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Abstract

While the popularity of continuous word embeddings has increased over the past

years, detailed derivations and extensive explanations of these methods lack in the

academic literature. This paper elaborates on three popular word embedding meth-

ods; GloVe and two versions of word2vec: continuous skip-gram and continuous

bag-of-words. This research aims to enhance our understanding of both the founda-

tion and extensions of these methods. In addition, this research addresses instability

of the methods with respect to the hyperparameters. An example in a food menu

context is used to illustrate the application of these word embedding techniques

in quantitative marketing. For this specific case, the GloVe method performs best

according to external expert evaluation. Nevertheless, the fact that GloVe performs

best is not generalizable to other domains or data sets due to the instability of the

models and the evaluation procedure.

Keywords: word embedding; word2vec; GloVe; quantitative marketing; food



Contents

1 Introduction 3

2 Literature review 4

2.1 Discrete distributional representation of text . . . . . . . . . . . . . . . . . 5

2.2 Continuous distributed representation of text . . . . . . . . . . . . . . . . . 5

2.3 word2vec and GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Food menu related literature . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Methodology: the base implementation 9

3.1 Quantified word similarity: cosine similarity . . . . . . . . . . . . . . . . . 12

3.2 Model optimization: stochastic gradient descent . . . . . . . . . . . . . . . 12

3.3 word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Hidden layer notation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Continuous skip-gram (SG) . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2.1 Objective function . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2.2 Gradient derivation . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Continuous bag-of-words (CBOW) . . . . . . . . . . . . . . . . . . 20

3.3.3.1 Objective function . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3.2 Gradient derivation . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4 Gradient update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Gradient derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Gradient update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Methodology: beyond the base implementation 31

4.1 Estimation speed improvement . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Function optimization algorithm . . . . . . . . . . . . . . . . . . . . 31

4.1.2 word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2.1 Hierarchical soft-max . . . . . . . . . . . . . . . . . . . . . 32

4.1.2.2 Negative sampling . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2.3 Subsampling frequent words . . . . . . . . . . . . . . . . . 34

4.2 Link between word2vec and GloVe . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Model stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Stability Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



4.3.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2 sentence2vec / dish2vec . . . . . . . . . . . . . . . . . . . . . . . 39

5 Application: empirical comparison of GloVe and word2vec 40

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Methods, model stability, and hyperparameters . . . . . . . . . . . . . . . 41

5.2.1 Final hyperparameter setting . . . . . . . . . . . . . . . . . . . . . 42

5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Summary 47

7 Discussion 48

Appendices 53

A Multinomial logit model assumptions . . . . . . . . . . . . . . . . . . . . . 53

B Link between GloVe and SVD . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Link between word2vec SGNS and matrix factorization . . . . . . . . . . . 55

D Menu data word count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2



1 Introduction

Natural language processing has gained popularity in both research and business over the

past years (Nadkarni et al., 2011). The increase of computing power enables one to pro-

cess text on a large scale, quantifying millions of words within hours. Language modeling

by the quantification of text allows users to feed natural language as input to statistical

models and machine learning techniques. A popular approach to quantify text is to rep-

resent each word in the vocabulary by a vector filled with real-valued numbers, called a

word embedding. The numbers in these word embeddings represent scores of latent lin-

guistic characteristics. The trained word embeddings capture similarities of words in text

data. Derivations of the word embeddings and information on the algorithms designed to

calculate them efficiently tend to be described rather concisely (e.g., Rong (2014)) or are

even completely left out (e.g., Mikolov et al. (2013a), Mikolov et al. (2013b)). This can

make it hard for people new to this field to grasp the word embedding methods.

The goal of this research is twofold. First, the main goal of this paper is to provide

an extensive and structured description of word embedding techniques. Three major

state-of-the-art word embedding techniques methods are considered: GloVe (Pennington

et al., 2014), word2vec continuous skip-gram (SG), and word2vec continuous bag-of-words

(CBOW) (Mikolov et al., 2013a). We provide an elaborate overview of the mathematical

derivations and the computational procedures to generate the word embeddings. Rather

than providing several steps of the algorithms, we explicitly derive the gradients used

for the optimization of the algorithms. Second, this paper aims to apply and compare

the three methods in an empirical unsupervised setting. We build on the foundation of

knowledge on these methods laid to reach the main goal by applying the word embedding

techniques in a food menu context. The menu context is constructed by using menu data

scraped from the Internet as training data for the word embeddings. We evaluate the

model stability and the performance of these methods in the task of creating word em-

beddings using external domain experts. Thereby, we try to answer the auxiliary research

question: Do GloVe, word2vec SG and word2vec CBOW give different embeddings and if

so, can we, based on expert opinions, determine which is best in capturing dish similarities

using food menu data? The detailed description combined with the application provide

researchers with a complete insight into the considered techniques.

This paper can be relevant to practitioners as well. In food marketing, amongst other

applications, the word embeddings could function as predictors for buying behavior of

caterers, be used to create personalized inspirational content for caterers, or be used to

classify the businesses on cuisine. For example, the dish similarity based on the word

embeddings can be used to recommend dishes as inspirational content to a business that
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is not served yet, but fits in according to the dishes they already serve. More generally,

word embeddings can function as predictors in other domains as well.

In the next section, we provide a literature review on word2vec and GloVe. Furthermore,

this part provides an overview of research on food and menu data. Section 3 provides

insights into the computational procedure of both methods by describing the embedding

algorithms and their mathematical derivations. Section 4 covers extensions on the basic,

original word embedding algorithms used to speed the computations. Besides, this section

discusses the link between the word2vec and GloVe model, the stability of the models, and

how to implement the algorithms in practice. Section 5 contains an application in the food

menu context. We describe the menu data and provide a model stability analysis based

on the data set at hand. Besides, we compare the word embedding methods according to

an argued hyperparameter setting, and we evaluate their performance using the expertise

of chefs. Section 6 summarizes the paper and consequently, Section 7 concludes the paper

a discussion.

2 Literature review

Language is a continuously transforming way of communication. Individuals use similar

words differently and use different words in different contexts. Therefore it is difficult to

model language with exact precision. Language models have been created to approximate

language by capturing syntactic and semantic characteristics in text as well as possible.

Examples of text modeling are manually created lexical databases (e.g., WordNet (Miller,

1995)). These nets store word definitions and semantic relations between words. The

definitions of the words in these nets are subjective and limited in numbers. For example,

related to our application, new cooking techniques and dishes will not be stored in such

lexical databases. Besides, nuances in semantics are often lost using these fixed defini-

tions. Therefore, it may be more appealing to derive these representations in a data-driven

manner. Text and audio are examples of data that can be used to model language. This

paper focuses on the prior.

Firth (1957) states that the distributional property of text is the property that ‘a word is

characterized by the company it keeps’. Put differently, the words in the vicinity of a word

determine the meaning of that word. This definition finds its origin in the distributional

hypothesis of word meaning introduced by Harris (1954). Within the domain of natural

language processing (NLP), many word representations depend on this characteristic of

text. Researchers have developed multiple variations of text representations over time.
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2.1 Discrete distributional representation of text

Information retrieval from text started with discrete distributional representations based

on word counts in the form of document-word and word-word co-occurrence matrices.

The so-called one-hot encoding is at the basis of the document-word matrices. A one-hot

encoding of a word is a vector where the size of the vector is equal to the number of unique

words in the text data. Each element in the vector is associated with one of those unique

words. The vector element has value one on the dimension corresponding to the dimension

of the word the one-hot encoding is representing and zeros on all other positions in the

vector. The bag-of-words (BOW) representation for documents combines the one-hot

vectors. The BOW vector representation of a document contains the occurrence count

for every word in the document and a zero on the position for the words that are not

present in that file. The document-word co-occurrence matrix combines the BOW vectors

of multiple documents into a matrix. These document-word matrices have a large number

of dimensions as such a matrix has its number of columns equal to the number of unique

words in the vocabulary. Furthermore, these matrices have relatively few non-zero entries,

and hence, these are so-called sparse matrices. The sparsity of the matrix implies that

combinations of words in text training data are not likely to occur in the same order in

the test set and vice versa. Performing operations with sparse matrices may take a long

time while many actions involve addition or multiplication of zeros. Besides, storing these

large matrices in memory to perform any operations on them may be complex. Therefore,

the sparse characteristic of the document-word matrix may complicate the use of these

matrices in downstream analysis, such as a classification task. Moreover, the document-

word matrices do not directly capture the syntactic and semantic characteristics of words

since the counts are on document level.

The word-word co-occurrence matrix contains statistics on a more detailed level. The

word-word matrix is constructed by counting the number of co-occurrences of two words

in the data. The number of rows and columns of this data matrix equal the size of the

vocabulary and therefore, as for the document-word matrix, this is a sparse matrix which

may be hard to perform operations on.

2.2 Continuous distributed representation of text

The discrete distributional representations of the co-occurrence matrices can be used as

input to some form of dimension reduction to transform the sparse matrix into a dense

matrix. Such dense matrix, contrarily to a sparse matrix, contains mostly non-zero ele-

ments and is referred to as a continuous distributed representation of text. Using dimen-

sion reduction, (the words in) the text (are) is projected onto a low-dimensional latent

space. Note that methods using the document-word matrix as input results in word re-

latedness if two words occur in the same documents. Using the word-word matrix as input
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results in word relatedness if two words are surrounded by similar words. Therefore, the

prior might result in word relatedness such as (‘sun’ - ‘hot’) and (‘sun’ - ‘star’). The latter

may focus on the similarity subset of relatedness such as (‘sun’ - ‘star’). The combination

(‘sun’ - ‘hot’) might come out less related since the word hot is not a noun, and therefore,

is less likely to be used similarly as ‘sun’ on a local level.

Latent semantic analysis (LSA) (Dumais et al., 1988) is a method to transform text data

into vector representations of words and documents in lower dimensional space. The input

for this global matrix factorization method is the document-word co-occurrence matrix.

LSA applies singular value decomposition (SVD) to reduce the dimensions of this sparse

matrix and generates word vectors based on the documents containing the words. Words

are therefore related if they occur in the same documents. Note that the bag-of-words

of the documents construct the document-word matrix and are therefore at the base of

LSA. Hence, the order of word sequences has no impact on the vector representations.

LSA fails to capture linguistic characteristic depending on local text structures such as

grammar, syntax, and part-of-speech. The vector representation generated by LSA is

called a distributed vector feature representation or real-value word feature vector repres-

entation. Lund and Burgess (1996) use the word-word co-occurrence matrix as input to

vector representations of text introducing their hyperspace analogue to language (HAL)

model. However, according to Pennington et al. (2014), the problem with methods related

to HAL, based on the word-word co-occurrence matrix, is that ‘the most frequent words

contribute a disproportionate amount to the similarity measure’.

Bengio et al. (2003) provide a different real-valued vector representation of single words

in the text data with their neural probabilistic language model (NPLM). NPLM gener-

ates word embeddings based on the local context window of a word without using the

co-occurrence statistics, and hence, these representations can capture more complex syn-

tactic and semantic characteristics of words. Collobert and Weston (2008) continue in the

direction of neural language models and introduce the use of deep convolutional neural

network language models (NNLM) to model language for multiple goals. An NNLM is a

supervised training procedure where the word embeddings are a byproduct of this super-

vised task. The training times of these deep networks are in order of magnitude of weeks.

The transformation of text to word embeddings is the first layers in their networks. After

training, the embeddings capture syntactic and semantic word characteristics optimized

to perform as predictions for the task of the network. Lebret and Collobert (2013) propose

an alternative to the computational intensive approach of Collobert and Weston (2008) to

generate word embeddings. They apply Hellinger principal component analysis (HPCA,

Rao (1995)) on the word-word co-occurrence matrix to create the word embeddings. A

major difference and disadvantage compared to the neural net approach is that the opera-
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tions of this transformation are linear, while neural networks can capture highly nonlinear

relations.

Continuing in the field of real-valued word feature vector creation and with the goal to

capture more linguistic characteristic, word2vec SG, word2vec CBOW and GloVe find

their origin. Currently, these three word embedding algorithms appear to be (at the

base of) commonly used procedures in unsupervised text quantification. The methods

are fast, can capture complex linguistic relations, and try to limit the disproportionate

influence of frequent words on the word embeddings. All three methods start with a

random initialized word vector for each word in the vocabulary and iteratively update

these vectors by minimizing a loss function. This loss function, in turn, depends on a

similarity measure between words. In the next three paragraphs, we will elaborate on

characteristics of word2vec, characteristics of GloVe, and differences between the two,

respectively.

2.3 word2vec and GloVe

The estimation procedure of word2vec is based on the prediction power of words to pre-

dict other words in the neighborhood, the so-called local context window, of those words

in the text. The SG variant of word2vec uses word by word similarity comparisons and

tries to predict a word in the local context window given the word in the middle of this

context window. The CBOW variant, on the other hand, compares each word with the

average representation of the surrounding words and the word in the center of the context

window is predicted given its context. Due to the averaging of the representations of the

words in the context, fewer comparisons are made in the CBOW algorithm, and therefore,

CBOW is quicker compared to SG. SG, on the other hand, is preferred if the training set

is small since the algorithm compares single word representations and thereby uses more

information. Especially the quality of the word embeddings of infrequent words benefit

from this use of extra information since these are updated the least in the iterative pro-

cedure.

GloVe is a count-based method and uses the word-word co-occurrence matrix to up-

date the word vectors iteratively. Since GloVe is based on the co-occurrence counts, this

method can make efficient use of the repetitive characteristic of text data. However,

reducing text data to word-word co-occurrence counts removes information in the data

(information that is used by word2vec). GloVe is related to global matrix factorization

methods. It modifies the classical SVD approach by using iterative learning, as used in

the local context window approach. word2vec fits more in the field of neural network

approaches. Thereby, SG and CBOW appear to be better at capturing nonlinear rela-
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tionships. Moreover, due to the efficient use of the co-occurrence statistics by GloVe and

since word2vec can be represented as a shallow neural network, both methods are fast

compared to deep neural networks. Since the distributional assumption is at the base

of the local context window approach, and both methods are based on the local context

windows, both methods make use of this assumption.

Menus of restaurants mainly exist out of enumerations of nouns. It is expected that

these data contain little linguistic complexity. Hence, the relationships between words

in the data are probably not highly nonlinear. In such setting, the use of a complex

neural network estimation procedures such as word2vec might be redundant and we ex-

pect that GloVe, based on the word-word co-occurrence statistics, will outperform the two

word2vec variants. Moreover, since many menu cards contain overlapping words such as

‘rice’, ‘vegetable’, and ‘beef’, CBOW may predict frequent words too often. Therefore,

we hypothesize that CBOW performs worse compared to SG.

This paper theoretically and empirically compares word2vec SG, word2vec CBOW and

GloVe. We provide a thorough overview of these algorithms including detailed explana-

tions and full derivations, which we were not able to find in the literature. We attempt

to provide the reader with a solid understanding of two prominent word embedding tech-

niques, starting from scratch. Currently, such detailed explanations and derivations of

the basic word2vec and GloVe procedures are not present in the literature. The hyper-

parameter issue becomes apparent when we derived these methods. We discuss the choice

of hyperparameters and their impact on the stability of the models. Recent literature

stresses the importance of hyperparameter tuning (Antoniak and Mimno (2018), Wend-

landt et al. (2018), Caselles-Dupré et al. (2018)). Moreover, we touch upon research that

has been carried out related to word2vec and GloVe. These papers focus on one or a few

elements of the algorithms or focus on a single algorithm. We put the existing literature

together and elaborate on these topics.

We train and compare word embeddings in an empirical food menu context. The perform-

ance of the methods considered in this paper (or a subset of them) is previously compared

in different contexts (e.g., Tsvetkov et al. (2015) and Levy et al. (2015)). In our research,

expert opinions are the base of the performance measure of the algorithms to generate

the word vectors. The opinions of six professional chefs are used to evaluate the similarity

of dishes based on the combination of the words in these dishes. We use this evaluation

as a measure for the quality of the word embeddings. Schnabel et al. (2015) define this

evaluation procedure as comparative intrinsic evaluation. The dish representations are

generated by a weighted average of the word vectors as suggested by Arora et al. (2016b)

and we use the cosine similarity as the similarity measure.

8



2.4 Food menu related literature

There is little research regarding food marketing with menu data. Recent research on

menu data is mostly on the nutritional aspect of dishes on the menu, such as Hwang

and Lorenzen (2008) and Kozup et al. (2003). Hwang and Lorenzen (2008) show that if

nutritional information on each meal is displayed, customers tend to choose for the low-fat

options first. However, no research uses menu text as input to create continuous feature

vectors or uses menu data as input for downstream analysis.

3 Methodology: the base implementation

In this paper, the following notation is used. Vectors and matrices are denoted by bold

lowercase and bold uppercase letters, respectively. Light uppercase letters denote sets

and scalars are given as light lowercase letters. Table 1 in Section 3.5 provides a glossary

on frequently used variables.

In this section word2vec and GloVe are described. Both methods transform text data into

a set of real numbers. The goal of both methods is to capture linguistic properties of words

into these sets of numbers such that similar words have a similar encoding and dissimilar

words are encoded dissimilar. This quantified text data can, in turn, be used as input

for statistical models or machine learning algorithms. Both methods start with a random

initial state. The randomly initialized numbers are iteratively updated by optimization

of a loss function. Minimizing the function value or loss value is the estimation part

of the process and depends on how well similar words are similar to each other in the

encoding. Each unique word in the data is encoded by one set of numbers, the word

vector. Equivalently, each word in the vocabulary is linked to one word vector. The word

vectors for all words have the same size, the so-called vector size or vector length. This

vector size of a word vector d is the number of numbers in the vector. The ordering of

these numbers in the word vector is important. The values at position i ∈ {1, 2, ..., d}
in these d-dimensional word vectors encapsulate the scores of the words on the i-th axis.

This i-th axis represents latent linguistic property i. Each latent property can contain

semantic information, syntactic information, or a combination of linguistic elements that

are not captured by any terminology. The scores on the d dimensions together construct

the word vector containing linguistic information of a word.

We illustrate the word vectors using a simple example. Suppose one of the methods is

used to train three-dimensional word vectors (d = 3). The resulting word vectors of the
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words ‘pasta’, ‘pizza’, and ‘poach’ and are as follows

pasta:

 1

3

−3

 , pizza:

 1

2.5

−5

 , poach:

−2

1

4

 .
The vector notation shows that the words ‘pasta’ and ‘pizza’ score the same on the first

dimension. Moreover, the scores on the second dimension are close for these two words.

The scores on the third dimension are negative for both words, though not as close as for

the first two dimensions. The scores in the vector of the word ‘poach’ show less similarity

to the scores on the same dimensions of the other two word vectors. Figure 1 contains

a visualization of the word vectors. One can observe from the figure that ‘pasta’ and

‘pizza’ are more similar than either ‘pasta’ or ‘pizza’ with respect to ‘poach’. The task

of word2vec and GloVe is to map each word in the vocabulary to a word vector. Since

the word vectors have non-zero elements on most or all dimensions, they are called dense

vectors. Furthermore, the word vectors are an estimation of the true meaning of a word

and reduce the complexity of linguistics to a limited set of characteristics, and thereby,

reduce the highly complex information space of linguistics to a limited number of dimen-

sions. The resulting real-valued dense word vectors are the so-called word embeddings.

Two fundamental assumptions underlie these word embedding methods. The first as-

sumption is that text has a distributional property. This property comes down to the

general idea that the meaning of a word depends on the words surrounding that word, as

discussed in section 1. The second assumption is that the word embeddings can capture

the meaning of words. That is, words with similar meaning should be mapped to similar

vectors in the embedding vector space, and dissimilar words should be assigned dissimilar

vectors.

A word embedding is based on the words surrounding the word of interest. These sur-

rounding words are the so-called context words. Based on the assumption of the distribu-

tional property of text, the word embedding captures linguistic properties corresponding

to this word. The linguistic properties are extracted from a training text data set. This

text data set is used to train the word embeddings and can consist of a single docu-

ment or a combination of documents. Single or combined, this training set is called the

corpus. GloVe and word2vec both bypass the sparsity problem of the word-word and

document-word matrices. The sparsity problem entails that it may be complicated to

perform mathematical operations on these matrices and to store them in memory. This

is caused by the fact that there are mostly zero elements in these matrices and that their

size is large. word2vec bypasses this problem by not using these matrices at all. This

algorithm iterates through the text word by word and updates dense word vectors at each

iteration based on the word vectors of the words surrounding at every word. GloVe iter-
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ates over the words in the vocabulary and updates the word vectors using a combination

of the word-word co-occurrence matrix and the word vectors of all words. Thereby, GloVe

reduces the dimensions of the sparse input matrix and transforms it into a dense output.

The resulting vectors appear to be suitable for tasks such as text classification and part

of speech tagging.

dim. 1

4 2
0

2
4

dim
. 2

4
2

0
2

4

di
m

. 3

4

2

0

2

4

pasta
pizza

poach

Figure 1: Three-dimensional word embed-
ding space

GloVe and word2vec both find two word

vectors for each word in the vocabulary.

In word2vec, these vectors are referred to

as the ‘input’ and ‘output’ representation.

In GloVe, they are called an ‘ordinary’

and ‘context’ word vector. The algorithms

both start with two randomly initialized

vectors per word, the input and output vec-

tors or the ordinary and context vectors.

Iteratively updating the vectors results in

two sets of trained word vectors, the word

embeddings. The updating procedure is

performed up to the point of a stopping

criterion set by the user. This stopping

criterion is usually one or multiple passes

through the entire data, called an epoch.

In a single epoch, the word2vec algorithm iterates over each word in the corpus and the

objective function value may be updated with respect to the same word multiple times

within one epoch. For GloVe, an epoch contains one iteration for each unique word in the

text data and the objective function value is updated once for each word in the vocabulary.

After training, we collect these two sets of vectors in two d × v matrices U,V ∈ Rd×v,

where d corresponds to the dimensionality of the embeddings set by the user, and v cor-

responds to the number of unique words in the corpus. Since the goal is to get one vector

representation per word, two word vectors need to be combined or one should use one of

the two representations. Since the authors of the GloVe paper (Pennington et al., 2014)

argue that there is evidence that training a pair of vectors and combining these at the

end improves general results and reduces over-fitting and noise, we choose to combine the

vectors. There are multiple ways to combine the two word vectors, such as summation

and row-wise concatenation. There is no evidence that summation of the vectors outper-

forms concatenation of the results, as investigated by Garten et al. (2015). Pennington

et al. (2014) suggest to combine the resulting pairs of word vectors by summing U and

V (simply U + V). Levy et al. (2015) as well show that addition is a suitable method to

combine the pairs of word vectors. In this paper, we follow the suggestion of Pennington
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et al. (2014), and for consistency, we apply this summation of the two word vectors in the

word2vec context as well.

3.1 Quantified word similarity: cosine similarity

The cosine similarity is a common choice to measure the similarity between word em-

beddings. The cosine similarity ignores the length of the vectors and measures similarity

according to the angle between two vectors. In the word2vec context, the word vectors

of frequent words are implicitly updated more often than the embeddings of infrequent

words. The word vectors of frequent words are updated more often in the iterative al-

gorithm and thereby, are more likely to have a larger norm. Since the cosine similarity

ignores the vector length by normalization and only takes the angle between word vectors

into account, frequent and infrequent words can still be very similar. Similarity measures

such as the Manhattan and Euclidean norm do not have this property. The cosine simil-

arity requires the two vectors of interest to be in the same space, and hence, they need to

have the same dimensionality. The cosine similarity between vector u and v is given by

cossim(u,v) =
uᵀv

||u|| ||v||
=

uᵀv√
uᵀu
√

vᵀv
,

where uᵀ is defined as the transpose of vector u. According to Levy et al. (2015) the

cosine similarity measure ‘states that words are similar if they tend to appear in similar

contexts, or if they tend to appear in the contexts of each other (and preferably both)’.

They argue that normalizing the word vectors to unit length using the L2 normalization

|| · ||, as used in the cosine similarity measure, consistently outperforms other ways of

normalization. Therefore, the cosine similarity is more suited than similarity measures

obtained by other normalizations of the dot product (Levy et al. (2015) consider row-wise,

column-wise and no normalization).

3.2 Model optimization: stochastic gradient descent

The solutions of GloVe and word2vec are found by optimization of the corresponding

objective functions. Therefore, we shortly discuss gradient descent, one of the most in-

tuitive and basic algorithms to minimize functions iteratively. The objective functions

are derived one by one in the next sections and arranged together in Table 2. The min-

imum obtained by optimization of these objective functions by gradient descent can be

local since these functions are not globally convex. Gradient descent uses the first order

derivatives of a function to determine the gradient and thereby to obtain the direction in

which the parameters of the function should be modified in order to decrease the value

of objective function the fastest. This iterative procedure continues until a stopping con-

dition is met. The stopping condition can, for example, be based on a maximum number
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of iterations or the size of the gradient. Each iteration the algorithm takes a step in the

direction based on the gradient. The size of the steps α ∈ R+ the algorithm takes, the

so-called learning rate, needs to be fixed by the user. It should be small enough to avoid

overshooting the minimum and large enough to make proper progression in each iteration.

Let θ(old) ∈ Rn denote the vector containing the n values of the parameters at an iteration

and ∇θJ(θ) ∈ Rn denote the gradient of the objective function with respect to θ ∈ Rn.

The value of the parameter at the next iteration θ(new) ∈ Rn is given by

θ(new) = θ(old) − α∇θJ(θ(old)).

An alternative to regular gradient descent is stochastic gradient descent (SGD). SGD

randomly subsamples the data point(s) that is (are) used to update the parameter at

each iteration of the optimization algorithm. Suppose J(θ) :=
∑s

t=1 Jt(θ) for t data

points, then due to linearity it holds that ∇θJ(θ) :=
∑s

t=1∇θJt(θ). An SGD update

according to one data point at t is given by

θ(new) = θ(old) − α∇θJt(θ
(old)).

The stochastic part of SGD is the fact that t is randomly sampled for each update. SGD

may at some iterations increase the loss of the objective function, but the individual

steps are less costly to compute due to limited data usage per iteration. Moreover, SGD

may result in a better optimum compared to regular gradient descent if the problem is

non-convex because it can move to a domain of the function with a larger loss value and

thereby enter a valley different from the valley of the initialization point.

3.3 word2vec

In word2vec, the set of words surrounding and including a word define the local context

window of a word in text data. This window can include words to the left and the right

of this word. A local context window is symmetric if it contains as many words to the left

as to the right of the word of interest. The symmetric local context window is the base

of the word2vec word embeddings. Each word in the corpus has a local context window.

Let S denote the corpus that is the sequence of input words. Let integer s denote the size

of the corpus. t ∈ {1, ..., s} corresponds to the place of a word in the corpus S. Consider

an arbitrary word wt in the corpus and consider a maximum context window size of c.

Then Cwt denotes the set of context words in the context window for when wt is the center

word. The words within c1,wt places to the left and c2,wt to the right of the center word

wt are called the context words and therefore Cwt consists of |Cwt| = c1,wt + c2,wt words.

Note that c1,wt and c2,wt are allowed to be dependent on the center word, but are strictly

smaller than c. The context window includes the center word as well, and hence there are
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c1,wt + c2,wt + 1 words in each context window. Each word with multiple appearances in

the corpus has multiple context windows. It is inevitable that some local context windows

are not symmetric due to words at the beginning or end of the document. There are two

variants of word2vec model introduced by Mikolov et al. (2013a). Both algorithms start

with randomly initialized word embeddings that are updated iteratively as the context

window moves from word to word through the corpus. The word embeddings of the words

in the vocabulary resulting from the training procedure are optimized such that either the

center words predict the corresponding context window words as well as possible (skip-

gram model) or such that the context window words predict the corresponding center

words as well as possible (continuous bag-of-words model). Both variants optimize an

objective function based on a conditional probability distribution using gradient descent.

This probability depends on a similarity between words based on the dot product of the

vector representations of these words. word2vec uses two representations for each word

in the vocabulary, one vector for when a word is a center word and one vector for when

a word is a context word. Let V be the set of all (unique) words wj in the vocabulary

with j ∈ {1, ..., v}, where v is the vocabulary size. Let vwj
,uwj

∈ Rd be the vector

representations of the word wj when word wj is the input or output word, respectively.

The size d of these vectors is a hyperparameter, and the user chooses its value. Let wo refer

to a specific context word and wi refer to a specific center word both from the vocabulary.

Mikolov et al. (2013a) use the dot product of the word vectors as a similarity measure

for the two words. Hence the similarity between context word wo and center word wi is

denoted by

uᵀ
wo

vwi
, ∀ i, o ∈ {1, ..., v}. (1)

3.3.1 Hidden layer notation

This section touches upon the visual representation that is often used to explain word2vec,

the so-called hidden layer notation. Figure 2a and 2b1 contain examples of these repres-

entations. In the other sections of this paper, this notation of the (rather flat) word2vec

framework is not used to avoid unnecessary complexity. We provide only a summary of

this representation and for further explanations of the hidden layer notation, we refer to

Rong (2014).

word2vec originates from the field of Neural Net Language Models (NNLM) (Bengio et al.,

2003). These networks contain four types of layers: input, projection, hidden, and output

layers. Mikolov et al. (2013a) remove the nonlinear hidden layers to simplify the model.

Multiplication of the input layer x (consisting of zeros and ones) by the input weighting

matrix W (containing the input word vectors) maps the input word(s) to a continuous

1Figure 2a and 2b taken from Rong (2014)
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(a) CBOW model (b) SG model

Figure 2: word2vec hidden layer notation

vector space. The result is a single projection layer. Some call this projection layer a

hidden layer (e.g., (Rong, 2014)), referring to the projection layer as it is defined in the

initial paper of Mikolov et al. (2013a). Depending on the variant of word2vec, the input

layer consists of multiple words or a single word. The prior corresponds to the continuous-

bag-of-words (CBOW) variant (Section 3.3.3), the latter corresponds to the continuous

skip-gram (SG) variant (Section 3.3.2). In word2vec CBOW, the resulting projection

layer is the average of the context vectors if one updates the center word vector and is

simply the center word vector if the context word vectors are updated. In word2vec SG,

the projection layer contains the center word if the context word vectors are updated and

contains a context word if the center word vector is updated.

The SG method processes each center word with each context word one by one. CBOW

uses the average of context vectors to update the center word vector, and thereby requires

fewer operations. Multiplication of the projection layer by the output weighting matrix

W′ (containing the output word vectors) followed by a soft-max transformation provides

the output layer y containing values between 0 and 1. By this multiplication of the

projection layer by W′, the projection layer is joined with each output word vector for

all words in the vocabulary. The soft-max transformation is used to convert the vector

resulting from the multiplication in a vector with values between 0 and 1. These values

are considered probabilities that a word occurs in the context given a word (SG) or that

a word occurs given the context (CBOW). Comparing these probabilities with the true
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observed output word results in a prediction error. This prediction error is minimized by

iteratively updating the weighting matrices alternately using backpropagation.

3.3.2 Continuous skip-gram (SG)

3.3.2.1 Objective function

The objective function of the SG model depends on the probability distribution of pre-

dicting a context word given the center word. This distribution contains the probabilities

for each word to be located as a context word at a specific position with respect to a

given center word. There are v possible nominal outcomes for this context word, where v

is the vocabulary size. Therefore, a common way to model such a problem is utilizing a

conditional multinomial logit model (equivalent to soft-max regression model). Mikolov

et al. (2013a) use the estimates of the class label probabilities of the multinomial logit

model, that is the soft-max function of the real-valued similarity measures, as measures

for the conditional probabilities in the SG algorithm. The multinomial logit model (max-

imum entropy model) is introduced to an NLP setting by Berger et al. (1996). However,

opposed to multinomial logistic regression, word2vec estimates the center and context

word vector jointly and therefore, the problem is not the same as the multinomial logistic

regression. Section A of the Appendix provides an overview of the assumptions for the

multinomial logistic regression in a text context. Even though the assumptions might

not hold, Mikolov et al. (2013a) transform the similarity measures in equation (1 into a

probability distribution conditional on the center word wi using the soft-max notation,

‘building a log-linear classifier’. The corresponding conditional probability that word wo

is the true context word given center word wi is denoted by

p(wo|wi) =
exp(uᵀ

wo
vwi

)∑v
j=1 exp(uᵀ

wjvwi
)
, ∀ i, o ∈ {1, ..., v}.

Next, only the words in the context window(s) of a center word are considered to have

an impact on the representation of this center word. Therefore we want to maximize

the joint likelihood of the context words given the center word. The corresponding joint

probability distribution, under the assumption that context words are independent, is

given by

pSG(Cwt |wt) =
∏

−c1,wt≤x≤c2,wt , x6=0

p(wt+x|wt)

=
∏

wl∈Cwt

p(wl|wt), ∀ t ∈ {1, ..., s}.

The assumption of independent context words is likely to be violated in practice. Such

context words are words occurring close to each other and a core assumption to the
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word2vec algorithm is that the meaning of a word is determined by its surrounding

words.

Maximizing the likelihood function is equivalent to minimizing the negative log-likelihood

function. We continue with the latter. The negative log-likelihood function (the objective

function at position t) is given by

LSG,t(θ) = JSG,t(θ) = −log
∏

wl∈Cwt

pSG(wl|wt)

= −
∑

wl∈Cwt

log pSG(wl|wt), ∀ t ∈ {1, ..., s}. (2)

where θ ∈ R2dv contains the input and output word vector representations of all words

in V . θ is the only (non-hyper) parameter of the model. Minimizing the total sum of

the negative log-likelihood for each position in the text results in the objective of the

skip-gram model. The objective function J(θ) corresponding to this goal is given by

JSG(θ) =
s∑
t=1

LSG,t(θ)

= −
s∑
t=1

∑
wl∈Cwt

log pSG(wl|wt)

= −
s∑
t=1

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)

.

3.3.2.2 Gradient derivation

To optimize the objective function with gradient descent, we need the gradient. The

derivatives with respect to the center vectors are derived, followed by the derivation of

the context vectors. Let vwz with wz ∈ V denote an arbitrary center word vector where

z ∈ {1, ..., v}, then the partial derivative is denoted by the vector

∂

∂vwz

JSG(θ) =
∂

∂vwz

− s∑
t=1

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)


= −

s∑
t=1

∂

∂vwz

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)

(3)

= −
∑

t 3 wt=wz

∂

∂vwz

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)

(4)

= −
∑

t 3 wt=wz

∑
wl∈Cwt

∂

∂vwz

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)
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= −
∑

t 3 wt=wz

∑
wl∈Cwt

∂

∂vwz

[
log(exp(uᵀ

wl
vwt))− log

v∑
j=1

exp(uᵀ
wj

vwt)

]

= −
∑

t 3 wt=wz

∑
wl∈Cwt

∂

∂vwz

[
uᵀ
wl

vwt − log
v∑
j=1

exp(uᵀ
wj

vwt)

]

= −
∑

t 3 wt=wz

∑
wl∈Cwt

[
∂

∂vwz

uᵀ
wl

vwt −
∂

∂vwz

log
v∑
j=1

exp(uᵀ
wj

vwt)

]
,

where the symbol 3 denotes ‘such that’. From equation (3) to (4) we use that the objective

function is only impacted by a change of vwz if the word in the text on place t corresponds

to the word wz. Under the condition that t 3 wt = wz it holds that ∂
∂vwt

uᵀ
wl

vwt = uᵀ
wl

.

Elaborating on the part after the minus sign using the chain rule and under the condition

that t 3 wt = wz gives

∂

∂vwz

log
v∑
j=1

exp(uᵀ
wj

vwt) =
1∑v

j=1 exp(uᵀ
wjvwt)

[
∂

∂vwz

v∑
k=1

exp(uᵀ
wk

vwt)

]
(5)

=
1∑v

j=1 exp(uᵀ
wjvwt)

[
v∑
k=1

∂

∂vwz

exp(uᵀ
wk

vwt)

]

=
1∑v

j=1 exp(uᵀ
wjvwt)

[
v∑
k=1

exp(uᵀ
wk

vwt)
∂

∂vwz

uᵀ
wk

vwt

]
(6)

=
1∑v

j=1 exp(uᵀ
wjvwt)

[
v∑
k=1

exp(uᵀ
wk

vwt)u
ᵀ
wk

]

=
v∑
k=1

exp(uᵀ
wk

vwt)∑v
j=1 exp(uᵀ

wjvwt)
uᵀ
wk

=
v∑
k=1

p(wk|wt)uᵀ
wk
.

Using the outcome of the prior intermezzo in the derivation of the partial derivative yields

∂

∂vwz

JSG(θ) = −
∑

t 3 wt=wz

∑
wl∈Cwt

[
uᵀ
wl
−

v∑
k=1

p(wk|wt)uᵀ
wk

]
︸ ︷︷ ︸

(I)

(7)

= −
∑

t 3 wt=wz

∑
wl∈Cwt

v∑
k=1

1{wk=wl}u
ᵀ
wk
− p(wk|wt)uᵀ

wk

=
∑

t 3 wt=wz

∑
wl∈Cwt

v∑
k=1

[
p(wk|wt)− 1{wk=wl}

]
uᵀ
wk
,

where 1{·} denotes the indicator function with value one if the condition between brack-

ets holds and zero otherwise. The part between square brackets in equation (7) is the
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difference between a single word in the context of center word wt and the expectation

of the context word vector given that the center word is wt. Put differently, this is the

prediction error of the output context word vector of wl. Part (I) in equation (7) is the

total prediction error of the context of the word wt. Furthermore, summing this error

for all occurrences of the word wz in the corpus gives us the total prediction error of

the contexts of the center word vector of wz. Decreasing this difference implies optimiza-

tion of the objective function. If all the derivatives are equal to zero, we reach an optimum.

We continue with the partial derivative derivation of the skip-gram objective function

with respect to the context word vectors. Let uwz ∈ V denote an arbitrary context word

vector with z ∈ {1, ..., v}, then

∂

∂uwz

JSG(θ) =
∂

∂uwz

− s∑
t=1

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)


= −

s∑
t=1

∑
wl∈Cwt

∂

∂uwz

log
exp(uᵀ

wl
vwt)∑v

j=1 exp(uᵀ
wjvwt)

= −
s∑
t=1

∑
wl∈Cwt

∂

∂uwz

[
log(exp(uᵀ

wl
vwt))− log

v∑
j=1

exp(uᵀ
wj

vwt)

]

= −
s∑
t=1

∑
wl∈Cwt

∂

∂uwz

[
uᵀ
wl

vwt − log
v∑
j=1

exp(uᵀ
wj

vwt)

]

= −
s∑
t=1

∑
wl∈Cwt

∂

∂uwz

uᵀ
wl

vwt −
∂

∂uwz

log
v∑
j=1

exp(uᵀ
wj

vwt).

The part before the minus sign can be written as

∂

∂uwz

uᵀ
wl

vwt =

vᵀ
wt
, if wz = wl

0ᵀ, otherwise.

Next, the part after the minus sign can be rewritten using the chain rule, resulting in

∂

∂uwz

log
v∑
j=1

exp(uᵀ
wj

vwt) =
1∑v

j=1 exp(uᵀ
wjvwt)

[
∂

∂uwz

v∑
k=1

exp(uᵀ
wk

vwt)

]
(8)

=
1∑v

j=1 exp(uᵀ
wjvwt)

[
∂

∂uwz

∑
k=z

exp(uᵀ
wk

vwt)

]

=
1∑v

j=1 exp(uᵀ
wjvwt)

[
∂

∂uwz

exp(uᵀ
wz

vwt)

]

19



=
1∑v

j=1 exp(uᵀ
wjvwt)

[
exp(uᵀ

wz
vwt)

∂

∂uwz

uᵀ
wz

vwt

]
=

1∑v
j=1 exp(uᵀ

wjvwt)

[
exp(uᵀ

wz
vwt)v

ᵀ
wt

]
=

exp(uᵀ
wz

vwt)∑v
j=1 exp(uᵀ

wjvwt)
vᵀ
wt

= p(wz|wt)vᵀ
wt
.

Substitution of the previous two results into the partial derivative of the skip-gram ob-

jective function with respect to uwz gives

∂

∂uwz

JSG(θ) = −
s∑
t=1

∑
wl∈Cwt

[
1{wz=wl}v

ᵀ
wt
− p(wz|wt)vᵀ

wt

]
︸ ︷︷ ︸

(II)

(9)

=
s∑
t=1

∑
wl∈Cwt

[
p(wz|wt)− 1{wz=wl}

]
vᵀ
wt
.

The first part between square brackets in (II) is the input center word vector of word wt

if the word wz occurs in the context window of center word wt, and zero otherwise. The

second part is the input center word vector weighted by the probability that the word wz

is in the context of the center word wt. Combined, part (II) is the sum of the differences

between these two parts over the positions in the context window of center word wt. It

is the prediction error of the input word vector of word wt as a function of the word wz.

Summing these errors over all positions in the text gives the total error in the center word

vectors based on the output word vector of word wz, as given in equation (9).

3.3.3 Continuous bag-of-words (CBOW)

3.3.3.1 Objective function

The objective function of the CBOW model depends on the conditional probability distri-

bution of the center word occurring given the context words. Using previous definitions,

this conditional probability distribution is given by p(wt|Cwt). Let vCwt
be the input

vector combining the input vectors of the words in the context of center word wt. The

most simple approach to construct vCwt
is to average the input vectors. A weighting

depending on the distance to the center word could be an alternative. An argument in

favor of such a weighting scheme is that in general words closer to another word have

a stronger semantic and syntactical relation. Since in the SG model each word in the
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context window is treated equally, we continue with the prior definition, that is

vCwt
=

1

c1,wt + c2,wt

∑
wl∈Cwt

vwl
=

1

|Cwt |
∑

wl ∈ Cwt

vwl

where |Cwt | denotes the number of context words in the window around wt. As for the

SG model the probability distribution is constructed using the soft-max function. The

conditional probability distribution at place t is given by

pCBOW(wt|Cwt) =
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)
, ∀ i, o ∈ {1, ..., v}.

Maximizing this probability at place t is equivalent to minimizing the negative log-

likelihood, given by

LCBOW,t(θ) = JCBOW,t(θ) = −log pCBOW(wt|Cwt). (10)

Taking the sum over all positions in the text, just as for the SG model, gives the objective

function for the CBOW model

JCBOW(θ) =
s∑
t=1

LCBOW,t(θ)

= −
s∑
t=1

log pCBOW(wt|Cwt)

= −
s∑
t=1

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt

= −
s∑
t=1

log

 exp
(
uᵀ
wt

1
|Cwt |

∑
wl∈Cwt

vwl

)
∑v

j=1 exp
(
uᵀ
wj

1
|Cwt |

∑
wl∈Cwt

vwl

)
 .

3.3.3.2 Gradient derivation

The derivative of the objective function with respect to the output vector of word wz with

z ∈ {1, ..., s} can be written as

∂

∂uwz

JCBOW(θ) =
∂

∂uwz

[
−

s∑
t=1

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)

]

= −
s∑
t=1

∂

∂uwz

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)
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= −
s∑
t=1

∂

∂uwz

[
log(exp(uᵀ

wt
vCwt

))− log
v∑
j=1

exp(uᵀ
wj

vCwt
)

]

= −
s∑
t=1

∂

∂uwz

[
uᵀ
wt

vCwt
− log

v∑
j=1

exp(uᵀ
wj

vCwt
)

]

= −
s∑
t=1

∂

∂uwz

uᵀ
wt

vCwt
− ∂

∂uwz

log
v∑
j=1

exp(uᵀ
wj

vCwt
) (11)

The part before the minus sign is simply

∂

∂uwz

uᵀ
wt

vCwt
=

vᵀ
Cwt

, if wz = wt

0ᵀ, otherwise.

The part after the minus sign is similar to equation (8), and hence we skip some in between

steps of the derivation. It holds that

∂

∂uwz

log
v∑
j=1

exp(uᵀ
wj

vCwt
) =

exp(uᵀ
wz

vCwt
)∑v

j=1 exp(uᵀ
wjvCwt

)
vᵀ
Cwt

= p(wz|Cwt)v
ᵀ
Cwt

.

Substitution of the previous two results into equation (11) gives

∂

∂uwz

JCBOW(θ) = −
s∑
t=1

[
1{wz=wt}v

ᵀ
Cwt
− p(wz|Cwt)v

ᵀ
Cwt

]
︸ ︷︷ ︸

(III)

(12)

=
s∑
t=1

[
p(wz|Cwt)− 1{wz=wt}

]
vᵀ
Cwt

.

If the word wz is the center word, part (III) in equation (12) is the difference between

the context word vector and the context word vector weighted by the probability that

the word wz is the center word given the context. If wz is not the center word, (III)

is the difference between the zero vector and the context word vector weighted by the

probability that the word wz is the center word vector. Put differently, part (III) is

the prediction error of the combined input word vector at position t as a function of

wz. Summing this error over all positions in the corpus yields the total prediction error of

vCwt
as a function of the wz. This summation corresponds to the formula in equation (12).
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Taking the derivative of the objective function with respect to an arbitrary input word

vector vwz yields

∂

∂vwz

JCBOW(θ) =
∂

∂vwz

[
−

s∑
t=1

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)

]

= −
s∑
t=1

∂

∂vwz

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)

= −
∑

t 3 wz ∈ Cwt

∂

∂vwz

log
exp(uᵀ

wt
vCwt

)∑v
j=1 exp(uᵀ

wjvCwt
)

= −
∑

t 3 wz ∈ Cwt

∂

∂vwz

[
log (exp(uᵀ

wt
vCwt

))− log
v∑
j=1

exp(uᵀ
wj

vCwt
)

]

= −
∑

t 3 wz ∈ Cwt

∂

∂vwz

[
uᵀ
wt

vCwt
− log

v∑
j=1

exp(uᵀ
wj

vCwt
)

]

= −
∑

t 3 wz ∈ Cwt

∂

∂vwz

uᵀ
wt

vCwt
− ∂

∂vwz

log
v∑
j=1

exp(uᵀ
wj

vCwt
) (13)

Rewriting the part before the minus sign from equation (13) under the condition that

t 3 wz ∈ Cwt yields

∂

∂vwz

uᵀ
wt

vCwt
=

∂

∂vwz

uᵀ
wt

1

|Cwt |
∑

wl∈Cwt

vwl
=

1

|Cwt|
uᵀ
wt

(14)

where in the last step is used that wz = wl for one word in the context of wt due to

the condition. Elaborating the part after the minus sign from equation (13) under the

conditions that t 3 wz ∈ Cwt and using the same rationale as in equation (5) - (6) and

equation (14) gives

∂

∂vwz

log
v∑
j=1

exp(uᵀ
wj

vCwt
) =

1∑v
j=1 exp(uᵀ

wjvCwt
)

[
v∑
k=1

exp(uᵀ
wk

vCwt
)
∂

∂vwz

uᵀ
wk

vCwt

]

=
1∑v

j=1 exp(uᵀ
wjvCwt

)

[
v∑
k=1

exp(uᵀ
wk

vCwt
)

1

|Cwt |
uᵀ
wk

]

=
v∑
k=1

exp(uᵀ
wk

vCwt
)∑v

j=1 exp(uᵀ
wjvCwt

)

1

|Cwt |
uᵀ
wk

=
1

|Cwt |

v∑
k=1

p(wk|Cwt)u
ᵀ
wk
.
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Substitution of the previous two results into equation (13) gives

∂

∂vwz

JCBOW(θ) = −
∑

t 3 wz ∈ Cwt

1

|Cwt |
uᵀ
wt
− 1

|Cwt |

v∑
k=1

p(wk|Cwt)u
ᵀ
wk

= −
∑

t 3 wz ∈ Cwt

1

|Cwt |

uᵀ
wt
−

v∑
k=1

p(wk|Cwt)u
ᵀ
wk︸ ︷︷ ︸

(IV)

 (15)

= −
∑

t 3 wz ∈ Cwt

1

|Cwt |

v∑
k=1

1{wt=wk}u
ᵀ
wk
− p(wk|Cwt)u

ᵀ
wk

=
∑

t 3 wz ∈ Cwt

1

|Cwt |

v∑
k=1

[
p(wk|Cwt)− 1{wt=wk}

]
uᵀ
wk
.

Part (IV) from equation (15) is the difference between the output vector of the word wt

and the expected value of that output vector given the context of the word at position t.

Put differently, part (IV) is the total prediction error of the output word vector of word

wt given the context of word wt.

3.3.4 Gradient update

The resulting first order derivatives to construct the full gradients of the two versions of

the word2vec model are

∂

∂vwz

JSG(θ) =
∑

t 3 wt=wz

∑
wl∈Cwt

v∑
k=1

[
p(wk|wt)− 1{wk=wl}

]
uᵀ
wk

∂

∂uwz

JSG(θ) =
s∑
t=1

∑
wl∈Cwt

[
p(wz|wt)− 1{wz=wl}

]
vᵀ
wt

∂

∂vwz

JCBOW(θ) =
∑

t 3 wz ∈ Cwt

1

|Cwt |

v∑
k=1

[
p(wk|Cwt)− 1{wt=wk}

]
uᵀ
wk

∂

∂uwz

JCBOW(θ) =
s∑
t=1

[
p(wz|Cwt)− 1{wz=wt}

]
vᵀ
Cwt

.

Computing the full gradient before updating the parameters is computational expensive

and hence training the word vectors takes long. To improve the speed one can use an

approximation of the gradient. As approximation one can use the partial derivative based

on one window in the corpus. This approximation can then be used as input for the gradi-

ent descent. After updating the word vectors accordingly, a new gradient is calculated

based on the next window. This results in optimization of the objective function at time

t as provided in equation (2) and (10). This approach is also referred to as Stochastic
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Gradient Descent (SGD) as discussed in Section 3.2. The approximate gradients for both

models using updates for one window at a time are given by

∂

∂vwz

JSG,t(θ) =


∑

wl∈Cwt

∑v
k=1

[
p(wk|wt)− 1{wk=wl}

]
uᵀ
wk
, if wz is the center word at t

0ᵀ, otherwise

(16)

∂

∂uwz

JSG,t(θ) =
∑

wl∈Cwt

[
p(wz|wt)− 1{wz=wl}

]
vᵀ
wt

∂

∂vwz

JCBOW,t(θ) =

 1
|Cwt |

∑v
k=1

[
p(wk|Cwt)− 1{wk=wt}

]
uᵀ
wk
, if wz is in the context of word at t

0ᵀ, otherwise

∂

∂uwz

JCBOW,t(θ) =
[
p(wz|Cwt)− 1{wz=wt}

]
vᵀ
Cwt

.

The resulting derivatives are the same as provided by Rong (2014). The notation of Rong

(2014) is slightly different; switching the summation signs in equation (16) results in the

notation as given by Rong (2014). For a learning rate of η, the vector updates using

gradient descent for any word wz at position t in the text are obtained with the updating

equations

v(new)
wz

= v(old)
wz
− η ∂

∂vwz

JSG,t(θ)

u(new)
wz

= u(old)
wz
− η ∂

∂uwz

JSG,t(θ)

v(new)
wz

= v(old)
wz
− η ∂

∂vwz

JCBOW,t(θ)

u(new)
wz

= u(old)
wz
− η ∂

∂uwz

JCBOW,t(θ).

3.4 GloVe

The GloVe method introduced by Pennington et al. (2014) is based on a combination of

the local context window (as is the word2vec approach) and the word-word co-occurrence

matrix. The authors argue that the global vectors combine the best of both worlds, that

is, making use of the co-occurrence statistics of the entire corpus while capturing complex

linguistic relationships. Previous word count based methods such as LSA and HPCA

apply dimension reduction on the word-word co-occurrence matrix. Using the count stat-

istics in such a way is more efficient compared to word2vec. Namely, the number of

iterations in GloVe is equal to the number of unique words while the word2vec algorithm

iterates over all, possibly non-unique, words in the corpus. The word2vec algorithm eval-

uates the word co-occurrences separately in each window and updates the word vectors
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many times. The GloVe algorithm collects the counts only once and stores the word-word

co-occurrence matrix, and subsequent dimension reduction is applied. In count based

methods, frequent words tend to receive relatively high importance while these words

often contain little semantic value (e.g., words like ‘the’ and ‘have’). The GloVe model

tries to deal with this problem by using a count statistics based on combining all local

context windows in the corpus instead of the normal counts, down-weighting the impact

of frequent words. A disadvantage of Glove is that, since it is a count based method,

the algorithm requires to store the word-word occurrence matrix in memory, which might

cause problems if one is dealing with a large vocabulary. Besides, if new text data is

added, one needs to reconstruct the word-word co-occurrence matrix.

Roughly following the notation introduced by Pennington et al. (2014), we define that

X ∈ Zv×v≥ is the word-word co-occurrence matrix, where v is the size of the vocabulary

V , Z≥ is the set of non-negative whole numbers, and Xi,j is the co-occurrence count of

the word wi and wj. The matrix X is a symmetric matrix and constructed by counting

the times two words co-occur within user defined context windows. The number of total

occurrences of a word in the corpus is defined as Xi =
∑

kXi,k =
∑

kXk,i. Furthermore

Pi,j = P (j|i) =
Xi,j

Xi
is defined as the probability that word wj occurs in the context of

word wi.

Pennington et al. (2014) argue that the ratio of co-occurrence probabilities
Pi,k

Pj,k
is a better

representation to be able to distinguish relevant and irrelevant words. This ratio is based

on three words instead of two and therefore, captures better the interconnection between

the meaning of words. Computing the ratio of the co-occurrence probabilities of two

words wi and wj with multiple third words (wk) provides the degree of relevance between

these two words. If these ratios are close to one, wi and wj are both equally linked to

wk. It could be that wi and wj are either both relevant or irrelevant to wk. If the value

of the ratio is either small or large, one of the two is related to wk, and the other one

is not. Since the goal is to capture the information of the words in the vector space,

Pennington et al. (2014) argue that the vector difference between the two words should

capture this information and is ‘the most natural choice.’ Furthermore, for all word

vectors, each dimension should be a measure of the information on that part of the vector

space. Suppose there is a dimension that captures how likely it is that a word is a noun,

then this dimension should be the same for all word vectors to be able to compare words

linearly. Therefore, just as in the word2vec method, the dot product is used as a measure

of similarity. The model of GloVe can be written as

Pi,k
Pj,k

= F
(
(uwi

− uwj
)ᵀvwk

)
= F

(
uᵀ
wi

vwk
− uᵀ

wj
vwk

)
, (17)
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where the function F is a model choice and a suitable option will be derived in the next

steps. Pennington et al. (2014) choose F using the following reasoning. The definition

of u being the input or ordinary word vector and v the output or context word vector

is meaningless since the word vectors are based on the word count statistics. Therefore,

these vectors should be interchangeable and the label of context word versus ordinary

word should not have an impact. Put differently, changing vwk
with either uwi

or uwj

should still hold with the same mapping F . The argument of F after the first equal sign

in equation (17) is the additive group of real numbers (R,+), since both inner products

are real-valued. The function F maps to a product of two real numbers (Pi,k and 1
Pj,k

),

the multiplicative group of real numbers (R>0,×). Therefore, if we require F to be a

homomorphism between the groups, the ordinary and context labels are interchangeable.

The condition of a homomorphism F between addition in the domain space (R,+) and

multiplication in the positive target space (R>0,×) is given by

F (a+ b) = F (a)F (b), ∀ a, b ∈ R. (18)

The subtraction equivalent of equation (18) is given by

F (a− b) =
F (a)

F (b)
, ∀ a, b ∈ R.

Substitution of a = uᵀ
wi

vwk
and b = uᵀ

wj
vwk

yields the condition for the mapping F that

F
(
uᵀ
wi

vwk
− uᵀ

wj
vwk

)
=
F (uᵀ

wi
vwk

)

F (uᵀ
wjvwk

)
, ∀ uwi

,uwj
,vwk

∈ Rd. (19)

A solution of equation (19) is F (·) = exp(·). Combining this solution with equation (17)

yields

F (uᵀ
wi

vwk
)

F (uᵀ
wjvwk

)
=

exp(uᵀ
wi

vwk
)

exp(uᵀ
wjvwk

)
=
Pi,k
Pj,k
⇒ Pi,k = exp(uᵀ

wi
vwk

)

⇔ Xi,k

Xi

= exp(uᵀ
wi

vwk
)

⇔ log

(
Xi,k

Xi

)
= uᵀ

wi
vwk

⇔ uᵀ
wi

vwk
= log (Xi,k)− log (Xi) , ∀ i, k ∈ {1, ..., v}.

(20)

The solution (20) is not symmetric for i and k, changing i and k results in a different

solution. Therefore, Pennington et al. (2014) replace the asymmetric part of (20), log (Xi),

with a bias bi related to the ordinary word vector of word wi and they introduce an

additional bias ck related to the context word vector of word wk to establish symmetry.
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Furthermore, shifting the logarithm by adding 1 to Xi,k for all i, k solves the issue that

log(0) is not defined, resulting in the final GloVe model equation

uᵀ
wi

vwk
+ bi + ck = log (1 +Xi,k) . (21)

3.4.1 Objective function

The objective function introduced by Pennington et al. (2014) is a least squares problem

and is constructed using the model defined in equation (21). Pennington et al. (2014)

introduce an additional weighting function as a solution to the relatively large impact of

frequent words. This weighting function down-weights the impact of frequent words in

the objective function. Thereby, infrequent words have a relatively larger impact on the

objective value. Besides introducing a weighting function, removing stop words from the

corpus can deal with the problem for a few specific words. Let f be such a weighting

function such that f : Z≥ 7→ R+. Then the objective function is given by

JGloVe(θ) =
∑
i,j

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
, (22)

where θ ∈ R2dv contains the ordinary and context word vector of all words in the vocab-

ulary. f should be non-decreasing and relatively small for larger values to still assigning

more impact to frequent words and at the same time satisfy the goal of reducing the im-

pact of frequent words on the objective value. Furthermore, if f is continuous, f should

approach zero fast enough such that f(x)log2x has a finite limit, as x → 0. If not, the

parameters in the objective function will compensate for the log-term as x → 0, and

therefore, the magnitude of the vector elements and the biases might explode to minimize

the value with the square brackets in equation (22). The last condition is that if x is 0,

the value of f(x) is equal to zero.

Pennington et al. (2014) suggest the following weighting function satisfying the conditions

as mentioned earlier

f(x) =

(x/xmax)
α if x < xmax

1 otherwise,

where xmax and α are hyperparameters of the model. The authors suggest fix xmax = 100

without motivation and they empirically motivate their choice for α = 0.75 over α = 1.

The objective function in equation (22) might seem similar to the objective of SVD.

However, it seems inappropriate to go into details on the (dis)similarities between the

two here, and therefore, we have included more details on this link in section B of the

Appendix.
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3.4.2 Gradient derivation

We apply the chain rule to obtain partial derivatives. Note that the parameter θ of

the GloVe model consists of four parts: the two word vector representations, and the two

corresponding bias terms, and thereby, we consider four partial derivatives. Let wz denote

an arbitrary word of the vocabulary, then the partial derivative of the objective function

with respect to the ordinary word vector of wz is as follows

∂

∂vwz

JGloVe(θ) =
∂

∂vwz

∑
i,j

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
=

∂

∂vwz

∑
i

∑
j=z

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
=
∑
i

∑
j=z

∂

∂vwz

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
=
∑
i

∂

∂vwz

f (Xi,z)
[
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
]2

=
∑
i

f (Xi,z)
∂

∂vwz

[
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
]2

=
∑
i

2f (Xi,z)
(
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
) ∂

∂vwz

uᵀ
wi

vwz

= 2
∑
i

f (Xi,z)
(
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
)

uᵀ
wi
.

The same approach in the derivation can be used to obtain the partial derivative with

respect to uwz , resulting in

∂

∂uwz

JGloVe(θ) = 2
∑
j

f (Xz,j)
(
uᵀ
wz

vwj
+ bz + cj − log(1 +Xz,j)

)
vᵀ
wj
.

Next, we consider the partial derivatives with respect to the biases. The approach is

similar as for the partial derivative derivation with respect to the word vectors, so some

intermediate steps are skipped, resulting in

∂

∂cz
JGloVe(θ) =

∂

∂cz

∑
i,j

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
=
∑
i

∑
j=z

∂

∂cz
f (Xi,j)

[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
=
∑
i

f (Xi,z)
∂

∂cz

[
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
]2

= 2
∑
i

f (Xi,z)
(
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
)
.
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A similar derivation with respect to bz gives

∂

∂bz
JGloVe(θ) = 2

∑
j

f (Xz,j)
(
uᵀ
wz

vwj
+ bz + cj − log(1 +Xz,j)

)
.

3.4.3 Gradient update

SGD uses the partial derivatives based on a single observation. We obtained these par-

tial derivatives by simply removing the summation and adding an index. The partial

derivatives are

∂

∂vwz

JGloVe,i(θ) = 2f (Xi,z)
(
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
)

uᵀ
wi

∂

∂uwz

JGloVe,j(θ) = 2f (Xz,j)
(
uᵀ
wz

vwj
+ bz + cj − log(1 +Xz,j)

)
vᵀ
wj

∂

∂cz
JGloVe,i(θ) = 2f (Xi,z)

(
uᵀ
wi

vwz + bi + cz − log(1 +Xi,z)
)

∂

∂bz
JGloVe,j(θ) = 2f (Xz,j)

(
uᵀ
wz

vwj
+ bz + cj − log(1 +Xz,j)

)
.

The parameter updates, considering a learning rate η are similar to the updates for

word2vec in Section 3.3.4 and not provided explicitly for brevity.

3.5 Glossary

Variable Definition
d Dimension of a word vector
θ Parameter vector (containing all input/ordinary and output/context

word vectors)
S Set of words constructing the corpus, a sequence of words
s Size of the corpus, number of words in the corpus
V Vocabulary, set of unique words in the corpus
v Size of the vocabulary, number of unique words in the corpus
t Position of a word in the text data where t ∈ {1, ..., s}
wt with t ∈ {1, ..., s} Word at position t in the text data
wi with i ∈ {1, ..., v} Word i from the vocabulary
Cwt Set of context words of the word at position t in the text
c1,wt Number of words to the left of wt that are included in the context of

word wt
c2,wt Number of words to the right of wt that are included in the context

of wt
uwz Input/ordinary word vector of word wz
vwz Output/context word vector of word wz
U Matrix of input/ordinary word vectors
V Matrix of output/context word vectors
X Matrix of word-word co-occurrence counts

Table 1: Glossary with definitions of frequently used variables
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4 Methodology: beyond the base implementation

This section covers extensions of the basic ideas of word2vec and GloVe to speed the op-

timization algorithms and to decrease the computational intensity of the methods (Section

4.1). The extension provided in Section 4.1.2.2 is used for both word2vec implementations

in the application of this paper to compare the methods and therefore, slightly more de-

tailed. Next, we discuss the link between word2vec and GloVe (Section 4.2). Besides, this

part of the methodology covers the model stability and the factors impacting this stabil-

ity (Section 4.3). Furthermore, we discuss how these methods can be applied in practice

in a food menu context (Section 4.4). This part of the methodology includes intuitive

explanations, and it does not provide mathematical derivations and proofs. However, we

provide pointers to research containing these proofs.

4.1 Estimation speed improvement

4.1.1 Function optimization algorithm

The problem of function optimization is well-known in the literature. Therefore, clas-

sical gradient descent can be changed to another optimization algorithm to improve the

convergence speed or to find a better optimum. Ruder (2016) provides an overview of

such procedures. The algorithms of both GloVe and word2vec use a variation of SGD to

optimize the non-convex objective function. Since the objective functions are non-convex,

the solutions are likely to be local minima. We make use of the optimizations used in

the Python implementations of the word embedding techniques. The optimizations used

in this paper are AdaGrad (Duchi et al., 2011) and SGD with linearly decaying learning

rate for GloVe and word2vec, respectively. Both methods decrease the learning rate over

iterations. Moreover, AdaGrad adjusts the learning rate for different dimensions. The

gradients used in previous updates combined influence the next adjustment. SGD with

linearly decaying learning rate decays the learning rate as the algorithm iterates over the

text. In the algorithm used for this paper, the linear decrease continues to a small value

such that it will never reach zero. This lower bound ensures that all training data is used

to train the word embeddings. For the gradient update formulas see Ruder (2016).

4.1.2 word2vec

Updating the full gradient of the CBOW and SG model at each position in the text is

a costly operation. An option to solve this is to update the gradient using limited data,

based on one or a few positions in the text. Nevertheless, computing the probability

pSG and pCBOW in the objective functions of word2vec with respect to all words in the

context of a center word is still computationally expensive. Suppose the vocabulary size
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is 10.000, for each context word the evaluation of p(wl|wt) in the SG objective is required,

including calculating the denominator
∑v

j=1 exp(uᵀ
wj

vwi
). This denominator part includes

a dot-product of the center word with all 10.000 words in the vocabulary. Doing this at

each position of the text is a computationally expensive operation. The gradients of the

word2vec model include this factor as well (it does not cancel in the gradient derivation)

and hence evaluating these gradients is expensive as well. As Mikolov et al. (2013b) men-

tion, the cost of computing the gradient is proportional to the vocabulary size, which is

often large (105 − 107 terms).

There are two approaches to solving this problem. The first approach is to speed the

calculation of the soft-max while keeping the soft-max form in the objective function.

The second approach abandons the soft-max form and uses a sampling-based procedure.

Mikolov et al. (2013a) and Mikolov et al. (2013b) suggest one of each, hierarchical soft-

max and negative sampling. Rong (2014) discusses both approaches in more details; here,

only the basic intuition of the approaches is provided.

4.1.2.1 Hierarchical soft-max

The hierarchical soft-max approach uses a binary tree structure to represent all words in

the vocabulary. Given the input, one walks down the tree going either left or right at each

node. The probability of going left or right is the value of the sigmoid function, evaluated

at the value resulting from the inner product of the node vector with the center word

vector. The probability of ending at a context word (that is at a given leaf) is, instead of

the full soft-max form, simply the multiplication of the probabilities going left and right,

following the path such that one ends at the word observed as the context word.

4.1.2.2 Negative sampling

Mikolov et al. (2013b) present negative sampling as an alternative to hierarchical soft-max.

Since their results show that negative sampling performs superior in their application, we

elaborate on this method, and we use this approach in our application. The principle of

comparing the center word with the positive word (the true context word) and with a

set of negative words (words from the vocabulary that are not in the context) is at the

core of negative sampling. Thereby, a method with negative sampling makes a limited

amount of comparisons, only with the positive word and negative samples. Note that

the full soft-max form compares the center word with all words in the vocabulary. The

negative samples are a representation of the words that are not in the context. Noise-

Contrastive Estimation (NCE) introduced by Gutmann and Hyvärinen (2010) precedes

negative sampling. NCE, in short, modifies the form of the objective function such that the

optimum is reached with the same parameter values and similarly simplifies the objective
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function. Negative sampling simplifies the objective function of NCE by replacing the

most computationally intensive part with a constant and thereby lets go of the property

of NCE that the objective is in the limit the initial skip-gram objective (Dyer, 2014). The

SG and CBOW model with negative sampling are respectively referred to as SGNS and

CBOWNS. The corresponding objective functions are

JSGNS(θ) = −
s∑
t=1

∑
wl∈Cwt

log σ(uᵀ
wl

vwt)︸ ︷︷ ︸
(XIII)

+
k∑
j=1

E
wj∼PD(w)

log σ(−uᵀ
wj

vwt)︸ ︷︷ ︸
(XIV)

 (23)

JCBOWNS(θ) = −
s∑
t=1

log σ(uᵀ
wt

vCwt
) +

k∑
j=1

E
wj∼PD(w)

[
log σ(−uᵀ

wj
vCwt

)
]
,

where PD(w) is the noise distribution and σ(·) the sigmoid function. A detailed derivation

of the word2vec SGNS is provided by Goldberg and Levy (2014). There are k words wj

sampled from this distribution, these are the negative samples. According to Levy et al.

(2015), the number of negative samples k has two functions. First, larger k implies more

data used to train the word embeddings and thereby more accurate word embeddings.

Second, words that do not occur together are scattered more in the embedding space

because of an increasing proportion of negative versus positive samples. Levy et al.

(2015) mention that with word2vec SGNS many negative samples are preferred. The

disadvantage of a large k is the increase in training time. Since it outperforms the regular

unigram and the uniform distributions according to their analysis, Mikolov et al. (2013b)

propose to use the unigram distribution raised to the power 0.75. Consider that D is

the collection of all observed word-context pairs and let |D| be the number of pairs in

D. Furthermore, let #(wi, cj), #(wi), and #(cj) be the count of co-occurrences and

single occurrences of the center word wi and context word cj in D respectively. Then the

proposed noise distribution is

PD(wj) =

(
#(wj)

|D|

)0.75

, ∀j ∈ {1, ..., v}. (24)

As explained by Levy and Goldberg (2014), the skip-gram negative sampling objective

is to maximize the sigmoid probability of an observed pair (wi, wl), given by part (XIII)

in equation (23). Simultaneously, word2vec SGNS maximizes probabilities that wi does

not co-occur with the negative samples. The probability that wi does not co-occur with

one of the negative samples is given by part (XIV) in equation (23). Note that simple

algebra shows that σ(−a) = 1− σ(a). Similar reasoning applies for CBOWNS, but there

the input vectors are the combined context vectors as discussed in Section 3.3. The

updating equations for the negative sampling are not provided in this paper, but can be

derived in like manner as the derivation of the updating equation of the basic word2vec
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updating equations. Rong (2014) provides a short derivation of these equations. Table 2

summarizes the objective functions discussed in this paper.

Researchers tried to rewrite the word2vec into a matrix factorization problem. Levy

and Goldberg (2014) succeed in this by showing that word2vec SGNS is implicitly a

factorization of the word-context matrix. Since this relation goes beyond the scope of our

research we have included a summary of this link in section C of the Appendix.

Method Objective Function

word2vec SG
∑s

t=1

∑
wl∈Cwt

log
exp(uᵀ

wl
vwt )∑v

j=1 exp(u
ᵀ
wj

vwt)

word2vec CBOW
∑s

t=1 log
exp(uᵀ

wtvCwt
)∑v

j=1 exp(u
ᵀ
wj

vCwt

word2vec SGNS
∑s

t=1

∑
wl∈Cwt

log σ(uᵀ
wl

vwt) +
∑k

j=1 Ewj∼PD(w)

[
log σ(−uᵀ

wj
vwt)

]
word2vec CBOWNS

∑s
t=1 log σ(uᵀ

wt
vCwt

) +
∑k

j=1 Ewj∼PD(w)

[
log σ(−uᵀ

wj
vCwt

)
]

GloVe
∑

i,j f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
Table 2: The objective functions of the skip-gram (negative sampling) SG(NS), continuous
bag-of-words (negative sampling) CBOW(NS) and GloVe

4.1.2.3 Subsampling frequent words

Another way to speed up the word embedding generation is to skip frequent words in

the corpus. Frequent words are updated more often compared to less frequent words,

and therefore, one can argue that it is not needed to update the word vector of frequent

words for each time it occurs. Subsampling the frequent words implies the deletion of

frequent words from the corpus before training of the word embeddings. Besides speeding

training time due to a smaller corpus, more distant words could occur within each others

context window in the new corpus, while in the original corpus this was not the case.

Thereby, subsampling of frequent words may increase the capture of relevant information

and similarly obscures the actual context window used. Levy et al. (2015) refer to this

way of subsampling as ‘dirty’ subsampling, where ‘clean’ subsampling does not influence

the range of the context window. Mikolov et al. (2013b) argue that subsampling com-

mon words not only speeds the algorithm but also results in significantly more accurate

word embeddings in some cases. These significant increases in performance are mainly

in combination with hierarchical soft-max. Since we do not use hierarchical soft-max, we

do not subsample frequent terms, but we choose to delete stopwords instead. Removing

stopwords before training can be easily applied to the GloVe scenario as well and thereby

does not create differences in the context windows used for GloVe and word2vec.
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4.2 Link between word2vec and GloVe

In the initial GloVe paper, Pennington et al. (2014) are the first to compare word2vec and

GloVe. They do this based on performance. Shi and Liu (2014) take it one step further,

based of the results of Levy and Goldberg (2014) presented in the previous section. Shi

and Liu (2014) rewrite the solutions of GloVe and word2vec SGNS respectively as

GloVe: uᵀ
wi

vcj = log#(wi, cj)− bwi
− bcj , (25)

SGNS : uᵀ
wi

vcj = log#(wi, cj)− log#(wi)− log#(cj) + log
v∑
i=1

#(wi)− logk, (26)

where the b’s denote the biases to be learned by the model. The first difference to note is

that this notation is not completely thorough, but used for the sake of showing the similar-

ity. This notation, although not noted by Shi and Liu (2014), lacks to address the fact that

GloVe and word2vec SGNS solve the fact that log#(wi, cj) = −∞ for non co-occurring

words differently. As mentioned in the previous section, the authors of GloVe add a con-

stant to the co-occurrence matrix and Levy and Goldberg (2014) use the SPPMI. Shi and

Liu (2014) mention two other main difference between the two. First, the cost functions

are differently defined, even though they share the same objective. Second, the weighting

strategy is different. GloVe down weights the impact of infrequent co-occurrences to the

cost function and ignores non co-occurring words. Levy and Goldberg (2014) show that

word2vec SGNS down weights only frequent words, and due to the negative samples,

word2vec SGNS learns by looking at word-context pairs that do not co-occur in the text.

The similarity between GloVe and word2vec SGNS can be observed by comparing equa-

tion (25) and (26). The former contains biases that are trained by the model. The

latter contains constants that could be considered as values for the biases in the former.

Thereby, the solution of word2vec SGNS could be a solution of the GloVe model. The

biases of the GloVe model could converge to the values of the SGNS solution. Thereby,

Shi and Liu (2014) argue that the GloVe model is ‘more general and has a wider domain

for optimization’.

4.3 Model stability

The word embedding methods discussed in this research require the input of hyperpara-

meters and training data. Both impact the solution of the word embedding models. This

section discusses how to measure the stability of the models and provides an overview of

the hyperparameters of word2vec and GloVe. To measure the stability and speed of the

algorithms and to obtain the embeddings, we made use of the Python implementations

of word2vec and GloVe using Cynthon (Behnel et al., 2011) to use C in the back-end

for speed. Some hyperparameters are not tunable without entering the C source code
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of these packages. Out of convenience, we chose not to dive into this, and we made

use of the off-the-shelf implementation of the methods. We used the word2vec function

out of the gensim package created by Řeh̊uřek and Sojka (2010) for word2vec and the

glove-python package for GloVe. Both python applications use the default settings as

set by the original C implementations of Mikolov et al. (2013a) and Pennington et al.

(2014).

4.3.1 Stability Measure

In this research, we use the stability definition introduced by Antoniak and Mimno (2018)

since this similarity measure is intuitive and easy to implement. Suppose we have two

arbitrary hyperparameter settings A and B. According to Antoniak and Mimno (2018) the

stability is measured by comparing the top 10 similar words of all words in the vocabulary

according to hyperparameter setting A to the top 10 similar words of all words in the

vocabulary according to hyperparameter setting B. If, for a given word, the top 10 similar

words are equal, the stability scores 1 for this word. If none are similar, this score equals 0.

Hence, the stability score is always a number between 0 and 1. The average of these scores

for all words is the value of the stability score between run A and B of the algorithm.

4.3.2 Training data

As mentioned above, the data play a large role in the outcome of the word embeddings.

Antoniak and Mimno (2018) and Wendlandt et al. (2018) show that amongst others the

length of the text, the length of the individual documents, and the POS influence the

outcome significantly. Furthermore, Antoniak and Mimno (2018) show that words with a

high frequency do not need to be more stable in the solution. Another observation is that

the GloVe model is in general more stable than word2vec. Moreover, the data influences

the optimal dimensionalities of the word embedding, as shown by Yin and Shen (2018).

Optimal dimensionalities range from 56 to 860 for the data sets in their research.

4.3.3 Hyperparameters

Two obvious examples of hyperparameters of word2vec and GloVe are the context window

size and the dimensionality of the word vectors. However, several, less obvious paramet-

ers need to be defined by practitioners as well. Levy et al. (2015) extensively discuss all

the hyperparameters used in word2vec and GloVe and divide them into three types of

hyperparameters: pre-processing hyperparameters, association metric hyperparameters,

and post-processing hyperparameters. This section covers the hyperparameters according

to the structure of Levy et al. (2015) and discusses common choices for these hyperpara-

meters. Note that the word embedding methods are unsupervised learning mechanisms,
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and therefore, the motivations are not always backed by theoretical evidence. Often, em-

pirical evidence using word embeddings in combination with a down-stream task such as

word analogy classification or part-of-speech-tagging (POS-tagging) are used to motivate

the choice of the hyperparameters in the literature. These motivations are dependent on

the input data and the task, and hence, can only be considered as best practices. Another

motivation for choosing certain hyperparameters can be the stability of the solutions and

the speed of the algorithm.

Stability of the word embeddings can provide information on the importance of choosing

appropriate hyperparameter values. Suppose, as an example, that the stability analysis

of training the word embeddings twice with hyperparameter settings C and D yields a

high stability score. This would inform us that setting C and setting D are likely to

result in similar word embeddings. Note again that this comparison of the stability of

the solutions is not an indication of the quality of the solutions. In the application, we

use the stability definition provided by Antoniak and Mimno (2018) and we compare the

stability by adjusting the following five hyperparameters: the window size, the embed-

ding size, the GloVe weighting function hyperparameters (α and xmax), and the number

of negative samples. Besides these variables, there are choices to be made regarding other

hyperparameters as discussed in the next paragraphs.

Pre-processing hyperparameter: dynamic context window

Words in text data are, in general, more related when they occur close to each other in the

data. Therefore, the implementations of both GloVe and word2vec include a procedure

to increase the impact of words closer to words within a context window. The GloVe

implementation makes use of a harmonic weighting function to weight the impact of a

co-occurrence of two terms by 1
p
, where p is the number of tokens that the context word is

distant from the center word, p = 1 if the word is next to the center word. The word2vec

implementation uses sampling the window size uniformly (dynamic context window) from

U{1, w}, where w is the window size set by the user. The expected overall impact of tokens

on p positions from the center word is w+1−p
w

. In our application, we make use of these

default procedures.

Pre-processing hyperparameter: subsampling and deleting rare words

As motivated in Section 4.1.2.3 we do not subsample frequent words, but we choose to

remove stopwords. Furthermore, rare words are removed based on a threshold on the

number of occurrences. Words below this threshold are considered to be not frequent

enough to train meaningful word vectors for. Deleting these words is done before training

and thereby increases the range of some context windows.
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Association metric hyperparameter: context distribution smoothing

Levy et al. (2015) pose that the smoothing constant used in the noise distribution of

equation (24) with a value of 0.75 is ‘the only parameter that can be blindly applied in

any situation’. We follow this advice in our application.

Post-processing hyperparameters: adding context vectors

Levy et al. (2015) state that adding word and context vectors can be trivially applied

to methods as GloVe and word2vec. Therefore, we use this way to generate our word

embeddings.

Post-processing hyperparameters: vector normalization

Since, as motivated in Section 3.1, we use the cosine similarity measure. It follows that

by using the same reasoning, the L2-normalization is the most appropriate choice to use

in post-processing the word embeddings.

4.4 Practical implementation

4.4.1 N-grams

So far, we have referred to a word embedding as an embedding of a single word. However,

in language, there are combinations of words which are inseparable or often occur in a fixed

combination. These combinations of terms, the so-called collocations, lose their meaning

if used individually. For example, ‘New’ and ‘York’ are stand-alone words, but generating

the word vectors, we want to obtain a single word vector of ‘New York’, since this multiple

word unit has one meaning. An N-gram is a collocation of N subsequent words observed

in the corpus (e.g., New York is a 2-gram). By replacing frequent multiple word units

by their N-gram representation, one can extract word vectors for each linguistic entity of

interest. Moreover, this replacement improves the word embeddings of the single words

due to less influence of irrelevant words on the word of interest. As an example, using N-

grams, ‘York’ will not influence the vector representation ‘New’ anymore. An association

measure represents to what degree word pairs are associated with each other. Collocations

are word pairs with a score above a threshold. One needs to make three choices to extract

N-grams: the association measure, the threshold, and the maximum size of N. In this

paper we use the normalized point-wise mutual information (NPMI) measure introduced

by Bouma (2009). The core of the NPMI is the ratio of the probability of two words

occurring together (the joint distribution) versus the probability that each of these two

words occurs in the corpus at a given place (marginal distributions) under the assumption

of independence of word occurrence. The log of this ratio is the PMI. Normalization of
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the MPI with the negative log of the co-occurrence probability results in

NPMI(x, y) =

(
log

p(x, y)

p(x)p(y)

)/
− log p(x, y).

For a complete derivation and motivation of the normalization, we refer to Bouma (2009).

Since the NPMI is a normalized measure, the interpretation is fixed. Therefore, it is

possible to use the same threshold for different data sets. The NPMI score is a value

between −1 and 1, where the NPMI has a score of 1 for word pairs that occur solely

together, 0 in case two words occur independently of each other and −1 when two words

never occur together. The normalized nature of the NPMI provides a data-driven solution

for the maximum choice of N. Given a fixed threshold one can create 2-grams in the data

iteratively until no pair of words yields an association measure larger than the threshold.

Note that a collocation of a 2-gram with a word results in a 3-gram. Therefore, a threshold

between 0 and 1 is appropriate. However, there is no literature on which specific value

to use in a situation. Besides, the NPMI is not the focus of this paper. Therefore an

arbitrary threshold value of 0.7 is used in the application. Note that the three word

embedding methods of interest use the same training data based on the same N-gram

threshold value.

4.4.2 sentence2vec / dish2vec

To compare not just single terms, but a sequence of terms (such as in a sentence, para-

graph, document or in our research, dish) using the cosine similarity one requires two

equally sized vectors. Le and Mikolov (2014) propose doc2vec, an extension of word2vec

training document vectors in parallel with the word vectors. However, since the goal

of this paper is to compare the results of GloVe and word2vec after being trained, and

doc2vec is a different training procedure, we choose for a word vector combination as dish

representation. Averaging word vectors, as opposed to vector concatenation, results in

equally sized dish vectors. However, in general, less frequent words are more discriminate

for dishes. Consider, for example, the words ‘tomato’, ‘rice’, and ‘soup’. These words are

less likely to contain dish unique information compared to ‘alligator’, ‘seaweed’ or ‘caviar’.

Therefore assigning a larger weight to these words seems reasonable and hence, infrequent

words have a larger influence in the dish similarity. In our application, we use the ap-

proach suggested by Arora et al. (2016b), taking the weighted average of word vectors

in a dish and subsequently remove the first principal component obtained by Principal

Component Analysis (PCA) from the matrix Y ∈ Rq×d. Here, q is the number of dishes

and d is the dimension of the word vectors. The columns of Y are the weighted averages

of the word vectors of the dishes. These weights are based on the word frequency and hy-

perparameter a. For word w, the weight is defined as a
a+p(w)

, where p(w) is the frequency

of word w. The motivation for the removal of the first principal component is based on
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empirical observations. Arora et al. (2016b) state that ‘most word embedding methods,

since they seek to capture word co-occurrence probabilities using vector inner product,

end up giving large vectors to frequent words, as well as giving unnecessarily large inner

product to word pairs, simply to fit the empirical observation that words sometimes occur

out of context’. The large components have a disproportionately substantial impact on

the resulting (weighted) average embedding of a sentence without capturing meaningful

semantic characteristics of the words. Removing the first component smooths the result-

ing sentence embedding and, according to Arora et al. (2016b), this method outperforms

the unweighted average and even beats more sophisticated methods. Another motiva-

tion to use this approach is that it is intuitive and easy to implement. See Arora et al.

(2016b) for a detailed description of the weighting procedure and the algorithm of how to

construct the dish embeddings. In the application we use a weighting parameter value of

a = 10−3 as empirically motivated by Arora et al. (2016b).

5 Application: empirical comparison of GloVe and

word2vec

In this section, we apply the word embedding methods in a real-world setting using text

data form the catering industry. In the catering industry, businesses (e.g., restaurants,

hotels, and food delivery services) use text in the form of a list of dishes on their menu

to inform customers about the food they offer. This information is publicly available

on the Internet and provides one with a rich open source of text data. These data

can be used to personalize marketing strategies and are, therefore, a potentially valuable

resource for businesses. Embeddings of dishes and menus can be used to feed the modeling

techniques used for such tasks if one wants to use text data in an automated way. Applying

the different word embedding methods results in different solutions, where each solution

captures a different set of linguistic elements. It is difficult to determine the quality of

the word embeddings by inspection of the word embeddings. Therefore, we will create

dish embeddings out of the word embeddings, and we let experts evaluate the quality of

these dish embeddings indirectly. This evaluation can provide insights in which method

is the best. Since there is a limited amount of chefs available to evaluate the models,

we choose to use one variant of each model. Moreover, for the final hyperparameter

setting, we fix the values across algorithms for the hyperparameters that are required in

multiple algorithms. The application is performed on the menu data of restaurants only.

The menus of restaurants are more readily found online compared to menus of hotels and

other caterers. Moreover, the restaurant sector is large and therefore, enables us to collect

a large amount of data required to train the word embeddings.
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5.1 Data

To train the word embeddings, we use text data scraped from the Internet. Menu cards

of more than 20,000 restaurants from the United Kingdom are collected, cleaned, and

processed. After removal of all diacritics, punctuation and freestanding, single characters,

words are removed that do not occur on less than five menu cards. The last step removes,

besides infrequent words, strings that are not part of any language but generated by

the scraping procedure. Next, the words are tokenized and stemmed using the Porter

stemming algorithm (Porter, 1980). Stemming removes information in the data, such as

conjugations and plural forms. Besides, stemming the words concentrates the information,

since fewer word embeddings have to be learned and each term occurs more frequently in

the stemmed text data. The motivation to choose for stemming versus no stemming is

that we do not regard conjugations as important on menus of restaurants, and moreover,

removing plural forms is desired under the assumption that singular or plural form does

not impact the meaning of a dish. Furthermore, fewer words have to be trained using

stemming, speeding the embedding methods. Consequently, we insert N-grams according

to Section 4.4.1. The vocabulary of the resulting processed data contains 25944 unique

tokens. The processed data consists of 23,140 unique businesses with on average 95.3

menu items. The average length of a dish is 3.66 tokens. Note that each menu item does

not need to contain a full dish. The scraping procedure maps each line on the menu card

to a menu item. Therefore, a menu item could consist of the name of a dish, the main

ingredient(s), additional dish information, additional ingredients, or a combination of the

former. Furthermore, if a menu contains information on the corresponding business, this

information is not excluded and may result in noise in the menu data.

5.2 Methods, model stability, and hyperparameters

In the application word2vec SG and CBOW, both with negative sampling, and GloVe are

estimated using the menu data. The negative sampling extensions of word2vec are used

to reduce the training time of the algorithm. The off-the-shelf python implementations

of word2vec from the gensim package and GloVe from the glove-python package are

used. The hyperparameter settings discussed in Section 4.3 and 4.4 are used, except for

the window size, embedding size, the number of negative samples (word2vec), α (GloVe),

and xmax (GloVe) since these will be tuned using a stability analysis. While performing

the stability analysis, we keep track of the computation times. All results are based on

ten epochs. This number is rather arbitrarily chosen. Using multiple epochs increases the

amount of information that is extracted from the training data and simultaneously extends

the training duration. The training time in our context with ten epochs was still within

reasonable bounds. The stability analysis is based on a default hyperparameter setting

based on the papers introducing word2vec and GloVe. These default hyperparameters
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are modified one at a time. The corresponding default values are given by

• windows size w = 5,

• number of dimensions d = 300,

• number of negative samples k = 10,

• power hyperparameter α = 0.75,

• maximum function value xmax = 100.

The stability analysis is based on the stability measure, as discussed in Section 4.3.1.

Figure 3 visualizes the results of the stability analysis. Each column contains the results

for a different method, and each row contains information concerning one hyperparameter.

Recall that the stability ranges from 0 to 1, where 0 is unstable, and 1 is stable. The

heat maps in Figure 3 show that the word embeddings are highly unstable for some

hyperparameter settings. If the dimensionality of the word vectors is 10, the stability score

is approximately 0.1 for the GloVe model, even when we use the same hyperparameter

settings for the two runs. A dimensionality of 10 is in practice not common and results

in information loss. In general, the GloVe model is the most stable one, followed by the

word2vec SGNS model. The word2vec CBOWNS is the most unstable. However, the

off-diagonal entries of the GloVe are smaller than those of word2vec SGNS and word2vec

CBOWNS in the window size graphs in Figure 3. Thereby, word2vec SGNS and word2vec

CBOWNS are more stable if one compares vectors based on different window sizes. Note

that the number of negative samples has no impact on the stability and computing time

of GloVe since this hyperparameter is not used in that algorithm. Similarly, this hold for

α and xmax in the case of word2vec SGNS and CBOWNS.

5.2.1 Final hyperparameter setting

The window size determines the reach of words influencing the embedding of each other.

Since the text corresponding to a dish can be spread over multiple menu items, we choose

the window size such that words of the surrounding menu items have an impact on the

words of a menu item. Note that for larger window size, the word embedding of a word

located in a menu item can be influenced by words of other dishes as well and therefore

the window size should not be chosen too large. On the other hand, being too strict using

a smaller window size might cause a loss in information captured. In our application,

we set the window size such that, on average, the words in three menu items influence

each word (the menu item the word is in and the menu item above and below the menu

item the word is in). Since the average menu item size is 3.66 we set the window size to

w = 3×3.66−1
2

≈ 5. Since the data is scraped and since we do therefore not know which

menu items compose a single dish, this window size is likely to be too large in some cases

and too small in some other cases.
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The dimensionality of the vectors is set to d = 300. This vector size is of the same order

of magnitude as the optimal vector sizes found by Yin and Shen (2018). The stability

analysis (Figure 3) shows that an increase of the vector size to a size larger than 300 res-

ults in relatively little stability gain, while Figure 4 indicates that the computation time

increases linearly for all three methods. Therefore, in this trade-off between computation

time and stability, we set the window size to d = 300.

A negative sample parameter of one or one of larger than 200 results in relatively un-

stable model results for both SGNS and CBOWNS. Since the models are most stable

for 5 ≤ k ≤ 100, as one can see on the diagonal axis of figure 3, and the number of

negative samples improves the word embeddings according to Levy et al. (2015), yet has

a significant impact on the speed of these two methods; we set k = 10.

First, Pennington et al. (2014) find empirical evidence that α = 0.75 slightly improves

the resulting word embeddings over α = 1. Second, the stability analysis on α provides

little insights besides the fact that α ∈ {0.4, 0.6, 0.75, 0.85, 0.95, 1} provide the most stable

results (Figure 3). Combining the prior two arguments, we use the proposed value of Pen-

nington et al. (2014), α = 0.75.

xmax is the upper boundary of what is considered to be an infrequent term. Given the

frequency distribution of the words in our text presented in Figure 6 of section D of the

Appendix, it seems reasonable to use the definition that a word frequently occurs if it

occurs more than 100 times in the text. The stability results for xmax indicate that the

GloVe model is increasingly unstable as the upper boundary xmax is increased. Moreover,

xmax = {10, 50, 100} provides the most stable results in our stability analysis (Figure 3).

Therefore, we set xmax = 100.
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Figure 3: Stability analysis for 10 epochs
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Figure 4: Computation times for the three methods. The time is in minutes. All cal-
culations are performed single threaded on a Microsoft Azure Standard DS3 v2 Cloud
Node.
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5.3 Comparison

We use the argued final hyperparameter setting of the previous section to evaluate the

algorithms empirically. In this application, the evaluation of the performance of the meth-

ods is done using comparative intrinsic evaluation, as suggested by Schnabel et al. (2015).

In this evaluation procedure, people are asked to provide feedback on the word embed-

dings directly. Only the input embedding, the embedding representing the query dish,

needs to be defined by the researcher. The output for each method is the most similar

embedding, representing the most similar dish according to that method. To perform a

comparative intrinsic evaluation of GloVe, word2vec SGNS, and word2vec CBOWNS, we

submit a set of popular (query) dishes with their most similar dishes according to each

of the three methods to professional chefs. The chefs provide feedback by choosing from

a set of three options. The chefs are instructed to choose the most similar dish according

to their expertise. Each option is a dish that is the closest, and thereby, most similar to

the query dish according to one of the three methods in question. A method receives a

vote if a chef chooses a dish, related to that method, that is the most similar to the query

dish according to him/her. In case two methods result in the same most similar dish,

and a chef chose this option, the vote is assigned to both methods. The method with

the most votes is considered to be the most appropriate method in a menu data context.

The popular query dishes are a subset of the CCN’s top 50 of the world’s best foods.2

This subset is generated by leaving out the dishes which are not present in the menu data

at hand. The total number of dishes that remain in the application is 43. These dishes

cover a wide variety of cuisines and contain low and high-frequency words according to

the data at hand and therefore, provide relatively generic results. The professional chefs

are found through the transnational network of a consumer goods company. These chefs

are part of a network to spot worldwide food trends and are, therefore, each informed of

multiple cuisines. Thereby, we assume that these chefs can provide proper feedback even

though they are not all from the UK.

Each chef submits their feedback by completing a multiple choice survey choosing the

most similar dishes. We have included a ’no choice’ option to provide the chefs with the

opportunity to be indecisive if all answers are equally (dis)similar to the dish of interest.

An example of a survey question is given in the square block below (question 1). Since the

answers are different according to the three methods, we can conclude that each algorithm

has generated different word embeddings.

2https://edition.cnn.com/travel/article/world-best-food-dishes/index.html
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1. Query dish: Neapolitan stone baked pizza

(a) Napoli sauce, cream, italian, sausage, friarielli, procini mushroom

(b) Boscaiola, salsiccia e friarielli, pancetta a ricotta

(c) Formaggi 10 pizzebase

(d) No choice

GloVe 26%

SGNS

22%

CBOWNS23%

No choice

30%

Figure 5: Pie chart of the responses

The quality of the word embedding is de-

rived from the number of times a chef has

voted for a method indirectly. The results

are the percentages of votes the methods

received with respect to the total number

of votes. Figure 5 shows a pie chart of the

vote percentages. Thereby, we conclude

that in this specific example with this par-

ticular set of hyperparameters, the GloVe

method performs best according to the ex-

perts. More than 30 percent of the cases

the options were unrelated or equally similar to the word of interest. Important to note is

that these results are based on a small subset of the total dish universe. Besides, the sta-

bility analysis shows that the solutions of all three methods are not stable. Therefore, we

consider these results as not generalizable. However, our results contribute as an example

case to the empirical literature of word embedding method comparisons. Marketers in the

food industry should at least, considering the performance and the speed of the GloVe

method in our application, consider this method to create word embeddings. Moreover,

our research informs marketers which factors need to be taken into account in the process

of word vector generation. Evaluation of the performance of more hyperparameter set-

tings can provide more insights into the overall performance of the methods in a specific

context and left for further research.

6 Summary

This paper has analyzed and applied three prominent word embedding methods; GloVe,

and two versions of word2vec: continuous skip-gram (SGNS) and continuous bag-of-words

(CBOW). In the application, the negative sampling extensions of the word2vec algorithms

are used, word2vec SGNS and word2vec CBOWNS. We touched upon the relevance of

the use of word embedding in practice. Besides, we provided an intuitive explanation of
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how these training algorithms capture linguistic elements of text data. The provided de-

rivations of the loss functions and corresponding gradients combined with explanations on

the optimization procedures of these methods contribute to a complete understanding of

these word embedding algorithms. Consequently, extensions to accelerate the algorithms,

the link between the algorithms, the stability of the models, and suggestions to improve

the quality of the embeddings in practice have been discussed. The three word embedding

methods (GloVe, word2vec SGNS, and word2vec CBOWNS) were applied to a food menu

context, each resulting in a different set of word and dish embeddings. We evaluated the

performance of these methods using an unsupervised framework combined with opinions

of experts in the field where the data are from, the catering industry. In this specific

context, using argued hyperparameters, the GloVe method performed best over word2vec

CBOWNS and word2vec SGNS. Unfortunately, due to the instability of the methods, a

large number of hyperparameters to tune, and the limited evaluation resources, we can-

not answer the auxiliary research question with the performed application. However, we

did achieve the goal of filling the gap regarding the lack of detailed information on word

embedding techniques.

7 Discussion

‘Argued hyperparameters’, as stated in the summary of Section 6, might raise a concern

of ambiguity to the reader, and that is related to the first result of this paper. Evaluation

of plain word embeddings — a set of vectors consisting of one vector per word, the form

GloVe and word2vec produce them — is difficult. We consider the word vectors ‘good’

if they capture linguistic elements from the text data train set. However, the extent to

which the vectors capture linguistic properties cannot be derived directly by inspection

of these vectors. Using the vectors as predictors of linguistic properties has been done

in other papers. This approach adds an extra model layer to transform the vectors into

a prediction. Thereby, the quality of the vectors is dependent on the task of the down-

stream analysis and the choice of model. In our research, we tried to stay closer to the

core of the embeddings by evaluating the similarity of embeddings and compare these

with the similarity expectations of experts. Even though this way of evaluation compares

the raw word embeddings, it provides substantial limitations. First, the experts’ opinions

are exhaustible. Namely, there was a limited number of chefs available, and the chefs were

willing to spend a limited amount of 15 minutes of their time to the research. Therefore,

we were not able to compare multiple versions of the same model to the experts. Second,

the word embedding algorithms do include many hyperparameters. So far, in the liter-

ature, there is no conformity on what hyperparameter settings to use in each situation.

Hence, even though best practices, academic reasoning, and rationale back the choices

of the hyperparameters, the similarities presented to the experts based on the resulting
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final models include many researcher degrees of freedom. Therefore, based on the results

of our application, we cannot generalize the fact that the GloVe method performs best in

the task of word embedding generation in the food menu context. Moreover, we cannot

conclude that the GloVe method is the best method to generate word embeddings for the

data set used in this paper.

Another conclusion from our research is that solutions of the word embedding methods

can be unstable. If one uses the same hyperparameter setting and trains the word embed-

dings twice on the same data, one will obtain two different word embeddings. Random

initialization, random negative sampling, and stochastic optimization are factors that can

have an impact on this stability. In this paper, the GloVe model is the most stable of the

three, followed by word2vec SG with negative sampling. The stability analysis is carried

out by changing one hyperparameter at a time. A full grid search would have given even

more insight into the behavior of stability. However, such a grid search is computationally

expensive and therefore, left for further research. Furthermore, evaluation of what factors

play an important role in the instability of the models is a topic yet to be investigated.

Since the solution of the word embeddings methods is highly dependent on the hyper-

parameter setting and the input data for the learning algorithm, we do not consider the

results of the application in this research to be generalizable to other contexts. The main

contribution of this paper lays in the explanation of the methods and in the description

of the approach of how to use text data in quantitative marketing.
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Appendices

A Multinomial logit model assumptions

According to Aldrich et al. (1984), four assumptions are underlying the multinomial logit

model (soft-max regression model, maximum entropy model). Below, these assumptions

are provided, translated to a word embedding context under the condition that either

the context or center words are fixed. Furthermore, we include notes on whether the

assumption is likely to hold at the end of the assumptions. The assumptions are:

1. The dimensions of the word embeddings are linearly independent. — The skip-gram

method uses random initialization as a starting point for the exogenous variables

(the features of the center word vector) and hence the dimensions are likely to be

linearly independent. Since iterating over the text causes the exogenous features

to enclose more and more linguistic information, which is full of highly nonlinear

characteristics, the features will probably not become linear dependent. Therefore,

this property is likely to hold for later stages of the algorithm as well.

2. The events of being or not being the context word at any given position in the text

does not influence the probabilities for any other combination of center and context

word in the text, this is the independence assumption. — In the case of text data,

the first assumption will never be perfectly met since the word occurrences influence

the probability of the words occurring in their surround. For example, if the word

‘strawberry’ occurs in the text, the probability that this word will occur in the next

place as well will be smaller.

3. Classes are not perfectly separated by independent variables. — This assumption is

likely to be satisfied because words can occur in various contexts.

4. Given an observation (center word), the probability of the context word is given by

the soft-max function.

B Link between GloVe and SVD

The authors of the GloVe paper mention that they combine the best of two worlds by

updating the objective function by iterating over the text using the word co-occurrence

statistics. SVD based methods such as LSA only take the co-occurrence statistics into

account and therefore are suitable to capture patterns from the text that occur on a large

scale. These methods, however, fail to take the more subtle linguistic elements that are

captured by the context window approach. Let Y1 be the v × v co-occurrence count

statistic matrix of the text data. Furthermore, suppose we want to generate word vectors
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of dimension d. Let A∗1 be matrix with rank d obtained by the truncated SVD of Y1.

Then A∗1 can be denoted as

A∗1 = B1dΣ1dC1
ᵀ
d. (27)

According to the Eckart-Young-Mirsky theorem (Eckart and Young, 1936), A∗1 is the

optimal analytical solution to

min
A1

||A1 −Y1||2, under the condition that Rank(A1) ≤ d.

This minimization has similarities with the GloVe objective. Writing the objective of the

GloVe method as defined in equation (22) as a minimization function yields the following

objective

min
U,V,b,c

∑
i,j

f (Xi,j)
[
uᵀ
wi

vwj
+ bi + cj − log(1 +Xi,j)

]2
.

In order to show the similarity we fix the value of the weighting function in equation

f(Xi,j) = 1 and we assume that b and c are fixed. Furthermore, let Y2 be defined as

Y2 = b1ᵀ +1cᵀ− log(Jv +X), where Jv is a v dimensional square matrix of ones. Let A∗2

be the truncated SVD of Y2 similar to the definition in equation (27). The minimization

problem then becomes

min
U,V

[UVᵀ + b1ᵀ + 1cᵀ − log(Jv + X)]2

= min
U,V

[UVᵀ −Y2]2

= min
U,V
||UVᵀ −Y2||2,

which has, according to the Eckart-Young-Mirsky theorem the optimal analytical solution

A∗2. Defining W = B2dΣ2d and Z = C2d gives the desired word and context matrices

respectively based on the co-occurrence statistic with use of SVD, that is U∗ = W and

V∗ = Z. Note that there are multiple solutions possible by weighing the eigenvalue matrix

Σ2d differently. Levy et al. (2015) empirically show by varying p ∈ [0, 1] in U∗ = B2dΣ2
p
d

and V∗ = Σ2
1−p
d C2d that using U∗ as the word embedding matrices with a value of p = 0

or p = 0.5 outperforms the frequently used (e.g., Faruqui and Dyer (2014)) choice of p = 1

in practice.

Despite the similarity of SVD and GloVe there are major differences. First, the GloVe

method is a non-convex optimization problem, while SVD guarantees a globally optimal

solution. Second, the solution of SVD can be obtained analytically without any hy-

perparameter tuning while on the contrary, GloVe requires a gradient descent type of

optimization procedure and hyperparameter choices. Last, SVD does not down weight

the relatively large impact of co-occurrences of infrequent terms.
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C Link between word2vec SGNS and matrix factorization

Since the embedding methods have the same goal, researchers have tried to find the

similarity between multiple methods. Levy and Goldberg (2014) show that SGNS is

implicitly a factorization of the word-context matrix, where the entries of this matrix are

based on the point-wise mutual information (PMI). As pointed out by Arora et al. (2016a),

the reasoning provided by Levy and Goldberg (2014) only applies to word embeddings

with a large dimensionality, while the goal application of the word embeddings is to

generate word embedding with a small dimensionality. The PMI, introduced by Church

and Hanks (1990), is an association measure between two words and resembles the joint

probability of two words with respect to the marginal probability of both words under

the assumption that their appearance is independent. The formula of the PMI is

PMI(x, y) = log
p(x, y)

p(x)p(y)
.

Levy and Goldberg (2014) show that the objective function of SGNS is equivalent to

factorizing v × v matrix M, where

uᵀ
wi

vcj = MSGNS
i,j = PMI(wi, cj)− log k, ∀i, j ∈ {1, ..., v}.

Consider that the definitions of D, #(wi, cj), #(wi), and #(cj) provided in Section 4.1.2.2.

Then, Levy and Goldberg (2014) show that M can be empirically constructed by

MSGNS
i,j = log

#(wi, cj) · |D|
#(wi) ·#(cj)

− logk

= log#(wi, cj)− log#(wi)− log#(cj) + log|D| − logk

= log#(wi, cj)− log#(wi)− log#(cj) + log
v∑
i=1

#(wi)− logk. (28)

Two words that never co-occur will result in a value of −∞, since log#(wi, cj) = log(0) =

−∞. As in equation (21), a small constant can be added to prevent this issue. However,

Levy and Goldberg (2014) introduce the shifted positive PMI (SPPMI), where MSSPMI
i,j =

0 not only if #(wi, cj) = 0, but more strict, if PMI(wi, cj)− logk < 0. If PMI(wi, cj)−
logk ≥ 0, MSSPMI = MSGNS as defined in equation (28). For the interested reader, Levy

and Goldberg (2014) show a full derivation of this outcome, together with improvements

and a comparison of SGNS solved using the stochastic gradient descent approach and

SGNS solved with SVD. Though outside of the scope of this paper, Keerthi et al. (2015)

elaborate further on the link between PMI and word2vec SGNS.
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D Menu data word count

Figure 6: Histogram of the word counts in the processed menu data
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