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Abstract

Quantification of spillovers in social network analysis requires information on the
social ties between agents. As information on the social structure is rarely available,
recent research such as De Paula et al. (2018) and Manresa (2016) have proposed
methods that can quantify spillovers and recover the social network structure. Iden-
tification depends on the assumptions of a sparse and persistent network structure.
This paper relaxes the assumption of persistence by means of structural breaks. In
addition, the importance of different scenarios of structural breaks is inspected with
focus on whether the break affects the spillovers. Next to that, a flexible algorithm
is proposed to detect time-invariant social interactions. A simulation study has
suggested that additional information on which parameters pertain the break date
is valuable. Relative to a baseline model that assumes all parameters alter at the
break, the flexible algorithm has the advantage in break date estimation, parame-
ter estimation and network recovery for settings with at least partial persistence of
social interactions. The detection of persistent spillovers is demonstrated to ben-
efit predominantly the identification of key players in the network. The proposed
algorithms are illustrated with an empirical application to R&D spillovers in the
Electronics industry. Future research is necessary for informative inference and is
recommended to explore more directions of relieving the assumption of a persistent
network structure.

Key words: social network analysis, sparsity, persistence, structural breaks,
change point, adaptive weights, R&D spillovers.
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1 Introduction

Social interactions have become recognized to influence the behavior and outcomes of
agents in many contexts. For this reason, social interactions are increasingly embedded in
fields of research such as crime, where identifying the well-connected individuals can help
reduce crime rates (Liu et al., 2012), education, where students’ performance is found to
be interdependent (Calvó-Armengol et al., 2009), and innovation, where R&D spillovers
between firms are substantial (Bloom et al., 2013). Social ties between agents may bring
about externalities and quantifying these spillovers are vital for understanding economic
phenomena and their policy implications.

Omission or disregard of these social interactions result to inconsistent results due to
misspecification. To incorporate the externalities, a common assumption is that social
ties between agents are known and fixed over time. Complete information is however
rarely available and research has approximated ties based on measures such as distance.
Recent papers such as Manresa (2016) and De Paula et al. (2018) have shown advance-
ments by proposing methods for panel data without information on social ties that can
estimate direct and spillover effects as well as retrieve the network structure. Their main
assumption for identification of the social structure is that social ties are sparse and per-
sistent over time. Sparsity imposes that few of all potential pairs between agents are
connected. Persistence requires that connections between agents are time-invariant and
based on long-term characteristics. The assumption of a persistent networks is often out
of necessity to decrease the complexity of estimation rather than a representation of real-
ity. Networks in many fields of research are dynamic in practice, for example in politics
with elections and senators voting strategies, in biology with genetic regulatory networks,
and in finance with relational patterns of stocks (Kolar et al., 2010).

In this paper, I build on recent advancements in literature and investigate relaxing the
assumption of the persistence of social ties. This is examined by allowing time-variance in
terms of structural breaks in the parameters in the model. Both Manresa and De Paula et
al. already hint at this possible extension of their approach and their recommendation is
extended by exploring the different origins of structural breaks in the panel model. This
paper investigates the scenarios where changes stem from the social structure and/or the
other model parameters. The investigation is twofold: First, I establish the importance of
distinguishing between these scenarios. Second, I propose a model that is flexible towards
these scenarios such that efficiency may be gained by identifying which components of the
model are time-invariant.

This paper uses the model of Manresa (2016) as a starting point given its flexibility in
network recovery and its adaptability with respect to structural breaks. Her linear panel
data model is applicable for economic contexts where characteristics of agents affect their
own outcome but may also affect the outcome of other agents in the sample. The model
is first extended to enable simultaneous estimation of parameter coefficients and break
detection. Thereafter, the model is adapted to implore whether knowledge of the scenario
is valuable. Finally, by help of the group fused lasso (Tibshirani et al., 2005) and the
adaptive group fused lasso (Qian & Su, 2016) a model is proposed flexible to the scenar-
ios. A simulation study has demonstrated the relative performance of the algorithms in
terms of break detection, estimation accuracy and network recovery. Results suggest that
information concerning the scenario is valuable and the proposed flexible algorithm has
potential for settings where (partial) time-invariance of the network structure is present.
An empirical application to R&D spillovers in the United States Electronics industry il-
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lustrates the proposed algorithms. The remainder of the paper is structured as follows.
Section 2 contains the literature review which posits this paper in its field of research.
Section 3 consists of the methodology discussing the settings, the algorithms and their
building blocks. Section 4 and 5 concern the simulation study and the interpretation of
the results. Section 6 consists of an empirical illustration of the algorithms related to
R&D spillovers. Section 7 concludes with a conclusion and discussion.

2 Literature review

The role of social networks is increasingly studied by the econometric literature where
Jackson et al. (2017) and De Paula (2017) provide a recent overview. Social interactions
are often represented by use of graph theory where agents are represented as nodes and
their connections as edges. The social interactions are deemed to transpire between pairs
of agents (nodes) that have a connection (edge). An adjacency matrix of size N x N is
often used to summarize all pairs of nodes as entries (i, j). Every element of the matrix
can either have a nonzero value indicating an interaction from j to i or have a zero entry
indicating no edge.

The econometric literature on social networks is divided into two main fields. This
paper is located in the first that concerns economic processes on which networks play a
role, i.e quantification of the spillover- or peer effects. The second concerns why and how
agents link, i.e the study of network formation (for an overview see e.g. A. Chandrasekhar,
2016). This division is natural due to the high complexity when both the drivers for the
links as well as their effects are to be estimated. Both fields originally treated the links as
given, although information on social ties between agents is often unavailable in practice.
Therefore, the literature has posed to solve this dearth via postulated ties where agents
are assumed linked based on common observables. Geographical proximity is one option
which is closely related to the spatial econometrics literature (see e.g. LeSage and Pace
(2009) and Elhorst (2014) for an introduction and overview to spatial econometrics).
Another option is that social ties relate to homophily, i.e. agents connect based on the
similarity of their characteristics (e.g. Graham, 2017 or Graham, 2016). More recently,
the literature has posited the use of self-reported ties for which the data set of Banerjee et
al. (2013) concerning the diffusion of micro finance of 75 rural villages in India is widely
applied (e.g. A. G. Chandrasekhar and Jackson (2014) and Leung (2015)).

Nonetheless, the literature has recognized that the methods implementing postulated
or self-reported ties do not fully solve the problem of missing information on social net-
works. Postulated ties are criticized for not capturing the complete nor relevant social
network structure given that links can form on a multitude of different dimensions. Even
concerning a narrow topic such as micro-finance, the study of Banerjee et al. (2013) indi-
cated that 13 different questions regarding the exchange of favors resulted in 13 substan-
tially different social structures. Furthermore, De Paula (2017) argues that for the cost
and difficulty to acquire the self reported ties the benefit in form of information is limited
due to its incompleteness and censored nature. Partial sampling of all nodes (agents) may
lead to measurement error and biased estimation(A. Chandrasekhar & Lewis, 2016).

To overcome these limitations recent papers have proposed models that recover the
social structure from the observational panel data without network data. Manresa (2016)
uses penalized linear regression on panel data where characteristics of agents affect their
own outcome but may also affect the outcome of other agents in the sample. De Paula
et al. (2018) employs the Adaptive Elastic Net GMM method of (Caner & Zhang, 2014)
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where both the characteristics and the outcome of an agent may affect other agents. That
is, in terms of Manski (1993), both exogenous and endogenous social effects are considered.
Another paper that recovers the network structure from panel data is Rose (2016). His
paper applies an extension of the Self-Tuning Instrumental Variable (STIV) estimator of
(Gautier & Tsybakov, 2014). Similar to De Paula et al. (2018), Rose (2016) considers both
exogenous and endogenous social effects. Rose (2016) states that his method is applicable
for settings with a large cross-section (N) relative to the time span (T ), while De Paula
et al. (2018) concerns settings where N/T → ∞ or N, T → ∞. On the other hand,
De Paula et al. (2018) argues that the auxiliary conditions of Rose (2016) are complex
and hard to verify in practice. In addition, Lam and Souza (2014) propose a method for
panel data that identifies exogenous and endogenous social effects by use of the adaptive
lasso of (Zou, 2006). The endogenous social effects require additional requirements related
to the magnitude and the authors argue that for large cross-section relative to the time
dimension the performance deteriorates fast. The authors also expanded their technique
for inclusion of instrumental variables in the manuscript Lam and Souza (2015).

To quantify the spillover effects while also identifying the social structure the authors
rely on penalization of parameters related to the social effects. Main conditions for the
identification by use of penalization are the assumptions of sparsity and persistence. To
elaborate, sparsity in social network econometrics translates to every agent having a small
number of influencers relative to the cross-section as well as the time dimension of the
panel. The model proposed by De Paula et al. (2018) has even more stringent assumption
on the influencers of each agent concerning the magnitudes of each spillover effect which
are necessary to incorporate endogenous effects. The model by Manresa (2016) only
considers settings for exogenous social effects and therefore has no restriction on the
magnitude of the spillover effects. This paper positions itself regarding the assumption
of persistence, i.e. it aims to alleviate this restriction of a time-invariant social structure.
The papers of Manresa (2016) and De Paula et al. (2018) hint towards the potential of
relaxing the assumption by means of sample splits, but leave the matter of break detection
and the execution for further research.

In this field of econometric research, literature on time-variant network structure is
still scarce. Taking a wider scope concerning network research, specifically computer sci-
ence, dynamic networks have shown an increase in implementation. Kendrick et al. (2018)
provide an overview of recent applications of methods for change point detection in social
networks. They showcase methods that employ Bayesian change point detection analysis
for detection of structural breaks in networks. Those methods detect changes by utilizing
differences in metrics such as size, density or the number of communities. They find that
the number of nodes and the number of links are overall the recommended choice for
detecting structural changes. This notion has shaped the design of the simulation study
and inclusion of these metrics may support further extension of this research. Next to
that, Kolar et al. (2010) show that capturing dynamic networks has potential with ma-
chine learning techniques. Their methods build on a temporally smoothed l1-regularized
logistic regression formalism which consider either smooth or structural changes. Their
application on senate voting record data has shown that realistic dynamic social interac-
tions were estimated on top of information that static models had captured. Furthermore,
Antoch et al. (2018) investigate change point detection for panel data models with a large
cross-section relative to time span. In relation to this research, their approach of in-
vestigating the accuracy of break detection concerning subsets of the parameters or the
cross-section is similar. To conclude, dynamic networks and their recovery have a foot-
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ing in the field of computer science. This research attempts to gain ground in the same
direction for the econometric field of social network analysis by exploring a relaxation of
persistence in network recovery and quantification of spillovers.

3 Methodology

This section demonstrates the setting and the methods applied for this study. I start
with a clarification of the general notation. Thereafter, the setting and the method by
Manresa (2016) are discussed. This is followed by an introduction of the break detection
technique and an elaboration of the three scenarios with the accompanying first three
algorithms. After these are established, the proposed algorithm is presented with focus
on how a time-variant network structure is allowed for and to what degree it is flexible to
the proposed scenarios. Finally, additional features are described.

3.1 Notation

Throughout this study the following notation is applied. Bold lowercase letters denote
vectors, x; bold uppercase letters denote matrices, X; the jth row of X is denoted as
xj . The transpose of a matrix is denoted by X ′. Unless stated otherwise, N and T are
the dimension of the cross-section and time-span considered in the panel data. I denote
i = 1, ..., N and t = 1, ..., T . Ip stands for a identity matrix of size (p,p), O(q,r) is a matrix
of zeros of size (q,r) and 1(n,m) is a matrix of ones of size (n,m). Moreover,

∑
j 6=i is denoted

as the short version for
∑N

j=1,j 6=i. The l1-norm is denoted as |.|, which for |x| denotes the
absolute value of x and for |x| denotes the sum of all elements of x in absolute values.

3.2 General Setting

The general setting of this paper is a linear panel model with time-variant and hetero-
geneous parameters. This includes the social network parameters which are pair-specific
and time-dependent. This model is illustrated in (1),

yit = αit + βitxit +
∑
j 6=i

γij,txjt + δ′twit + uit, (1)

where yit denotes the individual outcome at time t; xit denotes an individual char-
acteristic that may generate spillovers; wit is a vector of control variables and uit is the
disturbance term. Here, i = 1, ..., N and t = 1, ..., T mark the position in the cross-
section and time-dimension, respectively. The fixed effects, αit, are time-dependent and
individual-specific; βit is the time-variant coefficient capturing the heterogeneous effect
of own characteristics and γij,t are time-variant pair-specific parameters that depict the
effect of the characteristic of individual j on the outcome of individual i at time t. The
parameter δt captures the time-dependent effects of common controls. This setting allows
for heterogeneity and time-variance in the model which creates additional challenges for
estimation. To enable identification the heterogeneity and the time-variance of the pa-
rameters are restricted. In the subsequent sections the building blocks for the proposed
algorithms are introduced. Their accompanying restrictions lead to the concrete setting
of this paper.
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3.3 Manresa (2016)

The main building block is the method for network recovery of Manresa (2016). Her
method is applicable for panel data where parameters are persistent over time such that
the setting for now simplifies to equation (2),

yit = αi + βixit +
∑
j 6=i

γijxjt + δ′wit + uit. (2)

This is the baseline setting for the model of Manresa (2016) 1. The social interaction
structure is captured by including the characteristics of others as independent variables.
The pair-specific parameters, γij, identify the structure of the social interactions as well
as quantify the spillover effects. The matrix Γ is defined as the matrix containing all γij
at their positions (i, j) and zeros on the diagonal and is denoted as the social interaction
matrix for further reference. This is where the model of Manresa (2016) deviates from
research where the social network structure is treated as given. In mathematical terms
the inclusion of social effects is often stated as ρ0

∑
j 6=i aijxjt instead of

∑
j 6=i γijxjt, which

in matrix notation is ρ0AX instead of ΓX. Here, A denotes the known adjacency matrix
that consists of zeros and nonzero values indicating the structure of the social interactions,
while ρ0 is estimated to capture the magnitude of spillover-effects. For Manresa (2016), a
spillover effect equal to zero, γij = 0, is also interpreted as the absence of a social tie. A
spillover effect not equal to zero, γij 6= 0, indicates both the existence of a social interaction
from j to i as well as the magnitude of its social effect. The fact that connections are
unspecified ex-ante circumvents misspecification of the social structure. On the other
hand, the number of regressors increase linearly with the cross-section which may entail
that they outnumber the periods of observation. As a consequence, the author restricts
the model to settings where the number of nonzero spillovers is assumed smaller than the
number of time periods in the sample. In terms of model (2) this assumption of sparsity
is written as: ∑

j 6=i

I{γij 6= 0} = si << T for all i = 1, ..., N. (3)

The sparsity assumption only limits the number of sources from which an individual
can receive spillovers but still allows an individual to impact any number of others in
the sample. In terms of the social interaction matrix, this only constrains the row-sums
while leaving the columns unrestricted. Next to that, the impact of each spillover is left
unrestricted, allowing ample flexibility for Γ to identify the key senders and receivers
by inspection of the magnitudes of the spillovers. Furthermore, the model allows the
social network structure to be asymmetric, i.e. a spillover from individual j to i does not
require the reverse spillover to be equal in magnitude nor that it is reciprocated, γij 6= γji.
This setting of an asymmetric sparse social interaction matrix with no restriction on the
magnitude of spillovers is tailored for network recovery with minimal restrictions. This
level of flexibility is not attained by similar methods from De Paula et al. (2018) and Lam
and Souza (2014), for their methods include endogenous effects which Manresa (2016)
assumes to be absent.

Additional to the sparsity of the network, consistency of the model relies on conditions
on the variation of the regressors and the error term. In this paper, I highlight the

1The full model of Manresa (2016) adds time-fixed effects to this setting, however, to focus on the aim
of this research, these effects are omitted. Next to that, only for the simplified model without time-fixed
effects she has studied the rate of convergence of the parameters.
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assumptions made, however for full proofs of the consistency of the network recovery I
refer to Manresa (2016).

Box 1: Assumption M1 Condition Sparse Eigenvalues

Let M be the Gram matrix, M = 1
T
X ′X, where X with dimensions N x T consists

of the regressor related to the spillovers with each x̃i = (x̃i1, . . . , x̃iT ) in deviation
from the individual-specific mean over time. The minimal and maximal m-sparse
eigenvalues of M are defined as follows:

ξmin(cs)(M ) = min
δ∈∆(m)

δ′Mδ, ξmax(cs)(M) = max
δ∈∆(m)

δ′Mδ,

where

∆(M ) =

{
δ ∈ R :

N∑
j=1

I{δj 6= 0} < m, ||δ|| = 1

}
.

For any c > 0, there exist constants 0 < κ1 < κ2 < ∞ which are independent
of N and T but may depend on c, such that, with probability approaching 1, as
N, T, s→∞, where s/T → 0,

κ1 ≤ ξmin(cs)(M ) ≤ ξmax(cs)(M ) ≤ κ2.

The assumption in Box 1 limits the degree of cross-sectional correlation between the
characteristics of different individuals. In other words, it ensures that the variation of
e.g. sources xj and xk can be distinguished as a potential source of spillovers2. Further
assumptions on the regressors and error term are closely related to the use of LASSO for
the penalization of specific parameters in the linear panel model, see Box 2.

Finally, in the appendix of Manresa (2016) the consistency of the method’s model
selection is demonstrated. The efficacy of the method relies on the probability of estimat-
ing the wrong source of spillover approaching zero when spillovers are of substantial size
and N and T increase with a restriction on their proportion. To illustrate, consider this
reduced model where each individual has only one source of spillovers, denoted as j(i):

yit = γij(i)xj(i)t + uit.

The accuracy of the estimated source of spillover relies on the fact that the char-
acteristic of that source is more correlated to the outcome of the individual than the
characteristic of any other, i.e.

ĵ(i) = argmax
k 6=i

|Ĉov(yit, xkt)|.

As a result, the probability that the estimated source of spillover, ĵ(i), is not the right
source, j(i), is equal to the probability that the maximum sample covariance between the
outcome and each of the other individuals’ characteristics is larger in absolute value than
the covariance between yit and xj(i)t.

P
(
ĵ(i) = j(i)

)
= P

(
|Ĉov(yit, xj(i)t| < sup

k 6=j(i)
|Ĉov(yit, xkt|

)
(4)

2Manresa (2016) refers to Bickel, Ritov, Tsybakov, et al. (2009) for more details on the Restricted
Eigenvalue Conditions
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The full proof in the appendix of Manresa (2016) shows from there on that this prob-
ability approaches zero under the conditions that (i) there is limited multicollinearity of
x1t, . . . , xNt, (ii) the estimated coefficients γij(i) are bounded away from zero, and (iii)
log(N)
T
→ 0, i.e. N may only be larger than T to a certain extent.

Box 2: Assumptions M2 Time Series LASSO

Let k > 0 be a constant independent of N , T , and s.

2a. ∀i, j : γij ∈ Γ where Γ ⊂ R, is a compact set.

The parameter space is required to be compact.

2b. E[x2
jt] ≤ k, and E[( 1

T

∑T
t=1 xjt)

2] ≤ k , ∀j = 1, . . . , N .

This condition rules out non-stationary regressors and limits their time-series
dependence.

2c. E[uit|xj1, . . . , xjt] = 0 ∀i, j, t.

Requires the exogenous regressors as well as idiosyncratic shocks to be independent
of past values of covariates.

2d. There are constants a > 0, d1 > 0 and a sequence ω[t] ≤ e−at
d1 s.t.,

∀i, j ∈ {1, . . . , N}, {uitxjt}t and {uit} are strongly mixing processes with mixing
coefficients ω[t].

This condition on time-series dependence of {uitxjt}t and is met for example when
{uit}t and {xjt}t are both mixing and independent. This assumption bounds
the noise in estimation for an appropriate choice of penalty tuning parameter
λi, as N and T approach infinity(Manresa, 2016). The use of this assumption
excludes xit = yit−1, since auto-regressive models are not necessarily mixing. In
the supplementary appendix, however, Manresa provides an alternative set of
assumptions to allow for xit = yit−1.

2e. There are constants b > 0 and d2 > 0 such that P(|uit| > m) ≤ e1−m
b

d2
for all

i, j, t, and m > 0.

The tail of uit is required to decay exponentially fast.

Now that the general setting for the model of Manresa (2016) is introduced, the esti-
mation process is demonstrated. The criterion to minimize is the following:

argmin
α,β,Γ,δ

N∑
i=1

T∑
t=1

(yit − αi − βixit −
∑
j 6=i

γijxjt − δ′wit)
2 + λ

∑
j 6=i

|γij|φij, (5)

where λ is the tuning parameter for the penalty level and φij denotes the pair-specific
weights. The objective function has two parts; the first involves the fit of the model in
terms of the sum of squared residuals (SSR) and the second concerns penalization of the
social interaction matrix, Γ. In equations to follow, the sum of squared residuals per
individual concerning the period [1, T ] is denoted as Qi

[1,T ](αi, βi,γi, δ). Likewise, the

SSR for the whole sample is denoted Q[1,T ](α,β,Γ, δ). The penalization term is the force
behind the assumption of sparsity. As the SSR reduces with the number of parameters,
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γij, nonzero, the penalty term increases with the absolute value of the nonzero elements
in Γ. The balancing of these opposing forces is implemented by the tuning parameter,
λ, and the pair-specific adaptive weights, φij. Elaboration of the tuning parameters and
weights is postponed to a separate discussion in section 3.7.

For execution of the method, Manresa (2016) relies on an iterative algorithm based on
the Pooled Lasso estimator, see Box 3.

Box 3: Social Network Recovery and Estimation with Manresa (2016)

1. Choose the initial values: δ0 and β0. Set m = 1.
2. Obtain α(m) and Γ(m) by solving the Lasso estimator for each i:

(α
(m)
i ,γ

(m)
i ) = argmin

αi,γi

Qi
[1,T ](αi, β

(m−1)
i ,γi, δ

(m−1)) + λi
∑
j 6=i

|γij|φij (6)

3. Update the values of β and δ by OLS on the whole sample.

(β(m), δ(m)) = argmin
β,δ

Q[1,T ](α
(m),β,Γ(m), δ) (7)

4. Set m = m + 1. Go to Step 2 until convergence.

Thereafter, Manresa (2016) utilizes Post-Lasso by use of Ordinary Least Squares (OLS)
on all the identified parameters different from zero. This eliminates the shrinkage bias
and is superior to estimation by the Pooled Lasso Estimator under the condition that the
method found the correct model specification.

3.4 Break detection

The method of Manresa (2016) is adapted for break detection based on the least-squares
method, which dates back to the renowned work of Bai (1997). His work established break
detection in time-series based on the fit of the multiple regression model, allowing for the
break to occur in all or in some of the parameters. This paper follows more directly along
the recent panel data version of Bai (1997), Baltagi et al. (2016). In equation (8), the
setting for the least squares method for break detection is illustrated for panel settings
with structural breaks:

yit =

{
x′itβi + eit, t = 1, . . . , τ ∗,

x′itβi + z′itθi + eit, t = τ ∗ + 1, . . . , T,
(8)

where i = 1, . . . , N , xit a (p x 1) vector of all independent variables and zit = RTxit
denotes a (q x 1) subvector of xit containing the variables considered for structural breaks.
Here, R = (Oqx(p−q), Iq) with q ≤ p. The execution is described in Box 4.
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Box 4: Break detection with Baltagi et al. (2016)

Let τ ∈ (1, T ) be the candidate break dates. For every τ define matrix X∗i (τ) =
(0, . . . , 0,x′i,τ+1, . . . ,x

′
iT )′ and rewrite model (8) in a compact matrix form:

∀i ∈ {1, . . . , N} : yi = Xiβi + X∗i (τ)θi + ei = Xi(τ)bi + ei (9)

Compute for ∀i ∈ {1, . . . , N}:

b̂i(τ) =

(
β̂i(τ)

θ̂i(τ)

)
= [Xi(τ)′Xi(τ)]−1Xi(τ)′yi (10)

SSRi(τ) = [yi −Xi(τ)b̂i(τ)]′[yi −Xi(τ)b̂i(τ)] (11)

τ̂ ∗ = argmin
τ∈(1,T )

N∑
i=1

SSRi(τ). (12)

In words, the technique detects the break date by inspecting the SSR of all estimated
models concerning the potential break dates and selecting the break date corresponding
to the model with minimal SSR. The models are estimated with a transformation on
the independent variables such that θ in equation (8) measures the change of the slope
coefficients after the break. While Baltagi et al. (2016) concerns multiple breaks, their
method is adapted and demonstrated for a single structural break, given that multiple
breaks is outside the scope of this paper. Assumptions additional to those of Manresa
(2016) related to the location and size of the break are necessary and presented in Box 5.

Box 5: Assumptions B Structural Break and Distubance Term

(1) Location: τ ∗ ∈ (1, T )

The break date is an integer bounded away from the start and end of the sample-
period such that there are sufficient observations to consistently estimate separate
coefficients before and after the break. This condition is less restricting for settings
where N

T
→∞, however, for use of the method of Manresa (2016) this condition is

indispensable.

(2) Magnitude: Let us define the magnitude of the collective change in parameters
in terms of equation (8) by: χN =

∑N
i=1 θ

′
iθi. Then, χN → ∞ and (i) χN

N
is

bounded as N →∞; (ii) χN
T
N
→∞ and χN

√
T
N
→∞ as (N, T )→∞.

For the setting of this paper, these conditions assure that the case of no structural
break is excluded while 2(i) and 2(ii) impose an upper- and lower bound on
χN

T
N

, respectively. Hence, the change in parameters needs to be bounded and of
significant size.

For this research, I undertake the strictest version of the assumptions of the distur-
bance term of Baltagi et al. (2016). That is, (i) the disturbances uit, i = 1, . . . , N , are
cross-sectionally independent; (ii) uit is independent of xit for all i and t; (iii) uit are
serially uncorrelated. This paper focuses on inspecting whether relaxing the assumption
of persistence has potential and leaves robust analysis concerning the disturbance term
for future research. Moreover, this paper investigates the structural breaks in subsets of
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all parameters. With Assumption B2 of Box 5 in mind, the authors assert that a decrease
in cross-sectional observations with a common break deteriorates the accuracy of break
detection. Likewise, precision of break date estimation is expected to worsen when a
smaller subset of parameters are time-variant. For more specifics on the method, I refer
to Baltagi et al. (2016).

3.5 Scenarios

In this section, the method of Manresa (2016) is expanded by incorporating the tech-
nique of Baltagi et al. (2016) regarding different origins of structural breaks. Without
information on the origin of the break the safe option is to assume that every parame-
ter exhibits a change. This ensures consistency of the model with the cost of potential
over-parameterization. Break detection and estimation may benefit substantially from the
time-invariant parameters being estimated over the full time dimension. For panel mod-
els including a social network, this rises a natural distinction whether the break pertains
to the social effects. I consider three different scenarios: (I) all parameters are involved
in the structural break; (II) the social interaction matrix is persistent, while the other
parameters change; (III) the structural break solely concerns the social interactions.

I hypothesize that identifying these scenarios is important in terms of efficiency in
estimation. Recall that the social effects in Manresa (2016) are inferred by N x (N − 1)
candidate parameters to be penalized. Information whether social effects are time-variant
is worth identifying given that it may reduce the candidate parameters from 2 x N x
(N − 1) to N x (N − 1). To investigate the importance of considering the scenarios, I
put forward a respective algorithm for each scenario that estimates the parameters as if
the scenario is known. The algorithm belonging to Scenario (I) functions as the baseline
model, which is the method applied in case of no prior knowledge with respect to the
scenarios. Analysis with these algorithms demonstrates the first hypothesis of this paper
related to the importance of identifying the scenarios:

1. Information regarding the scenario gives substantial advantage over the baseline model
in terms of break detection, accuracy of parameter estimation and network recovery.

The consistency of the following algorithms rely on the assumptions of the building
blocks. The methods accompanying the scenarios solely split the full time-dimension into
sample splits such that the assumptions need be adapted in terms of the sub-periods.
Recall that by use of the break detection technique of Baltagi et al. (2016) the fit of the
model is utilized to observe where the model is changing. Hence, for break detection, the
method of Manresa (2016) is applied in subsequent sub-periods inspecting all potential
breakpoints τ in a trimmed subset of the full time dimension: [> 1, < T ]. The trimmed
subset is applied such that the number of observations in each sub-period is sufficient for
consistent estimation of Manresa (2016). Using the trimmed subset for τ , let the smallest
sub-period considered be denoted by T̃ . As a result, the assumptions of sparsity is altered
to: ∑

j 6=i

I{γij 6= 0} = si << T̃ for all i = 1, ..., N, (13)

and as such the consistency of network recovery requires adaptation of the third con-
dition to: log(N)

T̃
→ 0.
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From this point forward, I adapt the heterogeneous β to a homogeneous β such that the
cross-section can be utilized for their estimation in the update step displayed in equation
(7). Heterogeneity in direct effects is still considered as an extension. The baseline setting
of this paper then boils down to equation (14).

yit =

{
αi + βxit +

∑
j 6=i γijxjt + δ′wit + uit, t = 1, . . . , τ ∗,

ai + bxit +
∑

j 6=i gijxjt + d′wit + uit, t = τ ∗ + 1, . . . , T.
(14)

where β denotes the direct effects for the sub-period [1, τ ] and b for [τ + 1, T ], likewise
for individual fixed effects α and a, the social interaction matrices Γ and G as well as
the common controls δ and d.

The objective function to minimize comprises of an addition of two criteria as described
in equation (5), one related to each sub-period of the sample split, see equation (15). The
weights for the sub-period after the break are denoted by fij. Box 6 presents the adapted
method of Manresa (2016) to incorporate break detection, further denoted as Algorithm
1 or the baseline model. The outer framework resembles that of Box 4, where for each
potential break date the SSR is collected from estimation on both sample splits and the
break date associated with the minimal SSR is chosen. The inner framework resembles
the block coordinate descent of Manresa (2016) with iterations between the network steps
(16), (17) and the update steps (18), (19).

argmin
α,β,Γ,δ,a,b,G,d

N∑
i=1

τ∗∑
t=1

(yit−αi−βxit−
∑
j 6=i

γijxjt−δ′wit)
2+

T∑
t=τ∗+1

(yit−ai−bxit−
∑
j 6=i

gijxjt−d′wit)
2

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|gij|fij. (15)

Conditional on the fact that the break is found accurately the algorithms apply the
method of Manresa to the sample splits, where the block coordinate descent on the same
convex criterion ensures convergence in each step. The same statement applies to the
algorithms which estimate as if the scenario is known, i.e. estimation with knowledge of
the persistent parameters. Algorithm 2 corresponds to Scenario (II) which is the setting
described in equation (14) with the restriction Γ = G. This reduces the parameters
to be penalized by N x (N − 1). As a result, performance related network recovery
is expected to be superior relative to the baseline model. Moreover, this advantage is
anticipated to indirectly enhance break detection and accuracy of the other parameters.
For Algorithm 3 corresponding to Scenario (III), the setting is as in equation (14) with
the added restrictions α = a, β = b and δ = d. The advantage of Algorithm 3 is mainly
expected in terms of parameter estimation, given that the complexity of time-varying
spillovers remains. In Scenario (III) the break only pertains to the spillovers, which I
expect is harder to detect due to imperfect recovery and the shrinkage bias of LASSO.
For the other scenarios, the addition of cross-sectional variation for the direct effects and
common controls can be used to estimate the difference in magnitude between breaks.

I posit the execution of Algorithm 2 and 3 in Appendix B to avoid their duplicity
with respect to Algorithm 1. Both algorithms are similar to Algorithm 1, except for their
ex-ante knowledge of the parameters that are persistent across sub-periods. The objective
criteria including the restrictions are represented in the equations (21) and (22) below.
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Box 6: Algorithm 1 for Scenario (I)

For each candidate break date τ ∈ (1, T ) perform (1) - (5).

(1) Choose an initial β(0), b(0) δ(0) and d(0) and set m = 1.

(2) Obtain α(m), a(m) and Γ(m), G(m) by solving Lasso for each i for both sub-
periods.

(α
(m)
i ,γ

(m)
i ) = argmin

αi,γi

Qi
[1,τ ](αi, β

(m−1),γi, δ
(m−1)) + λ1i

∑
j 6=i

|γij|φij (16)

(a
(m)
i , g

(m)
i ) = argmin

ai,gi

Qi
[τ+1,T ](ai, b

(m−1), gi,d
(m−1)) + λ2i

∑
j 6=i

|gij|fij (17)

(3) Update β, δ, b and d by OLS splitting the full data matrix in sub-periods.

(β(m), δ(m)) = argmin
β,δ

Q[1,τ ](α
(m), β,Γ(m), δ) (18)

(b(m),d(m)) = argmin
b,d

Q[τ+1,T ](a
(m), b,G(m),d)] (19)

(4) Set m = m + 1 and return to (2) until convergence.

(5) Store the SSR related to this τ using the converged coefficients.

SSR(τ) = Q[1,τ ](α̂(τ), β̂(τ), Γ̂(τ), δ̂(τ)) +Q[τ+1,T ](â(τ), b̂(τ), Ĝ(τ), d̂(τ))

= SSR(τ)[1,τ ] + SSR(τ)[τ+1,T ]

(6) The break date is estimated where SSR is minimal and parameters are estimated
with Post-Lasso using OLS on all regressors corresponding to nonzero parameters.

τ̂ ∗ = argmin
τ∈(1,T )

SSR(τ). (20)

argmin
α,a,β,b,Γ,δ,d

N∑
i=1

T∑
t=1

(yit − I{t<τ}[αi + βxit +w′itδ]− I{t>τ}[ai + bxit +w′itd]−
∑
j 6=i

γijxjt)
2

+ λ1i

∑
j 6=i

|γij|φij, (21)

argmin
α,β,Γ,G,δ

N∑
i=1

T∑
t=1

(yit − αi − βxit − I{t<τ}
∑
j 6=i

γijxjt − I{t>τ}
∑
j 6=i

gijxjt −w′itδ)2

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|gij|fij, (22)

For details on execution, weights and penalty tuning parameters I refer to section 3.7.
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3.6 Flexible Algorithm

The fourth algorithm proposed in this paper is flexible to the three distinguished scenarios.
The flexibility is attained by using a technique similar to the Group Fused Lasso (GFL)
and the adaptive group fused lasso (AGFL) (Qian & Su, 2016). The GFL was designed
for problems where parameters are ordered and are penalized by l1-norms of both the
coefficients and their successive differences. The AGFL is an adaptation of the Group
Fused Lasso of Tibshirani et al. (2005) with respect to temporal order designed to detect
multiple common structural breaks of an unknown number. I elaborate on the AGFL,
given that this paper also uses an temporal extension of the GFL. The technique starts
with a setting where the parameters of interest are fully time-variant, i.e. each t ∈ [1, T ]
has its time-dependent parameters:

yit = µi + β′txit + uit, i = 1, . . . , N, t = 1, . . . , T, (23)

where xit and βt are p x 1 vectors of exogenous regressors and their corresponding coef-
ficients, uit is the error term and µi denote the individual fixed effects. Consequently the
authors propose estimating B = (β′1, . . . ,β

′
T )′ with penalized least squares estimation by

minimizing the following convex objective function:

(B) =
1

N

N∑
i=1

T∑
t=1

(
∆yit − β′txit + β′t−1xi,t−1

)2

+ λ1

T∑
t=2

ẇt||βt − βt−1||, (24)

where ||.|| denotes the Frobenius norm and λ1 denotes the tuning parameter that depends
on N and T . The data-driven weights are denoted by ẇt and defined as

ẇt = ||β̇t − β̇t−1||−2, (25)

where β̇t denote preliminary estimates of βt. Penalization of the AGFL is applied to
differences βt − βt−1 based on their numerical proximity to examine where the fit of the
data suggest that βt = βt−1. Common breaks are detected where successive differences
are not penalized to zero such that βt 6= βt−1. Incorporating this notion to the network
parameters of the baseline model is the idea on which the proposed fourth algorithm
rests. For clarity, I refer to the final criterion for Algorithm 4 in equation (26) on which
is elaborated hereafter. The fourth algorithm differs from the AGFL for it does not use
penalization to search for structural breaks. Instead of penalizing coefficients of subse-
quent time-periods, the proposed algorithm penalizes parameters concerning subsequent
sub-periods. The adaptive weights and penalty are employed to detect which parameters
do not change at the break. Weights are larger for parameters of successive sub-periods
that have numerical proximity, given that weights are inversely related to the differences.
In case the penalty pushes the coefficient for the difference in parameters to be zero, e.g.
gij − γij = 0, the estimated coefficients are equal in both sub-periods and Post-Lasso can
utilize both sub-periods to estimate the spillover from j to i. This increase in variation
over time can in turn lead to more accurate estimation of the persistent spillover. Note
that similar to the GFL the l1-norm is applied for penalization, given that it adapts more
naturally to the method of Manresa.

The fourth algorithm focuses on relaxing the restriction of persistence while ensuring
a convex objective function that converges. Initially, this paper aimed to penalize the
successive differences of all parameters. In that case, the steps in block coordinate descent
may minimize different criteria at each step. For this reason, it is chosen to only penalize
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the parameters in the network steps. Hence, the fourth algorithms aims to detect spillovers
and individual fixed effects that are persistent.

argmin
α,β,Γ,δ,a,b,G,d

N∑
i=1

τ∗∑
t=1

(yit−αi−βxit−
∑
j 6=i

γijxjt−δ′wit)
2+

T∑
t=τ∗+1

(yit−ai−bxit−
∑
j 6=i

gijxjt−δ′wit)
2

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|gij − γij|ψij + λ3i|ai − αi|ζi, (26)

I introduce notation for the difference in parameters of the subsequent sub-periods,
similar to the break detection technique concerning θ in equation (8): γ̆ij = gij − γij and
ᾰi = ai − αi. Moreover, let us denote X ′(i) the T x (N − 1) matrix, which represent the
transpose of X excluding the column of exogoneous regressors for agent i. Wi,[1,τ ] denotes
the p x τ matrix of controls concerning the period [1, τ ]. To avoid confusion, I present the
objective function again with notation in terms of ᾰi and γ̆i :

N∑
i=1

[
yi −

(
1(τ,1) O(τ,1)

1(T−τ,1) 1(T−τ,1)

)(
αi
ᾰi

)
−
(

x′i,[1,τ ] O(τ,1)

O(T−τ,1) x′i,[τ+1,T ]

)(
β
b

)

−
(

X ′(i)[1,τ ] O(τ,1)

X ′(i),[τ+1,T ] X ′(i),[τ+1,T ]

)(
γ ′i
γ̆ ′i

)
−
(

W ′
i,[1,τ ] O(τ,p)

O(T−τ,p) W ′
i,[τ+1,T ]

)(
δ
d

)]2

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|γ̆ij|ψij + λ3i|ᾰi|ζi. (27)

Here, ψij and ζi denote the adaptive weights of γ̆ij and ᾰi, respectively. Please see
section 3.7 for details on the adaptive weights. Let the first part of this objective function
concerning the fit of the model, [ . ]2, be denoted by: Q̆i(αi, ᾰi, β, b,γi, γ̆i, δ,d). The
fourth algorithm is presented in Box 7.

The flexible algorithm can be interpreted as that it starts from the perspective of the
baseline model. For this reason, Algorithm 4 and Algorithm 1 both commence at a consis-
tent model specification when the origin of the structural break is unknown. Consequen-
tially, Algorithm 4 aims to detect the time-invariant parameters by using the numerical
proximity of their coefficients across sub-periods. Note that the efficacy of the method
depends on time-varying and persistent parameters to be estimated with large and min-
imal differences in coefficients, respectively. Hence, Algorithm 4 is even more dependent
on Assumption B2 in Box 5 related to substantial changes in magnitude at the break.
Otherwise, the risk of estimating time-varying parameters as persistent deteriorates esti-
mation. This proposed algorithm is analyzed in its capability to identify the persistent
parameters and as such obtain information on the scenario, which relates to the second
hypothesis:

Detection of persistent parameters advantages the flexible algorithm in terms of break de-
tection, parameter estimation and network recovery relative to the baseline model.

The advantage of the flexible algorithm is also compared to the advantage of the
algorithm corresponding to the scenario such that one can judge whether the algorithm
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has “identified the scenario”. Moreover, the flexible algorithm is able to be more flexible
than the scenarios described in this thesis. The algorithm is flexible in terms of which
parameters are time-invariant: e.g. it can detect that only the individual fixed effects
across time are time-invariant and leave the rest flexible. In addition, the algorithm is
flexible in terms of heterogeneous structural breaks, i.e. it can let individual j have time-
invariant indirect effects, while those pertaining to individual h alter at the structure
break. This reflects a statement of Bardwell et al. (2018) indicating that while not all
time-series may see a change point at the exact same break date, we search for a method
that encourages, but does not force, common break dates. Algorithm 4 takes a step into
this direction with its detection of persistence per individual entry of Γ.

Box 7: Algorithm 4 Flexible to the Scenarios

For each candidate break date τ ∈ (1, T ) perform (1) - (5).

(1) Choose an initial β(0) and b(0) δ(0) and d(0) and set m = 1.

(2) Obtain α(m), a(m) and Γ(m) G(m) by solving Lasso for each i for the full period:

(α
(m)
i , ᾰi,γ

(m)
i , γ̆i) = argmin

αi,ᾰi,γi,γ̆i

Q̆i(αi, ᾰi, β
(m−1), b(m−1),γi, γ̆i, δ

(m−1),d(m−1))

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|γ̆ij|ψij + λ3i|ᾰi|ζi. (28)

Thereafter, a = α+ ᾰ and G = Γ + Γ̆

(3) Update β, δ, b and d by OLS splitting the full data matrix into sub-periods.

(β(m), δ(m)) = argmin
β,δ

Q[1,τ ](α
(m), β,Γ(m), δ) (29)

(b(m),d(m)) = argmin
b,d

Q[τ+1,T ](a
(m), b,G(m),d) (30)

(4) Set m = m + 1 and return to (2) until convergence.

(5) Store the SSR related to this τ using the converged coefficients.

SSR(τ) = Q[1,τ ](α(τ), β(τ),Γ(τ), δ(τ)) +Q[τ+1,T ](a(τ), b(τ),G(τ),d(τ))

(6) The break date is estimated where SSR is minimal and parameters are estimated
by Post-Lasso by OLS including all regressors corresponding to nonzero parameters.

τ̂ ∗ = argmin
τ∈(1,T )

SSR(τ).

3.7 Tuning parameter and Adaptive Weights

Two types of parameters are utilized in the algorithms proposed to ensure that the penalty
for sparsity and detecting time-invariant parameters is appropriately allocated.

1. The penalty tuning paramater: λ, which in Algorithm 3 and Algorithm 4 consists
of multiple parameters: λ1, up to, λ3. This tuning parameter determines the level of
penalization and in case of multiple λ’s it can differentiate this level across different
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types of parameters. In this paper, the estimation method enabled individual specific
tuning parameter λi such that the flexibility for each agent to have a distinct number of
nonzero spillovers is maintained. For computational efficiency, I limit the flexibility of the
distribution of the penalty by setting all λi in a single estimation step equal to each other.
That is, in Algorithm 3: λ1i = λ2i and in Algorithm 4: λ1i = λ2i = λ3i. As a result,
the performance of Algorithm 3 and Algorithm 4 may be slightly limited. Related to the
performance of Algorithm 4 relative to Algorithm 1, the conclusions are at least not biased
in favor of the proposed method of this paper. Furthermore, the R package “glmnet” is
applied for the individual LASSO estimations, which is computationally efficient for sparse
problems. I utilize cross-validation of a grid of 100 lambdas in the range [10−1, 106], where
the chosen λmin minimizes the error based on the cross-validation3. See the vignette for
more details on the execution of the network steps with “glmnet” (Friedman, Hastie, &
Tibshirani, 2010).

2. The weights: φij, fij, ψij, ζi. These weights are adaptive, i.e. adjust based on
coefficients estimated at the previous iteration. The weights allocate the penalty such
that it is focused on the non-links and on merging the time-invariant parameters. The
choice of adaptive weights also follows Manresa (2016) her intuition for network recovery,
given that the sources with a larger covariance also constitute a larger coefficient in the
absolute sense, guaranteed in the standardized settings utilized. The adaptive weights
are also observed in De Paula et al. (2018) and fits naturally to the AGFL of Qian and
Su (2016). Let m denote the current iteration in the execution such that the weights are
defined as follows:

φ
(m)
ij = (γ

(m−1)
ij )−2 ; f

(m)
ij = (g

(m−1)
ij )−2 (31)

ψ
(m)
ij = (g

(m−1)
ij − γ(m−1)

ij )−2 = (γ̆
(m−1)
ij )−2 ; ζ

(m)
i = (a

(m−1)
i − α(m−1)

i )−2 = (ᾰ
(m−1)
i )−2,

where the weights are set to a large number in the case that they concern previously
estimated non-links, which would result to the undefined 1

0
. For the first iteration, a two

stage estimation is performed to compensate for the absence of a previous iteration. The
first stage executes the network retrieval step (equations (16), (17) and (28)) with all
weights equal to 1. The second stage utilizes the estimated coefficients of the first stage
as coefficients in place of those of a previous estimation.

4 Simulation Study

The performance of the proposed algorithms with respect to the scenarios is investigated
by a simulation study. In all settings there is one break that occurs at exactly the half
of the time-span. The trimmed-subset of potential break dates, τ ∈ (1, T ), is adjusted
per setting based on three factors: (1) There is a necessity to trim the set of potential
break-dates given that break detection is inconsistent for too small sub-periods. (2) Min-
imizing the influence of the chosen subset of break-dates on break detection accuracy;
this factor makes the number of potential break dates larger. (3) Computational speed
of the algorithms; this factor makes the number of potential break dates smaller. These
factors have led to the choice of 11 potential break dates with the true break date at its
center,[τ ∗ − 5, τ ∗ +5]. Settings with T = 20 are considered for an exception where the

3Take note that the random folds used for cross-validation in “glmnet” introduce a slight randomness
such that convergence is not completely strict. This influence is minimized by successively fixing the
chosen tuning parameters after a considerable amount of iterations.
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trimmed subset contains 9 potential break dates, [6, 14].

All settings utilize the following standard DGP for i = 1, . . . , N :

yit =


αi + βxit +

∑
j 6=i γijxjt + δ′wit + uit, t = 1, . . . , τ ∗

ai + bxit +
∑

j 6=i gijxjt + d′wit + uit, t = τ ∗ + 1, . . . , T

(32)

where for Scenario (I) all parameters are time-variant: (α,a) = (1, 2), (β, b) = (1, 2),
(δ,d) = (1, 2) and Γ 6= G. For Scenario (II), the set-up is identical except for the time-
invariant network structure Γ = G. Scenario (III) has persistent parameters (α, a) = (1, 1)
(β, b) = (1, 1), (δ,d) = (1, 1) with solely the network structure changing at τ ∗, Γ 6= G.
The independent variables, xit, wit and the disturbance term uit are i.i.d. ∼ N(0, 1) with
the number of controls, p = 1. Next to differentiation for the scenarios, four main settings
are applied which differ in N , T and the social interaction matrix.

Setting (1) Degree: N ∈ (15, 30), T ∈ (20, 50, 100).
Per row of the social interaction matrix (γi): randomly the ‘degree’ number of elements
(γij) are set to 1, with the remaining elements of γi set to 0. The degrees can be high (6),
medium (3) or low (1) and may differ between sub-periods. This setting is mainly utilized
to investigate the relative performance for different degrees. Distinction is made between
settings where the level of degree remains unchanged and those where the degree differs
before and after the break. Moreover, the setting allows for analysis in case the sparsity
assumption is close to violation, when si = 6 and [1, τ ] consists of 6 to 14 time periods.

Setting (2) Political Party: N ∈ (15, 30), T ∈ (20, 50, 100, 200, 400).
The social interaction matrix concerns two communities representing two political parties
of size N/3 and 2N/3. This setting is similar to that of De Paula et al. (2018), where
the authors define strong links and weak links as |γij| > 0.3 and |γij| < 0.3, respectively.
Strong links (0.6 or 0.8) are established from the party leader to each member. In addi-
tion, each individual also receives a small spillover in terms of a weak link (0.2) from a
random other politician. Structural breaks in the network structure changes one leader
and a switch of N/3 politicians to the other party. Setting (2) focuses on the network
recovery with regard to strong and weak links. Moreover, the performance is inspected
for a broad range of N & T , with particular focus on how fast network structure recovery
goes to 100% as N/T → 0.

Setting (3) Village: N = 65, T = 100.
Each row there is a random strong link of magnitude 0.7. On top of that, 175 weak links
are randomly distributed throughout the social interaction network. I follow De Paula et
al. (2018) relating the magnitude of the weak links in row j to the number of allocated
weak links in row j, i.e. 0.3

No. of weak links in row j
. So if there are two weak links allocated in

row j they both have a magnitude of 0.15. The setting mimics the situation of Banerjee
et al. (2013) concerning a rural village in India. With corresponding levels of N and T to
the study of De Paula et al. (2018), the performance of the algorithms are inspected in
comparison to their findings. Note that the comparison is imperfect given that this paper
additionally concerns structural breaks and their paper incorporates endogenous social
effects.
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Setting (4) Hierarchy: N ∈ (15, 30), T ∈ (20, 50, 100).
Each individual has four sources of spillovers, i.e. γi contains (γij, γik, γil, γim) = (2, 1.5, 1, 0.5),
where j, k, l,m 6= i and the other N − 4 elements of γi are 0. This setting is utilized to
investigate the performance of the algorithm when it is only the change of hierarchy in
influencers that causes the break while the sources of spillovers remain the same.

4.1 Performance Measures

The algorithms are evaluated in three aspects: accuracy of coefficient estimates, precision
of break date estimation and accuracy of network recovery . Parameter estimation is
inspected in terms of Mean Absolute Deviation (MAD). In terms of the parameters of
interest, i.e.

A: MAD(α,a) =
1

2N

(
|α̂−α|+ |â− a|

)
,

B: MAD(β, b) =
1

2

(
|β̂ − β|+ |b̂− b|

)
,

G: MAD(Γ,G) =
1

2N(N − 1)

N∑
i

|γ̂i − γi|+ | ĝi − gi|,

D: MAD(δ,d) =
1

2p

(
|δ̂ − δ|+ |d̂− d|

)
,

where A,B,G and D are used for short notation in the presentation of the results and
|.| denotes the l1-norm. Moreover, the break date estimates, τ̂ ∗, are assessed by their
absolute distance to the true break date τ ∗. That is,

AD = |τ̂ ∗ − τ ∗|. (33)

For evaluation of the recovery of the network structure, De Paula et al. (2018) suggests
the percentage of true non-zeros and zeros found. Moreover, measures related to their
distinction of strong and weak links provide additional information. Finally, an inspection
of information from correctly established links relative to misinformation in the forms of
misleading links and missing links is incorporated. In summary, the following six measures
for network recovery are applied:

1. Nonlinks: The percentage of accurate recovery of zeros,

2. Links: The percentage of accurate recovery of non-zeros,

3. Overall: The overall percentage of accurate recovery of links and non-links,

4. Ratio: The ratio of accurate links over (over-identified links + missed links),

5. Strong: The accurate detection of strong links (including sign),

6. Weak: The accurate detection of weak links (including sign).

Furthermore, two explorations in the form of extensions are included in the simulation
study. First, the algorithms are extended from homogeneous to heterogeneous direct
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effects. The differences between the main results and this extension are examined as
well as whether the relative performance of Algorithm 4 to the baseline model alters.
Second, the performance of the algorithms is investigated in case the assumption of a
single structural break is violated, i.e. the setting is persistent. The flexible algorithm is
expected to be more resilient relative to Algorithm 1, because it may merge all individual
specific parameters. Preliminary testing for a break or the number of unknown breaks is
left for future research.

5 Results

Full disclosure of the simulation study results are found in Appendix A. This section
commences with examinations in terms of the performance categories and is followed
by discussions of additional features. Emphasis is placed upon the two hypotheses: (i)
the advantage of information on the origin of the structural break (ii) the performance
of Algorithm 4 relative to baseline model and the Algorithm corresponding to the scenario.

Table 1: Break Detection

Setting 1 Scenario (I) Scenario (II) Scenario (III)
N T A1 A4 A1 A2 A4 A1 A3 A4

Low Degree
15 20 0.29 0.45 0.52 0.28 0.45 0.93 1.08 1.43
15 50 0.09 0.12 0.14 0.03 0.15 0.77 0.76 0.76
15 100 0.03 0.04 0.07 0.01 0.06 0.45 0.50 0.57
High Degree
15 20 0.78 0.98 1.64 0.62 1.08 1.33 1.32 1.44
15 50 0.07 0.11 0.33 0.04 0.21 0.19 0.16 0.28
15 100 0.00 0.01 0.08 0.01 0.08 0.05 0.04 0.06
Medium Degree
15 20 0.95 0.40 0.65
15 50 0.26 0.05 0.18
15 100 0.08 0.02 0.07

Setting 2 Scenario (I) Scenario (II) Scenario (III)
N T A1 A4 A1 A2 A4 A1 A3 A4

30 20 0.39 0.47 0.44 0.27 0.38 1.60 1.60 1.89
30 50 0.21 0.24 0.25 0.05 0.21 1.61 1.69 1.69
15 20 0.43 0.48 0.53 0.25 0.48 1.53 1.70 1.83
15 50 0.20 0.22 0.19 0.05 0.17 1.92 1.79 1.79
15 100 0.12 0.15 0.08 0.02 0.09 1.55 1.51 1.53
15 200 0.06 0.08 0.06 0.02 0.04 1.23 1.28 1.43
15 400 0.05 0.05 0.03 0.02 0.04 1.15 1.03 1.16

1000 and 500 Monte Carlo Simulations are performed for settings with
N = 15 and N = 30, respectively. “Deg.” denotes the level of degree in
each sub-period. “A1” is short for Algorithm 1, likewise for “A2”, “A3” and
“A4” . Performance measures are as denoted in section 4.1
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5.1 Break Detection

Table 1 contains a selected summary of the results for break detection which are here
discussed per Scenario. In Scenario (I), Algorithm 4 has higher levels of AD than Algo-
rithm 1 for settings with T = 20, 50, especially in Setting 1. Performance for settings
with larger T is similar, notably in Setting 2 where one third of the social interaction
matrix is persistent. For settings in Scenario (II), Algorithm 2 is shown to substantially
have the lowest levels of AD. Overall, Algorithm 4 has higher precision of break detection
than Algorithm 1 and this advantage stands out in settings with T = 20, 50 and medium
to high degree. Table 10 in Appendix A confirms this tendency for N = 30. The Monte
Carlo simulations suggest that the information of Scenario (III) is not valuable given that
Algorithm 1 is either similar or slightly superior to Algorithm 3. Algorithm 4 performs
similar to Algorithm 1 in most settings, except for settings with low degree and T = 20
where Algorithm 4 consistently has higher levels of AD. Furthermore, the results suggest
that break detection with the same number of links in both periods is not sub-optimal
with respect to break detection in settings where the number of links alter. In conclu-
sion, information of a time-invariant network structure is valuable for break detection.
Algorithm 4 is able to detect the time-invariant network structure and gains advantages
for break detection but does not attain estimation as if the scenario is known. On the
other hand, break detection of Algorithm 4 is sub-optimal with respect to Algorithm 1
for settings in Scenario (I) and short panels with low degree in Scenario (III).

5.2 Network Recovery

The tables in Appendix A show a comprehensive overview of the performance related to
network recovery, whereas Table 2 concerning strong link detection illustrates the main
tendencies in a concise format.

The performance measure of misinformation, Ratio, suggests that Algorithm 1, 2 and
3, on average, have the advantage in their corresponding scenario. Strong link detection,
however, suggests that only Algorithm 2 has a great advantage over Algorithm 1 in its
scenario. This observation is confirmed by the substantially lower levels of MAD(Γ,G)
relative to Algorithm 1, where this difference is greater than that between Algorithm 3
and Algorithm 1. Information that α, β and δ are time-invariant allows Algorithm 3 to
capture a more clean picture of the network, as is seen by the higher levels of Overall and
Ratio. In contrast, Algorithm 1 appears just as able to detect the key roles of the social
structure. Weak link detection is shown to be difficult for settings to be found in practice.

Furthermore, Table 2 suggest that in Scenario (I) and (III) the fourth algorithm detects
key players as well as Algorithm 1 in most settings. However, the measures Ratio and
Overall signal that in those scenarios network retrieval of Algorithm 1 is cleaner. In detail,
results for Setting 1 indicate that the baseline model is superior in strong link detection
for small T and low degree. However, Setting 2 demonstrates that with the addition of
one weak link and partial persistence of the network this advantage is not robust. For
settings with small T and high degree Algorithm 4 is even superior in network recovery in
terms of MAD(Γ,G), the ratio related to misinformation and identification of the strong
links. I expect this result to stem from random overlap of spillovers between sub-periods
due to the small cross-section. With N = 15, each γi and gi contain 6 out of (N−1) = 14
sources of spillovers at random. The odds are that some indirect effects pertain the
same pairs in both sub-periods, which the fourth algorithm uses for its advantage. Recall
that the ability of Algorithm 4 to detect time-invariance in the network structure is per
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pair-specific entry, γij. This suggest that partial persistence of spillovers is sufficient
to give Algorithm 4 an advantage. Moreover, in Scenario (II) the ability to detect the
time-invariant social interactions grants Algorithm 4 network recovery exceeding that of
Algorithm 1. For example, see Table 10 where for medium and high degree Algorithm 4
demonstrates strong link identification, ratio of information and accuracy of link detection
of (almost) double size. The levels of MAD(Γ,G) and Ratio point out that Algorithm 4
does not reach estimation as if the scenario is known. In terms of strong link detection,
Algorithm 4 performs close to Algorithm 2 for all levels of T , where only for T = 20
Algorithm 2 has a substantial advantage.

Table 2: Strong link identification in (%)

Setting 1 Scenario (I) Scenario (II) Scenario (III)
N T A1 A4 A1 A2 A4 A1 A3 A4

Low Degree
15 20 62.4 52.0 62.2 89.9 83.3 61.0 62.4 54.4
15 50 96.8 92.9 96.9 99.9 99.4 96.5 97.5 92.9
15 100 99.9 99.8 99.9 100.0 100.0 99.9 100.0 99.7
High Degree
15 20 33.2 41.5 34.0 76.7 62.9 32.9 34.0 43.6
15 50 92.9 92.5 92.8 99.8 98.9 92.9 94.7 92.9
15 100 99.9 99.9 99.9 100.0 100.0 99.9 99.9 99.9
Low to High Degree
15 20 38.1 40.6 37.9 39.6 43.5
15 50 93.6 92.9 93.3 93.9 93.5
15 100 99.9 99.9 99.9 99.9 99.9

Setting 2 Scenario (I) Scenario (II) Scenario (III)
N T A1 A4 A1 A2 A4 A1 A3 A4

30 20 30.8 31.4 34.1 65.4 55.9 29.9 30.8 34.7
30 50 76.2 75.1 79.7 96.9 94.3 75.9 76.8 75.7
15 20 41.1 41.7 44.1 72.7 63.8 39.6 38.6 43.1
15 50 81.6 81.5 85.1 97.8 95.3 80.3 81.9 81.0
15 100 97.2 97.1 98.0 99.9 99.3 97.0 97.3 96.8
15 200 99.8 99.8 99.9 100.0 100.0 99.9 99.8 99.8
15 400 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 and 500 Monte Carlo Simulations are performed for settings with N = 15 and
N = 30, respectively. “Deg.” denotes the level of degree in each sub-period. “A1” is
short for Algorithm 1, likewise for “A2”,“A3” and “A4” . Performance measures are
as denoted in section 4.1

All in all, information on the scenario allows a cleaner estimation of the social net-
work structure, while for detection of key players mainly information that spillovers are
persistent is valuable. Algorithm 4 is suggested to already benefit from a partially per-
sistent network structure. In those settings, Algorithm 4 is superior to Algorithm 1 in
network recovery but only attains estimation close to Algorithm 2 in terms of strong link
identification for T bigger than 20.
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5.3 Accuracy of Parameter Estimation

The tables in Appendix A show that information on persistent parameters lead to more
accurate estimation of individual fixed effects. Moreover, Algorithm 1 relative to Algo-
rithm 4 has lower levels of MAD(α,a) in Scenario (I) and (II) for settings with T = 20 and
low degree. Algorithm 4 is slightly superior for settings with medium and high degree in
Scenario (II). Remaining settings in Scenario (I) and (II) show similar levels of accuracy.
In Scenario (III), detection of time-invariant fixed effects of Algorithm 4 leads estimation
to be superior to that of Algorithm 1. Although Algorithm 4 has levels of MAD(α,a)
that approach those of Algorithm 3, accuracy is not as if the scenario is known.

Furthermore, Algorithm 2 and 3 estimate direct effects more accurate in their cor-
responding scenario. As T increases, results of Setting 2 suggest that estimation of the
baseline model attains accuracy as if the scenario is known faster in Scenario (II) than in
(III). Algorithm 1 and 4 have similar accuracy for direct effects in almost all settings. This
is conform expectations given that both treat direct effects to be time-variant. There is
indication in Table 9 and 10 that detecting the persistence of spillovers slightly improves
estimation of direct effects, most notably in settings of high degree. Estimation of coeffi-
cients for common controls follows the tendencies described regarding the direct effects.

In summary, precision of estimating individual fixed effects and direct effects follow
the statement that information on the scenario improves accuracy. In addition, the fourth
algorithm benefits from the ability to detect time-invariant individual fixed effects. Finally,
detection of a persistent network structure improves estimating direct effects for settings
with high degree.

Table 3: Setting 3 Rural Village: Comparison and Network Recovery

Panel (A) Algorithm 1 Algorithm 4 True Network
Scenario Strong Links Strong Links Strong Links

1 65 187 65 171 65 240
2 65 188 65 236 65 240
3 65 183 65 134 65 240

Panel (B) Algorithm 1 Algorithm 4
Scenario Ratio Strong Weak Ratio Strong Weak

1 0.23 96.2% 2.9% 0.19 85.0% 4.4%
2 0.23 96.1% 3.0% 0.29 99.5% 6.5%
3 0.23 95.7% 3.0% 0.20 84.2% 4.0%

300 Monte Carlo Simulations are performed for this setting with N =
65. Panel (A) contains measures “Strong” and “Links” defined as the
number of (strong ) links on the average of the estimated social interaction
matrices. Links of absolute size bigger than 0.3 are regarded as strong and
those smaller than 0.05 are regarded as non-links, similar to De Paula et
al. (2018). Panel (B) demonstrates performance measures as denoted in
section 4.1

5.4 Additional Settings

Table 3 and Table 15 illustrate results for the setting which mimics the simulation of
De Paula et al. (2018) regarding the experiment in rural villages of Banerjee et al. (2013).
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Figure 1: Network Recovery of Alg. 1 and Alg. 4 for Setting 4 Hierarchy

Note: 1000 Monte Carlo simulations are used to construct the averages of the social interaction
matrices of Algorithm 1 (left) and Algorithm 4 (right). The spillovers before the break are
presented above the spillovers after the break. Weak links defined as estimated spillovers with
an absolute value smaller than 0.3 are presented as white.

The setting follows the insights discussed before and highlights the finding that weak
links (|γij| < 0.3) are not picked up by the methods in realistic settings. De Paula
et al. (2018) scrutinize their method by observing whether the average estimated social
interaction matrix contains the same amount of links and strong links as the true network
contains. This is in contrast to the performance measure I employ that observes whether
the method detects the strong spillovers for the correct pairs (i, j) for each simulation.
Note that I average the performance measures over the simulations and not calculate
the performance measures on an average of the estimated social interaction matrices.
To compare, however, I have additionally extracted this information. The method of
De Paula et al. (2018) retrieves 194 edges of which 68 strong, while the true network
has 240 edges of which 65 strong. Panel A in Table 3 shows that Algorithm 1 retrieves
similar numbers as De Paula et al. (2018) while Algorithm 4 detecting the time-invariant
network in Scenario (II) provides measures close the numbers of the true network. Please
recall the imperfect comparison given that Algorithm 1 and 4 consider a structural break,
while De Paula et al. (2018) also incorporate the endogenous social effects. Besides that,
the performance measures in panel B suggest that for larger T and more weak links,
the benefit of Algorithm 4 is still observed for settings with persistent spillovers. For
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Scenario (I) and (III), however, strong link detection of Algorithm 4 deteriorates, whereas
Algorithm 1 has solid strong link detection in all scenarios.

Table 4: Comparison Scenario (II) with Heterogeneous and Homogeneous Direct Effects

N T Deg. Alg.
Heterogeneous Homogeneous
B AD Ratio Strong B AD Ratio Strong

15 20 (1,1)

1 0.58 0.91 0.20 48% 0.12 0.52 0.27 62%
2 0.44 0.80 0.39 74% 0.09 0.28 0.58 90%
4 0.54 0.91 0.32 68% 0.11 0.45 0.42 83%

15 20 (6,6)

1 1.06 1.86 0.35 29% 0.26 1.64 0.42 34%
2 0.72 1.28 0.90 58% 0.15 0.62 1.68 77%
4 0.87 1.55 0.69 49% 0.21 1.08 1.00 63%

15 50 (1,1)

1 0.21 0.40 0.67 93% 0.05 0.14 0.74 97%
2 0.18 0.14 0.99 99% 0.05 0.03 1.13 100%
4 0.20 0.30 0.88 99% 0.05 0.15 0.90 99%

15 50 (6,6)

1 0.31 0.78 2.48 84% 0.06 0.33 3.80 93%
2 0.20 0.25 7.41 99% 0.05 0.04 10.18 100%
4 0.24 0.58 4.95 96% 0.05 0.21 6.69 99%

30 20 (1,1)

1 0.60 0.88 0.13 38% 0.10 0.42 0.18 54%
2 0.50 0.71 0.21 70% 0.08 0.28 0.30 87%
4 0.58 0.90 0.18 61% 0.09 0.39 0.25 79%

30 20 (3,3)

1 0.78 1.48 0.18 25% 0.15 1.17 0.22 32%
2 0.66 1.03 0.38 58% 0.10 0.43 0.56 77%
4 0.74 1.27 0.33 49% 0.12 0.75 0.46 65%

30 20 (6,6)

1 0.99 2.00 0.17 18% 0.21 1.97 0.20 21%
2 0.84 1.33 0.42 45% 0.14 0.87 0.60 59%
4 0.91 1.75 0.35 37% 0.17 1.41 0.47 48%

1000 and 500 Monte Carlo Simulations are performed for settings with N = 15 and
N = 30, respectively. “Deg.” denotes the level of degree in each sub-period. “Alg.” is the
abbreviation of Algorithm. Performance measures are as denoted in section 4.1

In Setting 4 the algorithms are investigated in a context where spillovers pertain to the
same pairs before and after a break, while the magnitudes alter such that the hierarchy
of the sources change. The results in Table 16 suggest that Algorithm 4 is advantageous
over Algorithm 1 and Algorithm 3 for T = 20, 50 in terms of network recovery. Moreover,
for settings of T = 20 the information that only the social interaction matrix alters is
valuable for Algorithm 3 in terms of break detection. Figure 1 demonstrates the estimated
social interaction matrices of Algorithm 1 (left) and Algorithm 4 (right). The illustration
suggests that the detection of time-invariant social ties has supported Algorithm 4 in
detecting the strong links. In contrary, it also illustrates that Algorithm 4 has shrunk
parameters γ̆ij to zero too often in this setting of small T and a degree close to violation
of the sparsity assumption. As a result, an upward bias is shown in the first column of
G. In general, a downward bias is observed for not all strong links are estimated in every
simulation; only 74% are detected on average for Algorithm 4 and 50% for Algorithm 1.

In summary, Setting 3 has shown with an imperfect comparison that algorithms with
a structural break at least have the potential to be considered next to methods such as
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that of De Paula et al. (2018). Setting 4 shows that Algorithm 4 can use its detection
technique for its advantage to identify key players even if their magnitude alter. This
comes, however, with the risk of falsely identifying persistent parameters that result to
less reliable magnitudes.

5.5 Extension: Heterogeneous Direct Effects

In this section, the extension of the algorithms to heterogeneous effects are portrayed.
Given the similarity for execution of the algorithms, Appendix B contains only Algorithm
1 extended with heterogeneous direct effects. Table 4 shows that not only the estimation
of direct effects worsens for making them individual-specific, also the network recovery
and break detection is indicated to be less accurate. For T = 50, the difference for network
retrieval becomes less evident, while the advantage for the homogeneous model stays in
terms of break detection and estimation of direct effects. The advantage of Algorithm 4
in settings of (partially) persistent network structures described in sections 5.1, 5.2 and
5.3 are analogous for the model with heterogeneous direct effects.

Table 5: Setting 1 Degree Scenario 0: No break

Homogeneous direct effects
N T Deg. Alg A B G Overall Ratio Strong

15 20 (1,1)
1 0.41 0.12 0.13 84% 0.28 63%
4 0.27 0.09 0.10 87% 0.49 88%

15 20 (6,6)
1 0.41 0.12 0.13 84% 0.28 63%
4 0.27 0.09 0.10 87% 0.49 88%

15 50 (1,1)
1 0.19 0.05 0.06 90% 0.66 96%
4 0.14 0.05 0.04 92% 0.92 100%

15 50 (6,6)
1 0.24 0.06 0.16 89% 3.58 92%
4 0.16 0.05 0.10 93% 6.45 99%

30 20 (1,1)
1 0.41 0.09 0.07 90% 0.18 54%
4 0.26 0.07 0.06 90% 0.30 86%

30 20 (6,6)
1 0.81 0.18 0.25 77% 0.22 23%
4 0.46 0.14 0.20 80% 0.57 55%

Heterogeneous direct effects
N T Deg. Alg A B G Overall Ratio Strong

30 20 (1,1)
1 0.46 0.53 0.07 90% 0.15 43%
4 0.29 0.46 0.06 90% 0.25 75%

30 20 (6,6)
1 1.05 1.96 0.35 77% 0.19 20%
4 0.53 0.83 0.23 78% 0.43 44%

1000 and 500 Monte Carlo Simulations are performed for settings with
N = 15 and N = 30, respectively. “Deg.” denotes the level of degree in
each sub-period. “Alg.” is the abbreviation of Algorithm.
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5.6 Scenario: No Structural Break

Table 5 shows the results for Algorithm 1 and Algorithm 4 when the assumption of
a structural break in the panel data is invalid. For Algorithm 4, the error in parameter
estimation is substantially lower and network recovery is superior in terms of the measures
Ratio and Strong. These results suggest that Algorithm 4 is preferred for applications
where the assumption of a single break might be violated.

6 Empirical Application

6.1 R&D Spillovers

Research and Development (R&D) is a firm’s intention to increase productivity via de-
velopment of new goods or innovation. Given that most inventions that are productive
are at least attempted to be imitated by competitors, firms tend to benefit from R&D
investments from other firms. For this reason, the social return of R&D investments may
be greater than the private return. Policy makers and researchers are interested in the
quantification of R&D spillovers, given that it can suggest whether policies such as tax
credits for R&D expenditure to lower the private cost of R&D are empirically founded.
However, the receivers and senders of these spillover are generally not known as these
interactions are not directly observable. To overcome this lack of information previous
research has often chosen to proxy for these social ties, e.g. by use of historical patenting
behavior of firms (Bloom et al., 2013). More recently, Manresa (2016) and Rose (2016)
have applied their proposed methods for the quantification of spillovers and identification
of key senders and receivers. In their applications, they assume that the social ties through
which R&D spillovers are present are persistent. However, this assumption that the main
spillovers originate from the same firms over decades is not infallible, especially in indus-
tries where innovation is of essence. Hence, I extend their analysis of R&D spillovers in
absence of the assumption of time-invariant social interactions.

6.2 Model

The set-up of this application is deliberately similar to Rose (2016) and Manresa (2016),
allowing comparison of the methods. For the model specification I build on the same
baseline as Manresa (2016). Firms are assumed to produce according to a Cobb Douglas
function extended with the stock of R&D or knowledge capital:

Yit = AiL
δl
itC

δc
it K

βi
it Πj 6=iK

γij
jt e

εit . (34)

Here, L,C and K denote the stock of labor, capital and knowledge respectively, while
δl, δc, βi, γij are their corresponding coefficients. Note here, that I have chosen to use
the extension of the algorithms using, βi, accommodating to the heterogeneous direct
effects found by previous research. Ai represents a firm-specific technology shock and εit
is assumed to be symmetrically distributed under the conditions in MA2. Then I adjust
this setting to allow for time-variance in the parameters in terms of structural breaks.

Yit =


AiL

δl
itC

δc
it K

βi
it Πj 6=iK

γij
jt e

εit t = 1, . . . , τ ∗

AiL
dl
itC

dc
it K

bi
it Πj 6=iK

gij
jt e

εit t = τ ∗ + 1, . . . , T

(35)
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Please note the the deviating notation here of Ai and Ai which here denote the firm-
specific effects capturing the firm-specific persistent differences within their respective
sub-periods. Taking logs of (35) the following regression model follows:

yit =


αi + βikit +

∑
j 6=i γijkjt + δccit + δllit + εit t = 1, . . . , τ ∗

ai + bikit +
∑

j 6=i gijkjt + dccit + dllit + εit t = τ ∗ + 1, . . . , T

(36)

Here, the lowercase letters of the previous described variables in capital letters denote
the variables in natural logs. This application showcases Algorithm 1 and Algorithm
4 to inspect their differences. The fourth algorithm is able to determine whether the
key players concerning R&D spillovers and firm-specific effects are time-invariant while
assuming the firm-specific direct effects and controls to exhibit change at the break date.
Furthermore, Bloom et al. (2013) has stated that the externalities of R&D investments
are not only positive for other firms. R&D investments can also limit the productivity of
those linked, given that innovation combined with patents can lead to stealing business
of competitors. Hence, depending on the sign, identified spillovers may signify beneficial
copying behavior or a product market rivalry effect.

6.3 Endogeneity

Current choices of the inputs labor, capital and knowledge are likely to cause endogeneity
being present in the model (36). E.g. by simultaneity firms can specify their amount of
R&D investments based on their sales projections or sales made in the year. Thence, to
limit endogeneity I apply both the approach of Manresa (2016) and Rose (2016). The
former chooses to preserve the regression framework and for that reason chooses to include
the inputs of the productive function as lags, see (37). This still provides consistent
OLS estimates for sufficient T under the conditions that lagged R&D investments are
not correlated with current shocks in output and that there is no persistence in these
shocks. As T with respect the number of regressors is not very large, the results should
be interpreted with this bias in mind.

yit =


αi + βikit−1 +

∑
j 6=i γijkjt−1 + δccit−1 + δllit−1 + εit t = 1, . . . , τ ∗

ai + bikit−1 +
∑

j 6=i gijkjt−1 + dccit−1 + dllit−1 + εit t = τ ∗ + 1, . . . , T

(37)

In case these conditions do not hold instrumental variables are needed. This is the
approach Rose (2016) applied, which he had based on the work of Bloom et al. (2013). He
uses the United States Research and Experimentation Tax Credit policy to capture exoge-
nous variation of the R&D stock. For this paper, I implement three of the five suggested
instrumental variables (IV) for reasons of availability and attainability 4. The IV included
concern the federal component of the tax credit for Research and Experimentation, ini-
tiated in 1981. The tax credit is firm-specific and is claimed on the difference between
actual R&D expenditure and a firm-specific “base”. From 1981 to 1989 the base was the
maximum of a rolling average of the previous three years’ R&D and 50% of current R&D

4Complete replication would require additional investigation of all patents and their inventors of the
firms in the sample such that state-specific components of the tax credit may be used.
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expenditure. From 1990 until 2001 (excl.1995-1996) the base was fixed to be the average
of the firm’s R&D to sales ratio between 1984 and 1988, multiplied by current sales, up
to a maximum of 16%. This calculation follows that of Bloom et al. (2013), however, a
clearer overview of the development of the tax credit is presented by Rao (2016, p. 3).
The first stage of the IV-regression is executed per individual i noted in (38),

kit = π0
i + π1

i kit−1 + π2
i taxit + π3

i taxit−1 + π4
i cit−1 + π5

i lit−1 + uit, (38)

where πi denote the first stage coefficients, taxit denotes the federal component of the
R&D tax credit and uit is the idiosyncratic error. The second stage regression is identical
to that of equation (37) with the exception of substituting the fitted values of the first
stage for the lag of the R&D stock for the estimation of direct and indirect effects, i.e.
k̂it, k̂jt instead of kit−1, kjt−1.

The benefit of including the approach of Rose (2016) is the addition of instrumental
variables aiming to capture the exogenous variation related to policy intervention and
which are widely used by previous research. The drawbacks are that Manresa (2016)
is still developing the methodology to cover instrumental variables and the first stage
equation requires the additional assumption that the relationship between the instruments
and the R&D stock is persistent over the whole sample period. Therefore, the results of
the approach of Rose (2016) need be interpreted with caution.

6.4 Data, Measurement and Sample Selection

For data, measurement and sample selection the set-up of Rose (2016) was most repro-
ducible. The sample set by Rose (2016) consists that of 29 firms which are defined by
the two-digit SIC code for Electronics. The firms chosen are those in the industry that
have a positive R&D stock over the sample period, from 1980 to 2001, and have issued
for patents based on data of the United States Patent and Trademark Office. This paper
utilizes 26 of the 29 firms over the same period, with the exclusion of three firms due
to their unattainability from the database with the license I have available. The annual
firm-level data is obtained from the Compustat Accounting database5. Output is measure
in real sales, where net sales levels are deflated using the CPI6 with 1996 as the base year.
Following Manresa (2016) capital stock is measured in book values and deflated by the
CPI and labor stock is approximated by the number of employees. R&D stock is measured
using the perpetual inventory method described in Bloom et al. (2013):

Kit = (1− µ)Kit−1 + Iit, (39)

where Kit and Iit stand for the R&D-stock and R&D investments at time t, re-
specitively. Depreciation is here denoted by µ and set to 15%, following Rose (2016)
and Manresa (2016). The initial stock of R&D-stock is calculated based on a steady state
level based on a 5% growth level. The descriptive statistics of the data is displayed in
Table 6.

5Retrieved at 23/12/2018 from https://wrds-web.wharton.upenn.edu/wrds/
6Obtained at 23/12/2018 from https://www.bls.gov/cpi/research-series/
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Table 6: Descriptive statistics for the electronic industry from 1980 to 2001

Variable Symbol Units Mean S.D. Min Max
Real Sales Y Million 1996$ 2712.1 5003.8 32.2 34370.3
Real R&D Stock K Million 1996$ 773.4 1881.5 2.8 16242.2
State tax credit tax Million 1996$ 5.4 20.9 0.00 319.9
Real Capital Stock C Million 1996$ 118.8 433.8 0.1 6015.0
Labour Stock L Thousands 18.5 28.7 0.3 150.0

To find out whether the instruments are strong predictors of the log R&D stock, I
follow Rose (2016) and compute the F statistic on the individual regressions in equation
38 for the restriction: π1

i = π2
i = π3

i = 0. Similarly to Rose, the F statistics estimated are
large, with the median and minimum F-statistic being 112.56 and 9.04, respectively. The
maximum related p-value is 0.001, from which is concluded that the tax credits and the
lag are not too weak predictors.

6.5 Results

The results are estimated with Algorithm 1 and Algorithm 4. Similar to Rose (2016), the
data is initially transformed with forward orthogonal deviations. The trimmed subset of
potential break-dates ranges from 1987-1993. For the data-driven approach of the tuning
parameter, cross-validation over a logarithmic grid of 300 values is applied ranging from
[10−3, 106]. This application focuses on illustrating the usage of the algorithms with the
aim to demonstrate the opportunity of detecting persistent spillovers while assuming time-
variance. This paper does not state that its proposed methods are proven sufficiently for
this application to consider the significance of the inference. Therefore, point estimates
should be interpreted with caution. Moreover, the simulation study exposed that the
algorithms are only applicable for settings where spillovers are large enough.

Table 7 summarizes the results for both the approaches of (A) Manresa (2016) and (B)
Rose (2016). For setting (A) the results suggest that the change occurs at 1991. Private
effects of R&D increased after the break according to Algorithm 1, while Algorithm 4
suggest that the average intensity of spillovers became twice more positive. In setting
B, Algorithm 1 deviates most from the other estimations with a break at 1987 and sug-
gesting that from 1981 to 1987 externalities of R&D suggest a highly competitive nature.
Algorithm 4 in setting B demonstrates that the break at 1991 follows the tendencies of
setting A that the private effects of R&D became more intense as well as social effects
less positive and/or more negative.

Network recovery is visually portrayed in Appendix C Figures 2 to 5. Overall, the
figures suggest that Siliconix Inc. (SILI), Thomas Betts Corp. (TNB), Harris Corp.
(HRS) and Cooper Industries Plc. (CBE) are key influencers in the sample of innovating
firms in the electronics industry. Comparing Algorithm 1 and 4 in setting A, the intensive
and extensive margin of the sub-periods are illustrated as in Table 7. However, by three
observations the period after the break appears similarly estimated by the algorithms: (i)
SILI and HRS are the main sources of positive spillovers; (ii) both algorithms identify the
two key receivers Standard Microsystems Corp. (SMSC) and INTC (Intel Corp.); (iii)
almost identical estimation of competitive spillovers sent by Woodhead Industries Inc.
(WDHD). The algorithms show more diverging social interaction matrices in setting B
relative to setting A. This is likely to originate from Algorithm 1 estimating the break at
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Table 7: R&D Spillovers in the Electronic Industry

Description Definition (A) Lags (B) IV
Alg. 1 Alg. 4 Alg. 1 Alg. 4

Direct effect of R&D 1
N

∑N
i=1 βi 0.40 0.80 0.99 0.85

1
N

∑N
i=1 bi 1.32 0.85 0.85 1.24

Intensive margin of spillovers
∑N

i=1

∑
j 6=i γij∑N

i=1

∑
j 6=i I{γij 6=0} 0.22 0.11 -0.91 0.09∑N

i=1

∑
j 6=i gij∑N

i=1

∑
j 6=i I{gij 6=0} 0.15 0.20 0.08 -0.10

Extensive margin of spillovers
∑N

i=1

∑
j 6=i I{γij 6=0}

N(N−1)
0.11 0.08 0.07 0.11∑N

i=1

∑
j 6=i I{gij 6=0}

N(N−1)
0.08 0.12 0.14 0.16

Break date τ 1991 1991 1987 1991

1987. The most robust finding is that SILI sends mainly large positive R&D spillovers
between 1991 and 2000, except for its suggested rival SMSC.

The figures in Appendix C 2 to 5 are constructed such that the firms are sorted in
increasing size along the axis. Here, size is measured in total sales over the full sample
period. In contrast to Rose (2016), there is no indication that larger firms tend to send
more spillovers. This deviation may have origin in our assumptions regarding persis-
tence. Another disparity is that Rose forced the spillovers from other firm’s R&D stock
to be positive and spillovers captured as endogenous social effects to be negative. In case
negative and positive externalities are both present between pairs of firms, Algorithm 1
and Algorithm 4 cannot distinguish between them. For this reason, the algorithms can
only identify social ties where R&D either dominantly related to additional competition
between firms or to spreading productivity by reproducible innovation.

7 Conclusion

Recently proposed panel models that quantify spillovers and recover sparse network struc-
tures rely heavily on the assumption of persistent social interactions. This paper relaxes
the assumption of persistence by means of structural breaks, using Manresa (2016) as a
starting point for this exploration. Different scenarios of breaks are considered with focus
on whether the social interaction matrix structurally changes. Information on the sce-
narios is evaluated by comparison of algorithms that estimate as if the scenario is known
relative to the baseline model that assumes all parameters alter at the break date. A
simulation study has indicated that information of time-invariant parameters improves
parameter estimation and enhances the retrieval of information relative to the misinfor-
mation from the estimated network. Identification of key players and break detection tend
to improve mainly from information that the spillovers are persistent.

Furthermore, this paper has proposed an algorithm that detects persistent social in-
teractions. This flexible algorithm uses numerical proximity and penalization to identify
whether coefficients in successive periods need be estimated as time-invariant parameters.
The value of this algorithm is measured relative to the baseline model and to what extent
performance attains levels as if the scenario is known. Results suggest that performance
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of the flexible algorithm is dependent on whether the additional effort to detect persistent
spillovers is worthwhile. Worthwhile settings comprise those with at least a subset of
the social interactions persistent. On average, a short time-span enhances the relative
advantage of detecting persistent spillovers. This suggests that when the time-variation
available is small, doubling the number of observations is more valuable for extracting
key information. Short panel data are common in econometric research on social network
analysis and is more suitable for this single-break investigation. Next to that, require-
ment of partial persistence is already a relaxation of persistence. Hence, one can conclude
that the flexible algorithm has shown potential to relax the assumption of persistence
in relevant settings. The potential of the algorithm is demonstrated in terms of break
detection, accuracy of parameter estimation and network recovery and predominantly in
identification of key players.

Additional inquiries have shown that identification of persistent social ties with varying
magnitudes requires the difference in magnitudes across sub-periods to be of significant
size. Otherwise, the algorithm deems these spillovers time-invariant and merges their
magnitude. The advantage of the flexible algorithm in its worthwhile settings also pertain
to the extended algorithm considering heterogeneous direct effects. Moreover, in case the
setting is persistent and the algorithms erroneously assume a structural break, the flexible
algorithm is less affected by this mistake. Furthermore, an empirical application has
shown that the flexible algorithm and the baseline model recover both different and similar
patterns of R&D spillovers in the Electronics industry of the United States. However, more
research is necessary to conclude more regarding their relative performance in practice.

All in all, this paper concludes that the notions of different scenarios of structural
breaks and detection of time-invariant spillovers by means of penalization are valuable to
consider in the relaxation of the persistent network structure.

7.1 Discussion

This paper has functioned as an exploration of relaxing the assumption of a persistent
social network structure by means of scenarios of structural breaks. I do not claim that
the algorithms themselves pertain to optimal methods in this field of research nor that
their execution is optimal. With the conclusion of this paper, I suggest future research
to review this exploration for multiple methods such as from Lam and Souza (2014),
De Paula et al. (2018) and Rose (2016).

Next to that, I recommend an extension to multiple breaks as well as addition of an
information criterion to establish the number of unknown breaks. Hui et al. (2015) may
provide direction with their extended regularized information criterion that is specific for
tuning parameters of the adaptive lasso. Furthermore, the methods in this paper are
unable to detect changes at the boundaries of the time-span. Bardwell et al. (2018) shows
promising results for change point detection in a multivariate panel model close to the
end of the time-period, which could contribute to the field of social network econometrics.

Moreover, in the aspect of execution, Manresa (2016) suggests in her supplementary
appendix that a choice of a higher penalty tuning parameter λ can increase the perfor-
mance of her method. I expect this result to originate from the noise of over-identified
links of small magnitude, which a higher penalty may shrink to zero. In turn, Post-Lasso
can gain efficiency for having less parameters to estimate. In opposition, this choice is
difficult to argue for in combination with using a data-driven approach for the tuning-
parameter. Besides that, for the proposed flexible algorithm a higher λ choice may also
entail that more parameters are mistakenly estimated to be time-invariant. Another re-

33



mark related to the execution is that the trimmed subsets of potential break dates are
chosen to be small, (9 or 10), for computational efficiency. This has the drawback of
suggesting the break date precision too favorable, however, the relative precision across
algorithms remained valid and may have supported the comparability across time-spans.
The number of Monte Carlo simulations applied in the simulation study are sub-optimal,
which is due to the break detection and cross-validation requiring two days for a 1000
simulations for a setting with N = 15 and three algorithms.

Furthermore, future research is recommended to investigate relaxation of the assump-
tion of a persistent network structure in different directions. Machine learning techniques
may provide the additional tools for estimating time-varying networks from characteristics.
This direction is for example taken by Kolar et al. (2010), who propose their temporally
smoothed l1-regularized logistic regression formalism. They also argue that including as
much as prior information as possible is pivotal, which implies Bayesian methods to be
considered. Future research is encouraged to aim for time-varying networks allowing both
smooth as well as structural changes.

On another angle, future research is urged to the opportunity of limiting the hetero-
geneity of social effects to enable time-variance in the structure. Manresa (2016) implores
this suggestion in her supplementary appendix by relating social network analysis to her
previous research in Bonhomme and Manresa (2015). She adapts her model to let social
effects depend on the group-membership of individuals. Inspiration for limiting hetero-
geneity is also attainable in the literature of stochastic block models with community
detection in sparse networks (e.g. Guédon & Vershynin, 2016 ).
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8 Appendix A: Simulation Study Tables
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9 Appendix B: Algorithms

Scenario (II): Algorithm 2

For each candidate break date τ ∈ (1, T ) perform (1) - (5).

(1) Choose an initial β(0) and b(0) δ(0) and d(0) and set m = 1.

(2) Obtain α(m), a(m) and Γ(m) by solving Lasso for each i for the full period.

(α
(m)
i , a

(m)
i ,γ

(m)
i ) = argmin

αi,ai,γi

[Q2i(αi, β
(m−1), δ(m−1), ai, β

(m−1),d(m−1),γi)

+ λ1i

∑
j 6=i

|γij|φij]

where Q2i is the least-squares objective per individual considering the sample splits
such that the subsequent time-periods are related to the time-variant parameters as
shown in equation 21.
(3) Update β ,b, δ ,d by OLS concerning the full data matrix.

(β(m), b(m), δ(m),d(m)) = argmin
β,b,δ,d

[Q2(α(m),a(m), β, b, δ,d,Γ(m))] (40)

(4) Set m = m + 1 and return to (2) until convergence.

(5) Store the SSR related to this τ using the converged coefficients.

SSR(τ) = Q2(α̂(τ), β̂(τ), Γ̂(τ), δ̂(τ)) +Q2(â(τ), b̂(τ), Γ̂(τ), d̂(τ))

= SSR(τ)[1,τ ] + SSR(τ)[τ+1,T ]

(6) The break date is estimated where SSR is minimal and parameters are estimated
by Post-Lasso

τ̂ ∗ = argmin
τ∈(1,T )

SSR(τ). (41)
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Scenario (III): Algorithm 3

For each candidate break date τ ∈ (1, T ) perform (1) - (5).

(1) Choose an initial β(0) and δ(0) and set m = 1.

(2) Obtain α(m), Γ(m), and G(m) by solving Lasso for each i over [1, T ].

(α
(m)
i ,γ

(m)
i , g

(m)
i ) = argmin

αi,γ
(m)
i ,g

(m)
i

[Q3i(αi, β
(m−1), δ(m−1),γi, gi)

+ λ1i

∑
j 6=i

|γij|φij + λ2i

∑
j 6=i

|gij|fij]

where Q3i is the least-squares objective per individual considering the sample splits
such that the subsequent time-periods are related to the time-variant parameters as
shown in equation 22.
(3) Update β and δ by OLS concerning the full data matrix.

(β(m), δ(m)) = argmin
β,δ

[Q3(α(m), β, δ,Γ(m),G(m))] (42)

(4) Set m = m + 1 and return to (2) until convergence.

(5) Store the SSR related to this τ using the converged coefficients.

SSR(τ) = Q3(α̂(τ), β̂(τ), Γ̂(τ), δ̂(τ)) +Q3(α̂(τ), β̂(τ), Ĝ(τ), δ̂(τ))

= SSR(τ)[1,τ ] + SSR(τ)[τ+1,T ]

(6) The break date is estimated where SSR is minimal and parameters are estimated
by Post-Lasso

τ̂ ∗ = argmin
τ∈(1,T )

SSR(τ). (43)
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Algorithm 1: Heterogeneous Direct Effects

For each candidate break date τ ∈ (1, T ) perform (1) - (5).

(1) Choose an initial β(0), b(0) δ(0) and d(0) and set m = 1.

(2) Obtain α(m), a(m) and Γ(m), G(m) by solving Lasso for each i for both sub-
periods.

(α
(m)
i ,γ

(m)
i ) = argmin

αi,γi

Qi
[1,τ ](αi, β

(m−1)
i ,γi, δ

(m−1)) + λ1i

∑
j 6=i

|γij|φij (44)

(a
(m)
i , g

(m)
i ) = argmin

ai,gi

Qi
[τ+1,T ](ai, b

(m−1)
i , gi,d

(m−1)) + λ2i

∑
j 6=i

|gij|φij (45)

(3) Update β, δ, b and d by OLS splitting the full data matrix in sub-periods.

(β(m), δ(m)) = argmin
β,δ

Q[1,τ ](α
(m),β,Γ(m), δ) (46)

(b(m),d(m)) = argmin
b,d

Q[τ+1,T ](a
(m), b,G(m),d)] (47)

(4) Set m = m + 1 and return to (2) until convergence.

(5) Store the SSR related to this τ using the converged coefficients.

SSR(τ) = Q[1,τ ](α̂(τ), β̂(τ), Γ̂(τ), δ̂(τ)) +Q[τ+1,T ](â(τ), b̂(τ), Ĝ(τ), d̂(τ))

= SSR(τ)[1,τ ] + SSR(τ)[τ+1,T ]

(6) The break date is estimated where SSR is minimal and parameters are estimated
with Post-Lasso using OLS on all regressors corresponding to nonzero parameters.

τ̂ ∗ = argmin
τ∈(1,T )

SSR(τ). (48)
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10 Appendix C: Figures

Figure 2: Algorithm 1 Setting (A): R&D Spillovers

Note: The firms included are shown with their official TIC-code used in the COMPUSTAT database. Cells
representing spillovers larger than 1 or smaller than −1 are filled with bright green and red, respectively.
Remaining spillovers larger in absolute value than 0.3 are filled with light green or red. The upper and
lower illustration represent the social interaction matrix, before and after the break. Lines separating the
matrices in quadrants are included to aid inspection.
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Figure 3: Algorithm 4 Setting (A): R&D Spillovers

Note: The firms included are shown with their official TIC-code used in the COMPUSTAT database. Cells
representing spillovers larger than 1 or smaller than −1 are filled with bright green and red, respectively.
Remaining spillovers larger in absolute value than 0.3 are filled with light green or red. The upper and
lower illustration represent the social interaction matrix, before and after the break. Lines separating the
matrices in quadrants are included to aid inspection.
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Figure 4: Algorithm 1 Setting (B): R&D Spillovers

Note: The firms included are shown with their official TIC-code used in the COMPUSTAT database. Cells
representing spillovers larger than 1 or smaller than −1 are filled with bright green and red, respectively.
Remaining spillovers larger in absolute value than 0.3 are filled with light green or red. The upper and
lower illustration represent the social interaction matrix, before and after the break. Lines separating the
matrices in quadrants are included to aid inspection.
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Figure 5: Algorithm 4 Setting (B): R&D Spillovers

Note: The firms included are shown with their official TIC-code used in the COMPUSTAT database. Cells
representing spillovers larger than 1 or smaller than −1 are filled with bright green and red, respectively.
Remaining spillovers larger in absolute value than 0.3 are filled with light green or red. The upper and
lower illustration represent the social interaction matrix, before and after the break. Lines separating the
matrices in quadrants are included to aid inspection.
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