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Abstract

Classification of products is often done when companies wish to use a differentiated policy for a
certain planning decision (e.g., replenishment or demand planning). For this reason, a classification
criterion needs to contain the dimensions that are most relevant for the planning decision. For example,
ABC classification is often used on the dimension of sales volume, value, or both. Sometimes it is
clear what the relevant dimensions are for classification, however, the classification for replenishment
policies in multi-echelon networks is far from trivial. Identifying the most important features becomes
challenging. One way to tackle this problem is to find which features determine the shape of the
trade-off curve between safety stock and total inventory costs.
The object of this thesis is to propose an alternative method to classify products in multi-echelon
networks. Such a method allows lower inventory costs to be achieved at high service levels, and
it also provides much insight into the important characteristics of the supply chain structure. In
addition, the thesis compares the optimal inventory costs that are calculated using the proposed
method versus the optimal inventory costs calculated using the ABC–XYZ product categorization
method. The genetic algorithm is the tool that is used for optimizing inventory costs while ensuring
high service levels.
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1 | Introduction

It is common practice for companies to make use of inventories due to a mismatch between supply
and demand. However, having too much inventory on shelf is something that companies want to
avoid. One reason for this is, inventory is capital invested, and products can be out of market in
a relatively short time, especially for certain industries such as electronics and food. However, the
business market has an extremely competitive and uncertain nature, and in this matter, a high
level of inventory increases a company’s responsiveness to market uncertainties. Moreover, high
inventory levels can help companies to improve customer service, lower ordering costs and setup
costs, maximize labour and equipment utilization, prevent stock-outs, and subsequently do not miss
out on business opportunities that are available.
Companies manage inventories using policies, and once a certain policy is defined, it is considered
good practice to categorize products. Categorization is done for mainly three reasons, namely 1) to
reduce complexity, specifically in reducing the number of decision variables from possible thousands
to a reasonable number; 2) diversification, which refers to recognising differences among products, and
3) managerial reasons, since it is easier for planners to focus on a reduced number of product categories.

One of the most popular methods used for classifying products in inventory management is the ABC
analysis [13]. This method is popular in the industries because it is simple to implement in practice
and it provides good results when applied to single stage inventory optimization. However, ABC is
arguably not the best classification method when applied to multi-stage inventory optimization [33].
This is because potential network-dependency properties are not taken into account in the ABC
categorization. For this reason, this thesis aims to develop a method for product classification that
is especially designed for multi-echelon networks. In such networks, we look at the supply chain
holistically while keeping in mind that network inventory is about serving customers, but this involves
interdependencies between inventories that are stored upstream and downstream in the network.
Consequently, the first research question is as follows:
How to develop a product classification method that adapts to the underlying multi-
echelon network but with minimal penalty?
In the research question we mentioned the word "penalty" since optimizing decision variables on
product categories is already sub-optimal compared to the case where decision variables are optimized
for each product individually.

After a clear classification of products is established, companies are often interested in finding
the optimal level of inventories which guarantees high customer service while minimizing costs.
Usually this is achieved by determining the correct size of the safety stock levels, which are used
for reducing the risk of a stock-out. Each station in a multi-echelon network corresponds to a real
location where stocks can be allocated. Part of this thesis is to optimally allocate safety stocks across
the stations of the multi-echelon network in order to reach the target service level at the lowest costs.
The policy used in this thesis to determine the right size of safety stock levels is in the following
equation:

SSm,n = km,i · σ(Lm,n+Rm,n) (1.1)

where SSm,n stands for safety stock level of product n at station m, km,i is the safety factor of class
i (to which product n belongs) at station m and σ(Lm,n+Rm,n) is the standard deviation of demand
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of product n during replenishment lead time (L) plus review period (R) at station m. Equation 1.1
also shows the importance of using product class—the optimal size of safety stocks of each product
is set via the optimal value of safety factors, which are defined per class of products. The choice of
defining safety factors per class of products reduces the number of decision variables drastically.

Multi-stage inventory optimization has proven to be challenging. To tackle this, van Liempd
(2016) [34] proposed an interesting approach, and his method consists of using a simulation model
in combination with the genetic algorithm (GA). The simulation model was used for evaluating
the inventory levels of multi-echelon networks under different sets of safety stock levels. GA was
used to determine the optimal set of safety stock levels that minimize the network inventory under
service level constraints. Following the work of van Liempd, the GA is the tool used in this thesis to
fine-tune the safety factors of equation 1.1 to optimal values.
One of the major difficulties in implementing the GA is that many decisions need to be made. For
example, a crucial decision is regarding how to properly perform crossovers. Generally speaking, we
want to make more informed decisions based on the given supply chain structure. For this reason, it
is essential that we learn about the given supply chain structure while answering the first research
question, and subsequently we would use what was learned to make more informed decisions for the
GA. This point leads to the second research question of this thesis:
How can basic GA characteristics be improved by learning from the underlying supply
chain structure, and how can this information be used to make more informed deci-
sions?
In this research, we will focus on improving two GA characteristics: initial population and crossovers.

It is important to mention that on the one hand, companies should optimize the inventory levels to
reduce holding costs, while on the other hand they should also aim to reach a high level of customer
service. For this reason, this study adopts a two-step approach. Firstly, we optimize the safety
factors of all the stations except the stations that are the closest to the customers— these are the
downstream stations in the network. Secondly, we adjust the safety stocks of the downstream stations
such that a certain target service level is reached. In this way, the safety factors of the downstream
stations are not considered as decision variables.

The objective of this thesis is to develop a general method for the classification of products. The idea
is to propose a classification method that suggests what are the most important product/network
dimensions to use for categorization purposes. In the ABC categorization, the starting point is to use
products’ value as segmentation dimension. However, is value always the best product dimension to
use when it comes to categorize products to solve a certain problem (e.g. minimizing inventory costs
for multi-echelon networks)? Arguably not. This is why we propose a method that first understands
what are the main dimensions that drive, for example, inventory costs and only afterwords we classify
products based on those dimensions. To do this, we use machine learning techniques to build a flexible
method that adapts to the underlying supply chain network and provides the main dimensions for
categorization. The optimal inventory costs of the proposed method are compared with the optimal
inventory costs based on the ABC–XYZ product categorization method [39]. While the multi-echelon
network that we consider in this thesis is a distribution network, the proposed approach can be
extended to production networks as well.

This research is conducted at EyeOn BV, a consulting firm with its headquarters in the Netherlands.
EyeOn specializes in planning and forecasting; in the recent years, the company has invested much
effort and interest in the topic of multi-echelon inventory optimization (MEIO). Indeed, this thesis
can be considered as a continuation of the work done by van Liempd [34] at EyeOn in the field of
MEIO.
This thesis is outlined as follows: Chapter 2 describes an approach for MEIO, and in Chapter 3 the
problem is described in more details. Subsequently, Chapter 4 discusses the relevant literature, and
the detailed approach and methodology are presented in Chapter 5. Results are shown in Chapter 6,
and finally conclusions are made in Chapter 7.
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2 | Multi-echelon inventory optimiza-
tion

Multi-echelon networks are characterized by considering the dependency among stations in the supply
chain network. In other words, the holistic approach of multi-echelon networks is to focus not on
the performance of each single stocking point but on the overall performance of the supply chain
network [1].
In the context of a multi-echelon network, each level of the network is referred as an echelon. The
example in Figure 2.1 shows a three-echelon network. At Echelon 3, we have the central distributor,
while at Echelon 2 there are the local distributors, and at the lowest level at Echelon 1 there are the
retailers. Moving upstream in the network means moving from a lower to a higher echelon; likewise,
moving from a higher to a lower echelon corresponds to moving downstream in the network.

Moreover, to be able to understand if a product categorization works better than others, we
need an evaluation function that is able to test the network performance when safety factors are
defined per product categories. Furthermore, to improve the GA, we need the evaluation function
to determine if a given safety stocks allocation provides better results than different allocations. In
this thesis, the evaluation function is represented by a simulation model. Moreover, since building a
simulation model goes outside the scope of this thesis, we make use of the simulation model proposed
by van Liempd. More precisely, the whole approach behind multi-echelon inventory optimization
is inherited by the job of van Liempd. In this chapter, the multi-echelon inventory optimization
approach used by van Liempd is summarized.

2.1 Multi-echelon inventory optimization
MEIO aims to minimize the inventory costs of the whole network while reaching high service levels
at the customer level (i.e., retailer level). The general approach used in a multi-echelon is to optimize
inventory control parameters by considering all stages in the supply chain network simultaneously
[24]. The general multi-echelon approach is different from the single echelon approach where the
inventory decision parameters are optimized at each stage individually and independently from other
stages [30].
Van Liempd [34] suggested an interesting solution on how to deal with inventory optimization in
a multi-echelon network. His approach in minimizing inventory costs was to optimally allocate
safety stocks at all locations in the network. To do this, he used the GA to find the optimal
allocation of safety stocks throughout the supply chain network. However, using the GA with decision
variables that are represented by safety factors for each upstream product–location combination was
not feasible, mostly due to a long computing time. The compromise used by van Liempd was to
optimize safety stocks allocation via the use of safety factors, which were defined by each product
group–location combination. This approach lead to the use of the safety stock policy that is described
in equation 1.1.
In his study, van Liempd used an ABC–XYZ [39] categorization to form nine distinctive group of
products for each upstream location in the multi-echelon network. This meant that for each upstream
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Figure 2.1: Three-echelons distribution network.

location in the network, there were only nine variables to be optimized, and these variables were in
the form of safety factors.
Moreover, to make use of the GA, van Liempd needed an evaluation function that can quantify the
inventory costs of the whole network corresponding to certain safety stocks allocation. The evaluation
function used in his work was represented by a simulation model that was combined with a procedure
called safety stock adjust procedure (SSAP). The simulation model and the SSAP will be discussed
in detail in the next sections. The simulation model provides a cost solution to a given network
scenario; a scenario involves allocating safety stocks in the network to certain values, and multiple
scenarios are then simulated. Each scenario with its corresponding inventory costs is then sent to
the GA, which generates a new set of "fitter" scenarios via proper crossovers. These fitter scenarios
are then used as input scenarios for running new simulations. The procedure is repeated until an
optimal solution is found.

2.2 Simulation model
Building a simulation model for multi-echelon networks is out of scope for this thesis. However, since
the van Liempd’s simulation model is extensively used in this thesis, it is worthwhile to present an
overview of all the main characteristics of the model itself (please refer to van Liempd’s work [34] for
more details).

Simulation is a powerful tool that helps us to analyse the performance of a multi-echelon net-
work for a given scenario. In our case, a scenario corresponds to the case where safety stocks are
set to certain values across the network. The simulation model allows us to evaluate the network
inventory costs that correspond to a given scenario.
The model proposed by van Liempd is a discrete-event simulation. Discrete-event simulation involves
modelling a system in which the state variables change instantaneously at separate points in time
[2]. An event can occur at a specific moment in time, and it can determine the change of the
system’s state. The assumption here is that between consecutive events, the state of the system
cannot change. In our simulation model, we considered only three possible events, namely customer
demand, replenishment order, and the fulfilment of a replenishment order. However, a time order
of events should be given since some events trigger other events. For example, a replenishment
order is placed if there are not enough stocks to satisfy demand directly. Similarly, a fulfilment of a
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replenishment order can only take place after a replenishment order has been made. Moreover, in
case of simultaneous events, we prioritize events has shown in Figure 2.2. We first work from the
lowest echelon upstream having each location placing its orders, and then we work from the highest
echelon downstream having each location fulfilling its orders.
Moreover, the simulation model uses a periodic review to monitor inventory levels. In this study, the
periodic review frequencies of product–location combinations are given as input parameters.

Demand modelling
In the simulation model, we make a distinction between dependent and independent demand. Indepen-
dent demand is customer demand which in this thesis is assumed to take place only at the downstream
stations in the network. On the other hand, dependent demand depends on the replenishment orders
of a downstream station to their supplying upstream station. In other words, the demand of the
upstream stations depends on the replenishment orders of the connected downstream stations. Figure
2.1 shows clearly that only the retailers face customer demand; local distributors face the demand
that depends on the retailers’ replenishment orders, and the central distributor faces the demand
that depends on the local distributors’ replenishment orders.

Customer demand (or independent demand) is immediately fulfilled if there are enough stocks
available, otherwise demand is placed in the backlog and a replenishment order will take place at the
next review period. Moreover, if at a given station some backlog is still left remaining, this backlog
is fulfilled first before any new demand. Customer demand is assumed to be normally distributed
with a known mean and standard deviation.

All the upstream locations in the network face indirect demand in the form of replenishment
orders. This means we assume that upstream locations do not face any direct customer demand. If a
replenishment order from a downstream location d to an upstream location u takes place at time
t, the order will be fulfilled at time t+ Ld,u only if there are enough stocks available at location u
at time t where Ld,u is the lead time between station d and u.. If at time t there are not enough
stocks at location u, the order is then backlogged, and its fulfilment will happen at a later time than
t+ Ld,u.

In the simulation model developed by van Liempd, there is no rationing or partial fulfilment
of demand. In other words, if there is not enough inventory to fulfil a certain demand, the demand is
simply backlogged, and its fulfilment order will take place at a later time.

Moreover, the external supplier is assumed to always have stocks available. This means that
once an order is placed, it is always delivered after a time that is equal to the lead time between the
upstream location and the supplier location.

Ordering policy
The ordering policy used in the van Liempd simulation model is known as an (R,S) policy [3], where
R is the review period and S is the order-up-to level. At a specific location, a replenishment order at
period t is placed only if t is a review period and only if the inventory position of the previous period
is less than the order-up-to level S plus all the known incoming demand at time t. More precisely, at
review period t a replenishment order at location m for product n is made if the following condition
is fulfilled:

IPm,n(t− 1) < Sm,n +Dm,n(t)
where IPm,n(t− 1) is the inventory position at time t− 1 of product n at location m, Sm,n is the
order-up-to level of product n at location m, and Dm,n(t) is the known incoming demand of product
n at location m at time t. If the above equation is satisfied, the order quantity of product n at
location m at review period t is then equal to the following:

Qm,n(t) = Sm,n +Dm,n(t)− IPm,n(t− 1)
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In the (R,S) policy the order-up-to level S needs to be defined. The order-up-to level Sm,n of product
n at location m is directly related to the safety stock SSm,n according to the following formula:

Sm,n = SSm,n + µLm,n+Rm,n
∀n,m (2.1)

where µLm,n+Rm,n
is the mean demand of product n and location m under the lead time (L) and

review period (R).

Safety stock levels
The average customer demand of product n at downstream location m during the replenishment lead
time and review period is defined as µLm,n+Rm,n , while the standard deviation of customer demand of
product n at downstream location m during the replenishment lead time and review period is defined
as σLm,n+Rm,n

. Given these statistical characteristics, we can fit a normal distribution and can
thus generate customer demand paths using different seed numbers. By propagating these demand
paths upstream in the network, we are able to determine the mean demand and standard deviation
of the demand of product n at the upstream station m, denoted by µ∗

Lm,n+Rm,n
and σ∗

Lm,n+Rm,n

respectively. Once we know the mean and standard deviation of the demand at the upstream and
downstream stations, we can compute the safety stock level for each product–location combination.
The safety stock for product n at upstream location m is defined as follows:

SSm,n = km,iσ
∗
Lm,n+Rm,n

∀i;∀n,m ∈ Ju (2.2)

where km,i is the safety factor at upstream location m for product group i ( to which product n
belongs), and Ju is the set containing all the upstream location indices.

The safety stocks at the downstream stations are adjusted by the SSAP, which will make sure
to set the safety stock at a certain level such that a given target service level is reached. However,
before performing the SSAP, it is necessary to initialize the safety stock levels such that the simulation
model can be used. The safety stock of product n at downstream location m is initialized as follows:

SSm,n = Φ−1(γtargetm,n
)σLm,n+Rm,n

∀n,m ∈ Jd (2.3)

where γtargetm,n
is the target cycle service level of product n at downstream locationm, Φ−1(γtargetm,n

)
is the inverse of the standard cumulative distribution given probability γtargetm,n

, and Jd is the set
containing all the downstream location indices.

Input parameters
The warm-up period and the run length are two input parameters for the simulation model. Since we
are dealing with a non-terminating simulation, a clear stop criterion should be given by the run length.
It has been said that non-terminating models converge to a steady state for a long run length [2]. Since
we only want to start analysing the network when it reaches the steady state, we will use a warm-up
period. This means that the system starts being analysed only after the warm-up period. In this way,
we cause the system to be independent from certain starting configurations, such as initial stock levels.

Moreover, all the safety stock levels at all upstream locations should be given as input to the
simulation model. Each scenario corresponds to a specific allocation of safety stock levels at upstream
locations. As already stated, the safety stock levels of upstream locations depend on the safety factor
variables as defined per product category. It would be up to the GA to find the optimal values of
those variables that correspond to the optimal scenario for the given supply chain network.

Service level
The main objective of inventory optimization is to lower the inventory costs under the target customer
levels constraints. In this research, the cycle service level [30]—also known as P1—is used as the
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Figure 2.2: Prioritization of simultaneous events in the simulation model.

main metric to represent the customer service level. The cycle service level measures the probability
of not having a stock-out during a replenishment cycle.
It is important to mention that only the downstream locations in the network face service level
constraints since they are directly connected to customers’ demand. This means that upstream
locations are free from any service level constraints since they do not experience any direct customer
demand.

Simulation output
Once a simulation run is performed, different statistics are given as output. The most important
outputs for us are the realized service levels at the downstream locations and the actual inventory
costs of the network.
Our objective is to have the realized service levels at downstream locations to be as close as possible
to the target service level. At present, the simulation model itself does not guarantee a match between
the realized service level and the target service level. For this reason, we perform the SSAP as an
extra step in order to be able to reach the desired service level. The SSAP is described in the next
section.
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Figure 2.3: Inventory optimization scheme for multi-echelon networks.

2.3 Safety stock adjustment procedure
The SSAP [15] is a procedure needed to reach a certain target service level at the downstream
locations in the network. If we would only use the GA in combination with the simulation model, we
would find optimal solutions that may not guarantee the desired customer service level. For this
reason, the SSAP is always performed after each simulation run.
In conclusion, the SSAP makes sure that the safety stock levels at the downstream locations are
adjusted to the right level in order to reach the right target service level.

The overall procedure that involves the GA, the simulation model, and the SSAP can be sum-
marized in the following steps:

• Step 1: The GA propose n random initial solution scenarios. An initial solution corresponds
to a set of safety factors for the upstream stations.

• Step 2: Safety stock levels for upstream and downstream locations are determined as described
by equations 2.2 and 2.3 respectively. A number of n simulations are performed, one for each
scenario.

• Step 3: The SSAP is performed n times, one for each scenario. The safety stock levels at the
downstream locations are adjusted to reach a target service level.

• Step 4: The simulation scenarios are performed again n times where the safety stock levels at
the downstream locations this time are given by the SSAP but not by equation 2.3.

• Step 5: The inventory costs of each scenario are used for selecting a new set of n fitter
scenarios.

• Step 6: Repeat Steps 2 to 5 until a stopping criterion is met.

The whole procedure is also schematically represented in Figure 2.3. The same procedure and
assumptions described in this chapter will still apply for the remaining part of this thesis.
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3 | Problem description

This thesis firstly shows a new approach on how to classify products in a multi-echelon network, and
secondly it shows an improvement of an existing method on how to set safety stocks to optimal levels.

Product classification comes at the penalty of sub-optimality since policies are designed for groups
of products and not for individual products. Nevertheless, categorization is needed for practical
reasons. For example, optimization algorithm methods are generally sensitive to the number of
decision variables, and having too many variables may lead to infinitely slow algorithms. In addition,
companies prefer to use policies for a certain planning decision (e.g., replenishment or demand
planning). A classification criterion needs to contain the dimensions that are most relevant for
the planning decision. For example, ABC classification [13] focuses on dimensions such as sales
volume, the value of products, or both; XYZ classification [10] focuses on dimensions regarding the
forecastability of a product’s demand. In certain situations it is clear what the relevant dimensions are
for classification; however, product classification for replenishment policies in multi-echelon networks
is far from trivial. For example, the best replenishment strategy probably does not only depend on
the volume of products that flow through each station, but it also depends on the network structure.
Identifying the most important features becomes challenging. One way to tackle this problem is to
find which features determine the shape of the trade-off curve between the safety factor and total
costs.
Figure 3.1 shows examples of trade-off curves between the total inventory and the safety stocks,
the latter of which are linearly related to the safety factors according to equation 2.2. The figure
shows two clear dynamics: for the red product, we see that the total network inventory grows by
increasing the safety stocks at the central location, while for the blue product the total network
inventory reduces as the safety stock at the central location is increased. The dynamic of the blue
line appears to be counter-intuitive, and thus a question we can ask is, how is it possible that the
total network inventory diminishes as the safety stocks increases centrally?
The blue line behaviour would be impossible in a single station situation, but this trend is possible in
a multi-echelon network. Looking at the network example on the right of Figure 3.1, it is possible to
eventually reduce the total network inventory if we increase the safety stocks at the central location
and reduce the safety stocks at the retailers level.
In this thesis, we refer to the expression product behaviour in describing the scaling of a product’s
total network inventory with safety stocks (or safety factors). Figure 3.1 shows two examples of
product behaviours.

Since policies are set per group of products, it is preferable to classify together products that
have similar behaviours in determining the total inventory. In other words, we prefer to group
products together that have similar trade-off curves between inventory levels and safety factors.
Looking at the example of Figure 3.1, the blue and the red products show completely opposite
behaviours; hence, they should not be in the same category.
Moreover, in an actual multi-echelon network, the situation is not as simple as is shown in Figure 3.1.
Figure 3.1 refers to the situation of a two-echelon network where there is only one upstream location.
Safety factors at the retailer level do not represent any decision variable since at that level, the SSAP
is used to set the safety stocks to the right levels such that a certain target service level is reached.
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Figure 3.1: Product behaviours in two cases. The left side shows two potential dynamics of the total
network inventory with safety stocks (or safety factors) for two different products. The right shows a
two-echelon network example where the highlighted location represents the upstream location in the
network.

Finding the trade-off curve for networks with more than two echelons becomes much more challenging.
This is because for all upstream locations, decisions need to be made in terms of setting the optimal
values of the safety factors. This means that the relation between network total inventory and safety
factors is represented by a multidimensional curve. Products with similar multidimensional curves
should be classified together as the similar curves imply similar behaviours.
As a second step, we aim to find out which dimensions play a role for the shape of the trade-off
curves. First, we cluster together products with similar behaviours and we then try to identify which
are the most relevant dimensions or features that explain the similarities or dissimilarities.
This thesis aims at developing a classification method that adapts to the underlying supply chain
network. The goal is to create a new method that performs better than the commonly used methods
such as the ABC classification. This leads to the first research question formulated in the introduction.

The second part of this thesis is focused on improving an existing method used to set safety
stocks to optimal levels. Finding the optimal safety stock levels for multi-echelon networks can be
done using exact mathematical programming (MP) formulations. Moreover, some quantities such as
customers’ demand can be uncertain, and stochastic programming methods should be used to solve
the complete problem in an exact optimal way. However, for instances that involve a large number of
decision variables, it would not be possible to solve MP problems in a reasonable time [16]. This
makes MP attractive only for small-sized problems.

Analytical methods could also be used in the field of inventory optimization. However, although
analytical models offer a very insightful way to show relations, they do have drawbacks. Among
them, two can be mentioned:

1. Assumptions need to be made. For example, one assumption that can be made in analytical
models is an infinite production capacity. Moreover, some important real scenarios are not
always covered in analytical models; an example here is when shipment in full containers is
required.

2. Analytical models can be used as an approximation of real scenarios. However, it becomes hard
to estimate the error when analytical models deviate from real scenarios.
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Generally speaking, there are often good analytical models for inventory optimization; however, we
often cannot afford to make huge model adjustments for each new analysed instance.
To overcome the MP and analytical restrictions, simulation is used in this thesis. Simulation is
considered an expensive way to calculate the outcome of a function; it can be time consuming, and
model complexity increases according to the level of accuracy that need to be achieved. However, it
is a widely used tool since it has several advantages. For example, it can deal with uncertainties,
and it can approximate real scenarios at a high accuracy. Moreover, simulation models are usually
validated. This means that before proceeding with parameters optimization, simulated outputs are
compared to observable results. In this way, it is possible to know how reliable the simulation model is.

However, simulation model is about approximating real scenarios, and no parameters optimiza-
tion is done with simulation. For this reason, in this thesis we make use of a model that combines
simulation with an optimization algorithm. The optimization algorithm used is the GA [20], which is
a widely used metaheuristic method that currently has many applications in the field of supply chain.
The overall inventory optimization scheme is represented in Figure 2.3, and this scheme includes
simulation, SSAP, and GA.
The drawback of the GA is that it explores the solutions field in a random way, and sound solutions
are more likely to be selected in order to generate better possible solutions. However, while this
method can lead to close to optimal solutions, there is a penalty that it may take a long time before
reaching them. Optimal solutions for us are the optimal values of safety factors allocated to each
product group and upstream location combination.

GA is the method used by van Liempd for safety stock optimization. It is considered effective
but still not efficient yet, which limits the scope of problems that can be addressed. Efficiency
can be improved in a few ways, such as by performing better crossovers by "learning" about the
structure of the supply chain network. For example, in agreement with the risk pooling effect [31], a
product’s demand variability at the downstream locations of a multi-echelon network can be reduced
by aggregating demands. Therefore, more stocks can be stored centrally in the supply chain network.
On the other hand, if demand at the downstream locations is stable, more stocks can then be placed
towards the downstream locations. By exploring the supply chain network, we could learn something
about the structure of the network itself. For example, we could learn whether the optimal inventory
levels lean more towards a centralized or decentralized stock system, and such information could be
used to make more informed decisions in the GA. In this way, good results could be achieved in a
shorter time, and larger instances could be addressed. This leads to the second research question
formulated in the introduction.
Moreover, by answering the first research question, we can already capture some useful information
about the supply chain network. We could then use this information to explore the second research
question.
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4 | Literature review

After formulating the research questions, it is worthwhile to go through similar research that have
been formulated in the past.
Van Liempd [34] primarily focused on the use of the GA to find optimal safety stock levels for a
multi-echelon network. While the proposed method is effective, it is still not efficient yet, and this
inefficiency limits the scope of problems that can be addressed. On the other hand, little effort has
been spent on product classification, and thus this thesis can be considered as an extension of van
Liempd’s work since more emphasis is placed on product classification for multi-echelon networks,
and also an improved version of the GA is proposed to make the method more efficient.

4.1 Product Classification
In literature, no ad-hoc methods can be found regarding product classification for multi-echelon
networks. De Kok et al. (2018) [8] and Simchi-Levi et al. (2011) [32] provide and extensive literature
review of stochastic multi-echelon inventory systems. Furthermore, in both papers the topic of
product classification is not covered since all the inventory control policies are not defined per classes
of products. However, in this thesis we are going to use the policy described by equation 2.2 in which
the safety factor variables are defined per class of products.
One of the most popular methods used in supply chain for the classification of products is the ABC
analysis. The method was introduced for the first time by H. Ford Dickie [13]. The idea behind
this method comes from the Pareto principle, which states that "for many events, roughly 80% of
the effects come from 20% of the causes" [35]. In the ABC analysis, products are ranked in either
categories A, B, or C based on their importance, with A-products being the most important and
C-products being the least important. The classification of a product into the A, B, or C categories
has generally been based on a single criterion, namely dollar value per unit multiplied by annual
usage rate; this is commonly known as dollar usage [29].
However, more advanced multi-criteria ABC analysis have been proposed over time. In particular,
Guvenir et al. (1996) [17] proposed a multi-criteria inventory classification using GA. Multi-criteria
were considered, and their weights were optimized via GA. Nearly a decade later, Ramanathan (2004)
[28] proposed an ABC inventory classification with multi-criteria using weighted linear optimization.
Moreover, van Liempd used an ABC–XYZ [39] classification where products are divided into nine
categories based on their demand’s value and demand’s volatility. While ABC classifies products
according to their value, the XYZ method classifies products according to their forecastability [10]. A
criterion to determine the forecastability of a product is to look at the coefficient of variation, which is
the ratio between the standard deviation demand and mean demand. A product with a low coefficient
of variation is generally characterized by a stable demand pattern. The way to discriminate between
X, Y, and Z-products is by defining three coefficient of variation thresholds. Usually X-products
are the easiest to forecast as they have a low coefficient of variation, while Z-products are the most
volatile with a high coefficient of variation; Y-products are found between the two as a compromise
between X-products and Z-products. It should be mentioned that the ABC analysis is widely used in
practice mostly due to its simplicity. However, it does not provide good performance when applied
to complex multi-echelon networks [33].
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Multi-echelon networks are characterized by multiple stations. For each upstream station, there are
decision variables, and these correspond to safety factors that need to be determined. In principle,
we are able to determine the dynamic of a product in the network by studying how its corresponding
total network inventory would scale with the safety factors of upstream stations. The way in which a
product–network inventory responds to change in safety factors is described by its multidimensional
curve. Each product has its corresponding curve, which has a dimension equal to the number of
upstream stations plus one dimension corresponding to its total network inventory. Our approach
is to classify and group products with similar multidimensional curves since we use a safety stock
policy that is optimized per product category (see equation 2.2). In this regard, we use Euclidean
distance as a similarity measure. The smaller the distance is between two multidimensional curves,
the higher the likelihood is to have their corresponding products in the same category.

When it comes to inventory optimization, usually little effort is spent on product classification
since existing techniques are used. In literature, many ABC categorization applications can be
found. Apart from this, literature is generally lacking in the context of product categorization
for multi-echelon networks. For this reason, this thesis proposes an innovative approach that uses
machine learning techniques. Moreover, product similarities are established by comparing curves,
which unfortunately are not displayable due to their high dimensionality, and for this reason we
cannot rely on our visualization skills to make proper comparisons. The principle behind machine
learning is that we enable computers to carry out a task which is not driven by hard programming but
by examining data. The main idea is that data drives the computer while keeping the algorithm at a
general level. Moreover, machine learning is becoming popular because of the ability of computers to
“discover” and “learn” as well as being able to go through millions of records effortlessly.

For this research, two types of machine learning methods are of interest, namely unsupervised
learning and supervised learning [12]. Unsupervised learning refers to cases when computers have no
information about the given data but are still able to find any meaningful groupings and patterns
within the data. This means that unsupervised learning algorithms have a descriptive task that is
used to find similarities or patterns within the data that are not known beforehand. By contrast,
supervised learning algorithms have predictive tasks, fitting rules are usually applied to known data.
Subsequently, the algorithm learns those rules which can be applied to new data, and predictions can
be made.
Common unsupervised learning algorithms are represented by clustering algorithms [12]. Clustering
methods group similar data into the same cluster; more precisely, data in the same cluster are
considered as similar, while data in different clusters can be considered as dissimilar. Along with some
input parameters, a similarity metric should be provided to a clustering algorithm. One example is
to use Euclidean distance as a similarity metric. The objective of clustering algorithms is to minimize
distances between data in the same cluster and to maximize distances between data belonging to
different clusters.
Clustering comes in handy for the purposes in this thesis, as product multidimensional curves are
discretized in a finite set of points. Evaluating Euclidean distances between discrete multidimensional
curves allows us to establish if the corresponding products show similar behaviours. More precisely,
we aim to cluster together products that have their multidimensional curves relatively close to each
other. Since products in the same cluster have similar behaviours, the same inventory policy should
be applied to them. For this reason, products in a cluster should be seen as products belonging to
the same category. This means that the total number of clusters will likely tell us the total number
of categories that should be used.
Once clustering is performed, the next step is to train a supervised learning algorithm to learn about
the clustering of the products and their features. In this way, we could learn the relevant features
that determine the similarities and/or dissimilarities among products. By doing so, we can predict
the category of new products only by looking at their features. This is what is done in the ABC
analysis where a product is assigned to categories A, B or C based on its value feature.

The remaining tasks involve selecting the proper algorithms for clustering (unsupervised learn-
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ing) and for supervised learning.

4.1.1 Clustering algorithm
Many clustering techniques are available in literature since they have been used in a lot of different
areas, including marketing, engineering, design, and manufacturing. Jain (2010) [21] provided an
overview of well-known clustering methods and underlined some emerging and useful clustering
research directions. It should be mentioned that traces of clustering applications in the field of
inventory management are more rarely seen but still present. Two examples can be found with Ernst
et al. (1990) [9] and Srinivasan et al. (1999) [33]. Ernst proposed a mathematical formulation which
requires finding a number of clusters such that a discriminant ration is maximized. The method
proposed by Ernst was then used to develop an optimal inventory stocking policy in a single location
distribution network. Srinivasan proposed a clustering method where products with a similar stock
keeping unit (SKU) were clustered together. The similarity between two SKUs was established by
a distance function that takes a number of factors into account, namely 1) the usage of the SKU
with respect to the finished product, 2) the manufacturing lead time of the SKU, 3) the transit time
of the SKU, and 4) the average cost. Hierarchical clustering with average linkage was then used to
identify clusters of similar SKUs. Moreover, SKUs were defined for each product and for each station
in the network.
Ernst’s clustering approach was for a single location, while Srinivasan’s approach applied to a supply
chain network, but clusters of SKUs were formed at each station in the network. For these reasons,
their methods are not entirely appropriate for our holistic multi-echelon approach.
The quality of our method heavily depends on how accurately product multidimensional curves
are clustered. Unfortunately, clustering algorithms are problem dependent, and it is impossible to
establish a universal clustering algorithms ranking. The best idea would be to try out different
algorithms and then pick the method that performs the best.
Furthermore, we aim to use an existing clustering algorithm since the scope of this thesis is not on
developing a new clustering method. As stated before, clustering algorithms are problem dependent
since their accuracy depends on the structure of the data. In our case, we do not have any prior infor-
mation on the data since we are dealing with simulated data. However, we do wish to use a clustering
algorithm that does not capture any irregular patterns in the data because we want to compare two
products based on the Euclidean distance between their corresponding multidimensional curves. Here,
we consider a case where two product multidimensional curves belong to a certain irregular manifold
but they are far from one another. For this case, we do not want to use a clustering algorithm that
captures any irregular geometry or patterns in the data, since that could lead to clustering together
products that have their representative multidimensional curve far apart. In other words, our focus
is more on partition-based clustering algorithms [12] than on density-based algorithms [11]. To date,
the most popular clustering partition method is k-means [21], which was introduced back in 1955 but
is still widely used today. In this thesis, k-means is the method used for performing clustering analysis.

In this research, we will perform clustering on data points that have more than three dimen-
sions. It should be mentioned that clustering algorithms usually do not work well in high dimension
spaces with more than hundreds of dimensions. This is due to the fact that similarity metrics based
on distances such as Euclidean distance become highly similar among a pair of multidimensional
curves, and thus it becomes harder to discriminate. However, the problem can be contained by
using principal component analysis (PCA) [22]. The idea of PCA is to remove dimensions that are
not really informative in capturing the differences within the data. In high dimension spaces, it is
possible that curves are very similar if projected along some dimensions. In these circumstances,
PCA would remove these dimensions, and multidimensional curves would be projected in a lower
dimension subspace where Euclidean distance becomes more effective.
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4.1.2 Classification algorithm
Decision tree (DTree) [18] is selected as the supervised learning algorithm, and this choice is easily
explainable for the following reasons. It is easy to understand conceptually, and it is also fast to train
and test. In addition, it offers a good level of accuracy. Moreover, DTree algorithms show several
advantages when compared with other well know supervised learning algorithms such as support
vector machines (SVMs) and k-nearest neighbours (k-NN) [18]. Unlike SVMs, the accuracy of a
DTree does not decrease when irrelevant data features are included. Furthermore, unlike k-NN, both
the steps of training and predicting with a DTree are relatively fast operations.
There are three other important characteristics of a DTree model. First, it is invariant to monotonic
features scaling and transformations. Second, a trained DTree model is readily human inspectable.
Lastly, it is a probabilistic method in the sense that it does not merely assign labels to tested data,
but it also indicates which probability these labels are assigned with.
Even though the DTree is considered one of the most popular classification methods, it does have a
weakness. If a DTree is not carefully “pruned”, it will deep-learn irregular patterns and data outliers,
resulting in a model that overfits the training sample and can consequently show poor predictive
abilities. Moreover, outliers and overfitting problems can be solved by extending DTree models to
random forest models [18]. Moreover, we can control the depth and width of the DTree such that
overfitting is avoided.

There are generally two types of DTrees, namely regression trees (which predict a value) and
classification trees (which predict a class). In this thesis, we are interested in classification trees since
we aim to predict product classes.

4.2 Multi-echelon inventory optimization
It is known that for single echelon systems, an (s, S) policy is optimal under certain conditions [1].
Optimal results have also been found in serial systems, and examples of this can be found in [6] and
[7]. However, when it comes to multi-echelon networks, finding a general optimal policy is extremely
complex [1]. This is because multi-echelon systems require the use of centralized policies that are
extremely difficult to derive. For example, a replenishment order at one location may depend on the
inventory status at all the other locations.
In his work, van Liempd [34] uses an installation stock policy over an echelon stock policy for a
multi-echelon network. Using an installation stock policy means that all the decisions are made based
on the inventory position of each installation in the network. The complexity of the problem then
shifts to make sure that all the local decision rules are properly coordinated. This thesis uses the
installation stock policy as well.

In Chapter 2, we explained the overall approach for inventory optimization in a multi-echelon
network. The whole approach is based on the work by van Liempd, and it consists merely of three
iterative steps—a simulation model, SSAP, and the GA.
In this thesis, the same simulation model used by van Liempd is adopted, together with the SSAP.
However, the second research question of this thesis aims to improve the efficiency of van Liempd’s
GA, and thus we will not use the same GA used by van Liempd. In the next section, some relevant
literature regarding the use of the GA in the field of supply chain is discussed.

4.2.1 Optimality
The GA is a heuristic method that has been used in the field of supply chain optimization quite
extensively. Kannan et al. [23] analysed the performance of a close loop supply chain via the GA. In
his work he also mentioned that one of the main advantages of the GA is that it can easily find a
good solution without having to analyse all potential solutions.
Celebi [5] developed a solution on how to determine the optimal inventory levels in a spare parts
distribution system using the GA. Celebi considered the GA to be one of the most favourable heuristic
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method for solving MEIO problems. Among other reasons, Celebi mentioned that GAs are extremely
flexible in addressing all sorts of different problems. For example, GA can deal with non-linear
functions; moreover, the solution space can be either discrete or continuous, and the optimization
problem can be either convex or non-convex.
In this thesis, a GA is used for finding the optimal values of a safety stock at upstream locations
only. We could extend the use of the GA also to the downstream locations in the network. However,
finding the optimal safety stock values downstream is too time consuming due to the customer service
level constraints. For this reason, a more elegant and efficient procedure such as the SSAP is used
for the safety stock levels at downstream locations.
In his thesis, van Liempd made use of the ABC–XYZ categorization [39]. This led to the creation
of nine decision variables for each upstream location in the network. The total length of a GA’s
chromosome was then equal to nine times the number of upstream locations. For example, a
chromosome for a multi-echelon network with three upstream locations would have a length equal to
27. Each element of a chromosome carried the safety factor value for a specific upstream location and
for a specific product category. Once two chromosomes have been selected, a crossover was performed
to create a new solution. The crossover method used by van Liempd is called the parametrized
uniform crossover [25] in which each chromosome value can be interchanged with the corresponding
value of a second chromosome. A second method for performing crossovers is called the single point
crossover [25] in which a slice of a chromosome is interchanged with the corresponding slice of a
second chromosome. In this thesis, we propose a crossover approach that resembles more the single
point crossover; we believe that this method can preserve more the structure of the underlying supply
chain network if the values of each chromosome are properly ordered.
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5 | Methodology and approach

5.1 Network setup and policy definition
In this thesis, we consider a three-echelon network with 15 locations. This restriction is due the
fact that the proposed method is tested on a real-life case of a pharmaceutical company that has a
network setup consisting of three echelons and 15 locations (see Figure 5.1 for an illustration of the
network). However, the methodology can be easily extended to any sort of multi-echelon network.
Here, the goods move from upstream to downstream locations with the assumption that no lateral
transshipment of goods take place among locations at the same echelon level. Each location has only
one predecessor location and multiple successor locations. Only downstream locations are subject to
direct customer demand while upstream locations face only the demand in the form of replenishment
orders from downstream locations. Also, customer demand is assumed to be normally distributed.
Moreover, demand in general can be backlogged, and any rationing or partial fulfilment of demand is
not allowed.
We assume the network has a single supplier that always has stocks available to satisfy the replenish-
ment orders coming from the upstream location. This means that replenishment orders coming from
the central location are always fulfilled on time.
Part of this thesis is about optimally allocating safety stocks within the network’s locations. However,
a distinction is made between upstream and downstream locations, as shown in Figure 5.1. The
safety stocks at upstream locations are set according to the following policy:

SSm,n = km,i · σLm,n+Rm,n (5.1)

where SSm,n is the safety stock of product n at upstream location m; km,i is the safety factor of
category i (at which product n belongs) at upstream location m, and σLm,n+Rm,n

is the demand
standard deviation of product n during lead time (L) plus review period (R) at upstream location m.
As mentioned in Chapter 2, the ordering policy considered in this thesis is an (R,S) policy, where R
is the review period and S is the order-up-to level. The review period R was considered to be an
input parameter for our simulation model, while the order-up-to level S was calculated based on
equation 2.1. This means that we addressed the problem of inventory optimization only by looking
at the safety stock levels and not in other ways, such as by looking into the optimal orders size.
Moreover, safety stocks at downstream locations were initially set via equation 2.3, and based on the
realized service level, the downstream safety stocks were adjusted using the SSAP such that a given
target service level is reached.

In this thesis, the task of optimally allocating safety stocks in the network is simplified into finding
the optimal values of upstream safety factors that are defined for each class of products. The first
step is to define classes of products, and it is only afterwards that we focus on finding the optimal
values of safety factors via the GA.

5.2 Products classification
Before proposing a new method for product classification, it is necessary to recap the purpose of
classification by answering the following two questions: why do we need to classify products, and
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Figure 5.1: Three-echelon network with one central location, two local locations, and 12 retailers.

what defines a good classification?

To answer the first question, classification is needed for several reasons. First, it reduces the
number of decision variables—such as from possible thousands to a dozen—and also, managers
usually find it important to group products together when making policy and planning decisions.
Secondly, classification is needed in order to use different policies among different classes. The ABC
analysis represents a limited method since possible important network-dependent properties are not
taken into account. Moreover, we should take into account that there are two types of penalties
that increase when reducing the number of classes, namely 1) cost penalty for using polices per
class and not per product and 2) the loss of discrimination. On the one hand, classification reduces
the complexity of the problem, but on the other hand, the gain in simplification happens at the
price of sub-optimal solutions. Thus, it is important to introduce a method that classifies products
with minimal penalties. At the moment there are no custom product classification methods for
multi-echelon networks, which is why this thesis intends to propose one.

To answer the second question, it is possible to intuitively say that a good classification method
groups together products with similar properties. However, the definition of similar can be quite
vague; particularly in the context of multi-echelon networks, it can be difficult to find similarities
among products.
The planning decision variables in our case are the safety factors that are defined per upstream
location and per product class. For each product, we are interested in knowing the variation of total
inventory in the network with safety factors. In this sense, products that have similar variations have
to be considered as similar and should be in the same class. Moreover, to be able to compare products’
dynamics, we should introduce a normalization criterion since we expect that some products may
have different total inventory magnitudes; this is due to the fact that some products might have
much higher sales volume than others.

Once the purpose of using product classes is clear, we can move onto the methodology of the
research. As mentioned, this thesis aims to find the relationship between product safety factors and
their corresponding total network inventory. There are an infinite number of possible scenarios; for
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Figure 5.2: Three-step approach for product classification.

instance, one case may involve thousands of products with multiple stations in the network and
multiple safety factor options for each upstream station. Given that endless scenarios are possible,
there is the need for ad-hoc scenarios to be created in order to capture the overall relationships
between products’ safety factors and their corresponding total inventory. These scenarios are con-
structed according to the theory used in the design of experiment (DOE) [2], which is used to find
cause-and-effect relationships. In our case, the cause and effect are represented by the products’
safety factor and products’ total network inventory respectively. In DOE terminology, a complete
list of experiments corresponds to a full factorial design. However, the number of experiments of a
full factorial design can be quite large and consequently time consuming. For this reason, fractional
factorial designs [2] can be used, which is defined as “experimental designs consisting of a carefully
chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as
to exploit the sparsity-of-effects principle to expose information about the most important features
of the problem studied" [36].
The overall approach to build a classification method for multi-echelon networks can be summarized
in three steps as shown in Figure 5.2. Firstly, by performing simulations according to the designed
experiments (i.e., DOE), we are able to capture the behaviour of a product in the network. Each
product has its own behaviour that is represented by a discretized multidimensional curve. Secondly,
we can use clustering analysis to capture similarities among products—two products are similar if
their corresponding discretized curves are relatively close to one another. Thirdly, a classification
tree can be trained when it can know the cluster of a product and its features. Once the tree is
completed, we can use it to predict the class of products only by looking at their features.

Step 1: Products’ network behaviour via DOE
In the context of DOE, inputs parameters of a model are called factors while output parameters
are called responses. If a model has a large number of potential factors, we could smartly select a
subset of their combinations to obtain an overview of the response surface. In practice, each factor
has limited level options because otherwise there would be an infinite number of possible values for
each factor. For example, in a 2k factorial design , each of the k-factors has only two level options,
namely high and low. Possible factor combinations in a DOE are called design points, and all these
together form a design Matrix.
In our case, the tool that allowed us to capture products’ behaviour in the network consists of
a simulation model and SSAP. The simulation model takes the upstream safety factors as input
parameters; while, the SSAP adjusts the safety stocks at the downstream locations such that a given
input target service level is reached. We can consider the combination of simulation and SSAP as
a tool that takes safety factors and target service level as inputs and then gives the total network
inventory for each product as output.
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Figure 5.3: Network with three upstream locations. On the left is a three-echelon network layout,
while on the right is an example of a possible experiment setup. Here, kC stands for safety factor at
the central station, kL1 represents the safety factor of Local Station 1 while kL2 is the safety factor
of Local Station 2.

Product ID Response1
(R1)

Response2
(R2)

Response3
(R3)

Response4
(R4)

Response5
(R5)

Response6
(R6)

Response7
(R7)

Response8
(R8)

Product 1
...

...
...

...
...

...
...

...
...

Product n

Table 5.1: Full design experiment corresponding to the network example of Figure 5.3

In agreement with DOE terminology, factors are represented by safety factors, and responses are
represented by total network inventory.
Here, we assume that there is a network with three upstream locations—that is, one central location
and two local locations. The example is represented on the left side of Figure 5.3. For each of the
upstream location, we need to set a safety factor parameter. Since we cannot check all possible
factors, we assume that for each upstream location, there are only two safety factor levels, namely
low (L) and high (H). For each combination of safety factors, there is a response (i.e., total network
inventory) value coming out of the simulation-SSAP model. The described scenario is summarized
in Figure 5.3. The table corresponds to a full factorial design since all possible safety factor levels
combinations of upstream locations are considered. The table in Figure 5.3 shows how the safety
factors of the downstream locations do not play a role in designing the experiments since they do not
represent decision variables for our approach. This is because we used the SSAP for downstream
locations; it adjusted the safety stocks downstream to the right levels such that a certain target
service level is reached.

According to the example of Figure 5.3, if we design a full design experiment for n products, we
are in the situation described in Table 5.1. Each response column of Table 5.1 corresponds to a
simulation-SSAP run where the safety factors inputs are set based on the full factorial design. For
example, for the column Response2, the H–L–L combination of safety factors is used; here, the safety
factors at the central location (C) are set to high (H), and the safety factors at the local locations
(i.e., L1 and L2) are set to low (L). Once the safety factors are set, we run a simulation-SSAP, and
we obtain the total network inventory of each product as a response with a guarantee target service
level. This procedure is repeated until all design points are covered.

For each product, a vector of responses [R1, R2, .....Rm] is obtained. These vectors represent
the behaviour of each product in the network under different safety factor inputs. As a result, we
can compare product behaviours by comparing their corresponding response vectors. However, it is
possible for two products to have similar behaviours but different response magnitudes. For example,
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Figure 5.4: Example of using a middle level (M) to distinguish between two different dynamics within
the network.

two products may react similarly to changes in safety factors, but one product may have much higher
or lower inventory costs. In this case, a proper normalization of the response vectors needs to be
performed in order for the products to be more comparable.
The following normalization criterion is used:

Xscaled = X −Xmin

Xmax −Xmin
(5.2)

where Xscaled is the scaled response, X is the original response, Xmin and Xmax are the smallest
and the largest original responses respectively. In this way the original responses are all converted to
values ranging between 0 and 1.

According to 2k factorial design theory, two levels are set for each factor, namely low and high. In our
case, we used three levels for each safety factor: low (L), medium (M), and high (H). The additional
level M increases the possible number of safety factor combinations, but it is necessary to be able to
distinguish between different behaviours. An example is given in Figure 5.4 where without the use of
a middle level we could not distinguish between the two different trends. Capturing the red trend is
important since it suggests that there is a minimum inventory cost, which for optimization purposes
is what we are aiming to identify.

To sum up, being able to construct a full factorial design requires zk number of experiments,
where z corresponds to the number of levels used for the safety factors and k is the number of
upstream locations in the network.
To test our method, a three-echelon network with a total of three upstream locations is considered.
This leads to a full factorial design consisting of 33 experiments, since we have three upstream
locations and three levels of safety factors (i.e., L, M, and H).
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Product ID Response 1
(R1)

Response 2
(R2) · · · Response m

(Rm)
Product 1 R1

1 R1
2 · · · R1

m
...

...
... · · · ...

Product n Rn1 Rn2 · · · Rnm

Table 5.2: Example of a full factorial design that consists of m design points and n products

Product ID Response 1∗

(R∗
1)

Response 2∗

(R∗
2) · · · Response m∗

(R∗
m)

Product 1 R1∗
1 R1∗

2 · · · R1∗
m

...
...

... · · · ...
Product n Rn∗

1 Rn∗
2 · · · Rn∗

m

Table 5.3: : Example of a normalized full factorial design that consists of m design points and n
products

Step 2: Clustering
A clustering analysis is used to find similarities among products. In Step 1, we explained how to
capture product behaviour in multi-echelon networks by running ad-hoc simulations based on the full
factorial design. Products behaviours are collected into vectors; in a discrete way, they summarize
the dependency between the total network inventory and the upstream safety factors.
Here, we assume that we perform m simulation-SSAP runs for a total of n products. We also
assume that the m runs correspond to a full factorial design where all possible upstream locations
combinations of three levels of safety factors are exploited. At each simulation run, a response for
each product is obtained. This leads to the results of Table 5.2.
However, before comparing products, all the results of the full factorial design should be normalized
based on equation 5.2. After applying normalization, we end up with the normalized results of Table
5.3.

We assume here that we want to compare two products, namely product i and product j. For
product i, we have the following vector of responses Vi = [Ri∗1 , Ri∗2 , ..., Ri∗m] and for product j, we
have the vector Vj = [Rj∗1 , R

j∗
2 , ..., R

j∗
m ]. The similarity between product i and product j is measured

by the euclidean distance between their corresponding vectors. The closer the distance, the more
similar product i and j are. The euclidean distance between vectors Vi and Vj is expressed by Dij

which is computed as follows:

Dij =
√

(Ri∗1 −R
j∗
1 )2 + (Ri∗2 −R

j∗
2 )2 + ...+ (Ri∗m −R

j∗
m )2

Once the similarity metric based on Euclidean distance is defined, we can compare products’ behaviour
using a clustering analysis. The clustering algorithm creates clusters of products such that products
belonging to the same cluster will have their corresponding response vectors relatively close to each
other. Products in the same cluster are then considered to be those that show similar inventory
behaviours in the multi-echelon network.

Step 3: Classification tree
The clustering analysis leads to the formation of k clusters of products. Moreover, in addition to a
cluster label, a product is characterized by its own features. This means that after Step 2, we are
ready to train a classification tree.
The objective of using a classification tree is to use fitting rules to predict the cluster label of a
product based on its features.
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Figure 5.5: Example of classification tree.

Here, we assume that we are considering a MEIO problem with n products in total. Instead of going
through Steps 1, 2, and 3 with all n products, we can use a sample of products, such as m products
where m < n. Subsequently, we run Steps 1, 2, and 3 only using those m products. This means that
we can train a classifier by using m training products, and afterwards we could use the classifier
to assign a class to the remaining n−m testing products only by looking at their corresponding features.

An example of a classification tree is shown in Figure 5.5. The product features that are con-
sidered when training a classification tree are described in the next session.

5.2.1 Product features
Some important features that characterize the products and the network need to be defined. The
idea is to list all potential features, and we let the classifier establish which features are the most
discriminative in determining the right class for a product.
The average demand of the products can be an example of a product feature, while the number of
locations at each echelon level where products are stocked can be an example of feature that is both
product and network dependent.
In this thesis, we distinguish between five types of features. This restriction is also partially due to
the amount of real data information available. However, the list of features could be easily extended
since DTrees are invariant with respect to the number of features used [18]. The type of features are
defined in Table 5.4.

Feature type I

The notation for this feature type is: #Outletk. Considering a product j stocked at location k, when
looking downstream in the network we can count the number of outgoing outlets seeing by product j
at location k. The number of outgoing outlets corresponds to the number of downstream locations
connected to location k where product j is also stocked.
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Feature type I Feature type II Feature type III Feature type IV Feature type V

Descrip-
tion

Number of
outgoing outlets

seeing by
product j at
location k

Lead time
between

interconnected
locations A and

B

Fractional mean
demand of
product j at
location k

Coefficient of
variation of
product j at
location k

Pooling
measurement
between a
centralize

location k and
its connected
downstream
locations

Notation #Outletk LtAB FMDk CV k Poolk

Table 5.4: Product–network features definition

Feature type II

This feature type refers to the lead time between the interconnected locations in a multi-echelon
network. The notation LAB represents the lead time between locations A and B. We assume a fix
lead time where lead time uncertainties are not taken into account.

Feature type III

The feature type III refers to the fraction mean demand of product j at location k where there are a
total of m products stocked. This feature is defined as follow:

FMDj
k =

µjk∑m
i=1 µ

i
k

where µik is the mean demand of product i at location k. This feature type reflects the dominance of
a product, in terms of volume, at a given location k. Moreover, this feature type resembles the ABC
categorization where products are split into three categories based on their values. In our case, we
are using volume instead of value to compare product importance due to lack of price information in
our real data. However, this feature type can be easily changed if price information is available.

Feature type IV

The coefficient of variation of product j at location k is defined as follows:

CV jk =
σjk
µjk

where µjk and σjk are respectively the mean and standard deviation of the demand of product j at
location k. This feature is an indicator of product demand volatility. The smaller the CV, the more
stable the demand pattern of a product. This feature is the same feature that is used in the XYZ
categorization.

Feature type V

The feature type V, in combination with the feature type IV, takes into account the risk pooling effect.
“Risk Pooling suggests that demand variability is reduced if one aggregates demand across locations"
[31]. Demand pooling from a central location is beneficial if the location itself is connected to multiple
downstream locations. Moreover, risk pooling is most effective when downstream demands have a
high coefficient of variation and comparable standard deviations (and/or comparable means). In
this research, we assume that customer demands are independent and normally distributed. In this
way, we can also assume that the aggregated demands across locations are normally distributed. For
example, the aggregated demand distribution of a given product across two locations n and m (at
the same echelon level) is given by N(µn + µm,

√
σ2
n + σ2

m).
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Figure 5.6: Three examples used to interpret different outcomes of the pooling feature.

Product
ID OutletC LtC−R1 LtC−R2 LtC−R3

FMDC FMDR1 FMDR2 FMDR3
CVC CVR1 CVR2 CVR3

PoolC

Product i 2 Lt 1 Lt 2 NaN µC
i∑N

i=1
µC

i

µR1
i∑N

i=1
µR1

i

µR2
i∑N

i=1
µR2

i

0 σC
i

µC
i

σR1
i

µR1
i

σR2
i

µR2
i

NaN σC
i

σR1
i

+σR2
i

Product j 1 NaN NaN Lt 3 µC
j∑N

i=1
µC

i

0 0 µR3
j∑N

i=1
µR3

i

σC
j

µC
j

NaN NaN σC
j

µC
j

σC
j

σR3
j

Table 5.5: Features calculation based on the example of Figure 5.7

Let’s assume that a product j is stocked at a central location k which supplies n downstream locations.
Then, we define the feature as follows:

Pooljk =
σkj∑n
i=1 σ

i
j

=

√∑n
i=1(σij)2∑n
i=1 σ

i
j

where σij is the standard deviation of demand of product j at location i. Moreover,the Poolk feature
is bounded as follows: √

n

n
≤ Poolk ≤ 1

where n is the number of downstream locations connected to the upstream location k. The Poolk
assumes the lower bound value when the standard deviation at all the n locations is exactly the
same. The Poolk assumes the upper bound value when the upstream location k supplies only one
downstream location. A high value of Pooljk suggests a high demand variability of product j at an
echelon level that is lower than k. However, a value closer to 1 suggests that there is one dominant
product demand downstream. Three examples of calculating the pooling feature can be seen in
Figure 5.6. Case I shows the extreme case in which the standard deviations downstream are exactly
the same, and the pooling feature takes the lower bound value. Case III is another extreme case
where there is a dominant standard deviation value downstream, and the pooling feature takes a
value closer to 1. Case II is the hybrid example between Cases I and III. Case III is not suited for
demand pooling, while Cases I and II may be suited for demand pooling if they are combined with a
relatively high value of the coefficient of variations.

For the sake of clarity, we can apply the defined five features type to the network example considered
in Figure 5.7 for which we construct Table 5.5.

5.2.2 Clustering algorithm using k-means
K-means is the method used for the clustering analysis. K-means aims to partition n observations
into k clusters in which each observation belongs to the cluster with the nearest centroid. However,
k-means has three major drawbacks which can be summarized below.
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Figure 5.7: Network example. The blue and green lines track product i and j respectively from
downstream to upstream locations. The lead times among the locations are represented by the
notation Lt.

1. The quality of k-means depends on the selection of initial centroids.

2. K-means effectiveness depends on the data geometry.

3. The number of clusters k is an input for k-means.

To overcome the first issue, we run k-means multiple times with different random initial centroids,
and the best solution is then kept. The best solution is the one with the highest similarity in the
cluster and the lowest similarity between clusters.
For the second issue, we know that k-means works well for flat geometry data. Indeed, k-means is
not able to capture non-globular data shapes as shown in the example of Figure 5.8. However, in
the previous section, we showed that each product is characterized by a response vector; this vector
captures the changes in inventory costs due to changes in upstream safety factors. Moreover, each
vector of length l is represented by a point in an l-dimensional space. We aim to cluster the points
together only based on their Euclidean distance without worrying about the presence of non-globular
data shapes. This is because there may be points that belong to the same non-globular shape, and
these points may still be far apart from each other. Here, we can conclude that data geometry does
not represent an issue for k-means in our case.
Finally, to address the third point, three commonly used methods could be used to determine the
right number of clusters k for k-means, namely sum square error, the Calinski–Harabasz method [4],
and silhouette width [27]. The main idea behind these methods is to offer trade-off curves between
complexity (i.e., the number of clusters k) and the accuracy of the clustering analysis. The higher
the number of clusters, the more accurate the analysis. However, we have to consider whether the
gain in accuracy is worth the gain in complexity. These methods offer trade-off curves that point
out which value of k should be selected. A common method used in selecting the number of clusters
k based on a trade-off curve is the elbow rule [37]. The position of the "elbow" in the plot indi-
cates the number of clusters to use since further increases of k brings a marginal accuracy improvement.
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Figure 5.8: Example of bad clustering using k-means for non-globular shapes.

Moreover, it is important to remember that customer demand is assumed to be normally dis-
tributed and therefore not deterministic. Customer demand uncertainties ensure that different
simulation runs would generate slightly different outputs under the same input conditions. This
means that a product vector which lies relatively close to two cluster centroids can be quite sensitive
to demand volatility. By way of example, suppose that we perform a full factorial design using a
specific seed for the customer demand distribution. Then, the clustering analysis assigns product j
to Cluster 1. Moreover, we assume that product j lies very close to the neighbourhood of Cluster 2,
as shown in Figure 5.9. We assume also that we redo the clustering analysis based on a new full
factorial design that uses a different seed for the customer demand distribution. The result of the
new analysis can be that product j is now assigned to Cluster 2 and not to Cluster 1. The higher the
number of clusters k, the higher the probability is for assigning the wrong cluster label to a product
due to customer demand uncertainties.
However, we could select the right number of clusters k to contain or minimize the described issue.
Our approach consists of performing an m number of independent full DOEs where we use m different
seeds for the customer demand distribution. For each of the m DOEs, we perform a k-means analysis
for a range of k values. Afterwards, we establish the "true" cluster label of a product based on the
majority of occurrences out of the m clustering analysis. For example, k = k∗, product j would be
assigned to cluster k∗ − z (with 0 ≤ z ≤ k∗ − 1) for the majority of the m cases, and the true cluster
label of product j would then be k∗ − z. By using this approach, we can construct trade-off curves
where we measure the misclassification error by comparing the true cluster label versus the individual
cluster labels of the m independent instances for a range of k values. An example of such trade-off
curves can be seen in Figure 5.10. After the trade-off curve is constructed, we make use of the elbow
rule to choose the number of clusters k for k-means. By applying the elbow rule to the example of
Figure 5.10, we would select k = 7.

5.2.3 Classification algorithm using decision trees
A DTree is a method that allows us to predict a product class based on its features, and tree models
where the target variables are represented by class variables are called classification trees. In our
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Figure 5.9: Example of a potential cluster label swap for products that are on the boarder of two
clusters.

Figure 5.10: Example of a trade-off curve where the number of clusters k is plotted against the
misclassification error. The elbow rule would suggest selecting the number of clusters k equal to 7.
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case, the class variables are represented by the cluster labels obtained via k-means.

A tree consists of nodes and leaves. The first node is called the root while the final nodes are
called leaves. In the DTree, we move from the upper to the lower part of a tree by applying binary
splits. A binary split consists of splitting a node into two nodes, going from root nodes to leaf nodes.
In this research, we consider only numerical product features; this means that a binary split is applied
based on a feature threshold value. More precisely, we want to know whether a certain feature at a
certain node is higher or lower than the corresponding threshold value at that node.
In general, a DTree goes from impure to pure when moving from root nodes to leaf nodes. Maximum
impurity means an equal mixing of the classes, while minimum impurity means that each leaf
corresponds to exactly one class. There are several measures for impurity, and among them two
common methods are the Gini index and Entropy [19]. With these methods, we can determine which
feature is used for a split when taken together with its associated threshold value. The higher the
predicting power of a feature, the higher the position of the feature in the tree.

Building a DTree usually consists of two phases, namely building the tree and testing its per-
formances. In addition, a data set is usually split into training and testing data; the training data
are used to train a DTree, while the testing data are used to test the predictive power of the tree.
The performance of a DTree model can be evaluated by considering the misclassification error on the
training and testing data set. Simply adding nodes until all cases belong to the right class would lead
to optimal results for the training set; however, the results will not be optimal for the test data since
we are most likely overfitting the data. Big and complex trees are usually an indicator of overfitting
the data. On the other hand, a tree with a few nodes would give a simple model that is useful in
practice, but it may oversimplify the situation, thereby leading to many misclassified cases. Certain
tree parameters such as max depth, max leaf nodes and min samples split can be fine-tuned such
that a satisfactory accuracy on the testing data is reached and data overfitting is avoided. Figure 5.5
shows an example of a small classification tree where only three features are used to make predictions
on four classes. In this research, we make use of the DTree algorithm available in the Scikit-learn
Python package [38]. For the DTree, we optimize the following parameters such that the highest
accuracy on the test set is reached:

1. criterion, which is either Gini or entropy;

2. max_depth, which determines the max depth of the tree;

3. max_leaf_nodes, which determines the max number of leaf nodes allowed such that there is
control over the width of the tree;

4. min_samples_split, which determines the minimum number of samples in a node to be able
to perform a binary split.

All the mentioned parameters are input parameters for the DTree algorithm available in the
Scikit-learn Python package. In this research, we construct a grid search for which all the
parameter combinations are tested. The combination with the highest accuracy on the test set is
used to build the final classification tree.

5.3 Optimal safety stock levels
The simulation-SSAP model can be considered as an evaluation function used to measure the goodness
of a solution in the form of safety stocks levels. However, the simulation-SSAP model is not sufficient
to find the optimal safety stocks levels to the underlying multi-echelon network. In order to find
the optimal safety stocks levels, we make use of the GA such that minimal inventory costs are
reached under service level constraints. Upstream safety stocks are calculated according to the
policy described by equation 5.1. Upstream safety stocks are optimally allocated by setting the
corresponding safety factors to optimal values. However, safety factors are defined per product
category and per upstream location.
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5.3.1 Genetic algorithm
The GA is a dated heuristic method that was introduced by Holland [21] in 1975. The GA is inspired
by the process of natural selection that drives biological evolution. The general GA principle is that
by mixing good solutions, potential better solutions can be found.
First of all, some GA terminology needs to be introduced. A chromosome represents a solution to
the problem that needs to be optimized. A chromosome consists of several genes, and each gene
represents a decision variable of the problem. The length of a chromosome depends on the total
number of genes. In our case, a gene corresponds to the safety factor value of a certain product
category at a certain upstream location. This means that a chromosome for a multi-echelon problem
with m upstream locations and k product categories have a length equal to m · k. A chromosome
represents a solution to the problem since it contains all the upstream safety factors for each product
category.
In the GA, an initial population needs to be created. An initial population consists of creating different
initial solutions to the problem in the form of chromosomes. For example, an initial population
of length l corresponds to the creation of l different chromosomes. Moreover, in order to compare
chromosomes and to establish which chromosomes perform better than others, we define a fitness
value for each chromosome. For example, the total inventory costs associated to each chromosome
could be used as a fitness metric to establish the quality of the solution itself.

Inventory costs can be divided into holding costs, ordering costs, and penalty costs [26]. In this
research, we only consider holding costs. Moreover, since price information is not available for our
real-life data, we take the total units of on-hand inventory as an approximation of the total holding
costs. This means that the fitness of a chromosome is measured by the total units of on-hand
inventory corresponding to its solution.

Genetic algorithm operators

The mains steps in the GA are called operators [25]. These are listed as follows::

• Selection: Selecting a chromosome out of a population is based on a probabilistic criterion. The
fitter the chromosomes, the higher the probability of being selected. The selected chromosomes
are called parents.

• Crossover : Genes belonging to two chromosomes are interchanged based on a probabilistic
criterion such that two new chromosomes are formed. The new chromosomes are called children.

• Mutation: Chromosome values are changed based on a probabilistic criterion. Each gene of a
chromosome could encounter a mutation. The probability of having a mutation is generally
low [25] since a high value would destroy all the information encoded in a chromosome. For
instance, a mutation rate equal to 1 corresponds to a random search since all genes are always
mutated. Based on the work by van Liempd, when a mutation takes place, each gene of a
chromosome can be adjusted by a randomly generated number in the interval (−0.03, 0.03).
For example, a safety factor value k can be mutated into a value belonging to the following
interval (k − 0.03, k + 0.03).

Once an initial population of chromosomes is formed, the roulette wheel [25] method is used to select
two parents chromosomes. The principle of the roulette wheel is that the fitter the chromosome,
the higher the probability of it being selected. Once two chromosomes are selected, their genes are
interchanged via the crossover operator such that two new children chromosomes are created. After
the crossover, the newly created chromosomes undergo some genes mutation based on a probabilistic
mutation rate. The whole procedure is then repeated until a new population of chromosomes is created.

In this research, we propose a GA that mainly has two differences compared to the GA pro-
posed by van Liempd [34]. The two differences concern the creation of the initial population and the
crossover operator.
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Initial population

Initial population consists of creating a certain number of initial chromosomes. We assume that the
safety factors for each product class would range between the value of 0 and an upper value M . This
means that each chromosome value also ranges between values 0 and M .
Van Liempd generated an initial population by drawing a random number from a uniform distribution
U(0,M). Assuming that each chromosome has length l, van Liempd was able to create an initial
chromosome by randomly drawing l times out of a U(0,M) distribution. The procedure was repeated
according to the desired size of the initial population.
However, in this thesis, we can already be more specific about the value of certain genes in the
early stage of creating an initial population. The reason is that before performing optimization
via the GA, many simulations were already performed to build a classification tree. This means
that some information about the structure of the network is available. The goal is then to translate
this information into practical steps. In this thesis, a gene of an initial chromosome is created
by drawing a random number from a uniform distribution U(x, y) where x ≥ 0 and y ≤ M (with
x < y). In the clustering analysis, we performed a full factorial design based on three levels of
safety factors for all upstream locations. This means that information about some good and bad
performing combinations of safety factors is already available after clustering. By focusing on the
good performing combinations, we are able to identify optimal areas of safety factors. By properly
selecting x and y values, we can generate initial chromosomes by drawing from a uniform distribution
U(x, y) such that we can explore the optimal areas of safety factors more efficiently. Assuming a
normally distributed demand, we have a max safety factor equal to 2 for an internal service level equal
to 98%. This means that initial chromosomes are created by drawing from a uniform distribution
U(x, y) with x ≥ 0 and 0 < y ≤ 2 (with x < y). The 98% service level is taken as a reference since it
will be the service level target for all products at the retailers.

Crossovers

In this research, we used a class crossover approach that resembles the single point crossover [25].
This approach is slightly different from the parameterized uniform crossover [25] used by van Liempd
[34].
All the information encoded in a chromosome can be structured in different ways. Here, we consider
the multi-echelon problem where there are m upstream locations and k product categories per
location. With the notation k(p)

i,j , we denote the safety factor of product category j (with j = 1, 2, .., k)
at upstream location i (with i = 1, 2, ..m) corresponding to chromosome p.
A chromosome can be structured in different ways. An example can be seen in Figure 5.11 where
two chromosomes carry the exact same information but they are simply structured differently. The
chromosome in Figure 5.11b propagates horizontally, while the chromosome in Figure 5.11a propagates
both vertically and horizontally. Moreover, it should be noted that the chromosome of Figure 5.11a
has its number of columns equal to the number of product categories k and the number of rows equal
to the number of upstream locations m. In his work, van Liempd introduced a chromosome structure
corresponding to Figure 5.11b. In this thesis however, we used a chromosome structure as described
in Figure 5.11a.

Working with different chromosome structures can facilitate different types of crossovers. For
example, the chromosome structure of Figure 5.11a can facilitate the class crossover as described in
Figure 5.12. After two parents are selected, their genes are recombined such that two new children can
be created. In the example of Figure 5.12, the safety factors of product category 1 are interchanged
between Parent 1 and Parent 2. The same happens for the safety factors of product category k.
Moreover, if we would use the chromosome structure of Figure 5.11b, the parameterized uniform
crossover would correspond to the example of Figure 5.13. The crossover approach summarized in
Figure 5.13 is the crossover method used by van Liempd.

In this research, we used the class crossover that is schematically represented in Figure 5.12. We
call the method a class crossover since all genes belonging to a product class are interchanged. The
reason for this choice is that this kind of crossover preserves some structure of the underlying supply
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(a)

(b)

Figure 5.11: Two examples of chromosomes structure both encoding the same information.

Figure 5.12: Example of class crossover.
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Figure 5.13: Example of parameterized uniform crossover.

chain network. For example, we assume we have a multi-echelon network consisting of three upstream
locations, namely one central location and two local locations. We also assume that a chromosome
carries a centralized setting of the network for a given product category k. The centralized setting
corresponds to setting the safety factor to a high value (H) at the central location and low values (L)
at the local locations for products belonging to category k. This corresponds to the H-L-L setting
of the network. Moreover, we assume that a second chromosome carries a decentralized setting
for product category k. The setting corresponds to a low value of safety factor (L) at the central
locations and higher values of safety factors (H) at the local locations. This corresponds to the
setting L-H-H. By using a class crossover, we are able to swap the centralized configuration H-L-L
with the decentralized configuration L-H-H for products belonging to category k. Moreover, the
probability of having a class crossover between two parents chromosomes is typically set between 0.5
and 0.8 [25]. In this thesis, we used a probability of 0.5; this means that there is a 50% chance that
two selected chromosomes interchange their class genes. The sequence of operations performed in the
GA are described in Figure 5.14.
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Figure 5.14: Overall steps of the genetic algorithm.
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6 | Results

In this section, the proposed method is applied on a three-stage distribution network of a pharma-
ceutical company, and actual customer data is considered. The first step is to generate a product
classification method based on machine learning techniques. Then, based on the new product
classification, we use the GA to find the optimal allocation of safety stocks in the network. The
optimal results are then compared to the optimal results based on the ABC–XYZ categorization.

In the research, we received one year of historical customer demand from the pharmaceutical
company, and demand was provided in monthly buckets. Based on the historical data, we calculated
the mean demand and standard deviation of demand. We then used the statistics to fit a normal
distribution to simulate customer demand behaviour.

In addition, we used the programming language Python 3 to build the proposed method, and
Scikit-learn is the python package used for clustering and classification.

6.1 Case introduction: Three-stage distribution network
The three-stage distribution network is shown in Figure 6.1. The network consists of one central
distributor, two local distributors and 12 retailers.
We make the assumptions that the central distributor has a unique supplier with an infinite amount
of stocks available and that the supplier always delivers on time. Moreover, a second assumption is
that customer’s demand takes place only at retailers, and each retailer is supplied by one distributor
only. The replenishment lead time between locations is assumed to be deterministic. Table 6.1 gives
a summary of the network’s replenishment lead times. The total number of products considered for
the distribution network is equal to 852.

6.2 Simulation model settings
The simulation model is a not terminating model, which means that a clear stop criterion needs to
be given as input to be able to stop the simulation. The stopping criterion is given by the simulation
run length. The longer the run length, the more stable the results. The idea is to use a run length
such that less frequent events are also represented in a reasonable quantity. However, we want to
analyse the network when it is in its steady state such that final results are, for example, independent
from initial stock levels. In order to analyse the system in its steady state, we made use of the
warm-up length, which is also an input for the simulation model. We set the simulation run length
and warm-up length equal to 1000 and 100 periods respectively.
The virtual simulation period corresponds to one real month since customer demand is provided on
monthly buckets. Moreover, replenishment lead times are provided in days, meaning that a criterion
to convert days to months should be defined. We assume that one month consists of 22 working
days, and we use the formula Months =

⌈
Days

22
⌉
to convert days to months. For example, 23 days

corresponds to 2 months, while 5 days corresponds to 1 month. This conversion criterion is quite
conservative since the real lead time is always shorter than the corresponding approximated monthly
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Figure 6.1: Three-echelon network with one central distributor, two local distributors and 12 retailers.

Downstream
location

Upstream
location

Real lead
time (in
days)

Simulation
lead time (in
Months)

Retailer 1 Local DC 1 8 1
Retailer 2 Local DC 1 3 1
Retailer 3 Local DC 1 3 1
Retailer 4 Local DC 1 3 1
Retailer 5 Local DC 1 3 1
Retailer 6 Local DC 1 9 1
Retailer 7 Local DC 2 6 1
Retailer 8 Local DC 2 9 1
Retailer 9 Local DC 2 10 1
Retailer 10 Local DC 2 4 1
Retailer 11 Local DC 2 9 1
Retailer 12 Local DC 2 12 1
Local DC 1 Central DC 6 1
Local DC 2 Central DC 30 2
Central DC Supplier 10 1

Table 6.1: Replenishment lead times for the three-stage distribution network
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lead time. The real and simulated lead times are shown in Table 6.1.

As described in previous sections, the simulation model is run together with the SSAP. For the SSAP,
the target service level is an input parameter. In this thesis, the cycle service level is used as metric
for the customer service level. We set the target service level to 98% for all products at the retailers.
However, the whole methodology can be easily extended for diversified service levels.

Finally, in Chapter 2 we mentioned that the ordering policy used in the simulation model is
an (R,S) policy, where R is the review period and S is the order-up-to level. In Chapter 2 we
described how to calculate the order-up-to level S, while the review period R is set to one month in
the simulation model for all product-location combinations. However, a diversified review period
policy for different product-location combinations is fully supported in our methodology.

6.3 Product classification
The approach used for building a product classification consisted of three steps. Firstly, we used DOE
to run a fixed amount of simulations that would give us a good overview of the products behaviour in
the network. Secondly, we implemented an unsupervised learning technique via clustering k-means to
find similarities among products based on the results of DOE. Thirdly, we made use of the clustering
results to build a classification model using DTrees. The classification model predicts the cluster
label of a product based on its features.

6.3.1 Full factorial experiment
In order to understand how products behave within the network a full factorial design of experiments
(DOE) is used. The DOE consisted of running a finite number of simulations, each with a different
setting; this was done in order to capture different products behaviour within the network. For each
distribution center, three levels of safety factors were used. The three levels of safety factors are 0, 1,
and 2; these correspond to the notation of L (low), M (medium) and H (high) respectively. We set
the max safety factor to 2 based on the equation 2.3 which assigns the safety factor equal to 2 for a
98% service level. The low (L) and medium (M) safety factor values follow from an homogeneous
split considering a max value equal to 2. Since there are three upstream locations corresponding to
the distribution centers, we have a total of 33 = 27 design points to simulate. We use a three-index
notation X-X-X where the first index refers to the safety factor at the Central Distributor (DC), the
second index refers to the safety factor at Local Distributor 1 (LDC1), and the last index refers to the
safety factor at the Local Distributor 2 (LDC2). For example, the simulation corresponding to the
design point L-M-H is the simulation where the safety factors are set to 0 at the central distributor
for all the products; the safety factors are set to 1 for all the products at distributor LDC1 , and the
safety factors are set to 2 for all products at the distributor LDC2 . For each product and for each
design point, we had a response in terms of total units of inventory on-hand. Table 6.2 shows the
results of the 27 design points for two exemplary products, which are called product i and product j
for confidentiality reasons.
It has to be mentioned that the SSAP was applied to all simulated design points. In this way, we
are able to compare design points that have the same realized service level of 98% at the retailers.
The ordering of the design points in Table 6.2 is not relevant as long as the same design points are
compared for the pair of products.

As we can see in Figure 6.2 and Figure 6.3, the two products i and j have different behaviours.
First of all, product j barely reacts to safety factors changes. One reason could be that to reach a
98% service level, product j stocks are pushed at the retailers via the SSAP. In this way the total
on-hand inventory is less sensitive to safety factors changes upstream. At a closer look, we note that
product i reaches lower on-hand inventory for a configuration of the network where the safety factors
at the central distributor are set to low (L). We will use this information later on to make better
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Design
point

Network
config

Total
on-hand
inventory
prod i

Total
on-hand
inventory
prod j

Design
point

Network
config

Total
on-hand
inventory
prod i

Total
on-hand
inventory
prod j

1 L-L-L 2070 279 15 H-M-M 3027 275
2 M-L-L 2367 276 16 L-H-M 2629 271
3 H-L-L 2672 279 17 M-H-M 2934 269
4 L-M-L 2248 276 18 H-H-M 3239 274
5 M-M-L 2549 273 19 L-L-H 2459 276
6 H-M-L 2854 276 20 M-L-H 2759 275
7 L-H-L 2458 273 21 H-L-H 3064 282
8 M-H-L 2761 271 22 L-M-H 2637 273
9 H-H-L 3066 275 23 M-M-H 2941 272
10 L-L-M 2241 276 24 H-M-H 3246 278
11 M-L-M 2541 274 25 L-H-H 2847 270
12 H-L-M 2845 278 26 M-H-H 3152 271
13 L-M-M 2419 273 27 H-H-H 3457 277
14 M-M-M 2722 271

Table 6.2: Full factorial experiment for products i and j with the corresponding total on-hand
inventory at 98% service level

Figure 6.2: Product i behaviour based on 27 simulations according to the full factorial design.
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Figure 6.3: Product j behaviour based on 27 simulations according to the full factorial design.

decisions when setting the parameters for the GA.
The on-hand inventory volumes of products i and j have different magnitudes, and this difference
makes them hard to compare. For this reason, the full factorial design results of products i and j are
normalized according to equation 5.2. The normalization makes products i and j comparable for
clustering purposes as shown in Figure 6.4.
Figure 6.5 shows the normalized results for two other products, which we refer to as products n and
m. As we can see, products i and j show different behaviours, while products n and m shows more
similarities in their behaviours.
For the sake of clarity, results in this section are shown only for four products. However, the illustrated
procedure is applied to all the 852 products.
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Figure 6.4: Products i and j showing normalized behaviour based on 27 simulations according to the
full factorial design.

Figure 6.5: Products n and m showing normalized behaviour based on 27 simulations according to
the full factorial design.
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Figure 6.6: Trade-off curve that enables us to select the right number of clusters via the elbow rule.

6.3.2 Clustering via k-means
Based on the results of the full factorial experiment, a product is characterized by a vector of 27
settings that summarizes its behaviour in the network. After normalizing all the 852 vectors, we
compared products’ vectors via clustering k-means as described in Section 5.2.

The approach on how to select the number of clusters k is described in Section 5.2.2. We per-
formed m = 20 independent full factorial experiments with different customer demand seed. We then
performed a k-means analysis over m independent full factorial experiments for a range of k values
to establish the true cluster label of a product. The true cluster label was then compared with the m
individual cluster labels to determine the misclassification error. Plotting the misclassification error
for a range of k values leads to the plot in Figure 6.6. Finally, using the elbow rule we were able to
select the number of clusters k = 5 from Figure 6.6 .

After selecting k=5, we partitioned the 852 products into 5 clusters via k-means, as shown
in Table 6.3. Table 6.3 shows that there are only 18 products in Cluster 3; these represent only
2.2% of the total products. In the remaining part of this thesis, products in Cluster 3 are included.
However, a second approach could be to exclude those products from the analysis and to have a
dedicated policy for each one of them.
Each product’s vector has 27 components, which makes it hard to display in the 3-D space. However,
we used PCA to reduce the 27 dimensions to three principal components that are representable in the
3-D space. By applying firstly k-means and then PCA, we were able to construct the plot in Figure
6.7; each dot in the figure represents a product. The numbers 1,2,3,4 and 5 represent the location of
the cluster’s centroids. The centroid of Cluster 3 is the most distant from the centroid of Cluster 2,
which suggests that products belonging to Clusters 3 and 2 have quite different behaviours.
Considering the results of Figure 6.4, we concluded that products i and j show different behaviours.
After performing k-means, we found that product i falls into Cluster 2 and product j into Cluster
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Figure 6.7: Results of k-means analysis with k = 5. Results are displayed in the 3-D space by using
PCA.

3. On the other hand, based on Figure 6.5, we concluded that products n and m show similar
behaviours. After k-means, we found that both product n and m belong to Cluster 4.

Cluster
number

Products in
cluster

% of
Products in

cluster
Cluster 1 384 45%
Cluster 2 105 12.4%
Cluster 3 18 2.2%
Cluster 4 269 31.5%
Cluster 5 76 8.9%
Total 852 100%

Table 6.3: Partition of 852 products in five clusters
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Feature type # of
Features

Type I 3
Type II 14
Type III 15
Type IV 15
Type V 3
Total 50

Table 6.4: Features distribution based on the three-stage network

Parameter type Parameter values
criterion { gini, entropy }
max_depth {2,3,...,10 }

max_leaf_nodes { 2,3,...,20 }
min_sample_split { 2,3,...,20 }

Table 6.5: Grid search for selecting the best combinations of parameters for the decision tree

6.3.3 Classification via decision trees
By applying the features type as described in Section 5.2.1 to the network of Figure 6.1, we defined a
total of 50 features which are distributed as described in Table 6.4.
Each product is then characterized by 50 features and a cluster label l such that l ∈ L = {1, 2, 3, 4, 5}.
Based on this information, we can train a DTree model to predict the cluster label of a product based
on its input features.

First of all, the size of the training and testing set needs to be chosen. We use the 70-30 splitting rule
which means that the original data are randomly split in a subset containing 70% of the data, which
is then used for training the DTree. The remaining 30% of the data are used to test the classifier.
However, the training set is chosen such that there is an acceptable number of products representing
all the five clusters.

Moreover, the DTree algorithm that is available on the Scikit-learn Python library takes several
parameters as input. Among them, we optimized four parameters: max_depth, max_leaf_nodes,
min_sample_split and criterion.
Based on the four parameters, we constructed a grid search for which all combinations of parameters
are tested. The score of each combination of parameters is based on the accuracy measured on the
testing sample. The grid search with all the parameters combinations is shown in Table 6.5, and we
selected the combination of parameters with the highest accuracy on the testing sample.
The optimal set of parameters is shown in Table 6.6 with a max accuracy score on the testing sample
equal to 80%. The accuracy results over the testing and training set are shown in Table 6.7.

Based on the parameters of Table 6.6, we construct the DTree shown in Figure 6.8. The DTree

Parameter type Optimal Parameter value
criterion gini
max_depth 2

max_leaf_nodes 6
min_sample_split 5

Table 6.6: Best set of parameters with 80% accuracy on the testing sample
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Data set Accuracy
Training set 83%
Testing set 80%

Table 6.7: Accuracy results of the classification tree on the training and testing set

has been trained with a training sample corresponding to 70% of the original dataset. The tree in
Figure 6.8 is the result of carefully selecting the DTree’s parameters such that the accuracy over the
testing set is maximized.

The tree in Figure 6.8 shows that among the 50 features available, only three features are used to
diversify products into five classes. These features are PoolLDC1 , PoolLDC2 and CVDC . The sample
value in the tree nodes indicates the number of training products. For example, the starting nodes
contains 596 products, which correspond to 70% of the entire product selection. Moreover, each node
contains information on how the training products are distributed within categories. For example,
the first node contains 596 products, 280 of these belongs to Class 1, 72 to Class 2, 12 to Class
3, 187 to Class 4, and 45 to Class 5. This information helps us to quantify the misclassification
error at each leaf. For example looking at Class 2 leaf, we have a misclassification error equal to
1− 70

1+70+2+18+0 = 23%. If we look at the Class 3 leaf, the misclassification error is equal to zero since
all the products in that node belong to Class 3. The leaf gets assigned the label that corresponds to
the largest class in the node.
Moreover, there are two leaves corresponding to Class 1. As it can be seen, one Class 1 leaf is
blue since the misclassification error is 50% and contains only a sample of seven Class 1 products.
Moreover, the grey Class 1 leaf shows the highest number of Class 1 products in this class (237),
which makes the blue leaf less reliable for drawing general conclusions about products in Class 1.
However, given the 50 features and the optimized tree parameters, we reached a max accuracy on
the testing sample equals to 80%. This means that we misclassify 20% of the products on average.
However, by looking at Figure 6.7, the misclassification happens for classes that are neighbours in the
clustering analysis. For example, the Class 4 leaf misclassifies 32 Class 1 products; however, Class 1
and Class 4 are neighbours in the clustering analysis.
In the last section, we combined the results of the DTree with the optimal safety factors results from
the GA. In this way, we attempt to explain why the selected tree features are relevant for setting the
optimal inventory policy that is defined for each product category.
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Figure 6.8: Classification tree based on the parameters in Table 6.6.
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6.4 Three-echelon inventory optimization
The GA is the method that is used for finding the optimal values of safety factors at upstream
locations. Three inputs for the GA needs to be defined, namely a stopping parameter, the initial
population size, and the mutation rate.
The stopping criteria are given by three different conditions: 1) a max number of iterations of 50 is
reached; 2) a convergence criterion is met; and 3) a no convergence criterion is met. The GA stops as
soon as one of those conditions is met. For the convergence criterion, we stop the GA if the absolute
difference between the new and the old solution is less than 0.1% for five consecutive iterations. For the
non-convergence criterion, we stop the GA if no improved solutions are found after 10 consecutive itera-
tions. The initial chromosomes population is set equal to 10 while the mutation rate is set equal to 0.1.

Based on the results of the DTree, we classify products into five categories. For each upstream
location in the network, we define five safety factor variables for each product category. This means
that a chromosome for the GA has the following structure:

k =

 kDC,1 kDC,2 kDC,3 kDC,4 kDC,5
kLDC1 ,1 kLDC1 ,2 kLDC1 ,3 kLDC1 ,4 kLDC1 ,5
kLDC2 ,1 kLDC2 ,2 kLDC2 ,3 kLDC2 ,4 kLDC2 ,5

 (6.1)

where ki,j represents the safety factor at location i for product category j with i ∈ {DC,LDC1 , LDC2}
and j ∈ {1, 2, 3, 4, 5}.

6.4.1 Initial population for the genetic algorithm
The first step of the GA is to generate an initial population in the form of safety factors at upstream
locations. Following the work of van Liempd, each gene of a chromosome is generated by randomly
drawing from a uniform distribution U(0, 2). This implies that we allow a maximum safety factor
value of two and a minimum value of 0.
However, we can use the results of the full factorial design and clustering to generate a better initial
population. To have a representative behaviour of each cluster, we used the corresponding centroids.
The five centroids consist of five vectors with a length of 27. Each of the 27 components corresponds
to a design point of the full factorial design. If for each centroid we rearrange the vector elements
in ascending order, we can construct plots as seen in Figures 6.9 and 6.10. Looking at Figure 6.9a
we see a black line representing the centroid behaviour for Cluster 1 and the grey lines representing
the behaviour of all the products belonging to Cluster 1. All the products’ responses are ordered
according to the indices of the centroid that are ordered in ascending order. This ordering is done
because we are interested in finding the optimal safety factors configuration that corresponds to the
lowest inventory level. However, picking the minimum value based on the centroid ordering could
lead to completely wrong results due to deviation of single products behaviour from the centroid’s
behaviour. For this reason, we constructed the box plot of Figure 6.9b. On the x-axis, we used the
already mentioned three-digit notation X-X-X where the first digit refers to the safety factor value at
Central DC, the second digit refers to the safety factor value at Local DC1, and the third digit refers
to the safety factor value at Local DC2. In reading the box plot in Figure 6.9b from left to right,
we note that for the first 11 instances, the value of the safety factor at the central distributor is set
either to L (k = 0) or M (k = 1), and that the box plot of the first configuration L-H-M does not
overlap with the box plot of the 12th configuration M-L-M. This suggests that for products belonging
to Category 1, it is highly unlikely that the optimal inventory setting corresponds to the case where
at the central DC, the value of safety factor is set to H (k = 2). By keeping this in mind, we draw
from a uniform distribution U(0, 1.25) when generating the initial population of chromosomes for the
gene corresponding to Category 1 at the central DC location.
However, Figure 6.10 shows that the situation for products in Category 3 is much more volatile
compared to products in Category 1. Indeed, if we look at the box plot of Figure 6.10b from left to
right, we note that for the first 8 configurations, the value of safety factor at the central DC is set
to L, M, and H. This means that for products in Category 3 at the central DC, we cannot make
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Network
location Class 1 Class 2 Class 3 Class 4 Class 5

DC U(0, 1.25) U(0, 1.25) U(0, 2) U(0, 1.25) U(0, 1.25)
LDC1 U(0.75, 2) U(0, 2) U(0, 2) U(0, 2) U(0.75, 2)
LDC2 U(0, 2) U(0, 2) U(0, 2) U(0, 2) U(0.75, 2)

Table 6.8: Uniform distribution types for the creation of the initial population

clear assumptions about the optimal value of the safety factor. For this reason, we initialized the
corresponding gene by drawing from a uniform distribution U(0, 2).
The remaining plots for Clusters 2, 4 and 5 are shown in Appendix A.
Finally, we generated the initial population by properly drawing from the uniform distributions
shown in Table 6.8. The initial chromosome k is generated as shown in equation 6.2. We used a
population size of 10 chromosomes; this means that by drawing 10 times out of equation 6.2, we are
able to generate the initial population for the GA.

k =

 U(0, 1.25) U(0, 1.25) U(0, 2) U(0, 1.25) U(0, 1.25)
U(0.75, 2) U(0, 2) U(0, 2) U(0, 2) U(0.75, 2)
U(0, 2) U(0, 2) U(0, 2) U(0, 2) U(0.75, 2)

 (6.2)
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(a)

(b)

Figure 6.9: Cluster 1 graphs: (a) Behaviour of products in Cluster 1; (b) box plot for products in
Cluster 1.
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(a)

(b)

Figure 6.10: Cluster 3 graphs: (a) Behaviour of products in Cluster 3; (b) box plot for products in
Cluster 3.
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6.4.2 Benefits due to initial population and class crossovers
In this section we present the benefits of using an initial population based on drawing from uniform
distributions, as described in equation 6.2 instead of drawing from a uniform distribution U(0, 2)
as done by van Liempd. The comparison of the different approaches can be seen in Figure 6.11,
which shows the results of the GA; the figure shows the best results found by the GA at a given
iteration. For the blue lines, the initial population is selected by randomly drawing from a uniform
distribution U(0, 2); for the black lines, the initial population is selected by drawing from uniform
distribution U(x, y) where x and y are carefully selected for each gene based on equation 6.2. For all
the independent runs in Figure 6.11, the GA stopped after the convergence criterion is reached. We
used a class crossover for the GA with a chromosome structure as described in equation 6.2 with
five classes of products per upstream location. Figure 6.11 shows that for all the independent runs,
the GA converges to a better solution using the differentiated drawing for the initial population.
Moreover, on average, the GA converges faster to an optimal solution when the differentiated drawing
is used.

The class crossover approach described in Section 5.3.1 is compared with the parameterized uniform
crossover used by van Liempd. The comparison results are shown in Figure 6.12. The blue lines show
the results of three independent runs of the GA using the parameterized uniform crossover, while
the black lines show the results based on the class crossover. First of all, Figure 6.12 shows the best
results found by the GA at each iteration. The main observation is that the solutions based on the
parameterized uniform crossover show less convergence behaviours; on average, the best solutions
are found in the early iterations, after which the solutions of the GA start to diverge. For all the
parameterized uniform crossover solutions, the GA stops because the non-convergence stop criterion
is met; in other words, this means that after the best solution is found, the next 10 iterations do not
provide any improved solutions. On the other hand, the solutions based on the class crossover show
a much better convergence behaviour, and the GA finds better solutions as the number of iterations
increase. Moreover, for the class crossovers solutions, the GA stops because the convergence criterion
is met.

6.4.3 Optimal k-factors
In this section, results are presented based on the GA version in which the selective initial popula-
tion is used together with the class crossovers. Table 6.9 shows the optimal safety factors, which
correspond to the optimal solution found by the GA. In the table, the optimal average safety factors,
corresponding to three independent runs, are shown together with the 95% confidence intervals. For
example, the optimal average safety factor at the central DC for products belonging to Class 1 is
0.16 with a 95% confidence interval given by [0.11, 0.2]. It is also worth mentioning that the results
in Table 6.9 suggest using lower safety factors at the central DC compared to higher safety factors at
the local DCs. The results obtained in Table 6.9 correspond to the scenario in which a target service
level of 98% is reached at the retailers for each product.

Table 6.10 shows the total on-hand inventory and the percentage of the total inventory hold at
different locations based on the optimal safety factors of Table 6.9. The results are provided for three
different service levels. The obvious result is that by reducing the service level, the total on-hand
inventory reduces. Moreover, it is interesting to note how the percentage of on-hand inventory hold
upstream increases by reducing the target service level at the retailers. For example, 21.5% of the
total on-hand inventory is held at the central DC for a target service level of 98% at the retailers,
while 28.7% of inventory is kept at the central DC for a target service level of 85% at the retailers.
This behaviour is somehow expected since more inventory is stocked closer to the customers in order
to reach a high service level target. It should be mentioned that the whole procedure for building
a classification method is optimized for a target service level of 98%. This means that in Table
6.10, we used the product categories based on a 98% service level to show the on-hand inventory
results for different target service levels. Furthermore, we expect that the product categories are
robust regarding small changes in the target service level. However, by looking at the results in Table
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Figure 6.11: The blue lines show the GA iteration results for three independent runs obtained by
randomly drawing initial populations from a uniform distribution U(0, 2). The black lines show the
GA iteration results for three independent runs; the initial population for this is obtained by drawing
from the uniform distributions as described in Table 6.8.

Figure 6.12: The blue lines represent the GA results obtained by performing single gene crossovers
for three independent runs. The black lines represent the GA results obtained by performing class
crossovers for three independent runs.
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Central DC Class 1 Class 2 Class 3 Class 4 Class 5
Safety factor 0.16 0.32 0.35 0.12 0.53

95% CI [0.11,0.20] [0.21,0.44] [0.18,0.52] [0.04,0.20] [0.39,0.68]

Local DC1 Class 1 Class 2 Class 3 Class 4 Class 5
Safety factor 1.58 0.32 1.52 0.84 1.44

95% CI [1.46,1.70] [0.07,0.58] [1.22,1.83] [0.51,1.17] [1.24,1.65]

Local DC2 Class 1 Class 2 Class 3 Class 4 Class 5
Safety factor 0.21 0.65 0.88 1.26 1.56

95% CI [0.06,0.35] [0.26,1.03] [0.55,1.2] [0.68,1.83] [1.30,1.81]

Table 6.9: Optimal safety factors per product category and upstream location for a 98% service level
at the retailers

Service level 98% 90% 85 %
Total on-hand inventory 26100 17400 14700
% of inventory units at Central DC 21.5% 26.8% 28.7%
% of inventory units at Local DC1 18.9% 26.1% 28.0%
% of inventory units at Local DC2 14.4% 19.5% 20.9%
% of inventory units at Retailer 1 1.4 % 0.9% 0.8%
% of inventory units at Retailer 2 4.6% 2.8% 2.2%
% of inventory units at Retailer 3 4.1% 2.48% 2.0%
% of inventory units at Retailer 4 6.9% 4.2% 3.4%
% of inventory units at Retailer 5 5.5% 3.2 % 2.6%
% of inventory units at Retailer 6 5.9% 4.1 % 3.5 %
% of inventory units at Retailer 7 1.7% 1.1% 0.96%
% of inventory units at Retailer 8 2.6% 1.5 % 1.2 %
% of inventory units at Retailer 9 3.2% 1.9 % 1.5 %
% of inventory units at Retailer 10 2.5 % 1.4 % 1.0%
% of inventory units at Retailer 11 2.2% 1.2% 0.9%
% of inventory units at Retailer 12 4.3 % 2.8% 2.3%

Table 6.10: Inventory results for three different service level

6.10, we see that a 8% reduction in service level generates almost 18% increase in the inventory hold
upstream compared to the 98% service level case. This is an indication that the whole classification
procedure should be repeated for achieving optimal results based on the 90% service level target at
the retailers.
Based on the optimal k-factors of Table 6.9, we can see how the on-hand inventory is distributed
among product classes-location combinations. Results are shown in Table 6.11. For example, we
can see that on-hand inventory for products in Class 1 is almost equally split between upstream and
downstream locations. Almost 49% of the inventory is kept upstream and 51% is at the retailers
for Class 1 products. A different dynamic can be observed for Class 3 inventory for which 71.4% of
on-hand inventory is stored upstream (DC, LDC1, and LDC2) and only 28% at the retailers.
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Category Class 1 Class 2 Class 3 Class 4 Class 5
Total on-hand inventory 11745 522 1827 5220 6786
% of inventory units at Central DC 19% 15.4% 30.8% 15.6 % 28.0 %
% of inventory units at Local DC1 19.7% 9.6 % 25.7% 13.5% 20.7%
% of inventory units at Local DC2 10.3% 11.4% 14.9% 15.7% 19.7%
% of inventory units at Retailer 1 2.0% 0.0 % 1.6% 0.5% 1.3%
% of inventory units at Retailer 2 5.5% 4.7% 3.2% 5.4% 3.0%
% of inventory units at Retailer 3 4.8% 10.1% 2.3% 5.7% 2.0%
% of inventory units at Retailer 4 7.7% 16.5% 3.8% 7.8% 5.0%
% of inventory units at Retailer 5 6.4% 5.6% 3.0% 6.8% 3.7 %
% of inventory units at Retailer 6 5.6% 5.8 % 3.6% 8.4% 5.4%
% of inventory units at Retailer 7 2.3% 0.0% 1.8% 0.7% 1.6 %
% of inventory units at Retailer 8 3.0% 2.4% 1.7% 3.0% 1.7%
% of inventory units at Retailer 9 3.7% 7.8 % 1.6% 4.4% 1.6%
% of inventory units at Retailer 10 2.8% 6.0% 1.4% 2.9% 1.9 %
% of inventory units at Retailer 11 2.6% 2.1% 1.3% 2.6% 1.6%
% of inventory units at Retailer 12 4.5% 2.6% 3.1% 6.7% 2.6 %

Table 6.11: Optimal inventory statistics per category groups for a 98% target service level
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Central DC AX AY AZ BX BY BZ CX CY CZ Tot
# products 228 11 0 139 110 0 13 262 89 852
volume % 77.6 % 2.38 % 0 % 9.5% 5.5% 0% 0.31 % 4.2% 0.46% 100%

Local DC1 AX AY AZ BX BY BZ CX CY CZ Tot
# products 103 136 0 3 244 2 0 130 234 852
volume % 48.6% 31.4% 0% 0.24% 14.7% 0.1% 0 % 2.8% 2.2% 100%

Local DC2 AX AY AZ BX BY BZ CX CY CZ Tot
# products 201 38 0 93 154 1 4 246 115 852
volume % 70.5% 9.5% 0% 6.6% 8.3% 0.04% 0.1% 4.2% 0.7% 100%

Table 6.12: ABC-XYZ categorization of products per upstream location

6.4.4 Genetic algorithm comparison with ABC-XYZ
In this section, we compare the optimal results obtained in the previous section with the optimal
results obtained by using the ABC-XYZ categorization.
For ABC, we categorized products according to their value. However, since we do not have any price
information, we used product volume as a representation of value. For the ABC, we used an 80/95
threshold, which means that A-products are responsible for 80% of the total volume, B-products
are responsible for 15% of the total volume, and C-products are responsible for the remaining 5%
of the total volume. For the XYZ, we used a 0.4/1 coefficient of variation threshold. We labelled
all the products with a coefficient of variation less than 0.4 as X-products, while Y-products are
all those with a coefficient of variation between 0.4 and 1, and Z-products all have a coefficient of
variation greater than 1. Moreover, the ABC–XYZ categorization is applied per location; for example,
this means that a given product belongs to category AY at the local DC, and it may belong to
category BX at the central DC. Table 6.12 shows how products are distributed within the ABC–XYZ
categories. At the central DC there are relatively more X products than Y or Z products. This is a
clear example of pooling effect in which the aggregated demand upstream is more stable than the
disaggregated demand downstream.
In our case, we have a network consisting of three upstream locations; this means we defined
ABC–XYZ categories at three different locations. The chromosome structure for the GA based on
the ABC–XYZ categorization looks as follows:

k =

 kDC,AX kDC,AY kDC,AZ kDC,BX kDC,BY kDC,BZ kDC,CX kDC,CY kDC,CZ
kLDC1,AX kLDC1,AY kLDC1,AZ kLDC1,BX kLDC1,BY kLDC1,BZ kLDC1,CX kLDC1,CY kLDC1,CZ

kLDC2,AX kLDC2,AY kLDC2,AZ kLDC2,BX kLDC2,BY kLDC2,BZ kLDC2,CX kLDC2,CY kLDC2,CZ

 (6.3)

However, the variables kDC,AZ ,kDC,BZ , kLDC1,AZ , kLDC1,CX and kLDC2,AZ are dummy variables
since there are no products corresponding to these categories.

Figure 6.13 shows the GA iterations both for the ABC-XYZ categorization and for the previously
described five-class categorization. For each categorization method, three independent GA runs are
performed with a 98% service level target for all products at the retailers. The starting solutions based
on the ABC-XYZ are always higher than the starting solutions based on the five-class method. This
is because the initial populations for the two methods were generated differently. For the five-class
solutions, we generated a sub-optimal initial population by randomly drawing from the distributions
described in Table 6.8, while for the ABC-XYZ solutions, we generate the initial population by
drawing from the uniform distribution U(0, 2). The sub-optimal initial population cannot be applied
to the ABC-XYZ solutions since it follows after the DOE and the clustering analysis. Despite the
total on-hand inventory units being quite close among all the GA runs, the curves based on the
five-class categorization are always below the ABC-XYZ curves. The results based on the five-class
method are on average 1% better than the results based on the ABC-XYZ categorization. We could
conclude that performance-wise, the two methods show almost identical results. However, it is
remarkable that we were able to reach the same performance of the ABC-XYZ categorization by
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Figure 6.13: GA results based on ABC-XYZ categorization compared with the five-class categorization.
Comparison is done by reaching the same 98% service level at retailers.

only using five product categories per location. We would expect that by increasing the number of
categories we would have a better performance due to a higher policy diversification for products.
This shows that with the five-class method, we classify on dimensions that are more relevant to the
scoping of multi-echelon inventory reduction.

Table 6.13 shows the optimal average safety factors for the ABC–XYZ categorization logic. In
addition to the average results, the 95% confidence interval for each safety factor is also shown. More-
over, there are no optimal safety factors for some categories since no products fall into those categories.
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Central DC AX AY AZ BX BY BZ CX CY CZ
Safety factor 0.14 0.8 - 0.28 0.4 - 0.29 0.14 0.6

95% CI [0,0.24] [0.65,1.03] - [0,0.4] [0,0.74] - [0.1,0.5] [0.1,0.23] [0.0,1.2]

Local DC1 AX AY AZ BX BY BZ CX CY CZ
Safety factor 1.1 0.46 - 1.26 0.6 1.24 - 0.9 0.7

95% CI [0.5,1.6] [0.1,0.9] - [1.1,1.4] [0,1.1] [0.8,1.6] - [0.6,1.24] [0.5,0.9]

Local DC2 AX AY AZ BX BY BZ CX CY CZ
Safety factor 0.58 0.8 - 1.33 0.6 1.27 0.63 1.11 0.55

95% CI [0.2,0.9] [0.3,1.3] - [0.8,1.9] [0.2,1] [0.8,1.7] [0.3,1] [0.9,1.3] [0,1.1]

Table 6.13: Optimal safety factors based on the ABC-XYZ categorization, for which a 98% service
level is reached
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6.5 Overall approach
In this section, the overall approach is summarized. Here, we assume that we are a company interested
in setting an optimal inventory policy per product category, since a policy for each individual product
is too hard to maintain.
First of all, a classification tree is designed by following the tree steps approach that involves DOE,
clustering, and DTrees. The clustering analysis points out how many product categories are needed,
while the DTree shows which features need to be considered in order to assign products to classes.
The second step is to determine the optimal safety factor values defined per product category at
upstream location. The optimal safety factors are determined via the GA described in Section 5.3.
The final step is to combine the classification tree results with the optimal safety factors results. The
overall and final results can be seen in Figure 6.14. The DTree in Figure 6.14 is optimized for a 98%
service level at the retailers since the clustering analysis is based on a DOE for which we set a 98%
service level target at the retailers. This means that if the company wants to reduce or increase
the service level then the overall procedure should be repeated. However, in practice, the service
level constraints do not change overnight. This means that the frequency of updating the DTree of
Figure 6.14 depends on the changes on the service level. Moreover, the DTree of Figure 6.14 should
be updated in order to face customer demand changes as well.
However, the advantage of having a tree as in Figure 6.14 is that the optimal inventory parameters
are easily accessible by only looking at few features. The complexity of the whole procedure pays off
by delivering a tool that is easy to use.

Looking at Table 6.11, we can see that there is on average, a relatively high percentage of in-
ventory held at the central DC. This may seem in contrast with the optimal safety factor values
at the central DC that are set to relatively low numbers for all classes. However, the central DC
is the only location directly connected to the external supplier. This means that all goods need to
flow through the central DC before being distributed downstream in the supply chain. This effect,
together with the use of a review period, makes sure that there is always an intrinsic relatively high
percentage of inventory stocked at the central DC.
Some general characteristics of the five classes of products are listed:

• Class 1: Table 6.11 shows that the inventory is kept balanced between upstream and down-
stream locations with a percentage split of approximately 49% and 51% respectively. Looking
at the classification tree of Figure 6.14, we see that there are two leaves labelled as Class 1.
However, the blue leaf is characterized by a high misclassification error and with few Class 1
observations in the node. To draw general conclusions about Class 1 products, we look at the
tree patch that leads to the grey Class 1 leaf. Class 1 products are characterized by a relatively
low value of the PoolLDC1 ( ≤ 0.556) and PoolLDC2 ( ≤ 0.587) features which make them a
good candidate for demand pooling. As stated in the features definition, the combination of
the Pool feature and the CV feature should be enough to establish whether demand pooling
can add any value. In investigating further, we note that products in Class 1 are characterized
on average by a higher CV at Retailers 1 to 6 compared to Retailers 7 to 12. Moreover, in
looking at Table 6.11, we note that most of the demand pooling happens between Local DC1
and Retailers 1 to 6. This effect is also confirmed by the optimal values of safety factors that
are higher at the Local DC1 compared to the Local DC2.

• Class 2: Looking at Table 6.11, we see that approximately 36.4% of inventory is held upstream
while the remaining 63.6% is pushed at the retailers. This is also confirmed by the value of
the optimal safety factors, which are set to relatively low values at the upstream locations.
Moreover, by looking at the DTree, we see that Class 2 products are characterized by a relatively
high value of the PoolLDC1 and PoolLDC2. This is due to the fact that the products in Class
2 are characterized by low points of sales at the retailers. This means that customer demand
for Class 2 products takes place at one or two retailers, and because of this there is no need to
keep inventory centrally.
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• Class 3: Table 6.11 suggests a pooling effect between the local DCs and the central DC and
between Local DC1 and Retailers 1 to 6. We see that 71.4 % of inventory is kept upstream
and only 28.6% at the retailers. The classification tree assigns products to Class 3 when
the coefficient of variation at the central DC is quite small ( ≤ 0.166). This suggests that
aggregating all the incoming demand at the central DC generates a stable demand pattern
versus a potentially less stable demand at the retailers.

• Class 4: Table 6.11 shows that approximately 55% of the inventory is held at the retailers while
the remaining 45% is almost equally split among the upstream locations. The classification
tree assigns products to class 4 given a PoolLDC2 > 0.587 , a PoolLDC1 ≤ 0.805 and a
CVDC > 0.266.

• Class 5: 68.4% of on-hand inventory is held upstream and only 31.6% at the retailers. This
is partially confirmed by the optimal value of safety factors that have a relatively high value
at Local DC1 and DC2. Moreover, products in Class 5 are characterized by a value of the
PoolLDC2 ≤ 0.587, a PoolLDC1 > 0.556 and a CVDC > 0.166.

The DTree offers some intuitive results for some products classes (e.g., Classes 1, 2, and 3) while
for some other classes, results are harder to interpret. This is mostly due to the fact that some
features are correlated to one another. For example, we defined 15 coefficient of variation features
that correspond to the 15 locations in the network. However, based on the tree results, we see that
only the CV feature at the central DC is selected. This may be because the CV at the central DC is
related to the demand volatility at the local DCs, and the CV is also related to the demand volatility
at the retailers. For example, we prefer to see the CV features at the retailers to have a direct
interpretation of the demand volatility downstream. For example, the CVDC ≤ 0.166 for products in
Class 3 tells us that aggregating all the normally distributed demands coming from the 12 retailers
generates a stable demand at the central DC. However, does this mean that the demand downstream
was much more unstable or that it was already stable? Unfortunately, we are not able to answer the
question by looking at the DTree results in which only the CVDC is used.
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Figure 6.14: Classification tree with optimal safety factors for a 98% service level at the retailers for
each product.
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7 | Conclusion

In the first part of this thesis, we presented a product classification method which adapts to the
underlying supply chain network and suggested which are the most valuable features of the network.
The identified features were then used to establish which product belongs to which category. The
second part of the thesis focused on finding the optimal safety stocks levels at all upstream locations
in order to deliver the desired end-customer service levels at minimum network inventory. The results
were tested on a three-stage distribution network with a total of 852 products.
When given known safety stock levels at each location in the network, the discrete-event simulation
tool allows us to measure the total network inventory under uncertain demand. However, the
simulation tool by itself does not guarantee that a certain target service level is reached at the
retailers. For this reason, a two-step approach was used: firstly, we measured the realized service
levels at the retailers once the simulation had been completed, and secondly we adjusted the safety
stocks at the retailers level (via the SSAP) such that a given target service level can always be
reached. The discrete-event simulation together with the SSAP represent the tool box that allows us
to evaluate the inventory costs of the three-stage network for for a given service level and a given
set of safety factors at upstream locations. The safety stock levels at each upstream location were
determined via the policy given by equation 5.1.

We found product categories by studying how the inventory costs curve changed with the safety
factors, and this was done for each product. Consequently, products with a similar inventory cost
curve are likely to be placed in the same product category. This means that the proposed categoriza-
tion method is tailor-made for situations where the main cost function is represented by inventory
costs. However, the approach could be easily extended for new metrics used for measuring similarities
among products. In the research, the inventory cost curve of each product were constructed by using
the full factorial experimental design. More precisely, each experiment consisted of running both
the discrete-event simulation and SSAP for a given service level and a given set of safety factors at
upstream locations. For each experiment, the total on-hand inventory was then measured. By running
a finite number of experiments, the full factorial design allows us to capture how the inventory cost
curve changes with the safety factor values for a given target service level. After all the simulations
are performed based on the full factorial design, we made use of k-means clustering technique to
capture similarities among products. The k-means analysis resulted in partitioning the products into
five clusters. The five-cluster result from k-means suggests that products should be divided into
five groups. However, we do not have any prior information regarding the relevant dimensions or
features that lead a product to belong in one of the five clusters. In order to understand which are
the relevant dimensions or features for the given network, we made use of a classification DTree. The
DTree was trained using 50 product features and the clustering results. The results of the trained
tree indicate that three out of 50 features are relevant for making a clear distinction among the five
product clusters. Moreover, the power of such a DTree is that it is able to assign a category to a
product based on only its features. This means that once a new product is introduced, there would
not be any need to rerun the whole process; instead, we could simply look at its features in order to
assign a category to it by using the DTree. The accuracy of the DTree on the testing set is 80%. For
the inventory optimization section, we assigned each product to a class based on the Dtree prediction.
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Once the products were divided into five categories, we moved to the second topic of the the-
sis, which is based on finding the optimal safety stock levels for the upstream locations via the GA.
One of the first steps of the GA is to generate an initial population of chromosomes. Moreover, based
on the full factorial design results, we were able to generate the already sub-optimal initial population.
Using sub-optimal initial populations instead of a random initial populations, two benefits can be
seen, namely that the GA converge to optimal solutions more quickly, and the GA was able to
reach lower inventory costs on average. One of the main operators for the GA is represented by
the crossover. This operator is responsible for combining parents’ gene to generate a new offspring.
Compared to the parametrized uniform crossover approach by van Liempd, we used a class crossover
approach instead, which shows a much more stable convergence behaviour. One reason to explain
why the class crossovers seems to work better is attributed to the fact that it accounts for a potential
correlation of safety factors at different locations. For example, if the optimal inventory costs for a
certain product category is to have high safety stocks at the central DC and low safety stocks at the
local DCs with class crossovers, we are able to preserve this information once it is available in the
chromosome. It is also interesting to see how the amount of inventory hold at upstream locations
changes with the service level. For a high service level, more inventory is held at the retailers. Indeed,
to fulfil a high service level, more stocks are kept closer to the customers’ demand. On the other
hand, when we reduce the service level, we note that more inventory is held upstream in the supply
chain.
The GA provided the optimal set of safety factors per each of the five product classes at the upstream
locations. Then, we integrated the Dtree results with the GA results. This led to a Dtree that not
only predicts the class of a product but it also predicts the optimal safety factor values at upstream
locations to be able to reach a given target customer service level.
The power of such a DTree is that it assigns a class to a product together with the optimal inventory
settings by only looking at few features. This means that if new products are introduced, we are able to
predict their classes and their optimal inventory settings by simply using their corresponding features
to access the DTree. In conclusion, the lengthy approach delivers an easy to use tool that requires spo-
radic maintenance to face, for example, big changes in customers’ demand and service level constraints.

Finally, we compared the optimal GA solutions based on 5-classes approach with the ABC-XYZ
categorization approach. For the ABC-XYZ scenario, we had chromosomes consisting of 27 genes,
while for the 5-categories we had chromosomes formed by 15 genes. Firstly, we saw that, based on
tree independent runs, the total on-hand inventory based on the 5-classes approach was always lower
than the ABC-XYZ case. Secondly, the GA for the 5-class approach converged much quicker to an
optimal solution than the ABC-XYZ approach. The GA for the ABC-XYZ case took, on average, 26
iterations to converge to an optimal solution while for the 5-classes approach it took, on average, 15
iterations. The difference in convergence speed could be explained by the fact that for the ABC-XYZ
case we have longer chromosomes, hence, more gene combinations to explore. Moreover, the starting
solutions for the 5-classes approach were always lower than the ABC-XYZ case. This was due to
the fact that, for the 5-classes case, we used sub-optimal initial populations. Furthermore, with
the ABC-XYZ categorization nine product categories were formed at each upstream location versus
five product categories based on the proposed method. Conceptually, we would have expected that
a higher product diversification would lead to better results in terms of inventory costs reduction.
However, this was not the case since the optimal results based on the 5-classes approach were always
better than the ABC-XYZ approach even if the improvement was, on average, only 1%.
This indicates that a higher product diversification if not properly done may not automatically
lead to better results. The proposed 5-classes method not only performed slightly better than the
ABC-XYZ, but it also reduced the complexity of the product portfolio since less categories were
formed compared to ABC-XYZ. The reduction in complexity also brought some benefits for the
GA, that converged to optimal solutions in shorter times since there were less genes combinations to
explore.
The ABC-XYZ categorizes products based on two dimensions that might not be optimal for the
replenishment policy based on product categories. For the proposed method, however, we used an
opposite approach. First, we study the inventory cost curve of each product and then we captured
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the relevant dimensions that should be used for categorization.

Looking at the limitations of this research, computing time represents one of the biggest limi-
tations. We run the analysis on a intel core i7-3630QM with 8GB RAM machine and it took approx.
0.06 s per product to perform one simulation run together with the SSAP. This means that for 852
products the simulation run + SSAP took around 51 seconds. The full factorial design consists of 27
independent simulation runs which corresponds to a total time of approx. 23 minutes (51 seconds x
27). To find the optimal solutions via the GA with an initial population of 10 and a total of 20 GA
iterations it took approximately 51s · 10 · 20 = 2.8h.
Full factorial design is used to understand how products behave within the network. In this case,
the full design consists of 33 experiments since we have three upstream locations and three levels
of safety factors. To be able to perform 27 simulations it took approximately 23 minutes based on
852 products. However, for bigger and more complex problems the computing time can grow quite
rapidly. Let’s for example consider a problem with 2000 products and with five upstream locations
network. To be able to run a full design we will need 35 = 243 experiments. Considering the running
time of 0.06 per product per experiment, it will take approx 0.06s · 2000 · 243 = 8.1h to be able to
perform the full design of experiments. A way to partially contain the high computing time would be
to consider fractional factorial design instead of full factorial design. Fractional experimental design
consists of carefully choosing a subset (fraction) of the experimental runs of a full factorial design.
However, since independent experiments are carried out, another potential improvement would be to
use parallel computing in which multiple experiments are performed simultaneously.

Moreover, another limitation is represented by the features used for training the DTree. To be able
to train the decision tree, all product features should be defined beforehand. For a specific problem
it may be trivial to retrieve all the most important features. However, in a multi-echelon context, it’s
far from trivial to think beforehand to all the dimensions/features that might have an important role
in determining the optimal inventory settings. The risk is then to leave out some important features
that won’t be used to train the decision tree. The approach used in this research was to simply list
all the features that we could think of based on the data available. Moreover, an important feature
to take into account in future work is the Minimum Order Quantity (MOQ) coverage. A high MOQ
coverage plays already a safety role against inventory stock-out. This means, for example, that we
would expect a low safety factor value for product categories with a high MOQ coverage.
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Appendices
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A | Genetic algorithm initial pop-
ulation
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(a)

(b)

Figure A.1: (a) Behaviour of products in category 2; (b) box plot for products in category 2.
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(a)

(b)

Figure A.2: (a) Behaviour of products in category 4; (b) box plot for products in category 4.
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(a)

(b)

Figure A.3: (a) Behaviour of products in category 5; (b) box plot for products in category 5.

69



Bibliography

[1] Axsäter, S. (2000). Inventory Control, Springer Verlag, 3rd edition, ISBN 978-3-319-15729-0.

[2] Averill, M. Law. (2007). Simulation modeling & analysis, 4th edition, ISBN 978-007-125519-6.

[3] Brekelmans, R., C., M. (2013). Lecture Notes (35V5A8) Inventory Management, Tilburg Univer-
sity.

[4] Calinski, T., Harabasz J. (1974). A dendrite method for cluster analysis. Communications in
Statistics, Vol 3, 1–27.

[5] Celebi, D. (2015). Inventory control in centralized distribution network using Genetic Algorithms:
a case study. Computers Industrial Engineering, Vol 87, 532-539.

[6] Chen, F., R. Samroengraja (2000). The Stationary Beer Game. Production and Inventory
Management, Vol 9, 19-30.

[7] Clark, A. J., H. Scarf (1960). Optimal Policies for a Multi-Echelon Inventory Problem. Management
Science, Vol 5, 475-490.

[8] De Kok, A. G., Grob, C., Laumanns, M., Minner, S., Rambau, J., Schade, K. (2018). A
typology and literature review on stochastic multi-echelon inventory models. European Journal
of Operational Research, Vol 269(3), 955-983.

[9] Ernst, R.,Cohen, M.A. (1990).Operations Related Groups (ORGs): A Clustering Procedure for
Production/Inventory Systems. Journal of Operations Management, Vol 9, 574-598.

[10] Errasti, A.,Chackelson, C.,Poler, R. (2010). An Expert System for Inventory Replenishment
Optimization. International Conference on Information Technology for Balanced Automation
Systems, 129-136.

[11] Ester, M., H. P. Kriegel, J. Sander, and X. Xu (1996). A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining, 226–231.

[12] Fokoue, E., Clarke, B., Zhang, H. H. (2009). Principles and Theory for Data Mining and Machine
Learning, ISBN-13: 978-0387981345.

[13] Ford Dickie H. (1951). ABC Inventory Analysis Shoots for Dollars, Not Pennies. Factory
Management and Maintenance, Vol 109, 92-94.

[14] Friedman J.(2001). Greedy function approximation: a gradient boosting machine. Annals of
Statistics, Vol 29, 1189–1232.

[15] Gudum,C.K., de Kok, T.G.(2002). A safety stock adjustment procedure to enable target service
levels in simulation of generic inventory systems (No.1). Copenhagen Business School, Department
of Management Science and Statistics.

70



[16] Gunther, H.O., Meyr, H.(2009). Supply Chain Planning, Springer Verlag, 1st edition, ISBN
978-3-540-93774-6.

[17] Guvenir,H.A., Erel, E. (1996). Multicriteria inventory classification using a genetic algorithm.
European journal of operational research, Vol 105, 29-37.

[18] Hastie, T., Tibshirani, R., Friedman, J. (2008). The Elements of Statistical Learning, 2nd edition
(Springer), ISBN-13: 978-0387848570.

[19] James, G, Witten, D., Hastie, T., Tibshirani, R. (2017). Tree-Based Methods. An Introduction
to Statistical Learning: with Applications in R. New York: Springer, 303–336.

[20] Holland, J.H.(1975). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence. ISBN: 978-0-262-27555-2.

[21] Jain, A.K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, Vol
31, 651–666.

[22] Jolliffe, I.T. (2002). Principal Component Analysis, 2nd edition (Springer), ISBN-13: 978-
0387954424.

[23] Kannan, G., Sasikumar, P., Devika, K. (2010). A genetic algorithm approach for solving a closed
loop supply chain model: A case of battery recycling. Applied Mathematical Modelling, Vol 34,
655-670.

[24] Klosterhalfen S. (2010). Multiple sourcinging Single-and Multi-echelon Inventory Sys-
tems.Ph.D.thesis.University of Mannheim,Mannheim,Germany.

[25] Mitchell, M. (1998). An introduction to genetic algorithm. MIT press.

[26] Nahmias, S. Production & operations analysis, 6th edition, ISBN 978-0-0771-5900-9.

[27] Peter J. R. (1987). Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis. Computational and Applied Mathematics, Vol 20, 53–65.

[28] Ramanathan, R. (2004). ABC inventory classification with multiple-criteria using weighted linear
optimization. Computers and operations research, Vol 33, 695-700.

[29] Silver, E.A.,Peterson, R.(1985). Decision Systems for Inventory Management and Production
Planning, 2nd edition, Wiley, New York, NY.

[30] Silver, E.A., Peterson, R. (1998). Inventory management and production planning and scheduling.

[31] Simchi-Levi, D., Kaminsky, P.,Simchi-Levi E. (2002). Designing & Managing the Supply Chain,
Second Edition (66). ISBN-13:978-0071214049.

[32] Simchi-Levi, D., Zhao, Y. (2011). Performance Evaluation of Stochastic Multi-Echelon Inventory
System: A survey. Advances in Operations Research, Vol 2012, article ID 126254.

[33] Srinivasan, M., Moon, Y.B. (1999). A comprehensive clustering algorithm for strategic analysis
of supply chain network. Computers & Industrial Engineering, Vol 36, 615-633.

[34] Van Liempd, M. (2016). Stochastic optimization of safety stock levels in multi-echelon networks.
MSc Thesis, Tilburg University.

[35] https://en.wikipedia.org/wiki/Pareto_principle [visited 28 April 2019].

[36] https://en.wikipedia.org/wiki/Fractional_factorial_design [visited 28 April 2019].

[37] https://en.wikipedia.org/wiki/Elbow_method_(clustering) [visited 28 April 2019].

[38] https://scikit-learn.org/stable/modules/tree.html [visited 28 April 2019].

[39] https://help.sap.com/doc/saphelp_scm700_ehp02/7.0.2/en-US/4d/
33d92edb9e00d3e10000000a42189b/content.htm?no_cache=true [visited 28 April 2019].

71


