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Abstract

This thesis compares the Block Maxima and Peak over Threshold methods in esti-
mating the Value-at-Risk, for portfolios constructed from assets with different levels
of serial dependence, volatility clustering and cross-sectional dependence. The serial
dependence is modeled via an ARMA-GARCH process with volatility clustering,
while the cross-sectional dependence is modeled by a Clayton copula. The results
show that the Peak over Threshold outperforms the Block Maxima for lower levels
of serial dependence. For higher levels of serial dependence, especially after intro-
ducing volatility clustering, the Block Maxima is the superior method. The presence
of cross-sectional dependence has no significant effect on either method. The back-
testing result of estimating the Value-at-Risk on a portfolio consisting of European

stocks and bonds is in favor of the Block Maxima method.
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1 Introduction

A major aspect of quantitative risk management focuses on measuring risk. Over the
years, this has resulted in the development of a range of risk measures. The focus of
this paper is primarily on the Value-at-Risk (VaR). The VaR measure is widely accepted
within the banking industry as the preferred method for quantifying market risk. It plays
an important role in the Basel Accords because the capital requirements of the banks are
dependent on market risk. The accuracy of the VaR estimation is of great importance: an
overestimation of the risk can lead to unnecessarily large capital allocations which could
have been used elsewhere, while an underestimation could lead to extreme losses or even
bankruptcy. However, during the financial crisis of 2008, it became apparent that this
popular risk measure was not without flaws. As with many risk measures, the calculation
of the VaR is based on assumptions which are often invalid with financial data. Another
point of criticism is that the VaR is not able to implement other risk factors that influ-
ence the market risk, such as liquidity, cash flow, counter-party and political risk. Hence,
improving the estimation of the VaR is not only relevant from an academic standpoint,

but is also valuable to the financial industry.

This paper will calculate the VaR for a diversified investment portfolio in European
stocks and bonds. However, this portfolio contains serial dependence, which is generally
the case for financial returns, and violates one of the assumptions used in calculating
the VaR: that the observed data are independent and identically distributed (IID). The
existing methods for calculating the VaR are analyzed and compared after allowing for
serial dependence. The comparison of the traditional VaR and the VaR after correcting
for serial dependency is particularly interesting in times of extreme values, such as the

2008 financial crisis.

Extreme Value Theory (EVT) has become increasingly popular in financial risk man-
agement because it only focuses on the distribution of the tail rather than the whole
distribution. Within EVT, the two dominant methods to estimate tail probabilities are
the Block Maxima (BM) and the Peak over Threshold (POT) approach. Both methods

attempt to derive the limiting distribution of extreme values, but they differ in how the



extreme values are chosen. The BM method divides the sample set into blocks of equal
size and only considers the maximum values of these blocks, whereas the POT method
only uses the extreme values that exceed a certain threshold. Both the BM and POT
methods provide ways to infer high quantiles of the original data sample using the esti-
mated distribution of the tails. However, one of the assumptions involved in estimating
the VaR using the classical POT or BM method is that the data sample is IID or exhibits

weak dependence.

Various studies have analyzed the application of the POT or BM method on serially
dependent observations to estimate the tail distributions and calculate the VaR. It has
become apparent that both methods are able to deal with the serial dependency, albeit
with both advantages and disadvantages. Drees (2003) demonstrated that the POT can
still be used in the same approach as in the IID case to estimate the VaR when deal-
ing with a serially dependent data sample and is therefore straightforward to implement.
However, the estimates usually bear a higher asymptotic variance. The estimation of the
VaR with serially dependent data can also be achieved using the BM method. In contrast
to the POT method, the asymptotic properties of the estimators actually remain valid as
the block maxima itself is arguably IID. However, McNeil (1998) showed that estimating
the VaR using BM requires the additional step of estimating the extremal index first. The
extremal index is a parameter that characterizes the serial dependence as it indicates the

clustering of extreme values; see Leadbetter (1983), for example.

Theoretically, it seems that the advantages and disadvantages of using the POT and
BM approaches to estimate the VaR under serially correlated data are roughly balanced.

This conjecture needs to be proven, hence the following research question:

“Which method is empirically the most appropriate for estimating high quan-

tiles under serial dependence?”

This research paper compares the BM and POT methods and aims to determine which
method is the most appropriate for estimating high quantiles under serial dependence. The

research is based on a simulation study and an empirical study. We begin with the simula-



tion in order to fully analyze the performance of both methods on different levels of serial
dependence. The data is generated using a Monte Carlo simulation in which the level of
serial dependence is controlled. The simulation stays close to the empirical application
by generating two time-series resembling stock and bond returns, respectively. We first
simulate two Autoregressive Moving Average (ARMA) processes to mimic the univariate
return series of the stock and bond returns, each containing serial dependence. We then
use a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model for the
innovations of each time-series to allow for the volatility clustering that is often present
in financial returns. On each given day, the pair of innovations from the two time-series,
are simulated from a Clayton copula model to allow for cross-sectional dependence. This
allows us to incorporate conditional tail dependency, which is in line with the joint distri-
bution of the returns of a stock and bond portfolio. The BM and POT methods are then
applied to estimate the 99.99% VaR of the portfolio which invests in the two return series
with equal weighting. To estimate the VaR at such a high probability level, it is neces-
sary to estimate the risk measures using EVT because a non-parametric estimation is not
possible. The estimated VaR for every simulation sample is then compared with the true
VaR which is obtained via a pre-simulation. To evaluate the BM and POT methods for
each risk measure estimate, the root mean squared error (RMSE) and root mean squared

percentage error (RMSPE) are calculated over the simulated samples.

In the empirical study, we apply the same BM and POT methods as in the simulation
study to an investment portfolio that closely resembles the typical portfolio of a large
bank. To evaluate the VaR estimates, we use the binomial method; see Christoffersen
(1998). The binomial method is based on the number of observations that exceed the es-
timated VaR. Under the null hypothesis, the number of observations exceeding the 99.99%

VaR follows a binomial distribution where the probability of success equals 0.01%.

For the empirical application, we consider an investment portfolio consisting of the
STOXX Europe 600 index and the Barclays Euro Aggregate Treasury Total Return Index,
to represent the stock and bond markets respectively. The data consists of daily observa-
tions starting from January 1, 2000 until December 31, 2017. This period is interesting

as it contains two major financial crises: the burst of the dot-com bubble and the 2008



global financial crisis.

The simulation application revealed that for lower levels of serial dependence, the
BM method is more accurate than POT when excluding volatility clustering and cross-
sectional dependence. However, the POT method ultimately outperformed the BM
method for extreme levels of serial dependence. Introducing volatility clustering had
a major negative impact on both methods: a clear linear trend in error could be seen
when the level of volatility clustering was increased. However, the POT method seemed
more affected at high levels of volatility clustering than the BM method. Cross-sectional
dependence had no visible effect on estimating the VaR for either method. The financial
application demonstrated that both methods were fairly comparable in terms of cover-

age and that both methods failed to reject the null hypothesis under the binomial method.

The remainder of this paper is structured as follows. Section 2 discusses the current
literature. The methodology is outlined in section 3, where the POT and BM methods
are discussed and the simulation setup is described. Section 4 closely examines the em-
pirical data. The results of the simulation are considered and outlined in Section 5. The
performance of both methods in the financial application is analyzed and discussed in

Section 6, before Section 7 concludes the research.



2 Literature

EVT is a field of research within statistics that primarily focuses on the stochastic be-
havior of extreme values in a process. The history of EVT dates all the way back to
Bernoulli in 1709 as demonstrated by Kotz and Nadarajah (2000). Over the years, EVT
has evolved and currently relies mainly on two distinct methods to model the distribution
of extreme values: the BM method and the POT method. Of the two, the BM method
has been established for longer. Fundamental to the BM method is the probability theory
of maxima, and this needs to be discussed first. It was first mentioned by Fisher and
Tippett (1928), who indicated that the limiting behavior of maxima can be described by
a set of three extreme value distributions: the Gumbel, Fréchet and the inverse Weibull

distributions.

Denote Xi,...,X, as the IID observations with cumulative distribution function

(CDF) F and M,, = max (X3,... X,). Then, assume that

Pr (M"a—;b” < x) — P (a4 b) = H (2), (1)

for some constants a, and b, as n — oo. Similar to the Central Limit Theorem, the
normalized maxima converge to the distribution H. The Extremal Types Theorem (Fisher
and Tippett (1928); Gnedenko (1943)) states that the limit distribution H can only be

one of the following types:

Type I: H(zx) =exp (— exp (—x)), for = eR,
(

0 if <0,
Type II: H(z) =

exp (—:E*a) it x>0,
\
(

exp (— (—2)") if z<0,
Type III: H(z) = (= (=)

1 if x>0,

\
where for type II and III it holds that a > 0. These three types are referred to as the
Gumbel, Fréchet and the inverse Weibull distributions, respectively. Gnedenko (1943)

shows that these three CDFs can be generalized into one distribution function, which is



called the Generalized Extreme Value (GEV) distribution, see equation (4) below. Hence,
the maxima obtained from a sample of observations approximately follow the GEV dis-

tribution, and the type of distribution is dependent on the shape parameter &.

The BM method naturally follows the limit behavior of maxima. The block maxima
are constructed by dividing the sample of observations into k blocks. They approximately
follow the GEV distribution, and can therefore be used to estimate the shape, scale and
location parameters. The most popular methods of estimating the parameters of the GEV
distribution are the maximum likelihood (ML) estimation by Prescott and Walden (1980)
and the probability weighted moments (PWM) by Hosking, Wallis, and Wood (1985).
More recently, Biicher and Segers (2018) derived the ML estimators of the Fréchet distri-
bution and established the consistency and asymptotic normality. After fitting the GEV
distribution to the block maxima using ML, the obtained parameters are used to estimate

high quantiles of the block maxima.

McNeil (1998) demonstrates that the relation between the high quantile of the block
maxima, sometimes referred to as the return level, and a high quantile of the observations
depends only on the probability level and the block size of the block maxima. In the
same paper, the estimation of high quantiles on serially dependent data is analyzed. The
BM method can still be applied directly to the serially dependent case, but the relation
between the quantile of the block maxima and the quantile of the original observations
breaks down. This is due to the extremal index parameter, which indicates the degree
of clustering of extreme values; see Leadbetter (1983) for a more detailed theoretical
interpretation. The relation between the high quantiles of the block maxima and the
high quantiles of the observations also depends on this extremal index. Hence, the ex-
tremal index needs to be estimated first in order to obtain a high quantile of serially
dependent data. The estimation of the extremal index under stationary and weak de-
pendence has been performed by Hsing (1993) and Smith and Weissman (1994). More
recently, Berghaus and Biicher (2018) provided an improved version of the ML estimator

suggested by Northrop (2015), by incorporating sliding block maxima.

The POT method has recently gained significant popularity over the BM method. The



POT differs from the BM method in the way that the extreme values (from which we try
to obtain the limiting distribution) are chosen. The POT only considers those extreme
values that exceed a certain threshold. One of its advantages, which has been mentioned
repeatedly, for example Ferreira and De Haan (2015) and the references thereinafter, is
the fact that the POT method uses all of the extreme values. As the BM method only
considers the maximum in a range of values, it may waste extreme values. This feature
is even more strongly present in the case of non-I1ID data, as extreme values are usually
more clustered together. Assume X — u to be the excess losses. Then, using the general
rules of conditional probability, the distribution of the excess losses can be described as
Fz) = P(X —u < z|X > u) = %{qj(") If and only if the distribution of the
observations, F', is in the maximum domain of attraction of the GEV distribution, then it
follows that the excess distribution function F, can be approximated by the Generalized
Pareto Distribution (GPD); see equation (7). The theorem behind this relation is derived
from Balkema and De Haan (1974) and Pickands (1975). Hence, the excess losses above
a high threshold approximately follow the GPD distribution. The shape parameter in the

GPD distribution is identical to the shape parameter of the GEV distribution.

As with the BM method, the most important estimators for estimating the parameters
of the GPD distribution are the ML and PWM estimators, which are both discussed in
Hosking and Wallis (1987). Smith (1987) extensively investigated the tail estimation based
on IID data and has derived the theoretical properties of the ML estimator based on POT.
High quantiles of the data can then be estimated through the estimated parameters of the
GPD and the inverse CDF. When the limit of the maxima is of type II, another applicabbl
method to estimate the shape parameters is the Hill estimator, by Hill (1975). As the
data is now considered to be heavy-tailed, the tails approximately follow the Pareto
distribution, and the VaR can be estimated by extrapolating a less extreme quantile
to a high quantile using the reciprocal of the shape parameter. Both VaR estimators
are described by McNeil, Frey, Embrechts, et al. (2005). In the case of non-I1ID data,
Drees (2003) has demonstrated that the derived methods can still be used. However, the
asymptotic variance is different from, and usually higher than, the IID case. Drees (2003)

also provides a theoretical estimator for the asymptotic variance.



3 Methodology

3.1 Value-at-Risk

Before discussing the BM and POT methods in further detail, a formal definition of the
VaR is required. The VaR is a quantitative risk measure that is usually applied on the
loss distribution. In probabilistic terms, the VaR can be interpreted as the quantile of this

loss distribution. A comprehensive definition is given by McNeil et al. (2005) as follows:

Definition 1. (Value-at-Risk). Given some confidence level p € (0,1). The VaR of
the losses at the confidence interval p is given by the smallest number | such that the

probability that the loss L exceeds | is no larger than (1 — p). Formally,
VaR,=inf{le R: P(L>1)<1—p}=inf{l e R: FL(I) > p}. (2)

It is common to use high values for p such as p = 0.95 or p = 0.99. The focus of this paper
lies in extreme values and inferring high quantiles using EVT. Therefore, the confidence
level of interest throughout this paper is chosen to be p = 0.9999. The major drawback
of the VaR as a risk measure is that the VaR does not provide any information about the

extreme losses that occur with a probability of less than 1 — p.

3.2 Extreme Value Theory

It is essential to discuss the probability theory behind the convergence of maxima be-
fore deriving the estimators in the BM method. Assume a set of IID random vari-
ables denoted as X;i, X,,... with distribution function F' and define the maximum as
M, = max (Xi,...,X,). The EVT considers the limiting distribution of M,,. Assume

that with normalizing constants a,, and b,,, M,, converge in distribution as n — oo, i.e.

M _
lim P ("—b" < :1:) — lim F" (a3 +by) = H (), (3)

n—o0 an, n—o0
where H () is a non-degenerate distribution function. Here, a non-degenerate distribution
function is a limiting distribution that is not concentrated on a single point. If condition
(3) holds, then F' is said to be in the maximum domain of attraction of H, which can
be written as ' € MDA (H). In a similar manner as the Central Limit Theorem for

averages, the Extremal Types Theorem for maxima of Fisher and Tippett (1928) and

9



Gnedenko (1943) states that in case the distribution of a normalized maximum converges,

the limiting distribution has to be one of a particular class of distributions.

Theorem 1. (Fisher-Tippett, Gnedenko). If F € MDA (H) for some non-degenerate
distribution function H, then H must be a GEV distribution distribution defined as

He(r) - exp (— (1 +§x)_%> for & #0, n

exp (—exp (—x)) for £€=0
where 14+&x > 0. A three-parameter family is obtained by defining He ,, , (v) := He (%)
where o > 0 and u, £ € R. The parameters u, o and £ are referred to as the location, scale
and shape parameters, respectively. Two examples of obtaining the GEV are provided in
Appendix A.1, with F' following the exponential distribution and the Pareto distribution.
Depending on the value of £, the distribution H, defines a type of distribution. There are
three possible states of £, each of which correspond to one of the three types of extreme
value distributions. Figure 1 illustrates the three different extreme value distribution

families for which it holds that:

e £ = 0: Gumbel or type I extreme value distribution
e £ > 0: Fréchet or type II extreme value distribution

o £ < 0: Weibull or type III extreme value distribution.

10
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Figure 1: The probability density function (PDF) and CDF for three different values of £ and
= 0 and o = 1. The solid line corresponds to & = 0 (Gumbel); the dashed line £ = 0.5
(Fréchet); and the dotted-dashed line £ = —0.5 (Weibull).

When F' € MDA (G) with G the Weibull distribution, we say that F is in the max-
imum domain of attraction of the Weibull distribution. The same definition holds for
the Gumbel and Fréchet domains. The distributions that are in the maximum domain
of attraction of the Weibull distribution are considered short-tailed distributions with a
finite right endpoint, denoted by xp = sup{x € R : F(z) < 1}. This class of distributions
is usually not that interesting when quantifying financial risk, as the distribution of losses
is often considered heavy-tailed. Both the Gumbel and Fréchet distributions are heavy-
tailed distributions with infinite right endpoints. However, the class of distributions that
is in the maximum domain of attraction of the Gumbel distribution can have either infi-
nite or finite right endpoints. Within the Gumbel domain there are many distributions;
for example, the normal, lognormal, gamma and chi-squared distributions. The Fréchet
distribution has a slower decay of the right tail than the Gumbel distribution, and in
its maximum domain of attraction are heavy-tailed distributions with infinite right end
points, for example the Pareto distribution. These distributions are also known as the

power-tailed distributions and are often the preferred choice for modeling financial losses.

In order to derive the estimators under the POT, it is essential to establish the prob-

ability theory used to model the tail distribution. Let the losses X be a random variable

11



with possibly unknown distribution function F' such that F'(z) = P(X < z). We then de-
fine the CDF F),(x) for the excess losses X — u, given that the losses exceed the threshold

u as

F,z)=P(X —u<z|X >u)
_ F(z+u)— F(u) (5)
1—F(u) 7’

for 0 <z < xp — u, where zp < 00 is the right endpoint of F'. The theorem of Pickands-
Balkema-de Haan, derived in Balkema and De Haan (1974) and Pickands (1975), states
that the distributions for which normalized maxima converge to a GEV distribution estab-
lish a set of distributions for which the excess distribution converges to the GPD whenever

the threshold u is increased.

Theorem 2. (Pickands-Balkema-de Haan). It is possible to obtain a positive mea-

surable function o (u), such that

lim  sup ‘Fu () = Gopu) ¢ (.CE)‘ =0, (6)

U=ZR 0<o<Tp—u

if and only if F € MDA (Hg) with £ € 'R.

Here, G, ¢ is the GPD and is defined as

M=

1—-(1+&2) ¢ for £#0,
Goglr) = | ) (7)

l—e s for £€=0,
where 0 > 0 and £ € R. It also holds that x > y when € > 0 and p < 2 < —% when
¢ < 0. Again, the parameters o and £ are referred to as the scale,= and shape parame-
ters, respectively. The parameter £ is equal to the shape parameter of the GEV. Figure
2 displays the GPD distribution for different values of the scale and shape parameters.

Among others, De Haan and Ferreira (2006) show that equation (6) further implies
that

lim F, <0L)> —Gie(x) < FeMDA(H). (8)

U—TR Uu

12



In addition, Gnedenko (1943) demonstrates that when the observations are approximately

heavy-tailed distributed, the following relation holds

FeMDA(He) < F(z)=a¢L(z), (9)

Probability Density Function GPD distribution Cumulative Density Function GPD distribution

o

15k
99994929

i i
3999499
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L v
=)

L1 T | A | B 1

N N N N B

PN N = 2o

L1 [ | B | B 1

0.5

Cumulative Density

Figure 2: The PDF and CDF for three different values of £ and two different values of o.

where L (z) is a slowly varying function. The definitions of slowly and regularly varying
functions can be found in Appendix A.2. The decay of the tails is a power function
in which the rate of decay, denoted by %, is often referred to as the tail index of the
distribution. De Haan and Ferreira (2006) also show that if F' belongs to the maximum
domain of attraction of the Fréchet distribution, then for o (u) = &u equation (9) is
equivalent to

, T\ 1= F(ux) -1
JEEOFu(m))—Gm(@ = ma—Fe v (10)

3.3 Block Maxima

This section first examines the BM method for the IID case, before the theory is extended
to serially dependent data. The BM method has been fundamental and is considered to

be one of the oldest models within EVT.

In order to estimate the parameters, the BM method divides the data with total num-

ber of observations IV into k equally sized blocks, each containing n observations. Taking

13



the maximum of each block generates a new sample that contains extreme values. Define
the sample of block maxima formally as M,, = {M, 1, ..., M, } where M, ; denotes the
1th block maximum. Then, the block maxima approximately follow a GEV distribution
He - The choice of block size, n, and the corresponding number of blocks, k, have a
significant impact when estimating the parameters of the GEV distribution. A large block
size leads to a more accurate approximation of the block maxima distribution by a GEV
following the limit relation. Consequently, the parameter estimates have a lower bias.
Meanwhile, adopting a large k increases the number of block maxima. As a result, the
estimated parameters have a low variance. A visual interpretation of the BM method is

presented in Figure 3.

Block Maxima Method
T
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i |
i |
I i
i |
|
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| |
I i |
‘ ‘ ‘ ‘ H ] ‘
| 1 |
‘ i
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| i
20 o 50 0 7 80 % 100

Figure 3: Visual interpretation of the BM method. The total number of observations N equals

100 and is divided into & = 10 blocks of n = 10 observations where only the maximum values

per block size are considered.

To estimate the parameters of the GEV distribution, either of the following two esti-
mators is generally used: the ML estimators, see Prescott and Walden (1980) and Biicher
and Segers (2018); and the PWM estimators, see Hosking and Wallis (1987) and Ferreira
and De Haan (2015). In this study we use ML both in the BM and POT approaches
in order to make a fair comparison. The aim of this paper is to infer high quantiles on
financial losses containing serial dependence. Mandelbrot (1963) argued that financial
losses are heavy-tailed and provided the evidence in a later publication, see Mandelbrot

(1997). Therefore, since financial losses are known to be heavy-tailed, we restrict the

14



research to the class of Fréchet distributions, or equivalently & > 0. This paper adopts
the estimators derived in Biicher and Segers (2018), where the Fréchet distribution is used
and the location parameter is set to zero. Here, we first explain the application of the

ML estimators for the Fréchet distribution in detail.

The CDF of the Fréchet distribution can be obtained via the GEV distribution (4) by
using £ > 0 and y = 1 + £z, and is defined as

exp —y_% for y >0,
Fely) = < ) (11)

0 for y <0

We focus on the two-parameter Fréchet distribution, similar to Biicher and Segers (2018),

which is obtained by Fy, (y) := F¢ (£) and with CDF

s

Feo (y) = exp —(9>_ for y > 0. (12)

g

The PDF can be obtained by taking the first order derivative of the CDF.

0F: ,
f&a (y) = %y(y)

1y ¢! AN
=) ()

Let y = (y1, ..., yx) € (0, oo)k be a sample which the Fréchet distribution is to be fitted.

(13)

e

Then the log-likelihood can be derived as
l(€>0.yla s 7yn)

ffa yz

||M»

(14)

—k (In (&) +In (o —aﬁzyz ( >Zlnyl — kIn (o)

The ML estimators f and ¢ are obtained by maximizing (14) to the respective parameter.
Biicher and Segers (2018) derived the ML estimators for the shape and scale parameters,
and established the consistency and asymptotic normality for the ML estimators for both

IID and strictly stationary time-series. The ML estimators for the scale parameter ¢ and

15



shape parameter £ are obtained as follows:
—£

1o -2
=1

Q>

where £ is the unique solution of ¥, (¢ly) = 0, with ¥y (¢|y) defined as

1

+ %Zf:l v “In (i) B
.

% Zi:l Y;

If £ > 0, the block maxima M,, approximately follow the Fréchet distribution. The pa-

U (Ely) =€

Z In (y3). (16)

i
T =

rameters can be estimated by replacing the sample vector y by the block maxima in the
above derived estimators. After obtaining parameter estimates, we estimate the quantiles

of the block maxima M,, by inverting the CDF and using the ML parameters.

The relation between the VaR of the block maxima, which is sometimes referred to
as the return level, and the VaR of the original observations is demonstrated by McNeil
(1998). Because the VaR of the block maxima is a quantile on extreme values, it is
therefore a high quantile of the original data. When the data are IID, the probability

level corresponding to the VaR of the block maxima can then be calculated as

Pr (M, < VaR,) = (Pr (X < VaR,)) =p" (17)

That is, the VaR is a quantile of the block maxima with probability level p”. Therefore, by

using the inverse of equation (12) and parameter estimates (15) and (16) we can estimate
the VaR as

VaR, =6 (—In(p")) *. (18)

When moving away from IID data and allowing for serial dependence, the convergence

of the maxima follows a GEV distribution raised to the power # as illustrated by McNeil
(1998):
M, — b,
lim P <— < g;> = H(2), (19)
n—00 an,

where we use M, to indicate that the data contains serial dependence and where 6 in
(0,1] is the so-called extremal index. Assuming that the maxima M, is obtained from

a stationary series with the same distribution function F' as in the IID case (M,), the

16



distribution of H{ () is of the same type as Hg (x) with the exact same £ parameter.
However, the location and scale parameters are different in this case. The extremal index
is an important parameter that measures the degree of clustering of extremes in a sta-

tionary process.

McNeil (1998) states that for large n and v = a,z+b,, it now holds that P (M, < u) ~
pY (Mn < u) = F™ (u). Hence, for large values of u, the probability distribution of the
maximum of n observations from the time-series with extremal index 6 can be approxi-
mated by the distribution of the maximum of nf < n observations from the associated
IID time-series. The term n# is often associated with counting the number of roughly
independent clusters of observations in n observations. The extremal index 6 is also know

as the reciprocal of the mean cluster size.

Due to the serial dependence, the relation between the VaR of the block maxima and
the VaR of the original observations changes, and are now dependent on the extremal

index. As demonstrated by McNeil (1998), equations (17) and (18) now become
nd
Pr (M, < Vak,) = (Pr (X < VaR,)) " =p", (20)

and

VaR, = & (— In (p"é))_é. (21)

When dealing with serial dependence, we first need to estimate the extremal index.
Berghaus and Biicher (2018) have recently analyzed estimators for the extremal index
based on disjoint and sliding block maxima. They derived the asymptotic normality and
revealed that the sliding block estimator outperforms other block estimators. Hence, we

will adopt the sliding block estimators as proposed by Berghaus and Biicher (2018):
k -1 -1
A~ 1 R .
(sl = — st (2),sl _ sl
0. =\ + ; Vol Z ya | 22)
where
ZZZ =n <1 — Wjﬁ) and f/jlz = —nlog (Wfﬁ)
with
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Here, F,, is the empirical CDF of the observations X, ..., Xy. The sliding block maxima
are obtained by dividing the sample of observations into N — n + 1 blocks of length n,
such that M, = max (X;,..., X, q) fort =1,...,N—n+1.

To summarize, when dealing with IID data, the VaR can be estimated using equation
(18). Here, the relation between the quantiles of the block maxima and the quantiles of
the original observations, and the estimated scale and shape parameters are used. These
parameters are often estimated using either ML or PWM estimators. In this paper we
obtain the ML parameters with equations (15) and (16). If the data is a strictly stationary
time-series then the scale parameter may change, but the shape parameter is exactly the
same. The relation between the quantiles of the block maxima and the quantiles of the
original observations now depends on the extremal index. Under serial dependence, the
VaR estimator now changes to equation (21) using equation (22) to estimate the extremal

index.

3.4 Peak over Threshold

A major disadvantage of the BM method is that it potentially neglects extreme values
in the tails. This is because only the maximum of a group of data is used to estimate
the GEV distribution. The existence of serial dependency within the data magnifies this
shortcoming. This gave rise to the POT, another often-used method in EVT, which con-
siders those extreme observations that exceed a certain threshold, as illustrated in Figure
4. This section begins by discussing the theory of the POT method in the IID case.

Subsequently, the IID assumption is relaxed and the differences are analyzed.
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Peak Over Threshold Method
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Figure 4: Visual interpretation of the POT method. Only those values exceeding the threshold

of 1.5 are considered.

We start by deriving the VaR estimators in the general case £ € R after which the the-
ory is extended to derive the estimators in the case £ > 0. Using the rules for probabilities

for a random variable X and threshold u such that x > u,

The k excess losses can be obtained as {Xy_;y — XN_kﬁN}f:_Ol, where X v is the j-th
element in the order statistics X; xy < --- < Xy n. Hence, it holds that the threshold
u = Xny_gn. An estimator for the tail probabilities can then be constructed as proposed
by Smith (1987). Multiple estimation techniques are available for obtaining the estimated
parameters of the GPD model, for example ML or PWM estimators. Given that we
obtained the estimators for the scale and shape parameters & and € by fitting the GPD to
excess losses over threshold Xx_j y and using the empirical estimator % for F (XN—kN)
with %, the number of observations exceeding the threshold Xy_j n, this results in the

following estimator:
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- k ~r— Xpn_ 1
F(x) = N(l + W) ¢ for z > XN_kN- (24)

As the VaR is simply a quantile of the distribution, it can be obtained by inverting
the CDF. By applying this to the estimator of the CDF of the excess losses, we derive
the estimator for the VaR, the (1 — p,) quantile of X as

V(Ian = F_1<1 _pn) = XN—k,N + g <W) —-11. (25)

We assumed the observations to be of a heavy-tailed distribution or equivalently £ > 0,
as this is a stylized fact of financial returns. In chapter 3.2 we demonstrated that the
distribution of the observations is therefore in the maximum domain of attraction of
the Fréchet distribution. Consequently, the ratio of the exceedances and the threshold,
XX > u, approximately follows F(z) = 27¢ when u — co. The exceedance ratio can

then be fitted to the Pareto distribution, which is defined as
He(z)=1—a"¢. (26)

Hence, the tail distribution can be approximated as

X

F(z) ~ F (u) (—) . (27)

u

Another conventional method for estimating £ which utilizes the heavy-tailed distri-
bution, is the Hill estimator, proposed by Hill (1975). The formula for the Hill estimator
is given by

k
A 1
l(fll\; = I3 Zln Xn_jri,vy —In Xy _p N (28)

j=1
The difficulty in using the Hill estimator lies in choosing k, as it needs to hold that k — oo

and % — 0 as N — oo. The choice of k is often based on the analysis of so-called Hill
plots. Thereby, the estimates of £ are plotted against the different values for k£, and the
value for u is chosen wherever the estimations become stable. This method has obvious
drawbacks; most importantly, it is difficult to implement in an automated fashion. Hence,
a statistical or data-driven selection criterion is needed. Danielsson, Ergun, de Haan, and
de Vries (2016), recently proposed a selection method that minimizes the maximum dis-

tance between the fitted Pareto type tail and the observed quantile.
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As £ can be estimated by the Hill estimator (28), and again substituting the empirical

estimator £ for F (u), the standard form of the Hill tail estimator is as follows:

1

ﬁ(@:%(XN:N) o (29)

Consequently, the VaR estimator is derived by inverting equation (29)

f(H)

VaR,, = X i o (30)
vy, = AN—k N N(l —pn) .

The limiting distribution of a range of estimators has been thoroughly researched mostly
in the IID case, notably by Dekkers, Einmahl, and De Haan (1989) and de Haan and
Rootzén (1993). It is demonstrated that the limiting distribution converges to the normal

distribution

vk (mpn
log <NLpn> VaR,,

Whenever the data is no longer IID and serial dependence is relevant, the estimator still

- 1) i>J\/’(/\,02) as N — oo. (31)

holds if the serial dependence is weak. Drees (2003) demonstrates that the asymptotic

variance is different and usually higher under serial dependence.

3.5 Simulation Setup

The simulation uses a general framework similar to that of the application. The goal of
the simulation setup is to generate multiple scenarios in which the levels of autocorre-
lation, volatility clustering and tail dependence between two series are controlled with a
single model. The model is first explained stepwise, before each component is explained
in further detail. All of the components are then combined into a single model, which

parameters and the way they will be used are finally discussed.

First, the returns of two different series are simulated using an ARMA model, of
which the innovations are generated by a GARCH model. The parameters of the ARMA-
GARCH model of each series are set independently. The ARMA structure will be the
main contributor for generating serially dependent data. The serial dependence can be

controlled by both the AR and MA terms. The AR term enables the direct incorporation
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of the dependence of the lagged observations on the current observations. Meanwhile,
the MA term indirectly models the dependence between observations via the unobserved
shocks. By assuming that the unobserved shocks follow a GARCH process instead of a
white noise process, the level of volatility clustering within each series can be controlled.
For each series, the GARCH innovations are assumed to follow a white noise process with
the standard normal distribution. Nevertheless, the cross-sectional dependence between
the two GARCH innovation processes is assumed to follow a Clayton copula. Finally,
the portfolio is obtained as a weighted average of the two simulated series as follows:

Xt = 'LUXt,l + (1 - U}) Xt72.

The ARMA(1,1)-GARCH(1,1) model used for each series j = 1,2 is defined by

Xij=cjte;+¢jXe1;+ Mg,
Etj = Ot,j L1,

o2 =w; +a;el .+ Bio? with a+ /<1
tj — Wi 3€t—1,5 70115 )

Zt,j ~ N (0, 1) ;

where the copula of (Zm, Zt72) follows the Clayton copula. The conditional variance is
denoted by ¢? and the parameters ¢;, m;, «; and 3; are the coefficients of the AR, MA,

innovations and conditional variance terms, respectively.

Before proceeding to the implementation of the Clayton copula, a general definition

of a copula now provided.

Definition 2. A d-dimensional copula is a joint cumulative distribution function on |0, 1]d

with standard uniform marginal distributions.

Theorem 3. (Sklar) Let F' be a joint distribution with marginals Fy, ..., Fy. Then
there exists a copula C(xy,...,x4) such that F(xy,...,xq) = C(Fi(x1),..., Fy(zq)). Con-
versely, if C is a copula and Fi,..., Fy are unwariate distributions, then F is a joint

distribution with marginals Fy, ..., Fy.

The bivariate-Clayton copula is an Archimedean copula that allows a non-zero level
of lower tail dependency between two series. This tail dependency lies in the negative

tail, corresponding to extreme losses, and the advantage of the Clayton copula is that the
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level of dependence can be set by a single parameter, often denoted as #. The bivariate
Clayton copula is given by

_9CZ —GCl

C§" (ur,ug) = <U1 +uy’ — )79ﬁ for 0< 09 < 0. (33)

Whenever ¢! — 0 we approach the independence copula, and when ¢! — oo we ap-

proach full dependency.

To combine all of the different components in the simulation model, we derived the

following algorithm to obtain a single set of simulated data.
Algorithm 1. (Data Generating Process)

1. Generate two uniformly distributed series from the Clayton copula. Draw two inde-

pendent uniform random variables (Ut,l, V}/,Q) and set:

1
oCl
Cl
0
oCl (1+061)

2. Convert the (Ut,l, Ut,2) to standard normal marginals using the inverse of the stan-

dard normal CDF:
Ziy =0 NUy) and Zig = (Upy). (35)

The simulated standard normal variables Z,1 and Z;o have lower tail dependency

but are both IID series.

3. Use (Zy1, Zsp) to simulate two series from the ARMA(1,1)-GARCH(1,1) model for
j=1,2:

Xej=cijte;+¢iXe1;+ g,
Etj = 0121 (36)

2 2 2
Opj = Wj+ Q&4 ; + ﬁjatfl,j'

4. Obtain the simulated time-series by calculating the weighted average:

Xt = th,l + (1 - U)) Xt72~ (37)
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For every specification of the parameters, one sample with sample size 1,000,000 is
obtained to calculate the true VaR, and 1,000 samples with sample size 2,000 are gen-
erated to compare the two methods to estimate the VaR. Every sample uses a burn-in
sample size of 1,000 data points. The true VaR is then estimated as the empirical quantile

from the larger sample.

The set of models is divided into two groups: the first group depends on only one
ARMA-GARCH model by setting w = 1 and z;; ~ N (0,1); while the second group uses
the Clayton copula to introduce tail dependency, and the two time-series are combined

by setting w = 0.5.

3.6 Simulation Evaluation

In the simulation application it is possible to obtain the true VaR. Hence, the VaR esti-
mates are evaluated by calculating the root mean squared error (RMSE) and root mean
squared percentage error (RMSPE). After obtaining m = 1,000 VaR estimates per sim-
ulation model, as described in section 4.4, the RMSE and RMSPE can be calculated

as

— 2
>, (VaR,, — VaR, )
RMSE = , (38)

m

— 2
Zm VaRp, 1
=1\ VaR,,

m

RMSPE = (39)

For both the POT and BM methods, the RMSE is calculated using the same true VaR.
For a given specification of parameters, we can directly compare the performance of the
two methods using the RMSE. However, since the scale of the true VaR will differ across
different specifications of parameters, it is not possible to make a comparison across these
specifications using the RMSE. The RMSPE is based on the percentage deviation and

will therefore be used to compare the two methods at different parameter specifications.
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3.7 Financial Application Evaluation

In the financial application the VaR is estimated on a stock-bond portfolio consisting of
4,550 observations using both methods. Since the underlying data generating process is
unknown, we cannot evaluate the VaR estimates by comparing them to the true VaR.
The VaR estimates are now evaluated using the binomial method as demonstrated by
Christoffersen (1998). The VaR will be estimated on a sub-sample of the data containing
3,550 observations. This leaves the test sample with 1,000 observations, denoted by
W. The probability level of 99.99% used in the simulation application is therefore not
appropriate to accurately evaluate the VaR estimates. Hence, we propose the use of three
probability levels, p, = 99%, p, = 99.5% and p, = 99.99%, which correspond to the
VaR levels for banks and insurance companies. The binomial method is based on the
unconditional coverage of the risk measure. The unconditional coverage can be seen as
the empirical probability of exceeding the estimated VaR, a = %, with V' the number
of observations exceeding the VaR estimate. By definition, the unconditional coverage
should equal the confidence level of the VaR. Assuming the confidence level p,,, then the
probability of observing V' exceptions in a testing sample of sample size W should equal

the binomial PDF under the null hypothesis

w

T

pe(v=o) = () )" (40)

A likelihood ratio test statistic is performed to test whether the unconditional coverage

is equal to p,. The test statistic can be calculated by

LRy, =2 {m <aV (1- a)W*V) “In (pg (1 —pn)WVﬂ ~x2(1). (41)
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4 Empirical Data

4.1 Preliminary

The empirical analysis focuses on a diversified portfolio of European markets. We setup
a hypothetical portfolio investing 70% in stocks and 30% in bonds. The STOXX Europe
600 index, which holds 600 European companies, is used to represent the European stock
market. The index represents large, medium and small capitalization companies in 17
European countries that account for approximately 90% of the free-float market capi-
talization of the European stock market. The Barclays Euro Aggregate Treasury Total
Return Index is used to represent the European bond market. This bond index contains
372 fixed-income securities, which are from 13 different countries and are weighted by their
market value. The data are obtained from Bloomberg Financial Markets and contain daily
observations from 1 January, 2000 to 31 December, 2017, providing 4,550 observations for
each index. The index values are converted to daily returns by r, = log(l;/I;_1), where I,
is the index value at time t. Figure 5 illustrates the index levels and returns of the stock

index, bond index and the stock-bond portfolio, respectively.

(a) STOXX Europe Index

STOXX Europe Index
T T

Index Value
Index Return

| 1 L L I
2002 2004 2006 2008 2010 2012 2014 2016
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(b) Barclays Euro Aggregate Treasury Total Return Index

Barclays Euro Aggregate Trea-sury Total Return Index
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(¢) Portfolio returns with allocation of 70% stocks and 30% bonds.

Stock-bond portfolio
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Figure 5: Index levels and returns for the stock index, the bond index and the portfolio.

The period from the beginning of 2000 to the end of 2017 is of interest because it
contains two major events: the burst of the dot-com bubble in 2000 and the global
financial crisis of 2008. Both events are represented by a large spike in volatility which,
as expected, is more prominent in the stock index than the bond index. Even though the
portfolio is well-diversified, with positions in 600 different stocks and 372 fixed-income

securities, there is still a clear indication of volatility clustering.
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4.2 Descriptive Statistics

The statistical properties of the empirical data need to be analyzed in further detail.
Descriptive statistics are outlined in Table 1. As expected from differences in the nature
of stocks and fixed-income securities, the standard deviation of the stock index is almost
six times as high as that of the bond index. The returns of both indices are well-centered
around zero, as indicated by the mean and median. For both indices the skewnesses are
negative and with kurtosises higher then 3, that of the normal distribution. It is common
for financial securities to have more extreme losses than extreme profits, as reflected by the
negative skewness. The stylized fact of more extreme values than the normal distribution,
and hence the notion of fatter tails, is captured by the high values of kurtosis. Formally,
we reject that each series follows a normal distribution by the Jarque-Bera test. As the
chosen portfolio is a weighted average between the stock and bond indies, the values of

the statistical properties lie between those of the stock and bond indices.

Table 1: Descriptive statistics of the stock index, bond index and portfolio returns.

Return Series | # Obs Min. Max. Mean Median Std. Dev Skewness Kurtosis Jarque-Bera

STOXX 600 4549 -0.0886 0.0941 0.0000 0.0003 0.0124 -0.2125 8.5901 0.0000
Barclays Bond | 4549 -0.0152 0.0178 0.0002 0.0002 0.0023 -0.1371 6.5306 0.0000
Portfolio 4549 -0.0606 0.0640 0.0000 0.0002 0.0086 -0.2023 8.4798 0.0000

The results of the Ljung-Box test can be found in Table 2, and provide a more in-depth
analysis of the serial dependency. Furthermore, Figure 6 presents autocorrelation and par-
tial autocorrelation plots of the portfolio returns and the squared portfolio returns. The
Ljung-Box Q-test indicates that for all returns series, the null hypothesis of independently
distributed data can be rejected at a 5% significance level. These results are further sup-
ported by the correlation plots of the portfolio returns. For both the autocorrelation and
partial autocorrelation there are multiple lags with significant correlation, most notably
at lags 2, 3, 5 and 6. The correlation plots of the squared portfolio returns exhibit a

strong significant autocorrelation. This confirms the presence of volatility clustering.
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Table 2: Ljung-Box Q-test results.

Return Series Test-statistic Critical value p-value
STOXX 600 54.02 31.41 0.0006
Barclays Bond 41.39 31.41 0.0033
Portfolio 49.81 31.41 0.0002
Squared Portfolio | 3940.17 31.41 0.0000

* Test results are based on significance level a = 5% and degrees of freedom equal to number of lags selected is 20.

(a) Serial dependence analysis on the portfolio returns.
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(b) Serial dependence analysis on the squared portfolio returns.
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Figure 6: Sample autocorrelation and partial autocorrelation plots of the realized and squared

portfolio returns.
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5 Simulation

5.1 The choice of k

For the POT and BM, the number of exceedances and block maxima, respectively, have
a significant impact on the accuracy on the estimations. For this reason, a number of
papers report MSE of the estimated parameters for different values of k, the number of
exceedances or block maxima. The simulation setup is fairly complex when considering at
the number of parameters alone. Hence, the impact of k is analyzed for the IID and highly
serial dependent case as a preliminary step. In the IID case the series are simulated from
a Student’s t-distribution with four degrees of freedom. For the serial dependent case, an
ARMA process with ¢; = 0.95, 7 = 0 and a Student’s t-distribution with four degrees of
freedom for the innovations are used to simulate the series. All other model parameters
are set to zero. The number of simulations and VaR probability level are setup in the
same way as in the simulation setup. For both the POT and BM methods we choose k
that minimizes the MSE; k is then fixed across the different simulation models. The MSE
is decomposed into the variance and squared bias and plotted against different values of

k in Figure 7 for the POT method, and Figure 8 for the BM method.
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Figure 7: Decomposition of the MSE into variance and squared bias for the POT method.

In the IID case for the POT method, the MSE seems to reach its minimum at k& = 22

and rises for high values of k. The variance remains relatively constant; consequently,
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the increase in MSE is almost completely caused by the increase in squared bias. When
examining the POT method for serially dependent series, the behavior of the squared
bias is similar to that of the IID case. However, the variance is no longer constant and
shows a clear trend. This is in line with the findings of Drees (2003) that the asymptotic
variance is higher under serial dependence. Interestingly, the minimum MSE is obtained
at k = 17, which is close to the IID case. For this reason, the value of £ is fixed at 20

across the different simulation models.
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Figure 8: Decomposition of the MSE into variance and squared bias for BM method.

Figure 8 displays the variance and squared bias for the BM method. In the IID case,
the minimum MSE is obtained around £ = 100 and the difference of the variance and
squared bias is clear. The squared bias is very low for small values of k and increases
as k increases. Contrarily, the variance is large for small values of k£ and decreases as k
increases. The effect of k£ on the squared bias and variance confirms the theory discussed
in 3.3. Introducing serial dependence shows that the minimum MSE lies around k£ = 50.
In contrast to the POT method, the behavior of the squared bias for different values of k
changes. The squared bias shows a much faster decrease as k increases, and the variance
still decreases as k increases. The optimal £ is much smaller than in the IID case, but
the difference in MSE between k£ = 50 and k = 100 is quite small. Therefore, the value of

k is fixed at 100 across the different simulation models.
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5.2 Serial dependence: ARMA

The simulation is divided into three groups to assess the performance of the POT and
BM methods, which are discussed below. With the ARMA model the effect of serial
dependence is highlighted. By extending the model with GARCH innovations, we can
verify the estimation performance of the POT and BM methods in the presence of volatil-
ity clustering. In the same way, the impact of cross-sectional dependence in the tail on

estimating the VaR is discussed by using the Clayton copula.

To analyze the serial dependence, the ARMA model defined by equation (36) is used.
As the GARCH innovations and the cross-sectional dependence are not yet considered,
we set the parameters to wy = 1, wy = 0, oy = 0 and $; = 0. The innovations follow the
Student’s t-distribution with four degrees of freedom, 21 ~ t (4), as this ensures fat tails,
or equivalently £ > 0. The level of serial dependence is controlled via the parameters ¢,
and m. We set up a grid with the values of ¢; and m ranging from 0 to 0.95, with a
step size of 0.05. Hence, this also includes the IID case whenever ¢; = 0 and m; = 0.
Figure 9 displays three randomly chosen simulated time-series, in increasing order of serial
dependence. The observed outliers are a confirmation of fat tails or £ > 0, due to the

Student’s t distributed innovations.

(a) Simulated series with ¢; = 0.1 and m = 0.1.
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(b) Simulated series with ¢; = 0.5 and 7 = 0.5.
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Figure 9: A random simulated series for three levels of serial dependency.

In total, the grid of different values for ¢, and m; contains 400 combinations. For each
combination, m = 1,000 time-series are simulated and the VaR is estimated using the
POT and BM method, see equations (30) and (21) respectively. The evaluation metrics
RMSE and RMSPE;, see equations (38) and (39) respectively, are then calculated and the
results are displayed in Figure 10. For the BM method, we use 02 in equation (22) to
estimate the extremal index, as this estimator was found to always outperform S
three different values of 71, the comparison of the POT and BM methods are displayed
in Figure 11 by comparing the ratio of the RMSPE.
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In the IID case, the BM method estimates the VaR more accurately than the POT
method. Ferreira and De Haan (2015) demonstrated that the POT is often more efficient
than the BM method, when the number of exceedances are larger than the number of
blocks. Furthermore, they wrote that for large sample sizes, the performances of the
POT and BM method are comparable. This is in line with our findings, as the number of
exceedances is not larger than the number of blocks. When comparing the RMSE across
both methods, as shown in Figures 10 (a) and (b), both methods perform very similarly
across different ¢ and 7. The RMSE for the POT method is smoother than for the BM
method across various values of ¢; and m;. Both methods decrease in accuracy whenever
the serial dependence increases, with the maximum RMSE obtained when ¢; — 1 and
m — 1. In Figure 11, we observe that the POT method almost always outperforms the
BM method for ¢; < 0.8. However, at all three levels of m, the BM method performs
better than the POT method for ¢; > 0.85.
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(a) RMSE - POT (b) RMSE - BM (2)

(¢) RMSPE - POT (d) RMSPE - BM (2)

Figure 10: Surface plots of evaluation metrics RMSE and RMSPE for increasing ¢; and ;.
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Figure 11: Comparison of the RMSE ratio for increasing ¢; at three levels of 7.
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Both methods show an increase in RMSE as ¢; and m; increases. The reduction in
the RMSE is stronger for higher ¢; than m;, especially for the POT method. One rea-
son for this could be that ¢, contributes directly to the serial dependence via the lagged
values, whereas 7, achieves this indirectly via the lagged innovations. Hence, the level of
serial dependence is more affected by the parameter ¢, than m; which leads to decrease
in performance as indicated by the RMSE. To compare the performance across differ-
ent parameter specifications, the RMSPE shown in Figures 10 (c¢) and (d) and Figure 12
demonstrates that performance decreases as the level of serial dependence increases. Here,
the BM method has much lower RMSPE values when ¢; is lower, and higher RMSPE
values than those of the POT when ¢, is higher.
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Figure 12: Comparison of the RMSPE for increasing ¢ at three levels of 6.

5.3 Volatility Clustering: GARCH

The simulation model is further extended to allow for innovations of the ARMA model
follow a GARCH model. The cross-sectional dependence is not yet considered, hence we
set the parameter of equation (36) as wy; = 0. Again, z,; ~ t(4) to ensure heavy tails.
The parameters ¢, and m; determine the level of serial dependence and the volatility
clustering is controlled via oy and ;. Similarly to the ARMA models, we compose a grid
with values for a; and f; ranging from 0 to 0.95 and with step size 0.05. Ignoring the

case a1 = 1 = 0 and taking the parameter restriction oy + #; < 1 into account, results
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in 209 parameter combinations. Increasing levels of o + 31 indicates an increasing level
of volatility clustering. We analyze five levels of serial dependence via the ARMA process
by setting the parameters ¢; = m; € (0.1,0.3,0.5,0.7,0.9). Combining the ARMA models
with the GARCH models results in a total of 1,045 different model specifications. Three
randomly selected simulated time-series with an increasing level of volatility clustering

are displayed in Figure 13.

(a) Simulated series with ¢y = 0.5, m = 0.5, ag = 0.1 and 8; = 0.1.
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(b) Simulated series with ¢1 = 0.5, 71 = 0.5, @1 = 0.25 and 1 = 0.25.
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(c) Simulated series with ¢1 = 0.5, 71 = 0.5, a1 = 0.45 and $; = 0.45.
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Figure 13: A random simulated series for three levels of volatility clustering.

The calculated RMSE and RMSPE for all possible combinations of a; and (; and
with ¢ = m; = 0.5 are displayed in Figure 14. The graphs containing the results for the
remaining four levels of serial dependence can be found in the Appendix, Figures 25 - 28.
Comparing the POT and BM methods in terms of RMSE values, as shown in Figures 14
(a) and (b), indicates that the BM method is better overall. In Figure 15 the ratio of
the RMSPE is plotted against a; with $; = 0 and three levels of serial dependence. For
¢1 = m = 0.9, the POT and BM methods leads to almost identical RMSE. For the other
two levels of serial dependence the BM method has a lower RMSE than the POT method.
The difference in performance between the POT and BM methods is higher as the level
of volatility increases. The true VaR increases substantially when the level of volatility
clustering increases. One potential reason for that is the fact that increasing the volatility
clustering leads to more extreme values. To compare the performance across different
levels of volatility clustering, we consider the RMSPE displayed in Figures 14 (c) and
(d) and Figure 16. As the level of volatility clustering increases, the RMSPE increases.
Overall, increasing the volatility clustering has a greater impact on the performance than

increasing the serial dependence in the ARMA setup.
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(a) RMSE - POT (b) RMSE - BM (2)

(c) RMSPE - POT (d) RMSPE - BM (2)
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Figure 14: Surface plots of the evaluation metrics RMSE and RMSPE for increasing o and S
with ¢ = m = 0.5.
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Figure 16: Comparing the RMSPE for increasing a at three levels of serial dependence and

B=0.

5.4 Cross-sectional dependence: Clayton copula

The simulation model is now extended once more to incorporate cross-sectional depen-

dence and is fully derived in Algorithm 1. A univariate time-series is obtained as the

equally weighted average of two series, each simulated using the ARMA-GARCH model
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described previously. However, it now holds that j € (1,2) and the joint distribution of
21 and 2,9 can be described by a Clayton copula. The level of tail dependence between
21 and z o is set via the parameter 6!, where we let ¢! € (1,2,...,9,10). We again
consider five levels of serial dependence with ¢; = 7; € (0.1,0.3,0.5,0.7,0.9) and 19 levels
of volatility clustering with «; € (0.05,0.10,...,0.90,0.95) and ; = 0. This results in
a total of 900 models with different parameter specifications. Three randomly selected
simulated time-series with different levels of cross-sectional dependence are displayed in

Figure 17.
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a) Simulated series with ¢ = 0.5, 7 = 0.5, & = 0.5, 8 = 0 and 6! = 1.
(a)
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(b) Simulated series with ¢ = 0.5, 7 = 0.5, @ = 0.5, 8 = 0 and #°" = 6.
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¢) Simulated series with ¢ = 0.5, 7 = 0.5, @ = 0.5, 8 = 0 and ¢! = 10.
(c) ; ;

40 T T B - - T T T

30— -

20 — =

1 1 1 1 1 | 1 1 1
-30
0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

Figure 17: A random simulated series for three levels of cross-sectional dependency.
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We now compare the POT method and the BM method by examining the results of
the RMSE and the RMSPE ratio, displayed in Figures 18 (a) and (b) and Figure 19,
respectively. We observe that the BM method performance better than the POT method.
However, increasing the level of cross-sectional dependence does not lead to an increase

in the RMSE for either method.

(a) RMSE - POT (b) RMSE - BM (2)

(¢) RMSPE - POT (d) RMSPE - BM (2)

0 o 0 o
o gCl o HCI

Figure 18: Surface plots of the evaluation metrics RMSE and RMSPE for increasing a and 6"
and with ¢ and 7 set to 0.5.

Across different levels of cross-sectional dependence, the performance of both methods
is rather constant, as indicated by the RMSPE in Figure 20. We can conclude that the
existence of cross-sectional dependence affect neither the performance of the POT nor
that of the BM method. The fact that the BM method performed better than the POT
method, as indicated by the RMSE, can therefore entirely explained by the level of serial

dependence and more prominently by the level of volatility clustering. The other surface
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plots of the RMSE and RMSPE for different model specifications can be found in the

Appendix Figures 30 - 33.
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Figure 19: Comparing the RMSPE ratio for increasing 8¢ at three levels of serial dependence

and a = 0.5 and g = 0.
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Figure 20: Comparison of the RMSPE for increasing #¢! at three levels of serial dependence and

a=0.5and g=0.
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6 Financial Application

The POT and BM methods are applied in the financial application to estimate the 99%,
99.5% and 99.9% VaR on a stock-bond portfolio. The VaR estimates are evaluated by
using the binomial method of Christoffersen (1998). The portfolio returns consist of
4,550 daily observations and are split into a training and a test sample. The training
sample contains the first 3,550 observations and are used to estimate the VaR using
both methods. Meanwhile, the last 1,000 observations are used as the test sample. The
estimated parameters of the POT and BM method that are used to estimate the VaR
are provided in Table 4. For the POT method the high quantile estimator only depends
on the shape parameter £ and the intermediate quantile whereas for the BM method,
the high quantile estimator depends on the # and o parameters as well. Comparing
the estimated value of the shape parameter, é, the POT and BM method resulted in
similar values with 0.1974 and 0.1966, respectively. This is in line with the fact that
the distribution of financial losses is heavy-tailed. The extremal index is estimated as
6 = 0.4412, which indicates that the financial losses contain clusters with an average
cluster size of 2.2665. The sample size is essentially reduced to nf = 3,550%0.4412 ~ 1566

of roughly independent clusters of observations.

Table 3: Estimated parameters of the POT and BM method.

POT BM
£ 101974 0.1966
6 0.4412
& 0.0182

The effect of k, the number of exceedances or blocks in the POT and BM method,
respectively, on the 99% quantile estimation is displayed in Figure 21. The value of k is
chosen as k = 20 and k£ = 100 for the POT and BM method, respectively. For the POT
method, the quantile estimate convergences as the number of exceedances increases. For
small values of k, the estimator suffers from the small estimation sample which results in
an estimated quantile that lies far from the empirical quantile. The BM method shows a

different pattern with no clear convergence as the number of blocks increases. However,
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the number of blocks does not influence the estimated quantile much.
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Figure 21: Estimated 99% VaR for increasing values in k.

The binomial method might not been suitable for assessing the VaRgg99 on a test
sample of size 1,000. Whenever the empirical number of exceedances equals the expected
number of exceedances of 1, the test statistic will be equal to zero. Therefore, VaR gg9 is
not backtested and only the VaR estimates are provided. Tables 4, 5 present the results
for the VaRyg9 and VaRy 995, respectively.

Table 4: Results of estimating the VaRg.g9.

POT BM
Est. VaR 0.0280 0.0261

Training Sample Test Sample | Training Sample Test Sample

99% Quantile 0.0249 0.0204 0.0249 0.0204
Exceedances 27 (0.0076) 2 (0.002) 34 (0.0096) 3 (0.003)
LR statistic 2.2361 9.6267 0.0641 6.8255
p-value 0.1348 0.0019 0.8002 0.0090

Considering the results in Table 4, the VaR g9 is estimated as 0.0280 and 0.0261 by
POT and BM, respectively, on the training sample. These are very close to the empirical

99% quantile of 0.0249. Comparing the POT and BM methods for the test sample, we
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observe that the number of exceedances for POT equals 2, and for BM equals 3. The
values within the brackets correspond with the empirical probability a*. However, the
expected number of exceedances is 10 and is far off. The POT method has a test statistic
of 9.6267 and the null hypothesis is rejected at a 5% confidence level. With one additional
observation exceeding the estimated VaR, the BM method has a test statistic of 6.8255
and the null hypothesis is also rejected at a 5% confidence level. Both methods reject the
null hypothesis because there are not enough exceedances. However, as the BM method
does have more exceedances than the POT method, we can conclude that the BM method
performs better because it yields a lower point estimate, albeit not convincingly. Notice
that the empirical 99% quantile of the test sample is much lower than that of the training
sample, which leads to fewer exceedances. As the VaR is estimated on the training sample,
the estimated VaR lies closer to the empirical quantile of the training sample than that
of the test sample for both methods. Consequently, applying the binomial test on the

training sample results in a higher coverage, as indicated by the test statistic and p-values.

Table 5: Results of estimating the VaRg.g95.

POT BM
Est. VaR 0.0321 0.0325

Training Sample Test Sample | Training Sample Test Sample

99.5% Quantile 0.0317 0.0256 0.0317 0.0256
Exceedances 16 (0.0045) 2 (0.002) 15 (0.0042) 2 (0.002)
LR statistic 0.1784 2.3439 0.4505 2.3439
p-value 0.6728 0.1258 0.5021 0.1258

Similar to the result for VaRyg9, the VaRy g9 estimates are close to the empirical
99.5% quantile. The number of exceedances in the test sample, 2, is exactly the same for
the POT as for the BM method. Therefore, the test statistic and p-values are also iden-
tical. Neither the POT nor the BM method reject the null hypothesis at a 5% confidence
level. Figures 22 and 23 display the coverage of the VaR g9 estimates on the training
and test sample, respectively. The VaRg 99 estimates of the POT and BM method equals
0.0441 and 0.0512, respectively. The POT estimates is closer to the empirical quantile of

0.0444 but this is not meaningful as empirical quantile may not be an accurate estimate
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for such a high level of probability.

Unconditional Coverage test training sample for VaRo '
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Figure 22: Unconditional coverage of the POT and BM methods for the VaRg g9 estimate on

the training sample.
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Figure 23: Unconditional coverage of the POT and BM methods for the VaRy g9 estimate on

the test sample.

7 Conclusion

In this research we analyze and compare the POT and BM methods for estimating the

VaR of a strictly stationary time-series. In a simulation setup, we examine the effects of
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serial dependence, volatility clustering and cross-sectional dependence on the estimation
of the VaR. We then estimate the VaR on a stock-bond portfolio in a financial application,
where the POT and BM methods are compared by backtesting the conditional coverage.

Firstly, comparing the POT and BM methods in estimating the VaR on serially depen-
dent observations, the BM method outperforms the POT method for lower levels of serial
dependence, particularly for the IID case. When the serial dependence was considerably
elevated, the POT method estimates the VaR more accurately than the BM method.
When comparing the RMSPE, it became evident that an increase in serial dependence
has a greater negative impact on the BM method. Secondly, introducing volatility clus-
tering has a larger negative effect on both the POT and BM methods The POT method
performs worse at higher levels of volatility clustering and was outperformed by the BM
method in terms of the RMSE. Furthermore, increasing the volatility clustering showed
a trend in the RMSPE: at the maximum level of volatility clustering, the RMSPE was
over five times higher than the RMSPE without volatility clustering. Finally, the POT
method performs better than the BM method across different models when allowing for
cross-sectional dependence. Nevertheless, the level of cross-sectional dependence does not

influence the performance much as indicated by the RMSPE.

The financial application shows that the BM method performed slightly better than
the POT method in the out-of-sample backtest when estimating the VaRy.99. Both meth-
ods reject the null hypothesis but the BM method has a smaller test statistic than the
POT method. This result is in line with our findings in the simulation setup that the BM
method is better when the level of serial dependence is not extremely high. The results
for VaRy.995 show that the BM and POT method both do not reject the null hypothesis
and the performance of each method is exactly equal. Hence, we can not conclude which
method performs better. Overall, by combining the results of the simulation and financial
application we conclude that the BM method empirically outperforms the POT method
for IID or low levels serial dependent observations. For extremely high levels of serial

dependence, the POT method is better than the BM method.

This study makes some arbitrary assumptions hence leaves room for potential future
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research. Firstly, the value of k is kept constant across different simulation models. Alter-
natively, one may optimize k for different levels of serial dependence, volatility clustering
or cross-sectional dependence. Accordingly, it would be interesting to investigate how
the two methods compare when both are optimized for the parameter k. Secondly, the
degrees of freedom in the Student’s t-distribution used as the stochastic part in the simu-
lation setup is set to 4. Different degrees of freedom or strength of decay in heavy-tailed

distributions as indicated by the tail index might lead to other results.
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A Appendices

A.1 Maximum Domain of Attraction Examples

Recalling the rate of convergence for maxima follows

M _
lim P ("—b" < :1:) — lim F" (anz +by) = H (), (42)

n—00 a n—00

two examples are constructed for the underlying distributions: exponential and Pareto.

Exponential distribution
Assume the underlying distribution to be exponential with distribution function F' (z) =
1 —exp (—px) for § > 0 and = > 0, then the limiting distribution of maxima can directly

be calculated by choosing the normalizing constants a,, = /‘13 and b, = lnén). It holds that

F"(apx +b,) = F" <% + _lnén)) ,

F"(apz +b,) = (1 — %exp (—x)) , x>—In(n), (43)

lim F" (a,x +b,) = exp (—exp (—z)), z €R.

n—o0

Hence, we conclude that FF € MDA (H,).

Pareto distribution
Assume the underlying distribution to be Pareto with parameters o and k and distribution

function F (z) = 1— (ﬁ)a for « > 0, k > 0 and x > 0, then the limiting distribution of

1
maxima can directly be calculated by choosing the normalizing constants a,, = k"> and

b, = kns — k. It holds that

F™ (an + b,) = F" (kn_a“ (o k>> ,
«
1 2\ "\ x 1
F"(anx—i—bn):(l——(l—l——) ) , 14+ —=>n——, (44)
n « « «
) A x
llmF"(anx—i—bn)—exp(—(l—l——) ), 1+—>0,
n—00 (6% (0%
Hence, we conclude that F € MDA <H l).
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A.2 Slowly and regularly varying functions

Slowly varying functions

A positive, Lebesgue-measurable function L on (0, 00) is slowly varying at oo if

lim L (uz)
A% L)

=1,u>0. (45)

Regularly varying functions
A positive, Lebesgue-measurable function J on (0,00) is regularly varying at oo with

index p € R if
lim J (u) (uz)

=uf . 4
T u’ u >0 (46)
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A.3 Tables and Graphs

Table 6: The RMSE of the POT method on ARMA model

ARIMA

™
0,00 0,05 0,10 0,15 020 025 030 035 040 045 0,50 0,55 0,70 0,75 080 085 090 0,95
000|306 297 309 301 295 297 295 298 298 298 3,05 3,19 343 3,56 3,67 3,77 387 3,90
005|310 297 291 305 299 299 297 296 3,12 308 3,10 3.24 356 3,72 3,86 391 4,12 4,13
0,0 [ 3,05 3,03 299 293 204 298 292 298 311 315 322 3,36 372 3,77 3,88 403 411 4,16
0,15 12,97 3,01 299 303 297 3,00 3,06 305 3,12 320 341 340 3,81 3,88 395 4,31 421 4,34
0,20 1294 296 299 292 297 3,03 3,07 3,13 326 3,33 344 358 3,89 4,13 4,13 4,17 438 441
0,25 1295 295 298 297 3,05 3,04 3,17 325 3,37 344 3,62 3,65 3,95 4,11 414 432 434 442
030 (298 296 300 301 305 319 324 334 350 351 359 377 412 419 424 433 447 4,66
035288 294 298 3,06 3,14 3,18 328 335 354 3,60 3,71 3,89 4,36 429 443 446 4,57 4,56
040 [ 207 298 302 306 320 330 344 346 359 372 391 397 436 429 453 465 480 480
) 045 (2,99 3,00 312 318 3,16 335 356 3,63 3,69 3,76 397 420 441 450 458 4,83 480 5,01
050 [ 3,00 3,07 3,11 329 335 364 3,68 3,74 4,05 4,11 4,09 422 468 4,65 4,77 498 510 513
055 3,10 320 349 340 3,69 3,61 381 396 4,06 4,18 4,18 4,58 480 502 503 527 534 544
060 | 3,19 334 339 3,67 3,75 3,74 389 4,10 427 434 452 4,64 502 524 514 521 549 586
065 | 3,31 343 359 3,66 3,77 4,14 418 439 447 4,63 473 487 525 540 530 575 580 622
0,70 | 3,46 3,70 3,87 3,89 437 432 439 455 460 4,88 494 496 570 5,64 6,21 590 6,05 6,27
0,75 | 3,61 3,83 3,86 4,10 431 454 464 497 496 5,31 521 5,34 5,71 6,05 6,39 6,54 6,51 6,75
0,80 | 3,96 4,18 448 439 449 482 530 510 526 582 592 593 6,54 6,68 741 729 714 761
0,85 | 4,56 445 466 486 494 6,01 580 6,09 586 6,36 6,88 6,74 6,63 746 7,57 800 748 8,07
0,90 | 5,12 5,30 5,07 569 5,61 6,05 6,54 7,41 7,26 6,68 7,59 8,50 7,62 922 883 993 932 10,28
095 | 6,16 6,10 727 6,50 6,55 T.87 656 9,00 10,13 891 1098 9,57 10,55 10,11 899 13,01 12,03 13,63
Table 7: The RMSPE of the POT method on ARMA model
ARIMA T
0,00 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 0,95
000024 022 025 023 022 022 022 023 023 022 022 023 024 025 025 025 024 025 025 025
0051024 023 022 024 0,23 022 022 022 025 023 023 024 024 025 026 027 026 0,26 027 0,26
0,10 { 0,23 0,23 0,23 023 022 022 022 022 023 024 024 025 025 026 025 025 026 026 0,26 0,25
015|022 024 023 024 022 022 023 023 022 024 026 024 026 027 026 026 025 026 026 027
0,20 | 0,23 0,23 0,24 022 0,22 0,23 023 023 023 024 024 025 025 026 026 025 026 026 0,25 0,26
0,2510,22 0,23 022 023 022 023 023 023 024 025 025 025 025 026 025 026 025 026 025 025
030022 022 022 022 023 023 023 024 024 025 026 025 025 026 026 026 025 025 025 0,26
035]022 022 022 022 023 024 024 024 025 025 025 026 026 025 025 025 026 026 027 025
040 (022 022 023 023 024 024 024 025 025 026 025 025 025 026 025 025 026 026 025 025
é 045]022 023 024 023 023 024 024 025 025 025 026 025 026 025 026 026 025 025 025 025
050 022 023 023 024 024 025 025 025 026 026 027 026 026 026 026 026 025 025 025 026
0,55 10,23 0,23 024 024 024 025 025 025 0,27 027 025 025 0,26 0,26 026 027 025 025 025 0,25
0,60 | 0,24 0,24 0,24 024 026 025 025 027 026 026 027 026 026 026 026 026 026 026 026 0,25
065024 024 0,25 025 025 026 026 026 026 026 027 026 026 026 026 026 025 026 0,25 0,26
0,70 | 0,25 0,25 0,26 025 0,26 0,27 026 027 026 027 026 026 027 026 026 026 026 026 0,26 0,26
0,75 1025 0,25 0,25 026 0,26 0,26 026 027 027 027 027 027 027 026 0,26 026 026 027 0,26 0,26
080025 026 026 027 026 028 027 027 027 028 027 027 027 027 027 027 028 027 026 027
085026 026 027 027 027 029 027 028 027 028 028 028 027 027 027 027 027 027 027 027
0,90 | 027 027 026 027 027 027 028 029 028 027 028 029 027 028 026 028 027 029 027 028
095|027 026 028 026 025 027 024 028 030 027 030 027 026 027 027 026 024 029 028 029
Table 8: The RMSE of the BM method with #() on ARMA model
ARIMA s
0,00 005 010 015 020 025 030 035 040 045 050 055 060 065 070 0,75 080 085 090 0,95
0,00 | 2,67 2,79 2,50 266 286 2,84 284 274 278 292 304 313 3,02 310 3,11 350 38 361 411 3,89
0,05 (264 2,73 281 272 279 288 293 274 252 282 299 295 289 3,07 3,07 291 344 3,76 3,79 3,84
0,10 | 2,73 2,74 284 263 285 297 2,79 290 3,10 2,79 2382 293 298 300 381 3,81 3,52 4,00 392 4,03
0,15 2,86 2,62 267 2,54 293 2,90 275 280 316 279 274 328 304 292 333 337 4,11 440 370 3,71
0,20 2,66 2,74 256 2,82 2,79 2,66 299 290 320 3,09 321 3,12 351 348 375 443 3,82 371 447 374
025|275 2,71 290 261 3,00 280 305 322 3.04 317 330 3,55 382 349 396 4,04 4,07 406 428 4,04
030 2,84 287 302 301 2,79 301 3,19 299 363 338 3,02 371 390 377 380 4,12 418 418 419 4,13
035278 284 288 306 2,86 2,89 3,08 307 334 340 370 348 400 418 474 438 4,19 395 366 4,09
040 [ 291 291 282 296 297 3,13 341 296 317 331 400 396 3,67 396 444 406 4,16 422 480 4,29
6 045|293 2,68 278 3,14 291 323 365 3,60 341 373 377 441 388 460 398 400 436 491 453 479
050 | 2,94 274 299 3,05 3,02 3,33 349 372 410 405 351 412 420 448 452 415 461 479 491 441
055 (306 315 368 335 400 341 3,74 405 357 376 4,17 507 425 381 439 434 480 520 547 513
0,60 |28 334 333 381 345 3,60 3,72 3.38 420 410 3.86 446 447 452 487 522 459 424 496 597
065|317 321 330 330 358 4,18 407 431 434 48 440 474 502 546 498 517 484 546 561 631
0,70 [ 3,13 3,80 3,72 395 4,76 390 464 421 439 472 483 457 505 525 557 540 635 555 5060 555
075 (3,33 382 3,60 407 440 454 457 505 472 541 4,63 491 474 564 536 559 621 607 636 6,46
080 | 4,04 414 476 3,80 428 429 558 490 497 568 578 573 565 623 6,12 645 7,53 726 694 7,48
085|482 4,16 456 467 450 6,56 6,14 630 574 610 7,29 6,65 685 7.00 553 744 745 785 624 7,65
090 | 5,17 545 494 581 538 628 682 823 7.8 633 7,93 941 717 882 7,16 9,80 896 1059 9,53 10,98
0,956,555 6,56 7,95 6,79 6,61 852 6,39 982 11,17 9,60 12,13 10,13 10,02 10,12 11,34 10,70 8,77 14,17 12,83 14,93
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Table 9:

The RMSPE of the

BM method with 1) on ARMA model

ARIMA

ARIMA

0,30
0,35
0,40
0,45

0,55
0,60

0,70
0,75
0,80
0,85
0,90
0,95

5.88
9,66

10,41

ARIMA

0,00

0,10
0,15
0,20
0,25

0,70
0,75
0,80
0,85
0,90
0,95

028 031 028 026 031 024

0,32

0,30

0,30

0,28

0,33
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RMSE comparison when increasing serial dependence in é,
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Figure 24: Comparison of the RMSE for increasing ¢ at three levels of 7.
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Figure 25: Surface plots of the géfaluation metrics RMSE and RMSPE for increaéé';hg « and
with ¢ =60 = 0.1.
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Figure 26: Surface plots of the g\}aluation metrics RMSE and RMSPE for increasﬁﬁg « and
with ¢ =6 = 0.3.
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Figure 27: Surface plots of the g\}aluation metrics RMSE and RMSPE for increasﬁﬁg « and
with ¢ =60 =0.7.
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Figure 28: Surface plots of the g@aluation metrics RMSE and RMSPE for increaghg « and
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Figure 29: Comparing the RMSE for increasing « at three levels of serial dependence and g = 0.
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Table 12: The RMSE of the

POT method on ARMA-GARCH model with ¢ =6 = 0.1

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 0,95
0,00 055 060 059 061 062 065 069 072 075 077 080 084 092 106 1,14 1,16 137 1,64 246
005| 059 061 061 061 066 064 070 071 075 078 08 08 097 1,02 1,16 126 1,50 1,95 2389
010| 064 062 062 062 066 073 073 075 081 08 091 102 1,03 1,17 135 173 2,16 387
015| 063 066 068 075 077 074 084 08 095 101 1,10 125 1,34 163 211 306 685
020 069 073 074 081 08 08 093 108 117 121 141 164 205 271 446 1057
025| 083 091 093 097 105 1,06 123 134 152 180 206 258 370 634 16,91
030 1,00 107 115 123 138 147 164 1,79 215 261 341 491 831 2274
035| 128 131 145 164 1,73 193 218 270 338 432 674 11,01 2691
040 | 158 178 18 208 240 2,72 323 410 540 813 1339 3121
Alpha 045 | 2,03 221 245 28 324 402 484 643 954 1686 3595
050 | 2,60 287 330 38 452 591 7,89 1143 1893 3925
055| 334 391 435 520 660 901 1274 2056 37,98
060 | 444 512 613 792 1046 14,13 2319 4248
065| 575 698 879 11,36 1594 24,60 4550
070 | 787 942 12065 17,84 2570 43,85
0,75 | 10,52 14,23 17,55 27,06 40,39
0,80 | 14,71 18,79 27,64 44,03
0,85 | 19,71 27,98 4293
0,00 | 2885 38,83
0,95 | 38,31

Table 13: The RMSE of the BM method on

ARMA-GARCH model with ¢ =0 =0.1

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 0,60 065 070 075 0,80 085 0,90 0,95
0,00 031 030 032 032 034 035 036 037 039 042 044 048 051 051 057 067 077 097 127
005 031 031 034 035 035 039 038 041 042 045 048 051 052 058 064 074 083 1,06 1,70
010| 035 038 042 043 045 043 047 050 053 055 060 065 074 082 096 1,14 1,65 3,31
015| 048 048 050 049 053 060 058 069 069 0,72 078 090 1,07 127 161 249 691
020 062 063 068 068 066 08 088 08 090 1,09 1,16 1,39 1,60 232 378 954
025| 071 074 084 089 095 095 1,04 124 139 145 18 229 329 531 14,93
0301( 091 098 100 1,08 1,13 130 141 160 196 229 285 409 6,57 1899
035| 1,10 127 125 1,32 157 181 193 237 266 375 621 829 21,01
040 | 148 140 1,70 1,81 213 233 269 335 452 720 1084 2338
Alpha 045| 1,85 191 209 232 28 357 397 524 7,72 1263 2621
050 | 218 245 28 3,08 379 485 596 874 14,09 29,30
055 | 2,87 28 354 394 528 649 10,19 1427 27,00
060 422 422 501 7,04 815 1050 17,00 28,64
065| 451 559 7,04 834 1086 17,72 32,48
070 629 6,72 921 14,07 18,09 29,50
075| 7,78 988 12,10 1922 26,86
0,80 | 9,95 12,07 17,85 31,38
0,85 | 13,39 18,97 24,73
0,90 | 20,38 24,04
0,95 | 22,42
Table 14: The RMSPE of the POT method on ARMA-GARCH model with ¢ =60 = 0.1
ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 025 0,30 0,35 040 045 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95
0,00 0,14 015 0,14 014 0,14 014 0,15 015 0,15 0,14 0,14 0,14 0,14 015 0,15 0,14 0,14 0,14 0,15
0,05 0,15 015 0,14 014 0,15 014 0,15 014 0,14 014 0,14 0,14 015 0,14 015 0,14 015 0,16 0,16
0,10 0,15 0,14 0,14 0,13 0,14 0,15 014 0,14 0,14 015 0,14 0,15 0,14 0,14 0,14 016 0,15 0,17
0,15| 0,14 014 0,14 015 0,15 013 0,15 013 0,15 015 0,15 0,15 0,15 0,16 0,17 0,18 0,22
020|014 014 014 014 0,15 013 0,14 016 0,16 015 0,16 016 0,18 019 023 0,30
025|015 0,16 015 0,15 0,16 0,16 0,16 0,16 0,17 0,18 0,18 0,19 022 0,27 0,36
0,30 | 0,16 0,16 0,17 0,17 0,18 0,18 0,18 0,18 0,19 021 023 026 0,31 042
035 0,18 017 0,19 020 0,19 019 020 022 024 025 029 037 047
040 0,19 022 020 021 022 023 024 026 028 031 037 0,50
Alpha 045|022 022 023 024 025 026 028 031 035 042 0,54
0,50 | 0,24 0,24 0,26 0,27 0,28 031 0,35 039 044 0,53
055|026 029 028 031 033 037 039 048 0,55
0,60 028 030 0,32 033 038 042 048 0,58
065|032 034 036 040 046 049 0,57
070035 039 042 044 051 058
0,75 0,40 045 046 051 0,57
0,80 0,46 0,561 0,54 0,56
085|049 053 0,65
0,90 | 0,52 0,60
0,95 | 0,64
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Table 15: The RMSPE

of the BM method on ARMA-GARCH model with ¢ =6 = 0.1

ARIMA-GARCH

0,05

0,10 015 020

0,25

0,30

0,35

0,40

Beta

045

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85 090 0,95

Alpha

0,00

0,08
0,08
0,09
0,10

0,08 0,08 0,08
0,08 0,08 0,08
0,09 0,09 0,09
0,10 0,10 0,10
012 012 0,11
0,14 014 0,14
0,15 015 0,15
0,16 016 0,17
0,19 019 020
020 020 022
022 022 024
023 024 026
026 0,30 0,30
029 030 031

032 037 038

0,08
0,08
0,09
0.11
0.14
0,14
0,16
0,18
0,20
0,24
0.26
0,27
0,31
0,36
0,39

0,08
0,08
0,09
0,10
0,13
0,14
0,16
0,18
0,20
0,23
0,26
0,31
0,35
041

0,08
0,08
0,09
0,11
0,12
0,15
0,16
0,19
0,22
0,25
0,30
0,33
0,39

0.08
0,08
0,09
0,11
0,12
0,15
0,18
0,19
0,24
0.28
0,33
0,39

0,08
0,08
0,09
0.11
0,13
0,15
0,18
0,22
0,28
0,32
0,40

0,08
0,08
0,09
011
0,13
0,16
0,19
0,27
0,30
0,39

0,08
0,08
0,09
0,11
0,14
0,17
0,21
0,27
0,37

0.08
0,08
0,10
0,12
0,14
0,19
0,24
0,36

0,08
0,08
0,10
0,12
0,16
0,23
0,35

0,07
0,08
0,10
0,13
0,19
0,32

0,08
0,08
0,10
0,15
0,26

0.08
0,08
0,12
0,23

0,08 0,08 0,08
0,09 0,09

0,15

Table 16: The RMSE of the

POT method on ARMA-GARCH model with ¢ =6 = 0.3

ARIMA-GARCH Beta
0,10 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 0095
065 067 069 075 076 078 08 08 08 097 099 105 115 121 1,37 155 2,10 283
073 081 077 084 087 08 09 099 1,02 1,14 118 127 146 147 186 233 3,27
083 088 090 098 099 1,04 1,07 1,17 1,20 140 149 151 191 215 28 510
099 1,00 107 112 117 128 127 141 156 1,73 203 232 285 413 855
119 120 120 132 149 1,54 167 185 201 237 292 357 581 13,70
139 144 156 1,62 1,80 194 224 244 293 363 48 827 1950
169 178 192 210 239 251 299 348 455 633 1091 2435
209 223 255 277 307 357 444 577 849 1432 3332
253 284 309 368 433 535 7,07 1044 1664 37,39
Alpha 323 381 448 503 633 833 11,85 2020 41,97
433 509 58 754 977 13,17 21,97 46,02
577 7,00 878 11,76 1653 2592 50,60
7,84 10,19 11,84 16,71 2561 47,78
11,36 14,26 19,76 30,50 49,34
1501 20,78 3046 5345
2262 31,37 4921
3227 49,17
46,91

Table 17: The RMSE of the BM method on ARMA-GARCH model with ¢ =6 = 0.3

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 0,95
0,00 035 038 039 040 040 042 044 046 047 050 049 056 060 064 075 080 092 1,08 156
005| 042 044 046 045 049 050 051 055 061 059 063 063 073 077 084 107 1,16 142 242
010| 053 054 058 057 061 063 062 067 073 075 08 08 096 123 127 160 2,12 462
015| 067 066 069 077 074 080 084 086 100 104 109 126 136 161 213 321 7,56
020 077 084 084 089 093 102 099 112 122 136 165 18 216 326 497 1210
025 099 093 105 117 1,18 132 144 153 164 199 223 283 406 731 1641
030 1,19 129 133 137 145 1,61 1,71 223 247 314 353 533 859 19,06
035| 1,50 1,55 158 1,74 184 205 264 293 385 455 610 11,02 2527
040 | 1,70 181 220 231 269 287 338 446 566 843 1220 26,13
Alpha 045| 210 238 259 267 350 391 482 617 922 1581 2893
050 | 261 330 339 38 448 548 721 939 1499 3328
055| 320 365 409 550 675 909 1121 1518 3425
060| 453 498 646 819 906 11,43 1811 31,38
065| 579 655 800 10,62 12,96 19,72 3532
070 | 726 811 1051 1470 1926 32,50
075| 9,13 10,56 1622 20,08 27,66
0,80 | 1320 1856 2295 32,57
0,85 | 15,60 23,64 27,13
0,90 | 23,18 28,34
0,95 | 27,33
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Table 18: The RMSPE of the POT method on ARMA-GARCH model with ¢ =6 = 0.3

ARIMA-GARCH Beta
0,00 005 010 015 020 025 0,30 040 045 050 055 0,60 065 0,70 0,75 0,80 085 0,90 0,95
0,00 0,15 0,14 0,14 0,14 0,15 0,15 0,14 0,15 0,14 0,15 0,14 0,14 0,14 0714 0,14 014 0,15 0,14
005|015 014 015 016 014 015 015 014 015 015 015 015 015 016 014 015 015 015
0,10 | 0,15 0,15 0,15 0,15 0,15 0,16 0,16 0,15 0,16 0,15 0,17 0,16 0,14 0,17 0,16 0,17 0,18
015|016 015 016 016 016 016 0,16 016 016 017 017 018 018 0,18 020 0,24
020|017 017 017 017 017 017 0,18 018 018 018 019 020 019 023 031
025|017 020 018 0,18 019 0,18 0,19 020 020 021 022 023 027 0,36
0,30 | 0,19 0,18 020 0,20 020 021 022 022 022 025 027 033 043
035|020 021 022 021 023 023 022 025 028 034 037 048
0401023 023 022 023 023 025 0,26 0,30 0,34 0,40 0,53
Alpha 0451025 025 025 028 0,28 0,28 0,30 0,36 0,42 0,55
0,50 | 0,27 0,27 0,28 0,30 0,30 0,34 0,36 0,39 047 0,54
0,65 0,30 0,30 0,33 0,32 035 0,38 044 0,56 0,58
0,60 0,31 0,34 0,33 036 038 044 048 0,58
065035 036 040 042 048 054 056
0,70 [ 0,37 041 043 047 055 0,64
0,75 | 0,42 048 048 054 0,66
0,80 | 0,47 046 052 0,59
0,85 | 0,53 0,53 0,65
0,90 | 0,56 0,66
0,95 | 0,62
Table 19: The RMSPE of the BM method on ARMA-GARCH model with ¢ =60 = 0.3
ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 020 025 030 035 040 045 0,50 055 0,60 0,65 070 0,75 080 0,85 090 0,95
0,00 0,08 0,08 008 0,08 008 0,08 008 008 008 008 0,08 008 0,08 008 008 008 008 008 0,08
0,05 0,09 0,09 009 0,09 009 009 009 009 0,10 009 009 009 0,09 009 0,09 010 0,09 009 0,11
0,10 | 0,10 0,10 0,0 0,10 0,10 0,10 0,10 0,10 0,10 0,0 0,11 000 0,10 0012 0,11 0,12 012 0,17
015|012 0,11 011 0,12 011 0,12 012 0,11 012 012 0,12 012 0,12 013 0,14 016 0,22
020012 0,13 012 0,13 013 0,13 012 013 0,13 013 0,15 015 0,15 018 020 027
0,25(0,14 0,13 0,14 0,15 0,14 0,15 0,15 0,15 0,15 0,16 0,16 0,18 0,20 0,24 0,31
0,30 | 0,15 0,15 0,15 0,15 0,15 0,16 0,16 0,18 0,18 0,19 0,19 0,22 026 0,33
0,351 0,17 0,17 0,16 0,17 0,17 0,17 0,19 0,19 021 022 024 029 0,36
0,40 | 0,17 0,17 0,19 0,19 020 020 021 023 024 027 029 0,37
Alpha 0451019 0,20 020 020 022 022 023 025 028 0,33 0,38
050 (020 022 022 023 023 024 026 028 032 0,39
055022 022 023 025 027 029 030 033 039
060|025 025 027 029 029 030 034 038
065|026 027 028 031 031 035 040
0,70 | 0,28 0,28 030 0,33 034 0,39
0,751 0,30 0,30 0,34 0,35 0,37
0,80 (0,33 0,36 0,37 0,39
0,85 (0,33 0,37 0,38
0,90 | 0,37 0,37
0,95 | 0,37

Table 20: The RMSE of the POT method on ARMA-GARCH model with ¢ =6 = 0.5

ARIMA-GARCH Beta
0,00 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095

0,00 0,88 087 093 096 094 100 098 1,02 167 1,78 210 253 3,63
005| 095 096 097 1,02 1,10 1,12 117 119 129 225 246 316 465
010 1,08 114 116 122 126 133 136 144 145 305 4,05 7,22
015| 1,32 131 133 140 146 153 166 174 183 573 12,61
020 1,54 155 161 166 180 178 210 214 237 18,55
025| 185 1,80 198 204 222 231 251 285 313
030 215 215 244 253 268 296 329 382 419
035| 258 271 28 324 357 376 450 527 635
040 | 316 331 363 417 465 524 644 748 996

Alpha 045| 389 417 466 536 607 7,0 899 11,73 17,12
050 | 491 536 610 699 835 10,74 14,09 19,71 3305
055 | 591 731 808 10,16 1270 1585 22,77 34,37 6354
0,60 | 808 967 10,8 1332 18,69 24,37 3681 64,28
0,65 | 1046 1290 1545 2047 26,65 42,70 69,36
0,70 | 14,32 16,64 2118 2891 43,32 69,33
0,75 | 19,10 23,17 3147 44,61 69,53
0,80 | 24,38 3212 4729 68,37
0,85 | 33,11 4535 64,11
0,90 | 49,80 70,68
0,95 | 64,19
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Table 21: The RMSE of the BM method on ARMA-GARCH model

with ¢ =60 = 0.5

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095
0,00 048 050 051 051 057 057 061 064 062 070 072 073 081 08 093 108 127 156 217
005| 059 061 066 064 065 069 070 076 078 080 08 099 101 1,06 121 133 167 2,10 341
010| 075 073 077 079 085 087 094 093 108 106 116 138 138 152 1,79 232 308 579
015| 084 096 099 099 1,09 1,17 1,17 1,29 137 140 158 18 211 228 310 4,78 11,73
020 1,02 1,08 121 127 126 145 147 165 178 202 217 244 342 413 649 1515
025| 1,22 141 137 150 161 1,74 189 203 242 268 328 405 571 892 2280
030 1,62 165 172 18 213 224 268 268 368 425 551 7,19 11,67 27,08
035| 187 202 248 233 255 301 330 435 451 618 871 1479 3995
040 | 2,30 273 204 334 356 448 490 616 7,75 972 18,15 39,11
Alpha 045 | 2,99 358 38 417 45 520 669 844 1426 20,70 40,32
050 | 4,04 461 448 595 605 8§15 951 14,10 2496 36,05
055 | 508 505 542 7,17 883 11,67 1863 2349 4507
060| 619 766 727 901 1255 1631 2287 4531
0,65| 813 10,15 1342 1648 18,05 27,89 3851
070 | 9,77 10,82 14,10 1945 27,65 40,98
0,75 | 14,18 1448 22,10 30,70 47,32
0,80 | 17,40 19,88 30,10 4533
0,85 | 2345 2540 42,32
0,90 | 30,75 50,43
0,95 | 34,34

Table 22: The RMSPE of the POT method on ARMA-GARCH model with ¢ =6 = 0.5

ARIMA-GARCH

Beta

0,45

050 0,55

0,80

0,85

0,9 0,95

Alpha

0,15
0,17
0,17

0,14
0,15

0.26

0,14
0,16
0,20

0,14 0,14
0,16

Table 23: The RMSPE

BM

method on ARMA-GARCH model with ¢ =6 = 0.5

ARIMA-GARCH

Beta

0,45

0,50 0,55

0,85

0,90 0,95

Alpha

0,20
0,32

0,09

0,16

0,09 0,09
0,12
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Table 24: The RMSE of the POT method on ARMA-GARCH model with ¢ =6 = 0.7

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095
0,00 121 129 131 139 145 150 149 159 163 164 190 196 206 230 241 278 324 401 548
005| 139 142 150 158 168 167 166 175 184 201 221 223 234 260 28 310 386 484 714
010 1,61 1,60 165 184 18 193 207 213 230 24l 254 272 307 345 393 480 678 11,51
015| 1,84 183 195 214 214 226 245 260 285 333 317 38 432 502 641 891 1924
020 218 226 231 245 263 282 307 337 362 410 458 521 660 860 1333 2869
025| 254 262 274 297 324 340 375 433 491 565 655 836 1156 17,95 45,06
030| 304 315 345 382 412 457 506 586 669 7,88 10,64 14,76 24,03 54,87
035| 374 393 438 476 539 602 70l 828 984 1249 1882 2934 67,39
040 | 466 537 547 602 695 819 958 1234 16,14 22,68 3635 75,01
Alpha 045| 572 643 708 816 9,72 11,19 1428 1848 2643 42,05 84,91
050 | 738 833 960 11,32 1350 1563 21,61 30,86 51,16 85,72
055| 916 1097 1256 1552 19,30 24,47 3477 50,76 101,99
0,60 | 12,00 1393 1731 21,36 2875 37,52 5839 105,99
0,65| 1585 19,13 2574 3191 4373 6347 9953
070 | 21,20 26,19 3379 4645 6641 109,79
075 | 2856 36,74 50,50 6857 99,32
0,80 | 3838 4952 6644 106,02
085 | 52,32 7471 10538
0,90 | 70,81 10583
0,95 | 105,02

Table 25: The RMSE of the BM method on ARMA-GARCH model

with ¢ = 0 = 0.7

ARIMA-GARCH Beta
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 0095
0,00 080 081 083 08 08 09 09 09 104 1,12 109 122 131 132 156 173 191 232 327
005| 091 096 097 099 099 1,09 1,18 120 130 127 137 154 1,71 177 200 232 259 343 536
010 1,07 121 123 125 120 136 141 152 161 180 186 218 227 251 309 387 475 972
015| 1,32 147 151 141 168 175 184 205 207 213 278 28 315 411 481 7,13 16,69
020 164 170 192 18 191 211 244 254 307 308 348 419 523 7,05 11,00 23,16
025 | 206 211 229 251 280 288 301 340 362 418 48 679 872 1373 40,13
030 2,77 272 300 290 332 372 420 485 556 652 7,77 13,86 21,97 3874
035| 315 294 358 412 441 465 535 671 7,08 941 1598 2390 52,39
040 | 363 357 431 470 559 655 808 1044 1223 1828 27,95 5945
Alpha 045| 4,86 506 606 674 911 867 10,06 13,71 20,79 3348 7333
050 | 58 626 759 822 967 11,67 17,34 27,07 4212 63,13
055 | 787 751 970 12,80 1637 17,68 2536 39,90 68,13
0,60 | 830 1144 1317 1746 1871 2562 43,71 79,70
0,65 12,90 1538 2153 26,53 4147 37,16 69,40
0,70 | 16,81 19,08 2954 36,81 53,84 83,11
0,75 | 21,67 27,07 4520 47,52 69,33
0,80 | 30,02 39,20 46,97 67,47
085 4224 4826 63,04
0,90 | 38,10 68,78
0,95 | 61,65

Table 26: The RMSPE of the POT method on ARMA-GARCH model with ¢ =60 = 0.7

ARIMA-GARCH

Beta

0,45

0,50

50,60

0,65

0,75

0,80 0,85

0,90 0,95

Alpha

0,15
0,16
0,17
0,21
0,21

0,14
0,17
0,17
0,18
0,22
0,25
0,31
0,36
0,46
0,54

0,16 0,15
016 0,16
0,17 0,17
0,20 0,20
022 024
027 0,30

041 052

0,15
0,16
0,18
0,20
0,25
0,34
0,51

0,15
0,15

0,35

0,15 0,15
017 017
021 022
0,29

0,16 0,15
0,17
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Table 27: The RMSPE

of the BM method on ARMA-GARCH model with ¢ =6 = 0.7

ARIMA-GARCH

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Beta

0,40 0,45

0,50

0,55

0,60 0,65

0,70

0,75

0,80

0,85 090 0,95

Alpha

0,00

0,10

0,13

0,25

0,09
0,10

0,09
0,10
0,12
0,12
0,14
0,17
0,18
0,21
0,21
0,25
0.27
0.32
0,35
0,40

0,44
0,46

0,09
0,10
0,12
0,14
0,14
0,18
0,19
0,21
0,23
0,29
0.28
0,34
0,33
0,46

0,47

0,09
0,10
0.12
0,13
0,15
0,17
0,19
021
0,24
0,26
0,29
0,33
0,36
0,39
0,50

0,09
011
0,12
0,14
0,16
0,17
0,20
0,22
0,26
0,27
0,33
0,36
043
0,46

0,09
011
0,12
0,14
0,15
0,18
0,21
0,24
0,28
0,30
0,38
041
0,48

0,09 0,09
011 0,10
012 013
014 013
0,17 0,16
0,18 0,18
021 022
0,23 025
0,28 0,32
034 038
042 044
0,45

0,10
011
0,12
0,15
0,17
0,19
0,23
0,31
0,36
047

0,09
011
0,13
0,15
0,17
0,22
0,29
0,33
0,43

0,09 0,09
011 0,11
0,13 0,13
0,15 0,16
0,19 0,20
0,23 0,26
0,33 0,36
0,41

0,09
0,11
0,14
0,16
0,23
0,37

0,09
0,11

0,18
0,29

0,09
0.11
0,14
0,25

0,09 0,09 0,09

012 0,13
0,18

Table 28: The RMSE of the POT method on ARMA-GARCH model with ¢ =60 = 0.9

ARIMA-GARCH Beta
0,00 005 010 015 020 025 030 035 040 045 050 055 0,60 065 070 075 080 085 090 095
0,00 2,61 2,72 2,69 2,79 2,94 2,98 3,18 3,25 3,34 3,50 3,84 4,04 424 47 502 535 640 7,81 11,05
005| 277 275 287 312 304 321 333 342 356 395 408 444 476 542 594 650 805 990 16,04
00| 308 310 325 335 349 365 395 410 424 477 499 567 593 695 812 995 13,70 2504
015| 340 351 3,69 391 398 432 449 477 537 558 640 7,37 854 10,51 13,20 19,71 40,32
0,20 381 410 417 450 480 517 543 6,07 675 7,79 890 1044 13,18 16,84 2967 60,22
0,25 4,56 4,66 5,15 5,35 5,94 6,47 6,80 7,71 891 10,38 13,85 15,60 23,16 37,37 93,74
0,30 5,32 5,60 6,08 6,76 7,31 8,26 8,98 10,99 12,72 16,38 20,27 29,93 49,18 108,42
0,35 6,51 6,80 7,78 8,41 9,93 10,46 12,82 1507 19,30 2581 33,34 59,10 130,03
0,40 8,05 9,08 10,31 10,34 13,14 1522 18,18 23,66 29,89 4885 81,11 137,89
Alpha 045 | 987 1127 1415 1522 18,02 21,03 27,60 3479 5558 76,12 16597
0,50 | 12,65 15,15 1884 21,20 26,83 2991 3821 5643 94,34 209,05
0,55 17,39 1891 2244 3145 3459 4439 76,55 119,53 176,25
0,60 | 23,08 2878 3148 42,78 52,75 8047 107,50 176,35
0,65| 32,72 39,62 5231 6220 73,35 124,33 195,08
0,70 | 4524 5579 69,92 81,57 113,66 184,13
0,75 | 54,97 62,50 96,19 116,74 219,18
0,80 | 76,53 88,75 128,15 195,73
0,85 | 101,73 128,14 181,51
0,90 | 159,41 189,17
0,95 | 170,94
Table 29: The RMSE of the BM method on ARMA-GARCH model with ¢ =6 = 0.9
ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 065 0,70 0,75 080 085 090 095
0,00 1,82 2,01 208 200 214 230 242 263 260 277 279 286 396 455 531 654 921
0,05 2,03 2,43 2,31 2,35 2,67 2,74 2,87 2,77 3,06 3,17 3,27 3,46 3,96 522 595 899 1342
0,10 2,37 247 2,64 2,65 2,88 3,22 3,15 3,25 3,71 3,80 4,03 4,41 5,23 8,19 11,89 24,46
0,15 2,84 2,91 3,04 2,99 3,48 3,57 3,76 4,03 4,12 4,91 5,59 5,98 6,94 19,71 40,62
0,20 3,42 3,34 3,65 3,93 3,86 4,29 4,84 5,07 5,51 6,27 8,00 8,86 11,91 56,19
0,25 3,94 4,24 4,71 4,69 5,60 6,25 6,09 6,73 7,73 9,38 14,38 14,06 22,14
030 458 516 497 604 645 6,77 833 1053 1219 11,76 1567 2925 4835
035| 656 638 696 7,58 965 951 11,67 1363 1761 2653 2982 5893 13735
040 | 7,65 837 1052 872 1221 1500 18,35 24,52 2875 51,04 88,56 133,98
Alpha 045| 9,33 10,81 14,39 1450 18,39 20,29 28,87 3358 5813 61,91 168,83
0,50 | 11,55 14,26 19,70 20,99 28,72 28,08 31,61 48,65 96,13 230,15
0,55 | 1721 16,53 20,90 33,04 34,10 41,86 79,15 128,05 183,34
0,60 | 22,79 2945 2841 43,26 5237 82,09 90,46 169,69
0,65 | 33,74 40,32 56,01 5882 66,44 126,36 176,40
0,70 | 48,83 59,90 72,10 82,70 105,08 162,71
0,75 | 56,87 53,26 95,17 101,51 230,79
0,80 | 79,39 86,54 111,04 184,27
0,85 | 100,18 125,82 135.30
0,90 | 170,72 183,44
0,95 | 166,16
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Table 30: The RMSPE of the POT method on ARMA-GARCH model with ¢ =6 =0.9

ARIMA-GARCH Beta
0,00 005 010 015 020 025 030 035 040 045 050 055 0,60 065 0,70 075 080 085 090 0,95

0.00 016 016 016 016 016 016 016 016 016 016 016 016 016 017 016 015 016 015 0,15
0,05| 0,17 0,16 0,16 0,17 0,16 0,16 0,16 0,16 0,16 0,17 0,17 0,17 0,17 0,18 018 0,17 0,19 0,18 0,20
0,10 | 0,18 017 0,17 0,17 0,17 0,17 0,18 0,18 0,17 0,18 0,18 0,19 0,18 0,19 020 021 022 0725
0,15| 0,18 0,18 0,18 0,19 0,18 0,19 0,19 0,19 020 0,19 020 021 022 023 024 026 0,32
0,20 0,19 020 0,19 019 020 021 020 021 022 023 023 025 026 027 033 040
025|021 020 021 021 022 022 022 023 025 025 028 028 032 037 046
030|022 022 023 024 024 026 025 027 028 034 035 036 042 0,52
035024 024 026 026 027 028 030 032 034 036 040 045 053
040|027 028 028 029 032 032 033 036 039 045 049 0,57
Alpha 045|020 030 033 034 035 037 039 042 047 056 059
0,50 | 0,33 035 036 038 040 042 047 052 054 0,61
0,55 0,37 0,39 040 043 044 047 054 058 0,61
0,60 | 0,41 043 046 048 050 055 0,64 0,64
0,65| 0,46 048 050 055 057 061 0,70
0,70 | 0,49 052 055 056 0,62 0,70

080 | 0,57 059 069 0,70

Table 31: The RMSPE of the BM method on ARMA-GARCH model with ¢ =6 = 0.9

ARIMA-GARCH Beta
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 040 045 0,50 0,55 0,60 0,65 0,70 0,75 080 0,85 090 0,95

0,00 011 012 012 012 012 012 012 013 012 012 012 012 012 011 012 013 013 013 013
0,05|0,12 014 0,13 013 0,14 014 0,14 013 0,14 014 013 0,13 014 0,13 014 0,14 014 0,16 0,16
0,10|0,14 014 0,14 014 0,14 015 0,14 014 015 015 015 015 016 0,16 017 0,17 019 0,24
0,15| 0,15 015 0,15 014 0,16 016 0,16 016 0,15 0,17 017 0,17 018 021 023 026 0,32
0,20 0,17 016 0,17 017 0,16 017 0,18 018 0,18 019 021 021 024 026 033 0,38
025|018 018 0,19 019 021 021 020 020 021 023 029 026 031 036 049
0,30 0,19 020 0,19 021 021 021 023 026 027 024 027 036 041 049
035[024 023 023 024 027 025 027 028 031 037 035 045 0,56
040|025 026 029 025 029 032 034 037 038 047 054 0,55

Alpha 045|027 029 034 032 035 035 040 041 049 045 0,61
0,50 | 0,30 0,33 038 038 042 039 039 044 055 0,68

0,85 | 0,61 062 0,60
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Figure 30: Surface plots of the evaluation metrics RMSE and RMSPE for increasing o and ¢!
and with ¢ and 6 set to 0.1.
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(a) RMSE - POT (b) RMSE - BM (2)
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Figure 31: Surface plots of the evaluation metrics RMSE and RMSPE
and with ¢ and 6 set to 0.3.
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(a) RMSE - POT
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Figure 32: Surface plots of the evaluation metrics RMSE and RMSPE for increasing o and ¢!
and with ¢ and 6 set to 0.7.
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Figure 33: Surface plots of the evaluation metrics RMSE and RMSPE for increasing o and ¢!
and with ¢ and 6 set to 0.9.
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Figure 34: Comparison of the RMSE for increasing #¢! at three levels of serial dependence and
a=0.5and g=0.
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