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ABSTRACT 

This paper studies the economic cost of floods in Vietnam via nightlight data obtained by 

DMSP-OLS satellites. A panel dataset from 1992 to 2010 is constructed and analyzed for 

Vietnam’s 56 provinces, making for a total of 1197 observations. The results obtained via the 

random effects model, which was found to be most applicable, showed a 0.12% decrease in 

nightlight emission due to a single flood, -799 in absolute terms. Similar results were obtained 

by a pooled ordinary least square regression and a fixed effects model.  With a nightlight to 

gross domestic product elasticity between 0.27 and 0.3, a cost estimate per flood was calculated 

to be between 23 and 26 million US dollars (constant 2010 USD). Annually, with an average 

of 44 floods, corresponding to a reduction of 1.4 to 1.6 percent in real GDP, or 975 million to 

1.1 billion USD in absolute terms. A prolonged effect was found as floods in the previous year 

affected the nightlight negatively, the second lag was found to have a positive correlation 

indicating a recuperation effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: nightlight, flood, DMSP-OLS, panel data 



 3 

Table of contents  
 
Abstract…………………………………………………………………………………………………….. 2 
Table of contents ……………………………………………………………………………………………3 
1. Introduction……………………………………………………………………………………………… 4 
2. Theoretical Framework…………………………………………………………………….……………. 5 

2.1 The economic cost of floods .........................................................................................  5 
2.2 Remote sensing data from space ...................................................................................  7 
2.3 Hypotheses ....................................................................................................................  9 

3. Data ………………………………………………………………………………………………….….10 
3.1 Nightlight data  ............................................................................................................ 10 

3.1.1 Overview ................................................................................................  10 
3.1.2 Satellite image processing  ...................................................................... 12 
3.1.3 Descriptive statistics ..............................................................................  12 

3.2 Flood data  ................................................................................................................... 13 
3.2.1 Overview  ................................................................................................ 13 
3.2.2 Descriptive statistics  .............................................................................. 13 

3.3 Gross domestic product ............................................................................................... 13 
4. Methodology……………………………….…………………………………………………….……...13 

4.1 Pooled OLS regression  ............................................................................................... 14 
4.2 Panel data models  ....................................................................................................... 14 

4.2.1 Fixed effects model ................................................................................  15 
4.2.2 Random effects model  ........................................................................... 15 

           4.3Model selection  ............................................................................................................ 16 
4.3.1 Hausman test  .......................................................................................... 16 
4.3.2 F-test  ....................................................................................................... 17 
4.3.3 Breusch and Pagan Lagrangian multiplier test  ...................................... 17 

                          4.4 Lagged effect  .............................................................................................................. 17 
                          4.5 quantifying damages  .................................................................................................. 17 
5. Results…………………………………………………………………………………………………. 18 

5.1 Pooled OLS  ................................................................................................................. 18 
5.2 Fixed effects model .....................................................................................................  18 
5.3 Random effects model  ................................................................................................ 18 
5.4 Model selections  ......................................................................................................... 19 

5.4.1 Hausman test  .......................................................................................... 19 
5.4.2 F-test  ....................................................................................................... 19 
5.4.3 Breusch and Pagan Lagrangian multiplier test for random effects ........  19 

5.5 Lagged effect  .............................................................................................................. 20 
5.6 quantifying damages  ................................................................................................... 20 

6. Conclusion ……………………………………………………………………………………………...21 
6.1 Limitations and future research  .................................................................................. 21 

7. Bibliography ……………………………………………………………………………………………23 
8. Appendix………………………………………………………………………………………………..29 

 
 
 



 4 

1. Introduction  
The wrath of natural disasters is indiscriminatory and ruthless. Conservative estimates state 

the global cost of natural hazards to be over 300 billion U.S. dollars between 1975 and 1998 

(Mitchell, Thomas, 2001). Vietnam is no stranger to the consequences, in 2017 typhoon 

Damrey hit the popular resort town of Nha Trang in Khanh Hoa. This sole weather 

phenomenon was estimated to have caused 22 trillion Vietnamese dong in damages (nearly 1 

billion US dollars), as well as taking the lives of 108 people. This natural disaster, being 

exceptional due to its magnitude, brought the human and material cost to the public 

foreground and emphasized the need for controlling measures as dikes. Across Asia, 8 

million deaths resulted from floods alone. As the majority of Vietnam’s population lives in 

flood prone areas, political relevance is high (Shaw, 2006). A relevance which is set to 

increase as climate change is expected to further increase the magnitude of natural disasters 

as well as the likelihood of occurrence (IPCC, 2014).  

Due to Vietnam’s notoriously bad data collection (further discussed in theoretical 

framework) estimating the cost of these disasters is difficult, as emphasized by the lack of 

literature. This paper attempts to stray away from officially reported figures, such as damage 

to properties or number of people killed, in order to quantify the damages. While official 

numbers might highlight the effect of direct consequences, the cost on non-market goods and 

on the informal economy is not accounted for. As to capture the entire economic effect of 

floods, including the informal sector, this paper investigates the effect of the natural disasters 

on nighttime light emission, which serves as a proxy for economic activity. A thorough 

search of relevant literature yielded no related papers estimating damages in economic 

activity due to natural disasters, specifically in Vietnam, by means of emitted light. Thereby 

providing the academic relevance and broadening the scope of satellite applications. Satellite 

imagery is however used to analyze flooding by the Early Damaged Area Estimation System 

(EDES), this application solely provides geographic information for immediate disaster relief 

activities. This paper will highlight the possibility of the DMSP-OLS satellites to obtain more 

accurate representations of the costs, allowing policy makers to compare the costs and 

benefits of controlling measures as dykes.  

A balanced panel dataset ranging from 1992 to 2010 with provincial data concerning 

the emission of light and the number of floods is analyzed by means of three models, namely 

pooled ordinary least squares, fixed effects and a random effect. An F-test, Hausman test and 

Breusch and Pagan Lagrangian multiplier test were used as to find the most appropriate 

model to describe the relationship between floods and nightlight emission. A significant 
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negative correlation of -799.47 is found between all floods and the difference in the sum of 

light in the random effects model, which is found to be the best fitting model. The coefficient 

corresponds to a 0.12% decrease in emitted light. Quantification of this deduction by means 

of elasticity results in a per flood cost between 23 and 26 million USD in constant 2010 

dollars. On an annual basis, with an average of 42 floods per year, 1.4 to 1.6 percent of real 

GDP will be lost due to flooding. In absolute terms, 975 million to 1.1 billion USD. Floods 

have a significant impact on light emission for up to two years, significance of the first lag is 

however limited in the REM. A negative correlation can be found with the first lag, 

indicating a possible prolonged effect of floods in previous year on current light emission. A 

positive effect which can have resulted from a recovery effect can be seen from the second 

lag.  

The following is the organization of this paper. After the introduction, chapter two 

discusses previous literature on both impacts of natural disasters and of the applications of 

nightlight and its relatedness to economic activity. Chapter three and four reflects on the data 

and methodology used. Following, chapter 5 presents the empirical results of the models and 

the translation to economic output. Finally, the conclusion, limitations and future research 

will be presented in chapter 6.  

 

2. Theoretical framework  

2.1 Economic cost of floods 

The cost of disasters globally grew 15 times between the 1950’s and 1990’s, estimated at an 

annual cost of 66 billion U.S. dollars in 2012 prices (Benson, Clay, 2004).  Climate change 

will increase both the likelihood and magnitudes of natural disasters (IPCC, 2014) rendering 

approximations to the economic costs of these disasters desirable. These economic costs of 

natural disasters are difficult to estimate. Datasets often exclude the costs or damages to non-

market good, thereby underestimating the impact of these disasters (Mileti 1999; Toya, 

Skidmore 2007). Difficulties in data reporting arise from the complex nature of the high-

magnitude events and the interrelatedness between them (Kron et all 2012). For example, a 

storm might cause a flood, rendering it difficult to analyze the impact of these events 

separately. A developing country, as Vietnam, has an incentive to overestimate the damages 

done. Doing so in order to gain additional international aid and help (Toya, Skidmore 2007). 

The developing countries often suffer from poor data collection, and low insurance 

penetration, in addition to much of the economic activity occurring in the informal sector 

(Tol leek 1999).  
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Floods and landslides have a significant cost to infrastructure (Barredo, 2009). They 

can occur because of both hydrological and geological characteristics, causing urban areas 

and areas along rivers to flood (Bates et al, 2008). Economic damages resulting from natural 

disasters tend to be higher in developed countries in absolute terms but are lower as a 

percentage of GDP (Guha-Sapir et al. 2012). Developing countries suffer relatively more 

from catastrophic events than developed nations (Kahn, 2005; Toya and Skidmore, 2007; 

Hansson et al., 2008; Raschky, 2008; Peduzzi et al., 2009; Jongman et al., 2015). Noy and 

Vu, in analyzing Vietnam, conclude that even at the sub-national level richer areas are better 

able to have economic growth after a natural disaster (2010).  

Previous literature has focused on measuring the primary direct costs of disasters by 

the amount of lives lost, the number of people affected, and the damage done to 

infrastructure. The dataset which reports these figures, Emergency Events Database (EM-

DAT) is used in serval papers (e.g. Anbarci et al., 2005; Toya and Skidmore, 2007). Further 

literature analyzes the secondary impacts of disasters as proxied by production, productivity, 

and output while differentiating between short, and long-run effects (e.g. Skidmore and Toya, 

2002, Noy and Nualsri, 2007; Cuaresma et al, 2008; Cavallo et al., 2009). Finally, Noy and 

Nualsri estimate the fiscal cost, finding that fiscal behavior can be characterized as pro-

cyclical in developing countries (counter-cyclical for developed countries).  Thus, developing 

countries decrease spending and attempt to increase revenues following a disaster (2010). It 

must be noted that Vietnam was not included in their analysis. The pro-cyclical policy 

implemented after a disaster in developing countries leads to adverse macroeconomic 

outcomes. This paper therefore expects damages to influence both the immediate and non-

immediate economic activity.   

Literature concerning the immediate, or short-run impact of disasters is well 

established. Examples can be found in Bluedorn (2005), Hochrainer, (2009), Leiter et al. 

(2009), Loayza et al. (2009), Mechler (2009), Raddatz (2007) and Strobl (2008). The long-

run effects are analyzed in Cuaresma et al. (2008), Hallegatte and Dumas (2009), Jaramillo 

(2009), Noy and Nualsri (2007), Raddatz (2009) and Skidmore and Toya (2002). It can be 

concluded that there is a significant short-run negative impact on development. We therefore 

expect a similar negative immediate effect of floods on GDP vis à vis nightlight.  

The long-term consequences of disasters are highly controversial. Skidmore and Toya 

reach an apparent counterintuitive conclusion stating that “cross-country empirical analysis 

demonstrates that higher frequencies of climatic disasters are correlated with higher rates of 

human capital accumulation, increases in total factor productivity, and economic growth” 
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(2002). The conclusion that natural disasters led to positive economic outcomes is supported 

by Kim who found a positive correlation between the long-run economic growth and the 

number of disasters occurred. Kim’s research does however find evidence for geologic 

disasters leading to loss in human capital (2010). Conversely to the aforementioned literature, 

Noy and Nualsri (2007) in addition to Jaramillo (2009) find evidence for negative long-run 

impacts resulting from natural disasters. Concluding that climate related disasters negatively 

correlate to the economic growth rate. Raddatz estimated the reduction in real GDP per capita 

to be a least 0.6 percent (2009). Due to the ambiguity in conclusions and data limitations, this 

paper abstains from analyzing the long-run impact of floods. Solely immediate and short-

term (3 years) impacts will be analyzed. 

 

2.2 Remote sensing data from space  

A nation’s economic well-being is typically measured in gross domestic product (GDP), the 

market value of all final goods and services produced in a given country in a given year. 

These GDP estimates are often incorrect or uncertain. This uncertainty is especially prevalent 

in developing countries, as a higher share of the total economic activity is conducted in the 

informal sphere. The informal economy is often excluded or solely estimated in formal 

statistics (Henderson et al. 2009, Ebener et al. 2005, Sutton et all 2007, Ghosh et al. 2009). 

Sub-national measures of economic activity are non-existent for most of the developing 

countries, including Vietnam, and even for some developed ones (Henderson et al. 2009). 

This lack in sufficient and accurate data collection, which is needed to assess the regional 

impacts of floods, is reflected in Vietnam’s rating by the Penn World Tables (PWT).  

The Penn World Tables (PWT) assign countries with a subjectively based grade on 

the quality of their reported data. It considers both the reliability of the reported data as well 

as baseline information concerning purchasing price parity (PPP). Grades range in decreasing 

ranking from level A to D. Chen and Nordhaus add a fifth class, E, as to symbolize the 

countries with essentially no statistical systems, or that are missing from the database (2011). 

Examples of countries in this fifth class are North-Korea and South-Sudan. Corresponding 

margins of error (root mean squared error) to the grades are 10 percent for A, 15 percent for 

B, 20 percent for C and 30 percent for D (Chen, Nordhaus, 2011). Vietnam is assigned the 

grade C. In comparison, almost all developed countries were given the grade A (Deaton et al. 

2008). Dawson et all claim that the empirical link connecting output volatility and income 

growth in the PWT data is purely a result of measurement error in annual income (2001). A 

drawback of the PWT reporting is that it is unclear whether the rating is due to the standard 
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of data collection or due to the PPP, as both are reflected. As a result, the international 

monetary fund (IMF) and the World bank consider solely the quality in the country’s national 

account data in the constructing of their rankings. “High capability countries” are subscribed 

to the IMF’s Special Data Dissemination Standard (SDDS) and therefore meet standards 

based on data quality requirements that is to be expected in international markets. Vietnam is 

placed under the category e-GDDS, which apart from the non-participating countries, is the 

lowest rating. The aforementioned reasons imply that official statistics of Vietnam 

concerning economic activity are either non-existent or not up to par with standards required 

in international markets. This paper will therefore abstain from using reported output figures 

directly.  

Due to the shortcomings of GDP various economists used proxies to analyze 

economic activity. For example, Good used the number of letters mailed in the Habsburg 

Empire per region as a proxy (1994). Croft pointed out that nightlight images taken by 

satellites “sparkle with the bright light of man’s creation” (1978). In building upon Croft’s 

observation Elvidge et all estimated specific relationships, namely: population, GDP, and 

electricity usage in the lit areas (1997). A significant positive relationship between economic 

activities on ground-level and nighttime lights was found. A reduction in economic output by 

means of a flood, is therefore expected to result in a reduction of emitted light. Early 

research, as Elvidge’s, used the amount of area lit, thereby equating for example a financial 

district with a more rural light-emitting area while economic output may differ. As to account 

for this light energy was later used by Sutton and Costana, allowing a differentiation in the 

amount of light emitted. The light energy is currently referred to as the sum of light intensity. 

Sutton’s and Costana’s research focused on estimating GDP more precisely at a global 

coverage of 1km2 resolution (2002).  

Doll et all were the first to focus their research on sub-national estimations of 

economic output (2003). Night time radiance was analyzed alongside regional economic 

productivity. 11 European countries were used alongside the United States, this being 

because they accurately reported sub-national level data. As Vietnam does not have regional 

estimates, no similar analysis can be done. The results indicate a positive correlation between 

GDP and economic activity at the regional level, excluding cities of exceptionally high 

economic activity relative to night light. The gradient of gross regional product to sum of 

light intensity was found to be different per country (and region), ranging from 0.0499 in the 

United States to 0.2103 in West Germany including Berlin, excluding outliers. Henderson et 

all determined the elasticity on overall growth of GDP to nightlight to be 0.3. The optimal 
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estimate of growth was concluded to be a composite of conventionally measured growth and 

growth as predicted by night lights, the weights on both being equal (2012). Thereby 

implying that if this paper were to obtain a more accurate representation of the cost of floods, 

that regional output data has to be weighted. As none is available, this paper will continue 

with estimates by night light. Keola et all found the elasticity to be 0.27, remarking that 

growth in nightlight is largely the result of expansion in the non-agricultural sector (2015). 

This paper will use a range of probable elasticities from 0.27 to 0.3.  The sole use of reported 

GDP in this paper is to utilize it with respect to the elasticity, allowing for quantification of 

economic losses.  

 

2.3 hypotheses 

Several hypotheses will be used as to answer the research question:  

 

How have floods impacted economic activity in Vietnam from 1992 to 2010 as proxied by 

nightlight? 

 

Previously discussed literature in section 2.1 have found natural disasters to have an 

immediate negative impact on development. As economic growth can be analyzed by means 

of nightlight, previously discussed in section 2.2, the following first hypothesis results: 

 

Hypothesis 1: There is a statistically significant negative relationship between the number of 

floods and the immediate GDP growth rate as proxied by nightlight. 

 

In order to test the first hypothesis, the growth in provincial output will be measured in 

relationship to the number of annually occurred floods in the respective province. If no-

significant relationship is found, or the relationship is non-negative, then the first hypothesis 

will be rejected.  

 

The non-immediate impact of floods is unclear, long-term effects could be negative or 

positive, as discussed in section 2.1. This paper will therefore not hypothesize the sign of the 

relationship of previous floods on current economic growth as proxied by nightlight. The 

second hypothesis will therefore solely focus on the significance of the relationship.  
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Hypothesis 2: There is a statistically significant effect of floods in previous years on current 

economic growth. 

 

To test the second hypothesis lagged terms will be included in the resulting model from 

hypothesis 1, taking into consideration differences between provinces. If the effect of the 

lagged values is non-significant, then the hypothesis will be rejected. The result will both 

indicate the effect of floods in previous years, as well as the economy’s possible recovery 

time.  

 

3. Data  

3.1 Nightlight data  

3.1.1 Overview 

Nightlight satellite imagery was provided by the Defense Meteorological Satellite Program 

(DMSP), which is part of the United States Air Force (USAF). The group of satellites 

employed was designed to record and monitor the distribution of clouds as well as their top 

temperatures. During nighttime, most of the emitted electromagnetic energy observed by the 

satellites is a result of human light emitting activities (Keola 2015). Annually compiled 

images of visible pixels were processed and provided by the National Oceanic and 

Atmospheric Administration (NOAA), which this thesis uses to asses light intensity. 

Observed electromagnetic energy can be highly influenced by solar activity, which 

can reach satellites by transmission, absorption, reflection, scattering, or emission (NASA, 

2013). To account for this, the absolute measure of solar irradiance, W/m2, was discarded in 

favor of a relative assignment of pixel values. Visible pixels are assigned a relative value 

based on increasing brightness ranging from 0 (no light) to 63. The seemingly arbitrary top 

value of 63 is due to a 6-bit quantization. Observations are adjusted to maintain constant 

cloud reference values under varying solar and lunar illuminations. In addition, a number of 

restrictions are put in place that exclude emissions from glare, auroras, fires, fishing boat 

activity, and other sources (Figure 1).  
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Figure 1: Composite OLS picture of Hà Nội and its surrounding area. The left picture is an average visible 

band imagery. The right picture is outlier removed. Note the presence of fires in the NW corner and the 

presence of fishing activity in the SE of the left picture.  

Source: Baugh et al. 2009 
 

Furthermore, due to the limited dynamic range of the DMPS Operational Linescan 

System (OLS) bright sources can saturate an area, thereby losing detail. To address the 

saturation problem, the “gain” setting of DMSP satellites are divided into 3 stages as to 

record the different intensities in brightness, with the highest gain being around 100 times 

more sensitive than the lowest. The image taken with the highest fixed-gain is taken as 

reference and the others are weighted according to it. Thereafter the composite image is 

combined with the rudimental image taken with a variable gain.  

During the timespan of our data ranging from 1992 to 2010, 6 different satellites were 

used following a sun synchronous near polar orbit with a revisiting time of roughly 101 

minutes at a height of 830 km (Keola 2015). At nighttime a photomultiplier tube (PMT) with 

a gallium arsenide opaque photocathode was used to collect visible, near infrared light 

(VNIR), at a wavelength range of 470 nm to 950 nm (miller et all, 2005). For years in which 

multiple images were provided, imagery was chosen as to minimize the number of satellites 

used. Pre-flight calibration is used to account for inter-satellite differences in sensitivity of 

the DMSP-OLS sensors. 

The products are grids with a spatial resolution of 30 arc seconds spanning from -180° 

to 180° in longitude, and -65° to 75° latitude (the latitude being limited by the strong 

electromagnetic activity around the poles) (Figure 2). The satellites overpassed between 7 

and 9 pm local time. The detectable lighting of the satellite sensor has radiances in the range 

of 10-9 W cm-2 sr-1 to 10-5 W cm-2 sr-1 (watt per square meter per steradian). 
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Figure 2: Merged stable lights and radiance-calibrated image of 2013 

 

3.1.2 Satellite image processing 

The best-fit linear translation between the product and a land scan population grid was 

established to match up the satellite image with “ground-truth” (Baugh et all 2009). A map 

outlining Vietnam’s 58 provinces and 5 centrally-controlled cities was used to establish the 

amount of light intensity per region. The dataset therefore includes 19 years (1992 – 2010) of 

observations for 63 provinces, making a total of 1197 observations. The difference of the 

total sum of nightlight per province is taken as to obtain the growth rate. 

 

3.1.3 descriptive statistics  

Vietnam has an agricultural economy with rice as its biggest export. The agricultural share 

ranges from 18.38 percent in 2010 to 33.94 percent in 1992. As rice production and other 

agricultural economic activities require less light in production, it is unsurprising that 

Vietnam is mostly ‘dark’ with concentrated light emission from the concentrated areas as can 

be seen in table 1. On average 74.6 percent of the country is dark or under the detectable limit 

of the OLS sensor between 1992 and 2009. Hà Nội and Hồ Chí Minh were the sole cities to 

reach the top-coded value of 63 until 1999, when several other cities grew. Table 2 depicts 

the mean light emission per province alongside the standard deviation, minimum and 

maximum.  
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3.2 flood data  

3.2.1 overview 

The United Nations Office for Disaster Risk Reduction (UNDRR) provides data on every 

natural disaster that happened between 1989 and 2010 in Vietnam. Disasters being defined as 

“a set of adverse effects caused by social-natural and natural phenomena on human life, 

properties and infrastructure within a specific geographic unit during a given period of time”. 

This paper focusses on events between 1992 and 2010 as to obtain a balanced panel dataset. 

As the scope of this paper is on quantifying the cost of floods more accurately solely flood-

related disasters were considered. Therefore, regular floods and flash floods are combined 

into the variable “all floods”.  

 

3.2.2 descriptive statistics  

Vietnam experienced 804 floods from 1992 until 2010, 101 flash floods and 703 regular 

floods. Making it the most regularly occurring disaster during the time period, 55 percent of 

all 1469 disasters were floods. On average there are 98.83 deaths per flood in Vietnam 

(Kahn, 2005). 

 

3.3 Gross domestic product 

Gross domestic product, as reported by the world bank is adjusted for inflation and taken in 

constant 2010 US dollar value, which is the last year in the panel dataset. The average GDP is 

69,29 billion USD which is steadily increasing each year.  

 

4. Methodology  
This research paper will use three models to analyze the panel dataset, namely the Pooled 

Ordinary Least Square (OLS), the Fixed Effect Model (FEM) and the Random Effect Model 

(REM). The latter two models are uniquely suited to deal with panel data. The three models 

being in line with Wooldridge’s explanation concerning the possible methods to analyze 

panel data (2014).  All models will have robust standard errors as to account for possible 

heteroscedasticity.  No control variables are used as there are no conceivable variables that 

influence both the sum of emitted light and the number of floods.  
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 4.1 Pooled OLS model  

The Pooled OLS method attempts to find the coefficient of interest by minimizing the sum of 

square vertical distances, also referred to as Pooled Cross Section (Wooldridge 2014). The 

method regards each individual observation as having no difference in effect regardless of the 

unit, or province, and the time. Thereby, not utilizing the possibility to analyze differences in 

observations. Province specific characteristics that potentially influence the amount of 

emitted light can be for example, the adaptation to natural disasters, geographic 

characteristics, etc. Due to this reason Wooldridge concluded that the sole reason to use a 

Pooled OLS regression when handling a panel dataset is as to create a larger sample size 

(2014). The resulting regression follows:  

 

Formula 1: difference of sum of lightsit = α + β number of floodsit + εit (ui =0) 

 

Ui represents the province or individual effect, with the subscript i denoting one of the 63 

provinces. Subscript t depicts the time or years.  

 

4.2 Panel data models 

Two main approaches for analyzing panel data are put forward, namely fixed effects and 

random effects (Gujarati 2003; Judge et al. 1985; Hsiao (1986). Both techniques have 

advantages over the pooled OLS regression as they utilize the unique characteristics of panel 

data, as it both combines time series and cross-sections of units. Gujarati (2003) and Baltagi 

(2008) define six points of superiority of the panel data model over the OLS model. (i) Panel 

data models show individual heterogeneity, thereby accounting for bias which cannot be 

controlled for in a cross-section model nor in a time series model. (ii) Secondly, panel data 

models provide more information and variation, less collinearity among variables and more 

degrees of freedom. (iii) They are superior at expressing the dynamics of change within 

social phenomena, rather than having multiple cross-section estimations. (iv) The models 

measure the mixed and pure effects across year and entities. (v) They provide better 

representations of advanced models. (vi) Finally, by aggregating observations into broader 

classes, panel data models minimize bias.  
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4.2.1 Fixed effects model   

The fixed entity effects model examines individual differences in intercepts, assuming that 

the slopes are identical and that there is constant variance across provinces. The model’s 

estimator can be compared to a pooled OLS estimator which is established upon demeaned 

variables (Wooldridge 2014). Demeaned variables are the observed variables subtracted by 

the within-subject mean. Therefore, within each subject, the mean of the demeaned variables 

themselves will be zero, as differences cancel each other out. Time-invariant demeaned 

variables will have the value of 0 for every case, as the mean will be equal to each observed 

value. Therefore, the fixed effects model gets rid of all between-entity variability and allows 

for the analysis of solely within-subject variability. 

 

There are two data requirements in order to use the model. Firstly, each province must have 

at least two measurements on the same dependent variable. Secondly, some or all units must 

have different values for the independent variable at two different times. The used panel data 

meets both criteria. Under strict exogeneity assumptions the model reports an unbiased 

estimated coefficient of the independent variable. As to meet the assumptions, the error term 

per province has to be uncorrelated with the independent variable, number of floods, for 

every year. Additionally, the error term has to be homoscedastic and serially uncorrelated. 

The possible heteroskedasticity is, as aforementioned, accounted for by robust standard 

errors. Formula 2 present the fixed entity effects regression.  

 

Formula 2: difference of sum of lightsit = (α +ui) + β number of floodsit + εit 

 

The province or individual effect is represented by Ui. i denotes the different provinces and 

the years are depicted by subscript t.  

 

4.2.2 Random effects model  

As with the fixed effects model, the random effects model has different intercept terms for 

different entities, or provinces, being constant over time. The difference with fixed-effects 

model is that every province’s intercept is affected by another intercept as the REM is 

estimated by means of partial pooling. In addition, there is a random variable that varies 

across entities but is constant throughout time. The REM’s assumptions are identical to those 

of its fixed effects counterpart, apart from one additional assumption. This assumption being 

that the unobserved effect should be uncorrelated to the independent variable (Wooldridge, 
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2014). Therefore, characteristics which are not included in the model that influence light 

emission, e.g. the price of electricity, have to be uncorrelated with the number of floods that 

Vietnam experiences. The random effects model does not control for unmeasured provincial 

characteristics that stay stable over time. Thusly, if there is reason to believe that there is an 

unobserved effect which is correlated to the independent variable, a FEM should be used. 

Formula 3 depicts the REM:  

 

Formula 3: difference of sum of lightsit = α + β number of floodsit + (ui + εit ) 

 

As the REM assumes that heterogeneity, the individual effect, is not correlated with the 

independent variable, Ui is a composite of the error term. Therefore, the random effect model 

is also referred to as the error component model. i depicts the provinces and t the years.  

 

4.3 model selection  

In order to answer the first hypothesis, the most appropriate of the three models has to be 

found. There are 3 tests available to compare the Pooled OLS, FEM and REM, namely a 

Hausman test, a F-test and a Breusch and Pagan Lagrangian multiplier test. 

 

4.3.1 Hausman test  

In order to decide between a fixed effect or random effect model a Hausman test is used, 

Hausman (1978). The decision depends on the correlation between the unit effects and the 

independent variable(s) (Bole & Rebec, 2013). The null hypothesis being that there is no 

correlation between the unique errors and the regressor(s), and that thusly the preferred 

model is random effects. The intercept and dummy variables are, and should be, excluded in 

the computation of the test statistic. In case of rejection of the null hypothesis, one may 

conclude that individual effects, ui, are correlated with the independent variable, making the 

random effect model problematic. Clark and Linzer criticize the absolute weight that is put 

upon bias as the deciding factor in the Hausman test (2012). In addition, they state that “for 

the Hausman test to consistently reject the null hypothesis, it requires both a large amount of 

data and a moderately high correlation between x (the independent variable) and the unit 

effects; perhaps r = 0.3 or above.”. Concluding that no binary choice between models should 

be made based upon this test. This paper will therefore report both tests. 
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4.3.2 F-test  

An F-test compares the FEM with the Pooled OLS model. The null hypothesis states that the 

observed and unobserved fixed effects ui (not incorporated in the error term) are equal to 

zero. In other words, that the fixed effects are equal across all provinces. Rejection of the 

hypothesis means that the fixed effects model is preferred.  

 

4.3.3 Breusch and Pagan Lagrangian multiplier test  

The Breusch and Pagan Lagrangian multiplier test measures the conditional 

heteroskedasticity in a linear regression (Breusch, Pagan, 1979). The value of the 

independent variable’s relationship on the estimated variance of the residuals is measured. 

The null hypothesis stating that all error variances are equal. The alternative implies that the 

error variances are a multiplicative function of at least one variable (Hassan, 2016). A 

rejection of the null hypothesis therefore suggests that an OLS model is not appropriate and 

that a random effects model has to be used.   

 

4.4 Lagged effect 

In order to observe the effect of floods in previous year on the current economic growth, as 

demanded by hypothesis two, lagged values of floods have to be included. These lagged 

values will be added to the most appropriate model resulting from hypothesis 1. The second, 

non-preferred model will be included in the appendix, alongside lagged values.  

 

4.5 quantifying damages 

The aforementioned models will depict the impact floods have on nightlight, but not on GDP. 

Previous literature placed the elasticity between nightlight and GDP to be between 0.27 and 

0.3, section 2.2. Therefore, the following formula will be used as to estimate the cost of the 

average flood from 1992 to 2010, dependent on the reported average real GDP in constant 

2010 US dollar.  

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 	

∆𝑟𝑒𝑎𝑙	𝐺𝐷𝑃
𝑡𝑜𝑡𝑎𝑙	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑎𝑙	𝐺𝐷𝑃	

∆𝑛𝑖𝑔ℎ𝑡𝑙𝑖𝑔ℎ𝑡
𝑡𝑜𝑡𝑎𝑙	𝑛𝑖𝑔ℎ𝑡𝑙𝑖𝑔ℎ𝑡, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	

 

 

Rearranging the formula allows for the change in the real GDP due to one flood to be 

obtained. The difference in nightlight due to a flood will be known from the best applicable 
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model. The total nightlight average is the sum of all lights in Vietnam during the time period, 

divided by the number of years as to obtain the average. The total real GDP is calculated 

similarly, by summing the real GDP for every year and dividing it by the number of years. 

Therefore, the change in real GDP in constant 2010 US dollar will be the sole unknown 

variable.  

 

5. Results  
5.1 Pooled OLS  

Table 3 presents the results of the pooled OLS regression between the number of floods and 

its correlation to the difference in the sum of emitted light. The coefficient of All floods is -

799.47, which is significant at the 1% level. Meaning that a single flood, on average is 

correlated to a significant decrease of the sum of light of 799 or 0.12 percent of total 

nightlight. The R-squared which measures the goodness of fit, or the coefficient of 

determination, is 1%, which is relatively low. Meaning that All floods account or explain 

solely 1% of the variation in the difference in emitted light, which is to be expected as light 

emission is primarily driven by economic activity and not weather phenomena.  

 

5.2 Fixed effects model  

Next the fixed effects model, which considers differences between provinces. The output is 

presented in table 4. Similar to the Pooled OLS, the coefficient of the FEM is negative and 

significant at the 1% level. The magnitude of the coefficient is substantially different, a single 

flood now decreases the difference in light emission by 951 or 0.15 percent of total 

nightlight. The R-squared remains low as the independent variable solely explains 1% of the 

variation in the difference of total emitted light.  

 

5.3 Random effects model 

The final model, random effects, shows results similar to the Pooled OLS. Table 5 shows that 

a flood correlates to a reduction in the difference of sum of light of -799.47 (0.12 percent of 

total nightlight) at a 1% significance level. The number of floods similarly explains solely 1 

percent of the variation in the difference of emitted light, as reported by the R-squared.  
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5.4 Model selection 

5.4.1 Hausman test  

With a significance level of 0.22 the null hypothesis cannot be rejected (table 6). The null 

hypothesis that random effects would be consistent and efficient is therefore not rejected. 

Implying that a random effects model is preferred to the Fixed effects model by the Hausman 

test. Both models do however carry different assumptions, benefits and shortcomings. The 

random effects model is estimated with partial pooling, while the fixed effects model is not. 

Partial pooling means that the province’s effect estimate is based partially on the data of other 

provinces. This partial pooling makes the model statistically more efficient as for the same 

amount of data, coefficients are estimated more precisely. The random effects model does 

come with distributional assumptions, while the fixed effects model does not. Therefore, the 

fixed effects model will be more robust.    

 

5.4.2 F-test  

In comparing the Pooled OLS with the fixed-effects model, the F-test is used. The hypothesis 

that province effects are equal to zero is rejected at the 1% significance level. Hence the 

“poolability” of data is rejected and the fixed effects model will be preferred over the pooled 

OLS model.  

 

5.4.3 The Breusch and Pagan Lagrangian multiplier test for random effects.  

The null hypothesis of the Breusch and Pagan Lagrangian multiplier test states that the 

variances across entities are zero, meaning that no panel effects are present. This null 

hypothesis is rejected at the 1% level therefore a random effects model is preferred over a 

Pooled OLS model (table 7). 

As the random effects model is preferred over the fixed effects model, and the random 

effects model is preferred over the Pooled OLS model, the REM will be considered the most 

appropriate model to explain the relationship between nightlight and the number of floods. 

Hypothesis one is confirmed as a significant and negative relationship is found between the 

two variables meaning that a flood corresponds to reduction in nightlight in the same year. 

The effect on GDP in US dollar terms will be shown in part 5.6, based on coefficient found in 

the random effects model.  
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5.5 lagged effect  

Table 8 presents the random effects model with one to three lags. The coefficient of the non-

lagged independent variable, all floods, has the same sign and magnitude as with the above 

presented REM model. The number of lags increases the impact of floods on emitted light. 

The lag of floods correlates to a decrease in sum of light of -405.51, which is non-significant 

at the 10% level. In model 2 and 3, the first lag does become significant. Implying that the 

effect of a flood impacts the economic activity negatively a year after its occurrence. The 

second lagged coefficient, presented in model 2 and 3, is positive and highly significant at the 

1 percent level. The positive sign may indicate a recovery of economic growth two years 

after a flood. Finally, the third lag of floods in non-significant and positive. Hypothesis 2 

states that there is a statistically significant effect of floods in previous years on current 

economic growth is not rejected for the first two lags, only the third lag falls short of 

significance. As mentioned in section 4.3.1, no binary choice between the fixed and random 

effects model can be made based upon the Hausman test. Therefore, the non-preferred fixed 

effects model will be included in the appendix with different numbers of lags (table 9). The 

reported fixed effects models with different numbers of lags have coefficients that are all 

significant (at least at the 10% level) and share the same sign as its random effects’ 

counterpart.  

 

5.6 quantifying damages  

With the change in the nightlight difference being -799.47, an average annual nightlight of 

648898.74 in Vietnam, an average real GDP of 69.28895 constant 2010 billion US dollar and 

an elasticity ranging from 0.27 to 0.3 results in the following change in real GDP. The 

average flood in Vietnam correlates to a reduction of 23 048 969 dollars to 25 609 889 

dollars. With an average of 42.316 floods resulting in an average cost of 975,3 million to 

1,084 billion dollars per year. Corresponding on average to 1.4 to 1.6 percent of real GDP. As 

Vietnam becomes more industrialized, and climate related events become larger in magnitude 

(section 2.1) this cost is expected to be larger in the more current years, and smaller in the 

earlier. Nguyen Xuan Cuong, head of the Central Steering Committee on Natural Disaster 

Prevention and Control, reports the cost of extreme weather events in 2016 to be 1.75 billion 

us dollars, and 858 million in 2018 (Guy, 2018; “natural disasters”, 2017). The estimated cost 

is therefore of the same magnitude as the officially reported statistics.  
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6. Conclusion  
This paper analyzes the impact of both floods and flash floods between 1992 and 2010 on 

nighttime light emission in Vietnam. In accordance with the first hypothesis; the immediate, 

intra-year effect per flood was a significant reduction in night light emission of 0.12% or 

799.47 in absolute terms, as reported by the random effects model which was found to be the 

most appropriate. Similar results were found by a pooled OLS and a fixed effects model. This 

nightlight reduction corresponds to a deduction of GDP by 23 to 26 million US dollars 

(constant 2010 USD) on average over the time-period. With an average of 42 floods per year, 

the average annual costs is estimated at 975 million to 1.1 billion USD.  

The delayed effect of floods on nightlight is negative for the first lagged value, based 

on the number of lags it ranges from -405.51 to -579.75 in the random effects model. The 

second lagged value has a positive sign, implying a possible recovery of the economic 

activity two years after the natural disaster. Therefore, the second hypothesis that there is a 

significant lagged effect of flooding is not rejected.  

 

6.1 limitations and future research 

A possible limitation in this paper is the quantification of the costs of floods. Keola et al. 

indicated that the elasticity of nightlight to GDP might not be an appropriate way to calculate 

economic growth in countries with an agricultural share between 20 and 40 percent, as 

agricultural activities take place in areas that emit no, or marginal nighttime light (2015). 

Unlike the average South-Asian elasticity, they obtain a negative elasticity for countries with 

this share in agriculture. Indicating that as a country experiences more economic growth, that 

they will emit less nighttime light. A conclusion which is not shared by other related 

literature. A second limitation on quantifying the costs comes from the dependency of 

reported outcome. The obtained cost estimate relies directly upon the reported GDP, which 

Vietnam has an incentive in overstating, as well as understating the damages on GDP due to 

floods (Toya, Skidmore, 2007). In addition, the elasticity between nightlight and GDP growth 

might be province-specific, as no regional output figures exist, the province-specific elasticity 

cannot be calculated.  

A limitation of the interpretability of the lagged coefficients comes from the 

decreasing number of observations per additional lag. Rendering the external validity of 

lagged terms questionable. 

For future research it can be recommended to differentiate between the different 

intensities of floods, as not solely the geographic characteristics play a role in the resulting 
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damage but also the magnitude of the event. Additionally, future research can analyze the 

long-term effects by testing whether the sum of nightlight returns to a steady state growth 

level, increases as in a process of creative destruction, or decreases.  
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8. Appendix 

 
Table 1: nightlight data averages and descriptive statistics, 1992 -2009 

 Vietnam  

DN0 74.60% 

DN1-2 0.00% 

DN3-5 11.35% 

DN6-10 9.10% 

DN11-20 2.85% 

DN21-62 2.02% 

DN63 0.08% 

Gini (DN) 0.848 

Urban 29.15% 

Source: Keola et al. 2015 
Note: The presented percentages exclude 2010 
 
 
Table 2: Descriptive statistics regarding emissions of nightlight 

Provinces Mean Std. 
deviation 

Min Max 

An Giang 10464.42 7480.769 1806 33918 
Ba Ria-Vung Tau 18747.42 10907.65 2252 39560 

Bac Giang 14873.05 6090.194 4497 26356 
Bình Dương 22668.58 15945.51 3242 60721 
Bình Phước 6581.474 7192.332 551 32017 
Bình Thuận 20246.21 14600 1055 56076 
Bình Định 8640.421 6257.845 481 25424 
Bạc Liêu 4508.211 3867.907 317 16037 
Bắc Kạn 802.5789 546.3591 18 1547 
Bắc Ninh 10196.68 4048.949 5008 19762 
Bến Tre 6440.158 4892.418 844 19603 
Cao Bằng 932.4221 476.0126 306 2008 
Cà Mau 5093.263 4540.911 459 19647 
Cần Thơ 8471.737 5218.934 2010 23757 
Gia Lai 8695.789 10616.05 546 48324 
Hoà Bình 4203.105 2429.571 1011 10051 
Hà Giang 1521 1068.73 213 3625 
Hà Nam 6264.842 2390.036 1951 11559 
Hà Nội 50308.37 16845.37 26675 93289 
Hà Tĩnh 6301.895 4629.452 255 18038 
Hưng Yên 8849.579 3483.266 4568 16755 
Hải Dương 14725.16 5450.261 8322 27768 
Hải Phòng 18197.58 6826.897 9254 32460 
Hậu Giang 3966.579 3906.94 281 16120 
Khánh Hoà 13789.63 8825.374 2916 40559 
Kiên Giang 7332.105 6183.769 1113 28547 
Kon Tum 4049.895 3339.069 241 14883 
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Lai Châu 869.2105 1299.098 0 4858 
Lao Cai 3167.895 1948.96 790 8193 
Long An 17358.95 12832.17 3121 56959 
Lâm Đồng 13482.42 8775.462 1284 36076 
Lạng Sơn 3657.421 1896.405 1081 7701 
Nam Định 13557.42 4253.095 7386 22801 
Nghệ An 15707.84 8771.713 2586 37409 
Ninh Bình 7009.842 3398.7112423 2423 15445 
Ninh Thuận 5806.579 3548.918 1136 15698 
Phú Thọ 7879.895 3916.211 2990 16008 
Phú Yên 6751.105 5897.163 480 23544 

Quảng Bình 3891 2824.499 256 11721 
Quảng Nam 6969.263 6128.373 133 25675 
Quảng Ngãi 5823.474 5066.002 376 21041 
Quảng Ninh 16463.68 8999.771 5764 37291 
Quảng Trị 3618.947 2569.625 317 10305 
Sóc Trăng 6803.421 6265.563 375 25318 
Sơn La 3062.684 2515.345 359 9891 

Thanh Hoá 20404.16 9627.389 4703 41762 
Thành phố Hồ Chí 

Minh 
50141.05 18542.31 18844 84717 

Thái Bình 14096.11 3261.273 9208 21390 
Thái Nguyên 9987 3975.89 4288 17089 

Thừa Thiên-Huế 5702.053 3882.842 755 16910 
Tiền Giang 12537.53 8894.462 2024 37304 
Trà Vinh 3794.421 3918.175 173 16728 

Tuyên Quang 3811.211 2434.211 834 8402 
Tây Ninh 14690.74 10658.91 2251 43158 
Vĩnh Long 7735.368 5510.262 928 21218 
Vĩnh Phúc 8700.263 3883.655 3632 18249 
Yên Bái 2782.211 1396.373 850 5297 
Điện Biên 2110 1525.958 163 5796 
Đà Nẵng 7351.684 4408.841 1410 19533 
Đăk Lăk 9230.410 10838.6 1050 49160 
Đăk Nông 2636.316 4452.8 101 19907 
Đồng Nai 33405.16 19188.07 5939 79753 
Đồng Tháp 

 
11029.84 9108.096 1305 38858 

Total 10299.98 11956.44 0 93289 
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Table 3: Pooled OLS regression 
                              (1)    
                     Difference sum    
 
 
All Floods                -799.47*** 
                       (204.6224)    
 
Constant                  1687.19*** 
                       (199.1575)    
 
Observations                 1134    
R-squared                    0.01    
Adjusted R-squared           0.01    

 
 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 

 

Table 4: Fixed effects model 
                              (1)    
                     Difference sum    
 
 
All Floods                -950.91*** 
                       (242.9851)    
 
Constant                  1757.70*** 
                       (113.1359)    
 
Observations                 1134    
R-squared                    0.01    
Adjusted R-squared           0.01    

 
 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 5: Random effects model 
                              (3)    
                     Difference sum    
 
All Floods                -799.47*** 
                       (163.5536)    
 
Constant                  1687.19*** 
                       (176.9962)    
 
Observations                 1134    
R-squared                    0.01     
Adjusted R-squared           0.01     

 
 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 

 
 

Table 6: Hausman test  

 

 
 
 
 
 
 
 
 

 

Table 7: Breusch and Pagan Lagrangian multiplier test for random effects  

 

 

 

 

               
                Hausman Fixed Random  
 
All Floods     
          Fixed (b)          -950.91 
          Random(B)          -799.47 
 
Difference (b-B)             -151.44                   
 
Sqrt(diag(V_b-V_B)) S.E.      122.20 
                    
Chi2(1).                        1.54     
Prob> chi2                      0.22     

 
 

 

               
Breusch and Pagan Lagrangian multiplier test for random effects  
  
  
Chibar2(01).                        3935.31     
Prob> chibar2                       0.00 
 
  

 
 



 33 

Table 8: Radom effects model including lags  

                     Model 1.         Model 2.          Model 3       
                            Difference sum of light 
All Floods      -686.75***            -894.87***        -930.45*** 
                 (207.12)              (211.16)          (234.97)    
 
L.All Floods    -405.51               -579.75*          -562.81*   
                 (287.38)              (309.88)          (308.11)    
 
L2.All Floods                         709.34***          726.73*** 
                                      (241.37)           (243.71) 
 
L3.All Floods                                           -269.82    
                                                         (240.55)    
 
Constant           1831.74***.        1717.15***        1922.81*** 
                   (196.94)           (197.47)          (250.67)    
 
 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
 
 
Table 9: Fixed effects model including lags  

                     Model 1.         Model 2.          Model 3       
                            Difference sum of light 
All Floods      -911.71***            -998.74***        -1147.66*** 
                 (254.48)             (256.26)           (280.98)    
 
L.All Floods    -667.00**             -706.72**          -775.45***   
                 (261.35)             (266.76)           (284.00)    
 
L2.All Floods                         573.45**           499.09* 
                                      (256.95)           (261.14) 
 
L3.All Floods                                           -539.88*  
                                                         (273.11)    
 
Constant           2063.538***.        1897.35***        2383.88*** 
                   (120.14)            (151.92)          (254.35)    
 
 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
 


