchet distribution, similar to Bücher and Segers (2018),

which is obtained by Fξ,σ (y) := Fξ
(
y
σ

)
and with CDF

Fξ,σ (y) = exp

−(y
σ

)− 1
ξ

 for y > 0. (12)

The PDF can be obtained by taking the first order derivative of the CDF.

fξ,σ (y) =
δFξ,σ(y)

δy

=
1

ξσ

(
y

σ

)− 1
ξ
−1

exp

−(y
σ

)− 1
ξ

. (13)

Let y = (y1, . . . , yk) ∈ (0,∞)k be a sample which the Fréchet distribution is to be fitted.

Then the log-likelihood can be derived as

l (ξ, σ; y1, . . . , yn)

=
k∑
i=1

ln
(
fξ,σ (yi)

)
= −k

(
ln (ξ) + ln (σ)

)
− σ

1
ξ

k∑
i=1

y
− 1
ξ

i −
(

1

ξ
+ 1

) k∑
i=1

ln (yi)− k ln (σ)

 .

(14)

The ML estimators ξ̂ and σ̂ are obtained by maximizing (14) to the respective parameter.

Bücher and Segers (2018) derived the ML estimators for the shape and scale parameters,

and established the consistency and asymptotic normality for the ML estimators for both

IID and strictly stationary time-series. The ML estimators for the scale parameter σ and
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shape parameter ξ are obtained as follows:

σ̂ =

1

k

k∑
i=1

y
− 1

ξ̂

i

−ξ̂ , (15)

where ξ̂ is the unique solution of Ψk

(
ξ|y
)

= 0, with Ψk

(
ξ|y
)
defined as

Ψk

(
ξ|y
)

= ξ +
1
k

∑k
i=1 y

− 1
ξ

i ln (yi)

1
k

∑k
i=1 y

− 1
ξ

i

− 1

k

k∑
i=1

ln (yi). (16)

If ξ > 0, the block maxima Mn approximately follow the Fréchet distribution. The pa-

rameters can be estimated by replacing the sample vector y by the block maxima in the

above derived estimators. After obtaining parameter estimates, we estimate the quantiles

of the block maxima Mn by inverting the CDF and using the ML parameters.

The relation between the VaR of the block maxima, which is sometimes referred to

as the return level, and the VaR of the original observations is demonstrated by McNeil

(1998). Because the VaR of the block maxima is a quantile on extreme values, it is

therefore a high quantile of the original data. When the data are IID, the probability

level corresponding to the VaR of the block maxima can then be calculated as

Pr
(
Mn < V aRp

)
=
(

Pr
(
X < V aRp

))n
= pn. (17)

That is, the VaR is a quantile of the block maxima with probability level pn. Therefore, by

using the inverse of equation (12) and parameter estimates (15) and (16) we can estimate

the VaR as

V̂ aRp = σ̂
(
− ln (pn)

)−ξ̂
. (18)

When moving away from IID data and allowing for serial dependence, the convergence

of the maxima follows a GEV distribution raised to the power θ as illustrated by McNeil

(1998):

lim
n→∞

P

(
M̃n − bn
an

≤ x

)
= Hθ (x) , (19)

where we use M̃n to indicate that the data contains serial dependence and where θ in

(0, 1] is the so-called extremal index. Assuming that the maxima M̃n is obtained from

a stationary series with the same distribution function F as in the IID case (Mn), the
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distribution of Hθ
ξ (x) is of the same type as Hξ (x) with the exact same ξ parameter.

However, the location and scale parameters are different in this case. The extremal index

is an important parameter that measures the degree of clustering of extremes in a sta-

tionary process.

McNeil (1998) states that for large n and u = anx+bn it now holds that P (Mn ≤ u) ≈

P θ
(
M̃n ≤ u

)
= F nθ (u). Hence, for large values of u, the probability distribution of the

maximum of n observations from the time-series with extremal index θ can be approxi-

mated by the distribution of the maximum of nθ < n observations from the associated

IID time-series. The term nθ is often associated with counting the number of roughly

independent clusters of observations in n observations. The extremal index θ is also know

as the reciprocal of the mean cluster size.

Due to the serial dependence, the relation between the VaR of the block maxima and

the VaR of the original observations changes, and are now dependent on the extremal

index. As demonstrated by McNeil (1998), equations (17) and (18) now become

Pr
(
Mn < V aRp

)
=
(

Pr
(
X < V aRp

))nθ
= pnθ, (20)

and

V̂ aRp = σ̂

(
− ln

(
pnθ̂
))−ξ̂

. (21)

When dealing with serial dependence, we first need to estimate the extremal index.

Berghaus and Bücher (2018) have recently analyzed estimators for the extremal index

based on disjoint and sliding block maxima. They derived the asymptotic normality and

revealed that the sliding block estimator outperforms other block estimators. Hence, we

will adopt the sliding block estimators as proposed by Berghaus and Bücher (2018):

θ̂(1),sln =

1

k

k∑
i=1

Ẑsl
n,i

−1 , θ̂(2),sln =

1

k

k∑
i=1

Ŷ sl
n,i

−1 , (22)

where

Ẑsl
n,i = n

(
1− Ŵ sl

n,i

)
and Ŷ sl

n,i = −n log
(
Ŵ sl
n,i

)
with

Ŵ sl
n,i = F̂n

(
M sl

n,i

)
.
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Here, F̂n is the empirical CDF of the observations X1, . . . , XN . The sliding block maxima

are obtained by dividing the sample of observations into N − n + 1 blocks of length n,

such that M sl
n,i = max (Xi, . . . , Xi+n−1) for t = 1, . . . , N − n+ 1.

To summarize, when dealing with IID data, the VaR can be estimated using equation

(18). Here, the relation between the quantiles of the block maxima and the quantiles of

the original observations, and the estimated scale and shape parameters are used. These

parameters are often estimated using either ML or PWM estimators. In this paper we

obtain the ML parameters with equations (15) and (16). If the data is a strictly stationary

time-series then the scale parameter may change, but the shape parameter is exactly the

same. The relation between the quantiles of the block maxima and the quantiles of the

original observations now depends on the extremal index. Under serial dependence, the

VaR estimator now changes to equation (21) using equation (22) to estimate the extremal

index.

3.4 Peak over Threshold

A major disadvantage of the BM method is that it potentially neglects extreme values

in the tails. This is because only the maximum of a group of data is used to estimate

the GEV distribution. The existence of serial dependency within the data magnifies this

shortcoming. This gave rise to the POT, another often-used method in EVT, which con-

siders those extreme observations that exceed a certain threshold, as illustrated in Figure

4. This section begins by discussing the theory of the POT method in the IID case.

Subsequently, the IID assumption is relaxed and the differences are analyzed.
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Figure 4: Visual interpretation of the POT method. Only those values exceeding the threshold

of 1.5 are considered.

We start by deriving the VaR estimators in the general case ξ ∈ R after which the the-

ory is extended to derive the estimators in the case ξ > 0. Using the rules for probabilities

for a random variable X and threshold u such that x ≥ u,

F̄ (x) = P (X > u)P (X > x|X > u)

= F̄ (u)P (X − u > x− u|X > u)

≈ F̄ (u)Gµ,σ,ξ(x− u)

≈ F̄ (u)(1 + ξ
x− u
σ

)−
1
ξ .

(23)

The k excess losses can be obtained as {XN−i,N − XN−k,N}k−1i=0 , where Xj,N is the j-th

element in the order statistics X1,N ≤ · · · ≤ XN,N . Hence, it holds that the threshold

u = XN−k,N . An estimator for the tail probabilities can then be constructed as proposed

by Smith (1987). Multiple estimation techniques are available for obtaining the estimated

parameters of the GPD model, for example ML or PWM estimators. Given that we

obtained the estimators for the scale and shape parameters σ̂ and ξ̂ by fitting the GPD to

excess losses over threshold XN−k,N and using the empirical estimator k
N

for F̄ (XN−k,N)

with k, the number of observations exceeding the threshold XN−k,N , this results in the

following estimator:
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ˆ̄F (x) =
k

N
(1 + ξ̂

x−XN−k,N

σ̂
)
− 1

ξ̂ for x ≥ XN−k,N . (24)

As the VaR is simply a quantile of the distribution, it can be obtained by inverting

the CDF. By applying this to the estimator of the CDF of the excess losses, we derive

the estimator for the VaR, the (1− pn) quantile of X as

V̂ aRpn = F−1(1− pn) = XN−k,N +
σ̂

ξ̂

( k

N(1− pn)

)ξ̂
− 1

 . (25)

We assumed the observations to be of a heavy-tailed distribution or equivalently ξ > 0,

as this is a stylized fact of financial returns. In chapter 3.2 we demonstrated that the

distribution of the observations is therefore in the maximum domain of attraction of

the Fréchet distribution. Consequently, the ratio of the exceedances and the threshold,
X
u
|X > u, approximately follows F̄ (x) = x−

1
ξ when u → ∞. The exceedance ratio can

then be fitted to the Pareto distribution, which is defined as

Hξ (x) = 1− x−
1
ξ . (26)

Hence, the tail distribution can be approximated as

F̄ (x) ≈ F̄ (u)

(
x

u

)− 1
ξ

. (27)

Another conventional method for estimating ξ which utilizes the heavy-tailed distri-

bution, is the Hill estimator, proposed by Hill (1975). The formula for the Hill estimator

is given by

ξ̂
(H)
k,N =

1

k

k∑
j=1

lnXN−j+1,N − lnXN−k,N . (28)

The difficulty in using the Hill estimator lies in choosing k, as it needs to hold that k →∞

and k
N
→ 0 as N → ∞. The choice of k is often based on the analysis of so-called Hill

plots. Thereby, the estimates of ξ are plotted against the different values for k, and the

value for u is chosen wherever the estimations become stable. This method has obvious

drawbacks; most importantly, it is difficult to implement in an automated fashion. Hence,

a statistical or data-driven selection criterion is needed. Danielsson, Ergun, de Haan, and

de Vries (2016), recently proposed a selection method that minimizes the maximum dis-

tance between the fitted Pareto type tail and the observed quantile.
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As ξ can be estimated by the Hill estimator (28), and again substituting the empirical

estimator k
N

for F̄ (u), the standard form of the Hill tail estimator is as follows:

ˆ̄F (x) =
k

N

(
x

XN−k,N

)− 1

ξ̂(H)

. (29)

Consequently, the VaR estimator is derived by inverting equation (29)

V̂ aRpn = XN−k,N

(
k

N (1− pn)

)ξ̂(H)
k,N

. (30)

The limiting distribution of a range of estimators has been thoroughly researched mostly

in the IID case, notably by Dekkers, Einmahl, and De Haan (1989) and de Haan and

Rootzén (1993). It is demonstrated that the limiting distribution converges to the normal

distribution

√
k

log
(

k
Npn

) ( V̂ aRpn

V aRpn

− 1

)
d−→ N

(
λ, σ2

)
as N →∞. (31)

Whenever the data is no longer IID and serial dependence is relevant, the estimator still

holds if the serial dependence is weak. Drees (2003) demonstrates that the asymptotic

variance is different and usually higher under serial dependence.

3.5 Simulation Setup

The simulation uses a general framework similar to that of the application. The goal of

the simulation setup is to generate multiple scenarios in which the levels of autocorre-

lation, volatility clustering and tail dependence between two series are controlled with a

single model. The model is first explained stepwise, before each component is explained

in further detail. All of the components are then combined into a single model, which

parameters and the way they will be used are finally discussed.

First, the returns of two different series are simulated using an ARMA model, of

which the innovations are generated by a GARCH model. The parameters of the ARMA-

GARCH model of each series are set independently. The ARMA structure will be the

main contributor for generating serially dependent data. The serial dependence can be

controlled by both the AR and MA terms. The AR term enables the direct incorporation
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of the dependence of the lagged observations on the current observations. Meanwhile,

the MA term indirectly models the dependence between observations via the unobserved

shocks. By assuming that the unobserved shocks follow a GARCH process instead of a

white noise process, the level of volatility clustering within each series can be controlled.

For each series, the GARCH innovations are assumed to follow a white noise process with

the standard normal distribution. Nevertheless, the cross-sectional dependence between

the two GARCH innovation processes is assumed to follow a Clayton copula. Finally,

the portfolio is obtained as a weighted average of the two simulated series as follows:

Xt = wXt,1 + (1− w)Xt,2.

The ARMA(1,1)-GARCH(1,1) model used for each series j = 1, 2 is defined by

Xt,j = cj + εt,j + φjXt−1,j + πjεt−1,j,

εt,j = σt,jZt,j,

σ2
t,j = ωj + αjε

2
t−1,j + βjσ

2
t−1,j with α + β < 1,

Zt,j ∼ N (0, 1) ,

(32)

where the copula of
(
Zt,1, Zt,2

)
follows the Clayton copula. The conditional variance is

denoted by σ2
t and the parameters φi, πi, αi and βi are the coefficients of the AR, MA,

innovations and conditional variance terms, respectively.

Before proceeding to the implementation of the Clayton copula, a general definition

of a copula now provided.

Definition 2. A d-dimensional copula is a joint cumulative distribution function on [0, 1]d

with standard uniform marginal distributions.

Theorem 3. (Sklar) Let F be a joint distribution with marginals F1, . . . , Fd. Then

there exists a copula C(x1, . . . , xd) such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). Con-

versely, if C is a copula and F1, . . . , Fd are univariate distributions, then F is a joint

distribution with marginals F1, . . . , Fd.

The bivariate-Clayton copula is an Archimedean copula that allows a non-zero level

of lower tail dependency between two series. This tail dependency lies in the negative

tail, corresponding to extreme losses, and the advantage of the Clayton copula is that the
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level of dependence can be set by a single parameter, often denoted as θ. The bivariate

Clayton copula is given by

CCl
θ (u1, u2) =

(
u−θ

Cl

1 + u−θ
Cl

2 − 1
)− 1

θCl

for 0 < θCl <∞. (33)

Whenever θCl → 0 we approach the independence copula, and when θCl → ∞ we ap-

proach full dependency.

To combine all of the different components in the simulation model, we derived the

following algorithm to obtain a single set of simulated data.

Algorithm 1. (Data Generating Process)

1. Generate two uniformly distributed series from the Clayton copula. Draw two inde-

pendent uniform random variables
(
Ut,1, Vt,2

)
and set:

Ut,2 =

U−θClt,1

v− θCl

(1+θCl)
2 − 1

+ 1


− 1

θCl

. (34)

2. Convert the
(
Ut,1, Ut,2

)
to standard normal marginals using the inverse of the stan-

dard normal CDF:

Zt,1 = Φ−1(Ut,1) and Zt,2 = Φ−1(Ut,2). (35)

The simulated standard normal variables Zt,1 and Zt,2 have lower tail dependency

but are both IID series.

3. Use
(
Zt,1, Zt,2

)
to simulate two series from the ARMA(1,1)-GARCH(1,1) model for

j = 1, 2:

Xt,j = cj + εt,j + φjXt−1,j + πjεt−1,j,

εt,j = σt,jZt,j

σ2
t,j = ωj + αjε

2
t−1,j + βjσ

2
t−1,j.

(36)

4. Obtain the simulated time-series by calculating the weighted average:

Xt = wXt,1 + (1− w)Xt,2. (37)
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For every specification of the parameters, one sample with sample size 1, 000, 000 is

obtained to calculate the true VaR, and 1, 000 samples with sample size 2, 000 are gen-

erated to compare the two methods to estimate the VaR. Every sample uses a burn-in

sample size of 1, 000 data points. The true VaR is then estimated as the empirical quantile

from the larger sample.

The set of models is divided into two groups: the first group depends on only one

ARMA-GARCH model by setting w = 1 and zt,1 ∼ N (0, 1); while the second group uses

the Clayton copula to introduce tail dependency, and the two time-series are combined

by setting w = 0.5.

3.6 Simulation Evaluation

In the simulation application it is possible to obtain the true VaR. Hence, the VaR esti-

mates are evaluated by calculating the root mean squared error (RMSE) and root mean

squared percentage error (RMSPE). After obtaining m = 1, 000 VaR estimates per sim-

ulation model, as described in section 4.4, the RMSE and RMSPE can be calculated

as

RMSE =

√√√√∑m
i=1

(
V̂ aRpn − V aRpn

)2
m

, (38)

RMSPE =

√√√√√∑m
i=1

(
V̂ aRpn
V aRpn

− 1

)2

m
. (39)

For both the POT and BM methods, the RMSE is calculated using the same true VaR.

For a given specification of parameters, we can directly compare the performance of the

two methods using the RMSE. However, since the scale of the true VaR will differ across

different specifications of parameters, it is not possible to make a comparison across these

specifications using the RMSE. The RMSPE is based on the percentage deviation and

will therefore be used to compare the two methods at different parameter specifications.
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3.7 Financial Application Evaluation

In the financial application the VaR is estimated on a stock-bond portfolio consisting of

4, 550 observations using both methods. Since the underlying data generating process is

unknown, we cannot evaluate the VaR estimates by comparing them to the true VaR.

The VaR estimates are now evaluated using the binomial method as demonstrated by

Christoffersen (1998). The VaR will be estimated on a sub-sample of the data containing

3, 550 observations. This leaves the test sample with 1, 000 observations, denoted by

W . The probability level of 99.99% used in the simulation application is therefore not

appropriate to accurately evaluate the VaR estimates. Hence, we propose the use of three

probability levels, pn = 99%, pn = 99.5% and pn = 99.99%, which correspond to the

VaR levels for banks and insurance companies. The binomial method is based on the

unconditional coverage of the risk measure. The unconditional coverage can be seen as

the empirical probability of exceeding the estimated VaR, a = V
W
, with V the number

of observations exceeding the VaR estimate. By definition, the unconditional coverage

should equal the confidence level of the VaR. Assuming the confidence level pn, then the

probability of observing V exceptions in a testing sample of sample size W should equal

the binomial PDF under the null hypothesis

Pr (V = x) =

(
W

x

)
pxn (1− pn)W−x . (40)

A likelihood ratio test statistic is performed to test whether the unconditional coverage

is equal to pn. The test statistic can be calculated by

LRuc = 2

[
ln
(
aV (1− a)W−V

)
− ln

(
pVn (1− pn)W−V

)]
∼ χ2 (1) . (41)

25



4 Empirical Data

4.1 Preliminary

The empirical analysis focuses on a diversified portfolio of European markets. We setup

a hypothetical portfolio investing 70% in stocks and 30% in bonds. The STOXX Europe

600 index, which holds 600 European companies, is used to represent the European stock

market. The index represents large, medium and small capitalization companies in 17

European countries that account for approximately 90% of the free-float market capi-

talization of the European stock market. The Barclays Euro Aggregate Treasury Total

Return Index is used to represent the European bond market. This bond index contains

372 fixed-income securities, which are from 13 different countries and are weighted by their

market value. The data are obtained from Bloomberg Financial Markets and contain daily

observations from 1 January, 2000 to 31 December, 2017, providing 4,550 observations for

each index. The index values are converted to daily returns by rt = log(It/It−1), where It

is the index value at time t. Figure 5 illustrates the index levels and returns of the stock

index, bond index and the stock-bond portfolio, respectively.

(a) STOXX Europe Index
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(b) Barclays Euro Aggregate Treasury Total Return Index

(c) Portfolio returns with allocation of 70% stocks and 30% bonds.

Figure 5: Index levels and returns for the stock index, the bond index and the portfolio.

The period from the beginning of 2000 to the end of 2017 is of interest because it

contains two major events: the burst of the dot-com bubble in 2000 and the global

financial crisis of 2008. Both events are represented by a large spike in volatility which,

as expected, is more prominent in the stock index than the bond index. Even though the

portfolio is well-diversified, with positions in 600 different stocks and 372 fixed-income

securities, there is still a clear indication of volatility clustering.
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4.2 Descriptive Statistics

The statistical properties of the empirical data need to be analyzed in further detail.

Descriptive statistics are outlined in Table 1. As expected from differences in the nature

of stocks and fixed-income securities, the standard deviation of the stock index is almost

six times as high as that of the bond index. The returns of both indices are well-centered

around zero, as indicated by the mean and median. For both indices the skewnesses are

negative and with kurtosises higher then 3, that of the normal distribution. It is common

for financial securities to have more extreme losses than extreme profits, as reflected by the

negative skewness. The stylized fact of more extreme values than the normal distribution,

and hence the notion of fatter tails, is captured by the high values of kurtosis. Formally,

we reject that each series follows a normal distribution by the Jarque-Bera test. As the

chosen portfolio is a weighted average between the stock and bond indies, the values of

the statistical properties lie between those of the stock and bond indices.

Table 1: Descriptive statistics of the stock index, bond index and portfolio returns.

Return Series # Obs Min. Max. Mean Median Std. Dev Skewness Kurtosis Jarque-Bera

STOXX 600 4549 -0.0886 0.0941 0.0000 0.0003 0.0124 -0.2125 8.5901 0.0000

Barclays Bond 4549 -0.0152 0.0178 0.0002 0.0002 0.0023 -0.1371 6.5306 0.0000

Portfolio 4549 -0.0606 0.0640 0.0000 0.0002 0.0086 -0.2023 8.4798 0.0000

The results of the Ljung-Box test can be found in Table 2, and provide a more in-depth

analysis of the serial dependency. Furthermore, Figure 6 presents autocorrelation and par-

tial autocorrelation plots of the portfolio returns and the squared portfolio returns. The

Ljung-Box Q-test indicates that for all returns series, the null hypothesis of independently

distributed data can be rejected at a 5% significance level. These results are further sup-

ported by the correlation plots of the portfolio returns. For both the autocorrelation and

partial autocorrelation there are multiple lags with significant correlation, most notably

at lags 2, 3, 5 and 6. The correlation plots of the squared portfolio returns exhibit a

strong significant autocorrelation. This confirms the presence of volatility clustering.
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Table 2: Ljung-Box Q-test results.

Return Series Test-statistic Critical value p-value

STOXX 600 54.02 31.41 0.0006

Barclays Bond 41.39 31.41 0.0033

Portfolio 49.81 31.41 0.0002

Squared Portfolio 3940.17 31.41 0.0000

* Test results are based on significance level α = 5% and degrees of freedom equal to number of lags selected is 20.

(a) Serial dependence analysis on the portfolio returns.

(b) Serial dependence analysis on the squared portfolio returns.

Figure 6: Sample autocorrelation and partial autocorrelation plots of the realized and squared

portfolio returns.
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5 Simulation

5.1 The choice of k

For the POT and BM, the number of exceedances and block maxima, respectively, have

a significant impact on the accuracy on the estimations. For this reason, a number of

papers report MSE of the estimated parameters for different values of k, the number of

exceedances or block maxima. The simulation setup is fairly complex when considering at

the number of parameters alone. Hence, the impact of k is analyzed for the IID and highly

serial dependent case as a preliminary step. In the IID case the series are simulated from

a Student’s t-distribution with four degrees of freedom. For the serial dependent case, an

ARMA process with φ1 = 0.95, π1 = 0 and a Student’s t-distribution with four degrees of

freedom for the innovations are used to simulate the series. All other model parameters

are set to zero. The number of simulations and VaR probability level are setup in the

same way as in the simulation setup. For both the POT and BM methods we choose k

that minimizes the MSE; k is then fixed across the different simulation models. The MSE

is decomposed into the variance and squared bias and plotted against different values of

k in Figure 7 for the POT method, and Figure 8 for the BM method.

Figure 7: Decomposition of the MSE into variance and squared bias for the POT method.

In the IID case for the POT method, the MSE seems to reach its minimum at k = 22

and rises for high values of k. The variance remains relatively constant; consequently,
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the increase in MSE is almost completely caused by the increase in squared bias. When

examining the POT method for serially dependent series, the behavior of the squared

bias is similar to that of the IID case. However, the variance is no longer constant and

shows a clear trend. This is in line with the findings of Drees (2003) that the asymptotic

variance is higher under serial dependence. Interestingly, the minimum MSE is obtained

at k = 17, which is close to the IID case. For this reason, the value of k is fixed at 20

across the different simulation models.

Figure 8: Decomposition of the MSE into variance and squared bias for BM method.

Figure 8 displays the variance and squared bias for the BM method. In the IID case,

the minimum MSE is obtained around k = 100 and the difference of the variance and

squared bias is clear. The squared bias is very low for small values of k and increases

as k increases. Contrarily, the variance is large for small values of k and decreases as k

increases. The effect of k on the squared bias and variance confirms the theory discussed

in 3.3. Introducing serial dependence shows that the minimum MSE lies around k = 50.

In contrast to the POT method, the behavior of the squared bias for different values of k

changes. The squared bias shows a much faster decrease as k increases, and the variance

still decreases as k increases. The optimal k is much smaller than in the IID case, but

the difference in MSE between k = 50 and k = 100 is quite small. Therefore, the value of

k is fixed at 100 across the different simulation models.
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5.2 Serial dependence: ARMA

The simulation is divided into three groups to assess the performance of the POT and

BM methods, which are discussed below. With the ARMA model the effect of serial

dependence is highlighted. By extending the model with GARCH innovations, we can

verify the estimation performance of the POT and BM methods in the presence of volatil-

ity clustering. In the same way, the impact of cross-sectional dependence in the tail on

estimating the VaR is discussed by using the Clayton copula.

To analyze the serial dependence, the ARMA model defined by equation (36) is used.

As the GARCH innovations and the cross-sectional dependence are not yet considered,

we set the parameters to w1 = 1, w2 = 0, α1 = 0 and β1 = 0. The innovations follow the

Student’s t-distribution with four degrees of freedom, zt,1 ∼ t (4), as this ensures fat tails,

or equivalently ξ > 0. The level of serial dependence is controlled via the parameters φ1

and π1. We set up a grid with the values of φ1 and π1 ranging from 0 to 0.95, with a

step size of 0.05. Hence, this also includes the IID case whenever φ1 = 0 and π1 = 0.

Figure 9 displays three randomly chosen simulated time-series, in increasing order of serial

dependence. The observed outliers are a confirmation of fat tails or ξ > 0, due to the

Student’s t distributed innovations.

(a) Simulated series with φ1 = 0.1 and π1 = 0.1.
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(b) Simulated series with φ1 = 0.5 and π1 = 0.5.

(c) Simulated series with φ1 = 0.9 and π1 = 0.9.

Figure 9: A random simulated series for three levels of serial dependency.

In total, the grid of different values for φ1 and π1 contains 400 combinations. For each

combination, m = 1, 000 time-series are simulated and the VaR is estimated using the

POT and BM method, see equations (30) and (21) respectively. The evaluation metrics

RMSE and RMSPE, see equations (38) and (39) respectively, are then calculated and the

results are displayed in Figure 10. For the BM method, we use θ̂(2),sln in equation (22) to

estimate the extremal index, as this estimator was found to always outperform θ̂
(1),sl
n . For

three different values of π1, the comparison of the POT and BM methods are displayed

in Figure 11 by comparing the ratio of the RMSPE.
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In the IID case, the BM method estimates the VaR more accurately than the POT

method. Ferreira and De Haan (2015) demonstrated that the POT is often more efficient

than the BM method, when the number of exceedances are larger than the number of

blocks. Furthermore, they wrote that for large sample sizes, the performances of the

POT and BM method are comparable. This is in line with our findings, as the number of

exceedances is not larger than the number of blocks. When comparing the RMSE across

both methods, as shown in Figures 10 (a) and (b), both methods perform very similarly

across different φ1 and π1. The RMSE for the POT method is smoother than for the BM

method across various values of φ1 and π1. Both methods decrease in accuracy whenever

the serial dependence increases, with the maximum RMSE obtained when φ1 → 1 and

π1 → 1. In Figure 11, we observe that the POT method almost always outperforms the

BM method for φ1 < 0.8. However, at all three levels of π1, the BM method performs

better than the POT method for φ1 > 0.85.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 10: Surface plots of evaluation metrics RMSE and RMSPE for increasing φ1 and π1.

Figure 11: Comparison of the RMSE ratio for increasing φ1 at three levels of π1.
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Both methods show an increase in RMSE as φ1 and π1 increases. The reduction in

the RMSE is stronger for higher φ1 than π1, especially for the POT method. One rea-

son for this could be that φ1 contributes directly to the serial dependence via the lagged

values, whereas π1 achieves this indirectly via the lagged innovations. Hence, the level of

serial dependence is more affected by the parameter φ1 than π1 which leads to decrease

in performance as indicated by the RMSE. To compare the performance across differ-

ent parameter specifications, the RMSPE shown in Figures 10 (c) and (d) and Figure 12

demonstrates that performance decreases as the level of serial dependence increases. Here,

the BM method has much lower RMSPE values when φ1 is lower, and higher RMSPE

values than those of the POT when φ1 is higher.

Figure 12: Comparison of the RMSPE for increasing φ at three levels of θ.

5.3 Volatility Clustering: GARCH

The simulation model is further extended to allow for innovations of the ARMA model

follow a GARCH model. The cross-sectional dependence is not yet considered, hence we

set the parameter of equation (36) as w1 = 0. Again, zt,1 ∼ t (4) to ensure heavy tails.

The parameters φ1 and π1 determine the level of serial dependence and the volatility

clustering is controlled via α1 and β1. Similarly to the ARMA models, we compose a grid

with values for α1 and β1 ranging from 0 to 0.95 and with step size 0.05. Ignoring the

case α1 = β1 = 0 and taking the parameter restriction α1 + β1 < 1 into account, results
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in 209 parameter combinations. Increasing levels of α1 + β1 indicates an increasing level

of volatility clustering. We analyze five levels of serial dependence via the ARMA process

by setting the parameters φ1 = π1 ∈ (0.1, 0.3, 0.5, 0.7, 0.9). Combining the ARMA models

with the GARCH models results in a total of 1, 045 different model specifications. Three

randomly selected simulated time-series with an increasing level of volatility clustering

are displayed in Figure 13.

(a) Simulated series with φ1 = 0.5, π1 = 0.5, α1 = 0.1 and β1 = 0.1.

(b) Simulated series with φ1 = 0.5, π1 = 0.5, α1 = 0.25 and β1 = 0.25.
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(c) Simulated series with φ1 = 0.5, π1 = 0.5, α1 = 0.45 and β1 = 0.45.

Figure 13: A random simulated series for three levels of volatility clustering.

The calculated RMSE and RMSPE for all possible combinations of α1 and β1 and

with φ1 = π1 = 0.5 are displayed in Figure 14. The graphs containing the results for the

remaining four levels of serial dependence can be found in the Appendix, Figures 25 - 28.

Comparing the POT and BM methods in terms of RMSE values, as shown in Figures 14

(a) and (b), indicates that the BM method is better overall. In Figure 15 the ratio of

the RMSPE is plotted against α1 with β1 = 0 and three levels of serial dependence. For

φ1 = π1 = 0.9, the POT and BM methods leads to almost identical RMSE. For the other

two levels of serial dependence the BM method has a lower RMSE than the POT method.

The difference in performance between the POT and BM methods is higher as the level

of volatility increases. The true VaR increases substantially when the level of volatility

clustering increases. One potential reason for that is the fact that increasing the volatility

clustering leads to more extreme values. To compare the performance across different

levels of volatility clustering, we consider the RMSPE displayed in Figures 14 (c) and

(d) and Figure 16. As the level of volatility clustering increases, the RMSPE increases.

Overall, increasing the volatility clustering has a greater impact on the performance than

increasing the serial dependence in the ARMA setup.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 14: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α1 and β1

with φ1 = π1 = 0.5.
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Figure 15: Comparing the RMSPE ratio for increasing α1 at three levels of serial dependence

and β1 = 0.

Figure 16: Comparing the RMSPE for increasing α at three levels of serial dependence and

β = 0.

5.4 Cross-sectional dependence: Clayton copula

The simulation model is now extended once more to incorporate cross-sectional depen-

dence and is fully derived in Algorithm 1. A univariate time-series is obtained as the

equally weighted average of two series, each simulated using the ARMA-GARCH model
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described previously. However, it now holds that j ∈ (1, 2) and the joint distribution of

zt,1 and zt,2 can be described by a Clayton copula. The level of tail dependence between

zt,1 and zt,2 is set via the parameter θCl, where we let θCl ∈ (1, 2, . . . , 9, 10). We again

consider five levels of serial dependence with φj = πj ∈ (0.1, 0.3, 0.5, 0.7, 0.9) and 19 levels

of volatility clustering with αj ∈ (0.05, 0.10, . . . , 0.90, 0.95) and βj = 0. This results in

a total of 900 models with different parameter specifications. Three randomly selected

simulated time-series with different levels of cross-sectional dependence are displayed in

Figure 17.
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(a) Simulated series with φ = 0.5, π = 0.5, α = 0.5, β = 0 and θCl = 1.

(b) Simulated series with φ = 0.5, π = 0.5, α = 0.5, β = 0 and θCl = 6.

(c) Simulated series with φ = 0.5, π = 0.5, α = 0.5, β = 0 and θCl = 10.

Figure 17: A random simulated series for three levels of cross-sectional dependency.
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We now compare the POT method and the BM method by examining the results of

the RMSE and the RMSPE ratio, displayed in Figures 18 (a) and (b) and Figure 19,

respectively. We observe that the BM method performance better than the POT method.

However, increasing the level of cross-sectional dependence does not lead to an increase

in the RMSE for either method.

(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 18: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and θCl

and with φ and π set to 0.5.

Across different levels of cross-sectional dependence, the performance of both methods

is rather constant, as indicated by the RMSPE in Figure 20. We can conclude that the

existence of cross-sectional dependence affect neither the performance of the POT nor

that of the BM method. The fact that the BM method performed better than the POT

method, as indicated by the RMSE, can therefore entirely explained by the level of serial

dependence and more prominently by the level of volatility clustering. The other surface
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plots of the RMSE and RMSPE for different model specifications can be found in the

Appendix Figures 30 - 33.

Figure 19: Comparing the RMSPE ratio for increasing θCl at three levels of serial dependence

and α = 0.5 and β = 0.

Figure 20: Comparison of the RMSPE for increasing θCl at three levels of serial dependence and

α = 0.5 and β = 0.
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6 Financial Application

The POT and BM methods are applied in the financial application to estimate the 99%,

99.5% and 99.9% VaR on a stock-bond portfolio. The VaR estimates are evaluated by

using the binomial method of Christoffersen (1998). The portfolio returns consist of

4, 550 daily observations and are split into a training and a test sample. The training

sample contains the first 3, 550 observations and are used to estimate the VaR using

both methods. Meanwhile, the last 1, 000 observations are used as the test sample. The

estimated parameters of the POT and BM method that are used to estimate the VaR

are provided in Table 4. For the POT method the high quantile estimator only depends

on the shape parameter ξ and the intermediate quantile whereas for the BM method,

the high quantile estimator depends on the θ and σ parameters as well. Comparing

the estimated value of the shape parameter, ξ̂, the POT and BM method resulted in

similar values with 0.1974 and 0.1966, respectively. This is in line with the fact that

the distribution of financial losses is heavy-tailed. The extremal index is estimated as

θ̂ = 0.4412, which indicates that the financial losses contain clusters with an average

cluster size of 2.2665. The sample size is essentially reduced to nθ̂ = 3, 550∗0.4412 ≈ 1566

of roughly independent clusters of observations.

Table 3: Estimated parameters of the POT and BM method.

POT BM

ξ̂ 0.1974 0.1966

θ̂ 0.4412

σ̂ 0.0182

The effect of k, the number of exceedances or blocks in the POT and BM method,

respectively, on the 99% quantile estimation is displayed in Figure 21. The value of k is

chosen as k = 20 and k = 100 for the POT and BM method, respectively. For the POT

method, the quantile estimate convergences as the number of exceedances increases. For

small values of k, the estimator suffers from the small estimation sample which results in

an estimated quantile that lies far from the empirical quantile. The BM method shows a

different pattern with no clear convergence as the number of blocks increases. However,
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the number of blocks does not influence the estimated quantile much.

Figure 21: Estimated 99% VaR for increasing values in k.

The binomial method might not been suitable for assessing the V aR0.999 on a test

sample of size 1, 000. Whenever the empirical number of exceedances equals the expected

number of exceedances of 1, the test statistic will be equal to zero. Therefore, V aR0.999 is

not backtested and only the VaR estimates are provided. Tables 4, 5 present the results

for the V aR0.99 and V aR0.995, respectively.

Table 4: Results of estimating the V aR0.99.

POT BM

Est. VaR 0.0280 0.0261

Training Sample Test Sample Training Sample Test Sample

99% Quantile 0.0249 0.0204 0.0249 0.0204

Exceedances 27 (0.0076) 2 (0.002) 34 (0.0096) 3 (0.003)

LR statistic 2.2361 9.6267 0.0641 6.8255

p-value 0.1348 0.0019 0.8002 0.0090

Considering the results in Table 4, the V aR0.99 is estimated as 0.0280 and 0.0261 by

POT and BM, respectively, on the training sample. These are very close to the empirical

99% quantile of 0.0249. Comparing the POT and BM methods for the test sample, we
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observe that the number of exceedances for POT equals 2, and for BM equals 3. The

values within the brackets correspond with the empirical probability a∗. However, the

expected number of exceedances is 10 and is far off. The POT method has a test statistic

of 9.6267 and the null hypothesis is rejected at a 5% confidence level. With one additional

observation exceeding the estimated VaR, the BM method has a test statistic of 6.8255

and the null hypothesis is also rejected at a 5% confidence level. Both methods reject the

null hypothesis because there are not enough exceedances. However, as the BM method

does have more exceedances than the POT method, we can conclude that the BM method

performs better because it yields a lower point estimate, albeit not convincingly. Notice

that the empirical 99% quantile of the test sample is much lower than that of the training

sample, which leads to fewer exceedances. As the VaR is estimated on the training sample,

the estimated VaR lies closer to the empirical quantile of the training sample than that

of the test sample for both methods. Consequently, applying the binomial test on the

training sample results in a higher coverage, as indicated by the test statistic and p-values.

Table 5: Results of estimating the V aR0.995.

POT BM

Est. VaR 0.0321 0.0325

Training Sample Test Sample Training Sample Test Sample

99.5% Quantile 0.0317 0.0256 0.0317 0.0256

Exceedances 16 (0.0045) 2 (0.002) 15 (0.0042) 2 (0.002)

LR statistic 0.1784 2.3439 0.4505 2.3439

p-value 0.6728 0.1258 0.5021 0.1258

Similar to the result for V aR0.99, the V aR0.995 estimates are close to the empirical

99.5% quantile. The number of exceedances in the test sample, 2, is exactly the same for

the POT as for the BM method. Therefore, the test statistic and p-values are also iden-

tical. Neither the POT nor the BM method reject the null hypothesis at a 5% confidence

level. Figures 22 and 23 display the coverage of the V aR0.99 estimates on the training

and test sample, respectively. The V aR0.999 estimates of the POT and BM method equals

0.0441 and 0.0512, respectively. The POT estimates is closer to the empirical quantile of

0.0444 but this is not meaningful as empirical quantile may not be an accurate estimate
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for such a high level of probability.

Figure 22: Unconditional coverage of the POT and BM methods for the V aR0.99 estimate on

the training sample.

Figure 23: Unconditional coverage of the POT and BM methods for the V aR0.99 estimate on

the test sample.

7 Conclusion

In this research we analyze and compare the POT and BM methods for estimating the

VaR of a strictly stationary time-series. In a simulation setup, we examine the effects of
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serial dependence, volatility clustering and cross-sectional dependence on the estimation

of the VaR. We then estimate the VaR on a stock-bond portfolio in a financial application,

where the POT and BM methods are compared by backtesting the conditional coverage.

Firstly, comparing the POT and BM methods in estimating the VaR on serially depen-

dent observations, the BM method outperforms the POT method for lower levels of serial

dependence, particularly for the IID case. When the serial dependence was considerably

elevated, the POT method estimates the VaR more accurately than the BM method.

When comparing the RMSPE, it became evident that an increase in serial dependence

has a greater negative impact on the BM method. Secondly, introducing volatility clus-

tering has a larger negative effect on both the POT and BM methods The POT method

performs worse at higher levels of volatility clustering and was outperformed by the BM

method in terms of the RMSE. Furthermore, increasing the volatility clustering showed

a trend in the RMSPE: at the maximum level of volatility clustering, the RMSPE was

over five times higher than the RMSPE without volatility clustering. Finally, the POT

method performs better than the BM method across different models when allowing for

cross-sectional dependence. Nevertheless, the level of cross-sectional dependence does not

influence the performance much as indicated by the RMSPE.

The financial application shows that the BM method performed slightly better than

the POT method in the out-of-sample backtest when estimating the V aR0.99. Both meth-

ods reject the null hypothesis but the BM method has a smaller test statistic than the

POT method. This result is in line with our findings in the simulation setup that the BM

method is better when the level of serial dependence is not extremely high. The results

for V aR0.995 show that the BM and POT method both do not reject the null hypothesis

and the performance of each method is exactly equal. Hence, we can not conclude which

method performs better. Overall, by combining the results of the simulation and financial

application we conclude that the BM method empirically outperforms the POT method

for IID or low levels serial dependent observations. For extremely high levels of serial

dependence, the POT method is better than the BM method.

This study makes some arbitrary assumptions hence leaves room for potential future
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research. Firstly, the value of k is kept constant across different simulation models. Alter-

natively, one may optimize k for different levels of serial dependence, volatility clustering

or cross-sectional dependence. Accordingly, it would be interesting to investigate how

the two methods compare when both are optimized for the parameter k. Secondly, the

degrees of freedom in the Student’s t-distribution used as the stochastic part in the simu-

lation setup is set to 4. Different degrees of freedom or strength of decay in heavy-tailed

distributions as indicated by the tail index might lead to other results.
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A Appendices

A.1 Maximum Domain of Attraction Examples

Recalling the rate of convergence for maxima follows

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
F n (anx+ bn) = H (x) , (42)

two examples are constructed for the underlying distributions: exponential and Pareto.

Exponential distribution

Assume the underlying distribution to be exponential with distribution function F (x) =

1− exp (−βx) for β > 0 and x ≥ 0, then the limiting distribution of maxima can directly

be calculated by choosing the normalizing constants an = 1
β
and bn = ln (n)

β
. It holds that

F n (anx+ bn) = F n

(
x

β
+

ln (n)

β

)
,

F n (anx+ bn) =

(
1− 1

n
exp (−x)

)n
, x ≥ − ln (n),

lim
n→∞

F n (anx+ bn) = exp
(
− exp (−x)

)
, x ∈ R.

(43)

Hence, we conclude that F ∈MDA (H0).

Pareto distribution

Assume the underlying distribution to be Pareto with parameters α and k and distribution

function F (x) = 1−
(

k
k+x

)α
for α > 0, k > 0 and x ≥ 0, then the limiting distribution of

maxima can directly be calculated by choosing the normalizing constants an = k n
1
α

α
and

bn = kn
1
α − k. It holds that

F n (anx+ bn) = F n

(
k
n

1
α

α
x+

(
kn

1
α − k

))
,

F n (anx+ bn) =

(
1− 1

n

(
1 +

x

α

)−α)n

, 1 +
x

α
≥ n− 1

α
,

lim
n→∞

F n (anx+ bn) = exp

(
−
(

1 +
x

α

)−α)
, 1 +

x

α
> 0,

(44)

Hence, we conclude that F ∈MDA
(
H 1

α

)
.
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A.2 Slowly and regularly varying functions

Slowly varying functions

A positive, Lebesgue-measurable function L on (0,∞) is slowly varying at ∞ if

lim
x→∞

L (ux)

L (x)
= 1, u > 0. (45)

Regularly varying functions

A positive, Lebesgue-measurable function J on (0,∞) is regularly varying at ∞ with

index ρ ∈ R if

lim
x→∞

J (ux)

J (x)
= uρ, u > 0. (46)
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A.3 Tables and Graphs

Table 6: The RMSE of the POT method on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 3,06 2,97 3,09 3,01 2,95 2,97 2,95 2,98 2,98 2,98 3,05 3,19 3,22 3,39 3,43 3,56 3,67 3,77 3,87 3,90
0,05 3,10 2,97 2,91 3,05 2,99 2,99 2,97 2,96 3,12 3,08 3,10 3,24 3,27 3,48 3,56 3,72 3,86 3,91 4,12 4,13
0,10 3,05 3,03 2,99 2,93 2,94 2,98 2,92 2,98 3,11 3,15 3,22 3,36 3,45 3,63 3,72 3,77 3,88 4,03 4,11 4,16
0,15 2,97 3,01 2,99 3,03 2,97 3,00 3,06 3,05 3,12 3,20 3,41 3,40 3,56 3,76 3,81 3,88 3,95 4,31 4,21 4,34
0,20 2,94 2,96 2,99 2,92 2,97 3,03 3,07 3,13 3,26 3,33 3,44 3,58 3,59 3,78 3,89 4,13 4,13 4,17 4,38 4,41
0,25 2,95 2,95 2,98 2,97 3,05 3,04 3,17 3,25 3,37 3,44 3,62 3,65 3,73 3,82 3,95 4,11 4,14 4,32 4,34 4,42
0,30 2,98 2,96 3,00 3,01 3,05 3,19 3,24 3,34 3,50 3,51 3,59 3,77 3,91 3,95 4,12 4,19 4,24 4,33 4,47 4,66
0,35 2,88 2,94 2,98 3,06 3,14 3,18 3,28 3,35 3,54 3,60 3,71 3,89 4,03 4,00 4,36 4,29 4,43 4,46 4,57 4,56
0,40 2,97 2,98 3,02 3,06 3,20 3,30 3,44 3,46 3,59 3,72 3,91 3,97 3,94 4,25 4,36 4,29 4,53 4,65 4,80 4,80

φ 0,45 2,99 3,00 3,12 3,18 3,16 3,35 3,56 3,63 3,69 3,76 3,97 4,20 4,17 4,40 4,41 4,50 4,58 4,83 4,80 5,01
0,50 3,00 3,07 3,11 3,29 3,35 3,64 3,68 3,74 4,05 4,11 4,09 4,22 4,42 4,51 4,68 4,65 4,77 4,98 5,10 5,13
0,55 3,10 3,20 3,49 3,40 3,69 3,61 3,81 3,96 4,06 4,18 4,18 4,58 4,46 4,55 4,80 5,02 5,03 5,27 5,34 5,44
0,60 3,19 3,34 3,39 3,67 3,75 3,74 3,89 4,10 4,27 4,34 4,52 4,64 4,71 4,84 5,02 5,24 5,14 5,21 5,49 5,86
0,65 3,31 3,43 3,59 3,66 3,77 4,14 4,18 4,39 4,47 4,63 4,73 4,87 4,99 5,24 5,25 5,40 5,30 5,75 5,80 6,22
0,70 3,46 3,70 3,87 3,89 4,37 4,32 4,39 4,55 4,60 4,88 4,94 4,96 5,35 5,42 5,70 5,64 6,21 5,90 6,05 6,27
0,75 3,61 3,83 3,86 4,10 4,31 4,54 4,64 4,97 4,96 5,31 5,21 5,34 5,49 5,77 5,71 6,05 6,39 6,54 6,51 6,75
0,80 3,96 4,18 4,48 4,39 4,49 4,82 5,30 5,10 5,26 5,82 5,92 5,93 6,03 6,38 6,54 6,68 7,41 7,29 7,14 7,61
0,85 4,56 4,45 4,66 4,86 4,94 6,01 5,80 6,09 5,86 6,36 6,88 6,74 6,87 7,05 6,63 7,46 7,57 8,00 7,48 8,07
0,90 5,12 5,30 5,07 5,69 5,61 6,05 6,54 7,41 7,26 6,68 7,59 8,50 7,34 8,30 7,62 9,22 8,83 9,93 9,32 10,28
0,95 6,16 6,10 7,27 6,50 6,55 7,87 6,56 9,00 10,13 8,91 10,98 9,57 9,39 9,70 10,55 10,11 8,99 13,01 12,03 13,63

Table 7: The RMSPE of the POT method on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,24 0,22 0,25 0,23 0,22 0,22 0,22 0,23 0,23 0,22 0,22 0,23 0,24 0,25 0,25 0,25 0,24 0,25 0,25 0,25
0,05 0,24 0,23 0,22 0,24 0,23 0,22 0,22 0,22 0,25 0,23 0,23 0,24 0,24 0,25 0,26 0,27 0,26 0,26 0,27 0,26
0,10 0,23 0,23 0,23 0,23 0,22 0,22 0,22 0,22 0,23 0,24 0,24 0,25 0,25 0,26 0,25 0,25 0,26 0,26 0,26 0,25
0,15 0,22 0,24 0,23 0,24 0,22 0,22 0,23 0,23 0,22 0,24 0,26 0,24 0,26 0,27 0,26 0,26 0,25 0,26 0,26 0,27
0,20 0,23 0,23 0,24 0,22 0,22 0,23 0,23 0,23 0,23 0,24 0,24 0,25 0,25 0,26 0,26 0,25 0,26 0,26 0,25 0,26
0,25 0,22 0,23 0,22 0,23 0,22 0,23 0,23 0,23 0,24 0,25 0,25 0,25 0,25 0,26 0,25 0,26 0,25 0,26 0,25 0,25
0,30 0,22 0,22 0,22 0,22 0,23 0,23 0,23 0,24 0,24 0,25 0,26 0,25 0,25 0,26 0,26 0,26 0,25 0,25 0,25 0,26
0,35 0,22 0,22 0,22 0,22 0,23 0,24 0,24 0,24 0,25 0,25 0,25 0,26 0,26 0,25 0,25 0,25 0,26 0,26 0,27 0,25
0,40 0,22 0,22 0,23 0,23 0,24 0,24 0,24 0,25 0,25 0,26 0,25 0,25 0,25 0,26 0,25 0,25 0,26 0,26 0,25 0,25

φ 0,45 0,22 0,23 0,24 0,23 0,23 0,24 0,24 0,25 0,25 0,25 0,26 0,25 0,26 0,25 0,26 0,26 0,25 0,25 0,25 0,25
0,50 0,22 0,23 0,23 0,24 0,24 0,25 0,25 0,25 0,26 0,26 0,27 0,26 0,26 0,26 0,26 0,26 0,25 0,25 0,25 0,26
0,55 0,23 0,23 0,24 0,24 0,24 0,25 0,25 0,25 0,27 0,27 0,25 0,25 0,26 0,26 0,26 0,27 0,25 0,25 0,25 0,25
0,60 0,24 0,24 0,24 0,24 0,26 0,25 0,25 0,27 0,26 0,26 0,27 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,25
0,65 0,24 0,24 0,25 0,25 0,25 0,26 0,26 0,26 0,26 0,26 0,27 0,26 0,26 0,26 0,26 0,26 0,25 0,26 0,25 0,26
0,70 0,25 0,25 0,26 0,25 0,26 0,27 0,26 0,27 0,26 0,27 0,26 0,26 0,27 0,26 0,26 0,26 0,26 0,26 0,26 0,26
0,75 0,25 0,25 0,25 0,26 0,26 0,26 0,26 0,27 0,27 0,27 0,27 0,27 0,27 0,26 0,26 0,26 0,26 0,27 0,26 0,26
0,80 0,25 0,26 0,26 0,27 0,26 0,28 0,27 0,27 0,27 0,28 0,27 0,27 0,27 0,27 0,27 0,27 0,28 0,27 0,26 0,27
0,85 0,26 0,26 0,27 0,27 0,27 0,29 0,27 0,28 0,27 0,28 0,28 0,28 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27
0,90 0,27 0,27 0,26 0,27 0,27 0,27 0,28 0,29 0,28 0,27 0,28 0,29 0,27 0,28 0,26 0,28 0,27 0,29 0,27 0,28
0,95 0,27 0,26 0,28 0,26 0,25 0,27 0,24 0,28 0,30 0,27 0,30 0,27 0,26 0,27 0,27 0,26 0,24 0,29 0,28 0,29

Table 8: The RMSE of the BM method with θ̂(1) on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 2,67 2,79 2,50 2,66 2,86 2,84 2,84 2,74 2,78 2,92 3,04 3,13 3,02 3,10 3,11 3,50 3,82 3,61 4,11 3,89
0,05 2,64 2,73 2,81 2,72 2,79 2,88 2,93 2,74 2,52 2,82 2,99 2,95 2,89 3,07 3,07 2,91 3,44 3,76 3,79 3,84
0,10 2,73 2,74 2,84 2,63 2,85 2,97 2,79 2,90 3,10 2,79 2,82 2,93 2,98 3,00 3,81 3,81 3,52 4,00 3,92 4,03
0,15 2,86 2,62 2,67 2,54 2,93 2,90 2,75 2,80 3,16 2,79 2,74 3,28 3,04 2,92 3,33 3,37 4,11 4,40 3,70 3,71
0,20 2,66 2,74 2,56 2,82 2,79 2,66 2,99 2,90 3,20 3,09 3,21 3,12 3,51 3,48 3,75 4,43 3,82 3,71 4,47 3,74
0,25 2,75 2,71 2,90 2,61 3,00 2,80 3,05 3,22 3,04 3,17 3,30 3,55 3,82 3,49 3,96 4,04 4,07 4,06 4,28 4,04
0,30 2,84 2,87 3,02 3,01 2,79 3,01 3,19 2,99 3,63 3,38 3,02 3,71 3,90 3,77 3,80 4,12 4,18 4,18 4,19 4,13
0,35 2,78 2,84 2,88 3,06 2,86 2,89 3,08 3,07 3,34 3,40 3,70 3,48 4,00 4,18 4,74 4,38 4,19 3,95 3,66 4,09
0,40 2,91 2,91 2,82 2,96 2,97 3,13 3,41 2,96 3,17 3,31 4,00 3,96 3,67 3,96 4,44 4,06 4,16 4,22 4,80 4,29

φ 0,45 2,93 2,68 2,78 3,14 2,91 3,23 3,65 3,60 3,41 3,73 3,77 4,41 3,88 4,60 3,98 4,00 4,36 4,91 4,53 4,79
0,50 2,94 2,74 2,99 3,05 3,02 3,33 3,49 3,72 4,19 4,05 3,51 4,12 4,29 4,48 4,52 4,15 4,61 4,79 4,91 4,41
0,55 3,06 3,15 3,68 3,35 4,00 3,41 3,74 4,05 3,57 3,76 4,17 5,07 4,25 3,81 4,39 4,34 4,80 5,20 5,47 5,13
0,60 2,89 3,34 3,33 3,81 3,45 3,60 3,72 3,38 4,29 4,10 3,86 4,46 4,47 4,52 4,87 5,22 4,59 4,24 4,96 5,97
0,65 3,17 3,21 3,30 3,30 3,58 4,18 4,07 4,31 4,34 4,88 4,40 4,74 5,02 5,46 4,98 5,17 4,84 5,46 5,61 6,31
0,70 3,13 3,80 3,72 3,95 4,76 3,90 4,64 4,21 4,39 4,72 4,83 4,57 5,05 5,25 5,57 5,40 6,35 5,55 5,60 5,55
0,75 3,33 3,82 3,60 4,07 4,40 4,54 4,57 5,05 4,72 5,41 4,63 4,91 4,74 5,64 5,36 5,59 6,21 6,07 6,36 6,46
0,80 4,04 4,14 4,76 3,80 4,28 4,29 5,58 4,90 4,97 5,68 5,78 5,73 5,65 6,23 6,12 6,45 7,53 7,26 6,94 7,48
0,85 4,82 4,16 4,56 4,67 4,50 6,56 6,14 6,30 5,74 6,10 7,29 6,65 6,85 7,00 5,53 7,44 7,45 7,85 6,24 7,65
0,90 5,17 5,45 4,94 5,81 5,38 6,28 6,82 8,23 7,68 6,33 7,93 9,41 7,17 8,82 7,16 9,89 8,96 10,59 9,53 10,98
0,95 6,55 6,56 7,95 6,79 6,61 8,52 6,39 9,82 11,17 9,60 12,13 10,13 10,02 10,12 11,34 10,70 8,77 14,17 12,83 14,93
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Table 9: The RMSPE of the BM method with θ̂(1) on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,21 0,21 0,20 0,20 0,21 0,21 0,21 0,21 0,21 0,22 0,22 0,23 0,22 0,22 0,22 0,24 0,25 0,24 0,26 0,25
0,05 0,20 0,21 0,21 0,21 0,21 0,21 0,22 0,21 0,20 0,21 0,22 0,22 0,21 0,22 0,22 0,21 0,23 0,25 0,24 0,24
0,10 0,21 0,21 0,21 0,20 0,21 0,22 0,21 0,22 0,23 0,21 0,21 0,22 0,22 0,22 0,25 0,25 0,24 0,25 0,25 0,25
0,15 0,22 0,21 0,21 0,20 0,22 0,22 0,21 0,21 0,23 0,21 0,21 0,23 0,22 0,21 0,23 0,23 0,26 0,27 0,23 0,23
0,20 0,21 0,21 0,20 0,21 0,21 0,21 0,22 0,21 0,23 0,22 0,23 0,22 0,24 0,24 0,25 0,27 0,24 0,23 0,26 0,22
0,25 0,21 0,21 0,22 0,20 0,22 0,21 0,22 0,23 0,22 0,23 0,23 0,24 0,25 0,23 0,25 0,25 0,25 0,24 0,25 0,23
0,30 0,21 0,21 0,22 0,22 0,21 0,22 0,23 0,22 0,25 0,24 0,22 0,25 0,25 0,24 0,24 0,25 0,25 0,24 0,24 0,23
0,35 0,21 0,21 0,22 0,22 0,21 0,21 0,22 0,22 0,23 0,23 0,25 0,23 0,25 0,26 0,27 0,26 0,24 0,23 0,21 0,22
0,40 0,22 0,22 0,21 0,22 0,22 0,23 0,24 0,22 0,22 0,23 0,26 0,25 0,24 0,24 0,26 0,24 0,24 0,23 0,25 0,23

φ 0,45 0,22 0,21 0,21 0,23 0,21 0,23 0,25 0,24 0,23 0,25 0,24 0,27 0,24 0,26 0,23 0,23 0,24 0,25 0,23 0,24
0,50 0,22 0,21 0,22 0,22 0,22 0,23 0,24 0,25 0,26 0,26 0,23 0,25 0,25 0,25 0,25 0,23 0,24 0,24 0,24 0,22
0,55 0,22 0,23 0,25 0,23 0,26 0,23 0,25 0,26 0,23 0,24 0,25 0,28 0,24 0,22 0,24 0,23 0,24 0,25 0,25 0,24
0,60 0,21 0,24 0,23 0,25 0,24 0,24 0,24 0,22 0,26 0,25 0,23 0,25 0,25 0,24 0,25 0,26 0,23 0,21 0,23 0,26
0,65 0,23 0,23 0,23 0,23 0,24 0,26 0,25 0,26 0,26 0,27 0,25 0,25 0,26 0,27 0,25 0,25 0,23 0,24 0,24 0,26
0,70 0,22 0,25 0,25 0,25 0,28 0,25 0,27 0,25 0,25 0,26 0,26 0,24 0,25 0,25 0,26 0,25 0,27 0,24 0,24 0,23
0,75 0,23 0,25 0,24 0,25 0,26 0,26 0,26 0,27 0,26 0,27 0,24 0,24 0,23 0,26 0,24 0,24 0,26 0,25 0,25 0,25
0,80 0,26 0,26 0,28 0,23 0,25 0,25 0,29 0,26 0,25 0,27 0,27 0,26 0,25 0,26 0,25 0,26 0,28 0,27 0,26 0,26
0,85 0,28 0,25 0,26 0,26 0,25 0,31 0,29 0,29 0,27 0,27 0,30 0,27 0,27 0,27 0,22 0,27 0,26 0,27 0,23 0,25
0,90 0,28 0,28 0,26 0,28 0,26 0,28 0,29 0,32 0,30 0,26 0,29 0,32 0,26 0,29 0,25 0,30 0,28 0,31 0,28 0,30
0,95 0,28 0,28 0,31 0,27 0,26 0,30 0,24 0,31 0,33 0,29 0,33 0,29 0,28 0,28 0,29 0,28 0,24 0,32 0,30 0,32

Table 10: The RMSE of the BM method with θ̂(2) on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 2,67 2,81 2,49 2,66 2,89 2,86 2,86 2,76 2,81 2,96 3,08 3,18 3,06 3,15 3,16 3,56 3,89 3,68 4,19 3,97
0,05 2,64 2,75 2,84 2,72 2,81 2,91 2,96 2,77 2,52 2,85 3,04 2,99 2,93 3,12 3,12 2,95 3,50 3,83 3,86 3,91
0,10 2,74 2,75 2,86 2,64 2,87 3,01 2,82 2,94 3,14 2,82 2,85 2,96 3,02 3,04 3,88 3,89 3,59 4,07 3,99 4,11
0,15 2,89 2,62 2,67 2,53 2,96 2,93 2,77 2,83 3,21 2,82 2,76 3,33 3,09 2,96 3,39 3,44 4,19 4,49 3,77 3,78
0,20 2,68 2,76 2,56 2,85 2,82 2,67 3,04 2,93 3,25 3,14 3,27 3,17 3,58 3,55 3,82 4,52 3,89 3,78 4,56 3,81
0,25 2,77 2,72 2,93 2,62 3,04 2,83 3,10 3,27 3,09 3,23 3,36 3,62 3,90 3,56 4,04 4,12 4,15 4,14 4,37 4,11
0,30 2,86 2,90 3,06 3,05 2,82 3,06 3,24 3,03 3,70 3,44 3,08 3,79 3,98 3,84 3,87 4,20 4,27 4,26 4,27 4,20
0,35 2,81 2,87 2,91 3,10 2,89 2,92 3,14 3,12 3,40 3,47 3,78 3,55 4,08 4,27 4,84 4,47 4,28 4,03 3,71 4,17
0,40 2,95 2,95 2,85 3,00 3,02 3,18 3,48 3,01 3,22 3,37 4,09 4,05 3,75 4,04 4,54 4,14 4,24 4,30 4,91 4,37

φ 0,45 2,97 2,70 2,81 3,19 2,96 3,29 3,72 3,68 3,48 3,81 3,85 4,51 3,97 4,71 4,06 4,08 4,46 5,02 4,62 4,89
0,50 2,98 2,77 3,05 3,10 3,07 3,39 3,56 3,80 4,29 4,14 3,58 4,21 4,39 4,58 4,62 4,23 4,71 4,90 5,01 4,48
0,55 3,12 3,21 3,76 3,42 4,10 3,49 3,82 4,14 3,65 3,84 4,27 5,18 4,35 3,88 4,49 4,42 4,91 5,31 5,59 5,24
0,60 2,93 3,41 3,40 3,90 3,53 3,69 3,80 3,44 4,39 4,20 3,94 4,56 4,57 4,62 4,98 5,35 4,69 4,30 5,06 6,12
0,65 3,23 3,27 3,37 3,37 3,66 4,28 4,17 4,41 4,45 5,00 4,51 4,86 5,15 5,60 5,10 5,30 4,94 5,59 5,74 6,47
0,70 3,19 3,89 3,81 4,05 4,87 3,99 4,76 4,31 4,50 4,84 4,95 4,68 5,18 5,38 5,71 5,54 6,51 5,68 5,73 5,67
0,75 3,41 3,92 3,68 4,17 4,51 4,65 4,68 5,18 4,84 5,55 4,74 5,04 4,84 5,78 5,49 5,73 6,37 6,23 6,52 6,62
0,80 4,14 4,25 4,89 3,90 4,39 4,39 5,73 5,03 5,10 5,83 5,93 5,88 5,79 6,39 6,27 6,62 7,74 7,46 7,13 7,69
0,85 4,95 4,27 4,68 4,80 4,62 6,72 6,30 6,47 5,90 6,27 7,48 6,83 7,04 7,19 5,65 7,64 7,65 8,06 6,39 7,85
0,90 5,31 5,60 5,08 5,97 5,53 6,45 7,00 8,44 7,89 6,51 8,14 9,66 7,37 9,06 7,36 10,16 9,21 10,88 9,79 11,28
0,95 6,73 6,74 8,15 6,98 6,79 8,75 6,56 10,07 11,45 9,86 12,42 10,41 10,30 10,39 11,64 11,00 9,01 14,53 13,17 15,31

Table 11: The RMSPE of the BM method with θ̂(2) on ARMA model

ARIMA π
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,21 0,21 0,20 0,21 0,22 0,22 0,21 0,21 0,21 0,22 0,23 0,23 0,22 0,23 0,23 0,25 0,26 0,25 0,27 0,25
0,05 0,20 0,21 0,21 0,21 0,21 0,22 0,22 0,21 0,20 0,21 0,22 0,22 0,22 0,22 0,22 0,21 0,24 0,25 0,25 0,25
0,10 0,21 0,21 0,22 0,20 0,22 0,22 0,21 0,22 0,23 0,21 0,21 0,22 0,22 0,22 0,26 0,26 0,24 0,26 0,25 0,25
0,15 0,22 0,21 0,21 0,20 0,22 0,22 0,21 0,21 0,23 0,21 0,21 0,24 0,22 0,21 0,23 0,23 0,26 0,27 0,24 0,23
0,20 0,21 0,21 0,20 0,21 0,21 0,21 0,22 0,22 0,23 0,23 0,23 0,23 0,24 0,24 0,25 0,28 0,25 0,24 0,26 0,23
0,25 0,21 0,21 0,22 0,20 0,22 0,21 0,23 0,23 0,22 0,23 0,24 0,25 0,26 0,24 0,26 0,26 0,25 0,25 0,25 0,24
0,30 0,22 0,22 0,22 0,22 0,21 0,22 0,23 0,22 0,25 0,24 0,22 0,25 0,26 0,25 0,25 0,26 0,25 0,25 0,24 0,23
0,35 0,21 0,22 0,22 0,23 0,22 0,22 0,23 0,23 0,24 0,24 0,25 0,24 0,26 0,26 0,28 0,26 0,25 0,23 0,22 0,23
0,40 0,22 0,22 0,22 0,22 0,22 0,23 0,24 0,22 0,23 0,23 0,26 0,26 0,24 0,25 0,26 0,24 0,24 0,24 0,25 0,23

φ 0,45 0,22 0,21 0,21 0,23 0,22 0,23 0,25 0,25 0,24 0,25 0,25 0,27 0,25 0,27 0,24 0,23 0,24 0,26 0,24 0,24
0,50 0,22 0,21 0,22 0,23 0,22 0,24 0,24 0,25 0,27 0,26 0,23 0,25 0,26 0,26 0,26 0,23 0,25 0,25 0,25 0,22
0,55 0,23 0,23 0,26 0,24 0,27 0,24 0,25 0,27 0,24 0,24 0,26 0,29 0,25 0,23 0,24 0,24 0,25 0,26 0,26 0,24
0,60 0,22 0,24 0,24 0,26 0,24 0,25 0,25 0,23 0,27 0,25 0,24 0,26 0,25 0,25 0,25 0,26 0,23 0,22 0,24 0,26
0,65 0,23 0,23 0,23 0,23 0,24 0,27 0,26 0,27 0,26 0,28 0,25 0,26 0,27 0,27 0,25 0,25 0,24 0,25 0,25 0,27
0,70 0,23 0,26 0,25 0,26 0,29 0,25 0,28 0,26 0,26 0,26 0,26 0,25 0,26 0,26 0,26 0,25 0,28 0,25 0,24 0,24
0,75 0,23 0,25 0,24 0,26 0,27 0,27 0,27 0,28 0,26 0,28 0,25 0,25 0,24 0,26 0,25 0,25 0,26 0,25 0,26 0,25
0,80 0,26 0,26 0,29 0,24 0,26 0,25 0,29 0,26 0,26 0,28 0,28 0,27 0,26 0,27 0,26 0,26 0,29 0,27 0,26 0,27
0,85 0,29 0,25 0,27 0,27 0,25 0,32 0,30 0,30 0,27 0,28 0,30 0,28 0,28 0,28 0,23 0,28 0,27 0,28 0,23 0,26
0,90 0,28 0,29 0,26 0,29 0,27 0,29 0,30 0,33 0,31 0,26 0,30 0,33 0,27 0,30 0,26 0,31 0,29 0,31 0,29 0,31
0,95 0,29 0,28 0,31 0,28 0,26 0,31 0,24 0,32 0,34 0,30 0,34 0,30 0,29 0,28 0,30 0,28 0,24 0,33 0,30 0,33
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Figure 24: Comparison of the RMSE for increasing φ at three levels of π.

(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 25: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and β
with φ = θ = 0.1.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 26: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and β
with φ = θ = 0.3.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 27: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and β
with φ = θ = 0.7.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 28: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and β
with φ = θ = 0.9.

Figure 29: Comparing the RMSE for increasing α at three levels of serial dependence and β = 0.
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Table 12: The RMSE of the POT method on ARMA-GARCH model with φ = θ = 0.1

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,55 0,60 0,59 0,61 0,62 0,65 0,69 0,72 0,75 0,77 0,80 0,84 0,92 1,06 1,14 1,16 1,37 1,64 2,46
0,05 0,59 0,61 0,61 0,61 0,66 0,64 0,70 0,71 0,75 0,78 0,81 0,87 0,97 1,02 1,16 1,26 1,50 1,95 2,89
0,10 0,64 0,62 0,62 0,62 0,66 0,73 0,73 0,75 0,81 0,88 0,91 1,02 1,03 1,17 1,35 1,73 2,16 3,87
0,15 0,63 0,66 0,68 0,75 0,77 0,74 0,84 0,83 0,95 1,01 1,10 1,25 1,34 1,63 2,11 3,06 6,85
0,20 0,69 0,73 0,74 0,81 0,87 0,85 0,93 1,08 1,17 1,21 1,41 1,64 2,05 2,71 4,46 10,57
0,25 0,83 0,91 0,93 0,97 1,05 1,16 1,23 1,34 1,52 1,80 2,06 2,58 3,70 6,34 16,91
0,30 1,00 1,07 1,15 1,23 1,38 1,47 1,64 1,79 2,15 2,61 3,41 4,91 8,31 22,74
0,35 1,28 1,31 1,45 1,64 1,73 1,93 2,18 2,70 3,38 4,32 6,74 11,01 26,91
0,40 1,58 1,78 1,82 2,08 2,40 2,72 3,23 4,10 5,40 8,13 13,39 31,21

Alpha 0,45 2,03 2,21 2,45 2,85 3,24 4,02 4,84 6,43 9,54 16,86 35,95
0,50 2,60 2,87 3,30 3,85 4,52 5,91 7,89 11,43 18,93 39,25
0,55 3,34 3,91 4,35 5,20 6,60 9,01 12,74 20,56 37,98
0,60 4,44 5,12 6,13 7,92 10,46 14,13 23,19 42,48
0,65 5,75 6,98 8,79 11,36 15,94 24,60 45,50
0,70 7,87 9,42 12,65 17,84 25,70 43,85
0,75 10,52 14,23 17,55 27,06 40,39
0,80 14,71 18,79 27,64 44,03
0,85 19,71 27,98 42,93
0,90 28,85 38,83
0,95 38,31

Table 13: The RMSE of the BM method on ARMA-GARCH model with φ = θ = 0.1

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,31 0,30 0,32 0,32 0,34 0,35 0,36 0,37 0,39 0,42 0,44 0,48 0,51 0,51 0,57 0,67 0,77 0,97 1,27
0,05 0,31 0,31 0,34 0,35 0,35 0,39 0,38 0,41 0,42 0,45 0,48 0,51 0,52 0,58 0,64 0,74 0,83 1,06 1,70
0,10 0,35 0,38 0,42 0,43 0,45 0,43 0,47 0,50 0,53 0,55 0,60 0,65 0,74 0,82 0,96 1,14 1,65 3,31
0,15 0,48 0,48 0,50 0,49 0,53 0,60 0,58 0,69 0,69 0,72 0,78 0,90 1,07 1,27 1,61 2,49 6,91
0,20 0,62 0,63 0,68 0,68 0,66 0,85 0,88 0,81 0,90 1,09 1,16 1,39 1,60 2,32 3,78 9,54
0,25 0,71 0,74 0,84 0,89 0,95 0,95 1,04 1,24 1,39 1,45 1,81 2,29 3,29 5,31 14,93
0,30 0,91 0,98 1,00 1,08 1,13 1,30 1,41 1,60 1,96 2,29 2,85 4,09 6,57 18,99
0,35 1,10 1,27 1,25 1,32 1,57 1,81 1,93 2,37 2,66 3,75 6,21 8,29 21,01
0,40 1,48 1,40 1,70 1,81 2,13 2,33 2,69 3,35 4,52 7,20 10,84 23,38

Alpha 0,45 1,85 1,91 2,09 2,32 2,84 3,57 3,97 5,24 7,72 12,63 26,21
0,50 2,18 2,45 2,83 3,08 3,79 4,85 5,96 8,74 14,09 29,30
0,55 2,87 2,88 3,54 3,94 5,28 6,49 10,19 14,27 27,00
0,60 4,22 4,22 5,01 7,04 8,15 10,50 17,00 28,64
0,65 4,51 5,59 7,04 8,34 10,86 17,72 32,48
0,70 6,29 6,72 9,21 14,07 18,09 29,50
0,75 7,78 9,88 12,10 19,22 26,86
0,80 9,95 12,07 17,85 31,38
0,85 13,39 18,97 24,73
0,90 20,38 24,04
0,95 22,42

Table 14: The RMSPE of the POT method on ARMA-GARCH model with φ = θ = 0.1

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,14 0,15 0,14 0,14 0,14 0,14 0,15 0,15 0,15 0,14 0,14 0,14 0,14 0,15 0,15 0,14 0,14 0,14 0,15
0,05 0,15 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,14 0,14 0,14 0,15 0,14 0,15 0,14 0,15 0,16 0,16
0,10 0,15 0,14 0,14 0,13 0,14 0,15 0,14 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,14 0,16 0,15 0,17
0,15 0,14 0,14 0,14 0,15 0,15 0,13 0,15 0,13 0,15 0,15 0,15 0,15 0,15 0,16 0,17 0,18 0,22
0,20 0,14 0,14 0,14 0,14 0,15 0,13 0,14 0,16 0,16 0,15 0,16 0,16 0,18 0,19 0,23 0,30
0,25 0,15 0,16 0,15 0,15 0,16 0,16 0,16 0,16 0,17 0,18 0,18 0,19 0,22 0,27 0,36
0,30 0,16 0,16 0,17 0,17 0,18 0,18 0,18 0,18 0,19 0,21 0,23 0,26 0,31 0,42
0,35 0,18 0,17 0,19 0,20 0,19 0,19 0,20 0,22 0,24 0,25 0,29 0,37 0,47
0,40 0,19 0,22 0,20 0,21 0,22 0,23 0,24 0,26 0,28 0,31 0,37 0,50

Alpha 0,45 0,22 0,22 0,23 0,24 0,25 0,26 0,28 0,31 0,35 0,42 0,54
0,50 0,24 0,24 0,26 0,27 0,28 0,31 0,35 0,39 0,44 0,53
0,55 0,26 0,29 0,28 0,31 0,33 0,37 0,39 0,48 0,55
0,60 0,28 0,30 0,32 0,33 0,38 0,42 0,48 0,58
0,65 0,32 0,34 0,36 0,40 0,46 0,49 0,57
0,70 0,35 0,39 0,42 0,44 0,51 0,58
0,75 0,40 0,45 0,46 0,51 0,57
0,80 0,46 0,51 0,54 0,56
0,85 0,49 0,53 0,65
0,90 0,52 0,60
0,95 0,64
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Table 15: The RMSPE of the BM method on ARMA-GARCH model with φ = θ = 0.1

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,07 0,08 0,08 0,08 0,08 0,08
0,05 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,09 0,09
0,10 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,10 0,10 0,10 0,10 0,12 0,15
0,15 0,11 0,10 0,10 0,10 0,10 0,11 0,10 0,11 0,11 0,11 0,11 0,11 0,12 0,12 0,13 0,15 0,23
0,20 0,12 0,12 0,12 0,12 0,11 0,14 0,13 0,12 0,12 0,13 0,13 0,14 0,14 0,16 0,19 0,26
0,25 0,13 0,13 0,14 0,14 0,14 0,14 0,14 0,15 0,15 0,15 0,16 0,17 0,19 0,23 0,32
0,30 0,15 0,15 0,15 0,15 0,15 0,16 0,16 0,16 0,18 0,18 0,19 0,21 0,24 0,35
0,35 0,16 0,17 0,16 0,16 0,17 0,18 0,18 0,19 0,19 0,22 0,27 0,27 0,36
0,40 0,18 0,17 0,19 0,19 0,20 0,20 0,20 0,22 0,24 0,28 0,30 0,37

Alpha 0,45 0,20 0,19 0,20 0,20 0,22 0,24 0,23 0,25 0,28 0,32 0,39
0,50 0,21 0,21 0,22 0,22 0,24 0,26 0,26 0,30 0,33 0,40
0,55 0,23 0,22 0,23 0,24 0,26 0,27 0,31 0,33 0,39
0,60 0,27 0,25 0,26 0,30 0,30 0,31 0,35 0,39
0,65 0,26 0,27 0,29 0,30 0,31 0,36 0,41
0,70 0,29 0,28 0,31 0,35 0,36 0,39
0,75 0,29 0,31 0,32 0,37 0,38
0,80 0,31 0,32 0,35 0,41
0,85 0,33 0,36 0,37
0,90 0,37 0,37
0,95 0,37

Table 16: The RMSE of the POT method on ARMA-GARCH model with φ = θ = 0.3

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,66 0,65 0,67 0,69 0,75 0,76 0,78 0,81 0,86 0,87 0,97 0,99 1,05 1,15 1,21 1,37 1,55 2,10 2,83
0,05 0,71 0,70 0,73 0,81 0,77 0,84 0,87 0,88 0,90 0,99 1,02 1,14 1,18 1,27 1,46 1,47 1,86 2,33 3,27
0,10 0,78 0,82 0,83 0,88 0,90 0,98 0,99 1,04 1,07 1,17 1,20 1,40 1,49 1,51 1,91 2,15 2,88 5,10
0,15 0,89 0,91 0,99 1,00 1,07 1,12 1,17 1,28 1,27 1,41 1,56 1,73 2,03 2,32 2,85 4,13 8,55
0,20 1,08 1,09 1,19 1,20 1,29 1,32 1,49 1,54 1,67 1,85 2,01 2,37 2,92 3,57 5,81 13,70
0,25 1,23 1,40 1,39 1,44 1,56 1,62 1,80 1,94 2,24 2,44 2,93 3,63 4,83 8,27 19,50
0,30 1,49 1,52 1,69 1,78 1,92 2,10 2,39 2,51 2,99 3,48 4,55 6,33 10,91 24,35
0,35 1,80 1,96 2,09 2,23 2,55 2,77 3,07 3,57 4,44 5,77 8,49 14,32 33,32
0,40 2,22 2,38 2,53 2,84 3,09 3,68 4,33 5,35 7,07 10,44 16,64 37,39

Alpha 0,45 2,82 3,05 3,23 3,81 4,48 5,03 6,33 8,33 11,85 20,20 41,97
0,50 3,55 3,94 4,33 5,09 5,85 7,54 9,77 13,17 21,97 46,02
0,55 4,44 4,89 5,77 7,01 8,78 11,76 16,53 25,92 50,60
0,60 5,66 6,69 7,84 10,19 11,84 16,71 25,61 47,78
0,65 7,56 8,84 11,36 14,26 19,76 30,50 49,34
0,70 9,67 11,87 15,01 20,78 30,46 53,45
0,75 13,01 16,77 22,62 31,37 49,21
0,80 18,85 24,00 32,27 49,17
0,85 25,00 34,03 46,91
0,90 35,13 50,26
0,95 45,43

Table 17: The RMSE of the BM method on ARMA-GARCH model with φ = θ = 0.3

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,35 0,38 0,39 0,40 0,40 0,42 0,44 0,46 0,47 0,50 0,49 0,56 0,60 0,64 0,75 0,80 0,92 1,08 1,56
0,05 0,42 0,44 0,46 0,45 0,49 0,50 0,51 0,55 0,61 0,59 0,63 0,63 0,73 0,77 0,84 1,07 1,16 1,42 2,42
0,10 0,53 0,54 0,58 0,57 0,61 0,63 0,62 0,67 0,73 0,75 0,85 0,88 0,96 1,23 1,27 1,60 2,12 4,62
0,15 0,67 0,66 0,69 0,77 0,74 0,80 0,84 0,86 1,00 1,04 1,09 1,26 1,36 1,61 2,13 3,21 7,56
0,20 0,77 0,84 0,84 0,89 0,93 1,02 0,99 1,12 1,22 1,36 1,65 1,88 2,16 3,26 4,97 12,10
0,25 0,99 0,93 1,05 1,17 1,18 1,32 1,44 1,53 1,64 1,99 2,23 2,83 4,06 7,31 16,41
0,30 1,19 1,29 1,33 1,37 1,45 1,61 1,71 2,23 2,47 3,14 3,53 5,33 8,59 19,06
0,35 1,50 1,55 1,58 1,74 1,84 2,05 2,64 2,93 3,85 4,55 6,10 11,02 25,27
0,40 1,70 1,81 2,20 2,31 2,69 2,87 3,38 4,46 5,66 8,43 12,20 26,13

Alpha 0,45 2,10 2,38 2,59 2,67 3,50 3,91 4,82 6,17 9,22 15,81 28,93
0,50 2,61 3,30 3,39 3,89 4,48 5,48 7,21 9,39 14,99 33,28
0,55 3,20 3,65 4,09 5,50 6,75 9,09 11,21 15,18 34,25
0,60 4,53 4,98 6,46 8,19 9,06 11,43 18,11 31,38
0,65 5,79 6,55 8,00 10,62 12,96 19,72 35,32
0,70 7,26 8,11 10,51 14,70 19,26 32,50
0,75 9,13 10,56 16,22 20,08 27,66
0,80 13,20 18,56 22,95 32,57
0,85 15,60 23,64 27,13
0,90 23,18 28,34
0,95 27,33

63



Table 18: The RMSPE of the POT method on ARMA-GARCH model with φ = θ = 0.3

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,15 0,14 0,14 0,14 0,15 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,14 0,14 0,14 0,14 0,15 0,14
0,05 0,15 0,14 0,15 0,16 0,14 0,15 0,15 0,15 0,14 0,15 0,15 0,15 0,15 0,15 0,16 0,14 0,15 0,15 0,15
0,10 0,15 0,15 0,15 0,15 0,15 0,16 0,16 0,16 0,15 0,16 0,15 0,17 0,16 0,14 0,17 0,16 0,17 0,18
0,15 0,16 0,15 0,16 0,16 0,16 0,16 0,16 0,17 0,16 0,16 0,17 0,17 0,18 0,18 0,18 0,20 0,24
0,20 0,17 0,17 0,17 0,17 0,17 0,17 0,18 0,18 0,18 0,18 0,18 0,19 0,20 0,19 0,23 0,31
0,25 0,17 0,20 0,18 0,18 0,19 0,18 0,19 0,19 0,20 0,20 0,21 0,22 0,23 0,27 0,36
0,30 0,19 0,18 0,20 0,20 0,20 0,21 0,22 0,20 0,22 0,22 0,25 0,27 0,33 0,43
0,35 0,20 0,21 0,22 0,21 0,23 0,23 0,22 0,24 0,25 0,28 0,34 0,37 0,48
0,40 0,23 0,23 0,22 0,23 0,23 0,25 0,26 0,27 0,30 0,34 0,40 0,53

Alpha 0,45 0,25 0,25 0,25 0,28 0,28 0,28 0,30 0,33 0,36 0,42 0,55
0,50 0,27 0,27 0,28 0,30 0,30 0,34 0,36 0,39 0,47 0,54
0,55 0,30 0,30 0,33 0,32 0,35 0,38 0,44 0,56 0,58
0,60 0,31 0,34 0,33 0,36 0,38 0,44 0,48 0,58
0,65 0,35 0,36 0,40 0,42 0,48 0,54 0,56
0,70 0,37 0,41 0,43 0,47 0,55 0,64
0,75 0,42 0,48 0,48 0,54 0,66
0,80 0,47 0,46 0,52 0,59
0,85 0,53 0,53 0,65
0,90 0,56 0,66
0,95 0,62

Table 19: The RMSPE of the BM method on ARMA-GARCH model with φ = θ = 0.3

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08
0,05 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,10 0,09 0,09 0,09 0,09 0,09 0,09 0,10 0,09 0,09 0,11
0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,11 0,10 0,10 0,12 0,11 0,12 0,12 0,17
0,15 0,12 0,11 0,11 0,12 0,11 0,12 0,12 0,11 0,12 0,12 0,12 0,12 0,12 0,13 0,14 0,16 0,22
0,20 0,12 0,13 0,12 0,13 0,13 0,13 0,12 0,13 0,13 0,13 0,15 0,15 0,15 0,18 0,20 0,27
0,25 0,14 0,13 0,14 0,15 0,14 0,15 0,15 0,15 0,15 0,16 0,16 0,18 0,20 0,24 0,31
0,30 0,15 0,15 0,15 0,15 0,15 0,16 0,16 0,18 0,18 0,19 0,19 0,22 0,26 0,33
0,35 0,17 0,17 0,16 0,17 0,17 0,17 0,19 0,19 0,21 0,22 0,24 0,29 0,36
0,40 0,17 0,17 0,19 0,19 0,20 0,20 0,21 0,23 0,24 0,27 0,29 0,37

Alpha 0,45 0,19 0,20 0,20 0,20 0,22 0,22 0,23 0,25 0,28 0,33 0,38
0,50 0,20 0,22 0,22 0,23 0,23 0,24 0,26 0,28 0,32 0,39
0,55 0,22 0,22 0,23 0,25 0,27 0,29 0,30 0,33 0,39
0,60 0,25 0,25 0,27 0,29 0,29 0,30 0,34 0,38
0,65 0,26 0,27 0,28 0,31 0,31 0,35 0,40
0,70 0,28 0,28 0,30 0,33 0,34 0,39
0,75 0,30 0,30 0,34 0,35 0,37
0,80 0,33 0,36 0,37 0,39
0,85 0,33 0,37 0,38
0,90 0,37 0,37
0,95 0,37

Table 20: The RMSE of the POT method on ARMA-GARCH model with φ = θ = 0.5

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,88 0,87 0,93 0,96 0,94 1,00 0,98 1,02 1,12 1,15 1,23 1,31 1,40 1,51 1,67 1,78 2,10 2,53 3,63
0,05 0,95 0,96 0,97 1,02 1,10 1,12 1,17 1,19 1,29 1,44 1,36 1,43 1,62 1,83 2,00 2,25 2,46 3,16 4,65
0,10 1,08 1,14 1,16 1,22 1,26 1,33 1,36 1,44 1,45 1,67 1,74 1,80 2,07 2,38 2,66 3,05 4,05 7,22
0,15 1,32 1,31 1,33 1,40 1,46 1,53 1,66 1,74 1,83 2,03 2,18 2,47 2,70 3,42 4,18 5,73 12,61
0,20 1,54 1,55 1,61 1,66 1,80 1,78 2,10 2,14 2,37 2,59 2,98 3,33 4,06 5,41 8,09 18,55
0,25 1,85 1,80 1,98 2,04 2,22 2,31 2,51 2,85 3,13 3,50 4,20 5,24 7,07 11,49 28,22
0,30 2,15 2,15 2,44 2,53 2,68 2,96 3,29 3,82 4,19 5,11 6,54 9,05 14,70 36,43
0,35 2,58 2,71 2,86 3,24 3,57 3,76 4,50 5,27 6,35 8,32 11,47 19,60 47,49
0,40 3,16 3,31 3,63 4,17 4,65 5,24 6,44 7,48 9,96 13,72 24,51 51,86

Alpha 0,45 3,89 4,17 4,66 5,36 6,07 7,40 8,99 11,73 17,12 28,37 57,13
0,50 4,91 5,36 6,10 6,99 8,35 10,74 14,09 19,71 33,05 61,18
0,55 5,91 7,31 8,08 10,16 12,70 15,85 22,77 34,37 63,54
0,60 8,08 9,67 10,83 13,32 18,69 24,37 36,81 64,28
0,65 10,46 12,90 15,45 20,47 26,65 42,70 69,86
0,70 14,32 16,64 21,18 28,91 43,32 69,33
0,75 19,10 23,17 31,47 44,61 69,53
0,80 24,38 32,12 47,29 68,37
0,85 33,11 45,35 64,11
0,90 49,80 70,68
0,95 64,19
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Table 21: The RMSE of the BM method on ARMA-GARCH model with φ = θ = 0.5

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,48 0,50 0,51 0,51 0,57 0,57 0,61 0,64 0,62 0,70 0,72 0,73 0,81 0,88 0,93 1,08 1,27 1,56 2,17
0,05 0,59 0,61 0,66 0,64 0,65 0,69 0,70 0,76 0,78 0,80 0,88 0,99 1,01 1,06 1,21 1,33 1,67 2,10 3,41
0,10 0,75 0,73 0,77 0,79 0,85 0,87 0,94 0,93 1,08 1,06 1,16 1,38 1,38 1,52 1,79 2,32 3,08 5,79
0,15 0,84 0,96 0,99 0,99 1,09 1,17 1,17 1,29 1,37 1,40 1,58 1,84 2,11 2,28 3,10 4,78 11,73
0,20 1,02 1,08 1,21 1,27 1,26 1,45 1,47 1,65 1,78 2,02 2,17 2,44 3,42 4,13 6,49 15,15
0,25 1,22 1,41 1,37 1,50 1,61 1,74 1,89 2,03 2,42 2,68 3,28 4,05 5,71 8,92 22,80
0,30 1,62 1,65 1,72 1,86 2,13 2,24 2,68 2,68 3,68 4,25 5,51 7,19 11,67 27,08
0,35 1,87 2,02 2,48 2,33 2,55 3,01 3,30 4,35 4,51 6,18 8,71 14,79 39,95
0,40 2,30 2,73 2,94 3,34 3,56 4,48 4,90 6,16 7,75 9,72 18,15 39,11

Alpha 0,45 2,99 3,58 3,88 4,17 4,55 5,20 6,69 8,44 14,26 20,70 40,32
0,50 4,04 4,61 4,48 5,95 6,05 8,15 9,51 14,10 24,96 36,05
0,55 5,08 5,05 5,42 7,17 8,83 11,67 18,63 23,49 45,07
0,60 6,19 7,66 7,27 9,01 12,55 16,31 22,87 45,31
0,65 8,13 10,15 13,42 16,48 18,05 27,89 38,51
0,70 9,77 10,82 14,10 19,45 27,65 40,98
0,75 14,18 14,48 22,10 30,70 47,32
0,80 17,40 19,88 30,10 45,33
0,85 23,45 25,40 42,32
0,90 30,75 50,43
0,95 34,34

Table 22: The RMSPE of the POT method on ARMA-GARCH model with φ = θ = 0.5

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,15 0,15 0,15 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,14 0,15 0,15 0,15 0,15 0,14 0,14 0,14 0,14
0,05 0,15 0,15 0,15 0,15 0,16 0,15 0,15 0,15 0,16 0,17 0,15 0,15 0,16 0,16 0,16 0,16 0,15 0,16 0,16
0,10 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,17 0,15 0,17 0,17 0,16 0,17 0,18 0,17 0,17 0,18 0,20
0,15 0,18 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,18 0,18 0,18 0,18 0,20 0,20 0,21 0,26
0,20 0,19 0,18 0,18 0,18 0,19 0,17 0,20 0,18 0,19 0,19 0,20 0,20 0,20 0,23 0,25 0,33
0,25 0,21 0,19 0,20 0,20 0,20 0,20 0,20 0,21 0,21 0,21 0,23 0,24 0,26 0,31 0,40
0,30 0,21 0,20 0,22 0,22 0,21 0,22 0,22 0,24 0,23 0,24 0,26 0,29 0,34 0,46
0,35 0,23 0,23 0,22 0,24 0,25 0,24 0,26 0,26 0,29 0,31 0,33 0,39 0,48
0,40 0,25 0,24 0,24 0,26 0,27 0,26 0,30 0,29 0,33 0,37 0,44 0,52

Alpha 0,45 0,26 0,25 0,27 0,28 0,30 0,32 0,33 0,36 0,38 0,46 0,56
0,50 0,28 0,28 0,31 0,30 0,33 0,35 0,40 0,43 0,48 0,64
0,55 0,29 0,34 0,35 0,37 0,40 0,40 0,43 0,51 0,57
0,60 0,34 0,35 0,39 0,40 0,46 0,48 0,55 0,58
0,65 0,37 0,39 0,39 0,43 0,49 0,57 0,70
0,70 0,43 0,45 0,48 0,51 0,58 0,67
0,75 0,45 0,51 0,52 0,57 0,62
0,80 0,48 0,55 0,61 0,63
0,85 0,52 0,64 0,62
0,90 0,63 0,62
0,95 0,71

Table 23: The RMSPE of the BM method on ARMA-GARCH model with φ = θ = 0.5

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,08 0,08 0,08 0,08 0,09 0,08 0,09 0,09 0,08 0,09 0,08 0,08 0,08 0,08 0,08 0,08 0,09 0,09 0,09
0,05 0,10 0,10 0,10 0,09 0,09 0,10 0,09 0,10 0,10 0,09 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,12
0,10 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,12 0,11 0,11 0,12 0,13 0,13 0,16
0,15 0,11 0,12 0,12 0,12 0,12 0,13 0,12 0,13 0,13 0,12 0,13 0,14 0,14 0,14 0,15 0,17 0,24
0,20 0,13 0,13 0,14 0,14 0,13 0,14 0,14 0,14 0,14 0,15 0,15 0,15 0,17 0,18 0,20 0,27
0,25 0,14 0,15 0,14 0,14 0,15 0,15 0,15 0,15 0,16 0,16 0,18 0,19 0,21 0,24 0,32
0,30 0,16 0,16 0,16 0,16 0,17 0,17 0,18 0,17 0,20 0,20 0,22 0,23 0,27 0,34
0,35 0,17 0,17 0,19 0,17 0,18 0,19 0,19 0,21 0,20 0,23 0,25 0,30 0,40
0,40 0,18 0,19 0,20 0,21 0,21 0,23 0,22 0,24 0,25 0,26 0,32 0,39

Alpha 0,45 0,20 0,22 0,22 0,22 0,22 0,23 0,24 0,26 0,31 0,34 0,39
0,50 0,23 0,24 0,23 0,26 0,24 0,27 0,27 0,31 0,36 0,38
0,55 0,25 0,24 0,24 0,26 0,28 0,30 0,35 0,35 0,40
0,60 0,26 0,28 0,26 0,27 0,31 0,32 0,34 0,41
0,65 0,29 0,31 0,34 0,35 0,33 0,37 0,38
0,70 0,29 0,29 0,32 0,34 0,37 0,40
0,75 0,33 0,32 0,36 0,39 0,42
0,80 0,34 0,34 0,39 0,42
0,85 0,37 0,36 0,41
0,90 0,39 0,44
0,95 0,38
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Table 24: The RMSE of the POT method on ARMA-GARCH model with φ = θ = 0.7

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 1,21 1,29 1,31 1,39 1,45 1,50 1,49 1,59 1,63 1,64 1,90 1,96 2,06 2,30 2,41 2,78 3,24 4,01 5,48
0,05 1,39 1,42 1,50 1,58 1,68 1,67 1,66 1,75 1,84 2,01 2,21 2,23 2,34 2,60 2,83 3,10 3,86 4,84 7,14
0,10 1,61 1,60 1,65 1,84 1,84 1,93 2,07 2,13 2,30 2,41 2,54 2,72 3,07 3,45 3,93 4,80 6,78 11,51
0,15 1,84 1,83 1,95 2,14 2,14 2,26 2,45 2,60 2,85 3,33 3,17 3,84 4,32 5,02 6,41 8,91 19,24
0,20 2,18 2,26 2,31 2,45 2,63 2,82 3,07 3,37 3,62 4,10 4,58 5,21 6,60 8,60 13,33 28,69
0,25 2,54 2,62 2,74 2,97 3,24 3,40 3,75 4,33 4,91 5,65 6,55 8,36 11,56 17,95 45,06
0,30 3,04 3,15 3,45 3,82 4,12 4,57 5,06 5,86 6,69 7,88 10,64 14,76 24,03 54,87
0,35 3,74 3,93 4,38 4,76 5,39 6,02 7,01 8,28 9,84 12,49 18,82 29,34 67,39
0,40 4,66 5,37 5,47 6,02 6,95 8,19 9,58 12,34 16,14 22,68 36,35 75,01

Alpha 0,45 5,72 6,43 7,08 8,16 9,72 11,19 14,28 18,48 26,43 42,05 84,91
0,50 7,38 8,33 9,60 11,32 13,50 15,63 21,61 30,86 51,16 85,72
0,55 9,16 10,97 12,56 15,52 19,30 24,47 34,77 50,76 101,99
0,60 12,00 13,93 17,31 21,36 28,75 37,52 58,39 105,99
0,65 15,85 19,13 25,74 31,91 43,73 63,47 99,53
0,70 21,29 26,19 33,79 46,45 66,41 109,79
0,75 28,56 36,74 50,50 68,57 99,32
0,80 38,38 49,52 66,44 106,02
0,85 52,32 74,71 105,38
0,90 70,81 105,83
0,95 105,02

Table 25: The RMSE of the BM method on ARMA-GARCH model with φ = θ = 0.7

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,80 0,81 0,83 0,83 0,84 0,90 0,96 0,96 1,04 1,12 1,09 1,22 1,31 1,32 1,56 1,73 1,91 2,32 3,27
0,05 0,91 0,96 0,97 0,99 0,99 1,09 1,18 1,20 1,30 1,27 1,37 1,54 1,71 1,77 2,00 2,32 2,59 3,43 5,36
0,10 1,07 1,21 1,23 1,25 1,29 1,36 1,41 1,52 1,61 1,80 1,86 2,18 2,27 2,51 3,09 3,87 4,75 9,72
0,15 1,32 1,47 1,51 1,41 1,68 1,75 1,84 2,05 2,07 2,13 2,78 2,87 3,15 4,11 4,81 7,13 16,69
0,20 1,64 1,70 1,92 1,85 1,91 2,11 2,44 2,54 3,07 3,08 3,48 4,19 5,23 7,05 11,00 23,16
0,25 2,06 2,11 2,29 2,51 2,80 2,88 3,01 3,40 3,62 4,18 4,88 6,79 8,72 13,73 40,13
0,30 2,77 2,72 3,00 2,90 3,32 3,72 4,20 4,85 5,56 6,52 7,77 13,86 21,97 38,74
0,35 3,15 2,94 3,58 4,12 4,41 4,65 5,35 6,71 7,08 9,41 15,98 23,90 52,39
0,40 3,63 3,57 4,34 4,70 5,59 6,55 8,08 10,44 12,23 18,28 27,95 59,45

Alpha 0,45 4,86 5,06 6,06 6,74 9,11 8,67 10,06 13,71 20,79 33,48 73,33
0,50 5,84 6,26 7,59 8,22 9,67 11,67 17,34 27,07 42,12 63,13
0,55 7,87 7,51 9,70 12,89 16,37 17,68 25,36 39,90 68,13
0,60 8,30 11,44 13,17 17,46 18,71 25,62 43,71 79,70
0,65 12,90 15,38 21,53 26,53 41,47 37,16 69,40
0,70 16,81 19,08 29,54 36,81 53,84 83,11
0,75 21,67 27,07 45,20 47,52 69,33
0,80 30,02 39,20 46,97 67,47
0,85 42,24 48,26 63,04
0,90 38,10 68,78
0,95 61,65

Table 26: The RMSPE of the POT method on ARMA-GARCH model with φ = θ = 0.7

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,14 0,15 0,15 0,15 0,16 0,15 0,15 0,15 0,15 0,14 0,16 0,15 0,15 0,16 0,15 0,15 0,15 0,16 0,15
0,05 0,16 0,16 0,16 0,16 0,17 0,16 0,15 0,15 0,16 0,16 0,17 0,16 0,16 0,16 0,16 0,15 0,17 0,17 0,17
0,10 0,17 0,16 0,16 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,18 0,17 0,18 0,21 0,22
0,15 0,18 0,17 0,17 0,18 0,17 0,17 0,18 0,18 0,19 0,21 0,18 0,20 0,20 0,20 0,22 0,23 0,29
0,20 0,19 0,19 0,18 0,19 0,19 0,20 0,20 0,20 0,20 0,21 0,22 0,22 0,24 0,25 0,28 0,35
0,25 0,20 0,20 0,19 0,20 0,20 0,20 0,21 0,22 0,24 0,25 0,25 0,27 0,30 0,34 0,42
0,30 0,21 0,21 0,21 0,23 0,23 0,24 0,24 0,25 0,26 0,27 0,31 0,31 0,36 0,51
0,35 0,23 0,24 0,24 0,24 0,26 0,27 0,28 0,29 0,31 0,33 0,36 0,41 0,52
0,40 0,26 0,29 0,27 0,28 0,29 0,30 0,31 0,34 0,37 0,40 0,46 0,54

Alpha 0,45 0,27 0,29 0,29 0,31 0,31 0,34 0,38 0,40 0,43 0,48 0,54
0,50 0,31 0,33 0,33 0,37 0,39 0,38 0,41 0,44 0,52 0,59
0,55 0,32 0,38 0,37 0,38 0,41 0,45 0,50 0,52 0,67
0,60 0,39 0,38 0,42 0,43 0,51 0,53 0,57 0,64
0,65 0,40 0,43 0,46 0,48 0,49 0,66 0,66
0,70 0,45 0,49 0,48 0,54 0,57 0,66
0,75 0,49 0,54 0,53 0,63 0,67
0,80 0,53 0,55 0,62 0,73
0,85 0,56 0,69 0,76
0,90 0,74 0,74
0,95 0,78
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Table 27: The RMSPE of the BM method on ARMA-GARCH model with φ = θ = 0.7

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,10 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,10 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09
0,05 0,10 0,11 0,10 0,10 0,10 0,10 0,11 0,11 0,11 0,10 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,12 0,13
0,10 0,11 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,13 0,12 0,13 0,13 0,13 0,14 0,15 0,14 0,18
0,15 0,13 0,13 0,13 0,12 0,14 0,13 0,14 0,14 0,14 0,13 0,15 0,15 0,15 0,16 0,16 0,18 0,25
0,20 0,14 0,14 0,15 0,14 0,14 0,15 0,16 0,15 0,17 0,16 0,17 0,17 0,19 0,20 0,23 0,29
0,25 0,16 0,16 0,16 0,17 0,18 0,17 0,17 0,18 0,18 0,18 0,19 0,22 0,23 0,26 0,37
0,30 0,19 0,18 0,19 0,18 0,19 0,19 0,20 0,21 0,21 0,22 0,23 0,29 0,33 0,36
0,35 0,20 0,18 0,20 0,21 0,21 0,21 0,22 0,24 0,23 0,25 0,31 0,33 0,41
0,40 0,20 0,19 0,21 0,21 0,23 0,24 0,26 0,28 0,28 0,32 0,36 0,43

Alpha 0,45 0,23 0,23 0,25 0,25 0,29 0,26 0,27 0,30 0,34 0,38 0,47
0,50 0,25 0,25 0,26 0,27 0,28 0,29 0,33 0,38 0,42 0,44
0,55 0,28 0,26 0,29 0,32 0,34 0,33 0,36 0,41 0,45
0,60 0,27 0,31 0,32 0,35 0,33 0,36 0,43 0,48
0,65 0,33 0,34 0,39 0,40 0,46 0,39 0,46
0,70 0,35 0,36 0,42 0,43 0,47 0,50
0,75 0,38 0,40 0,47 0,44 0,47
0,80 0,41 0,44 0,44 0,46
0,85 0,45 0,44 0,45
0,90 0,40 0,48
0,95 0,46

Table 28: The RMSE of the POT method on ARMA-GARCH model with φ = θ = 0.9

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 2,61 2,72 2,69 2,79 2,94 2,98 3,18 3,25 3,34 3,50 3,84 4,04 4,24 4,74 5,02 5,35 6,40 7,81 11,05
0,05 2,77 2,75 2,87 3,12 3,04 3,21 3,33 3,42 3,56 3,95 4,08 4,44 4,76 5,42 5,94 6,50 8,05 9,90 16,04
0,10 3,08 3,10 3,25 3,35 3,49 3,65 3,95 4,10 4,24 4,77 4,99 5,67 5,93 6,95 8,12 9,95 13,70 25,04
0,15 3,40 3,51 3,69 3,91 3,98 4,32 4,49 4,77 5,37 5,58 6,40 7,37 8,54 10,51 13,20 19,71 40,32
0,20 3,81 4,10 4,17 4,50 4,80 5,17 5,43 6,07 6,75 7,79 8,90 10,44 13,18 16,84 29,67 60,22
0,25 4,56 4,66 5,15 5,35 5,94 6,47 6,80 7,71 8,91 10,38 13,85 15,60 23,16 37,37 93,74
0,30 5,32 5,60 6,08 6,76 7,31 8,26 8,98 10,99 12,72 16,38 20,27 29,93 49,18 108,42
0,35 6,51 6,80 7,78 8,41 9,93 10,46 12,82 15,07 19,30 25,81 33,34 59,10 130,03
0,40 8,05 9,08 10,31 10,34 13,14 15,22 18,18 23,66 29,89 48,85 81,11 137,89

Alpha 0,45 9,87 11,27 14,15 15,22 18,02 21,03 27,60 34,79 55,58 76,12 165,97
0,50 12,65 15,15 18,84 21,20 26,83 29,91 38,21 56,43 94,34 209,05
0,55 17,39 18,91 22,44 31,45 34,59 44,39 76,55 119,53 176,25
0,60 23,08 28,78 31,48 42,78 52,75 80,47 107,50 176,35
0,65 32,72 39,62 52,31 62,20 73,35 124,33 195,08
0,70 45,24 55,79 69,92 81,57 113,66 184,13
0,75 54,97 62,59 96,19 116,74 219,18
0,80 76,53 88,75 128,15 195,73
0,85 101,73 128,14 181,51
0,90 159,41 189,17
0,95 170,94

Table 29: The RMSE of the BM method on ARMA-GARCH model with φ = θ = 0.9

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 1,82 2,01 2,08 2,09 2,14 2,30 2,42 2,63 2,60 2,77 2,79 2,86 3,33 3,13 3,96 4,55 5,31 6,54 9,21
0,05 2,03 2,43 2,31 2,35 2,67 2,74 2,87 2,77 3,06 3,17 3,27 3,46 3,96 4,08 4,60 5,22 5,95 8,99 13,42
0,10 2,37 2,47 2,64 2,65 2,88 3,22 3,15 3,25 3,71 3,80 4,03 4,41 5,23 5,82 6,88 8,19 11,89 24,46
0,15 2,84 2,91 3,04 2,99 3,48 3,57 3,76 4,03 4,12 4,91 5,59 5,98 6,94 9,68 12,59 19,71 40,62
0,20 3,42 3,34 3,65 3,93 3,86 4,29 4,84 5,07 5,51 6,27 8,00 8,86 11,91 16,34 29,34 56,19
0,25 3,94 4,24 4,71 4,69 5,60 6,25 6,09 6,73 7,73 9,38 14,38 14,06 22,14 36,85 99,20
0,30 4,58 5,16 4,97 6,04 6,45 6,77 8,33 10,53 12,19 11,76 15,67 29,25 48,35 101,42
0,35 6,56 6,38 6,96 7,58 9,65 9,51 11,67 13,63 17,61 26,53 29,82 58,93 137,35
0,40 7,65 8,37 10,52 8,72 12,21 15,00 18,35 24,52 28,75 51,04 88,56 133,98

Alpha 0,45 9,33 10,81 14,39 14,50 18,39 20,29 28,87 33,58 58,13 61,91 168,83
0,50 11,55 14,26 19,70 20,99 28,72 28,08 31,61 48,65 96,13 230,15
0,55 17,21 16,53 20,90 33,04 34,10 41,86 79,15 128,05 183,34
0,60 22,79 29,45 28,41 43,26 52,37 82,09 90,46 169,69
0,65 33,74 40,32 56,01 58,82 66,44 126,36 176,40
0,70 48,83 59,90 72,10 82,70 105,08 162,71
0,75 56,87 53,26 95,17 101,51 230,79
0,80 79,39 86,54 111,04 184,27
0,85 100,18 125,82 135,30
0,90 170,72 183,44
0,95 166,16
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Table 30: The RMSPE of the POT method on ARMA-GARCH model with φ = θ = 0.9

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,17 0,16 0,15 0,16 0,15 0,15
0,05 0,17 0,16 0,16 0,17 0,16 0,16 0,16 0,16 0,16 0,17 0,17 0,17 0,17 0,18 0,18 0,17 0,19 0,18 0,20
0,10 0,18 0,17 0,17 0,17 0,17 0,17 0,18 0,18 0,17 0,18 0,18 0,19 0,18 0,19 0,20 0,21 0,22 0,25
0,15 0,18 0,18 0,18 0,19 0,18 0,19 0,19 0,19 0,20 0,19 0,20 0,21 0,22 0,23 0,24 0,26 0,32
0,20 0,19 0,20 0,19 0,19 0,20 0,21 0,20 0,21 0,22 0,23 0,23 0,25 0,26 0,27 0,33 0,40
0,25 0,21 0,20 0,21 0,21 0,22 0,22 0,22 0,23 0,25 0,25 0,28 0,28 0,32 0,37 0,46
0,30 0,22 0,22 0,23 0,24 0,24 0,26 0,25 0,27 0,28 0,34 0,35 0,36 0,42 0,52
0,35 0,24 0,24 0,26 0,26 0,27 0,28 0,30 0,32 0,34 0,36 0,40 0,45 0,53
0,40 0,27 0,28 0,28 0,29 0,32 0,32 0,33 0,36 0,39 0,45 0,49 0,57

Alpha 0,45 0,29 0,30 0,33 0,34 0,35 0,37 0,39 0,42 0,47 0,56 0,59
0,50 0,33 0,35 0,36 0,38 0,40 0,42 0,47 0,52 0,54 0,61
0,55 0,37 0,39 0,40 0,43 0,44 0,47 0,54 0,58 0,61
0,60 0,41 0,43 0,46 0,48 0,50 0,55 0,64 0,64
0,65 0,46 0,48 0,50 0,55 0,57 0,61 0,70
0,70 0,49 0,52 0,55 0,56 0,62 0,70
0,75 0,52 0,58 0,60 0,66 0,66
0,80 0,57 0,59 0,69 0,70
0,85 0,62 0,64 0,80
0,90 0,65 0,69
0,95 0,68

Table 31: The RMSPE of the BM method on ARMA-GARCH model with φ = θ = 0.9

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

0,00 0,11 0,12 0,12 0,12 0,12 0,12 0,12 0,13 0,12 0,12 0,12 0,12 0,12 0,11 0,12 0,13 0,13 0,13 0,13
0,05 0,12 0,14 0,13 0,13 0,14 0,14 0,14 0,13 0,14 0,14 0,13 0,13 0,14 0,13 0,14 0,14 0,14 0,16 0,16
0,10 0,14 0,14 0,14 0,14 0,14 0,15 0,14 0,14 0,15 0,15 0,15 0,15 0,16 0,16 0,17 0,17 0,19 0,24
0,15 0,15 0,15 0,15 0,14 0,16 0,16 0,16 0,16 0,15 0,17 0,17 0,17 0,18 0,21 0,23 0,26 0,32
0,20 0,17 0,16 0,17 0,17 0,16 0,17 0,18 0,18 0,18 0,19 0,21 0,21 0,24 0,26 0,33 0,38
0,25 0,18 0,18 0,19 0,19 0,21 0,21 0,20 0,20 0,21 0,23 0,29 0,26 0,31 0,36 0,49
0,30 0,19 0,20 0,19 0,21 0,21 0,21 0,23 0,26 0,27 0,24 0,27 0,36 0,41 0,49
0,35 0,24 0,23 0,23 0,24 0,27 0,25 0,27 0,28 0,31 0,37 0,35 0,45 0,56
0,40 0,25 0,26 0,29 0,25 0,29 0,32 0,34 0,37 0,38 0,47 0,54 0,55

Alpha 0,45 0,27 0,29 0,34 0,32 0,35 0,35 0,40 0,41 0,49 0,45 0,61
0,50 0,30 0,33 0,38 0,38 0,42 0,39 0,39 0,44 0,55 0,68
0,55 0,36 0,34 0,37 0,45 0,43 0,45 0,56 0,62 0,63
0,60 0,40 0,44 0,41 0,48 0,50 0,56 0,54 0,62
0,65 0,47 0,49 0,54 0,52 0,51 0,62 0,63
0,70 0,53 0,56 0,57 0,57 0,58 0,62
0,75 0,54 0,49 0,60 0,57 0,70
0,80 0,59 0,58 0,60 0,66
0,85 0,61 0,62 0,60
0,90 0,70 0,67
0,95 0,66
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 30: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and θCl

and with φ and θ set to 0.1.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 31: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and θCl

and with φ and θ set to 0.3.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 32: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and θCl

and with φ and θ set to 0.7.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)

Figure 33: Surface plots of the evaluation metrics RMSE and RMSPE for increasing α and θCl

and with φ and θ set to 0.9.

Figure 34: Comparison of the RMSE for increasing θCl at three levels of serial dependence and
α = 0.5 and β = 0.
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