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Abstract

This thesis analyses the dependence structure of 11 global stock markets to
estimate portfolio risk measures. A parametric copula model from Huser and
Wadsworth (forthcoming 2018) is applied to model the co-exceedances over a thresh-
old. The model allows a smooth transition between asymptotic dependence and
asymptotic independence. We find that the strongest spillover effect exists for
countries within the European Union as opposed to more geographically diverse
countries. The risk estimates based on the Huser and Wadsworth (forthcoming
2018) model outperform the benchmark estimates based on conventional copula
models.
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1 Introduction

Through the integration of capital markets, the global financial system becomes increas-
ingly entangled. A negative shock in one market causes more volatility spillover on related
markets as they become more strongly connected. A good example of this is the crash of
financial markets in 2008, which suggests a large dependence between assets worldwide
during a crisis. The overall losses were so severe, that the impact was disproportion-
ate to any empirical evidence, leading to portfolio performance worse than the modeled
worst-case scenarios. An accurate estimate of the dependence structure of global markets
could have resulted in more informed decision-making when constructing portfolio of ge-
ographically diversified assets. Estimating risk measures incorporating the dependence of
extreme events potentially provides better information regarding portfolio losses during
extreme events.

This thesis analyzes the dependence structure of crashes across financial markets and
estimates portfolio risk measures in accordance with that dependence structure. There
are two potential cases that may occur when analyzing the behaviour of joint extreme
events of a pair of markets: asymptotic dependence or asymptotic independence. Un-
derstanding the difference is crucial for both model development and data application as
standard models only allow either asymptotic dependence or asymptotic independence.
When chosen the incorrect model, extrapolation will yield inaccurate results. The dif-
ference between the two depends on whether the relation between risk factors remains
constant when considering more extreme events. The dependence of extreme events is
usually measured by the conditional probability that one is above high threshold, given
the other is above a high threshold. In this thesis, the thresholds refer to quantiles with
the same probability of the corresponding marginal loss distributions. As the tail prob-
ability defining the marginal threshold tends to zero, we are considering more and more
extreme events. If the conditional probability remains at a constant level when consid-
ering more and more extreme events, the relation between markets is called asymptotic
dependent. Then the conditional probability that one market crashes, given that another
market crashes, remains constant when crashes get more extreme. If the conditional prob-

ability diminished to zero when considering more and more extreme events, the relation



between markets is called asymptotic independent. Here, the conditional probability that
one market crashes, given that another market crashes, decreases to zero when crashes
become more extreme. However, stating whether asymptotic (in)dependence holds is
problematic in general. The traditional method to distinguish between asymptotic de-
pendence and asymptotic independence is through a tail dependence coefficient. The
coefficient performs well in classifying the dependence structure, but neglects informing
about the remaining level of dependence in asymptotically independent distributions.
Therefore in our study the tail coefficient is an undesirable candidate for understanding
the asymptotic behaviour.

Instead, we estimate the asymptotic (in)dependence of stock markets through the
parameter space in a model without distinguishing the two cases ex ante. In addition,
when joint extremes follow an asymptotic independent structure, this thesis differentiates
between the rate at which the dependence structure reaches asymptotic independence.
This is referred to as the sub-asymptotic dependence. To complement existing research

this research focuses on two main research questions. The first question is the following:
1) What is the asymptotic relation between pairs of large global stock markets?

Capturing the asymptotic relation within stock markets enables extrapolation towards
the most extreme events, those which affect the financial stability of stock markets the
strongest. Due to the impact of these crashes, regulators and policy makers require that
financial institutions, i.e. banks, hold risk capital that is enough to cover portfolio losses
in unlikely events. The amount of capital a financial institution must hold, is derived
from common standard measurements for portfolio risk. Having a large cash reserve
diminishes potential profits, while too small reserves causes an increase in the default
probability. Industry standard risk measures exist to summarize the risk in portfolios,
i.e. those conform Basel I & II regulations. These measures largely depend on the extreme
quantiles and therefore on assumptions made about the loss distribution. Since a portfolio
loss is a linear combination of losses of each asset, the dependence across the assets in
part determines the distribution of portfolio losses, particularly the dependence structure

for extreme losses. Modelling the dependence of the extreme losses across assets could



contribute to more accurate portfolio risk estimates than applying standard risk models.

The second question therefore focuses on these widely used risk models:

2) Can standard risk models be improved by incorporating a new model for the asymp-

totic (in)dependence between indices?

The co-movements of financial markets are usually summarized by the Pearson cor-
relation coefficient using all observations (Bekaert and Harvey (2003)). The advantage is
that it is one characteristic to compare and allows for fast decision making. However, it
does not distinguish between extreme and moderate observations. A different approach
would be to use a copula model to study the co-movements. Copula refers to a multi-
variate distribution function that links the univariate marginal distributions (margins) of
individual random vectors to a cumulative distribution function (c.d.f). Since it allows
to model the dependence structure with non-Gaussian margins, it is often used to model
the asymptotic dependence structure in financial markets.

A common restriction of copulas is, depending on the choice of copula, one either
assumes asymptotic dependence or asymptotic independence. When selecting a depen-
dence model the (incorrect) assumption of asymptotic (in)dependence could severely bias
the risk measures. The parametric copula model in Huser and Wadsworth (forthcom-
ing 2018) (for future reference noted as H&W) allows for the possibility of a smooth
transition between asymptotic independence and asymptotic dependence through two
components. The parameter space specifies the asymptotic (in)dependence and there-
fore no assumptions on the asymptotic dependence structure are made. The asymptotic
independent component is flexible and contains different parametric forms. In this the-
sis, simulations are done to compare the estimation of parameters between the different
specifications. The parametric fit of the copula model and non-parametric estimates of
the tail dependence together determine the goodness of fit.

Based on modelling the asymptotic (in)dependence between indices, this thesis esti-
mates the risk measure Value-at-Risk (VaR) of a portfolio. We consider three approaches
to estimating the VaR, including a method where the dependence structure of two indices

is modeled by the H&W model.



The methodology in this thesis consists of two parts. Firstly, an in-sample analysis fit-
ting all data to the proposed model. In this part, we model the asymptotic (in)dependence
by the model in H&W and use a heteroskedastic volatility model for the marginals. Test-
ing the asymptotic relation within pairs of financial markets is based on the assumption
of asymptotic normality of the estimators for the parameters. Secondly, to test whether
our new method can improve the VaR estimation, we conduct an out-of-sample analysis
that incorporates temporal changes in the asymptotic (in)dependence. As the aim is to
accurately measure portfolio risk, parametric and non-parametric estimates for the VaR
of a portfolio are backtested, including VaR estimated using the copula model in H&W.

The structure of this thesis is as follows. Firstly, Section 2 summarizes the relevant
literature of the asymptotic (in)dependence in financial markets through a copula model.
Next, an introduction to a copula model and in particular an extension of the copula
model in H&W is in Section 3. The modelling of the return series and calculation of the
VaR estimates are in Section 4. A simulation study concerning the parameter estimation
of the copula model is given in Section 5. Characteristics of the empirical data are
in 6. Section 7 focuses on the implementation of the model and the respective risk

measurements. Last, a conclusion of this thesis is provided in Section 8.

2 Literature

There are many studies analyzing stock market integration over time. Bekaert and Harvey
(2003) and Longin and Solnik (2001) report that more market integration has had a
positive effect on the dependence structure between markets. Furthermore, Poon et al.
(2003) finds evidence of increasing dependence between extremes by investigating global
stock markets. Dividing the estimation sample into arbitrarily chosen sub-periods, Poon
et al. (2003) calculates standard dependence measures in each sub-period via a regression
model. They find an increase in asymptotic dependence, but whether the increase is
statistically significant remains uncertain. The markets analyzed in Poon et al. (2003)
are included in this thesis for comparison, however a different sample period is chosen.
Castro-Camilo et al. (2018) build upon the findings of Poon et al. (2003) and propose

a rolling window estimation in combination with a regression model. In this thesis, we



analyze the asymptotic dependence by the model in H&W, which is less complex than
that in Castro-Camilo et al. (2018) and more suited towards our research questions. To
account for the non-stationary dependence structure in markets, we adopt a similar rolling
window approach.

Longin and Solnik (2001) report that heteroskedastic volatility affects asymptotic
dependence. A period with high volatility is more likely to be followed by a period with
high volatility, than a period with low volatility. To filter the heteroskedastic volatility, we
implement a flexibile GARCH-model before estimating the asymptotic (in)dependence.
Lastly, Forbes and Rigobon (2002) provide empirical evidence for asymmetry in most
of the pairs of extremes within 21 stock markets. The asymmetry in pairs refers to
stronger dependence when markets go down, as opposed to going up and incorporating
this characteristic could improve the fit of a model.

Assuming asymptotic (in)dependence between indices when selecting a dependence
model, could severely over- or underestimate portfolio risk. Since the relation is of-
ten unclear, H&W introduce a flexible copula model that enables the range between
the asymptotic dependence and asymptotic independence in the parameter space. The
model builds upon Huser et al. (2017), who construct a Gaussian scale mixtures model
to enable asymptotic dependence. The model is shown to outperform non-parametric
dependence statistics when using a censored likelihood estimation. Other models esti-
mating the asymptotic relation include, but are not limited to, a limiting Poisson process
(Engelke et al. (2015)), a generalized Pareto process (Ferreira et al. (2014)) or a factor
copula model (Krupskii et al. (2018))). However, these models either lack the tail flexi-
bility of the model in H&W or only allow asymptotic independence at boundary points.
The only possible advantage of the aforementioned models compared to the model in
H&W, is that they do not suffer from large computational burden in higher dimensions.
Also, the numerical estimation is less prone to error than a model incorporating max-
stable distributions. However, as this study investigates pairwise dependence only, the
computational burden remains moderate. Due to the tail flexibility and the possibility
to test for asymptotic (in)dependence, we expect that the H&W model is more suitable
for our research. We consider four different variants of the model: a Gaussian, Dirich-

let, Logistic and Asymmetric-Logistic variant. The expectation is that a variant which



inhabits an asymmetric structure(i.e. Dirichlet, Asymmetric-Logistic) would perform
better than with a symmetric structure(i.e. Gaussian, Logistic), as Forbes and Rigobon

(2002) indicates asymmetry in financial stock markets.

3 Modelling bivariate tail dependence structure

This section covers an introduction to copula and the theory regarding the H&W model.
The model allows for asymptotic (in)dependence between two random variables, without
assuming asymptotic (in)dependence upfront, possibly contributing to more accurate risk
analysis. The general methodology for modelling the return series, using the dependence
model from this section, is given in Section 4.

Note that throughout Section 3 & 4, like in general literature, the extremes are defined
as positive exceedances above a threshold. However, the extremes of interest in our study
lay below a pre-specified threshold (crashes). Therefore we consider the upper tail of the
loss distribution of the returns in our application (Section 7) which aligns with the theory

and methodology in Section 3 & 4.

3.1 Copula

Suppose a bivariate random vector (Xi, X3) follows the corresponding c.d.f. of the pair
be F(x1,x2), with marginal c.df. Fj(x;) for j = 1,2. Sklar (1959) shows that if the
margins are continuous and strictly increasing, a copula function Cr exists and is unique

for c.df. F

F(CL’l,Ig) = PI’{Xl < J]l,XQ < IQ}
= PI'{UI < F1<ZE1), U; < FQ(IQ)} (1)

= Cp(Fi(z1), Fa(x2)).

Here (U, Us) = (F1(X1), F2(X3)) is a bivariate random vector and the copula Cr € [0, 1]
is a bivariate distribution function that links the two margins. Due to the property of cop-
ula invariance for monotonously increasing margins, the information between the copula

and the margins are mutually exclusive, which allows investigating the two separately.



In this thesis, the dependence of values above a extreme marginal threshold (u}, u})
are of importance. Define the extreme pairs (Y7, Ys) as the subset where at least one
r.v. in the pair (Xj, X3) exceeds its extreme marginal threshold. In the next section we
shall introduce a copula model by H&W, Cy, which models the dependence in the pairs
of extremes (Y1, Ys). The asymptotic dependence of the extremes can then be evaluated
through the copula Cy. To measure the asymptotic relation of extremes in C'y, we use
the tail dependence measure for copulas, x, which is the probability that one variable

exceeds a high threshold, conditional that the other variable exceeds a high threshold,
X = lin} Pr{Fi(X1) > u|F2(X3) > u}. (2)
u—

The dependence measure x € [0, 1] measures the top-right asymptotic (in)dependence
level of the copula and separates the relation into two classes: asymptotic dependent
or asymptotic independent. When y > 0 there exists asymptotic dependence, since the
conditional probability is strictly positive. At the boundary y = 0, there is asymptotic
independence between a pair of vectors and the probability that both vectors exceed their

respective marginal thresholds simultaneously, converges to zero.

3.2 The Huser and Wadsworth(2018) model

Due to the limitations of specifying the asymptotic distribution family (either asymptotic
dependence or asymptotic independence) prior to fitting the model, H&W introduces a

new model for modelling the copula of a bivariate random vector. Consider

(Hy, Hy) = (P°W{°, PPW, %), 6 €0,1], (3)

where the first component, P, follows a standard Pareto random variable and the second

component (W7, W3) is asymptotic independent with standard Pareto margins and copula
Pr{W, >z, Wy > z} = L(z)z /™ (4)

for z > 1. Here L(z) denotes a slowly varying function, where lim, . % - 1V

a > 0. The ny is called the coefficient of tail independence between (W3, W), which



ranges from 0 < nmy < 1. The coefficient 1y measures the speed of convergence of
(W1, Ws) towards asymptotic independence as it is invariant to the margins of (W5, W)
(H&W). The copula of (Hy, Hs) can be used for modelling dependence without assuming
asymptotic (in)dependence in advance.

In this model, the parameter ¢ determines the level of asymptotic dependence. When
d — 1, there exists full dependence. If § — 0, (H;, H2) has exactly the same dependence
structure as (W5, Ws) which is asymptotic independence. The parameter space of § allows
for a continuous transition between asymptotic dependence and asymptotic independence.
When 0.5 < 6§ < 1, the H&W model is asymptotic dependent and the dependence measure

21

XH = TE[min(Wl, W) =977 > 0. (5)

When, 0 < 6 < 0.5, xg = 0 and the model is asymptotic independent with a coefficient
of tail independence ny given as (H&W)

(

1 if §>1/2,

= i e <0< 12, (6)

] W
nw if 0 < —77—1+nw.

\

There are two types of models that satisfy the characterization of (Wi, W5) in this
thesis. The first case is a Gaussian model and the second case an inverted max-stable
model. First, the properties with a Gaussian model are in Section 3.2.1. For the inverted
max-stable model, an introduction to extreme-value theory is given in Section 3.2.2. The

properties of different max-stable distributions are given in Section 3.2.3.

3.2.1 A Gaussian approach

Let us assume that a pair (X, X») follows a Gaussian distribution with correlation func-

tion p and standard Gaussian margins ®. Then the distribution of

1 1

(W, W) = (1 — (X)) 1— <I>(X2))

10



possesses Pareto margins and a Gaussian copula with ny = @ (H&W). A Gaus-

sian copula is a symmetric copula. Based on (Wy, W) following a Gaussian copula, we
can establish (Hy, Hs) as in equation (3). The dependence measure ypy for the model
(Hy, Hy) can be calculated through numerical integration. If 6 < 0.5, the coefficient of
tail independence for (Hy, Hs),

1 if §>1/2

=4 s i P2 <i<1/2 (8)
14+p - 1+
o0 i o= g7

3.2.2 Extreme value theory

Before reviewing the inverted max-stable model, a brief overview regarding extreme value
theory (EVT), the fundamentals for max-stable models. Fisher and Tippett (1928) and
Gnedenko (1943) were among the first to introduce the early principals for EVT by
proving that the distribution of extreme values of an i.i.d. sample from a c.d.f. F may
converge in the limit towards only three kinds of distributions.

Let us consider the univariate approach, where the quantity of interest is the maximum
in a block of the sample. Let i.i.d. random variables {Xj, ..., X, } follow a common d.f.

F'. Define the maximum as M,, = max{Xy, ..., X,,}. Theoretically, the d.f. of M,

Pr{M, <z} =Pr{X; <=z, .. X, <z}
=Pr{X; <z} x..xPr{X, <z}
= {F (@)}

where we use the assumption that {Xji, ..., X,,} are i.i.d.. Note that for any value of x
smaller than the endpoint of the right tail of ', { F'(z)}" — 0 as n — co. By renormalizing
the maximum M, by sequences of constants that depend on the sample, the limit may
turn to be non-degenerated. Therefore the focus shifts to the probability P{M, < x}
with

M, = ———, 9)

11



where a, > 0 and b, are sequences of constants. von Mises (1936) shows that when
this probability converges to a non-degenerate d.f. G(x), then G(z) is an univariate

Generalized-Extreme-Value (GEV) distribution

lim Pr{M, < 2} =% G(z) = exp{—[1 + g(%)rl/é}, (10)

n—o0

where p € (—00,00), 0 € (0,00) and £ € (—o0, 00). The shape parameter £ differentiates
between the type of the GEV-distribution, which encompasses the 3 types: Gumbel
(€ = 0), Fréchet (€ > 0) and the Weibull (¢ < 0) distribution. The GEV-distribution is
a max-stable distribution (Segers (2012)).

Next, we switch from univariate EVT to bivariate EVT to study pairs of extremes.
Consider {(X11,X12), ..., (Xpn1, Xn2)} as 1.i.d. bivariate random vectors. Let M, ;, j =
{1,2}, be the maximum of the univariate random variables {Xj ;,..., X, ;}. Then the

bivariate vector of renormalized maxima M, is as follows

- - ~ Mp1—by1 Myo—0
Mn — (Mn’l,Mn2) — ( n,l 7’7,,17 n,Q n,2)7 (11)

7 Qpn 1 ap 2

where ay, 1, @y 2, by1, by 2 are sequences of constants. If the renormalized maxima converge
to a distribution, as n — oo, that distribution has to be a bivariate GEV-distribution
(Segers (2012))

lim Pr{M, <z} = G(x). (12)

n—o0
Segers (2012) show that a bivariate GEV-distribution G(x) can be written into two
components, the univariate GEV-margins G;(x;) and a max-stable copula C*. The max-

stable copula C* can be written as a tail dependence function V' (z1, z5) as follows

C*(exp{—1/z1},exp{—1/22}) = exp{—V (21, x2) }. (13)

The function V(z1,x2) is the exponent function and is homogeneous of order (—1), i.e.
V(axy,axs) = a= 'V (xy,35) for a # 0. Throughout this thesis we denote the max-stable
copula in the form of an exponent function and compare four different parametric variants

for the exponent function.
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3.2.3 An inverted max-stable approach

In this subsection we introduce an inverted max-stable model as the (W, W5) component
in the model of H&W. Assume that (X7, X5) follows a bivariate max-stable distribution
G(z1,22) as in (12). Define

(W, Wa) = ( (14)

G1(Xy)’ Gg(XQ))'

Then, (W, Ws) possesses Pareto margins and an inverted max-stable copula. Note that
the copula of (W, W) is asymptotic independent. We derive the relation between the
exponent function of G(z1,x2) and the coefficient of tail independence 7y, as follows.

Write W; = exp{1/X,} where (X7, X5) ~ G(X;, X5). Then

Pr{W; > x, W5 > x} = Pr{exp{1/X1} > z,exp{1/ X3} > z}

where we use the homogeneous property of V(zy,x5). Therefore we get that ny =
1/V(1,1).
Further if 0.5 < § < 1, xy in equation (5) becomes (H&W)

B 20 — 1
1= (=) +mw)’

XH

where ny is the tail independence coefficient of (Wy, Ws).
We choose symmetric and asymmetric forms for the exponent function V(zy, xs). The
first inclusion is the Dirichlet distribution in Coles and Tawn (1991). The distribution

allows an asymmetric dependence structure through the parameters («, 5) > (0,0) of a
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Beta-distribution (Be)

: a+1,5)}+%{Be(L' a,B+1)}. (16)

1 T2
V(xy, x9; 0) := —{1— Be(————; ;
(1 2 ) 1{ (Ofl'g—f—ﬁﬁl CVCB2+B$1

X

The case of asymptotic dependence occurs when o = 8 both go to infinity. The case of
complete independence occurs in two situations: either when o = § = 0, or when a(/3) is
stable, while 5(a) converges to zero. The corresponding coefficient of tail independence

18

mw = {1 - Be(ﬁ,oa +1,8) + Be<$,a +1L,8)} e (1/2,1).  (17)

Tawn (1988) provides a second exponent function that allows for asymmetric depen-
dence: the Asymmetric-Logistic distribution. The respective exponent function
1 Ti\L Ty, L

V@hm;@?=O—Tﬁi4%1—wbg+Kaﬁ3+(£Tﬂ”, (18)

where the asymmetry parameters (11, 72) € [0,1]* and 73 € (0,1]. If (71, 72) are signifi-
cantly different from (1,1), a symmetric structure is less likely, since there is evidence for

an asymmetric dependence structure. The coefficient of tail independence is

1

2= A (R

Nw €[1/2,1). (19)
The models is asymptotic independent when either 73 = 1, 77 = 0 or 5 = 0. There is
complete dependence when, at the boundary point 7, = 7 = 1, 73 converges to zero.
When the restriction 7, = 7, = 1 holds and 73 does not converge to zero, the dependence
structure is identical to that of a standard Logistic copula. The case with a symmetric
Logistic exponent function we consider separately from the Asymmetric-logistic function,

where
1 1

V(xy,z9; 0) := (x;a +x, )™ (20)

with parameter 74 € (0,1] and nw = 55 € [1/2,1).

14



4 Methodology

This section covers the procedure for risk analysis on portfolio returns with a copula
model. We first filter the univariate returns { R; ;} with a heteroskedastic volatility model.
Secondly, we estimate the dependence structure of the two stock markets {R; 1, R;2}
and derive a test for the asymptotic (in)dependence. Here, the dependence structure is
modelled by the model in Section 3. Lastly, the calculation of three VaR models for the
portfolio returns R;, are shown together with back-tests to evaluate their accurateness,

where we define portfolio returns in period t as follows

2
Rip =Y wiR, (21)
=1

where wj; is the weight and R, ; is the return of financial market j in period t.

4.1 Heteroskedastic volatility filter

Assume the return serie possesses heteroskedastic volatility. We first model {R;;}_; for
each j by an Autoregressive(AR)-Glosten-Jagannathan-Runkle(GJR)-Generalized Au-
toregressive Conditional Heteroskedastic(GARCH) model following the model in Glosten
et al. (1993). The AR-GJR-GARCH model is the simplest GARCH model that incor-
porates the stylized fact of asymmetric volatility in stock markets as a negative shock
increases volatility to stock prices more than a positive shock does, when the sizes of the
shocks are equal (leverage effect). GARCH models that allow for asymmetry in the con-
ditional variance have shown to systematically outperform symmetric volatility GARCH
models in forecasting stock movements at short horizons (Brownlees et al. (2011)). The

specification of the model is as follows

Rij= 015+ Qo R1j+ 112y, (22)

viy = b3+ (bag + ile-1)Zeorj + G5,V 5,

15



0 if Rt—l,' Z gbl,ﬁ
Ly = re (23)

1 it Ry < iy,
where (¢1, 92,5, 3.5, Paj, P5.5,7;) are its parameters and ; models the leverage effect.
The heteroskedastic volatilities are {1, ;}~ ; and the residuals {Z;;}7 , are i.i.d. with
mean zero and variance one. By performing quasi-maximum likelihood estimation(QMLE),
one can estimate the quasi-maximum likelihood parameters ((;BM, ngSQJ, <;A§3,j, <;347j, gz§5,j,&j),
the residuals {Z; ;}7_, and the estimated time varying volatilities {£; ;}Z_,, while assum-
ing the distribution of {Z, ;}, to be incorrectly specified to a certain extent as opposed

to maximum likelihood estimation(MLE) which assumes the correct distribution.

4.2 Copula estimation

Next, we model the cross-sectional dependence between the series. For that purpose, we
consider using copula to model the dependence in (Z; 1, Z;2). Since we do not model the
marginal distribution of Z, ; parametrically, we use a non-parametric marginal transfor-
mation to transform (Z;;, Z;2) to the uniform marginals. This is achieved by using the

empirical c.d.f.,

r (24)

Then we use the copula of (Hy, Hs) in equation (3) to model the dependence. We
fit the H&W model on {(T; 1, Uy 5)}. First, to avoid computation complexity, we look at
a logarithmic transformation of the model. Note that maximizing a likelihood function
yields the same optimal parameters as maximizing the logarithm of that likelihood, since
it does not affect the location of the maxima. Secondly, the estimation depends on the
value of the marginal thresholds (uf,u}). By using a censored likelihood to estimate the
parameters for the copula model, values below the threshold (uf,u}) do not contribute

to the maximum likelihood optimalization.

16



The maximization problem becomes

() =) log(Li(v)), (25)

where L;(1)) depends on whether a pair of observation exceeds a marginal thresholds and
1 = (6,0), where 6 are the parameters of the exponent function for (W, Ws). Let v, =
{(j:U > ui} € {1,2} describe the set of individual markets that exceed their marginal
thresholds at time ¢ € {1,...,T}. Then, the contribution to the censored likelihood for

observation t,

(

Cr(ui, uz; ¥) ye =0,
Lt(w) = CH(ﬁt,ly Ut,2; 2/)) Y = {17 2}7 <26)

Cz%(max(ﬁt,hUT)»maX(Ut,%U;); @U) Yt = {1} Uy = {2}

\

The first case in equation (26) corresponds to no exceedances, the second case when
both observations are exceeding the threshold and the last case occurs if only one market
exceeds a marginal threshold. The definitions for the the copula distribution function
Cy, density function ¢y and partial derivative of the copula distribution function C; are
in H&W. The parameters from the maximum likelihood estimation are 1) = (5 , é), where
5 is the asymptotic dependence parameter and 6 are the parameters of (W1, Wa).

In H&W, it is argued that the estimator z/A) converges to the true value ¢ with asymp-

totic normality given as follows: as the number of exceedances n — oo,

~

Vi — ) 5 N(0,3y). (27)

The criteria to which we compare the different models for (W;, W5) is by comparing
AIC scores. A lower AIC score indicates a better fit of a model, relative to other models.
To classify the dependence class as a characteristic of each pair in asymptotic depen-

dence and asymptotic independence, we perform a test on 5. Depending on the value of

17



5 one tests the hypothesis

Hy:6>0.5 (Asympt. Dep.) wvs. H,:0<0.5 (Asympt. Indep.)

Hy: 6 <05 (Asympt. Indep.) vs. H,:6>0.5 (Asympt. Dep.)

where we assume asymptotic normality of 6 which should hold true for some conditions

(H&W).

4.3 Value-at-Risk

4.3.1 Definition and estimation procedure

The VaR states, for a given probability, the risk to lose at least the specified amount over
a certain time period. Mathematically speaking, the VaR is the minimum amount k& that

would mitigate a negative outcome at a fixed probability level (1 — q),
VaR, = inf{k e R: F7'(k) > ¢}, (28)

where F~! is the quantile function of the distribution of portfolio returns and ¢ € (0, 1).
Note that this study restricts itself to only study the risk measure for a portfolio with
long positions who risk a decline in value. We compare three different approaches to
estimate the VaR: the variance-covariance method, the historical method and a method
based on Monte Carlo simulation.
The variance-covariance method assumes the portfolio returns R, ; arei.i.d. and follow
2

a normal distribution. The variance of the portfolio returns o, is equal to

o =W'SW, (29)
where W is the weight vector and ¥ a covariance matrix. Then the risk measure is
VaR, = i, + 0,0, (30)

with the unconditional mean yu, = E[R,] and <I>;1 the quantile function of the Normal
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distribution.

The historical method is a non-parametric estimation of the unconditional VaR. In
this method the portfolio returns from a sample are sorted dependent on the size and the
q quantile of the sample is directly the VaR for the next period.

For our H&W copula approach, we use Monte Carlo simulation to obtain estimates for
the VaR. Here, the procedure to estimate the VaR of a portfolio consists out of four steps.
First, we simulate [ values from a copula C'y with parameters 1& to obtain a sufficient
amount of pairs (Ui(ﬂlﬁ)tl,l’ Uj(ﬁliw), [ = 1,2,...,m. Secondly, through the inverse of the
empirical cumulative distribution function in equation (24) we transform the values of

the simulation into simulated residuals
() 5 A1l A1l
(20, 20) = (B (O, 1), By ' (UF4,)). (31)

Thirdly, to coincise the pair (Zfl), Zél)) with the heteroskedastic volatility, we use the
parameters from the AR-GJR-GARCH(1,1) model in equation (22). Finally, to estimate

(ﬁg)ﬂjl, }/\Bglljz), we predict the 1-step ahead volatility
o2 ) Y,a e
Upy1; = G35+ (Gay + 5t ®s5.5)vr (32)
and forecast the returns as follows
RO G d R 4 s g O 33
Th1y = 1yt G2 Rry + Ui 257 (33)

Then the VaR, is the ¢ quantile of the [ simulated portfolio returns Rf(lil—l,p = 232:1 oy fzgi)H ;-
If the H&W copula model is a good fit for the data generating process, we expect that
the Monte Carlo method based on the copula model should overperform the benchmarks
that are the variance-covariance and the historical method. Through backtesting the risk

estimates are compared.

4.3.2 Backtesting

To study which VaR model is most adequate, we test the violations of the VaR estimates in

two parts, where a violation refers to a portfolio return exceeding the VaR in that period.
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First we test the unconditional coverage which examines whether the number of violations
are in proportion to the sample size. The second test concerns the independence of the
violations, where if the clustering of violations is too great we deem the model inaccurate.

The proportions of failures (PoF) test in Kupiec (1995) evaluates the unconditional
coverage of the violations. Under the null hypothesis that VaR is properly forecasted,
the number of violations n in a sample of T’ observations follow a Bernoulli distribution
with the probability of a violation p. When the observed rate p differs significantly of the
expected rate p, the null hypothesis will be rejected and the VaR model found inaccurate.
The test statistic used is as follows (Kupiec (1995))

~:

Y2

I—p)""p
[1—(@)]"(p)"

LRpor = —21n< ) ~x2(1). (34)
We reject the null hypothesis if the LRp,p-statistic exceeds the 95% critical value of the
x%(1) distribution.

Christoffersen (1998) introduces a test on the serial dependence of the violations.
When a VaR model is adequate, a violation in a period should not depend on whether
there was a violation the period before. Therefore, the probability that a violation occurs
in the current period should be equal, independent of previous period. Define a indicator

variable that depends on the occurrence of a violation

1 if R < VaR;
It -

0 if Rt Z V(IRt

T+T

eIy = v|Ii_y = u), where u,v € {0,1}. Then, we split the

Furthermore, let n,, =
whole period t =T +1,..,T + T into four scenarios. Table 1 provides an overview of the

seperate scenarios for 7,,,.

Iy =0 Ii =1
I, =0 Moo N1 Noo + N1o
I, =1 101 n11 N1 + N1
Ngo + Mo1 Ny + N1 T
Table 1: Contingency table with 1, = tT:+TT+1([t =v|l—1 = u).

20



In addition, let m; = Pr(f; = 1|I;_; = i) and # = Pr(l; = 1). Then they can be
estimated by

R 101 R N1 . No1 + N1t
Tg=———, Mm=—— and 7= ) (35)
Moo + No1 N1o + N1t Moo + No1 + Mo + N1t

The null hypothesis states that last period should not affect the probability of a violation
in the current period, i.e. Hy : mp = m;. The test statistic that is used to test the null

hypothesis is

(1 _ ﬁ-)flooJrnlo ﬁ-nOl‘f’nll

) ~ (). (36)

(1 — ) moodtg™ (1 — 7y )07y

LR]ND = —2111(

We reject the null hypothesis if the LRy p-statistic exceeds the 95% critical value of the
x*(1) distribution.

5 Simulation

In this part we evaluate the maximum likelihood estimation of the parameters ¢ = {4, 6}
of the H&W model in a simulation study. The study is split into two parts. The first
part investigates the estimation of the asymptotic dependence parameter ¢ and the second
part investigates the estimation of the remaining parameter(s) 6.

In order to evaluate the estimation performance of each parameter in ¢, we simulate
1000 independent pairs (H;, Hs) and estimate the parameter of interest by the censored
maximum likelihood method. We treat all remaining parameters in 1) as known. The
entire procedure is repeated 100 times for each specification of (W7, W3) at each scenario
§ €[0.1,...,0.9] (from asymptotic independence to asymptotic dependence). Throughout
this section the choice of # for a Gaussian/Dirichlet /Logistic/Asymmetric-Logistic spec-
ification corresponds to p = 0.4/(«, 8) = (0.25,0.6) /74 = 0.4/(71, 72, 73) = (0.25,0.6,0.4)

respectively.
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Figure 1: Box plot comparing the true ¢ as opposed to the estimated 5. The green line
represents the true value 6. The dotted lines represent the 95% confidence interval. The copula
Cp is fitted 100 times for each of the four specifications of (W7, Ws) at each scenario § €
[0.1,...,0.9].

~

Figure 1 displays the variability and bias of the estimates (0) of 6. As § € [0.1,0.2,0.3]
the copula structure of the copula model (H;, Hs) closely follows the copula structure
of (Wi, Ws). According to the definition of ny in equation (6), ny is constant for
d € [0.1,0.2,0.3] since ny > 0.5 in all four models. Therefore low values of § yield a
similar dependence structure for each model. In addition, there exists large variability
in the estimation for the scenario’s 6 < 0.5. However, when the underlying data gen-
erating process is asymptotically dependent, the estimation of § becomes more accurate
for higher levels of asymptotic dependence. The interpretation is that ¢ is identified in
xg for any §, but not necessarily in 7y when the data generating process is asymptotic
independent. Furthermore, the assumption of normality of ) appears unreasonable when
the true parameter ¢ lies close to the boundaries 0 and 1. The four specifications show
a slight downward bias, with the exception of the Asymmetric-Logistic specification that
exhibits an upward bias.

The second part investigates the estimation of 0 for each specification of (Wy, Ws),
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which assumes  as known. If 0 is a vector of parameters, only the parameter of interest
is estimated, while the remaining parameter(s) are also known.

Figure 2 shows the estimation of p is for the copula model with a Gaussian specifi-
cation. The estimator p is reliable in estimating the true value p. Variability increases
when the data generating process exhibits more asymptotic dependence. The estimator
p performs well for § < 0.5, where the model closely follows the structure of (W, W),

indicating that the assumption of normality for p may only hold for § < 0.5.
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Figure 2: Box plot evaluating the estimation of p. The green line represents the true value p.
The dotted lines represent the 95% confidence interval. The copula Cp is fitted 100 times on a
simulated sample of 1000 observations at each scenario ¢ € [0.1,...,0.9].

Figure 3 display the results of estimating the copula model with a Dirichlet specifi-
cation for (W;, Ws). The estimated parameters & and B are both around the respective
true values a = 0.25 and § = 0.6. However, we observe a large number of outliers for
both parameters at any § € [0.1,...,0.9]. One possibility is that the identification problem

stems from the increase in the number of parameters.
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Figure 3: Box plot evaluating the estimation of o/ with fixed parameter § = 0.6/a = 0.25.
The green line represents the true value a/3. The dotted lines represent the 95% confidence
interval. The copula Cyy is fitted 100 times on a simulated sample of 1000 observations at each
scenario § € [0.1,...,0.9].
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This simulation study concludes with Figure 4, which shows the results of the simu-
lation for a Logistic and Asymmetric-Logistic specification. The estimated Asymmetric-
Logistic parameters 71, 7o & 73 contain bias and large variability. Although the estimation
of the parameter ¢ is accurate, the estimation of remaining parameters 7, 7o & 73 is inac-
curate. The fourth panel presents the results for a simulation with a Logistic specification
(74) and in general, the estimator 74 is accurate for § < 0.5, however there appears a strong
increase in the variability for 6 > 0.5. A possibility is that the assumption of normality
may only hold for 74 < 0.5. This evidence is in agreement with our findings with a
Gaussian specification.

In summary, the simulation study indicates that the H&W model contains large vari-
ability estimating 0 when § < 0.5 or when ¢ is close to the boundaries 0 and 1. The
estimation of 6 shows larger variability in the case for Gaussian and Logistic variants
at 6 > 0.5. The Asymmetric-Logistic variant is inaccurate when estimating 6 for any
d € [0.1,...,0.9] and the estimator 6 in the Dirichlet variant is unbiased, but provides

large outliers.
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Figure 4: Box plot evaluating the estimation of 71 /72/73/74. The green line represents the
true value. The dotted lines represent the 95% confidence interval. The copula Cy is fitted 100
times on a simulated sample of 1000 observations at each scenario ¢ € [0.1,...,0.9].
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6 Data and preliminary analysis

A strong indicator of the performance in financial markets is through indices returns. In
this thesis daily index data of the largest index of a country from the Wharton Research
Data Services (WRDS) database are used. These 11 countries are the United States
of America, the Netherlands, Spain, South Africa, France, Germany, Japan, Australia,
United Kingdom, Norway and Denmark. The data ranges from January 1992 - May 2018.
A period with a missing observation in a country is deleted from the sample. Due to this
elimination there remain 5721 observations for each index. Table 2 contains the summary

statistics of the standard returns in percentages.

Mean Std. Dev. Minimum Skewness Kurtosis LB-stat P-val

USA 0.02 1.13 -9.47 -0.49 11.18 42.9 0.00
Netherlands -0.01 1.33 -9.59 -0.27 9.04 69.9 0.00
Spain 0.01 1.43 -13.39 -0.15 8.87 42.0 0.00
South Africa 0.03 1.20 -13.66 -0.56 9.42 48.7 0.00
France -0.00 1.32 -9.42 -0.17 7.55 58.4 0.00
Germany 0.00 1.37 -8.20 -0.25 7.06 30.7 0.00
Japan -0.01 1.37 -10.3 -0.18 8.71 16.5 0.08
Australia 0.02 0.97 -8.76 -0.44 8.53 22.2 0.01
United Kingdom -0.00 1.01 -9.21 -0.25 8.80 47.9 0.00
Norway 0.02 1.43 -11.04 -0.48 10.55 33.3 0.00
Denmark 0.02 1.18 -11.61 -0.41 8.25 38.4 0.00

Table 2: Summary statistics of daily return percentages from 11 countries in the range of
January 1988 - May 2018. P-values are estimated with 1 degree of freedom.

The data exhibits negative skewness and large kurtosis, typical for financial assets. A
Ljung-Box test measures the amount of autocorrelation in a sample, where we reject the
sample to be i.i.d. when P-val < 0.05. In our sample, there appears a large amount of
autocorrelation in the data (only for Japan we do not reject the daily returns to be i.i.d.),
signalling that the returns might not be i.i.d. due to the presence of heteroskedastic
volatility. As a result the asymptotic dependence could be overestimated.

To filter the heteroskedastic volatility, we implement an AR-GJR-GARCH(1,1) model
on the daily losses defined as the negative of the daily returns. The results of the Ljung-
Box tests and a graphical representation are in Appendix A. For all countries, the residuals

of an AR-GJR-GARCH(1,1) model show no significant autocorrelation in the first ten
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lags.

We transform the loss residuals to the Uniform scale of which we show three examples
in Figure 5. The red and blue dots represent the top 10% extreme losses of the individual
stock markets, whereas purple dots represent the scenario where both markets co-exceed
their top 10% threshold. The France - United States of America panel shows a higher
concentration of observations in the upper right corner. Therefore, the probability that
an extreme loss occurs in the United States of America, given an extreme loss in France, is
relatively high in comparison to the other two panels. Consequently the relation appears
more strongly asymptotic dependent than the other two. The probability decreases in
the case of Norway - France and in the case of Australia - United States of America.
Especially the latter appears strongly asymptotic independent as a large portion of the
extremes are scattered outside the upper right corner. In addition, we observe that the
extremes are not necessarily spread symmetrically, suggesting an asymmetric structure in

our model could approximate the dependence structure of the extremes more accurately.
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Figure 5: The AR-GJR-GARCH(1,1) loss residuals on the Uniform scale for pairs France-
United States of America, Norway-France and United States of America-Australia. Red and
blue dots represent the top 10% observations where an individual country exceeds its marginal
threshold v* = 0.9, purple dots where both countries exceed their marginal threshold at the
same day.

7 Application

In this part we fit the model of H&W to pairs of residuals from the AR-GJR-GARCH(1,1)
model in Section 6. Then, we select two specifications for the H&W models out of four
possible candidates. We base our selection on which model achieves the lowest AIC-scores
and through comparing the parametric and non-parametric estimate of the dependence
measure Y. Furthermore, the asymptotic dependence structure of the residual pairs are
summarized in a network analysis, differentiating between asymptotic dependent and
asymptotic independent pairs. We construct portfolios of two indices that classify as
either an asymptotic dependent or an asymptotic independent portfolio based on this

network analysis. Thereafter, we determine the risk estimates of the portfolios from two
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benchmark VaR models and one that incorporates the H&W model. Lastly, the risk

estimates are compared via backtesting.

7.1 Model selection

The censored likelihood estimation of the H&W model is performed for all 55 unique
pairs of residuals, after filtering the loss returns by a AR-GJR-GARCH(1,1) model. The
marginal thresholds for the censored likelihood were set at (uf,u3) = (0.95,0.95) in all
cases for consistency, which also agrees with H&W. A summary of the model selection is
in Table 3, while the individual AIC-scores are in the Appendix.

The first observation is that the model with an Asymmetric-Logistic specification
for (W1, Ws) has a relatively high AIC-score in all cases. In addition, the numerical
optimization often can not evaluate the integrals in the censored likelihood estimation to
derive the standard errors. The absence of standard errors means there is no method to
test the asymptotic dependence. The model with a Gaussian specification achieves the
lowest AIC-score in the majority of time and appears to be a good fit for our research.
The model with a symmetric Logistic specification and asymmetric Dirichlet specification

both perform modestly, each achieving the lowest AIC-score in a fifth of the cases.

Specification (W3, W5) Gaussian Dirichlet Logistic Asymmetric-Logistic  Total
Optimal AIC 33 10 12 0 55

Table 3: Summary table of the number of times a model achieves the lowest AIC-score. The
marginal thresholds chosen for the censored likelihood estimation are (uj,u3) = (0.95,0.95).

7.2 Goodness of fit

Here, we complement Section 7.1 by performing a goodness-of-fit analysis on the paramet-
ric and the empirical estimate of the dependence measure y for the different specifications.

Figure 6 shows the the empirical and parametric estimates of x for three examples.
The dashed lines represent a 95% bootstrap confidence interval that measures the un-
certainty. The interval is based on 200 bootstrap samples and the individual dots are
the empirical estimates of y at varying thresholds u. The colored lines represent the

parametric estimates of x at varying thresholds w.
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Each panel hints at asymptotic independence as x — 0 for v — 1. At the boundary
u — 1 the uncertainty increases, shown by the increasing size of the 95% confidence
interval. In addition, although the copula model only directly models the dependence
structure of the top 5% extreme losses, it still appears as a good fit for the top 10%
extreme losses.

In the France - Norway panel, the parametric x of the model with an Asymmetric-
Logistic specification lies outside the 95% bootstrap interval. In general, such a model
tends to overestimate § and is inferior to other models in this study. One reason could
be that the uncertainty in the additional parameters cause the maximum likelihood es-
timation to converge to a sub-optimal solution. Therefore we conclude, also evident by
sub-optimal AIC-scores and varying parameter estimates in our simulation study, that
the model with an Asymmetric-Logistic specification is not suitable for our data. The
Logistic and Dirichlet specifications closely resemble each other, however the Logistic
variant estimates & lower relative to the other models. The advantage of the Dirichlet
specification is its flexibility to model asymmetry in our data. Therefore, we select the
copula model with a symmetric Gaussian or an asymmetric Dirichlet specification and
omit the model with a Logistic and Asymmetric-Logistic specification in further analysis.
Through this selection, we reduce the computational time and have a robust representa-

tion of the model with and without asymmetry.
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Figure 6: Three examples of the parametric and empirical estimate of x. The dots are the
empirical estimates of y. The different colored lines represent estimates of x according to the four
different models. The yellow/brown/blue/red line represents the model using the Asymmetric-
Logistic/Logistic/Dirichlet/Gaussian specification.

7.3 Asymptotic (in)dependence analysis

Here, the asymptotic relation in global stock markets is established by estimating the
dependence parameter . The estimated asymptotic dependence parameters 5 of the
copula model with an asymmetric(symmetric) specification are in Table 9(10) of the
Appendix. The classification of asymptotic dependent and asymptotic independent pairs
is on the basis that ¢ approximately follows a Normal distribution. As the differences
between the copula model with a Gaussian and Dirichlet specification are small, we only
present the figures for the Gaussian variant here and refer to the Dirichlet wherever

necessary.
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Figure 7 shows the asymptotic strength of dependent stock markets by comparing
the dependence measure xy. The European countries Spain, Netherlands, France and
Germany contain asymptotic dependent structures for the losses. The strongest relations
exist between the northern Europe countries France, Germany and the Netherlands,
which is shown by the thickness of the line. The asymptotic dependence relation with
the northern European countries and Spain is slightly weaker and in the case of a Dirichlet
specification the relation is significantly asymptotic independent. For the cases that our
test can not reject asymptotic dependence (6 > 0.5) the lines are dotted. The United
Kingdom has a weak and insignificant asymptotic dependent relation with the rest of the
northern European countries, whereas in the Dirichlet variant it is asymptotic dependent
with Netherlands and France. Other cases where we do not reject the relation to be
asymptotic dependent are Norway - Germany and Australia - Japan.

In conclusion, the class of asymptotic dependent pairs of countries is primarily reserved
for stock markets within the European Union (with the exception of Australia - Japan).
Due to the integration of stock markets in the European Union, they produce large
spillover effects when extreme losses occur, relative to more geographically distant stock

markets.
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Figure 7: The countries that exhibit asymptotic dependence according to the model with a
Gaussian specification. The solid lines represent connections with a § > 0.5 whereas the dotted
lines represent the cases where we cannot reject § > 0.5. The thickness indicates the value of
the dependence measure x g, where a thicker line equates to a higher value.

Figure 8 captures the asymptotic independent relations when ¢ is significantly lower
than 0.5. Here, the color of the line indicates the strength of the asymptotic independence
measure 7g. Even though Norway and Denmark are not asymptotically dependent with
the rest of the European countries, the asymptotic independence measure is relatively
high. The asymptotic independence measure is low for pairs that include the United
States of America and Australia. A possible reason could be due to the measurement
error of different time zones of the daily observations. Surprisingly, the asymptotic inde-
pendence measures between South Africa and nearly all other countries are high, whereas
for Japan it is only strong for combinations with countries in the European Union.

Based on these findings, we divide pairs into two portfolio classes for future analysis
using equal weights. The pairs in Figure 7 represent the portfolios with asymptotically
dependent countries and the pairs in Figure 8 represent the portfolios with asymptotically

independent countries.
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Figure 8: The countries that exhibit asymptotic dependence according to the model with a
Gaussian specification. The lines represent pairs with a § < 0.5. The color indicates the value
of the independence measure 7.

7.4 Risk analysis

7.4.1 Estimation

In this section we compare the general differences between four risk models through an
example by visually inspecting 1-day ahead VaR estimates.

Here, the two benchmarks to beat are a Historical and a Variance-Covariance model.
The VaR estimates of the Monte Carlo model, which incorporates the H&W copula
model, contains two variants: either with a Gaussian or with a Dirichlet specification
for (Wi, Ws). The rolling window contains 3000 observation to enable convergence of
the censored likelihood. We re-estimate the copula models yearly wr.t. ¥ = {6,0}
and fix ¢ throughout the year, while re-estimating the remaining parameters § monthly.
When the integral in the copula density function can not be evaluated through numerical
optimization it is a sign of no convergence in the parameter estimates. In that case,
the old estimates in last month were set to be the new estimates. Throughout our

analysis, the longest period for which this happened is 6 months. The out-of-sample
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estimation starts at the year 2007, just before the financial crisis, containing 2571 days.
The number of simulations m = 10000. For the marginals the AR-GJR-GARCH(1,1)
model is re-estimated monthly to forecast the volatilities, while keeping the computational
time to a reasonable degree. Four different levels of a for the VaR are considered, namely

a € [0.10,0.05, 0.025,0.01].
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Figure 9: An example of the estimation of different levels of the VaR series for the models
shown simultaneously. The example portrays a portfolio of France and the USA with weights
(w1, w2) = (0.5,0.5). The yellow/green/blue/red line represents the value at risk measure using
the MC-Dirichlet /MC-Gaussian /Var-Cov /Historical method.

In Figure 9 we present an example to illustrate the VaR estimates for an equally-
weighted portfolio consisting of the largest stock market in France and the USA. The
most recent financial crisis is visible at the start, where irrespective of the risk model
a cluster of violations occur. Both the benchmark models closely follow each other,
where the Historical model is more conservative at a = 0.01 and the Variance-Covariance
model at o = 0.10. The difference in the two models is due to the data not perfectly
following a Normal distribution. Relative difference between the risk measures from the

MC-Gaussian and MC-Dirichlet is not as clear cut. However, the risk estimates of MC-
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Dirichlet varies more over time.

Furthermore, analyzing the differences between the benchmark and the copula risk
models we observe that the benchmark models are less erratic, whereas the Monte Carlo
method varies more as it is based on simulations and involves the forecast for volatility.
When o = 0.01 the MC-Gaussian and MC-Dirichlet are in general more conservative
relative to the benchmark models. Note that for the MC-Dirichlet and MC-Gaussian
the copula model only models the extremes above the marginal thresholds (uf,u}) =
(0.95,0.95) and therefore partly models the dependence structure of the extremes in case
of @« = 0.10. However, H&W notes that, even though the marginal threshold is set at
(uf,ul) = (0.95,0.95), the copula model still reasonably fits the data. This agrees with
our findings in Section 7.2. In case of a € [0.025,0.05] the four VaR models appear
similar in the example, especially when o = 0.05, with small deviations. For @ = 0.10
the Variance-Covariance model produces significantly lower VaR estimates, relative to
the other three models.

Whether the relative relations of the risk models here hold for all portfolios is not
apparent by the visual example of one VaR series alone. To evaluate the performance in
depth and summarize the performance of our risk models, we move towards backtesting

the VaR estimates of the entire set of portfolios.

7.4.2 Backtesting

In this section two tests determine the performance of the risk models: the unconditional
coverage test in Kupiec (1995) (PoF') and the independence test of Christoffersen (1998)
(IND). Backtesting the risk models is on the entire out-of-sample dataset, consisting
out of 2571 days. Table 4 summarizes the backtest results for 55 portfolios. Here, PoF
indicates the number of portfolios where we do not reject the number of violations to be
proportionate to the sample size. In addition, /N D indicates the number of portfolios
where we do not reject that the violations are independently distributed.

The risk estimates from the Variance-Covariance model is the best representation for
VaR at a = 0.025. The assumption of normality for the distribution of portfolio returns
is inaccurate at a = 0.10, as the frequency of violations deviates too large from what is to

be expected. A non-parametric Historical VaR performs excellent as both tests indicate
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it performs the best, relative to the other models, for a € [0.025,0.05,0.10].

In the case of a parametric risk models that incorporates the H&W copula model,
the Monte Carlo with a Gaussian specification performs slightly better for both tests.
This is in line with the result that this model approximates the majority of the portfolios
best. For a« = 0.01 it performs slightly better than the Historical VaR model. The case
with a Dirichlet specification scores slightly lower, indicating the addition of asymmetry
in general does not increase the accuracy as much for a VaR model in our data relative

to a symmetric Gaussian specification.

a=0.01 a = 0.025
Method f sy PoF IND Method f sy PoF IND
MC-Gaussian  0.008 0.002 42 32 MC-Gaussian  0.019 0.005 27 13
MC-Dirichlet  0.007 0.002 35 26 MC-Dirichlet  0.019 0.005 22 13
Var-Covariance 0.014 0.014 26 21 Var-Covariance 0.024 0.004 50 24
Historical 0.012 0.003 39 31 Historical 0.028 0.004 39 19
a=0.05 a=0.10
Method f sf PoF IND Method f sf PoF IND
MC-Gaussian  0.041 0.009 21 8 MC-Gaussian  0.087 0.012 16 4
MC-Dirichlet  0.041 0.010 17 7 MC-Dirichlet  0.087 0.013 16 6
Var-Covariance 0.040 0.005 22 4 Var-Covariance 0.071 0.007 0 0
Historical 0.054 0.006 40 13 Historical 0.102 0.007 50 21

Table 4: Summary table of the results for backtesting VaR estimates on 55 portfolios. f rep-
resents the frequency of violations and sy the respective standard deviation across the selection
of 55 portfolios.

Whether the separate risk models perform differently depending on asymptotic depen-
dent or asymptotic independent portfolios, we examine the risk models in the portfolios
of countries based on the differentiation we made in Section 7.3. A summary of the
test results for the asymptotic dependent portfolios is in Table 5. Results show that the
MC-Dirichlet method displays similair results as MC-Gaussian for asymptotic dependent
portfolios. However, the Historical method is superior in comparison with both models.
The Variance-Covariance method performs relatively good at o € [0.01,0.025] and under
performs at « € [0.05,0.10].
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a=0.01 a = 0.025

Method f 5f PoF IND Method f Sf PoF IND
MC-Gaussian  0.007 0.002 6 5 MC-Gaussian  0.018 0.004 4 2
MC-Dirichlet  0.007 0.002 5 6 MC-Dirichlet  0.019 0.005 4 5

Var-Covariance 0.013 0.013 7 8 Var-Covariance 0.024 0.003 10 8
Historical 0.010 0.003 9 10 Historical 0.026 0.004 9 8
a=0.05 a=0.10

Method f Sf PoF IND Method f Sf PoF IND
MC-Gaussian  0.040 0.006 4 3 MC-Gaussian  0.084 0.006 3 1
MC-Dirichlet  0.042 0.006 4 4 MC-Dirichlet  0.089 0.007 5 4

Var-Covariance 0.038 0.005 3 1 Var-Covariance 0.070 0.008 0 0
Historical 0.051 0.005 10 6 Historical 0.099 0.006 11 9

Table 5: Summary table of the results for backtesting VaR estimates on 11 asymptotic de-
pendent portfolios in line with Section 7.3. f represents the frequency of violations and s the
respective standard deviation across the selection of 11 portfolios.

Finally, the results of asymptotic independent portfolios are in Table 6. The risk
estimates from the MC-Gaussian method performs better than all other risk models
in this study at @ = 0.01. Therefore, the inclusion of the H&W model for asymptotic
independent portfolios leads to more accurate risk estimates at the most extreme quantile.
In all other cases the Historical benchmark method performs the best.

In summary, we find that a Monte Carlo simulation in combination with the copula
model in H&W with either a Gaussian or Dirichlet specification under performs in com-
parison with a Historical method in almost every case, with the exception of asymptotic
independent portfolios at e = 0.01. As regulators and investors are interested in the most
extreme cases, our study provides an additional tool to model risk accurately for the most
extreme case. At a € [0.05,0.10] the copula based risk models perform badly, which indi-
cates that even though the 10% extremes appear to follow the model when estimated for
the top 5% extremes, it does not help for estimating the VaR. The Variance-Covariance
method gets outperformed with our model at a € [0.01,0.10] and outperforms our model

at a = [0.025].
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a=0.01 a = 0.025

Method f 5f PoF IND Method f Sf PoF IND
MC-Gaussian  0.008 0.002 36 27 MC-Gaussian  0.020 0.006 23 11
MC-Dirichlet  0.008 0.002 30 19 MC-Dirichlet  0.019 0.006 18 8

Var-Covariance 0.014 0.014 18 12 Var-Covariance 0.024 0.004 39 16
Historical 0.012 0.002 29 20 Historical 0.029 0.004 29 11
a=0.05 a=0.10

Method f Sf PoF IND Method f Sf PoF IND
MC-Gaussian  0.042 0.010 17 5 MC-Gaussian  0.087 0.014 13 2
MC-Dirichlet  0.041 0.011 13 3 MQC-Dirichlet  0.087 0.015 11 2

Var-Covariance 0.040 0.005 19 3 Var-Covariance 0.072 0.007 0 0
Historical 0.055 0.006 29 6 Historical 0.103 0.007 38 11

Table 6: Summary table of the results for backtesting VaR estimates on 44 asymptotic inde-
pendent portfolios in line with Section 7.3. f represents the frequency of violations and s the
respective standard deviation across the selection of 44 portfolios.

8 Conclusion and discussion

Being conscious about the risk level could improve the performance of allocating wealth
into investment portfolios. This study examines the asymptotic dependence of interna-
tional stock markets and considers three different VaR models for corresponding portfo-
lios. The focus is on a VaR model that incorporates a new copula model by H&W using
Monte Carlo simulation. The copula model estimates the asymptotic (in)dependence in
the data by letting the data ’speak’ for itself through the dependence parameter . The
asymptotic dependence in markets were tested and through simulation from the copula
model the estimates from a VaR model were tested.

The extreme losses in international stock markets exhibit asymptotic dependence only
for pairs of countries inside the European Union, whereas countries outside the EU show
asymptotic independence with countries inside and outside the EU. A notable exceptions
is Japan - Australia, where we can not reject asymptotic dependence. The strongest
asymptotic dependent pairs include the countries Germany, France and the Netherlands,
where the cause for the level of stock market integration is often linked to their partici-
pation in the European Monetary Union. In general, stock markets of countries appear

asymptotic independent in our sample period when corrected for heteroskedastic volatil-

ity.

38



The risk analysis in this study shows that for asymptotic independent portfolios at
the most extreme level a = 0.01, a Monte Carlo method with a Gaussian specification
of the H&W model outperforms all other risk models in most cases. The result is based
on a portfolio analysis of 11 international stock markets of which the 1-day ahead VaR is
calculated. In case of asymptotic dependent portfolios the Historical benchmark model
performs best in most cases.

The simulation of our copula model shows that in estimating the parameters of dif-
ferent specifications contains significant bias and high variability. In addition, the model
with an inverted max-stable specification is prone for numerical error in the estimation of
the censored likelihood. There are a plethora of other inverted max-stable distributions
for independence modelling. However, an in-depth analysis on the performance of the
model is necessary before selecting a model for real-world applications as the estimation
of 0 possibly differs between specifications.

The results in this thesis are best used for linear portfolios without shorting and
other financial instrument such as options. An extension would be to investigate longer
horizons and calculate n-day ahead risk estimates. As risk managers are interested in
longer periods than 1 days, one could look at the standard 10 days VaR estimates.

The performance of the risk model with our copula model could increase by certain
factors. Firstly, empirical data with a higher frequency to filter between different time
zones. In this study the closing prices of international indices are at different time periods.
In addition, during our risk analysis we include the financial recession which greatly affects
the entire risk estimation as the estimation window used was large. Note that estimating
the copula model required a large estimation window. Separating a period with financial
crisis and more tranquil period could provide new insights. However, a risk model should
not only be able to perform for standard data as financial crises are unpredictable. Finally,
only considering VaR estimates creates tunnel vision. Different forms of risk could cause
a larger effect on the losses such as political risk, liquidity risk and regulatory risk which

should be a part of the risk analysis before investing.
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Appendix A Appendix

A.1 - Autocorrelation of AR-GJR-GARCH(1,1) residuals.

USA NL SpP SA FR DE Jp AUS UK NW DK
LB 112 74 65 55 108 84 69 163 10.7 183 104
P-val 034 0.69 0.77 0.85 0.37 059 0.74 0.09 038 0.05 0.40

Table 7: The result of Ljung-Box tests on the univariate timeseries using only the first 10 lag
coeflicients.
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Figure 10: Autocorrelation before(left) and after(right) correcting for the heteroskedastic
volatility by an AR-GJR-GARCH(1,1) model. Here, the data shown is of the USA.
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A.2 - Akaike-Information-Criteria scores.

Gaussian  Dirichlet Logistic Asym-Logistic

USA - Netherlands 546.5 547.2 545.5 554.0
USA - Spain 637.8 641.2 640.1 646.2
USA - South Africa 899.4 897.3 896.7 901.8
USA - France 548.1 546.5 545.8 549.9
USA - Germany 571.8 573.0 573.3 578.4
USA - Japan 996.7 998.9 997.9 1003
USA - Australia 1001 989.5 1001 1004
USA - United Kingdom 507.3 519.3 509.1 526.4
USA - Norway 799.3 802.7 800.9 806.5
USA - Denmark 854.7 852.8 855.8 865.1
Netherlands - Spain -14.31 -20.02 -13.86 6.21
Netherlands - South Africa 614.0 620.3 619.0 634.3
Netherlands - France -586.6 -561.9 -590.5
Netherlands - Germany -350.6 -319.7 -347.7
Netherlands - Japan 835. 5 832.5 830.8 836.3
Netherlands - Australia 824.2 826.2 824.9 830.9
Netherlands - United Kingdom -294.6 -265.9 -293.9
Netherlands - Norway 209.1 214.9 211.8
Netherlands - Denmark 341.3 332.5 337.9 374.9
Spain - South Africa 746.1 755.1 749.9 764.0
Spain - France -179.1 -179.4 -178.1

Spain - Germany -20.89 -18.7 -17.20 -1.328
Spain - Japan 938.8 935.4 933.2 937.3
Spain - Australia 933.7 935.1 933.6

Spain - United Kingdom 131.6 128.1 134.7 152.9
Spain - Norway 496.5 497.6 499.1 511.3
Spain - Denmark 517.9 518.7 515.7 541.7
South Africa - France 659.7 664.72 666.4 672.4
South Africa - Germany 645.0 643.4 642.3 645.8
South Africa - Japan 866.3 869.1 867.6 875.4
South Africa - Australia 783.3 784.5 783.5 787.6
South Africa - United Kingdom 586.0 590.5 588.8 601.1
South Africa - Norway 525.49 530.7 529.1 535.9
South Africa - Denmark 703.7 707.7 706.0 718.3
France - Germany -467.3

France - Japan 859.2 860.0 858.7 863.3
France - Australia 886.4 888.5 886.8 891.0
France - United Kingdom -349.1 -314.9 -354.3 -312.6
France - Norway 237.9 237.6 237.7 273.3
France - Denmark 357.8 345.9 354.1 379.9
Germany - Japan 861.7 864.3 862.4 868.4
Germany - Australia 863.3 869.6 868.6 874.9
Germany - United Kingdom -127.8 -120.1 -124.2 -79.27
Germany - Norway 305.0 310.3 307.7

Germany - Denmark 323.4 315.6 321.1 344.9
Japan - Australia 506.5 510.9 509.9 516.0
Japan - United Kingdom 819.5 823.4 820.8 835.1
Japan - Norway 840.6 843.4 862.4 868.4
Japan - Denmark 880.8 880.8 881.2 886.1
Australia - United Kingdom 858.6 859.9 858.4 862.5
Australia - Norway 789.2 789.0 789.7 793.8
Australia - Denmark 821.1 823.0 821.2 829.4
United Kingdom - Norway 299.5 301.1 300.9

United Kingdom - Denmark 426.6 427.0 427.3 443.6
Norway - Denmark 452.3 457.1 454.1 470.3

Table 8: The AIC-scores according to AIC = 2k — 2L.
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Dirichlet 6  Pr(d) >0.5 or Pr(d) <0.5 Asymmetric Logistic d Pr(6) >0.5 or Pr() <0.5

Asymptotic Dependent Pr(s) > 0.5 Asymptotic Dependent Pr(d) > 0.5
Netherlands - France 0.65 0.00 Netherlands - Spain 0.58 0.00
Netherlands - Germany 0.61 0.00 Netherlands - Denmark 0.51 0.06
Netherlands - United Kingdom  0.61 0.00 Spain - Germany 0.58 0.00
France - United Kingdom 0.62 0.00 Spain - United Kingdom 0.55 0.00
Asymptotic Independent Pr(d) < 0.5 France - United Kingdom 0.62 0.00
USA - Netherlands 0.45 0.01 Germany - United Kingdom 0.59 0.00
USA - Spain 0.44 0.00 Germany - Denmark 0.52 0.00
USA - South Africa 0.36 0.00 Japan - Australia 0.50 0.38
USA - France 0.48 0.05 United Kingdom - Denmark 0.51 0.34
USA - Germany 0.46 0.03 Asymptotic Independent Pr(0) < 0.5
USA - Japan 0.16 0.00 USA - Netherlands 0.49 0.11
USA - Australia 0.03 0.00 USA - Spain 0.47 0.00
USA - United Kingdom 0.47 0.15 USA - South Africa 0.39 0.00
USA - Norway 0.40 0.00 USA - France 0.49 0.12
USA - Denmark 0.34 0.00 USA - Germany 0.48 0.03
Netherlands - Spain 0.48 0.18 USA - Japan 0.32 0.00
Netherlands - South Africa 0.38 0.00 USA - Australia 0.27 0.00
Netherlands - Japan 0.38 0.00 USA - United Kingdom 0.49 0.16
Netherlands - Australia 0.37 0.00 USA - Norway 0.42 0.00
Netherlands - Norway 0.45 0.01 USA - Denmark 0.39 0.00
Netherlands - Denmark 0.39 0.00 Netherlands - South Africa 0.47 0.00
Spain - South Africa 0.40 0.00 Netherlands - Japan 0.41 0.00
Spain - France 0.49 0.28 Netherlands - Australia 0.41 0.00
Spain - Germany 0.48 0.02 Spain - South Africa 0.43 0.00
Spain - Japan 0.38 0.00 Spain - Japan 0.38 0.00
Spain - Australia 0.36 0.00 Spain - Norway 0.49 0.14
Spain - United Kingdom 0.47 0.13 Spain - Denmark 0.48 0.03
Spain - Norway 0.44 0.00 South Africa - France 0.46 0.00
Spain - Denmark 0.39 0.00 South-Africa - Germany 0.47 0.00
South Africa - France 0.42 0.00 South-Africa - Japan 0.40 0.00
South-Africa - Germany 0.46 0.01 South-Africa - Australia 0.43 0.00
South-Africa - Japan 0.36 0.00 South-Africa - United Kingdom 0.47 0.00
South-Africa - Australia 0.43 0.00 South-Africa - Norway 0.49 0.20
South-Africa - United Kingdom 0.42 0.00 South-Africa - Denmark 0.47 0.00
South-Africa - Norway 0.46 0.05 France - Japan 0.41 0.00
South-Africa - Denmark 0.38 0.00 France - Australia 0.40 0.00
France - Japan 0.39 0.00 France - Norway 0.44 0.00
France - Australia 0.39 0.00 France - Denmark 0.42 0.00
France - Norway 0.40 0.02 Germany - Japan 0.40 0.00
France - Denmark 0.41 0.00 Germany - Australia 0.40 0.00
Germany - Japan 0.37 0.00 Germany - Norway 0.48 0.12
Germany - Australia 0.37 0.00 Japan - United Kingdom 0.41 0.12
Germany - United Kingdom 0.43 0.00 Japan - Norway 0.41 0.00
Germany - Norway 0.44 0.00 Japan - Denmark 0.39 0.00
Germany - Denmark 0.42 0.00 Australia - United Kingdom 0.41 0.00
Japan - Australia 0.48 0.12 Australia - Norway 0.43 0.00
Japan - United Kingdom 0.30 0.00 Australia - Denmark 0.41 0.00
Japan - Norway 0.39 0.00 United Kingdom - Norway 0.44 0.00
Japan - Denmark 0.38 0.00 Norway - Denmark 0.46 0.01
Australia - United Kingdom 0.40 0.00 Numerically unstable

Australia - Norway 0.41 0.00 Netherlands - France

Australia - Denmark 0.37 0.00 Netherlands - Germany

United Kingdom - Norway 0.45 0.01 Netherlands-United Kingdom

United Kingdom - Denmark 0.44 0.00 Netherlands Norway

Norway - Denmark 0.43 0.00 Spain - France

Numerically unstable Spain - Australia

France - Germany France - Germany

Table 9: Censored likelihood estimation of the copula model on the whole data period. Asymp-
totic normal P-values are based on the Hessian. Numerically unstable implies the integral in
the censored likelihood function could not be evaluated. Includes the asymmetric Dirichlet(left)
and Asymmetric-Logistic(right) specification.
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Gaussian 6  Pr(d) >0.5 or Pr(d) <0.5 Logistic 6 Pr(6) >0.5 or Pr(d) <0.5
Asymptotic Dependent Pr(s) > 0.5 Asymptotic Independent Pr(0) < 0.5
Netherlands - Spain 0.51 0.40 USA - Netherlands 0.44 0.01
Netherlands - France 0.53 0.05 USA - Spain 0.44 0.01
Spain - France 0.52 0.36 USA - South Africa 0.37 0.00
Spain - Germany 0.51 0.39 USA - France 0.48 0.26
France - Germany 0.60 0.00 USA - Germany 0.42 0.00
Asymptotic Independent Pr(d) < 0.5 USA - Japan 0.17 0.01
USA - Netherlands 0.44 0.00 USA - Australia 0.03 0.00
USA - Spain 0.43 0.00 USA - United Kingdom 0.41 0.00
USA - South Africa 0.26 0.00 USA - Norway 0.39 0.00
USA - France 0.46 0.03 USA - Denmark 0.34 0.00
USA - Germany 0.46 0.01 Netherlands - Spain 0.46 0.06
USA - Japan 0.17 0.04 Netherlands - South Africa 0.37 0.00
USA - Australia 0.09 Netherlands - France 0.43 0.01
USA - United Kingdom 0.42 0.00 Netherlands - Germany 0.41 0.00
USA - Norway 0.39 0.00 Netherlands - Japan 0.39 0.00
USA - Denmark 0.34 0.00 Netherlands - Australia 0.38 0.00
Netherlands - South Africa 0.37 0.00 Netherlands - United Kingdom  0.42 0.00
Netherlands - Germany 0.49 0.41 Netherlands- Norway 0.43 0.00
Netherlands - Japan 0.25 0.00 Netherlands- Denmark 0.38 0.00
Netherlands - Australia 0.38 0.00 Spain - South Africa 0.34 0.00
Netherlands - United Kingdom  0.49 0.35 Spain - France 0.46 0.08
Netherlands - Denmark 0.42 0.00 Spain - Germany 0.46 0.09
Netherlands - Norway 0.47 0.05 Spain - Japan 0.38 0.00
Spain - South Africa 0.28 0.00 Spain - Australia 0.37 0.02
Spain - Japan 0.07 0.00 Spain - United Kingdom 0.47 0.03
Spain - Australia 0.36 0.00 Spain - Norway 0.44 0.00
Spain - United Kingdom 0.48 0.21 Spain - Denmark 0.37 0.01
Spain - Norway 0.45 0.01 South Africa - France 0.36 0.01
Spain - Denmark 0.41 0.00 South Africa - Germany 0.46 0.02
South Africa - France 0.41 0.00 South Africa - Japan 0.35 0.00
South-Africa - Germany 0.41 0.00 South-Africa - Australia 0.43 0.02
South-Africa - Japan 0.33 0.00 South-Africa - United Kingdom 0.42 0.00
South-Africa - Australia 0.42 0.00 South-Africa - Norway 0.46 0.08
South-Africa - United Kingdom 0.41 0.00 South-Africa - Denmark 0.38 0.00
South-Africa - Norway 0.46 0.02 France - Japan 0.39 0.00
South-Africa - Denmark 0.38 0.00 France - Australia 0.39 0.00
France - Japan 0.37 0.00 France - United Kingdom 0.40 0.00
France - Australia 0.38 0.00 France - Norway 0.37 0.00
France - United Kingdom 0.48 0.28 France - Denmark 0.39 0.00
France - Norway 0.42 0.01 Germany - Japan 0.37 0.00
France - Denmark 0.44 0.00 Germany - Australia 0.18 0.00
Germany - Japan 0.31 0.04 Germany - United Kingdom 0.38 0.00
Germany - Australia 0.21 0.00 Germany - Norway 0.43 0.00
Germany - United Kingdom 0.44 0.02 Germany - Denmark 0.41 0.00
Germany - Norway 0.45 0.15 Japan - Australia 0.47 0.11
Germany - Denmark 0.45 0.01 Japan - United Kingdom 0.26 0.00
Japan - Australia 0.47 0.05 Japan - Norway 0.38 0.00
Japan - United Kingdom 0.24 0.00 Japan - Denmark 0.38 0.00
Japan - Norway 0.37 0.01 Australia - United Kingdom 0.41 0.00
Japan - Denmark 0.37 0.00 Australia - Norway 0.41 0.00
Australia - United Kingdom 0.40 0.00 Australia - Denmark 0.37 0.00
Australia - Norway 0.41 0.00 United Kingdom - Norway 0.43 0.00
Australia - Denmark 0.37 0.00 United Kingdom - Denmark 0.42 0.02
United Kingdom - Norway 0.45 0.02 Norway - Denmark 0.42 0.00
United Kingdom - Denmark 0.45 0.01 Numerically unstable

Norway - Denmark 0.44 0.00 France - Germany

Table 10: Censored likelihood estimation of the copula model on the whole data period. Asymp-
totic normal P-values are based on the Hessian. Numerically unstable implies the integral in
the censored likelihood function could not be evaluated. Includes the symmetric Gaussian(left)
and Logistic(right) specification.

43



References

G. Bekaert and C. R. Harvey. Market integration and contagion. Working Paper 9510,
National Bureau of Economic Research, February 2003. URL http://www.nber.org/
papers/w9510.

C. T. Brownlees, R. F. Engle, and B. T. Kelly. A practical guide to volatility forecasting
through calm and storm. Awailable at SSRN 1502915, 2011.

D. Castro-Camilo, M. de Carvalho, J. Wadsworth, et al. Time-varying extreme value
dependence with application to leading european stock markets. The Annals of Applied

Statistics, 12(1):283-309, 2018.

P. F. Christoffersen. Evaluating interval forecasts. International Economic Review, 39

(4):841-862, 1998.

S. G. Coles and J. A. Tawn. Modelling extreme multivariate events. Journal of the Royal
Statistical Society. Series B (Methodological), 53(2):377-392, 1991. ISSN 00359246.
URL http://www. jstor.org/stable/2345748.

S. Engelke, A. Malinowski, Z. Kabluchko, and M. Schlather. Estimation of husler—reiss
distributions and brown-resnick processes. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 77(1):239-265, 2015.

A. Ferreira, L. De Haan, et al. The generalized pareto process; with a view towards

application and simulation. Bernoulli, 20(4):1717-1737, 2014.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the
largest or smallest member of a sample. Mathematical Proceedings of the Cambridge

Philosophical Society, 24(2):180-190, 1928. doi: 10.1017/S0305004100015681.

K. J. Forbes and R. Rigobon. No contagion, only interdependence: measuring stock

market comovements. The Journal of Finance, 57(5):2223-2261, 2002.

L. R. Glosten, R. JAGANNATHAN, and D. E. RUNKLE. On the relation be-

tween the expected value and the volatility of the nominal excess return on

44


http://www.nber.org/papers/w9510
http://www.nber.org/papers/w9510
http://www.jstor.org/stable/2345748

stocks. The Journal of Finance, 48(5):1779-1801, 1993. doi: 10.1111/j.1540-6261.
1993.tb05128.x.  URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1540-6261.1993.tb05128.x.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals
of Mathematics, 44(3):423-453, 1943. ISSN 0003486X. URL http://www.jstor.org/
stable/1968974.

R. Huser, T. Opitz, and E. Thibaud. Bridging asymptotic independence and dependence
in spatial extremes using gaussian scale mixtures. Spatial Statistics, 21:166 — 186,
2017. ISSN 2211-6753. doi: https://doi.org/10.1016/j.spasta.2017.06.004. URL http:
//www.sciencedirect.com/science/article/pii/S221167531730088X.

R. G. Huser and J. L. Wadsworth. Modeling spatial processes with unknown extremal de-
pendence class. Journal of the American Statistical Association, forthcoming 2018. doi:
10.1080/01621459.2017.1411813. URL https://doi.org/10.1080/01621459.2017.
1411813.

P. Krupskii, R. Huser, and M. G. Genton. Factor copula models for replicated spatial
data. Journal of the American Statistical Association, 113(521):467-479, 2018.

P. Kupiec. Techniques for verifying the accuracy of risk measurement models. Journal

of Derivatives, 3:73-84, 1995.

F. Longin and B. Solnik. Extreme correlation of international equity markets. The

Journal of Finance, 56(2):649-676, 2001.

S.-H. Poon, M. Rockinger, and J. Tawn. Modelling extreme-value dependence in inter-

national stock markets. Statistica Sinica, 13(4):929-953, 2003.

J. Segers. Max-stable models for multivariate extremes. arXiv preprint arXiv:1204.03532,

2012.

M. Sklar. Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Statist.

Univ. Paris, 8:229-231, 1959. URL https://ci.nii.ac.jp/naid/10011938360/en/.

45


https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1993.tb05128.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1993.tb05128.x
http://www.jstor.org/stable/1968974
http://www.jstor.org/stable/1968974
http://www.sciencedirect.com/science/article/pii/S221167531730088X
http://www.sciencedirect.com/science/article/pii/S221167531730088X
https://doi.org/10.1080/01621459.2017.1411813
https://doi.org/10.1080/01621459.2017.1411813
https://ci.nii.ac.jp/naid/10011938360/en/

J. A. Tawn. Bivariate extreme value theory: Models and estimation. Biometrika, 75(3):
397-415, 1988. doi: 10.1093/biomet/75.3.397. URL http://dx.doi.org/10.1093/
biomet/75.3.397.

R. von Mises. La distribution de la plus grande de n valeurs. Rewvue Math. de [’Union

Interbalkanique, 1:141-160, 1936.

46


http://dx.doi.org/10.1093/biomet/75.3.397
http://dx.doi.org/10.1093/biomet/75.3.397

	Introduction
	Literature
	Modelling bivariate tail dependence structure
	Copula
	The Huser and Wadsworth(2018) model
	A Gaussian approach
	Extreme value theory
	An inverted max-stable approach


	Methodology
	Heteroskedastic volatility filter
	Copula estimation
	Value-at-Risk
	Definition and estimation procedure
	Backtesting


	Simulation
	Data and preliminary analysis
	Application
	Model selection
	Goodness of fit
	Asymptotic (in)dependence analysis
	Risk analysis
	Estimation
	Backtesting


	Conclusion and discussion
	Appendix

