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Abstract

This paper emphasizes the importance of identifying changes in financial cycles

when predicting monthly US excess stock returns for the period 1977 - 2017. In-

corporating regime switching into the predictive models improves the quality of

the excess return forecasts in terms of market timing ability, economic value and

stability. The Markov Switching models consisting of predictor variables selected

based on their performance during bull and bear markets performs especially well.

A mean-variance investor would be willing to pay several hundreds basis points to

switch from the static benchmark portfolios to one of these portfolio strategies.

Keywords: Return predictability, Markov Switching models, factor models,
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1 Introduction

Forecasting stock returns has been a fascinating endeavor with a long history and has

been an important field of financial research for many decades. Numerous studies have

attempted to predict excess stock returns using a variety of different predictor variables

and forecasting techniques. Most of the literature has focused on the predictability of

stock returns using traditional valuation ratios such as the dividend-price, earnings-price

and book-to-market ratios among others within a predictive regression framework. Some

of these studies have shown positive forecasting results such as in Fama and French (1988)

and Campbell and Shiller (1988a,1988b) among others. However, several authors have

also expressed their concerns regarding the predictability of stock returns, arguing that

most forecasting models have both poor in-sample and out-of-sample predictive power

compared to a simple metric such as the historical average. Goyal and Welch (2008)

therefore concluded that “the profession has yet to find some variable that has a mean-

ingful and robust empirical equity premium forecasting power”.

Additionally, several studies such as Devpura et al. (2018), have also documented

the instability in the relation between stock returns and the predictor variables and find

substantial variation across subsamples for their forecasting accuracy. The appearance

of structural breaks to the model parameters substantially affects the forecasting perfor-

mance of the predictive model as the parameter estimates obtained from the historical

sample do not stay constant over time. In fact, studies such as Paye and Timmermann

(2006), Rapach and Wohar (2006) and Ravazazzolo, van Dijk, Paap, and Franses (2008)

among others have confirmed this phenomenon of varying relationship between predictor

variables and excess stock returns.

This paper aims to tackle both problems by analyzing the predictability of excess

stock returns using a variety of predictor variables and by accounting for changes in the

financial cycle. Predictive regression models consisting of three types of explanatory vari-

ables, namely: (1) traditional financial variables and valuation ratios, (2) macroeconomic

variables and (3) technical indicators are used to forecast excess stock returns. The state

of the equity market i.e. bullish and bearish states is incorporated to improve the forecast-

ing accuracy of the predictive regression model. The forecasting power of these variables
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are assessed during both market states. Ultimately, the aim of this paper is to link the

explanatory performance of certain predictor variables to bull and bear markets and to

use them in regime switching models, accordingly.

Considering macroeconomic information to predict the equity premium seems pro-

found as the stock market is assumed to be linked to business conditions. However,

while many macroeconomic variables are available, only a select number of them seem

to have positive explanatory power in predicting stock returns. Few examples are the

consumption-wealth ratio and survey-based measures of expected business conditions as

proposed by Lettau and Ludvigson (2001) and Campbell and Diebold (2009), respec-

tively. Cakmakli and van Dijk (2016) show that combining the information of a large set

of macroeconomic predictor variables improves the forecasting power for stock returns.

They propose a factor-augmented predictive regression model where they extract factors

from a large set of macroeconomic variables in order to forecast US excess stock returns.

They find that this macroeconomic factor based model improve upon benchmark models

that include valuation ratios and interest rate related variables and naive predictors such

as the historical average.

From a practitioners point of view, trading strategies based on technical indicators

have shown profitable results. Therefore, it seems interesting to consider technical indi-

cators as possible predictor variables for excess stock returns. Although technical trading

rules are widespread used among practitioners, literature regarding its explanatory power

of the equity risk premium is rather scarce. Neely et al (2013) show that technical indi-

cators have significant forecasting power in predicting excess stock returns and that they

capture a different type of relevant information than macroeconomic variables. There-

fore, it seems advantageous to build a forecasting model where different types of predictor

variables, whether it be valuation ratios, macroeconomic variables or technical indicators,

are combined in order to adequately describe and predict excess stock returns.

This paper will focus on factor-augmented predictive models as in Cakmakli and van

Dijk (2016) to predict excess stock returns. Given the large set of macroeconomic vari-

ables, a dynamic factor approach is considered in order to account for model uncertainty,

parameter estimation uncertainty, and structural instability jointly. To be more specific,

a principal component analysis is used to extract a small amount of factors from the large
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set of macroeconomic variables, which are then used in the factor-augmented regression

model. The same approach is used to construct predictive models based on technical

indicators, using factors obtained from 14 commonly used technical indicators based on

moving averages, momentum, and volume as discussed in Neely et al, (2013). Predictive

regression models based on traditional financial variables are constructed using valuation

ratios and interest-rate variables as in Goyal and Welch (2008).

Changes in the financial cycle are captured using regime switching models consist-

ing of several explanatory variables. This type of model enables to specify the relation

between the explanatory variables and stock returns during different market conditions.

By doing so, implementing regime switching to the predictive models could improve the

stability of the return forecasts. Following Kole and van Dijk (2017), parametric Markov

Switching models are used to identify and predict future market states as this method

works best out-of-sample. Markov Switching models consisting of predictor variables are

considered, which is supported by their finding that including macro-financial predictor

variables improves the forecasting performance of the Markov Switching models. The

variables included in the Markov Switching models are selected based on their forecasting

performance during periods of bull and bear markets. A Lagrange Multiplier test for

omitted variables as discussed in Hamilton (1996) is used to obtain this set of best per-

forming variables for both market states. This method is used to evaluate the marginal

increase in the likelihood function when a set of explanatory variables is included to a

Markov Switching model consisting of only a level parameter. By doing so, the regressor

variables are linked to a specific state based on their explanatory power in describing ex-

cess stock returns. These variables are then used in Markov Switching models to obtain

excess return forecasts during the corresponding market state.

An empirical analysis of the predictive power of the Markov Switching models and

factor-augmented predictive regression models for monthly US excess stock returns over

the period January 1977 until December 2017 is conducted. The forecasting accuracy of

these models are assessed both in statistical and economic terms and are tested against

several static benchmark portfolio strategies. The directional accuracy of the excess re-

turn forecasts is used to evaluate the market timing ability of the predictive regression

models. The economic value of the predicted excess returns are assessed by including
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them in active mean-variance investment strategies. Next to Sharpe ratios, a utility-

based metric is considered to evaluate the amount a mean-variance investor is willing to

pay to switch from the static benchmark portfolios to active investment strategies based

on excess return forecasts obtained from the predictive regression models.

The results show that incorporating regime switching into the models improves the

forecasting accuracy in several ways. First, the Markov Switching models have superior

market timing ability over the factor-augmented predictive regression models. Second,

the economic value of active investment strategies based on the excess return forecasts

obtained from the Markov Switching models are considerably higher compared to models

without regime switching. A mean-variance investor would be willing to pay an annual

performance fee of up to c. 200 basis points to switch from the static benchmark portfolio

strategies to the predictions obtained from the Markov Switching models. In addition,

implementing regime switching slightly improves the stability of the return forecasts over

the sub periods.

The results of the Lagrange Multiplier test demonstrates that certain variables are

preferred in predicting excess stock returns during periods of bull and bear markets. In

general, macroeconomic variables and technical indicators appear to be good performers

during both bull and bear markets, in particular the Federal Funds rate and the trading

rule based on the on-balance volume, respectively. This paper demonstrates that the

performance of Markov Switching models improve even further when predictor variables

are included based on their performance during the market states. A mean-variance in-

vestor would now be willing to pay an annual performance fee of up to 370 basis points to

switch from the same static benchmark portfolios to the return forecasts obtained from

the Markov Switching model with selected predictor variables.

The results of this research is both relevant as an addition to the financial literature

regarding equity premium forecasting, as well as for practitioners who are seeking to

enhance investment performances. From the standpoint of practitioners in finance, the

ability to improve stock return forecasts becomes even more relevant. Especially now,

with the continued pressure on the asset management industry due to the increasing pop-

ularity of passive investing strategies, being able to produce significant positive alpha is

of crucial importance.

4



ERASMUS UNIVERSITY ROTTERDAM

Several studies have analyzed the effect of regime switching on stock return predictability

and found positive results. For example, Jacobsen et al. (2012) demonstrates that eco-

nomically important industrial metals have positive state-switching return predictability

for stock returns and Hammerschmid and Lohre (2018) show that macroeconomic and

technical information used to predict equity risk premia demonstrate profitable predic-

tive power along different market states and periods. To the best of my knowledge, this

is the first paper to comprehensively evaluate and compare the forecasting performance

of traditional financial variables, macroeconomic variables and technical indicators dur-

ing periods of bull and bear markets and link variables to market states based on their

explanatory power.

2 Literature review

The first academic study to asset return forecasting started almost a century ago with a

paper written by Cowles (1933). In this paper, the aggregated US stock market return is

forecasted using technical analysis. In the 1960’s, the empirical research further developed

into examining whether individual stocks could be predicted using filter rules such as the

moving average. However, none of these paper showed any ability to accurately forecast

excess returns (Elliot and Timmermann, 2013).

The first real evidence on predictability of aggregated stock returns came in the late

1970’s and 1980’s when numerous economic predictor variables, such as the dividend-price

ratio and earnings-price ratio, were used within a predictive regression framework to show

that they where able to capture return predictability as in Fama and French (1988) and

Campbell and Shiller (1988a,1988b) among others. Chen et al. (1986) explored the ef-

fect of several economic state variables on stock market returns and found that several

of them, such as industrial production, changes in risk premium and twists in the yield

curve, among others were significant in explaining expected stock returns. Furthermore,

Campbell and Thompson (2008) among others, pointed out that yields on short and long

term treasury and corporate bonds are correlated with stock returns.

In the early 2000’s, a number of authors expressed their concerns over the predictabil-

ity of stock returns. Goyal and Welch (2008) reexamined the performance of variables
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that have been suggested by the academic literature to be good predictors of the equity

premium. They argue that by large, these models have predicted poorly both in-sample

as well as out-of-sample compared to the historical average, are unstable, and would not

have helped investors with access only to available information to profitably time the mar-

ket. The authors therefore concluded that “the profession has yet to find some variable

that has meaningful and robust empirical equity premium forecasting power”.

In the following years, a collection of studies actually showed that certain forecasting

approaches could improve the forecasting performance in such a manner that the historical

average was beaten. Examples of these approaches are using a factor approach (Cakmakli

and van Dijk, (2016)), incorporating technical indicators (Neely et al, (2013)) and creating

forecast combinations (Rapach et al., (2010)). Cakmakli and van Dijk (2016) show that

factors extracted from a large set of macroeconomic variables contain information that can

be useful for predicting excess stock returns. Their results show that factor-augmented

predictive regression models improve upon benchmark models that include only valuation

ratios and interest rate related variables, and possibly individual macro variables, as well

as the historical average excess return. These improvements are both statistically and

economically significant due to the stability of their forecasting accuracy.

Neely et al. (2013) utilizes technical indicators to directly predict excess stock returns

and find statistically and economically significant in-sample and out-of-sample forecasting

power. Also, they show that technical indicators and macroeconomic variables capture

different types of information which are relevant for predicting stock returns. Techni-

cal indicators (macroeconomic variables) better detect decline (rise) in the equity risk

premium near business-cycle peaks (troughs) and therefore combining this information

produces superior stock return forecasts. Rapach et al. (2010) argues that combining

forecasts delivers statistically and economically significant out-of-sample gains relative to

the historical average consistently over time. They provide two empirical explanations for

the benefits of forecast combinations: (i) the incorporation of information from numerous

economic variables while substantially reducing forecast volatility, (ii) combination fore-

casts of the equity premium are linked to the real economy.

Several studies such as Pesaran and Timmermann (1995), Ang and Bekaert (2007) and

Goyal and Welch (2008) have documented the instability in the relation between stock
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returns and several predictor variables and find substantial variation across subsamples

in the coefficients of return prediction models and in the degree of return predictabil-

ity. Building on this evidence, I want to analyse whether the forecasting accuracy of

the proposed methods in this research improve when the state of the equity market is

incorporated. To identify current and predict future market states, I will use the method-

ology proposed by Kole and van Dijk (2017). They find that using Markov switching

models are preferred to forecast future states of the market out-of-sample compared to

semi-parametric rule-based methods. Arguing that, as Markov switching models use both

the mean and variance to infer the states, they produce superior forecasts and lead to

significantly better out-of-sample performance than rule-based methods.

3 Data

The analysis throughout this paper is based on monthly excess returns on the S&P 500

index for the sample period from January 1967 until December 2017. The risk-free rate

will be proxied using the one-month T-bill rate obtained from the updated data set of

Goyal and Welch (2008)

, which will be gathered from the Federal Reserve Bank of St. Louis.

Table 1: Summary statistics of the monthly excess return on the S&P 500 index.

Mean Variance Minimum Maximum Kurtosis Skewness

0.26% 0.19% -22.27% 15.68% 4.79 -0.45

Table 1 shows the summary statistics of the monthly excess returns for the complete sam-

ple period, with mean 0.26% and variance 0.19%. The minimum and maximum monthly

excess return are equal to −22.27% and 15.68%. The data exhibits a slightly negative

skewness and a somewhat higher kurtosis than under a normal distribution, with skewness

and kurtosis equal to −0.45 and 4.79.

In this research, three types of explanatory variables will be considered to describe

and forecast excess stock returns, namely financial variables, macroeconomic variables and

technical indicators. The dataset of Goyal and Welch (2008) will be used as it is widely
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applied in research for predicting stock returns. This set of financial predictor variables

consist of the dividend yield, price-earnings ratio, risk-free rate and its first lag, and the

default spread defined as the difference between Moody’s Baa and Aaa corporate bond

yields. The FRED monthly dataset will be used to obtain a wide variety of macroeco-

nomic variables consisting of several categories such as: Output and Income, Employment

and Hours, Sales, Consumption, Housing starts and Sales, Inventories, Orders, Exchange

rates, Money and credit quantity aggregates, Interest Rates and Spreads, Price indexes

and Average hourly earnings, consisting of 128 macroeconomic variables in total. See

appendix A for more information regarding the individual macroeconomic variables, data

transformations and outlier treatment. To avoid look-ahead biases, the macroeconomic

variables will be lagged by one month such that it does not contain any information that

was not available at the time the forecast is made.

The technical indicators used in this research consist of the 14 variables as described

in Neely et al. (2013). These technical indicators are based on three popular strategies

i.e. moving-average (MA), momentum and trading volume. The MA rule compares two

different moving averages to generate trading signals at the end of time t, with TSMA,t = 1

and TSMA,t = 0 representing a buy and sell signal, respectively. The moving averages are

computed as follows:

MAj,t = 1
j

j−1∑
i=0

SPt−i for j = d, e (1)

with SPt representing the level of the S&P 500 index at time t and d (e) the length of

the short (long) moving average (d < e). The moving-average trading rule which is used

to identify buy and sell signals is formulated as follows:

TSMA,t =


1, if MAd,t ≥MAe,t

0, if MAd,t < MAe,t

(2)

Logically, the short MA is more sensitive to movements in the S&P 500 index as the

inclusion of new information has a stronger impact on a smaller sample. As an example,

if the S&P 500 index begins an upward trend, then the SMA will increase more than

the LMA, generating a buy signal as it indicates a bullish breakout and that the trend is

shifting up. Monthly MA rules with d = 1, 2, 3 and e = 9, 12 will be considered in this
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research.

The Momentum-based trading rule is based on the empirical findings that rising asset

prices tend to rise further. A buy or sell signal is generated using the following formula:

TSM,t =


1, if SPt ≥ SPt−h

0, if SPt < SPt−h

(3)

The intuition behind this expression is that if the current stock price is higher than its

level h periods ago, a positive momentum is indicated and therefore higher expected excess

returns. The momentum indicator which is denoted by MOM(q) compares SPt to SPt−h
with monthly signals for h = 9, 12.

The volume-based trading rule is based on the empirical finding that assets with

rising prices and high trading volumes tend to rise further. Combining trading volume

information with past prices can therefore be used to identify market trends. The strategy

used in this research is based on the “on-balance” volume as discussed in Granville (1963)

and is defined as follows:

OBVt =
t∑

k=1
V OLkDk, (4)

with V OLk and Dk denoting a measure of the trading volume during period k and a

binary variable which equals one if SPk − SPk−1 ≥ 0 and -1 otherwise, respectively. A

buy or sell signal is generated using the following expression:

TSV OL,t =


1, if MAOBVs,t ≥MAOBVl,t

0, if MAOBVs,t < MAOBVl,t

, with MAOBVj,t = 1
j

j−1∑
i=0

OBVt−i for j=d,e. (5)

The trading indicator is denoted by V OL(d, e) where monthly trading signals are com-

puted for d = 1, 2, 3 and e = 9, 12.

All the aforementioned trading indicators have a binary output and therefore their

first differences are also considered as these might contain more information. The first

differences are expressed as follow:

DMA,t = MAd,t −MAe,t (6)

DSP,t = logSPt − logSPt−h

DV OL,t = MAOBVd,t −MAOBVe,t

9
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with DMA,t, DSP,t and DV OL,t representing the difference in the strategies based on the

moving average, momentum and on-balance volume.

Due to the large size of the datasets, a principal component analysis will be used

to extract a small amount of factors from the macroeconomic variables and technical

indicator/difference variables. The scree plot in figure 1 shows the eigenvalues for the

first six principal components. For all three datasets, the scree plot illustrates that the

first principal components is good for explaining the bulk of the variance in the datasets.

Figure 1: Scree plot for principal components. Notes: The graphs illustrate the eigenvalues for the

first 6 principal components. Abbreviations are as follows: Macro stands for macroeconomic variables. TI

Bin stands for technical indicator variables and TI Diff stands for the difference of the technical indicator

variables as in equation 6.

4 Methodology

This section describes the methodology used to forecast excess stock returns using predic-

tive regression models. The forecasts are obtained using a recursive approach, meaning

that all models are specified using only historical information up to and including pe-

riod t to forecasts excess returns in period t + 1. Also, a moving window approach with

a window length of 10 years will be used to obtain the excess return forecasts. First,

individual predictive regressions will be conducted in order to evaluate the performance

of the variables separately. Thereafter, the forecasting accuracy when combining the in-

formation across the variables will be analyzed. Next, the inclusion of the state of the

equity market using Markov switching models will be discussed. This section will also

describe the procedure to link certain predictor variables to bull and bear market based

on their explanatory power during the market states. Finally, the last section will discuss

the forecasting evaluation methods to compare the forecasting accuracy of the models

proposed above to the benchmark model.
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4.1 Equity premium forecasting using different types of explana-

tory variables

The first model to be evaluated consists of traditional financial predictor variables as in

Goyal and Welch (2008) and is denoted as:

rt+1 = β0 + β′vvt + εt+1 (7)

with vt a (l × 1) vector of financial predictor variables as described in the data section

A different approach is considered for the models consisting of macroeconomic vari-

ables and technical indicators. As the data consist of a large set of variables, including

all of them in the predictive model could result in a significant higher parameter estima-

tion uncertainty and therefore deteriorate the forecasting accuracy. Several approaches

exist to avoid this issue i.e. parameter selection procedures, model averaging and forecast

combinations among others. In order to take all the information embedded in the set of

variables into account, a statistical factor model as in Cakmali and van Dijk (2016) is

considered. In this approach, it is assumed that the variables obey a factor structure of

the form:

zt = Λft + et (8)

With zt a (N×1) vector of variables, ft a (c×1) vector of common factors, given that the

number of elements c is significantly smaller than the number of variables N . The fac-

tors ft are assumed to be mutually orthogonal and are ordered such that the first factors

captures the bulk of the variation in the predictor variables zt. The factors considered in

this approach are latent, but can be consistently estimated using a principal component

analysis, as was discussed by Stock and Watson (2002a,b), among others.

After obtaining factor estimates using principal component analysis on the macroeco-

nomic variables, a factor-augmented predictive regression to forecast excess returns can

be constructed as follows:

rt+1 = β0 + β′vvt + β′f,mfm,t + εt+1 (9)

with fm,t representing the factors obtained from the set of macroeconomic variables and

vt the financial predictor variables. A factor-augmented predictive model consisting of
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only macroeconomic factors will also be considered, which is obtained by using equation

9 with βv = 0.

Using this factor-based approach to forecast excess stock returns has the benefit of

exploiting the available information in all the predictive variables. However, several stud-

ies such as those by Boivin and Ng (2006) and Bai and Ng (2008) have shown that

pre-selecting the variables used in the construction of the factors based on their individ-

ual predictive ability can improve the forecasting performance of the factor-augmented

model. This, as the bulk of the variation in the variables captured by the first principal

components need not be the most relevant information for predicting excess returns. This

procedure will only be considered for the macroeconomic case because the set of macroe-

conomic predictor variables is large enough for a pre-selection method to make sense.

By using a pre-selection method, the set of macroeconomic predictor variables could be

reduced to a smaller set consisting of variables that exhibit individual predictive power in

explaining excess stock returns. The research of Cakmakli and van Dijk (2016) confirms

the finding of Bai and Ng (2008) by showing that implying pre-selection methods to the

set of macroeconomic variables indeed adds more economic value than simply using all

available macroeconomic variables. Therefore, it seems useful to implement pre-selection

procedures when constructing factors in order to enhance the predictive power of the fac-

tor model.

The hard thresholding method will be considered to pre-select the macroeconomic

variables, which is based on the individual predictive power of the macroeconomic variable

mit for excess return rt+1. To determine this, rt+1 is regressed onto each macroeconomic

variable mit, i = 1, 2, ..., n separately. The initial set of macroeconomic variables will re-

duced to a new set consisting of b predictor variables with b < n for which the estimated

coefficient βm,i is significantly different from zero, given a significance level α. Now, the

factors will be constructed by using principal components as before, but on a smaller

set of predictors obtained using the hard thresholding rule. The new factor-augmented

predictive regression model can be constructed by replacing fm,t from equation 9 with the

factors obtained from the set of macroeconomic variables after applying the hard thresh-

olding method.

Factor estimates for the set of technical indicator variables and their first difference are
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obtained using principal components as mentioned before. The factor-augmented predic-

tive models are then constructed similar to the case including macroeconomic variables,

using equation 9 with and without vt. Additionally, predictive regression models are con-

structed using financial variables vt together with 3 technical indicator variables. These

variables are selected based on their predictive power for excess returns. The procedure

to obtain these variables is similar to the hard thresholding method, with the 3 variables

selected based on the magnitude of their t-statistics.

As a significant amount of literature questions the predictive power of the aforemen-

tioned variables, the combined information of financial, macroeconomic and technical

indicator variables are considered to predict excess stock returns. Factor estimates are

obtained using principal components on this complete variable set. The factor augmented

predictive regression model is represented as follow:

rt+1 = β0 + β′ALLfALL,t + εt+1 (10)

With fALL,t denoting the factors obtained using a principal components analysis on the

entire data set.

Additionally, predictive regression models are constructed based on the individual

predictive power of all the considered variables with respect to excess returns. The process

is similar to the hard thresholding method in the sense that the variables with the highest

t-statistics for their estimated coefficients are selected.

4.2 Analysing the explanatory power of predictor variables dur-

ing financial cycles

As several studies have documented the instability in the relation between stock returns

and the predictor variables, the state of the equity market will be incorporated to improve

the forecasting accuracy of the predictive regression models. In order to do so, a Markov

Switching model in the style of Hamilton (1989, 1990) and as in Kole and van Dijk (2017)

is used in order to both identify and predict financial cycles. By doing so, it is assumed

that the state of the economy is proxied by the state of the equity market, which follows

a first-order Markov chain. A Markov Switching model with two regimes is considered

i.e. bullish state (St = 1) and bearish state (St = 2).
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I build a model that switches from the set of best performing explanatory variables

during specific market states. First, the performance of different regressor variables are

evaluated during bull and bear markets. Thereafter, these results will be incorporated in

the Markov Switching regression model to describe the return process in each state. For

example, if variable set 1 and 2 are best in describing excess stock returns during bull and

bear markets respectively, then the return process in the Markov Switching regression

model will be described using the model containing variable set 1 for bull markets and

variable set 2 for bear markets.

To select the variables that are used to predict excess returns during bull and bear

markets, a Lagrange Multiplier test for omitted variables is applied as in Hamilton (1996).

First, the score of the simple Markov Switching model with respect to the mean param-

eters will be computed. By doing so, a state-specific score is obtained as the mean

parameters are linked to a specific market state. The score for the more general model

can then be obtained by multiplying the score of the Simple Markov Switching model

with the value of the corresponding explanatory variables. This score is then applied in

the Lagrange Multiplier test in order to verify the marginal increase in the likelihood

function if the constraints were relaxed. The restriction is then rejected if the marginal

effects are too large, indicating that the additional variable have significant explanatory

power in describing excess stock returns. The magnitude of the statistic is used to select

which set of explanatory variables perform better during periods of bull and bear markets.

For example, suppose one want to compare the performance of all the proposed variables

during bull markets. Then, these variables will separately be used in the Lagrange Mul-

tiplier test as described above. The one with the highest test statistic is the variable that

performs best compared to the others during bull markets and will therefore be used in

the Markov Switching regression model to describe the dynamics of stock returns during

bull markets.

Let St denotes an unobserved random variable that reflects the state of the market

during time t, with St = 1 and St = 2 indicating that the process is in a bull and bear

market, respectively. The state of the equity market follows a first-order Markov chain

with transition probabilities calculated as:

pij ≡ P [St = j|St−1 = i], i, j ∈ {0, 1}, (11)

14



ERASMUS UNIVERSITY ROTTERDAM

The Markov Switching models consisting of explanatory variables are used to characterize

the time-series behaviors in both regimes as follows:

rt =


µ1 + β′1x1,t−1 + σ1εt, if St = 1

µ2 + β′2x2,t−1 + σ2εt, if St = 2
(12)

with βj = (βj,1, .., βj,k)′ a (k × 1) vector representing the coefficients of the variables that

describe the return process during bull and bear markets. The excess stock returns have

state-specific coefficients (µj, βj) and variances σ2
j for both states. As the volatility is

higher during bear markets, the states are ordered based on the estimated volatility with

restriction σ1 < σ2 to ensure that the first state (St = 1) is labeled as a bull market. The

function f(rt|xt, St; θ) is used to denote the normal pdf with state-dependent parameters:

f(rt|xt−1, St; θ) = 1√
2πσj

exp
(
−

(rt − µj − β′jxj,t−1)2

2σ2
j

)
(13)

with θ a ((2k + 4)× 1) vector consisting of the regression coefficients and variances

θ = (µ1, β1, µ2, β2, σ
2
1, σ

2
2)′ (14)

In order to analyze the performance of the explanatory variables during bull and bear

markets, a Lagrange Multiplier test for omitted variables will be used as in Hamilton

(1996). The simple Markov Switching model will be used as the base model for all the

Lagrange Multiplier tests, which is denoted as the model in equation 12 consisting of

only the level parameters µj. The score of the Markov Switching model is defined as the

derivative of the observed conditional log-likelihood of the tth observation with respect

to the parameter vector θ. To obtain the observed likelihood from the specification

containing unobservables (13), the transition probabilities that governs changes in the

states (11) are needed. The observed (log)likelihood for the Markov Switching model

in equation 12 is parameterized by λ, which consists of both the parameters θ and the
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transition probabilities, λ′ = (θ′, p′) and can be written as follows:

L(rT |xT−1;λ) = f(r1, r2, ..., rT |x1, x2, ..., xT−1;λ) =
T∏
t=1

f(rt|rt−1,xt−1;λ)

=
T∏
t=1

[f(rt|rt−1,xt−1, St = 1; θ)P (St = 1|rt−1) + f(rt|rt−1,xt−1, St = 2; θ)P (St = 2|rt−1)]

`(rT |xt−1;λ) =
T∑
t=1

log[f(rt|rt−1,xt−1, St = 1; θ)P (St = 1|rt−1) + f(rt|rt−1,xt−1, St = 2; θ)P (St = 2|rt−1)]

(15)

At first, it seems hard to obtain the derivative of the observed log likelihood function for

each time t as the states St in equation 13 are unobserved. However, this problem can be

solved by considering the unobserved states St as being part of the dataset. Then, using

the Expectation Maximization (EM) algorithm as proposed by Hamilton (1989), the EM

estimator λ̃ of the parameter vector λ can be obtained, see appendix B for a detailed

overview of the procedure.

The score of the tth observation is denoted by the vector-valued function ht(λ̃) and is

obtained by taking the derivative of the log of the observed likelihood (15) with respect

to the parameter vector θ. Appendix C shows that the score with respect to θ for the

observed likelihood specification as in 15 is given by:

ht(λ̃) = ∂logf(rt|rt−1,xt−1;λ)
∂θ

=
2∑
j=1

ψt,jP [St = j|Ωt]+
t−1∑
τ=1

2∑
j=1

ψτ,j (P [Sτ = j|Ωt]− P [Sτ = j|Ωt−1])

(16)

where t = 1, 2, ..., T and

ψt,j = ∂logf(rt|xt−1, St = j; θ)
∂θ

(17)

To evaluate 16, the inferred and forecasted state probabilities are needed which can be

obtained by estimating the Markov Switching model using the EM algorithm. Note that

in order to compute the score of the models, these state probabilities are calculated for

the simple Markov Switching model only.

The scores with respect to the variance and the transition probabilities are not required

for evaluating the performance of the explanatory variables during different market states.

The focus will be on the score with respect to the mean parameters during bull and bear
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markets. The main idea behind this procedure is to address the size of the LM test

statistic when relaxing the restriction on the regressor parameters in the more general

models containing explanatory variables as in equation 12. The resulting return process

is then equivalent to that of the simple Markov Switching model, containing only a level

parameter which corresponds to the mean of the excess returns. The estimated value of

the mean for both market states is obtained using the EM algorithm. First, the scores of

the simple Markov Switching model with respect to the mean parameters are computed

using equation 16 with

ψt,j = (rt − µj)
σ2
j

, for j = 1, 2 (18)

Thereafter, restrictions are imposed on the more general model containing explanatory

variables as in equation 12. Under the null hypothesis, the additional variables xj,t do

not add significant explanatory value in describing excess stock returns. Therefore, the

restriction βj = 0, with βj a (κ× 1) vector, is imposed to test the marginal effects on the

likelihood function when relaxing this constraint. Note that under this restriction, the

regression form as in the simple Markov Switching case is obtained. Calculations similar

to those above reveal that the score of the more general Markov Switching model with

respect to the restricted parameter β1 is obtained using:

∂logf(rt|rt−1,xt−1;λ, βj)
∂βj

∣∣∣
βj=0

=
2∑
j=1

ψt,jP (St = j|Ωt;λ) (19)

+
t−1∑
τ=1

2∑
j=1

ψτ,j[P (Sτ = j|Ωt;λ)− P (Sτ = j|Ωt−1;λ)]

where

ψt,j = ∂logf(rt|xt−1, St; θ, β
∂β1

∣∣∣
β1=0
∝ (rt − µj − β1xt−1)xt−1

σ2
j

∣∣∣
β1=0

= (rt − µj)xt−1

σ2
j

(20)

Let λ̃ denote the EM estimator of λ′ = (µ1, µ2, σ
2
1, σ

2
2, p11) as described before in the simple

Markov Switching case and thus ignoring the effects of the explanatory variables. Let λ∗

denote the ((5+κ)×1) parameter vector of the more general model including explanatory

variables λ∗ = (λ′, β)′ with associated constrained EM estimator λ̃∗ = (λ̃, 0)′. Under the

null hypothesis, the score for the more general model ht(λ̃∗) is obtained by multiplying

the score for the basic model ht(λ̃) with the value of the explanatory variables at time
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t (xt). ht(λ̃∗) is then used in the Lagrange Multiplier test to evaluate the effect of the

explanatory variables as follow:
[
T−

1
2

T∑
t=1

ht(λ̃∗)
]′ [ 1

T

T∑
t=1

T∑
t=1

[ht(λ̃∗)][ht(λ̃∗)]′
]−1 [

T−
1
2

T∑
t=1

ht(λ̃∗)
]
∼ χ2(l) (21)

By doing so, a χ2 statistic is obtained with k (number of parameter restrictions) degrees

of freedom under the null hypothesis that xt does not add significant explanatory power

in describing excess stock returns.

This test is easy to implement. One needs to estimate the model under the null

hypothesis first, in this case the simple Markov Switching model. The inferred and pre-

dicted state probabilities are obtained when estimating this model with the EM algorithm

using the restricted parameters λ′ = (µ1, µ2, σ
2
1, σ

2
2) as described in appendix B . After

obtaining this, the score ht(λ̃) of the simple Markov Switching model is computed. Then,

the score of the general model containing explanatory variables with respect to the re-

stricted parameters β1 = 0 is computed using the smoothed probabilities obtained from

the restricted model (simple Markov Switching model). Finally, the score of the model

under the null hypothesis ht(λ̃) is obtained by multiplying the score of the restricted

model with the explanatory variables xt and plugged into 21.

4.3 Equity premium forecasting by implementing a latent state

variable

The variable sets obtained using the Lagrange Multiplier test are used in Markov Switch-

ing models to predict the returns during the corresponding market states. As mentioned

before, these variables are selected based on their explanatory power during periods of

bull and bear markets. The best performing variable set during bull and bear markets

are denoted by x1 and x2, respectively and implemented in the Markov Switching model

of equation 12.

Using this approach, the state of the equity market is incorporated to improve the fore-

casting accuracy. More specifically, the model predicts upcoming bull and bear markets

and uses the predicted state probabilities to weight the excess return forecasts obtained
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from the best performing explanatory variables during this market states as follows:

r̂t+1 = [P (St+1 = 1|Ωt), P (St+1 = 2|Ωt)]

µ̂1 + β̂′1x1,t

µ̂2 + β̂′2x2,t

 (22)

with P (St+1 = j|Ωt) for j = 1, 2, the predicted state probability obtained using the Hamil-

ton filter as shown in appendix D. By doing so, the problem of structural breaks in the

relation between stock returns and explanatory variables is avoided as the model switches

dynamically from best performing regressors based on the predicted state probabilities.

Next to this, this model can be interpreted as a forecast combination as it uses the predic-

tive state probabilities to weight the obtained return forecasts from both specifications.

Additionally, Markov Switching models are constructed using the same set of vari-

ables as in the factor-augmented predictive regression models (section 4.2) to predict

excess returns in both bull and bear markets. By comparing the return predictions from

this Markov Switching model with the corresponding factor-augmented predictive regres-

sion models, the stand-alone effect of regime switching on the return predictions will be

assessed.

4.4 Forecast evaluation

Two different evaluation methods are used to assess the performances of the predictive

regressions models. First, the forecasting power will be evaluated in statistical terms

by considering the market timing ability of the predicted returns. Traditional statistics

such as the mean squared prediction error (MSPE) are not used throughout this research

as Pesaran and Timmerman (1995), among others, argued that the outcome of such

measures are not necessarily linked to profitable investment decisions. Therefore, the

market timing ability is used to evaluate the return forecasts in a statistical manner as

this is generally better in capturing their economic value in terms of the performance

of the corresponding investment strategies. Second, the return forecasts are evaluated

based on their economic value explicitly when used in active mean-variance investment

strategies. Therefore, a mean-variance investor with a monthly horizon is considered who

allocates a proportion of her wealth to stocks and a riskless asset based on its excess return

predictions. Following Cakmakli and van Dijk (2016), a utility-based metric is used to
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evaluate the amount that an investor would be willing to pay in order to switch from the

static benchmark strategies to the strategies using the return predictions obtained from

the predictive regression models as proposed in this paper.

4.4.1 Market timing ability

The Market timing ability is assessed by means of the hit ratio, which is defined as

the proportion of correctly predicted signs of the monthly excess return forecasts and

represented as:

P̂ = 1
N

N∑
t=1

I[rt+1 × r̂t+1 > 0], (23)

with N being the number of predictions obtained in the forecasting period and I[x] an

indicator function which equals one when the corresponding argument is positive and zero

otherwise. In order to assess the market timing ability of the forecasts, the null hypothesis

of no market timing ability will be tested by evaluating whether the empirical hit ratio

P̂ is significantly higher than the expected hit ratio when assumed that the signs of the

actual and forecasted value are independent. This directional accuracy (DA) test statistic

was proposed by Pesaran and Timmermann (1992) and is defined as:

DA = P̂ − P̂ ∗√
V̂ (P̂ )− V̂ (P̂ ∗)

∼ N(0, 1), (24)

With P̂ ∗ being the expected hit ratio under the independence assumption and computed as

P̂ ∗ = P̂rP̂r̂+(1− P̂r)(1− P̂r̂). P̂r and P̂r̂ are efficient estimators of the probability that the

actual (r) and forecasted (r̂) returns are positive and is represented as the proportion of

months for which r and r̂ are positive, respectively. Hence, P̂r = 1
N

∑N
t−1 I[rt+1] and P̂r̂ =

1
N

∑N
t−1 I[r̂t+1]. The variance estimates of P̂ and P̂ ∗ are computed as V̂ (P̂ ) = 1

N
P̂ ∗(1−P̂ ∗)

and V̂ (P̂ ∗) = 1
N

(2P̂r − 1)2P̂r̂(1− P̂r̂) + 1
N

(2P̂r̂ − 1)2P̂r(1− P̂r) + 4
N2 P̂rP̂r̂(1− P̂r)(1− P̂r̂).

See Pesaran and Timmermann (1992) for more detail regarding the derivations of these

expressions.

As mentioned before, the directional accuracy (DA) test is a statistical method for

analyzing the directional predictive power of the forecasting models. However, a positive

outcome of this test does not necessarily mean that the models also provide positive

economic value. For example, the DA statistic can imply that a certain model is good
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in predicting the direction of the returns correctly. However, it could still be the case

that the losses due to incorrect direction forecasts can exceed the gains obtained when

the directions are predicted correctly. Therefore, it is important to consider this statistic

in combination with the economic value of the excess return forecasts.

4.4.2 Economic value

In this section, the performances of the trading strategies constructed using the return

forecasts will be evaluated based on its economic value explicitly. As in Cakmakli and van

Dijk (2016), a utility-based metric will be used in order to assess how much an investor

would pay in order to switch from using the predictions obtained from the benchmark

models to the predictions obtained from the predictive regression models as proposed in

this research. A mean-variance investor with a monthly horizon is considered with her

position in stocks and the risk-free rate (T-bills) determined by using the return forecasts

in the following objective function:

max
wt+1

Et[rp,t+1]− 1
2γVart[rp,t+1], (25)

with γ representing the relative risk aversion (RRA) and Et[rp,t+1] and V art[rp,t+1] the

expected value and variance of the portfolio return rp,t+1 conditional on the information

available in period t. Following Cakmakli and van Dijk (2016), the value for the relative

risk aversion is set equal to 6 throughout this research. The portfolio return is obtained

by:

rp,t+1 = rf,t+1 + wt+1rt+1, (26)

where the risk-free rate and portfolio weight in period t+ 1 is denoted by rf,t+1 and wt+1.

The mean-variance investor determines the portfolio weights by solving the objective

function in equation 25, such that the optimal weight to invest in stocks is given by:

w∗t+1 = Et[rt+1]
γV art[rt+1] (27)

As mentioned before, the mean-variance investor determines the fraction invested in stocks

based on the return predictions. Therefore, in order to compute the portfolio weights,

the investor uses its return forecasts as estimates for the conditional expectation given
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in 27. The conditional variance is estimated using the realized variance over month t,

which is computed using daily return as recent literature such as Andersen, Bollerslev,

Christoffersen & Diebold (2006), among others, has indicated the gain in accuracy of the

volatility estimates due to higher frequencies. Therefore, the conditional variance used

to compute the portfolio weights is obtained using the following formula for the realized

variance:

σ2
t =

nt∑
t=1

(ri,t − r̄t)2[1 + 2
nt

nt∑
j=1

(nt − j)φ̂jt ] (28)

with ri,t the daily return over month t, nt the number of trading days during the corre-

sponding month, r̄ the monthly mean over the daily returns and φt the first-order auto-

correlation of the daily returns. Considering a case where short selling and leveraging are

prohibited, the portfolio weights are restricted to be between 0 and 1, thus w∗t+1 ∈ [0, 1].

Also, new return and volatility predictions become available each month and the investor

rebalances its portfolio accordingly. Therefore, the realized portfolio returns are assessed

net of transaction costs, where transaction costs are defined as a fixed proportion of the

investment when changing the allocation to stocks from wt to wt+1. As the investment

space is defined such that it consist of stocks and risk-free assets only, the investor pays

transaction costs twice when rebalancing as its position in stocks and the risk-free asset is

adjusted simultaneously. Hence, the loss in gain in the form of transaction costs is defined

as:

ct+1 = 2c|wt+1 − wt|, (29)

where c is the fixed proportion of wealth invested and set equal to 0.1%. The gross port-

folio return net of transaction costs is then defined as Rp,t+1 = 1 + rp,t+1− ct+1. Assuming

that the investor obeys a quadratic utility function, the expected utility obtained by the

investor can consistently be estimated by using the average realized utility as follows:

Ū = W

n

n−1∑
t=0

(
Rp,t+1 −

γ

2(1 + γ)R
2
p,t+1

)
, (30)

where W is the given level of initial wealth and set equal to 1 as it is not relevant for

computing the relative performance fees. The expected utility will be used to assess the

economic value of the predictive regression models by considering the amount that an
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investor would be willing to pay in order to switch from using the benchmark strategy to

the trading strategy based on the return forecasts. This performance fee can be computed

by setting the expected utility obtained from using the benchmark models equal to the

expected utility obtained when using the trading strategy based on the return forecasts

which are subject to an annual expense of ∆. As both strategies would yield the same

utilities, the performance fee ∆ could be interpreted as the maximum amount an investor

would be willing to pay in order to switch from the benchmark strategy to the trading

strategy constructed using the predictive regression models. The performance fee ∆ can

be computed by solving the following equation:
n−1∑
t=0

(
(Ra

p,t+1 −∆)− γ

2(1 + γ)(Ra
p,t+1 −∆)2

)
=

n−1∑
t=0

(
Rb
p,t+1 −

γ

2(1 + γ)(Rb
p,t+1)2

)
, (31)

with Ra
p,t+1 and Rb

p,t+1 denoting the portfolio returns obtained from the trading and bench-

mark strategies, respectively. The economic value from the predictive regression models

are compared with the benchmark buy-and-hold strategy. For completion, the average

returns, standard deviations and Sharpe ratios are computed for each portfolio. The stan-

dard errors of the performance fees are obtained using the delta method as proposed in

Ledoit and Wold (2018). The trick is to express ∆ as a function of its first and second

moments:

∆ =
(ηµa − 1)±

√
(ηµa − 1)2 − 2η(µb − µa − η

2(Sb − Sa))
η

, with η = γ

(1 + γ) (32)

Let z = [µa, µb, Sa, Sb] be a (1 × 4) vector consisting of the first and second moments

for both return series Ra
p,t+1 and Rb

p,t+1. Then, ∆ can be expressed as ∆ = f(z) and the

standard error can be computed using the delta method as follows:

SE(∆̂) =
√
∇′f(z)V (z)∇f(z)

T
(33)

with∇′f(z) the gradient of f(z) and V (z) the 4×4 covariance matrix of z = [µa, µb, Sa, Sb].

See appendix E for more detail.
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5 Results

5.1 Model construction and variable selection

In order to construct the factor-augmented predictive regressions as mentioned in section

4.1, a factor approach is used to adequately describe the large number of macroeconomic

variables and technical indicators. Consequently, the obtained principal components are

then used in factor-augmented predictive regressions to forecasts excess stock returns.

Figure 2 summarizes the included number of factors for each predictive regression model

which are selected using the Bayesian Information Criteria (BIC). For most windows, the

BIC only includes the first principal component. Multiple factors are more often selected

when hard thresholding is applied to the macro economic variables, which is in line with

the findings of Cakmakli and van Dijk (2016). More information regarding the number

and most frequent selected variables after applying the hard thresholding method can be

found in appendix E.

In order to analyze the stand-alone effect of regime switching on the return forecasts,

Markov Switching models are constructed using the same set of variables to predict the

returns during both bull and bear markets. The only difference compared to the factor-

augmented predictive models is the ability to detect regimes and to use the corresponding

parameter estimates during that regime to generate return forecasts. Table 2 summarizes

the parameter estimates for each Markov Switching model during bull and bear markets

for the complete sample period from Jan 1967 to Dec 2017. In most cases, the parameter

estimates differ substantially during different market states, indicating that their relation

to excess returns are regime dependent. For example, the magnitudes of the parameter

estimates for the risk free rate and its first lag, β̂3 and β̂4, in the model consisting of only

financial variables (“Fin”) are roughly 7 and 3 times higher during bull markets. In some

cases, even the sign of the parameter estimates changes during the regimes, indicating

that the relation between certain variables and excess returns can be positive or negative

depending on the state of the market. For example, the parameter estimate for the default

spread (β̂5) in the model consisting of both financial variables and macroeconomic factors

(“FM”), is equal to -0.039 and 2.423 during bear and bull markets.

Figure 3 illustrates the ability of these models to identify bull and bear markets for
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Figure 2: Numbers of factors used in each period. Notes: The graphs represent the numbers of

factors included in the predictive regression models for excess returns consisting of financial variables and

one to six PCA factors. The factors are selected using the BIC and are computed for a rolling window

of 120 months. The model abbreviations are described in table 5

the complete sample period. The graphs show that, in most cases, the proposed Markov

Switching models are relatively good in identifying bull and bear markets. Almost all

of them correctly identified the stock market crashes during 2000-2002 and 2008-2009 as

bear markets. Also, the models seems to quite accurately capture the relative smaller

crashes in the beginning of the sample, such as in 1969-1970 and 1972-1973.
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Table 2: Parameter estimates of Markov Switching models during bull and bear markets

Fin Macro FM FM HT-1.28 FM HT-1.04 TI Bin

Bear Bull Bear Bull Bear Bull Bear Bull Bear Bull Bear Bull

β̂0 -0.001 0.009 -0.017 0.009 -0.001 0.008 -0.002 0.020 -0.002 0.021 -0.007 0.008

(0.012) (0.006) (0.005) (0.002) (0.018) (0.006) (0.015) (0.008) (0.015) (0.008) (0.006) (0.002)

β̂1 -1.948 -0.738 0.059 -0.001 -1.783 -0.746 -1.912 -0.764 -1.912 -0.782 0.969 0.291

(0.941) (0.340) (0.002) (0.001) (0.925) (0.341) (0.951) (0.391) (0.951) (0.392) (0.288) (0.151)

β̂2 0.287 -0.094 0.071 0.161 0.222 -0.094 0.298 -0.101 0.301 -0.098 - -

(0.385) (0.122) (0.089) (0.051) (0.379) (0.122) (0.040) (0.134) (0.397) (0.134) - -

β̂3 -2.776 -18.788 - - -4.569 -19.186 -2.578 -13.064 -2.871 -12.668 - -

(8.935) (5.118) - - (8.795) (5.152) (11.987) (6.134) (12.106) (6.160) - -

β̂4 6.803 19.828 - - 8.841 20.274 7.313 13.514 7.567 13.180 - -

(9.036) (5.082) - - (8.902) (5.124) (11.442) (6.053) (11.506) (6.063) - -

β̂5 -0.098 2.395 - - -0.039 2.423 -0.293 17.246 -0.258 1.686 - -

(1.015) (0.508) - - (0.996) (0.510) (1.489) (0.655) (1.501) (0.656) - -

β̂6 - - - - 0.055 0.007 0.070 -0.084 0.068 -0.082 - -

- - - - (0.002) (0.001) (0.160) (0.083) (0.160) (0.083) - -

β̂7 - - - - - - 0.033 -0.520 0.059 -0.547 - -

- - - - - - (0.722) (0.288) (0.729) (0.288) - -

TI Diff FT Bin FT Diff FT 3 Bin FT 3 Diff PCA all

Bear Bull Bear Bull Bear Bull Bear Bull Bear Bull Bear Bull

β̂0 -0.011 0.009 0.006 0.004 -0.001 0.008 -0.014 0.012 -0.004 0.006 -0.017 0.008

(0.005) (0.002) (0.012) (0.006) (0.012) (0.006) (0.013) (0.008) (0.012) (0.008) (0.005) (0.002)

β̂1 0.594 0.144 -1.564 -0.594 -0.768 -0.330 -1.685 -0.784 -0.926 -0.492 0.006 0.000

(0.003) (0.001) (0.930) (0.348) (0.922) (0.343) (0.957) (0.350) (1.007) (0.402) (0.002) (0.001)

β̂2 - - 0.309 -0.086 -0.293 -0.199 0.324 -0.083 -0.212 -0.139 0.078 0.165

- - (0.376) (0.122) (0.375) (0.123) (0.383) (0.123) (0.440) (0.135) (0.089) (0.051)

β̂3 - - -8.356 -19.387 -8.440 -17.654 -7.591 -18.693 -6.619 -18.879 - -

- - (8.967) (5.113) (8.695) (5.129) (9.078) (5.114) (8.732) (4.328) - -

β̂4 - - 10.733 20.002 9.641 18.756 10.103 19.869 9.264 19.849 - -

- - (8.946) (5.068) (8.801) (5.086) (9.083) (5.070) (8.794) (4.289) - -

β̂5 - - 0.008 2.445 1.949 2.628 0.081 2.308 1.312 2.098 - -

- - (0.992) (0.507) (1.175) (0.508) (1.013) (0.511) (1.211) (0.512) - -

β̂6 - - 0.843 0.300 0.952 0.268 0.007 -0.021 0.044 0.020 - -

- - (0.310) (0.157) (0.000) (0.000) (0.204) (0.085) (0.001) (0.001) - -

β̂7 - - - - - - -0.015 0.202 -1.788 -1.064 - -

- - - - - - (0.194) (0.086) (0.023) (0.010) - -

β̂8 - - - - - - 0.192 -0.020 1.405 0.877 - -

- - - - - - (0.148) (0.054) (0.001) (0.002) - -

Notes: This table shows the parameter estimates of the Markov Switching models consisting of the same set of variables

as used in the predictive regression models for the complete sample period. The same variables are used to predict returns

during both bull and bear markets. The numbers in parentheses under the parameter estimates represents the corresponding

standard errors. The model abbreviations are as follows: Fin denotes the 5 financial variables. Macro denotes the set of PCA

factors obtained using all macroeconomic variables. FM consists of financial variables and the same factors as in Macro.

FM HT-1.28 and FM HT-1.04 represents macroeconomic factors obtained after the hard thresholding rule of |t|=1.28 and

1.04. TI-Bin and TI-Diff consists of technical indicator and difference variables. FT 3 Bin and FT 3 Diff consists of financial

variables and 3 best performing technical binary and difference variables. FT Bin and FT Diff consists of financial variables

and the same factors as in TI Bin and TI Diff. PCA-all stands for the factors obtained from all the variables. 26
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Figure 3: Identification of bull and bear markets using Markov Switching models Notes:

The graphs represent the identification of bull and bear markets using Markov Switching model with

the regressor variables as described in table 2 for the complete sample period. The blue line denotes

the indexed excess stock returns on the S&P 500. The red area indicates bear markets based on the

smoothed probability of a bear market, with a bear market prevailing when its corresponding smoothed

probability exceeds 0.5. The black line indicates the smoothed probability for a bull market.

In addition to the proposed factor-augmented predictive models, a variable selection

method is considered to construct predictive regression models consisting of variables

that are best in describing the excess stock returns. Table 3 summarizes the variables

with the strongest predictive power based on the size of their t-statistics for each variable

set during the complete sample period. Macroeconomic variables appear to exhibit the

strongest explanatory power in describing future excess stock returns, with t-statistics

ranging from 3.26 to 3.50 for the 6 and 3-Month Treasury Bill (“TB6MS” and “TB3MS”).

From these results, five predictive regression models are constructed consisting of 1 to 5

best performing explanatory variables. The models are labeled accordingly with “M1”

denoting the model consisting of only the variable with the highest t-statistic (“TB3MS”),

“M2” denoting the model consisting of both “TB3MS” and the variable with the second

highest t-statistic (“GS5”), and so on until “M5”.

To analyze the explanatory power of the variables during bull and bear markets, a

Lagrange Multiplier test for omitted variables is used for each variable separately.
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Table 3: Variable selection based on t-statistics

Fin Macro PC Macro TI Bin

Riskfree 2.040 TB3MS 3.349 PC6 3.100 OBV3-12 2.652

Riskfree-1 1.653 GS5 3.331 PC2 2.565 OBV2-12 2.612

Default spread 0.808 GS1 3.323 PC3 1.762 OBV1-12 2.381

Div Yield 0.208 GS10 3.286 PC1 1.067 MA2-12 2.371

PE ratio 0.139 TB6MS 3.260 PC5 0.540 MA1-12 2.345

TI Diff PC TI Bin PC TI Diff PCA all

OBV3-12 1.812 PC1 2.265 PC1 1.748 PC2 2.614

OBV3-9 1.794 PC5 0.667 PC6 1.372 PC4 1.796

OBV1-12 1.724 PC6 0.622 PC4 0.918 PC3 1.751

OBV2-12 1.709 PC2 0.550 PC2 0.309 PC5 1.355

OBV1-9 1.643 PC3 0.159 PC3 0.071 PC6 1.160

Notes: This table summarizes the five variables with the highest t-statistic for each variable set for the

complete sample period. All the variables within a certain sets are individually used in a regression and

sorted based on the size of their t-statistics. The model abbreviations are as in table 2.

Table 4 summarizes the results for the Lagrange Multiplier test for the complete sample

period where the five variables with the highest individual χ2(1) statistic are displayed

together with the χ2(l) statistic when these variables are combined in a descending order.

In general, macroeconomic variables appear to better explain excess stock returns during

both bull and bear markets compared to other variables. This finding is in line with the

case without regime switching (table 3) in the sense that they both select macroeconomic

variables as best describers of excess returns. However, table 4 shows that when account-

ing for changes in financial cycles, the choice of the macroeconomic variables differ. For

example, the variable “FEDFUNDS” and “PC4 HT-1.28” appear to have the strongest

explanatory power during bull and bear markets (χ2(1) of 10.37 and 7.29), while table

3 showed that without regime switching, “TB3MS” was best in describing excess stock

returns. The column “ALL” denotes the best performing explanatory variables across

all the variable sets. The second till the fifth variable are selected based on the highest

possible χ2(l) statistic when combining the first variable with any other variable, the first

two variables with any other, and so on. To be more specific, no other combination of two

variables than “FEDFUNDS” and “NDMANEMP” could yield a higher χ2(2) statistic

than 16.91 during periods of bull markets. The values 28.11 and 24.57 represent the χ2(5)

statistic for bull and bear markets when all five variables are included in the Markov
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Switching model. Based on these findings, five Markov Switching models are constructed

in a similar way as in the case without regime switching. The models are labeled ac-

cordingly with “MS1” indicating the Markov Switching model where “FEDFUNDS” and

“PC4 HT-1.28” describes the return process during bull and bear markets. Similarly,

“MS5” will represents the Markov Switching model consisting of the five best variables as

presented in the column “ALL”.

Table 4: Lagrange Multiplier test for variables omitted from the mean in bull and bear markets.
µ1 Fin Macro PC Macro HT-1.28 HT-1.04

Riskfree 0.47 FEDFUNDS 10.37*** PC4 5.50** PC3 6.84*** PC3 6.82***

Riskfree-1 0.29 6.17* TB6MS 7.35*** 10.55*** PC1 4.49** 10.82*** PC2 1.58 8.45** PC2 1.70 8.53**

Div Yield 0.04 7.35* NDMANEMP 7.21*** 17.74*** PC6 2.99* 13.10** PC6 0.12 8.52* PC6 0.10 8.58*

Default spread 0.04 8.71* GS1 6.04** 18.47*** PC5 1.27 13.26** PC5 0.05 8.52* PC4 0.04 9.61*

PE ratio 0.01 8.76 CP3Mx 5.64** 19.87*** PC3 0.82 14.05** PC4 0.04 9.56* PC3 0.03 9.61*

µ2

Riskfree 0.29 GS5 6.83*** PC6 2.95* PC4 7.29*** PC4 7.28***

Default spread 0.25 1.96 GS10 6.26*** 6.83* PC2 2.87* 6.12** PC1 4.02** 8.91** PC1 4.02** 8.90**

Riskfree-1 0.13 5.37 GS1 6.05** 6.97* PC3 1.88 7.29* PC5 0.65 10.34** PC3 0.59 9.24**

Div Yield 0.12 7.22 CES1021000001 6.01** 10.41* PC5 0.29 7.55 PC3 0.59 10.60** PC5 0.55 10.36**

PE ratio 0.06 7.34 AAA 5.58** 10.50* PC1 0.13 7.81 PC6 0.17 11.74* PC6 0.21 10.69*

µ1 TI Bin TI Diff TI PCA TI Diff PCA ALL

Momentum12 0.77 MA1-9 0.41 PC6 1.32 PC5 2.48 FEDFUNDS 10.37***

OBV1-12 0.51 0.82 MA1-12 0.26 0.97 PC1 1.11 2.22 PC4 0.58 3.01 NDMANEMP 7.21*** 16.91***

MA2-12 0.44 1.32 OBV2-12 0.21 3.19 PC3 0.79 2.83 PC6 0.44 3.53 PC3 HT1.04 6.82*** 21.18***

OBV3-9 0.44 1.34 OBV3-12 0.19 3.40 PC4 0.56 3.22 PC3 0.34 3.54 CES2000000008 1.92 24.47***

MA3-9 0.42 1.35 MM12 0.18 4.20 PC5 0.10 3.34 PC2 0.25 4.09 CLAIMSx 1.79 28.11***

µ2

OBV3-12 3.06* OBV3-9 0.78 PC1 1.54 PC6 3.18* PC4 HT1.28 7.29***

OBV2-12 2.41 3.14 OBV3-12 0.66 0.85 PC6 1.23 2.70 PC4 0.90 3.91 CUSR0000SAD 4.25** 12.36***

OBV1-12 2.01 3.14 OBV1-9 0.55 0.85 PC2 0.75 3.40 PC1 0.49 4.80 OBV3-12 3.06* 16.84***

MA2-12 1.90 3.17 OBV1-12 0.53 1.81 PC3 0.31 3.67 PC3 0.12 4.91 M2SL 2.53* 21.08***

MA1-12 1.65 3.29 OBV2-9 0.52 2.67 PC5 0.25 4.39 PC2 0.03 4.93 OBV3-9 0.68 24.57***

Note: Lagrange Multiplier (LM) test statistics for variables omitted from the mean with respect to bull

and bear states for the complete sample period. The model under the null hypothesis is the Simple

Markov Switching model consisting of only a level parameter as described in section 4.2. The LM test

statistic is χ2 distributed with l degrees of freedom and l denoting the number of parameter restrictions

in the alternative model specification. See table 2 for model abbreviations. For each variable set, the 5

variables with the highest individual χ(1)2 statistic are represented in a descending order together with

its corresponding χ(1)2 next to it. The third column of each variable set represent the χ2(l) statistic when

2,3,4 or 5 variables are included in the Markov Switching model. The variables under “ALL” are the ones

with the highest LM test statistic across all variable sets. The first variable is simply the variable with

the highest χ(1)2 statistic. The second till the fifth variable are selected based on the highest possible

χ(l)2 statistic when combining the first variable with any other variable, the first two variables with any

other, and so on. *, ** and *** denote the 10%, 5% and 1% significance level, respectively.
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5.2 Market timing ability

Table 5 shows the market timing ability for the excess return forecasts obtained from the

factor-augmented predictive regression models and the corresponding Markov Switching

models using the same variables. The hit ratios, together with their statistical significance

obtained using the DA test, are computed for the complete out-of-sample period from

January 1977 to December 2017 and for the first and second halves. PCSMS and DAMS

represents the statistics for the Markov Switching models. Panel A demonstrates that

all models exhibit positive market timing abilities during the complete out-of-sample

period except for the factor-augmented predictive model consisting of factors based on

all variables “PCA all”. Also, almost all models consisting of both financial variables and

additional factors demonstrate higher market timing ability than the model consisting of

only financial variables “Fin”. This suggests that macroeconomic variables and certain

technical indicators contain additional information which seems to be relevant for market

timing.

The hit ratios for models with and without regime switching in panel A range between

42% to 58%. In general, the hit ratios improve when regime switching is incorporated

with the exception of “FT 3 Diff” and “FT Diff”. For example, the hit ratio for “PCA all”

increased from 42% to 54% during the complete out-of-sample period. Also, incorporating

different financial cycles seems to improve the hit ratios in statistical terms as well, with

hit ratios obtained from 5 Markov Switching models being significant instead of 2 from

factor-augmented predictive models, given a 10% and 5% significance level. For example,

the DA statistics for “Macro” and “FT 3 Bin” reported in panel A increased from 1.24 to

1.53 and 1.21 to 1.56.

Comparing the hit ratios in the sub samples, it seems that the marking timing ability of

the factor-augmented predictive models are fairly stable over time. Incorporating regime

switching seems to slightly improve the stability of the hit ratios, with the average absolute

difference of the hit ratios between the two sub samples decreasing from 4.7% to 3.0%.

The models consisting of both financial variables and technical trading rules seems to

result in the most instable hit ratios. For example, the hit ratio obtained from “FT 3

Bin” in the case without and with regime switching increased from 50% and 51% in Panel

B to 59% and 58% in panel C.
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Table 5: Market timing for factor-augmented predictive regression models and corresponding Markov

Switching models

Macro FM FM HT-1.28 FM HT-1.04 TI Bin TI Diff FT 3 Bin FT 3 Diff FT Bin FT Diff PCA all Fin

Panel A: Jan 1977 - Dec 2017

PCS 0.554 0.554* 0.532 0.538 0.580** 0.548 0.542 0.538 0.523 0.509 0.420 0.530

DA 1.24 1.28 0.79 1.06 1.85 0.90 1.21 1.14 0.33 -0.31 0.85 0.35

PCSMS 0.562* 0.566* 0.538 0.541 0.581** 0.554 0.547* 0.503* 0.533 0.506 0.542 0.538

DAMS 1.53 1.59 0.86 1.05 1.88 1.24 1.56 1.44 0.33 -0.31 1.06 0.74

Panel B: Jan 1977 - Dec 1997

PCS 0.576** 0.551* 0.531 0.527 0.588** 0.531 0.498 0.486 0.482 0.469 0.433 0.494

DA 2.15 1.57 0.67 0.63 1.89 0.74 0.33 -0.11 -0.30 .71 na 0.01

PCSMS 0.581** 0.557* 0.535 0.543 0.584** 0.547 0.514 0.502 0.498 0.482 0.551 0.510

DAMS 2.21 1.63 0.75 1.08 1.78 1.13 0.60 0.30 0.05 0.50 1.24 0.21

Panel C: Jan 1997 - Dec 2017

PCS 0.533 0.557 0.533 0.549 0.573 0.565 0.585* 0.589* 0.565 0.549 0.407 0.565

DA -0.86 -0.24 0.42 0.80 0.77 0.28 1.29 1.56 0.51 -0.04 0.82 0.16

PCSMS 0.543 0.575 0.542 0.539 0.579 0.561 0.579 0.504** 0.569 0.530 0.533 0.567

DAMS -0.79 0.01 0.24 0.92 0.79 0.44 1.07 1.68 0.18 -0.06 0.79 0.67

Notes: This table evaluates the marking timing abilities of the monthly excess stock return forecasts.

PCS and PCSMS stands for proportion of signs predicted correctly for the factor-augmented predictive

regression models and the corresponding Markov Switching models. Directional Accuracy (DA/DAMS)

represents the test statistic for market timing ability as described in equation 24. Both models consist

of the same variables as stated in the first row with abbreviations as in table 2. * 10% Significance level,

** 5% Significance level, *** 1% Significance level.

Figure 4 gives a more detailed overview of the (in)stability in the market timing ability

of the corresponding factor-augmented predictive regression models. The graph displays

the hit ratios for a rolling window of 5 years together with the corresponding expected hit

ratio under independence. Several models such as “TI Bin”, “FM” and “FM HT-1.04”,

among others, have hit ratios above the expected hit ratio under independence for the

majority of time, indicating positive market timing ability. However, as opposed to table

5, the graphs show that the performance of most models are actually not very stable over

time. For example, the hit ratios obtained from “FM” and “Fin” ranges between c.40%

- 75% and c.35% - 75%, Also most models demonstrate a decline in performance around

similar time periods, such as between 1984 - 1989, 2000 - 2003, and during the recent

financial crisis. These results may indicate that the performance of certain predictor vari-

ables are subject to changes in regimes and give more support to introducing models that

account for different financial cycles.
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Table 6 summarizes the market timing results for the five predictive regression models

and Markov Switching models during the full out-of-sample period and sub samples. In

addition to the 5 MS models, the results for the Simple Markov Switching model are also

demonstrated to analyze whether including predictor variables to the Markov Switching

model affects the market timing ability. Also, the performances of the Markov Switching

models during bull and bear markets are shown for the complete out-of-sample period.

Interestingly, table 6 shows that all Markov Switching models achieved higher hit ratios

than the predictive regression models during the complete out-of-sample period. This

indicates that incorporating the state of the market and selecting the variables based on

their performances during the corresponding states, positively affects the market timing

ability of the models. For example, the hit ratio increased from 56% for “M2” to 60%

for “MS2”. The Markov Switching model consisting of four variables (“MS4”) in panel A

achieved the highest hit ratio of 60% and is significant on a 1% level. Next to improving

the hit ratios, allowing for regime switching also leads to more stable results across the

two sub periods, with “MS2” showing the highest deviation which is only an increase of

c.1.4% from panel B to C. Table 6 also shows that in general, MS models with predictor

variables have higher hit ratios than the Simple Markov Switching model, indicating that

these variables exhibit information that are relevant for market timing. Surprisingly, all

the MS models with predictor variables achieved higher hit ratios during bear markets

compared to bull markets, which may indicate that the information embedded in the

predictor variables are especially useful for timing the market during bear states. For

example, “MS1” achieved hit ratios of 57% and 59% during periods of bull and bear mar-

kets.

Figure 5 gives a more detailed overview of the (in)stability in the market timing abil-

ity of the Markov Switching models. The Simple Markov Switching model appeared to

be quite unstable over time with strong dips during 2000 - 2003 and the recent financial

crisis. These declines are also visible in the other MS models but with substantial smaller

magnitudes, especially during the latter period. This observation confirms that adding

predictor variables to the Markov Switching models improves the ability to time the mar-

ket during bear markets. Compared to figure 4, all the Markov Switching models expect

for “MS3” obtained hit ratios well above the expected hit ratio under independence, in-
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dicating positive market timing ability. Therefore, it seems that in general, accounting

for regime switching and selecting the variables based on their performance during these

regimes, significantly improved the ability to time the market and their stability over

time. To assess whether this also translates into more profitable investment strategies,

their relative performance fees with respect to the three static benchmark portfolios are

evaluated in the Economic Value section.

Table 6: Market timing for predictive regression models based on hard thresholding and Markov Switching

models based on LM results
Panel A: Jan 1977 - Dec 2017

Without regime switching M1 M2 M3 M4 M5

PCS 0.574** 0.556* 0.550* 0.558* 0.552*

DA 1.94 1.44 1.10 1.57 1.38

With regime switching MS Simple MS1 MS2 MS3 MS4 MS5

PCS 0.572** 0.580* 0.602*** 0.567*** 0.604*** 0.587**

DA 2.00 1.41 2.23 2.68 2.78 1.86

Bull regime

PCS 0.587** 0.565 0.599 0.556 0.599** 0.577

DA 2.29 0.370 0.950 1.14 1.97 0.63

Bear regime

PCS 0.556 0.593 0.604 0.579** 0.609** 0.596

DA 0.21 1.17 0.53 2.28 1.80 0.78

Panel B: Jan 1977 - Dec 1997

Without regime switching M1 M2 M3 M4 M5

PCS 0.588*** 0.559** 0.563** 0.571*** 0.551**

DA 2.50 1.87 1.91 2.17 1.47

With regime switching MS Simple MS1 MS2 MS3 MS4 MS5

PCS 0.588*** 0.575** 0.595 0.565* 0.610* 0.591**

DA 2.47 1.80 0.94 1.42 1.56 1.64

Panel C: Jan 1997 - Dec 2017

Without regime switching M1 M2 M3 M4 M5

PCS 0.561 0.553 0.537 0.545 0.553

DA 0.41 0.30 0.89 0.34 0.25

With regime switching MS Simple MS1 MS2 MS3 MS4 MS5

PCS 0.557 0.585 0.609** 0.569*** 0.598*** 0.583*

DA 0.04 1.01 1.89 2.37 2.46 1.46

Notes: This table evaluates the market timing abilities of the monthly excess stock return forecasts using

predictive regression models and Markov Switching models. The predictive regression models consist of 1

to 5 variables which are selected based on the magnitude of their t-statistics as displayed in table 3. The

same holds for the Markov Switching models which consists of variables with the highest LM statistic as

shown in table 4. MS Simple represents the Simple Markov Switching model as in equation 12.

* 10% Significance level, ** 5% Significance level, *** 1% Significance level.
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Figure 4: Hit ratios for excess returns over five-year moving windows. Notes: The black

line represents the hit ratio for the sign of the monthly excess stock returns obtained from the factor-

augmented predictive regression models over the five-year moving window ending at the date as shown in

the horizontal axis. The gray line indicates the expected hit ratio under the assumption of independence

between the actual and predicted signs. The model abbreviations are as in table 5

Figure 5: Hit ratios for excess returns over five-year moving windows. Notes: The black

line represents the hit ratio for the sign of the monthly excess stock returns obtained from the Markov

Switching models consisting of 1 to 5 variables based on the LM test as described in table 4 over the

five-year moving window ending at the date as shown in the horizontal axis. The gray line indicates the

expected hit ratio under the assumption of independence between the actual and predicted signs.
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5.3 Economic value

Table 7 summarizes the economic value of the factor-augmented predictive regression

models and the corresponding Markov Switching models relative to three buy-and-hold

strategies for the complete out-of-sample period from January 1977 to December 2017.

The results in panel A show that almost all investment strategies based on the predictive

regression models outperform the buy-and-hold benchmark strategies, with the exception

of “TI Diff”, “FT 3 Diff” and “FT Diff”. For example, an investor would be willing to

pay an annual performance fee of 138 basis points to switch from the portfolio consisting

of 100% stocks (P100) to the portfolio strategy based on “FT 3 Bin”. The mixed portfolio

with a constant weight of 50% in stocks (P50) appeared to be somewhat harder to outper-

form, with relative performance fees for the factor-augmented models ranging from -95 to

116 basis points instead of -74 to 138 basis points relative to P100.

Panel B illustrates that the performance fees with respect to the benchmark models

increased substantially for all models when regime switching was introduced.1 For ex-

ample, the relative performance fee for “FM” and “PCA all” with respect to the P100

benchmark portfolio increased from 116 to 203 and 37 to 202. Not only did introducing

regime switching affected the magnitudes of the relative performance fees, it also affected

the model choice that resulted in the highest relative performance fee. For example, “FT

3 Bin” achieved the highest performance fee for the factor-augmented predictive models,

which changed to “FM” when regime switching was introduced, with annual performance

fees of 138 and 203 basis points relative to the P100 portfolio. Next to this, the achieved

performance fees improved in statistical terms as well. For example, ∆100 achieved by 8

Markov Switching models appear to be significant on a 1% level, instead of only 4 in the

case without regime switching. Incorporating changes in the financial cycle also improve

the excess return forecasts in terms of the achieved Sharpe ratios, which ranged between

0.20-0.45 for the factor-augmented predictive models and 0.32-0.52 for the Markov Switch-

ing models.

1The performance fees for the active trading strategies are not computed with respect to each other

as they have a linear relationship with the presented performance fees
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Table 7: Performance of active trading strategies for the period Jan 1977 - Dec 2017. RRA = 6,

transaction costs = 0.1%, wt+1 ∈[0,1]

µ σ SR ∆100 ∆50 ∆0

Passive portfolio strategies

100% market 9.49% 14.71% 0.33

50% market 7.06% 7.37% 0.32

0% market 4.68% 1.05% -

Active portfolio strategies

Without regime switching

Fin 8.68% 8.85% 0.45 137*** (47) 115** (56) 263*** (70)

Macro 7.69% 9.23% 0.33 33 (59) 12 (34) 159** (76)

FM 8.75% 9.82% 0.42 116*** (45) 94*** (33) 242*** (79)

FM HT-1.28 8.58% 9.39% 0.42 112*** (43) 91*** (34) 239*** (73)

FM HT-1.04 8.26% 9.84% 0.36 69 (59) 47 (45) 195*** (78)

TI Bin 7.94% 9.23% 0.35 57 (70) 36 (53) 183*** (72)

TI Diff 6.58% 9.33% 0.20 -74 (69) -95** (57) 50 (48)

FT 3 Bin 8.70% 8.87% 0.45 138*** (57) 116*** (46) 264*** (71)

FT 3 Diff 7.17% 9.54% 0.26 -25 (30) -46 (58) 100 (79)

FT Bin 7.73% 9.06% 0.34 42 (38) 20 (28) 167** (73)

FT Diff 7.40% 8.70% 0.31 20 (32) -1 (9) 145** (66)

PCA all 7.72% 9.20% 0.33 37 (49) 15 (24) 162** (76)

With regime switching

Fin 9.16% 8.61% 0.52 187*** (49) 172*** (56) 320*** (79)

Macro 8.32% 9.02% 0.40 147*** (46) 134*** (44) 280*** (79)

FM 8.82% 9.36% 0.44 203*** (56) 186*** (55) 336*** (82)

FM HT-1.28 8.70% 9.35% 0.43 182*** (56) 167*** (52) 315*** (77)

FM HT-1.04 8.57% 9.64% 0.40 148*** (40) 134*** (56) 282*** (76)

TI Bin 8.03% 9.25% 0.36 113** (66) 98** (56) 247*** (81)

TI Diff 7.86% 9.52% 0.33 70 (64) 55 (59) 202*** (78)

FT 3 Bin 8.82% 8.76% 0.47 173*** (61) 158*** (46) 306*** (76)

FT 3 Diff 7.72% 9.53% 0.32 102 (93) 87* (57) 236*** (77)

FT Bin 7.50% 8.62% 0.33 71* (54) 57 (60) 205*** (64)

FT Diff 7.79% 9.08% 0.34 70* (49) 55 (56) 202*** (79)

PCA all 8.78% 8.90% 0.46 202*** (60) 187*** (58) 336*** (71)

Note: Performance fees for active mean-variance portfolios based on the return predictions from the

factor-augmented predictive regression models and the corresponding Markov Switching models during

Jan 1979 - Dec 2017, obtained using equation 31. The columns µ and σ denote the percentage annualized

mean and standard deviation of the portfolio returns. SR denotes the Sharpe ratio and ∆ the annualized

performance fees (in basis points) for switching from the strategy indicated by the subscript in the column

to the strategy indicated by the corresponding row. The standard errors in parentheses are stated next to

the corresponding performance fees and are computed using the delta method as explained in appendix

E. The model abbreviations are as in table 2.

* 10% Significance level, ** 5% Significance level, *** 1% Significance level.
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As demonstrated before in figure 4, the market timing ability of the factor-augmented

predictive regression models were quite unstable over time. Figure 6 provides a detailed

illustration of their instability in economic value compared to the static benchmark port-

folios for a moving window of 5 years. The shaded areas correspond to US recession dates

as reported by the NBER business cycle dating committee, which is included in the graphs

to analyze whether the performances are dependent to certain states of the market.2 The

performances of all the portfolio strategies based on the predictive regression models vary

substantially over time and even ranges between -800 and 1300 basis points in the case of

“FM HT-1.04” with respect to the P0 benchmark portfolio. Interestingly, all the portfolio

strategies based on the predictive regression models seem to substantially outperform the

benchmark portfolio consisting of only stocks (P100) during the recent financial crisis. For

example, the “FM HT-1.28” and “TI Diff” predictive regression model realized annual-

ized performance fees over the P100 benchmark model of around 1500 basis points. These

result might indicate that the predictive power of certain regressor variables are subject

to changes in the state of the equity market.

To quantify this, table 8 summarizes the economic value for the factor-augmented

predictive models and Markov Switching models during the two sub samples. For both

cases, the relative performance fees with respect to the static portfolios tend to differ quite

substantially during the two sub samples. For example, an investor would be willing to

pay a performance fee of 79 and 274 basis points to switch from P100 to the predictive

model consisting of financial variables (“Fin”) during the first sub period and second sub

period. This difference is slightly lower in the case with regime switching, where an in-

vestor would be willing to pay 96 and 277 basis points to switch in the same scenario. In

general, including regime switching improves the stability across the sub samples, with

the average of the absolute deviations in performance fees for the predictive models de-

creasing from 144 to 107 for the regime switching models. Incorporating the effect of

the state of the equity market do, in most cases, also result in higher performance fees
2Although this paper focuses on the behavior of certain variables during bull and bear markets, US

recession dates are added to the graphs for two reasons. First, recessions exhibit strong correlations

with prolonged periods of bear markets and therefore, the graph may provide an indicative illustration

of the behavior during bearish states. Second, the dates are fixed by the NBER business cycle dating

committee.
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compared to the general predictive regression models in both sub samples. The biggest

difference can be seen in the first sub sample where the performance fee for “TI Diff” with

respect to the P100 portfolio increased from -129 to 84 basis points when regime switching

was introduced. Based on tables 7 and 8, it can be concluded that by accounting for

changes in the financial cycle, the relative performance fees tend to increase in almost

all cases and (sub)periods. However, while it does improve upon the predictive models,

implementing regime switching does not necessarily lead to stable results as the relative

performance fees continue to differ quite substantially during both sub periods for some

model specifications.

Figure 6: Performance fees for excess returns forecasts over five-year moving window. Notes:

The figures represent the annualized performance fees in bps (∆) computed using equation 31 for a rolling

window of 5 years. The model abbreviations are as in table 2. Each figure represents the performance

fees of the corresponding predictive model relative to the equity only portfolio (red line), 50-50 portfolio

(green line) and the portfolio that only invest in a riskless asset (blue line). The shaded area corresponds

to US recession dates as reported by the NBER business cycle dating committee

Table 9 summarizes the economic value for the five predictive regression models and

Markov Switching models during the full out-of-sample period. This table provides a clear

representation of the added economic value of regime switching as all the Markov Switch-

ing models achieved substantial higher performance fees than the predictive regression

models, relative to the static benchmark portfolios. For example, the performance fee rel-

ative to P100 for the model consisting of 5 predictor variables increased from -9 to 288 basis
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points when regime switching was applied. In particular, the Markov Switching model

consisting of 4 explanatory variables (“MS4”) show favorable results, where an investor

would be willing to pay an annual fee of 370 and 469 basis points to switch from the all

stock portfolio “P100” and T-bill only portfolio “P0” to the “MS4” portfolio, respectively.

Next to this, almost all the performance fees obtained from the Markov Switching models

with predictor variables are significant on a 1% level. Also, all the Markov Switching

models consisting of one or more explanatory variables outperformed the Simple Markov

Table 8: Performance of active trading strategies during sub samples, with and without regime switching.

RRA = 6, transaction costs = 0.1%, wt+1 ∈[0,1]
Panel A: Jan 1977 - Dec 1997

∆100 ∆50 ∆0 ∆100 ∆50 ∆0

Without regime switching With regime switching

Fin 79 (48) 63 (30) 212*** (81) 96*** (34) 80*** (30) 229*** (99)

Macro 240** (118) 224*** (81) 375*** (115) 233*** (92) 217*** (72) 366*** (113)

FM 182* (56) 165*** (40) 315*** (107) 194*** (46) 178*** (71) 326*** (118)

FM HT-1.28 178* (50) 162*** (69) 312*** (112) 171*** (48) 155*** (53) 304*** (118)

FM HT-1.04 169* (52) 153** (59) 303*** (110) 164*** (47) 150** (66) 297*** (107)

TI Bin -30 (20) -46 (52) 101 (99) -19** (9) -35 (32) 113 (112)

TI Diff -129 (76) -145** (73) 1 (7) 84*** (33) 68* (42) 217*** (75)

FT 3 Bin 149 (54) 133** (70) 282*** (71) 152*** (42) 136*** (57) 285*** (107)

FT 3 Diff -133 (35) -149** (78) -3 (4) 20*** (7) 4 (8) 152** (82)

FT Bin 58 (50) 43 (41) 191*** (79) 39*** (15) 23 (25) 172** (79)

FT Diff -17 (15) -33 (31) 114* (78) 17 (14) 1 (10) 150 (118)

PCA all 249** (119) 232*** (80) 383*** (115) 296*** (98) 281*** (82) 429*** (85)

Panel B: Jan 1998 - Dec 2017

Without regime switching With regime switching

Fin 274** (129) 247*** (79) 396*** (113) 277*** (91) 264*** (82) 411*** (105)

Macro 26 (37) -1 (7) 145* (101) 61** (31) 47 (80) 194** (113)

FM 163*** (57) 136** (60) 283*** (115) 212*** (53) 198*** (65) 346*** (119)

FM HT-1.28 187*** (51) 160*** (55) 307*** (94) 192*** (52) 178*** (74) 326*** (105)

FM HT-1.04 111*** (41) 84** (47) 230** (112) 133*** (47) 120** (59) 267*** (108)

TI Bin 224* (144) 197** (86) 345*** (108) 245*** (99) 231*** (88) 379*** (117)

TI Diff 62* (41) 36 (48) 182* (115) 55* (42) 41 (46) 189* (139)

FT 3 Bin 208*** (87) 181** (79) 329*** (124) 193*** (68) 179*** (63) 326*** (110)

FT 3 Diff 165** (82) 138* (85) 285*** (120) 185*** (67) 171*** (64) 318*** (130)

FT Bin 102 (126) 75 (84) 221** (123) 104 (94) 90 (92) 238** (103)

FT Diff 115 (94) 88 (84) 235** (109) 123* (81) 111* (72) 257*** (105)

PCA all 26 (37) -1 (2) 145* (101) 107** (48) 94*** (35) 241** (113)

Note: Performance fees for active mean-variance portfolios based on the return predictions from the

factor-augmented predictive regression models and the corresponding Markov Switching models during

the sub samples, obtained using equation 31. The columns µ and σ denote the percentage annualized

mean and standard deviation of the portfolio returns, respectively. SR denotes the Sharpe ratio and ∆ the

annualized performance fees (in basis points) for switching from the strategy indicated by the subscript

in the column to the strategy indicated by the corresponding row. The standard errors in parentheses are

stated next to the corresponding performance fees and are computed using the delta method as explained

in appendix E. The model abbreviations are as in table 2.

* 10% Significance level, ** 5% Significance level, *** 1% Significance level.
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Switching model in terms of Sharpe ratios and economic value during the complete out-

of-sample period. This is in line with the results based on the market timing ability

in table 6, indicating that including certain predictor variables in the Markov Switching

models improves the quality of the forecasts, both in terms of market timing ability and

economic value. This table shows that an investor could outperform all the considered

static benchmark portfolios and predictive regression models by using Markov Switching

models consisting of variables selected based on their performances during specific market

conditions.

Table 9: Performance of active trading strategies for Jan 1977 - Dec 2017. RRA = 6, Transaction costs

= 0.1%, wt+1 ∈[0,1]

µ σ SR ∆100 ∆50 ∆0

Passive portfolio strategies

100% market 9.49% 14.71% 0.33

50% market 7.06% 7.37% 0.32

0% market 4.68% 1.05% -

Active portfolio strategies

Without Regime switching

M1 8.48% 8.82% 0.43 119*** (37) 97** (45) 245*** (69)

M2 7.84% 8.83% 0.36 58* (36) 37 (35) 184*** (70)

M3 7.62% 9.22% 0.32 27 (34) 6 (33) 152** (73)

M4 6.62% 8.72% 0.22 -54* (35) -75** (35) 71 (70)

M5 7.13% 8.87% 0.28 -9 (25) -30 (35) 116* (71)

With regime switching

MS Simple 8.02% 8.74% 0.38 77 (96) 56 (53) 177*** (66)

MS1 8.46% 8.91% 0.42 126** (60) 103*** (61) 226** (107)

MS2 8.79% 9.03% 0.46 211*** (67) 187*** (55) 312*** (69)

MS3 8.69% 9.33% 0.43 187*** (65) 165*** (54) 289*** (94)

MS4 11.52% 9.56% 0.72 370*** (92) 346*** (59) 469*** (80)

MS5 10.30% 9.77% 0.57 288*** (75) 263*** (59) 388*** (94)

Note: Performance fees for active mean-variance portfolios based on the return predictions from the

predictive regression models and the Markov Switching models during Jan 1979 - Dec 2017, obtained

using equation 31. The model abbreviations are as in table 6. The columns µ and σ denote the percentage

annualized mean and standard deviation of the portfolio returns, respectively. SR denotes the Sharpe

ratio and ∆ the annualized performance fees (in basis points) for switching from the strategy indicated

by the subscript in the column to the strategy indicated by the corresponding row. The standard errors

in parentheses are stated next to the corresponding performance fees and are computed using the delta

method as explained in appendix E.
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6 Conclusion

This paper analyses the predictability of excess stock returns and evaluates whether in-

corporating changes in the financial cycle improves the quality of the forecasts in terms

of market timing ability and economic value. Based upon an empirical analyses, this pa-

per finds evidence that introducing regime switching to the factor-augmented predictive

regression models significantly improves the predictive power for monthly S&P 500 excess

returns between January 1977 and December 2017. The Markov Switching models have

superior market timing ability and economic value over the factor-augmented predictive

models, such that a mean-variance investor would be willing to pay an annual perfor-

mance fee of up to c. 200 basis point to switch from the buy-and-hold strategies to the

predictions obtained from the Markov Switching models.

Next to this, the explanatory power of all variables are evaluated during periods of bull

and bear markets using a Lagrange Multiplier test in order to create a regime switching

model consisting of variables exhibiting the strongest predictive power during the cor-

responding states. In general, certain macroeconomic variables and technical indicators

appears to perform particularly well during bull and bear markets, such as the federal

funds rate and the composite price index for durables, respectively. Using specific ex-

planatory variables in Markov Switching models lead to remarkable results, where the

market timing ability not only improved but also seemed to be more stable over time. As

for the achieved economic value when using the excess stock return forecasts in a dynamic

portfolio strategy, an investor would now be willing to pay an annual performance fee of

up to 370 basis points in order to switch to this strategy from an buy-and-hold portfo-

lio consisting of stocks only. Next to that, this paper also demonstrates that including

certain predictor variables improves the forecasts obtained from the Markov Switching

models compared to the Simple Markov Switching model. The information embedded in

these predictor variables seem to be especially useful in timing the market during periods

of bear regimes

In short, this paper demonstrates that by using regime switching models in combina-

tion with a careful selection of certain predictor variables, an investor would have been

able to obtain significant positive alpha over the market portfolio during the assessed
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period.

The focus in this research is put on monthly excess return forecasts, which is common

in the financial literature on return prediction. However, using higher frequency could

result into more compelling results as Kole and van Dijk (2017) argue that using weekly

observations lead to more precise estimates of the switches between the regimes in the

Markov Switching models. Next to this, different methods could have been used to deal

with model uncertainty and parameter instability such as variable selection based on indi-

vidual predictive power and forecast combinations. The drawback of these methods is the

consideration of only a relative small amount of variables compared to factor-augmented

predictive regression model, which uses information from a large set of predictor variables.

The hard thresholding method as used in this paper could have a possible drawback as

Campbell and Yogo (2006) showed that the distribution of the t-test can be non-standard

when the predictor variables are persistent and therefore, could lead to possible over-

rejection of the null hypothesis. This procedure could be improved by considering their

pre-test to determine whether the conventional t-test lead to misleading inferences. Addi-

tionally, Markov Switching models consisting of more than two regimes could have been

considered to predict excess stock returns. However, limiting the states to either a bull

or bear market keeps the model relatively simple to estimate, while maintaining strong

forecasting power for the equity premium.
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A Appendix: Macroeconomic variables

This section provides a detailed description of the transformations applied to the macroe-

conomic variables used in the predictive regressions. First, the raw data is transformed

to ensure stationary by using first and second level differences, log-levels, first and sec-

ond log-level differences and first difference of percentage changes in accordance with

the research paper of the FRED-MD: A Monthly Database for Macroeconomic Research.

Then, outliers are detected and replaced using an EM algorithm as described in Stock

and Watson (2002): First, outliers are defined as deviations of more than 10 interquartile

ranges from the median value of the sample. Then, the algorithm is initialized by filling in

missing the unconditional mean of the series, demeaning and standardizing the updated

dataset, estimating factors from this demeaned and standardized dataset, and then using

these factors to predict the dataset. The algorithm then proceeds as follows: update

missing values using values predicted by the latest set of factors, demean and standardize

the updated dataset, estimate a new set of factors using the demeaned and standardized

updated dataset, and repeat the process until the factor estimates do not change.

Table 10: Set of macroeconomic variables used for extracting factors

Short name Transf. Description

Output and Income
RPI 5 Real Personal Income
W875RX1 5 Real Personal Income ex transfer receipts
INDPRO 5 IP: Index
IPFPNSS 5 IP: Final Products and Nomindustrial Supplies
IPFINAL 5 IP: Final Products (Market Group)
IPCONGD 5 IP: Consumer Goods
IPDCONGD 5 IP: Durable Consumer Goods
IPNCONGD 5 IP: Nondurable Consumer Goods
IPBUSEQ 5 IP: Business Equipment
IPMAT 5 IP: Materials
IPDMAT 5 IP: Durable Materials
IPNMAT 5 IP: Nondurable Materials
IPMANSICS 5 IP: Manufacturing (SIC)
IPB51222S 5 IP: Residential Utilities
IPFUELS 5 IP: Fuels
CUMFNS 2 Capacity Utiliziation: Manufacturing
Labor Market
HWI 2 Help-Wanted Index for United States
HWIURATIO 2 Ratio of Help Wanted / No. Unemployed
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Table 10: Set of macroeconomic variables used for extracting factors

Short name Transf. Description

CLF16OV 5 Civilian Labor Force
CE16OV 5 Civilian Employment
UNRATE 2 Civilian Unemployment Rate
UEMPMEAN 2 Average Duration of Unemployment (Weeks)
UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks
UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks
UEMP15OV 5 Civilians Unemployed - 15 Weeks and Over
UEMP15T26 5 Civilians Unemployed for 15-26 Weeks
UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over
CLAIMSx 5 Initial Claims
PAYEMS 5 All Employees: Total nonfarm
USGOOD 5 All Employees: Goods-Producing Industries
CES1021000001 5 All Employees: Mining and Logging: Mining
USCONS 5 All Employees: Construction
MANEMP 5 All Employees: Manufacturing
DMANEMP 5 All Employees: Durable Goods
NDMANEMP 5 All Employees: Non durable Goods
SRVPRD 5 All Employees: Service-Providing Industries
USTPU 5 All Employees: Trade, Transportation & Utilities
USWTRADE 5 All Employees: Wholesale Trade
USTRADE 5 All Employees: Retail Trade
USFIRE 5 All Employees: Financial Activities
USGOVT 5 All Employees: Government
CES0600000007 1 Avg Weekly Hours: Goods-Producing
AWOTMAN 2 Avg Weekly Overtime Hours: Manufacturing
AWHMAN 1 Avg Weekly Hours: Manufacturing
CES0600000008 6 Avg Hourly Earnings: Goods-Producing
CES2000000008 6 Avg Hourly Earnings: Construction
CES3000000008 6 Avg Hourly Earnings: Manufacturing
Housing
HOUST 4 Housing Starts: Total New Privately Owned
HOUSTNE 4 Housing Starts, Northeast
HOUSTMW 4 Housting Starts, Midwest
HOUSTS 4 Housing Starts, South
HOUSTW 4 Housing Starts, West
PERMIT 4 New Private Housing Permits (SAAR)
PERMITNE 4 New Private Housing Permits, Northeast (SAAR)
PERMITMW 4 New Private Housing Permits, Midwest (SAAR)
PERMITS 4 New Private Housing Permits, South (SAAR)
PERMITW 4 New Private Housing Permits, West (SAAR)
Consumption, orders and inventories
DPCERA3M086SBEA 5 Real Personal Consumption Expenditures
CMRMTSPLx 5 Real Manu. And Trade Industries Sales
RETAILx 5 Retail and Food Services Sales
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Table 10: Set of macroeconomic variables used for extracting factors

Short name Transf. Description

ACOGNO 5 New Orders for Consumer Goods
AMDMNOx 5 New Orders for Durable Goods
ANDENOx 5 New Orders for Nondefence Capital Goods
AMDMUOx 5 Unfilled Orders for Durable Goods
BUSINVx 5 Total Business Inventories
ISRATIOx 2 Total Business: Inventories to Sale Ratio
UMCSENTx 2 Consumer Sentiment Index
Money and credit
M1SL 6 M1 Money Stock
M2SL 6 M2 Money Stock
M2REAL 5 Real M2 Money Stock
AMBSL 6 St. Louis Adjusted Monetary Base
TOTRESNS 6 Total Reserves of Depository Institutions
NONBORRES 7 Reserves of Depository Institutions
BUSLOANS 6 Commercial and Industrial Loans
REALLN 6 Real Estate Loans at All Commercial Banks
NONREVSL 6 Total Nonrevolving Credit
CONSPI 2 Nonrevolving Consumer Credit to Personal Income
MZMSL 6 MZM Money Stock
DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Outstanding
DTCTHFNM 6 Total Consumer Loans and Leases Outstading
INVEST 6 Securities in Bank Credit at All Commercial Banks
Interest and exchange rates
FEDFUNDS 2 Effective Federal Funds Rate
CP3Mx 2 3-Month AA Financial Commercial Paper Rate
TB3MS 2 3-Month Treasury Bill
TB6MS 2 6-Month Treasury Bill
GS1 2 1-Year Treasury Rate
GS5 2 5-Year Treasury Rate
GS10 2 10-Year Treasury Rate
AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield
BAA 2 Moody’s Seasoned Baa Corporate Bond Yield
COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS
TB3SMFFM 1 3-Month Treasury Minus FEDFUNDS
TB6SMFFM 1 6-Month Treasury C Minus FEDFUNDS
T1YFFM 1 1-Year Treasury C Minus FEDFUNDS
T5YFFM 1 5-Year Treasury C Minus FEDFUNDS
T10YFFM 1 10-year Treasury C Minus FEDFUNDS
AAAFFM 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS
BAAFFM 1 Moody’s Baa Corporate Bond Minus FEDFUNDS
TWEXMMTH 5 Trade Weighted U.S. Dollar Index: Major Currencies
EXSZUSx 5 Switzerland / U.S. Foreign Exchange Rate
EXJPUSx 5 Japan / U.S. Foreign Exchange Rate
EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate
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Table 10: Set of macroeconomic variables used for extracting factors

Short name Transf. Description

EXCAUSx 5 Canada / U.S. Foreign Exchange Rate
Prices
WPSFD49207 6 PPI: Finished Goods
WPSFD49502 6 PPI: Finished Consumer Goods
WPSID61 6 PPI: Intermediate Materials
WPSID62 6 PPI: Crude Materials
OILPRICEx 6 Crude Oil, spliced WTI and Cushing
PPICMM 6 PPI: Metals and Metal Products
CPIAUCSL 6 CPI: All Items
CPIAPPSL 6 CPI: Apparel
CPITRNSL 6 CPI: Transportation
CPIMEDSL 6 CPI: Medical Care
CUSR0000SAC 6 CPI: Commodities
CUSR0000SAD 6 CPI: Durables
CUSR0000SAS 6 CPI: Services
CPIULFSL 6 CPI: All Items Less Food
CUSR0000SA0L2 6 CPI: All Items Less Shelter
CUSR0000SA0L5 6 CPI: All Items Less Medical Care
PCEPI 6 Personal Cons. Expend: Chain Index
DDURRG3M086SBEA 6 Personal Cons. Exp: Durable Goods
DNDGRG3M086SBEA 6 Personal Cons. Exp: Nondurable Goods
DSERRG3M086SBEA 6 Personal Cons. Exp: Services

B Appendix: Parameter estimation of the Markov

Switching model

In order to apply the Expectation Maximization (EM) algorithm to the basic Markov

Switching model as proposed in equation 12, the joint likelihood of the states and data

is needed:

f(r1:T , s1,T ; θ) =
T∏
t=1

f(rt, st|r1:t−1, s1:t−1; θ)

=
T∏
t=1

f(rt, st|st−1; θ) (34)

=
[∏T

t=2 f(rt|st; θ)P (St = st|st−1; θ)
]
f(r1, s1|θ)

(35)
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For the two-state Markov chain with normally distributed observations, four possibilities

are available for f(rt, st|st−1; θ):

f(rt, st|st−1; θ) =



φ(rt;µ1, σ
2
1)p11, if st = 1 and st−1 = 1

φ(rt;µ1, σ
2
1)(1− p22), if st = 1 and st−1 = 2

φ(rt;µ2, σ
2
2)(1− p11), if st = 2 and st−1 = 1

φ(rt;µ2, σ
2
2)p22, if st = 2 and st−1 = 2

(36)

Therefore, the joint log likelihood is represented as:

logf(rt, st|st−1; θ) = I[St = 1]I[St−1 = 1]log[p11φ(rt;µ1, σ
2
1)]

= +I[St = 1]I[St−1 = 2]log[(1− p22)φ(rt;µ1, σ
2
1)] (37)

= +I[St = 2]I[St−1 = 1]log[(1− p11)φ(rt;µ2, σ
2
2)]

= +I[St = 2]I[St−1 = 2]log[p22φ(rt;µ2, σ
2
2)]

The E-step can be computed by applying the expectation operator Ẽ to the joint log

likelihood of the data as follows:

Ẽ[logf(r1:T , s1:T |θ)] = Ẽ[logf(r1, s1|θ)] +
T∑
t=2

Ẽ[logf(rt, st|st−1; θ)]

= Ẽ[logf(r1, s1|θ)] +
T∑
t=2

[
P [St = 1, St−1 = 1|r1:T )log[p11φ(rt;µ1, σ

2
1)]

+ P (St = 1, St−1 = 2|r1:T )log[(1− p22)φ(rt;µ1, σ
2
1)] (38)

+ P (St = 2, St−1 = 1|r1:T )log[(1− p11)φ(rt;µ2, σ
2
2)]

+ P [St = 2, St−1 = 2|r1:T )log[p22φ(rt;µ2, σ
2
2)]
]

In order to evaluate the joint smoothed probabilities P (St = i, St−1 = j|r1:T ), the original

two-state system must be augmented to a four-state representation as the output of the

Kim Smoother based on a two-state system gives a single probability i.e. P (st = i|r1:T ).

Therefore, the solution is to set up the Hamilton filter and smoother as a four state
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problem which works as follows:

State 1 (S̃t = 1) : St = 1 and St−1 = 1

State 2 (S̃t = 2) : St = 1 and St−1 = 2 (39)

State 3 (S̃t = 3) : St = 2 and St−1 = 1

State 4 (S̃t = 4) : St = 2 and St−1 = 2

With the transition probabilities for the four-state problem defined as follows:

P =



p11 p11 0 0

0 0 1− p22 1− p22

1− p11 1− p11 0 0

0 0 p22 p22


(40)

Excess stock returns are now described as follows:

rt =



µ1 + σ1εt, if S̃t = 1

µ1 + σ1εt, if S̃t = 2

µ2 + σ2εt, if S̃t = 3

µ2 + σ2εt, if S̃t = 4

(41)

Now, after running the Hamilton filter and Kim Smoother, the joint conditional proba-

bility p∗ij(t) = P (St = i, St−1 = j|ΩT ) is obtained. The expectation step as in equation 38

can be computed by replacing P (St = i, St−1 = j|r1:T ) with p∗ij. The parameter estimated

are obtained by optimizing analytically over all the parameters.

The EM-algorithm is as follows: First, initialize by drawing p∗i,j(t) randomly while ensur-

ing that p∗11(t) + p∗12(t) + p∗21(t) + p∗22(t) = 1 for each t. Apply the maximization step by

treating the pij ∗ (t) as given and fixed and optimise over the parameters. Finally, apply

the estimation step by treating the parameter estimates as given and fixed and run the

four-state Hamilton filter and smoother to compute the four probabilities p∗ij(t) for each

time t. Repeat the M-step and E-step until convergence.
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C Appendix: Score of the Markov Switching model

This appendix derives equation 16, which is the score of the basic Markov Switching

model with respect to θ for the observed likelihood specification.

Let Rt ≡ (rt, rt−1, ..., r1), Xt ≡ (xt, xt−1, ..., x1) and St ≡ (st, st−1, ..., s1) denote the

complete history of the excess stock returns, explanatory variables and the state of the

market, respectively. Further, the summation of the two possible values of St is denoted

by
∫
dSt and is expressed as:
∫
g(St)dSt ≡

2∑
s1=1

2∑
s2=1

...
2∑

st=1
g(st, st−1, ..., s1) (42)

Under the assumption that s and r are uncorrelated, the observed likelihood of obser-

vation 1 through t is written as:

f(Rt|Xt;λ) =
∫
f(Rt|Xt, St; θ)f(St; p)dSt (43)

with

f(Rt|Xt, St; θ) =
t∏

τ=1
f(rτ |cτ , sτ ; θ) (44)

f(St; p) = f(s1; p)
t∏

τ=2
f(sτ |sτ−1; p) (45)

Using these expressions, the derivative of the observed log likelihood of the first t obser-

vations is given by:

∂logf(Rt|Xt;λ)
∂θ

= 1
f(Rt|Xt;λ)

∫ ∂f(Rt|Xt, St; θ)
∂θ

f(St|p)dSt (46)

=
∫ ∂logf(Rt|Xt, St; θ)

∂θ

f(Rt|Xt, St; θ)f(St; p)
f(Rt|Xt;λ) (47)

=
∫ ∂logf(Rt|Xt, St)

∂θ
f(St|Rt, Xt;λ)dSt (48)

Using 44 and 46, the expression is written as:

∂logf(Rt|Xt, St;λ)
∂θ

=
t∑

τ=1

2∑
st=1

∂logf(rτ |xτ , sτ ; θ)
∂θ

f(sτ |Ωt) (49)

For t = 1, it can be seen that Y1 = y1 and X1 = x1 and therefore, 49 is written as:

∂logf(r1|X1;λ)
∂θ

=
2∑

s1=1

∂logf(r1|x1, s1; θ)
∂θ

f(s1|Ω1) (50)
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with

∂logf(Rt|Xt;λ)
∂θ

=
t∑

τ=1

∂logf(rτ |xτ ;λ)
∂θ

(51)

From, 49 and 51, the score of observation t is deduced and given by:

ht(λ̃) = ∂logf(rt|xt;λ)
∂θ

=
2∑
j=1

ψt,jP [St = j|Ωt]+
t−1∑
τ=1

2∑
j=1

ψτ,j (P [Sτ = j|Ωt]− P [Sτ = j|Ωt−1])

(52)

for t = 2, ..., T

D Appendix: Hamilton filter and Kim smoother

The state probability forecasts are computed recursively using the Hamilton filter as

proposed in Hamilton (1989). By the law of conditional probability the following holds:

P [St = st|Ωt−1] =
∑
st−1

P [St = st, St−1 = st−1|Ωt−1]

=
∑
st−1

P [St = st|St−1 = st−1,Ωt−1]P [St−1 = st−1|Ωt−1] (53)

=
∑
st−1

P [St = st|St−1 = st−1]P [St−1 = st−1|Ωt−1]

It can easily be seen that the first term in expression 53 is the transition probability of

the Markov process. The second term is the inference probability and can be written as

follows:

P [St−1 = st−1|Ωt−1] = f(rt−1, St−1 = st−1|Ωt−2

f(rt−1|Ωt−2) (54)

Let ξ̂t+1|t ≡ [P (St+1 = 1|Ωt), P (St+1 = 2|Ωt)]′ denote the predicted states obtained using

the Hamilton filter with ξ̂t+1|t = P ξ̂t|t. The vectors ξ̂t+1|t and ξ̂t|t represent the one-

step ahead forecasted state probabilities and estimated state probabilities of the current

state, respectively and P the transition probability matrix. In order to update the beliefs

regarding the current state, only the rules of the conditional probabilities are needed. The
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Hamilton updating step is therefore derived as follow:

ξ̂t|t ≡

P (St = 1|Ωt−1)

P (St = 2|Ωt−1)

 =

P (St = 1|Ωt−1, rt)

P (St = 2|Ωt−1, rt)



= 1
P (rt|Ωt−1)

P (St = 1, rt|Ωt−1)

P (St = 2, rt|Ωt−1)



= 1
P (rt|Ωt−1)

f(rt|St = 1,Ωt−1)P (St = 1|Ωt−1)

f(rt|St = 2,Ωt−1)P (St = 2|Ωt−1)

 (55)

= 1
P (rt|Ωt−1)

f(rt|St = 1)

f(rt|St = 2)

� ξ̂t|t−1

=

f(rt|St = 1)

f(rt|St = 2)

� ξ̂t|t−1

(
1 1

)
f(rt|St = 1)

f(rt|St = 2)

� ξ̂t|t−1


To initialise the Hamilton filter, the unconditional probability of being in each state

is used. This can be found by solving for the eigenvector problem of P to obtain the

following: p11 1− p22

1− p11 p22


 1−p22

2−p11−p22
1−p11

2−p11−p22

 =

 1−p22
2−p11−p22

1−p11
2−p11−p22

 (56)

The elements in the eigenvector can be interpreted as a long-term percentage of time

spent in states 1 and 2, respectively and therefore the unconditional probability of being

in state 1 is given by 1−p22
1−p11−p22 .

To estimate the parameters of the Markov Switching model, the Expectation Maximiza-

tion (EM) algorithm is used as the Maximum Likelihood Estimator (ML) may get stuck

in a local maximum. Therefore, the smoothed probabilities ξt|t+1 are needed which are
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obtained using the Kim smoothing equation denoted as:

ξ̂t|t+1 =

P (St = 1|Ωt+1)

P (St = 2|Ωt+1)

 =

 P (St = 1|Ωt, rt+1

P (St = 2|Ωt, rt+1)



= 1
P (rt+1|Ωt)

P (St = 1, rt+1|Ωt)

P (St = 2, rt+1|Ωt)



= 1
P (rt+1|Ωt)

f(rt+1|St = 1,Ωt)P (St = 1|Ωt)

f(rt+1|St = 2,Ωt)P (St = 2|Ωt)



= 1
P (rt+1|Ωt)

f(rt+1|St = 1)

f(rt+1|St = 2)

�
 P (St = 1|Ωt

P (St = 2|Ωt)

 (57)

= 1
P (rt+1|Ωt)

P ′

f(rt+1|St = 1)

f(rt+1|St = 2)

� ξ̂t|t
= ξ̂t|t � P ′


f(rt+1|St = 1)

f(rt+1|St = 2)

 /P (rt+1|Ωt)


= ξ̂t|t � P ′(ξ̂t+1|T � ξ̂t+1|t)

Where � and � representing element-wise multiplication and division, respectively. The

elements of the smoothed probability vector ξ̂t+t+1 is then used to construct the score of

the basic Markov Switching model in 18.

E Appendix: Delta method for standard errors of

the performance fees

The standard errors for the performance fees are computes using the delta method as in

Ledoit and Wolf (2018). The performance fee ∆ can be computed by solving the following

equation:
n−1∑
t=0

(
(Ra

p,t+1 −∆)− γ

2(1 + γ)(Ra
p,t+1 −∆)2

)
=

n−1∑
t=0

(
Rb
p,t+1 −

γ

2(1 + γ)(Rb
p,t+1)2

)
, (58)

with Ra
p,t+1 and Rb

p,t+1 denoting the portfolio returns obtained from the trading and bench-

mark strategies, respectively. The trick is to derive ∆ and write it as a smooth function
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of its population moments. See below a full derivation of ∆:
n−1∑
t=0

Ra
p,t+1 − n∆− γ

2(1 + γ)

n−1∑
t=0

Ra,2
p,t+1 + 2 γ

2(1 + γ)∆
n−1∑
t=0

Ra
p,t+1 −

γ

2(1 + γ)n∆2 =

n−1∑
t=0

Rb
p,t+1 −

γ

2(1 + γ)

n−1∑
t=0

Rb,2
p,t+1

(59)

nµa−n∆− γ

2(1 + γ)nS
a + 2 γ

2(1 + γ)∆nµa− γ

2(1 + γ)n∆2 = nµb− γ

2(1 + γ)nS
b (60)

µa + (2 γ

2(1 + γ)µ
a − 1)∆− γ

2(1 + γ)S
a +− γ

2(1 + γ)∆2 = µb − γ

2(1 + γ)S
b (61)

γ

2(1 + γ)∆2 − ( γ

(1 + γ)µ
a − 1)∆ + (µb − µa)− γ

2(1 + γ)(Sb − Sa) = 0 (62)

∆ =
( γ

(1+γ)µ
a − 1)±

√
( γ

(1+γ)µ
a − 1)2 − 2γ

(1+γ)(µb − µa −
γ

2(1+γ)(Sb − Sa))
γ

(1+γ)
(63)

∆ is a function of the first and second moments of return series Ra and Rb. Let z =

[µa, µb, Sa, Sb], then ∆ can be expressed as ∆ = f(z). Assuming that
√
T (ẑ − z) ⇒

N(0, V (z)), with ⇒ denoting convergence in distribution, ẑ the estimator of z and V (z)

the 4× 4 variance matrix of z = [µa, µb, Sa, Sb], the delta method implies that:
√
T (∆̂−∆)⇒ N(0,∇′f(z)V (z)∇f(z))

SE(∆̂) =
√
∇′f(z)V (z)∇f(z)

T

(64)

With ∇′f(z) the gradient of f(z).

The heteroskedasticity and autocorrelation robust (HAC) kernel estimation is used to

obtain a consistent estimate of V (z). The HAC kernel estimate for V (z) is given by:

V̂ (z) = T

T − 2M

T−1∑
j=−T+1

k
(
j

ST

)
Γ̂T (j), where

Γ̂T (j) =


1
T

∑T
t=j+1 ŷtŷ

′
t−j for j≥0

1
T

∑T
t=−j+1 ŷt+j ŷ

′
t for j<0

, where

ŷ′t = [rt,a − µa, r2
t,a − Sa, rt,b − µb, r2

t,b − Sb]

(65)
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k(·) represents the Parzen kernel function and ST the selected bandwidth. The standard

error as in equation 64 can be computed by plugging in the variance estimate V̂ (z) for

V z.

F Appendix: Hard thresholding results

Figure 7: Numbers of macroeconomic variables selected using the hard thresholding rule.

Notes: The graphs represent the numbers of macroeconomic variables that are selected using the hard

thresholding approach, with significance levels of 0.10 and 0.15 for FM HT-1.28 and FM HT-1.04, re-

spectively.
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Table 11: Variables selected most frequently using variable selection methods

FM HT-1.28 FM HT-1.04 TI Bin TI Diff

CES0600000007 0.76 CES0600000007 0.84 MA1,9 0.46 MA1,9 0.41

AWHMAN 0.74 AWHMAN 0.81 MA2,12 0.34 MAOBV3,12 0.37

TB3MS 0.73 TB3MS 0.78 MA3,9 0.32 MA1,12 0.31

TB3SMFFM 0.62 IPBUSEQ 0.71 MAOBV3,12 0.27 MM12 0.27

PERMITMW 0.58 TB3SMFFM 0.68 MA2,9 0.24 MA3,12 0.26

IPDMAT 0.55 PERMITMW 0.67 MM12 0.22 MA2,9 0.26

IPBUSEQ 0.52 IPDMAT 0.65 MM9 0.20 MM9 0.22

PERMITW 0.51 PERMITW 0.62 MAOBV3,9 0.20 MAOBV2,12 0.21

DSERRG3M086SBEA 0.51 OILPRICEx 0.61 MAOBV2,12 0.20 MAOBV3,9 0.17

COMPAPFFx 0.50 USTRADE 0.60 MA1,12 0.16 MAOBV1,9 0.16

HWIURATIO 0.49 DSERRG3M086SBEA 0.60 MAOBV1,9 0.15 MA3,9 0.11

USTRADE 0.49 PERMITNE 0.59 MAOBV1,12 0.11 MAOBV1,12 0.11

OILPRICEx 0.48 HWIURATIO 0.58 MA3,12 0.07 MAOBV2,9 0.07

PERMITNE 0.48 RETAILx 0.56 MAOBV2,9 0.06 MA2,12 0.05

WPSID61 0.47 TB6SMFFM 0.55

Notes: The variable names displayed in this table correspond to the short names provided in appendix

A. FM HT-1.28 and FM HT-1.04 stand for the factor-augmented predictive regressions where the factors

are constructed after employing hard thresholding rules with t-statistics of 1.24 and 1.04, respectively. TI

Bin and TI Diff stand for the predictive regressions where technical variable are used with Bin and Diff

indicating binary and differences, respectively. The numbers next to the variables indicate the proportion

of times the variables are selected throughout the complete out-of-sample period.
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G Appendix: Parameter estimates for the 5 Markov

Switching models

Figure 8: Parameter estimates for the Markov Switching model consisting of selected pre-

dictor variables Notes: The graphs represent the evolution of the 6 parameters over time. The first

graphs represent the level parameter estimates for each model over time. The second graph denotes the

estimate of the first predictor variable for all models, and so on.
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H Appendix: Performance of Markov Switching mod-

els during sub samples

Table 12: Performance of active trading strategies based on Markov Switching models: Transaction costs

= 0.1%, RRA=6, wt+1 ∈[0,1]

µ σ SR ∆100 ∆50 ∆0

Panel A: Jan 1977 - Dec 2017

MS Simple 8.02% 8.74% 0.38 77 54 177

MS1 8.46% 8.91% 0.42 126 103 226

MS2 8.79% 9.03% 0.46 211 187 311

MS3 8.69% 9.33% 0.43 188 165 288

MS4 11.52% 9.56% 0.72 370 347 469

MS5 10.30% 9.77% 0.57 288 263 387

Panel B: Jan 1977 - Dec 1997

MS Simple 9.21% 9.18% 0.19 2 -11 75

MS1 10.02% 9.41% 0.27 98 85 171

MS2 10.42% 9.52% 0.31 176 163 249

MS3 10.30% 9.97% 0.29 143 130 216

MS4 13.27% 10.11% 0.58 296 283 369

MS5 12.67% 10.36% 0.50 238 225 311

Panel C: Jan 1998 - Dec 2017

MS Simple 6.82% 8.29% 0.58 152 118 279

MS1 6.91% 8.41% 0.58 154 120 281

MS2 7.16% 8.54% 0.60 245 211 372

MS3 7.08% 8.70% 0.58 233 199 360

MS4 9.77% 9.02% 0.86 442 408 569

MS5 7.92% 9.15% 0.65 336 302 463

Note: Performance fees for active mean-variance portfolios during complete sample period and sub

periods, obtained using equation 58. The columns µ and σ denote the percentage annualized mean

and standard deviation of the portfolio returns, respectively. SR denotes the Sharpe ratio and ∆ the

annualized performance fees (in basis points) for switching from the strategy indicated by the subscript

to the strategy indicated by the corresponding row. The model abbreviations are as in Table ??

57



ERASMUS UNIVERSITY ROTTERDAM

References

[1] Ang, A. & Bekaert, G. (2007). Stock return predictability: is it there? Review of

Financial Studies, 20, 651-707

[2] Cakmakli, C. & van Dijk, D. J. C (2016). Getting the most out of macroeconomic

information for predicting excess stock returns. International Journal of Forecasting,

32, 650-668

[3] Campbell, J. Y. & Shiller, R. J. (1988). The dividend-price ratio and expectations

of future dividends and discount factors. Review of Financial Studies, 1, 195-228

[4] Campbell, J. Y. & Yogo, M. (2006). Efficient tests of stock return predictability The

Journal of Financial Economics 81(1), 27-60

[5] Campbell, J. Y. & Thompson, S. B. (2008). Predicting excess stock returns out of

sample: Can anything beat the historical average?. Review of Financial Studies, 21,

1509-1531

[6] Campbell, S. D. & Diebold, F. X. (2009). Stock returns and expected business con-

dition: Half a century of direct evidence. Journal of Business & Economic Statistics,

27, 266-278

[7] Chen, N. & Roll, R. & Ross, S.A. (1986). Economic Forces on the Stock Market The

Journal of Business, Vol. 59, No. 3 (Jul., 1986), pp. 383-403

[8] Cowles, S. (1933). Can stock market forecasters forecast? Econometrica, Volume 1,

Issue 3, 309-324.

[9] Devpura, N. & Narayan, P. K. & Sharma, S.S. (2018). Is stock return predictability

time-varying? Journal of International Financial Markets, Institutions & Money 52

(2018) 152–172

[10] Elliot, G & Timmermann, A. (2013). Complete subset regressions. Journal of Econo-

metrics, vol. 177, issue 2, 357-373

58



ERASMUS UNIVERSITY ROTTERDAM

[11] Fama, E. F. & French, K. R. (1988). Dividend yields and expected stock returns.

Journal of Financial Economics, 22, 3-25.

[12] Goyal, A. & Shiller, I. (2008). A comprehensive look at the empirical performance of

equity premium prediction. Review of Financial Studies, 21, 1455-1508

[13] Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time

series and the business cycle Econometrica, 57, 357-384

[14] Hamilton, J. (1990). Analysis of time series subject to changes in regime. Journal of

Econometrics, 45, 39-70

[15] Hamilton, J. (1996). Specification testing in Markov-switching time-series models.

Journal of Economics, 70, 127-157

[16] Hammerschmid, R. & Lohre, H. (2018). Regime shifts and stock return predictability

International Review of Economics and Finance 56 (2018) 138-160

[17] Jacobsen, B. & Marshall, B. R. & Visaltanachoti, N (2012). State-Switching Return

Predictability

[18] Kole, E. & van Dijk, D. J. C. (2017). How to identify and forecast bull and bear

markets? Journal of Applied Econometrics, 32, 120-139

[19] Lettau, M. & Ludvigson, S. C. (2001). Consumption, aggregate wealth, and expected

stock returns. Journal of Finance, 56, 815-849

[20] Ledoit, O. & Wolf, M. (2018). Robust Performance Hypothesis Testing with Smooth

Functions of Population Moments. (Working paper) University of Zurich

[21] Pesaran, M. H. & Timmermann, A. (1995). Predictability of stock returns: Robust-

ness and economic significance. Journal of Finance, 50, 1201-1228

[22] Rapach, D. E. & Strauss, J. K. & Zhou, G. (2010). Out-of-sample equity premium

prediction: Combination forecast and links to the real economy. Review of Financial

Studies, 23, 821-862

59


	Introduction
	Literature review
	Data
	Methodology
	Equity premium forecasting using different types of explanatory variables
	Analysing the explanatory power of predictor variables during financial cycles
	Equity premium forecasting by implementing a latent state variable
	Forecast evaluation
	Market timing ability
	Economic value


	Results
	Model construction and variable selection
	Market timing ability
	Economic value

	Conclusion
	Appendix: Macroeconomic variables
	Appendix: Parameter estimation of the Markov Switching model
	Appendix: Score of the Markov Switching model
	Appendix: Hamilton filter and Kim smoother
	Appendix: Delta method for standard errors of the performance fees
	Appendix: Hard thresholding results
	Appendix: Parameter estimates for the 5 Markov Switching models
	Appendix: Performance of Markov Switching models during sub samples

