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Abstract
This thesis analyses the dependence structure of 11 global stock markets to

estimate portfolio risk measures. A parametric copula model from Huser and
Wadsworth (forthcoming 2018) is applied to model the co-exceedances over a thresh-
old. The model allows a smooth transition between asymptotic dependence and
asymptotic independence. We find that the strongest spillover effect exists for
countries within the European Union as opposed to more geographically diverse
countries. The risk estimates based on the Huser and Wadsworth (forthcoming
2018) model outperform the benchmark estimates based on conventional copula
models.
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1 Introduction

Through the integration of capital markets, the global financial system becomes increas-

ingly entangled. A negative shock in one market causes more volatility spillover on related

markets as they become more strongly connected. A good example of this is the crash of

financial markets in 2008, which suggests a large dependence between assets worldwide

during a crisis. The overall losses were so severe, that the impact was disproportion-

ate to any empirical evidence, leading to portfolio performance worse than the modeled

worst-case scenarios. An accurate estimate of the dependence structure of global markets

could have resulted in more informed decision-making when constructing portfolio of ge-

ographically diversified assets. Estimating risk measures incorporating the dependence of

extreme events potentially provides better information regarding portfolio losses during

extreme events.

This thesis analyzes the dependence structure of crashes across financial markets and

estimates portfolio risk measures in accordance with that dependence structure. There

are two potential cases that may occur when analyzing the behaviour of joint extreme

events of a pair of markets: asymptotic dependence or asymptotic independence. Un-

derstanding the difference is crucial for both model development and data application as

standard models only allow either asymptotic dependence or asymptotic independence.

When chosen the incorrect model, extrapolation will yield inaccurate results. The dif-

ference between the two depends on whether the relation between risk factors remains

constant when considering more extreme events. The dependence of extreme events is

usually measured by the conditional probability that one is above high threshold, given

the other is above a high threshold. In this thesis, the thresholds refer to quantiles with

the same probability of the corresponding marginal loss distributions. As the tail prob-

ability defining the marginal threshold tends to zero, we are considering more and more

extreme events. If the conditional probability remains at a constant level when consid-

ering more and more extreme events, the relation between markets is called asymptotic

dependent. Then the conditional probability that one market crashes, given that another

market crashes, remains constant when crashes get more extreme. If the conditional prob-

ability diminished to zero when considering more and more extreme events, the relation
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between markets is called asymptotic independent. Here, the conditional probability that

one market crashes, given that another market crashes, decreases to zero when crashes

become more extreme. However, stating whether asymptotic (in)dependence holds is

problematic in general. The traditional method to distinguish between asymptotic de-

pendence and asymptotic independence is through a tail dependence coefficient. The

coefficient performs well in classifying the dependence structure, but neglects informing

about the remaining level of dependence in asymptotically independent distributions.

Therefore in our study the tail coefficient is an undesirable candidate for understanding

the asymptotic behaviour.

Instead, we estimate the asymptotic (in)dependence of stock markets through the

parameter space in a model without distinguishing the two cases ex ante. In addition,

when joint extremes follow an asymptotic independent structure, this thesis differentiates

between the rate at which the dependence structure reaches asymptotic independence.

This is referred to as the sub-asymptotic dependence. To complement existing research

this research focuses on two main research questions. The first question is the following:

1) What is the asymptotic relation between pairs of large global stock markets?

Capturing the asymptotic relation within stock markets enables extrapolation towards

the most extreme events, those which affect the financial stability of stock markets the

strongest. Due to the impact of these crashes, regulators and policy makers require that

financial institutions, i.e. banks, hold risk capital that is enough to cover portfolio losses

in unlikely events. The amount of capital a financial institution must hold, is derived

from common standard measurements for portfolio risk. Having a large cash reserve

diminishes potential profits, while too small reserves causes an increase in the default

probability. Industry standard risk measures exist to summarize the risk in portfolios,

i.e. those conform Basel I & II regulations. These measures largely depend on the extreme

quantiles and therefore on assumptions made about the loss distribution. Since a portfolio

loss is a linear combination of losses of each asset, the dependence across the assets in

part determines the distribution of portfolio losses, particularly the dependence structure

for extreme losses. Modelling the dependence of the extreme losses across assets could
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contribute to more accurate portfolio risk estimates than applying standard risk models.

The second question therefore focuses on these widely used risk models:

2) Can standard risk models be improved by incorporating a new model for the asymp-

totic (in)dependence between indices?

The co-movements of financial markets are usually summarized by the Pearson cor-

relation coefficient using all observations (Bekaert and Harvey (2003)). The advantage is

that it is one characteristic to compare and allows for fast decision making. However, it

does not distinguish between extreme and moderate observations. A different approach

would be to use a copula model to study the co-movements. Copula refers to a multi-

variate distribution function that links the univariate marginal distributions (margins) of

individual random vectors to a cumulative distribution function (c.d.f). Since it allows

to model the dependence structure with non-Gaussian margins, it is often used to model

the asymptotic dependence structure in financial markets.

A common restriction of copulas is, depending on the choice of copula, one either

assumes asymptotic dependence or asymptotic independence. When selecting a depen-

dence model the (incorrect) assumption of asymptotic (in)dependence could severely bias

the risk measures. The parametric copula model in Huser and Wadsworth (forthcom-

ing 2018) (for future reference noted as H&W) allows for the possibility of a smooth

transition between asymptotic independence and asymptotic dependence through two

components. The parameter space specifies the asymptotic (in)dependence and there-

fore no assumptions on the asymptotic dependence structure are made. The asymptotic

independent component is flexible and contains different parametric forms. In this the-

sis, simulations are done to compare the estimation of parameters between the different

specifications. The parametric fit of the copula model and non-parametric estimates of

the tail dependence together determine the goodness of fit.

Based on modelling the asymptotic (in)dependence between indices, this thesis esti-

mates the risk measure Value-at-Risk (VaR) of a portfolio. We consider three approaches

to estimating the VaR, including a method where the dependence structure of two indices

is modeled by the H&W model.
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The methodology in this thesis consists of two parts. Firstly, an in-sample analysis fit-

ting all data to the proposed model. In this part, we model the asymptotic (in)dependence

by the model in H&W and use a heteroskedastic volatility model for the marginals. Test-

ing the asymptotic relation within pairs of financial markets is based on the assumption

of asymptotic normality of the estimators for the parameters. Secondly, to test whether

our new method can improve the VaR estimation, we conduct an out-of-sample analysis

that incorporates temporal changes in the asymptotic (in)dependence. As the aim is to

accurately measure portfolio risk, parametric and non-parametric estimates for the VaR

of a portfolio are backtested, including VaR estimated using the copula model in H&W.

The structure of this thesis is as follows. Firstly, Section 2 summarizes the relevant

literature of the asymptotic (in)dependence in financial markets through a copula model.

Next, an introduction to a copula model and in particular an extension of the copula

model in H&W is in Section 3. The modelling of the return series and calculation of the

VaR estimates are in Section 4. A simulation study concerning the parameter estimation

of the copula model is given in Section 5. Characteristics of the empirical data are

in 6. Section 7 focuses on the implementation of the model and the respective risk

measurements. Last, a conclusion of this thesis is provided in Section 8.

2 Literature

There are many studies analyzing stock market integration over time. Bekaert and Harvey

(2003) and Longin and Solnik (2001) report that more market integration has had a

positive effect on the dependence structure between markets. Furthermore, Poon et al.

(2003) finds evidence of increasing dependence between extremes by investigating global

stock markets. Dividing the estimation sample into arbitrarily chosen sub-periods, Poon

et al. (2003) calculates standard dependence measures in each sub-period via a regression

model. They find an increase in asymptotic dependence, but whether the increase is

statistically significant remains uncertain. The markets analyzed in Poon et al. (2003)

are included in this thesis for comparison, however a different sample period is chosen.

Castro-Camilo et al. (2018) build upon the findings of Poon et al. (2003) and propose

a rolling window estimation in combination with a regression model. In this thesis, we
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analyze the asymptotic dependence by the model in H&W, which is less complex than

that in Castro-Camilo et al. (2018) and more suited towards our research questions. To

account for the non-stationary dependence structure in markets, we adopt a similar rolling

window approach.

Longin and Solnik (2001) report that heteroskedastic volatility affects asymptotic

dependence. A period with high volatility is more likely to be followed by a period with

high volatility, than a period with low volatility. To filter the heteroskedastic volatility, we

implement a flexibile GARCH-model before estimating the asymptotic (in)dependence.

Lastly, Forbes and Rigobon (2002) provide empirical evidence for asymmetry in most

of the pairs of extremes within 21 stock markets. The asymmetry in pairs refers to

stronger dependence when markets go down, as opposed to going up and incorporating

this characteristic could improve the fit of a model.

Assuming asymptotic (in)dependence between indices when selecting a dependence

model, could severely over- or underestimate portfolio risk. Since the relation is of-

ten unclear, H&W introduce a flexible copula model that enables the range between

the asymptotic dependence and asymptotic independence in the parameter space. The

model builds upon Huser et al. (2017), who construct a Gaussian scale mixtures model

to enable asymptotic dependence. The model is shown to outperform non-parametric

dependence statistics when using a censored likelihood estimation. Other models esti-

mating the asymptotic relation include, but are not limited to, a limiting Poisson process

(Engelke et al. (2015)), a generalized Pareto process (Ferreira et al. (2014)) or a factor

copula model (Krupskii et al. (2018))). However, these models either lack the tail flexi-

bility of the model in H&W or only allow asymptotic independence at boundary points.

The only possible advantage of the aforementioned models compared to the model in

H&W, is that they do not suffer from large computational burden in higher dimensions.

Also, the numerical estimation is less prone to error than a model incorporating max-

stable distributions. However, as this study investigates pairwise dependence only, the

computational burden remains moderate. Due to the tail flexibility and the possibility

to test for asymptotic (in)dependence, we expect that the H&W model is more suitable

for our research. We consider four different variants of the model: a Gaussian, Dirich-

let, Logistic and Asymmetric-Logistic variant. The expectation is that a variant which
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inhabits an asymmetric structure(i.e. Dirichlet, Asymmetric-Logistic) would perform

better than with a symmetric structure(i.e. Gaussian, Logistic), as Forbes and Rigobon

(2002) indicates asymmetry in financial stock markets.

3 Modelling bivariate tail dependence structure

This section covers an introduction to copula and the theory regarding the H&W model.

The model allows for asymptotic (in)dependence between two random variables, without

assuming asymptotic (in)dependence upfront, possibly contributing to more accurate risk

analysis. The general methodology for modelling the return series, using the dependence

model from this section, is given in Section 4.

Note that throughout Section 3 & 4, like in general literature, the extremes are defined

as positive exceedances above a threshold. However, the extremes of interest in our study

lay below a pre-specified threshold (crashes). Therefore we consider the upper tail of the

loss distribution of the returns in our application (Section 7) which aligns with the theory

and methodology in Section 3 & 4.

3.1 Copula

Suppose a bivariate random vector (X1, X2) follows the corresponding c.d.f. of the pair

be F (x1, x2), with marginal c.d.f. Fj(xj) for j = 1, 2. Sklar (1959) shows that if the

margins are continuous and strictly increasing, a copula function CF exists and is unique

for c.d.f. F

F (x1, x2) = Pr{X1 < x1, X2 < x2}

= Pr{U1 < F1(x1), U2 < F2(x2)}

= CF (F1(x1), F2(x2)).

(1)

Here (U1, U2) = (F1(X1), F2(X2)) is a bivariate random vector and the copula CF ∈ [0, 1]2

is a bivariate distribution function that links the two margins. Due to the property of cop-

ula invariance for monotonously increasing margins, the information between the copula

and the margins are mutually exclusive, which allows investigating the two separately.
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In this thesis, the dependence of values above a extreme marginal threshold (u∗1, u
∗
2)

are of importance. Define the extreme pairs (Y1, Y2) as the subset where at least one

r.v. in the pair (X1, X2) exceeds its extreme marginal threshold. In the next section we

shall introduce a copula model by H&W, CH , which models the dependence in the pairs

of extremes (Y1, Y2). The asymptotic dependence of the extremes can then be evaluated

through the copula CH . To measure the asymptotic relation of extremes in CH , we use

the tail dependence measure for copulas, χ, which is the probability that one variable

exceeds a high threshold, conditional that the other variable exceeds a high threshold,

χ = lim
u→1

Pr{F1(X1) > u|F2(X2) > u}. (2)

The dependence measure χ ∈ [0, 1] measures the top-right asymptotic (in)dependence

level of the copula and separates the relation into two classes: asymptotic dependent

or asymptotic independent. When χ > 0 there exists asymptotic dependence, since the

conditional probability is strictly positive. At the boundary χ = 0, there is asymptotic

independence between a pair of vectors and the probability that both vectors exceed their

respective marginal thresholds simultaneously, converges to zero.

3.2 The Huser and Wadsworth(2018) model

Due to the limitations of specifying the asymptotic distribution family (either asymptotic

dependence or asymptotic independence) prior to fitting the model, H&W introduces a

new model for modelling the copula of a bivariate random vector. Consider

(H1, H2) = (P δW 1−δ
1 , P δW 1−δ

2 ), δ ∈ [0, 1], (3)

where the first component, P , follows a standard Pareto random variable and the second

component (W1,W2) is asymptotic independent with standard Pareto margins and copula

Pr{W1 > x,W2 > x} = L(x)x−1/ηW (4)

for x ≥ 1. Here L(x) denotes a slowly varying function, where limx→∞
L(ax)
L(x)

→ 1 ∀

a > 0. The ηW is called the coefficient of tail independence between (W1,W2), which
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ranges from 0 < ηW < 1. The coefficient ηW measures the speed of convergence of

(W1,W2) towards asymptotic independence as it is invariant to the margins of (W1,W2)

(H&W). The copula of (H1, H2) can be used for modelling dependence without assuming

asymptotic (in)dependence in advance.

In this model, the parameter δ determines the level of asymptotic dependence. When

δ → 1, there exists full dependence. If δ → 0, (H1, H2) has exactly the same dependence

structure as (W1,W2) which is asymptotic independence. The parameter space of δ allows

for a continuous transition between asymptotic dependence and asymptotic independence.

When 0.5 < δ < 1, the H&Wmodel is asymptotic dependent and the dependence measure

χH =
2δ − 1

δ
E
[

min(W1,W2)
(1−δ)/δ] > 0. (5)

When, 0 < δ < 0.5, χH = 0 and the model is asymptotic independent with a coefficient

of tail independence ηH given as (H&W)

ηH =


1 if δ ≥ 1/2,

δ
1−δ if ηW

1+ηW
< δ < 1/2,

ηW if δ ≤ ηW
1+ηW

.

(6)

There are two types of models that satisfy the characterization of (W1,W2) in this

thesis. The first case is a Gaussian model and the second case an inverted max-stable

model. First, the properties with a Gaussian model are in Section 3.2.1. For the inverted

max-stable model, an introduction to extreme-value theory is given in Section 3.2.2. The

properties of different max-stable distributions are given in Section 3.2.3.

3.2.1 A Gaussian approach

Let us assume that a pair (X1, X2) follows a Gaussian distribution with correlation func-

tion ρ and standard Gaussian margins Φ. Then the distribution of

(W1,W2) =
( 1

1− Φ(X1)
,

1

1− Φ(X2)

)
(7)
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possesses Pareto margins and a Gaussian copula with ηW = (1+ρ)
2

(H&W). A Gaus-

sian copula is a symmetric copula. Based on (W1,W2) following a Gaussian copula, we

can establish (H1, H2) as in equation (3). The dependence measure χH for the model

(H1, H2) can be calculated through numerical integration. If δ < 0.5, the coefficient of

tail independence for (H1, H2),

ηH =


1 if δ ≥ 1/2,

δ
1−δ if 1+ρ

3+ρ
< δ < 1/2,

1+ρ
2

if δ ≤ 1+ρ
3+ρ

.

(8)

3.2.2 Extreme value theory

Before reviewing the inverted max-stable model, a brief overview regarding extreme value

theory (EVT), the fundamentals for max-stable models. Fisher and Tippett (1928) and

Gnedenko (1943) were among the first to introduce the early principals for EVT by

proving that the distribution of extreme values of an i.i.d. sample from a c.d.f. F may

converge in the limit towards only three kinds of distributions.

Let us consider the univariate approach, where the quantity of interest is the maximum

in a block of the sample. Let i.i.d. random variables {X1, ..., Xn} follow a common d.f.

F . Define the maximum as Mn = max{X1, ..., Xn}. Theoretically, the d.f. of Mn,

Pr{Mn ≤ x} = Pr{X1 ≤ x, ..., Xn ≤ x}

= Pr{X1 ≤ x} × ...× Pr{Xn ≤ x}

= {F (x)}n,

where we use the assumption that {X1, ..., Xn} are i.i.d.. Note that for any value of x

smaller than the endpoint of the right tail of F , {F (x)}n → 0 as n→∞. By renormalizing

the maximum Mn by sequences of constants that depend on the sample, the limit may

turn to be non-degenerated. Therefore the focus shifts to the probability P{M̃n ≤ x}

with

M̃n =
Mn − bn
an

, (9)
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where an > 0 and bn are sequences of constants. von Mises (1936) shows that when

this probability converges to a non-degenerate d.f. G(x), then G(x) is an univariate

Generalized-Extreme-Value (GEV) distribution

lim
n→∞

Pr{M̃n < x} →d G(x) = exp{−[1 + ξ(
x− µ
σ

)]−1/ξ}, (10)

where µ ∈ (−∞,∞), σ ∈ (0,∞) and ξ ∈ (−∞,∞). The shape parameter ξ differentiates

between the type of the GEV-distribution, which encompasses the 3 types: Gumbel

(ξ = 0), Fréchet (ξ > 0) and the Weibull (ξ < 0) distribution. The GEV-distribution is

a max-stable distribution (Segers (2012)).

Next, we switch from univariate EVT to bivariate EVT to study pairs of extremes.

Consider {(X1,1, X1,2), ..., (Xn,1, Xn,2)} as i.i.d. bivariate random vectors. Let Mn,j, j =

{1, 2}, be the maximum of the univariate random variables {X1,j, ..., Xn,j}. Then the

bivariate vector of renormalized maxima M̃n is as follows

M̃n = (M̃n,1, M̃n,2) = (
Mn,1 − bn,1

an,1
,
Mn,2 − bn,2

an,2
), (11)

where an,1, an,2, bn,1, bn,2 are sequences of constants. If the renormalized maxima converge

to a distribution, as n → ∞, that distribution has to be a bivariate GEV-distribution

(Segers (2012))

lim
n→∞

Pr{M̃n < x} →d G(x). (12)

Segers (2012) show that a bivariate GEV-distribution G(x) can be written into two

components, the univariate GEV-margins Gj(xj) and a max-stable copula C∗. The max-

stable copula C∗ can be written as a tail dependence function V (x1, x2) as follows

C∗(exp{−1/x1}, exp{−1/x2}) = exp{−V (x1, x2)}. (13)

The function V (x1, x2) is the exponent function and is homogeneous of order (−1), i.e.

V (ax1, ax2) = a−1V (x1, x2) for a 6= 0. Throughout this thesis we denote the max-stable

copula in the form of an exponent function and compare four different parametric variants

for the exponent function.
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3.2.3 An inverted max-stable approach

In this subsection we introduce an inverted max-stable model as the (W1,W2) component

in the model of H&W. Assume that (X1, X2) follows a bivariate max-stable distribution

G(x1, x2) as in (12). Define

(W1,W2) = (
1

G1(X1)
,

1

G2(X2)
). (14)

Then, (W1,W2) possesses Pareto margins and an inverted max-stable copula. Note that

the copula of (W1,W2) is asymptotic independent. We derive the relation between the

exponent function of G(x1, x2) and the coefficient of tail independence ηW as follows.

Write Wj = exp{1/Xj} where (X1, X2) ∼ G(X1, X2). Then

Pr{W1 > x,W2 > x} = Pr{exp{1/X1} > x, exp{1/X2} > x}

= Pr{X1 <
1

log(x)
}, X2 <

1

log(x)
}

= G(
1

log(x)
,

1

log(x)
)

= exp{−V (
1

log(x)
,

1

log(x)
)}

= exp{−V (1, 1) log(x)}

= x−V (1,1),

where we use the homogeneous property of V (x1, x2). Therefore we get that ηW =

1/V (1, 1).

Further if 0.5 < δ < 1, χH in equation (5) becomes (H&W)

χH =
2δ − 1

1− (1− δ)(1 + ηW )
, (15)

where ηW is the tail independence coefficient of (W1,W2).

We choose symmetric and asymmetric forms for the exponent function V (x1, x2). The

first inclusion is the Dirichlet distribution in Coles and Tawn (1991). The distribution

allows an asymmetric dependence structure through the parameters (α, β) > (0, 0) of a
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Beta-distribution (Be)

V (x1, x2; θ) :=
1

x1
{1−Be( αx2

αx2 + βx1
; α+ 1, β)}+

1

x2
{Be( αx2

αx2 + βx1
; α, β+ 1)}. (16)

The case of asymptotic dependence occurs when α = β both go to infinity. The case of

complete independence occurs in two situations: either when α = β = 0, or when α(β) is

stable, while β(α) converges to zero. The corresponding coefficient of tail independence

is

ηW = {1− Be(
α

α + β
, α + 1, β) + Be(

α

α + β
, α + 1, β)}−1 ∈ [1/2, 1). (17)

Tawn (1988) provides a second exponent function that allows for asymmetric depen-

dence: the Asymmetric-Logistic distribution. The respective exponent function

V (x1, x2; θ) := (1− τ1)
1

x1
+ (1− τ2)

1

x2
+ [(

τ1
x1

)
1
τ3 + (

τ2
x2

)
1
τ3 ]τ3 , (18)

where the asymmetry parameters (τ1, τ2) ∈ [0, 1]2 and τ3 ∈ (0, 1]. If (τ1, τ2) are signifi-

cantly different from (1, 1), a symmetric structure is less likely, since there is evidence for

an asymmetric dependence structure. The coefficient of tail independence is

ηW =
1

2− τ1 − τ2 + (τ
1/τ3
1 + τ

1/τ3
2 )τ3

∈ [1/2, 1). (19)

The models is asymptotic independent when either τ3 = 1, τ1 = 0 or τ2 = 0. There is

complete dependence when, at the boundary point τ1 = τ2 = 1, τ3 converges to zero.

When the restriction τ1 = τ2 = 1 holds and τ3 does not converge to zero, the dependence

structure is identical to that of a standard Logistic copula. The case with a symmetric

Logistic exponent function we consider separately from the Asymmetric-logistic function,

where

V (x1, x2; θ) := (x
− 1
τ4

1 + x
− 1
τ4

2 )τ4 (20)

with parameter τ4 ∈ (0, 1] and ηW = 1
2τ4
∈ [1/2, 1).
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4 Methodology

This section covers the procedure for risk analysis on portfolio returns with a copula

model. We first filter the univariate returns {Rt,j} with a heteroskedastic volatility model.

Secondly, we estimate the dependence structure of the two stock markets {Rt,1, Rt,2}

and derive a test for the asymptotic (in)dependence. Here, the dependence structure is

modelled by the model in Section 3. Lastly, the calculation of three VaR models for the

portfolio returns Rt,p are shown together with back-tests to evaluate their accurateness,

where we define portfolio returns in period t as follows

Rt,p =
2∑
j=1

wjRt,j, (21)

where wj is the weight and Rt,j is the return of financial market j in period t.

4.1 Heteroskedastic volatility filter

Assume the return serie possesses heteroskedastic volatility. We first model {Rt,j}Tt=1 for

each j by an Autoregressive(AR)-Glosten-Jagannathan-Runkle(GJR)-Generalized Au-

toregressive Conditional Heteroskedastic(GARCH) model following the model in Glosten

et al. (1993). The AR-GJR-GARCH model is the simplest GARCH model that incor-

porates the stylized fact of asymmetric volatility in stock markets as a negative shock

increases volatility to stock prices more than a positive shock does, when the sizes of the

shocks are equal (leverage effect). GARCH models that allow for asymmetry in the con-

ditional variance have shown to systematically outperform symmetric volatility GARCH

models in forecasting stock movements at short horizons (Brownlees et al. (2011)). The

specification of the model is as follows

Rt,j = φ1,j + φ2,jRt−1,j + νt,jZt,j,

ν2t,j = φ3,j + (φ4,j + γjIt−1)Zt−1,j + φ5,jν
2
t−1,j,

(22)
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It−1 :=

0 if Rt−1,j ≥ φ1,j,

1 if Rt−1,j < φ1,j,

(23)

where (φ1,j, φ2,j, φ3,j, φ4,j, φ5,j, γj) are its parameters and γj models the leverage effect.

The heteroskedastic volatilities are {νt,j}Tt=1 and the residuals {Zt,j}Tt=1 are i.i.d. with

mean zero and variance one. By performing quasi-maximum likelihood estimation(QMLE),

one can estimate the quasi-maximum likelihood parameters (φ̂1,j, φ̂2,j, φ̂3,j, φ̂4,j, φ̂5,j, γ̂j),

the residuals {Ẑt,j}Tt=2 and the estimated time varying volatilities {ν̂t,j}Tt=2, while assum-

ing the distribution of {Zt,j}Tt=1 to be incorrectly specified to a certain extent as opposed

to maximum likelihood estimation(MLE) which assumes the correct distribution.

4.2 Copula estimation

Next, we model the cross-sectional dependence between the series. For that purpose, we

consider using copula to model the dependence in (Zt,1, Zt,2). Since we do not model the

marginal distribution of Zt,j parametrically, we use a non-parametric marginal transfor-

mation to transform (Zt,1, Zt,2) to the uniform marginals. This is achieved by using the

empirical c.d.f.,

Ût,j = F̂j(ẑt,j),

=
1

T + 1

T∑
t=1

1Ẑt,j≤zj .
(24)

Then we use the copula of (H1, H2) in equation (3) to model the dependence. We

fit the H&W model on {(Ût,1, Ût,2)}. First, to avoid computation complexity, we look at

a logarithmic transformation of the model. Note that maximizing a likelihood function

yields the same optimal parameters as maximizing the logarithm of that likelihood, since

it does not affect the location of the maxima. Secondly, the estimation depends on the

value of the marginal thresholds (u∗1, u
∗
2). By using a censored likelihood to estimate the

parameters for the copula model, values below the threshold (u∗1, u∗2) do not contribute

to the maximum likelihood optimalization.
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The maximization problem becomes

`(ψ) =
T∑
t=1

log(Lt(ψ)), (25)

where Lt(ψ) depends on whether a pair of observation exceeds a marginal thresholds and

ψ = (δ, θ), where θ are the parameters of the exponent function for (W1,W2). Let yt =

{j : Ût,j > u∗j} ⊆ {1, 2} describe the set of individual markets that exceed their marginal

thresholds at time t ∈ {1, ..., T}. Then, the contribution to the censored likelihood for

observation t,

Lt(ψ) =


CH(u∗1, u

∗
2; ψ) yt = ∅,

cH(Ût,1, Ût,2; ψ) yt = {1, 2},

Cy
H(max(Ût,1, u

∗
1),max(Ût,2, u

∗
2); ψ) yt = {1} ∪ yt = {2}.

(26)

The first case in equation (26) corresponds to no exceedances, the second case when

both observations are exceeding the threshold and the last case occurs if only one market

exceeds a marginal threshold. The definitions for the the copula distribution function

CH , density function cH and partial derivative of the copula distribution function Cy
H are

in H&W. The parameters from the maximum likelihood estimation are ψ̂ = (δ̂, θ̂), where

δ̂ is the asymptotic dependence parameter and θ̂ are the parameters of (W1,W2).

In H&W, it is argued that the estimator ψ̂ converges to the true value ψ with asymp-

totic normality given as follows: as the number of exceedances n→∞,

√
n(ψ̂ − ψ)

d−→ N(0,Σψ). (27)

The criteria to which we compare the different models for (W1,W2) is by comparing

AIC scores. A lower AIC score indicates a better fit of a model, relative to other models.

To classify the dependence class as a characteristic of each pair in asymptotic depen-

dence and asymptotic independence, we perform a test on δ̂. Depending on the value of
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δ̂ one tests the hypothesis

H0 : δ > 0.5 (Asympt. Dep.) vs. Ha : δ ≤ 0.5 (Asympt. Indep.)

H0 : δ < 0.5 (Asympt. Indep.) vs. Ha : δ ≥ 0.5 (Asympt. Dep.)

where we assume asymptotic normality of δ̂ which should hold true for some conditions

(H&W).

4.3 Value-at-Risk

4.3.1 Definition and estimation procedure

The VaR states, for a given probability, the risk to lose at least the specified amount over

a certain time period. Mathematically speaking, the VaR is the minimum amount k that

would mitigate a negative outcome at a fixed probability level (1− q),

V aRq := inf{k ∈ R : F−1(k) ≥ q}, (28)

where F−1 is the quantile function of the distribution of portfolio returns and q ∈ (0, 1).

Note that this study restricts itself to only study the risk measure for a portfolio with

long positions who risk a decline in value. We compare three different approaches to

estimate the VaR: the variance-covariance method, the historical method and a method

based on Monte Carlo simulation.

The variance-covariance method assumes the portfolio returns Rp,t are i.i.d. and follow

a normal distribution. The variance of the portfolio returns σ2
p is equal to

σ2
p = W TΣW, (29)

where W is the weight vector and Σ a covariance matrix. Then the risk measure is

V aRq = µp + σpΦ
−1
q (30)

with the unconditional mean µp = E[Rp] and Φ−1q the quantile function of the Normal
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distribution.

The historical method is a non-parametric estimation of the unconditional VaR. In

this method the portfolio returns from a sample are sorted dependent on the size and the

q quantile of the sample is directly the VaR for the next period.

For our H&W copula approach, we use Monte Carlo simulation to obtain estimates for

the VaR. Here, the procedure to estimate the VaR of a portfolio consists out of four steps.

First, we simulate l values from a copula CH with parameters ψ̂ to obtain a sufficient

amount of pairs (Û
(l)
T+1,1, Û

(l)
T+1,2), l = 1, 2, ...,m. Secondly, through the inverse of the

empirical cumulative distribution function in equation (24) we transform the values of

the simulation into simulated residuals

(Ẑ
(l)
1 , Ẑ

(l)
2 ) = (F̂−11 (Û

(l)
T+1,1), F̂

−1
2 (Û

(l)
T+1,2)). (31)

Thirdly, to coincise the pair (Ẑ
(l)
1 , Ẑ

(l)
2 ) with the heteroskedastic volatility, we use the

parameters from the AR-GJR-GARCH(1,1) model in equation (22). Finally, to estimate

(R̂
(l)
T+1,1, R̂

(l)
T+1,2), we predict the 1-step ahead volatility

ν̂2T+1,j = φ̂3,j + (φ̂4,j +
γ̂

2
+ φ̂5,j)ν

2
T,j (32)

and forecast the returns as follows

R̂
(l)
T+1,j = φ̂1,j + φ̂2,jRT,j + ν̂T+1,jẐ

(l)
j . (33)

Then the V aRq is the q quantile of the l simulated portfolio returns R̂(l)
T+1,p =

∑2
j=1wjR̂

(l)
T+1,j.

If the H&W copula model is a good fit for the data generating process, we expect that

the Monte Carlo method based on the copula model should overperform the benchmarks

that are the variance-covariance and the historical method. Through backtesting the risk

estimates are compared.

4.3.2 Backtesting

To study which VaR model is most adequate, we test the violations of the VaR estimates in

two parts, where a violation refers to a portfolio return exceeding the VaR in that period.
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First we test the unconditional coverage which examines whether the number of violations

are in proportion to the sample size. The second test concerns the independence of the

violations, where if the clustering of violations is too great we deem the model inaccurate.

The proportions of failures (PoF) test in Kupiec (1995) evaluates the unconditional

coverage of the violations. Under the null hypothesis that VaR is properly forecasted,

the number of violations n in a sample of T̃ observations follow a Bernoulli distribution

with the probability of a violation p. When the observed rate p̂ differs significantly of the

expected rate p, the null hypothesis will be rejected and the VaR model found inaccurate.

The test statistic used is as follows (Kupiec (1995))

LRPoF = −2ln
( (1− p)T̃−npn

[1− (p̂)]T̃−n(p̂)n

)
∼ χ2(1). (34)

We reject the null hypothesis if the LRPoF -statistic exceeds the 95% critical value of the

χ2(1) distribution.

Christoffersen (1998) introduces a test on the serial dependence of the violations.

When a VaR model is adequate, a violation in a period should not depend on whether

there was a violation the period before. Therefore, the probability that a violation occurs

in the current period should be equal, independent of previous period. Define a indicator

variable that depends on the occurrence of a violation

It =

1 if Rt < V aRt

0 if Rt ≥ V aRt

Furthermore, let nuv =
∑T+T̃

t=T+1(It = v|It−1 = u), where u, v ∈ {0, 1}. Then, we split the

whole period t = T + 1, .., T + T̃ into four scenarios. Table 1 provides an overview of the

seperate scenarios for nuv.

It−1 = 0 It−1 = 1
It = 0 n00 n10 n00 + n10

It = 1 n01 n11 n01 + n11

n00 + n01 n10 + n11 T̃

Table 1: Contingency table with nuv =
∑T+T̃

t=T+1(It = v|It−1 = u).
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In addition, let πi = Pr(It = 1|It−1 = i) and π = Pr(It = 1). Then they can be

estimated by

π̂0 =
n01

n00 + n01

, π̂1 =
n11

n10 + n11

and π̂ =
n01 + n11

n00 + n01 + n10 + n11

. (35)

The null hypothesis states that last period should not affect the probability of a violation

in the current period, i.e. H0 : π0 = π1. The test statistic that is used to test the null

hypothesis is

LRIND = −2ln
( (1− π̂)n00+n10 π̂n01+n11

(1− π̂0)n00 π̂n01
0 (1− π̂1)n10 π̂n11

1

)
∼ χ2(1). (36)

We reject the null hypothesis if the LRIND-statistic exceeds the 95% critical value of the

χ2(1) distribution.

5 Simulation

In this part we evaluate the maximum likelihood estimation of the parameters ψ = {δ, θ}

of the H&W model in a simulation study. The study is split into two parts. The first

part investigates the estimation of the asymptotic dependence parameter δ and the second

part investigates the estimation of the remaining parameter(s) θ.

In order to evaluate the estimation performance of each parameter in ψ, we simulate

1000 independent pairs (H1, H2) and estimate the parameter of interest by the censored

maximum likelihood method. We treat all remaining parameters in ψ as known. The

entire procedure is repeated 100 times for each specification of (W1,W2) at each scenario

δ ∈ [0.1, ..., 0.9] (from asymptotic independence to asymptotic dependence). Throughout

this section the choice of θ for a Gaussian/Dirichlet/Logistic/Asymmetric-Logistic spec-

ification corresponds to ρ = 0.4/(α, β) = (0.25, 0.6)/τ4 = 0.4/(τ1, τ2, τ3) = (0.25, 0.6, 0.4)

respectively.
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Figure 1: Box plot comparing the true δ as opposed to the estimated δ̂. The green line
represents the true value δ. The dotted lines represent the 95% confidence interval. The copula
CH is fitted 100 times for each of the four specifications of (W1,W2) at each scenario δ ∈
[0.1, ..., 0.9].

Figure 1 displays the variability and bias of the estimates (δ̂) of δ. As δ ∈ [0.1, 0.2, 0.3]

the copula structure of the copula model (H1, H2) closely follows the copula structure

of (W1,W2). According to the definition of ηH in equation (6), ηH is constant for

δ ∈ [0.1, 0.2, 0.3] since ηW > 0.5 in all four models. Therefore low values of δ yield a

similar dependence structure for each model. In addition, there exists large variability

in the estimation for the scenario’s δ < 0.5. However, when the underlying data gen-

erating process is asymptotically dependent, the estimation of δ becomes more accurate

for higher levels of asymptotic dependence. The interpretation is that δ is identified in

χH for any δ, but not necessarily in ηH when the data generating process is asymptotic

independent. Furthermore, the assumption of normality of δ̂ appears unreasonable when

the true parameter δ lies close to the boundaries 0 and 1. The four specifications show

a slight downward bias, with the exception of the Asymmetric-Logistic specification that

exhibits an upward bias.

The second part investigates the estimation of θ for each specification of (W1,W2),
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which assumes δ as known. If θ is a vector of parameters, only the parameter of interest

is estimated, while the remaining parameter(s) are also known.

Figure 2 shows the estimation of ρ is for the copula model with a Gaussian specifi-

cation. The estimator ρ̂ is reliable in estimating the true value ρ. Variability increases

when the data generating process exhibits more asymptotic dependence. The estimator

ρ̂ performs well for δ ≤ 0.5, where the model closely follows the structure of (W1,W2),

indicating that the assumption of normality for ρ̂ may only hold for δ ≤ 0.5.

Figure 2: Box plot evaluating the estimation of ρ. The green line represents the true value ρ.
The dotted lines represent the 95% confidence interval. The copula CH is fitted 100 times on a
simulated sample of 1000 observations at each scenario δ ∈ [0.1, ..., 0.9].

Figure 3 display the results of estimating the copula model with a Dirichlet specifi-

cation for (W1,W2). The estimated parameters α̂ and β̂ are both around the respective

true values α = 0.25 and β = 0.6. However, we observe a large number of outliers for

both parameters at any δ ∈ [0.1, ..., 0.9]. One possibility is that the identification problem

stems from the increase in the number of parameters.

Figure 3: Box plot evaluating the estimation of α/β with fixed parameter β = 0.6/α = 0.25.
The green line represents the true value α/β. The dotted lines represent the 95% confidence
interval. The copula CH is fitted 100 times on a simulated sample of 1000 observations at each
scenario δ ∈ [0.1, ..., 0.9].
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This simulation study concludes with Figure 4, which shows the results of the simu-

lation for a Logistic and Asymmetric-Logistic specification. The estimated Asymmetric-

Logistic parameters τ̂1, τ̂2 & τ̂3 contain bias and large variability. Although the estimation

of the parameter δ is accurate, the estimation of remaining parameters τ1, τ2 & τ3 is inac-

curate. The fourth panel presents the results for a simulation with a Logistic specification

(τ4) and in general, the estimator τ̂4 is accurate for δ ≤ 0.5, however there appears a strong

increase in the variability for δ > 0.5. A possibility is that the assumption of normality

may only hold for τ̂4 < 0.5. This evidence is in agreement with our findings with a

Gaussian specification.

In summary, the simulation study indicates that the H&W model contains large vari-

ability estimating δ when δ < 0.5 or when δ is close to the boundaries 0 and 1. The

estimation of θ shows larger variability in the case for Gaussian and Logistic variants

at δ ≥ 0.5. The Asymmetric-Logistic variant is inaccurate when estimating θ for any

δ ∈ [0.1, ..., 0.9] and the estimator θ̂ in the Dirichlet variant is unbiased, but provides

large outliers.

Figure 4: Box plot evaluating the estimation of τ1/τ2/τ3/τ4. The green line represents the
true value. The dotted lines represent the 95% confidence interval. The copula CH is fitted 100
times on a simulated sample of 1000 observations at each scenario δ ∈ [0.1, ..., 0.9].
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6 Data and preliminary analysis

A strong indicator of the performance in financial markets is through indices returns. In

this thesis daily index data of the largest index of a country from the Wharton Research

Data Services (WRDS) database are used. These 11 countries are the United States

of America, the Netherlands, Spain, South Africa, France, Germany, Japan, Australia,

United Kingdom, Norway and Denmark. The data ranges from January 1992 - May 2018.

A period with a missing observation in a country is deleted from the sample. Due to this

elimination there remain 5721 observations for each index. Table 2 contains the summary

statistics of the standard returns in percentages.

Mean Std. Dev. Minimum Skewness Kurtosis LB-stat P-val
USA 0.02 1.13 -9.47 -0.49 11.18 42.9 0.00
Netherlands -0.01 1.33 -9.59 -0.27 9.04 69.9 0.00
Spain 0.01 1.43 -13.39 -0.15 8.87 42.0 0.00
South Africa 0.03 1.20 -13.66 -0.56 9.42 48.7 0.00
France -0.00 1.32 -9.42 -0.17 7.55 58.4 0.00
Germany 0.00 1.37 -8.20 -0.25 7.06 30.7 0.00
Japan -0.01 1.37 -10.3 -0.18 8.71 16.5 0.08
Australia 0.02 0.97 -8.76 -0.44 8.53 22.2 0.01
United Kingdom -0.00 1.01 -9.21 -0.25 8.80 47.9 0.00
Norway 0.02 1.43 -11.04 -0.48 10.55 33.3 0.00
Denmark 0.02 1.18 -11.61 -0.41 8.25 38.4 0.00

Table 2: Summary statistics of daily return percentages from 11 countries in the range of
January 1988 - May 2018. P-values are estimated with 1 degree of freedom.

The data exhibits negative skewness and large kurtosis, typical for financial assets. A

Ljung-Box test measures the amount of autocorrelation in a sample, where we reject the

sample to be i.i.d. when P-val < 0.05. In our sample, there appears a large amount of

autocorrelation in the data (only for Japan we do not reject the daily returns to be i.i.d.),

signalling that the returns might not be i.i.d. due to the presence of heteroskedastic

volatility. As a result the asymptotic dependence could be overestimated.

To filter the heteroskedastic volatility, we implement an AR-GJR-GARCH(1,1) model

on the daily losses defined as the negative of the daily returns. The results of the Ljung-

Box tests and a graphical representation are in Appendix A. For all countries, the residuals

of an AR-GJR-GARCH(1,1) model show no significant autocorrelation in the first ten

25



lags.

We transform the loss residuals to the Uniform scale of which we show three examples

in Figure 5. The red and blue dots represent the top 10% extreme losses of the individual

stock markets, whereas purple dots represent the scenario where both markets co-exceed

their top 10% threshold. The France - United States of America panel shows a higher

concentration of observations in the upper right corner. Therefore, the probability that

an extreme loss occurs in the United States of America, given an extreme loss in France, is

relatively high in comparison to the other two panels. Consequently the relation appears

more strongly asymptotic dependent than the other two. The probability decreases in

the case of Norway - France and in the case of Australia - United States of America.

Especially the latter appears strongly asymptotic independent as a large portion of the

extremes are scattered outside the upper right corner. In addition, we observe that the

extremes are not necessarily spread symmetrically, suggesting an asymmetric structure in

our model could approximate the dependence structure of the extremes more accurately.
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Figure 5: The AR-GJR-GARCH(1,1) loss residuals on the Uniform scale for pairs France-
United States of America, Norway-France and United States of America-Australia. Red and
blue dots represent the top 10% observations where an individual country exceeds its marginal
threshold u∗ = 0.9, purple dots where both countries exceed their marginal threshold at the
same day.

7 Application

In this part we fit the model of H&W to pairs of residuals from the AR-GJR-GARCH(1,1)

model in Section 6. Then, we select two specifications for the H&W models out of four

possible candidates. We base our selection on which model achieves the lowest AIC-scores

and through comparing the parametric and non-parametric estimate of the dependence

measure χ. Furthermore, the asymptotic dependence structure of the residual pairs are

summarized in a network analysis, differentiating between asymptotic dependent and

asymptotic independent pairs. We construct portfolios of two indices that classify as

either an asymptotic dependent or an asymptotic independent portfolio based on this

network analysis. Thereafter, we determine the risk estimates of the portfolios from two
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benchmark VaR models and one that incorporates the H&W model. Lastly, the risk

estimates are compared via backtesting.

7.1 Model selection

The censored likelihood estimation of the H&W model is performed for all 55 unique

pairs of residuals, after filtering the loss returns by a AR-GJR-GARCH(1,1) model. The

marginal thresholds for the censored likelihood were set at (u∗1, u
∗
2) = (0.95, 0.95) in all

cases for consistency, which also agrees with H&W. A summary of the model selection is

in Table 3, while the individual AIC-scores are in the Appendix.

The first observation is that the model with an Asymmetric-Logistic specification

for (W1,W2) has a relatively high AIC-score in all cases. In addition, the numerical

optimization often can not evaluate the integrals in the censored likelihood estimation to

derive the standard errors. The absence of standard errors means there is no method to

test the asymptotic dependence. The model with a Gaussian specification achieves the

lowest AIC-score in the majority of time and appears to be a good fit for our research.

The model with a symmetric Logistic specification and asymmetric Dirichlet specification

both perform modestly, each achieving the lowest AIC-score in a fifth of the cases.

Specification (W1,W2) Gaussian Dirichlet Logistic Asymmetric-Logistic Total
Optimal AIC 33 10 12 0 55

Table 3: Summary table of the number of times a model achieves the lowest AIC-score. The
marginal thresholds chosen for the censored likelihood estimation are (u∗1, u

∗
2) = (0.95, 0.95).

7.2 Goodness of fit

Here, we complement Section 7.1 by performing a goodness-of-fit analysis on the paramet-

ric and the empirical estimate of the dependence measure χ for the different specifications.

Figure 6 shows the the empirical and parametric estimates of χ for three examples.

The dashed lines represent a 95% bootstrap confidence interval that measures the un-

certainty. The interval is based on 200 bootstrap samples and the individual dots are

the empirical estimates of χ at varying thresholds u. The colored lines represent the

parametric estimates of χ at varying thresholds u.
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Each panel hints at asymptotic independence as χ → 0 for u → 1. At the boundary

u → 1 the uncertainty increases, shown by the increasing size of the 95% confidence

interval. In addition, although the copula model only directly models the dependence

structure of the top 5% extreme losses, it still appears as a good fit for the top 10%

extreme losses.

In the France - Norway panel, the parametric χ of the model with an Asymmetric-

Logistic specification lies outside the 95% bootstrap interval. In general, such a model

tends to overestimate δ and is inferior to other models in this study. One reason could

be that the uncertainty in the additional parameters cause the maximum likelihood es-

timation to converge to a sub-optimal solution. Therefore we conclude, also evident by

sub-optimal AIC-scores and varying parameter estimates in our simulation study, that

the model with an Asymmetric-Logistic specification is not suitable for our data. The

Logistic and Dirichlet specifications closely resemble each other, however the Logistic

variant estimates δ lower relative to the other models. The advantage of the Dirichlet

specification is its flexibility to model asymmetry in our data. Therefore, we select the

copula model with a symmetric Gaussian or an asymmetric Dirichlet specification and

omit the model with a Logistic and Asymmetric-Logistic specification in further analysis.

Through this selection, we reduce the computational time and have a robust representa-

tion of the model with and without asymmetry.
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Figure 6: Three examples of the parametric and empirical estimate of χ. The dots are the
empirical estimates of χ. The different colored lines represent estimates of χ according to the four
different models. The yellow/brown/blue/red line represents the model using the Asymmetric-
Logistic/Logistic/Dirichlet/Gaussian specification.

7.3 Asymptotic (in)dependence analysis

Here, the asymptotic relation in global stock markets is established by estimating the

dependence parameter δ. The estimated asymptotic dependence parameters δ̂ of the

copula model with an asymmetric(symmetric) specification are in Table 9(10) of the

Appendix. The classification of asymptotic dependent and asymptotic independent pairs

is on the basis that δ̂ approximately follows a Normal distribution. As the differences

between the copula model with a Gaussian and Dirichlet specification are small, we only

present the figures for the Gaussian variant here and refer to the Dirichlet wherever

necessary.
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Figure 7 shows the asymptotic strength of dependent stock markets by comparing

the dependence measure χH . The European countries Spain, Netherlands, France and

Germany contain asymptotic dependent structures for the losses. The strongest relations

exist between the northern Europe countries France, Germany and the Netherlands,

which is shown by the thickness of the line. The asymptotic dependence relation with

the northern European countries and Spain is slightly weaker and in the case of a Dirichlet

specification the relation is significantly asymptotic independent. For the cases that our

test can not reject asymptotic dependence (δ > 0.5) the lines are dotted. The United

Kingdom has a weak and insignificant asymptotic dependent relation with the rest of the

northern European countries, whereas in the Dirichlet variant it is asymptotic dependent

with Netherlands and France. Other cases where we do not reject the relation to be

asymptotic dependent are Norway - Germany and Australia - Japan.

In conclusion, the class of asymptotic dependent pairs of countries is primarily reserved

for stock markets within the European Union (with the exception of Australia - Japan).

Due to the integration of stock markets in the European Union, they produce large

spillover effects when extreme losses occur, relative to more geographically distant stock

markets.

31



Figure 7: The countries that exhibit asymptotic dependence according to the model with a
Gaussian specification. The solid lines represent connections with a δ > 0.5 whereas the dotted
lines represent the cases where we cannot reject δ > 0.5. The thickness indicates the value of
the dependence measure χH , where a thicker line equates to a higher value.

Figure 8 captures the asymptotic independent relations when δ is significantly lower

than 0.5. Here, the color of the line indicates the strength of the asymptotic independence

measure ηH . Even though Norway and Denmark are not asymptotically dependent with

the rest of the European countries, the asymptotic independence measure is relatively

high. The asymptotic independence measure is low for pairs that include the United

States of America and Australia. A possible reason could be due to the measurement

error of different time zones of the daily observations. Surprisingly, the asymptotic inde-

pendence measures between South Africa and nearly all other countries are high, whereas

for Japan it is only strong for combinations with countries in the European Union.

Based on these findings, we divide pairs into two portfolio classes for future analysis

using equal weights. The pairs in Figure 7 represent the portfolios with asymptotically

dependent countries and the pairs in Figure 8 represent the portfolios with asymptotically

independent countries.
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Figure 8: The countries that exhibit asymptotic dependence according to the model with a
Gaussian specification. The lines represent pairs with a δ < 0.5. The color indicates the value
of the independence measure ηH .

7.4 Risk analysis

7.4.1 Estimation

In this section we compare the general differences between four risk models through an

example by visually inspecting 1-day ahead VaR estimates.

Here, the two benchmarks to beat are a Historical and a Variance-Covariance model.

The VaR estimates of the Monte Carlo model, which incorporates the H&W copula

model, contains two variants: either with a Gaussian or with a Dirichlet specification

for (W1,W2). The rolling window contains 3000 observation to enable convergence of

the censored likelihood. We re-estimate the copula models yearly w.r.t. Ψ = {θ, δ}

and fix δ throughout the year, while re-estimating the remaining parameters θ monthly.

When the integral in the copula density function can not be evaluated through numerical

optimization it is a sign of no convergence in the parameter estimates. In that case,

the old estimates in last month were set to be the new estimates. Throughout our

analysis, the longest period for which this happened is 6 months. The out-of-sample
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estimation starts at the year 2007, just before the financial crisis, containing 2571 days.

The number of simulations m = 10000. For the marginals the AR-GJR-GARCH(1,1)

model is re-estimated monthly to forecast the volatilities, while keeping the computational

time to a reasonable degree. Four different levels of α for the VaR are considered, namely

α ∈ [0.10, 0.05, 0.025, 0.01].

Figure 9: An example of the estimation of different levels of the VaR series for the models
shown simultaneously. The example portrays a portfolio of France and the USA with weights
(w1, w2) = (0.5, 0.5). The yellow/green/blue/red line represents the value at risk measure using
the MC-Dirichlet/MC-Gaussian/Var-Cov/Historical method.

In Figure 9 we present an example to illustrate the VaR estimates for an equally-

weighted portfolio consisting of the largest stock market in France and the USA. The

most recent financial crisis is visible at the start, where irrespective of the risk model

a cluster of violations occur. Both the benchmark models closely follow each other,

where the Historical model is more conservative at α = 0.01 and the Variance-Covariance

model at α = 0.10. The difference in the two models is due to the data not perfectly

following a Normal distribution. Relative difference between the risk measures from the

MC-Gaussian and MC-Dirichlet is not as clear cut. However, the risk estimates of MC-
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Dirichlet varies more over time.

Furthermore, analyzing the differences between the benchmark and the copula risk

models we observe that the benchmark models are less erratic, whereas the Monte Carlo

method varies more as it is based on simulations and involves the forecast for volatility.

When α = 0.01 the MC-Gaussian and MC-Dirichlet are in general more conservative

relative to the benchmark models. Note that for the MC-Dirichlet and MC-Gaussian

the copula model only models the extremes above the marginal thresholds (u∗1, u
∗
2) =

(0.95, 0.95) and therefore partly models the dependence structure of the extremes in case

of α = 0.10. However, H&W notes that, even though the marginal threshold is set at

(u∗1, u
∗
2) = (0.95, 0.95), the copula model still reasonably fits the data. This agrees with

our findings in Section 7.2. In case of α ∈ [0.025, 0.05] the four VaR models appear

similar in the example, especially when α = 0.05, with small deviations. For α = 0.10

the Variance-Covariance model produces significantly lower VaR estimates, relative to

the other three models.

Whether the relative relations of the risk models here hold for all portfolios is not

apparent by the visual example of one VaR series alone. To evaluate the performance in

depth and summarize the performance of our risk models, we move towards backtesting

the VaR estimates of the entire set of portfolios.

7.4.2 Backtesting

In this section two tests determine the performance of the risk models: the unconditional

coverage test in Kupiec (1995) (PoF ) and the independence test of Christoffersen (1998)

(IND). Backtesting the risk models is on the entire out-of-sample dataset, consisting

out of 2571 days. Table 4 summarizes the backtest results for 55 portfolios. Here, PoF

indicates the number of portfolios where we do not reject the number of violations to be

proportionate to the sample size. In addition, IND indicates the number of portfolios

where we do not reject that the violations are independently distributed.

The risk estimates from the Variance-Covariance model is the best representation for

VaR at α = 0.025. The assumption of normality for the distribution of portfolio returns

is inaccurate at α = 0.10, as the frequency of violations deviates too large from what is to

be expected. A non-parametric Historical VaR performs excellent as both tests indicate
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it performs the best, relative to the other models, for α ∈ [0.025, 0.05, 0.10].

In the case of a parametric risk models that incorporates the H&W copula model,

the Monte Carlo with a Gaussian specification performs slightly better for both tests.

This is in line with the result that this model approximates the majority of the portfolios

best. For α = 0.01 it performs slightly better than the Historical VaR model. The case

with a Dirichlet specification scores slightly lower, indicating the addition of asymmetry

in general does not increase the accuracy as much for a VaR model in our data relative

to a symmetric Gaussian specification.

α = 0.01

Method f sf PoF IND
MC-Gaussian 0.008 0.002 42 32
MC-Dirichlet 0.007 0.002 35 26
Var-Covariance 0.014 0.014 26 21

Historical 0.012 0.003 39 31

α = 0.025

Method f sf PoF IND
MC-Gaussian 0.019 0.005 27 13
MC-Dirichlet 0.019 0.005 22 13
Var-Covariance 0.024 0.004 50 24

Historical 0.028 0.004 39 19

α = 0.05

Method f sf PoF IND
MC-Gaussian 0.041 0.009 21 8
MC-Dirichlet 0.041 0.010 17 7
Var-Covariance 0.040 0.005 22 4

Historical 0.054 0.006 40 13

α = 0.10

Method f sf PoF IND
MC-Gaussian 0.087 0.012 16 4
MC-Dirichlet 0.087 0.013 16 6
Var-Covariance 0.071 0.007 0 0

Historical 0.102 0.007 50 21

Table 4: Summary table of the results for backtesting VaR estimates on 55 portfolios. f rep-
resents the frequency of violations and sf the respective standard deviation across the selection
of 55 portfolios.

Whether the separate risk models perform differently depending on asymptotic depen-

dent or asymptotic independent portfolios, we examine the risk models in the portfolios

of countries based on the differentiation we made in Section 7.3. A summary of the

test results for the asymptotic dependent portfolios is in Table 5. Results show that the

MC-Dirichlet method displays similair results as MC-Gaussian for asymptotic dependent

portfolios. However, the Historical method is superior in comparison with both models.

The Variance-Covariance method performs relatively good at α ∈ [0.01, 0.025] and under

performs at α ∈ [0.05, 0.10].
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α = 0.01

Method f sf PoF IND
MC-Gaussian 0.007 0.002 6 5
MC-Dirichlet 0.007 0.002 5 6
Var-Covariance 0.013 0.013 7 8

Historical 0.010 0.003 9 10

α = 0.025

Method f sf PoF IND
MC-Gaussian 0.018 0.004 4 2
MC-Dirichlet 0.019 0.005 4 5
Var-Covariance 0.024 0.003 10 8

Historical 0.026 0.004 9 8

α = 0.05

Method f sf PoF IND
MC-Gaussian 0.040 0.006 4 3
MC-Dirichlet 0.042 0.006 4 4
Var-Covariance 0.038 0.005 3 1

Historical 0.051 0.005 10 6

α = 0.10

Method f sf PoF IND
MC-Gaussian 0.084 0.006 3 1
MC-Dirichlet 0.089 0.007 5 4
Var-Covariance 0.070 0.008 0 0

Historical 0.099 0.006 11 9

Table 5: Summary table of the results for backtesting VaR estimates on 11 asymptotic de-
pendent portfolios in line with Section 7.3. f represents the frequency of violations and sf the
respective standard deviation across the selection of 11 portfolios.

Finally, the results of asymptotic independent portfolios are in Table 6. The risk

estimates from the MC-Gaussian method performs better than all other risk models

in this study at α = 0.01. Therefore, the inclusion of the H&W model for asymptotic

independent portfolios leads to more accurate risk estimates at the most extreme quantile.

In all other cases the Historical benchmark method performs the best.

In summary, we find that a Monte Carlo simulation in combination with the copula

model in H&W with either a Gaussian or Dirichlet specification under performs in com-

parison with a Historical method in almost every case, with the exception of asymptotic

independent portfolios at α = 0.01. As regulators and investors are interested in the most

extreme cases, our study provides an additional tool to model risk accurately for the most

extreme case. At α ∈ [0.05, 0.10] the copula based risk models perform badly, which indi-

cates that even though the 10% extremes appear to follow the model when estimated for

the top 5% extremes, it does not help for estimating the VaR. The Variance-Covariance

method gets outperformed with our model at α ∈ [0.01, 0.10] and outperforms our model

at α = [0.025].
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α = 0.01

Method f sf PoF IND
MC-Gaussian 0.008 0.002 36 27
MC-Dirichlet 0.008 0.002 30 19
Var-Covariance 0.014 0.014 18 12

Historical 0.012 0.002 29 20

α = 0.025

Method f sf PoF IND
MC-Gaussian 0.020 0.006 23 11
MC-Dirichlet 0.019 0.006 18 8
Var-Covariance 0.024 0.004 39 16

Historical 0.029 0.004 29 11

α = 0.05

Method f sf PoF IND
MC-Gaussian 0.042 0.010 17 5
MC-Dirichlet 0.041 0.011 13 3
Var-Covariance 0.040 0.005 19 3

Historical 0.055 0.006 29 6

α = 0.10

Method f sf PoF IND
MC-Gaussian 0.087 0.014 13 2
MC-Dirichlet 0.087 0.015 11 2
Var-Covariance 0.072 0.007 0 0

Historical 0.103 0.007 38 11

Table 6: Summary table of the results for backtesting VaR estimates on 44 asymptotic inde-
pendent portfolios in line with Section 7.3. f represents the frequency of violations and sf the
respective standard deviation across the selection of 44 portfolios.

8 Conclusion and discussion

Being conscious about the risk level could improve the performance of allocating wealth

into investment portfolios. This study examines the asymptotic dependence of interna-

tional stock markets and considers three different VaR models for corresponding portfo-

lios. The focus is on a VaR model that incorporates a new copula model by H&W using

Monte Carlo simulation. The copula model estimates the asymptotic (in)dependence in

the data by letting the data ’speak’ for itself through the dependence parameter δ. The

asymptotic dependence in markets were tested and through simulation from the copula

model the estimates from a VaR model were tested.

The extreme losses in international stock markets exhibit asymptotic dependence only

for pairs of countries inside the European Union, whereas countries outside the EU show

asymptotic independence with countries inside and outside the EU. A notable exceptions

is Japan - Australia, where we can not reject asymptotic dependence. The strongest

asymptotic dependent pairs include the countries Germany, France and the Netherlands,

where the cause for the level of stock market integration is often linked to their partici-

pation in the European Monetary Union. In general, stock markets of countries appear

asymptotic independent in our sample period when corrected for heteroskedastic volatil-

ity.
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The risk analysis in this study shows that for asymptotic independent portfolios at

the most extreme level α = 0.01, a Monte Carlo method with a Gaussian specification

of the H&W model outperforms all other risk models in most cases. The result is based

on a portfolio analysis of 11 international stock markets of which the 1-day ahead VaR is

calculated. In case of asymptotic dependent portfolios the Historical benchmark model

performs best in most cases.

The simulation of our copula model shows that in estimating the parameters of dif-

ferent specifications contains significant bias and high variability. In addition, the model

with an inverted max-stable specification is prone for numerical error in the estimation of

the censored likelihood. There are a plethora of other inverted max-stable distributions

for independence modelling. However, an in-depth analysis on the performance of the

model is necessary before selecting a model for real-world applications as the estimation

of δ possibly differs between specifications.

The results in this thesis are best used for linear portfolios without shorting and

other financial instrument such as options. An extension would be to investigate longer

horizons and calculate n-day ahead risk estimates. As risk managers are interested in

longer periods than 1 days, one could look at the standard 10 days VaR estimates.

The performance of the risk model with our copula model could increase by certain

factors. Firstly, empirical data with a higher frequency to filter between different time

zones. In this study the closing prices of international indices are at different time periods.

In addition, during our risk analysis we include the financial recession which greatly affects

the entire risk estimation as the estimation window used was large. Note that estimating

the copula model required a large estimation window. Separating a period with financial

crisis and more tranquil period could provide new insights. However, a risk model should

not only be able to perform for standard data as financial crises are unpredictable. Finally,

only considering VaR estimates creates tunnel vision. Different forms of risk could cause

a larger effect on the losses such as political risk, liquidity risk and regulatory risk which

should be a part of the risk analysis before investing.

39



Appendix A Appendix

A.1 - Autocorrelation of AR-GJR-GARCH(1,1) residuals.

USA NL SP SA FR DE JP AUS UK NW DK
LB 11.2 7.4 6.5 5.5 10.8 8.4 6.9 16.3 10.7 18.3 10.4

P-val 0.34 0.69 0.77 0.85 0.37 0.59 0.74 0.09 0.38 0.05 0.40

Table 7: The result of Ljung-Box tests on the univariate timeseries using only the first 10 lag
coefficients.

Figure 10: Autocorrelation before(left) and after(right) correcting for the heteroskedastic
volatility by an AR-GJR-GARCH(1,1) model. Here, the data shown is of the USA.
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A.2 - Akaike-Information-Criteria scores.

Gaussian Dirichlet Logistic Asym-Logistic
USA - Netherlands 546.5 547.2 545.5 554.0
USA - Spain 637.8 641.2 640.1 646.2
USA - South Africa 899.4 897.3 896.7 901.8
USA - France 548.1 546.5 545.8 549.9
USA - Germany 571.8 573.0 573.3 578.4
USA - Japan 996.7 998.9 997.9 1003
USA - Australia 1001 989.5 1001 1004
USA - United Kingdom 507.3 519.3 509.1 526.4
USA - Norway 799.3 802.7 800.9 806.5
USA - Denmark 854.7 852.8 855.8 865.1
Netherlands - Spain -14.31 -20.02 -13.86 6.21
Netherlands - South Africa 614.0 620.3 619.0 634.3
Netherlands - France -586.6 -561.9 -590.5
Netherlands - Germany -350.6 -319.7 -347.7
Netherlands - Japan 835. 5 832.5 830.8 836.3
Netherlands - Australia 824.2 826.2 824.9 830.9
Netherlands - United Kingdom -294.6 -265.9 -293.9
Netherlands - Norway 209.1 214.9 211.8
Netherlands - Denmark 341.3 332.5 337.9 374.9
Spain - South Africa 746.1 755.1 749.9 764.0
Spain - France -179.1 -179.4 -178.1
Spain - Germany -20.89 -18.7 -17.20 -1.328
Spain - Japan 938.8 935.4 933.2 937.3
Spain - Australia 933.7 935.1 933.6
Spain - United Kingdom 131.6 128.1 134.7 152.9
Spain - Norway 496.5 497.6 499.1 511.3
Spain - Denmark 517.9 518.7 515.7 541.7
South Africa - France 659.7 664.72 666.4 672.4
South Africa - Germany 645.0 643.4 642.3 645.8
South Africa - Japan 866.3 869.1 867.6 875.4
South Africa - Australia 783.3 784.5 783.5 787.6
South Africa - United Kingdom 586.0 590.5 588.8 601.1
South Africa - Norway 525.49 530.7 529.1 535.9
South Africa - Denmark 703.7 707.7 706.0 718.3
France - Germany -467.3
France - Japan 859.2 860.0 858.7 863.3
France - Australia 886.4 888.5 886.8 891.0
France - United Kingdom -349.1 -314.9 -354.3 -312.6
France - Norway 237.9 237.6 237.7 273.3
France - Denmark 357.8 345.9 354.1 379.9
Germany - Japan 861.7 864.3 862.4 868.4
Germany - Australia 863.3 869.6 868.6 874.9
Germany - United Kingdom -127.8 -120.1 -124.2 -79.27
Germany - Norway 305.0 310.3 307.7
Germany - Denmark 323.4 315.6 321.1 344.9
Japan - Australia 506.5 510.9 509.9 516.0
Japan - United Kingdom 819.5 823.4 820.8 835.1
Japan - Norway 840.6 843.4 862.4 868.4
Japan - Denmark 880.8 880.8 881.2 886.1
Australia - United Kingdom 858.6 859.9 858.4 862.5
Australia - Norway 789.2 789.0 789.7 793.8
Australia - Denmark 821.1 823.0 821.2 829.4
United Kingdom - Norway 299.5 301.1 300.9
United Kingdom - Denmark 426.6 427.0 427.3 443.6
Norway - Denmark 452.3 457.1 454.1 470.3

Table 8: The AIC-scores according to AIC = 2k − 2L.
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Dirichlet δ Pr(δ) > 0.5 or Pr(δ) < 0.5 Asymmetric Logistic δ Pr(δ) > 0.5 or Pr(δ) < 0.5

Asymptotic Dependent Pr(δ) > 0.5 Asymptotic Dependent Pr(δ) > 0.5

Netherlands - France 0.65 0.00 Netherlands - Spain 0.58 0.00
Netherlands - Germany 0.61 0.00 Netherlands - Denmark 0.51 0.06
Netherlands - United Kingdom 0.61 0.00 Spain - Germany 0.58 0.00
France - United Kingdom 0.62 0.00 Spain - United Kingdom 0.55 0.00
Asymptotic Independent Pr(δ) < 0.5 France - United Kingdom 0.62 0.00
USA - Netherlands 0.45 0.01 Germany - United Kingdom 0.59 0.00
USA - Spain 0.44 0.00 Germany - Denmark 0.52 0.00
USA - South Africa 0.36 0.00 Japan - Australia 0.50 0.38
USA - France 0.48 0.05 United Kingdom - Denmark 0.51 0.34
USA - Germany 0.46 0.03 Asymptotic Independent Pr(δ) < 0.5
USA - Japan 0.16 0.00 USA - Netherlands 0.49 0.11
USA - Australia 0.03 0.00 USA - Spain 0.47 0.00
USA - United Kingdom 0.47 0.15 USA - South Africa 0.39 0.00
USA - Norway 0.40 0.00 USA - France 0.49 0.12
USA - Denmark 0.34 0.00 USA - Germany 0.48 0.03
Netherlands - Spain 0.48 0.18 USA - Japan 0.32 0.00
Netherlands - South Africa 0.38 0.00 USA - Australia 0.27 0.00
Netherlands - Japan 0.38 0.00 USA - United Kingdom 0.49 0.16
Netherlands - Australia 0.37 0.00 USA - Norway 0.42 0.00
Netherlands - Norway 0.45 0.01 USA - Denmark 0.39 0.00
Netherlands - Denmark 0.39 0.00 Netherlands - South Africa 0.47 0.00
Spain - South Africa 0.40 0.00 Netherlands - Japan 0.41 0.00
Spain - France 0.49 0.28 Netherlands - Australia 0.41 0.00
Spain - Germany 0.48 0.02 Spain - South Africa 0.43 0.00
Spain - Japan 0.38 0.00 Spain - Japan 0.38 0.00
Spain - Australia 0.36 0.00 Spain - Norway 0.49 0.14
Spain - United Kingdom 0.47 0.13 Spain - Denmark 0.48 0.03
Spain - Norway 0.44 0.00 South Africa - France 0.46 0.00
Spain - Denmark 0.39 0.00 South-Africa - Germany 0.47 0.00
South Africa - France 0.42 0.00 South-Africa - Japan 0.40 0.00
South-Africa - Germany 0.46 0.01 South-Africa - Australia 0.43 0.00
South-Africa - Japan 0.36 0.00 South-Africa - United Kingdom 0.47 0.00
South-Africa - Australia 0.43 0.00 South-Africa - Norway 0.49 0.20
South-Africa - United Kingdom 0.42 0.00 South-Africa - Denmark 0.47 0.00
South-Africa - Norway 0.46 0.05 France - Japan 0.41 0.00
South-Africa - Denmark 0.38 0.00 France - Australia 0.40 0.00
France - Japan 0.39 0.00 France - Norway 0.44 0.00
France - Australia 0.39 0.00 France - Denmark 0.42 0.00
France - Norway 0.40 0.02 Germany - Japan 0.40 0.00
France - Denmark 0.41 0.00 Germany - Australia 0.40 0.00
Germany - Japan 0.37 0.00 Germany - Norway 0.48 0.12
Germany - Australia 0.37 0.00 Japan - United Kingdom 0.41 0.12
Germany - United Kingdom 0.43 0.00 Japan - Norway 0.41 0.00
Germany - Norway 0.44 0.00 Japan - Denmark 0.39 0.00
Germany - Denmark 0.42 0.00 Australia - United Kingdom 0.41 0.00
Japan - Australia 0.48 0.12 Australia - Norway 0.43 0.00
Japan - United Kingdom 0.30 0.00 Australia - Denmark 0.41 0.00
Japan - Norway 0.39 0.00 United Kingdom - Norway 0.44 0.00
Japan - Denmark 0.38 0.00 Norway - Denmark 0.46 0.01
Australia - United Kingdom 0.40 0.00 Numerically unstable
Australia - Norway 0.41 0.00 Netherlands - France
Australia - Denmark 0.37 0.00 Netherlands - Germany
United Kingdom - Norway 0.45 0.01 Netherlands-United Kingdom
United Kingdom - Denmark 0.44 0.00 Netherlands Norway
Norway - Denmark 0.43 0.00 Spain - France
Numerically unstable Spain - Australia
France - Germany France - Germany

Table 9: Censored likelihood estimation of the copula model on the whole data period. Asymp-
totic normal P-values are based on the Hessian. Numerically unstable implies the integral in
the censored likelihood function could not be evaluated. Includes the asymmetric Dirichlet(left)
and Asymmetric-Logistic(right) specification.
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Gaussian δ Pr(δ) > 0.5 or Pr(δ) < 0.5 Logistic δ Pr(δ) > 0.5 or Pr(δ) < 0.5

Asymptotic Dependent Pr(δ) > 0.5 Asymptotic Independent Pr(δ) < 0.5

Netherlands - Spain 0.51 0.40 USA - Netherlands 0.44 0.01
Netherlands - France 0.53 0.05 USA - Spain 0.44 0.01
Spain - France 0.52 0.36 USA - South Africa 0.37 0.00
Spain - Germany 0.51 0.39 USA - France 0.48 0.26
France - Germany 0.60 0.00 USA - Germany 0.42 0.00
Asymptotic Independent Pr(δ) < 0.5 USA - Japan 0.17 0.01
USA - Netherlands 0.44 0.00 USA - Australia 0.03 0.00
USA - Spain 0.43 0.00 USA - United Kingdom 0.41 0.00
USA - South Africa 0.26 0.00 USA - Norway 0.39 0.00
USA - France 0.46 0.03 USA - Denmark 0.34 0.00
USA - Germany 0.46 0.01 Netherlands - Spain 0.46 0.06
USA - Japan 0.17 0.04 Netherlands - South Africa 0.37 0.00
USA - Australia 0.09 Netherlands - France 0.43 0.01
USA - United Kingdom 0.42 0.00 Netherlands - Germany 0.41 0.00
USA - Norway 0.39 0.00 Netherlands - Japan 0.39 0.00
USA - Denmark 0.34 0.00 Netherlands - Australia 0.38 0.00
Netherlands - South Africa 0.37 0.00 Netherlands - United Kingdom 0.42 0.00
Netherlands - Germany 0.49 0.41 Netherlands- Norway 0.43 0.00
Netherlands - Japan 0.25 0.00 Netherlands- Denmark 0.38 0.00
Netherlands - Australia 0.38 0.00 Spain - South Africa 0.34 0.00
Netherlands - United Kingdom 0.49 0.35 Spain - France 0.46 0.08
Netherlands - Denmark 0.42 0.00 Spain - Germany 0.46 0.09
Netherlands - Norway 0.47 0.05 Spain - Japan 0.38 0.00
Spain - South Africa 0.28 0.00 Spain - Australia 0.37 0.02
Spain - Japan 0.07 0.00 Spain - United Kingdom 0.47 0.03
Spain - Australia 0.36 0.00 Spain - Norway 0.44 0.00
Spain - United Kingdom 0.48 0.21 Spain - Denmark 0.37 0.01
Spain - Norway 0.45 0.01 South Africa - France 0.36 0.01
Spain - Denmark 0.41 0.00 South Africa - Germany 0.46 0.02
South Africa - France 0.41 0.00 South Africa - Japan 0.35 0.00
South-Africa - Germany 0.41 0.00 South-Africa - Australia 0.43 0.02
South-Africa - Japan 0.33 0.00 South-Africa - United Kingdom 0.42 0.00
South-Africa - Australia 0.42 0.00 South-Africa - Norway 0.46 0.08
South-Africa - United Kingdom 0.41 0.00 South-Africa - Denmark 0.38 0.00
South-Africa - Norway 0.46 0.02 France - Japan 0.39 0.00
South-Africa - Denmark 0.38 0.00 France - Australia 0.39 0.00
France - Japan 0.37 0.00 France - United Kingdom 0.40 0.00
France - Australia 0.38 0.00 France - Norway 0.37 0.00
France - United Kingdom 0.48 0.28 France - Denmark 0.39 0.00
France - Norway 0.42 0.01 Germany - Japan 0.37 0.00
France - Denmark 0.44 0.00 Germany - Australia 0.18 0.00
Germany - Japan 0.31 0.04 Germany - United Kingdom 0.38 0.00
Germany - Australia 0.21 0.00 Germany - Norway 0.43 0.00
Germany - United Kingdom 0.44 0.02 Germany - Denmark 0.41 0.00
Germany - Norway 0.45 0.15 Japan - Australia 0.47 0.11
Germany - Denmark 0.45 0.01 Japan - United Kingdom 0.26 0.00
Japan - Australia 0.47 0.05 Japan - Norway 0.38 0.00
Japan - United Kingdom 0.24 0.00 Japan - Denmark 0.38 0.00
Japan - Norway 0.37 0.01 Australia - United Kingdom 0.41 0.00
Japan - Denmark 0.37 0.00 Australia - Norway 0.41 0.00
Australia - United Kingdom 0.40 0.00 Australia - Denmark 0.37 0.00
Australia - Norway 0.41 0.00 United Kingdom - Norway 0.43 0.00
Australia - Denmark 0.37 0.00 United Kingdom - Denmark 0.42 0.02
United Kingdom - Norway 0.45 0.02 Norway - Denmark 0.42 0.00
United Kingdom - Denmark 0.45 0.01 Numerically unstable
Norway - Denmark 0.44 0.00 France - Germany

Table 10: Censored likelihood estimation of the copula model on the whole data period. Asymp-
totic normal P-values are based on the Hessian. Numerically unstable implies the integral in
the censored likelihood function could not be evaluated. Includes the symmetric Gaussian(left)
and Logistic(right) specification.
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