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Abstract 

Long Short-Term Memory (LSTM) is a modern artificial neural network architecture 

for sequence learning which is capable of handling long-term dependencies and 

detecting hidden patterns in the data. Even though it has not been widely employed 

in the field of finance except for some very recent attempts, it is essentially suitable 

for financial time series predictions.  

In this paper, LSTM is compared to a set of traditional econometric models to 

predict out-of-sample realized variances of the S&P 500 from 2010 until 2019. The 

results show that the performance of the LSTM models are very sensitive to the 

setting of their hyperparameters. Overall, it was obtained that ARMA and GJR-

GARCH gave the best estimates in terms of mean squared error (MSE) in the two 

separate forecasting intervals belonging to 2010-2019 and that LSTM underperformed 

all models in both periods. Different combinations of hyperparameters should be 

experimented in order for LSTM to compete with the econometric models. 

 

Keywords: forecasting volatility, artificial neural networks, recurrent neural networks, 

GARCH models, HAR-RV 
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1. Introduction 

Modeling the conditional variance of financial time series, which is viewed as a 

measurement of risk, is important for the pricing of derivatives, their trading, 

portfolio optimization and risk management (Hansen & Lunde, 2005; Tsay, 2005). 

However, due to the complex relationships between financial variables, predicting 

volatility represents a challenge for practitioners and financial institutions.  

 Although in the past some experts had believed that financial assets’ return 

variances cannot be predicted for short horizons, econometric literature has found 

that this is actually possible with specific time series models (Franses & van Dijk, 

1996). Many researchers have found Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH) model, introduced by Bollerslev in 1987, to give very 

promising forecasts for the returns data (Franses & van Dijk, 1996; Brailsford & Faff, 

1996). Some other researchers have also found the specifications of the GARCH 

model, which account for asymmetries in past returns, to be the best performing in 

their study samples (Glosten et al., 1993). Furthermore, some practitioners report the 

Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV) proposed by 

Corsi (2009), which models daily, weekly and monthly realized variances together, to 

have good forecasting performance. 

 On the other hand, modeling with these traditional linear or nonlinear time 

series models require every mathematical statement of relationships to be predefined 

in the computer environment, plus have a set of a priori assumptions to be fulfilled.  

However, subtle and time-varying relationships may exist: Sometimes the connections 

between the variables are unknown or hard to mathematically formulate (Zhang et 

al., 1998). 

 Hence a system which works with very few assumptions, which can recognize 

without explicit programming the hidden patterns in a dataset, learn continuously 

about the time-varying relationships between variables as well as their importance 

towards the determination of an output of interest, referred as Neural Networks, 

might improve the success of the current forecasts. 
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 By construction, these ‘computerized intelligence systems’ imitate the 

structure of a human brain (Fadlala & Lin, 2001). Shown inputs or in other words 

after some training, Neural Networks find the best procedure to achieve the desired 

outputs via developing complex algorithms in its black box (Gonzalez Miranda & 

Burgess, 1997). Along with many other researchers, Bildirici and Ersin suggest that 

NN’s can capture the typical properties of financial returns, namely leptokurtosis, 

volatility clustering, and leverage effects better than the GARCH models (2009). 

 Hence, this study is an attempt to shed light on the comparative performances 

of the Neural Networks and some frequently used econometric models to predict 

return volatility. In the next sections, the daily realized variances of the S&P 500 

Index are forecasted and compared to its real values. Additionally, a specification 

amongst the Neural Network models is used in this research: Long-Short Term 

Memory Recurrent Neural Network (LSTM). The reasoning of this choice is going to 

be provided in the upcoming chapters. 

 The remainder of this study is as follows: First, a detailed view on the 

traditional econometric models, Neural Network family and specifically LSTM will be 

given, together with the findings of the previous researchers. Next, the sample used in 

this research will be analyzed in the Data section. Technical details about the models 

and the analysis will be demonstrated in Methodology. Finally, the results, 

discussion, and conclusive remarks will follow. 

 

2. Literature Review: Econometric Models 

2.1. ARCH Family 

The volatility of financial returns is not directly observable, however literature has 

found that it  commonly exhibits some specific patterns: For example, squared 

returns are serially correlated and they tend to appear in clusters via large (small) 

positive or negative changes being followed by large (small) changes, of either sign 

(Jondeau et al., 2007). They also fluctuate within a fixed range and do not diverge to 

infinity, which means that volatility is mostly stationary. Being the first model until 
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then which takes into account these behaviors of asset returns, Engle has proposed in 

1982 the Autoregressive Conditional Heteroskedasticity (ARCH) model for variance, 

which was essentially an AR (Autoregressive) process. Later in 1986, Bollerslev has 

proposed a specification of ARCH, namely Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model, which allows for a more parsimonious 

representation as it estimates only two parameters instead of infinity in the case of 

ARCH (Alberg et al., 2008). 

 However, both econometric models suffer from some weaknesses, such as they 

treat positive and negative shocks as if they have the same effect on return volatility. 

In fact, negative unexpected returns cause higher volatility than the positive ones 

(Donaldson & Kamstra, 1996). Therefore, in order to capture these asymmetric 

effects, several extensions of the GARCH model were introduced. For example, the 

conditional variance in GJR-GARCH by Glosten et al. (1993) responds differently to 

positive and negative innovations (Bollerslev, 2008).  

 There are many other separate, nested or hybrid models in the ARCH family 

which account for the different properties of volatility. However, in this study, only 

the above-mentioned asymmetric extension of the GARCH model is used, as it has 

been found to be among the most popular forecasting methods. ‘Glossary to ARCH’ 

by Bollerslev (2008) can be revisited for the full family tree. 

 Yet, the extensive literature on the performances of ARCH and its extensions 

show mixed results. For example, in a study on Japanese daily stock returns by Engle 

and Ng (1993), it was shown that among a class a of GARCH specifications where 

GJR-GARCH was also included, none of the models consistently outperformed the 

simple GARCH(1,1) model in-sample. However, they find that GJR-GARCH offered 

the most potential in modeling the asymmetric effects. Nevertheless, Pagan and 

Schwert (1990) draw attention to the fact that researchers should analyze the out-of-

sample prediction power to make any conclusions about the performance of a 

volatility model. Donaldson and Kamstra (1997) explain that the greater in-sample 

predictability might result from overfitting the data, and add that out-of-sample 

performances had not been not widely discussed in previous research. Studying four 
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indexes with GARCH and two asymmetrical extensions, they find that GJR-GARCH 

encompasses the other asymmetric GARCH model in the study for the S&P 500. For 

NIKKEI, they argue that GARCH  significantly underperforms compared to the 

asymmetrical models. Another research is by Hansen and Lunde (2005), where they 

forecast the one-day-ahead conditional variance of IBM returns as well as the DM-$ 

exchange rate with 330 models from the GARCH family. They find that while the 

other models did not offer a significantly higher out-of-sample predictive power 

compared to GARCH(1,1) in the case of exchange rate, asymmetrical models which 

account for the leverage effect outperformed GARCH(1,1) in IBM returns.  

 

2.2. HAR-RV 

Another model which will be tested in this study is an AR-type model, called HAR-

RV by Corsi (2009) which is based on the Heterogeneous Market Hypothesis: 

Investors with different investment period choices might react differently to volatility 

changes (Müller et al., 1997). Therefore, the forecasted realized variance is a function 

of daily, weekly and monthly realized variances. Researchers suggest that HAR-RV is 

able to capture some stylized features of stock volatility, of which one of the most 

important is long memory, meaning in the persistence of autocorrelations between 

squared returns. For Andersen et al. (2007),  HAR-RV deals with it better than the 

standard GARCH model.  

 Although not many studies were done which compares its forecast performance 

to that of the asymmetrical ARCH specifications, Corsi (2009) has compared HAR-

RV to long-term AR(I)MA models, specifically to ARFIMA (Autoregressive 

Fractionally Integrated Moving Average) and to the simple AR model. He has found 

that for three sets of realized variance series, namely the USD/CHF, S&P500, and T-

Bonds, HAR-RV has a better out-of-sample performance. Nonetheless, many 

researchers have extended the HAR-RV to include overnight returns, trading volume, 

and additional leverage effects, etc. to increase the model’s predictive power (Wang 

et al., 2015). 
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3. Neural Networks: Design and Concepts 

As it was mentioned above, Neural Networks offer an improvement in traditional 

forecasting methods as they are tolerant to incomplete and noisy data, can learn and 

generalize when presented examples and create their own algorithms to solve a 

problem (Taylor, 1995; Kristjanpoller et al., 2014). Essentially, its architecture was 

inspired by the human brain: The latter consist of E+11 neurons which communicate 

with each other via electrical signals. The receptors of a 

neuron, so-called ‘dendrites’, constantly receive signals 

from the outer environment which reach the cell-body, 

the decision unit of the neuron. Some of these stimuli 

excite the neuron and some have the inhibitory 

property. If the stimuli are above a certain benchmark, 

the neuron sends an impulse to the other neurons with 

the help of ions. This ion exchange takes place in the 

synapses, simply in the interneuronal spaces. 

 In an artificial neuron as depicted in the below 

figure, the inputs can be thought as the stimuli from the 

outer environment or the impulses sent from other neurons. As some of them cause 

an excitatory effect and some inhibitory, they are multiplied by ‘weights’, before 

being summed up by the cell body equivalent. If the total passes the threshold, the 

node produces the binary output 1. This basic model is called the binary decision 

(BDN) model and is a simple representation 

of the biological process.  

 Artificial neural networks (ANN) refer 

to a web of artificial neurons linked to each 

other and they typically consist of 3 layers: 

First is the input layer, which is passive and 

which only carries the inputs entered in the 

system without changing them. The data 

Figure 1: A biological neuron. Reprinted from 

Neural Networks, by J.G. Taylor, 1995, 

Henley-on-Thames: Alfred Waller in 

association with UNICOM. 

 

Figure 2: An artificial neuron with BDN. Reprinted from 

An Introduction to Artificial Neural Networks, by K. 

Gurney, 1997, London: UCL Press. 
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points are then transformed into the hidden layer(s) with an associated weight, 

depending on their relative importance in the dataset. Here, they pass through 

neurons which possess an activation function (or unit step function): This function 

determines if and to what extent that neuron is going to be active towards the 

determination of the outputs in the next layer. These inputs are transformed in a 

non-linear format via some mathematical operations such as the sigmoid 

transformation to range values from [-∞, +∞] into [0, 1]. Without a nonlinear 

transformation process, Neural Networks would act like simple linear regression and 

would not be able to capture the non-linearity in the dataset (Taylor, 1995).  Finally, 

the output layer produces the end output of the system with the updated weights.  

 Neural Networks can possess any amount of hidden layers or nodes. However, 

the most used structure is with one hidden-layer. Furthermore, ANN’s with two or 

more hidden layers are called ‘deep learning’ systems. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3: An artificial neuron with a more technical representation. 

Reprinted from Artificial Neural Networks(Basics) | Introduction to 
Neural Networks, by S. Saxena, 2017, Retrieved from 

https://becominghuman.ai/artificial-neuron-networks-basics-

introduction-to-neural-networks-3082f1dcca8c 
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4. Types of Neural Nets 

Neural Networks are mainly classified into two categories: Feedforward and feedback 

(recurrent) networks.  

  

4.1. Feedforward Networks  

In feedforward networks, information only flows forward 

from the input layer to the hidden layer(s) and finally to 

the output layer. No feedback is fed to the previous 

layers. The depiction to the right is an example of this 

type of net. These neural Networks are also called Multi-

Layer Perceptron (MLP). 

 

4.2. Feedback (Recurrent) Networks 

 

Figure 5: A recurrent neural network. Reprinted from Neural Networks, by J.G. Taylor, 1995, Henley-on-Thames: 

Alfred Waller in association with UNICOM. 

Recurrent Neural Networks differ from Feedback Neural Networks as they do not 

distinguish between input, hidden and output layers: Neurons of any layer can be 

linked to each other. Computations obtained from previous layers are fed to the web 

back again, which creates a form of ‘memory’. As financial time series data is 

dependent on previous time points, RNN can offer better results than MLP (Kim & 

Won, 2018). 

Figure 4: A feedforward neural network. 

Reprinted from The scientist and 
engineer's guide to digital signal 
processing, by S. W. Smith, 1997, San 

Diego, CA: California Technical Hub. 
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5. Literature Review: From ANN to Long Short-Term Memory  

The econometric models that have been explained in the previous chapters have been 

frequently used in the literature and are well-grounded in the sense that they are 

based on a statistical formulation. However, an important point is that they are built 

on the assumption of explanatory variables all being stationary (Kim & Won, 2018). 

In contrast, Artificial Neural Networks do not require prior assumptions of data 

distribution, have weaker restrictions and are more noise-tolerant compared to the 

traditional econometric models (Haykin, 1999; Cao & Tay, 2001). They are flexible 

and powerful models to capture non-linearity.  (Kim & Won, 2018; Haykin, 1999).  

 Since the mid-1990s, many researchers applied ANN to make forecasts on 

diverse subjects. In the context of finance, among various topics studied, exchange 

rates (Zhang, 2003), inflation (Moshiri & Cameron, 2000), stock prices (Oliviera et 

al., 2013) and GDP growth (Tkacz, 2001) can be exemplified.  

Specifically for stock return volatility which is the subject of this paper, the 

most popular approach was the Feedforward Neural Networks (or MLP). For 

example, Gonzalez Maranda and Burgess (1997) forecasted IBEX 35 index options’ 

implied volatility and found that MLP has a better out-of-sample performance than 

OLS and MA. Donaldson and Kamstra (1997) used a combined GARCH & Artificial 

Neural Network approach on 4 different stock exchanges. They have shown that their 

hybrid GARCH-ANN model makes better return volatility forecasts compared to 

GARCH and its asymmetrical extensions including GJR-GARCH. Bildirici and Ersin 

(2009) studied the volatility of daily returns in ISE between 1987-2008, and have 

found that ANN integration brings improvement in forecast power for the ARCH 

family models. Many studies in this field include both linear and non-linearly 

hybridized ANN models. 

On the other hand, some studies have used the Feedback (Recurrent) Neural 

Networks for forecasting financial time series, which are simply MLP’s including lags 

of dependent variable as explanatory variables (Bekiros  & Georgoutsos, 2008). This 

inclusion creates dynamic feedback on errors of past patterns, which might result in 
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richer modeling (Zhang, 2004). Among the first uses of RNN is the work by Kamijo 

and Tanigawa (1990) on stock price pattern recognition and they have found that 

RNN’s recognized 15 out of 16 patterns present in the data accurately. Another 

study by Li et al. (2004) uses RNN on the prediction of short-term exchange rates 

and finds that it performs better than MA and exponential smoothing methods. 

Although RNN’s are effective in time series modeling, researchers have 

recognized some technical problems in its engineering: Roughly speaking, when error 

signals are fed back in the web (backpropagation) consisting of neurons with 

application functions like sigmoid, their magnitude quickly vanishes, known as the 

vanishing gradient issue  (Schmidhuber et al., 1999). The detailed analysis can be 

found in Hochreiter (1998). This problem makes difficult for RNN to learn if the time 

lags between the signaling information and target event are greater than ten time 

steps (Schmidhuber et al., 1999). So, long-term memory is in a sense vulnerable (Kim 

& Won, 2018).  

That is why an improved version which overcomes these architectural 

difficulties was proposed by Hochreiter and Schmidhuber in 1997: the Long Short-

Term Memory. LSTM was used in language modeling and processing, handwriting 

synthesis and speech recognition. In finance, this area still remains undiscovered as 

too few research were found: Fischer and Krauss (2018) applied LSTM to predict the 

probability for each S&P 500 stock to outperform the general market (of Fama & 

French) between 1992 and 2015. They have found that LSTM outperforms a set of 

memory-free neural network models in the study, including the standard deep neural 

networks. Additionally, Kim and Won (2018) integrated LSTM with GARCH and its 

specifications. They have found that their version of the hybrid model, GEW-LSTM 

(GARCH, EGARCH, EWMA, and LSTM) gives the lowest prediction error. Sang 

and Di Pierro (2019) used LSTM to improve traditional technical analysis trading 

algorithms. They find that this combination of the two methods gives better 

prediction power in comparison to the traditional technical analysis algorithms alone. 
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Furthermore, most of the other studies attempt to alter the technical 

algorithms behind LSTM, such as in Liu (2019) and in Schwedersky et al. (2019). 

Apparently, the integration of finance and LSTM is a very new concept.  

 

6. Contribution and Hypotheses 

As it was shown in the previous chapters, the time-series forecast performance of 

LSTM models in comparison to traditional econometric models were not explicitly 

analyzed in the literature. Rather, it was seen that LSTM was either hybridized with 

econometric models or its technical algorithms were altered. On the other hand, there 

are too few researches concentrating on both finance and stock returns. In general, 

researchers have used LSTM to make predictions on topics related to linguistics.  

 Therefore, this research aims to shed light on the applicability of LSTM in the 

field of stock return volatility prediction. It is intended to offer a comparative 

analysis on out-of-sample forecasts of econometric models versus the long short-term 

memory model.  

 Hence, some selections of econometric models are made. AR(1), ARMA(1,1), 

GARCH(1,1), GJR-GARCH(1,1) and HAR-RV are chosen to be compared to LSTM 

as they are among the most popular and effective models in the literature. 

 Nonetheless, the findings of this research can be useful to practitioners, 

researchers and academicians as long short-term memory recurrent neural networks 

represent an opportunity to achieve better return volatility forecasts. This might 

have financial implications as volatility estimation is essential in determining 

investment strategies and is relevant in the calculation of important measures such as 

Value at Risk (VaR) or the Sharpe ratio (Kristjanpoller et al., 2014). Especially, the 

risk management field can benefit as the accurateness of the statistical estimates form 

the base of the sector (Fleming et al., 2001). 
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 This paper tests the period of January 2010 to June 2019 to assess the models' 

performances. Hence, it revolves around the following research question: 

 

“Does LSTM outperform the econometric models in terms of return volatility 

forecasting on S&P 500 between January 2010 and June 2019 ?” 

 

Additionally, the testing period was chosen to be separated into two parts: 2010-2011 

and 2012-2019. The reasoning of this choice is going to be explained in the next 

chapter.  

This preference resulted in the below two hypotheses: 

 

H1: The LSTM forecasts on S&P 500 between January 2010 and December 2011 

outperform those of the AR, ARMA, GARCH, GJR-GARCH and HAR models. 

 

H2: The LSTM forecasts on S&P 500 between January 2012 and June 2019 

outperform those of the AR, ARMA, GARCH, and GJR-GARCH models. 

 

7. Data 

The data of this research comes from the Realized Library of the Oxford-Man 

Institute of Quantitative Finance. The dataset consists of daily frequencies of 5-min 

realized return volatility and open-to-close returns of the S&P 500 Index. The period 

studied is the trading days from the beginning of 2000 until the end of June 2019, 

making a total of 4891 observations. The interval from the beginning of 2000 until 

the end of 2009 will be used for the training of LSTM.  Rest of the data points until 

the end of June 2019 will be used as the test data to compare the forecasting 

performances. Also, the testing period is analyzed in two parts: January 2010-

December 2011 and January 2012-June 2019. Further explanation for this is provided 

in Descriptive Statistics.  
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7.1. Data Transformation 

The open-to-close returns are multiplied by E+2 and realized variances by E+4 in 

this research for the sake of easier reading. 

 

7.2. Descriptive Statistics 

 

Table 1: Descriptive Statistics for Realized Variance of the Full Sample 

 

 

 

Figure 6: Historical Daily Realized Variances of the S&P 500 from January 2000 till June 2019. The red line 

depicts the average realized variance. 

Mean 1.071

Standard Deviation 2.428

Minimum 0.012

Maximum 77.477

*Real values multiplied by E+4.

Realized Variance*
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Above figure shows the historical dispersion of the 5-minute realized variances of the 

S&P 500. The preview of the sample shows that their average is 1.071, as represented 

by the red horizontal line in Figure 5. Higher-than-average volatilities were 

pronounced especially during three moments: From the beginning of the dataset until 

2003, the fluctuations correspond to the Early 2000’s Recession due to the collapse of 

the technology bubble and 9/11 terrorist attacks. The other period where the S&P 

500 return volatility peaked was between 2007-2009, and it corresponds to the 2008 

economic crisis where the housing bubble burst and US financial institutions have 

failed due to the mortgage crisis. Especially on November 10, 2008, the highest value 

in the dataset was observed: A realized variance of 77.477. Despite the decreases in 

volatility, the fluctuations continued in the post-crisis period, as observed between 

2010 to 2012. 

 Furthermore, another large peak can be observed after 2015, which 

corresponds to August 24. Such increase in the return volatility was related to big 

sell-offs in Asia provoking declines in European and U.S. stock features. The sell-offs 

resulted from China's economic slowdown (CNBC, 2016). Later, 2017 was one of the 

historically least volatile periods since the ’60s for the market, which explains the 

minimum value of 0.012 observed at the end of 2017 (Reuters, 2019). 2018 came with 

slight fluctuations, with high and low return volatilities dominating the year (CNBC, 

2018). 

 Referring back to the testing period, the choice was made to analyze it in two 

parts as 2010-Dec 2011 and 2012-June 2019. This decision is due to their different 

characteristics that the post-crisis period consisted of many unexpected shocks and 

2012 onwards being relatively stable with the exception of a peak in 2015. 
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7.3. Software and Hardware 

In this research, two softwares are used: The analysis of AR, ARMA, GARCH, GJR-

GARCH, and HAR-RV are studied in STATA. The LSTM model is set in Python 

3.7 with the use of numpy and pandas packages as in Fischer and Krauss (2018). 

Additionally, the open-source library Keras which allows fast-experimentation with 

neural networks was used on top of TensorFlow, the latter being another open-source 

math library used for machine learning.   

 

8. Definitions - Econometric Models 

The definitions of the models used in this research are as follows: 

 

AR (p): 

The autoregressive process where the series stationary value yt depends on p past 

values is represented by the below equation 

𝑦𝑡 = 𝜇 + 𝑢𝑡 +   𝜙𝑖𝑦𝑡−𝑖 

𝑝

𝑖=1

 

 

where 𝜙𝑖 ... 𝜙𝑝  are the autoregressive coefficients, 𝑢𝑡 the white noise at time t and 𝜇 

the constant. 

 

ARMA (p,q): 

ARMA of order p and q consists of two components: Autoregressive (AR) and 

Moving Average (MA) processes.  

𝑦𝑡 = 𝜇 + 𝑢𝑡 +   𝜙𝑖𝑦𝑡−𝑖 

𝑝

𝑖=1

+   𝜃𝑖𝑢𝑡−𝑖 

𝑞

𝑖=1

 

 

𝑦𝑡 in the equation above represents the series stationary value, 𝜙 and 𝜃 the 

parameters of the model, 𝑢 the residuals and 𝜇 the constant. 
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The model is based on the idea that the value of a current observation in a time 

series depends both on the value of its lagged observations and previous shocks.  

 

GARCH (p,q): 

GARCH model is built upon the theory that the conditional variance depends on p 

lags of its values 𝜎2  and on q lags of the squared error, as noted by 𝑢2. The constant 

is represented by 𝜇. 

  

𝜎𝑡
2 = 𝜇 +   𝛼𝑖𝑢𝑡−𝑖

2  

𝑞

𝑖=1

+   𝛽𝑗𝜎𝑡−𝑗
2  

𝑝

𝑗=1

 

 

From the above volatility equation, it can be seen that the model accounts for 

volatility clustering, as periods with high volatility tend to result in the next periods 

having higher volatility via the last term of the equation.  

 

GJR-GARCH:  

One of the GARCH extensions which captures the asymmetrical effects is the GJR-

GARCH model. The general equation below has an indicator function noted by I, 

which takes the value of 1 if the lagged unconditional standard deviation 𝑢𝑡−𝑖 is 

smaller than 0.  Indicator function helps at modeling the asymmetry caused by 

positive and negative shocks: While a positive shock has an effect of α, negative news 

has α+γ via the indicator function. Conditional variance is always positive through 

some restrictions. 

 

𝜎𝑡
2 = 𝜇 +   𝛼𝑖𝑢𝑡−𝑖

2  

𝑞

𝑖=1

+   𝛽𝑗𝜎𝑡−𝑗
2  

𝑝

𝑗=1

+   𝛾𝑖𝑢𝑡−𝑖
2 𝐼𝑡−𝑖 

𝑞

𝑖=1

 

𝑤𝑕𝑒𝑟𝑒 𝐼𝑡−1 = 1 𝑖𝑓 𝑢𝑡−1 < 0 

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 = 0. 
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HAR-RV: 

HAR model makes use of different time horizons to predict variance. In the below 

equation, 𝑅𝑉𝑡
𝑑 , 𝑅𝑉𝑡

𝑤and 𝑅𝑉𝑡
𝑚  represent the daily, weekly and monthly realized 

volatilities respectively. 

 

𝑅𝑉𝑡+1𝑑
 𝑑 

= 𝜇 + 𝛽(𝑑)𝑅𝑉𝑡
𝑑 + 𝛽(𝑤)𝑅𝑉𝑡

𝑤 + 𝛽(𝑚)𝑅𝑉𝑡
𝑚 + 𝑢𝑡+1𝑑  

 

The weekly and monthly components of the equation are defined as the averaged 

realized variances of the last 5 and 22 days (denoted by d), respectively. 

 

𝑅𝑉𝑡
𝑤 =

1

5
 RVt−id

d

4

𝑖=0

, 𝑅𝑉𝑡
𝑚 =

1

22
 RVt−jd

d

21

𝑗=0

 

𝑤𝑕𝑒𝑟𝑒 𝑅𝑉𝑡
𝑤 =

1

5
( RVt

d  +    RVt−1d
d  +  RVt−2d

d + RVt−3d
d + RVt−4d

d ) 

 

All the above models will be used to make one-step-ahead forecasts of S&P 500 

return volatility for the period between January 2010 and June 2019. 

 

9. Long Short-Term Memory: Architecture  

LSTM models are created to overcome the technical problems seen in the Recurrent 

Neural Networks by Hochreiter & Schmidhuber (1997). As the latter systems were 

not able to remember correlations between events separated by more than 10 steps, 

LSTM models were built with memory blocks instead of neurons to overcome these 

technical difficulties (Schmidhuber et al., 2007). 

 The LSTM networks consist of input, output and hidden layer(s), just as in 

the basic ANN architecture. Input layer only serves to transfer the inputs to the 

hidden layer(s) without any change. The power of the LSTM's comes from the 

hidden layer(s) as the latter contains memory blocks for each timestep t. These 

memory cells have three gates that determine the cell state st, which is essentially the 
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memory of the cell of the optimal weights for all the connections in the LSTM model 

to transform the inputs to the desired outputs. 

 

Figure 7: The structure of an LSTM memory cell. Reprinted from "Deep learning with long short-term memory 

networks for financial market predictions" by T. Fischer, C. Krauss, 2018, European Journal of Operational 

Research, 270(2), p. 657. 

 The three gates are named as input it, output gt and forget fg. At each time 

step t, they receive the same information: The current inputs xt and the output of the 

memory cell belonging to the previous time step, ht-1. However, each of them has a 

different purpose: 

-The forget gate determines which information to delete from the cell state st. 

-The input gate determines which information to add to the cell state st. 

-The output gate determines which information to send as an output to the next 

timestep from cell state st. 

 The following variables, also present in the above figure's notations, need to be 

defined as they are the basis of the LSTM equations. Below-mentioned details are 

extracted from Fischer and Krauss (2018). 

 𝑥𝑡 : The input vector at time t 

 𝑠𝑡  𝑎𝑛𝑑 𝑠 𝑡: The cell state (memory of the weights at time t) and candidate 

value vectors (inputs to add to the cell state at time t) respectively. 

 𝑊𝑓,𝑥 , 𝑊𝑓,𝑕 , 𝑊𝑠 ,𝑥 , 𝑊𝑠 ,𝑕 , 𝑊𝑖,𝑥 ,𝑊𝑖,𝑕 , 𝑊𝑜,𝑥  𝑎𝑛𝑑 𝑊𝑜,𝑕 : The weight matrices of the inputs 

for three gates forget 𝑓, input 𝑖, output 𝑜, and the candidate values 𝑠 . The 
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second lower index represents the source of the information: 𝑥 refers to current 

inputs and 𝑕 to the previous memory block's output.  

 𝑏𝑓 , 𝑏𝑠 , 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑜 : the bias vectors. The term bias stands for a constant added to 

the activation function, with the latter being a general name given to all 

functions which transform an input to an output. Therefore, adding constant 

results in the shifting of the activation function. Bias term can be useful if the 

predictions are systematically far away from the real values: The addition of a 

constant term to a function can shift the prediction line closer to the 

benchmark line.  

 𝑓𝑡 , 𝑖𝑡  𝑎𝑛𝑑 𝑜𝑡 : The activation value vectors for their corresponding gates at time 

t. The activation value can be thought of as a benchmark value for 

information flow at different gates. This is analog to the level of stimuli in a 

biological neural network setting after which the neuron starts to send 

impulses to the other neurons. 

 𝑕𝑡 : The LSTM output vector which is sent to the memory block of the next 

time step.  

 Sigmoid function: A function which scales down values between 0 and 1 on the 

basis of the following equation, where x represents the input to the function. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1+𝑒−𝑥  (1) 

Values of 0 and 1 have different meanings for the different gates, which is 

explained below. 

 Hyperbolic tangent function (tanh): A function to regulate the network which 

scales down values between -1 and 1 on the basis of the following equation, 

where x represents the input to the function. 

 

𝑡𝑎𝑛𝑕(𝑥) =  
exp  𝑥 −exp (−𝑥)

exp  𝑥 +exp (−𝑥)
  (2) 
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The learning begins in the forget gate, where it is decided which information to 

remove from the memory of the previous memory block, denoted as 𝑠𝑡−1. For this, 

the activation value, in other words, the weighted sum of the forget gate inputs needs 

to be calculated: It is a function of the current inputs xt, the outputs coming from the 

memory block of the previous time step ht-1 and the bias term bf. The output of this 

function passes through sigmoid function which squashes the values between [0,1], 

determining the extent it is going to be forgotten. 0 stands for completely forgetting 

the information and 1 for completely remembering. 

 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓,𝑡𝑥𝑡 + 𝑊𝑓,𝑕𝑕𝑡−1 + 𝑏𝑓) (3) 

 

 Second, the input gate decides on which new combination of relationships 

(information) to add in the cell state 𝑠𝑡 . This is done in two steps: Initially, the 

candidate values 𝑠𝑡  which bring new information are calculated (4). Then, the 

activation value for the input gate 𝑖𝑡 is determined (5). 

 

𝑠 𝑡 = tanh(𝑊𝑠 ,𝑥𝑥𝑡 + 𝑊𝑠 ,𝑕𝑕𝑡−1 + 𝑏𝑠 ) (4) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖,𝑥𝑥𝑡 + 𝑊𝑖,𝑕𝑕𝑡−1 + 𝑏𝑖) (5) 

 

Tanh in the candidate values equation (4) stands for the hyperbolic tangent 

function. It serves as a network regulator by ranging values between [-1, 1]. For the 

sigmoid function in the input gate activation equation (5), value 0 is interpreted as 

the information not adding value, and 1 as bringing new insights. 

All these above calculations on forgotten and added inputs should be fed into 

the current memory of the cell 𝑠𝑡 . Let  Θ denote the element-wise multiplication. The 

current cell state is computed as follows: 

 

𝑠𝑡 = 𝑓𝑡  Θ st−1 + it  Θ 𝑠 𝑡  (6) 
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Hereby, the 𝑓𝑡 can be interpreted as the ratio of past information reaching the 

current state, and 𝑖𝑡 as the ratio of candidate values that are added to the current 

cell memory. The gates, therefore, prevent irrelevant inputs from entering the 

memory and make long-term memory storage possible (Malhotra et al., 2015). 

Finally, the combined information which needs to be sent to the memory block 

in the next time-step, namely 𝑕𝑡 , is computed via the below two equations.  

 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜,𝑥𝑥𝑡 + 𝑊𝑜,𝑕𝑕𝑡−1 + 𝑏𝑜) (7) 

𝑕𝑡 = 𝑜𝑡  Θ tanh(st) (8) 

  

 It is also important to note that there exist different functions instead of 

sigmoid and tanh. However, these are the standard and most used configurations of 

LSTM, therefore they are chosen to be applied in this study. The logic of this 

standard is provided in the Long Short-Term Memory: Configuration chapter. 

 

10. Long Short-Term Memory: Terminology 

 In the training of neural networks, the important terminologies are cost 

function, gradient descent, backpropagation, epochs, batch size, and dropout 

regularization. By the term training, we refer to finding the best combination of 

weights and biases to be assigned to the neural connections in a network which gives 

the closest values to a targeted output. To train a network, we need a training set 

which is essentially a part of our dataset and a cost function. With the latter, we 

refer to a function which measures the differences between the network output and 

the desired target, namely the network error (Gurney, 1997). Cost functions have 

many types, such as mean squared error, mean absolute error and mean error.  

 In order to obtain the most accurate predictions, the network error needs to be 

minimized. Therefore, the set of weights and biases which result in so should be 

found. The methodology to achieve the lowest network error is called gradient 

descent optimization.  
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 It is important to note that we cannot simply take the minimum of the cost 

function and find the corresponding weights, because in artificial neural networks we 

are dealing with non-linear optimization surfaces as a function of thousands of 

weights and biases. Therefore, minimizing the network error represents navigating on 

a 3D surface and gradually approximating towards the local minimum as depicted by 

the lines in the below figure. However, it is not guaranteed the local minimum 

reached is the global minimum of the cost function as there might exist many local 

minima in the error surface. Notice that the below figure corresponding to the error 

surface of a neural network model with two weights has more than one minimum 

error points, colored with purple. 

 

Figure 8: An exemplary error surface with 2 weights. Reprinted from 01 and 02: Introduction, Regression 

Analaysis and Gradient Descent by A. Ng, ?, Retrieved from 

http://www.holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_gr.html. 

 

Two terms are essential in gradient descent optimization, first being gradient. This 

term stands for the direction of the steepest increase of the error, given a starting 

point on the error surface. The opposite of this vector naturally tells the directions of 

the steepest ascent in the surrounding error surface, meaning the closest way towards 

the local minimum.  

 Another important term is the learning rate, which is the measure of how 

quickly the model changes its weights to reach the local cost (error) minimum, or 

how big its steps are while changing the weights and biases. If its value is too large, 
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the model might miss the local minimum. If it is too small, the algorithm will take a 

long time to converge.  

 The weight updates via the gradient optimization are based on the below 

equations, where 𝑤𝑛+1 and 𝑤𝑛  are the new and old weights assigned to the 

connections between neurons respectively, 𝛾 the learning rate and ∇𝑤𝑛 a vector being 

the gradient of the cost function C. Bias updates 𝑏 are deduced in the same fashion.  

 

𝑤𝑛+1 = 𝑤𝑛 − 𝛾. ∇𝑤𝑛  𝑤𝑕𝑒𝑟𝑒 ∇𝑤𝑛 =
𝜕𝐶(𝑤𝑛 ) 

𝜕(𝑤𝑛 )
   (9) 

𝑏𝑛+1 = 𝑏𝑛 − 𝛾. ∇𝑏𝑛  𝑤𝑕𝑒𝑟𝑒 ∇𝑏𝑛 =
𝜕𝐶(𝑏𝑛 ) 

𝜕(𝑏𝑛 )
  (10) 

 

 It is important to note that when the training data is fed into the system, 

random weights and biases are assigned to all the connections in the network. The 

network reaches an output, with some deviation from the desired values known as the 

errors. The term back-propagation stands for these errors being distributed back from 

the output to through the layers of the neural network, so as to tune all the weights 

and biases via the gradient descent method to reach a minimized network error. 

 However, this does not happen at a time: The algorithm does not immediately 

come to a solution as the weight and bias changes happen in small steps. It means 

that it does not fully learn every information in the data at one go, and an exposure 

of the training set of multiple times is needed for it to converge towards the local 

minima (we use the plural form here, as in each exposure we start with random 

weights and biases which brings us to different minima). Therefore, we refer here to 

the term epoch, representing the number of complete presentations of the training set 

to the algorithm.  

 Also, as the number of training data that the computer should analyze is 

usually quite large, it was found that it is faster to analyze it in pieces: Hereby, we 

refer to the term batches, the number of groups in which we pack the observations of 

the training data.  
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 The final term to be explained is the dropout ratio, which is actually related to 

the concept of overfitting: When the neural networks make predictions, they base 

their estimates on their learnings from the training data. However, if the model fits 

these limited data points too closely, it might not be able to generalise well when it is 

given a deviating set. This is when an overfitting happens: The model performs too 

well on the training set but produces high errors on the unseen data. The avoid this 

situation, a technique called dropout regularization can be used. Via randomly 

dropping a specified amount of neurons in the hidden layer(s) and their connections 

in each epoch, we can remove the complexities in the model's configuration which 

might be the reason why the model is not generalizing well. This method helps to 

reduce the dependency of neurons to each other, meaning the fact that them 

detecting the same features from the inputs. This dependency worsens the model's 

performance as errors would be repeated by the dependent neurons. Randomly 

dropping some hidden units from the model each time would, therefore, give a set of 

more independently working neurons, decreasing the model's error.     

 

11. Long Short-Term Memory: Configuration 

The LSTM model implemented in this study to predict t+1 return volatility has the 

below technical specifications: 

 

Architecture

Type

Number of Hidden Layers

Number of LSTM Units in Each Layer

Inputs

Activation Functions 

Number of epochs during training

Batch Size

Loss Function

Dropout Ratio

Training Set as of Total Data

Optimization Algorithm

Recurrent Neural Network

Long Short-Term Memory

Single LSTM layer

50

RVt-21 till RVt

50%

Adam

LSTM Model

Sigmoid and tanh

1000

32

Mean Squared Error

0.2
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As explained in the LSTM Architecture section, the general configuration for the 

LSTM models is to have sigmoid and hyperbolic tangent (tanh) as activation 

functions. The sigmoid function is used in the three gates as it ranges information 

between no flow and complete flow. On the other hand, we use tanh in the 

calculation of the vector output of the memory block: LeCun et al. (1998) have 

argued that due to the shape of the tanh function, its derivatives are larger than that 

of the sigmoid which results in achieving the local minima faster (referring back to 

the gradient issue, the steepest ascent). Therefore, these two standard functions are 

used in our study.   

 As inputs, the realized variances of the S&P 500 from t-21 until t were used to 

make t+1 forecasts. This choice was inspired by the HAR model's inclusion of the 

monthly component of the volatility process and being very effective at capturing its 

stylized facts.  A similar choice is also present in Kim and Won (2018). 

 For the other factors such as the number of hidden layers, LSTM units in each 

layer, epochs, batch size, dropout, and training set as of total data, it should be noted 

that there is no definitive rule to find their optimal numbers. They are actually 

hyperparameters which require trials with a set of different combinations so that the 

lowest cost is achieved. However, as we are working with a very large dataset which 

requires Python to run for hours, we selected to use the values commonly found in 

the literature: The final selection was one single hidden layer with 50 LSTM units, 

1000 epochs, batch size of 32 data points (it is a default value in the LSTM literature 

as it yields faster and accurate computation of the local minima), 0.2 dropout rate 

(20% of the hidden LSTM units are dropped randomly in each epoch) and 50% as the 

ratio of training set to the total data. 

 For the optimization algorithm, we have used an alternative of the previously 

mentioned classical gradient descent model (also known as stochastic gradient 

descent, SGD). 'Adam', in other words 'Adaptive Moment Estimation' is another 

very popular machine learning algorithm. It is based on the idea of learning the 

learning rates throughout training, as opposed to the classical model having a fixed 

pre-determined learning rate. However, Adam's most important feature is that its 
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algorithm takes much less time to converge to the local minima compared to many 

other optimization algorithms including SGD, therefore providing relatively faster 

results (Sang & Pierro, 2019). That is why this optimizer was selected in our study 

instead of the classical SGD model. The weight assignment equations for Adam will 

not be provided as they are very complex to derive and that these derivations are out 

of the scope of this analysis. 

 

12. Performance Measure 

Performances of the above models are going to be compared with Mean Squared 

Error (MSE), which was prevalently used in literature (Kim & Won, 2018; 

Kristjanpoller et al., 2014).  MSE is defined by the below equation, where 𝑛 is the 

number of observations in the forecasting period,  𝑅𝑉𝑖 and 𝑅𝑉 𝑖 the observed and 

predicted realized variances respectively.  

𝑀𝑆𝐸 =  
1

𝑛
∗  (𝑅𝑉𝑖 − 𝑅𝑉 𝑖)

2

𝑛

𝑖=1
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13. Results  

 Below table reports the MSE's obtained of all models and their rankings in 

this study. 

 

Table 2: Mean Squared Error of the Models and Their Rankings 

 

 

 Period 2010-2011 

The graphs for the models of this period are attached under Appendix 1. The 

outcome of the analysis is that ARMA(1,1) produced the best forecasts for this period 

characterized by many fluctuations with an MSE of 2.453. The model is followed by 

HAR with an MSE of 2.457. Interestingly, both models produced a very similar 

pattern for this period, as exhibited by the figures 1A and 1B in the Appendix. 

 The third best forecasting model was the AR(1) model with an MSE of 2.612 

(Figure 1C in the Appendix). It is important to note that even though AR(1) was 

more successful at predicting especially the fluctuations after July 2011 very well and 

high realized variances corresponding to the peaks in general, it has its lower bound 

of predictions lying much above than that of the realized values. This should be the 

reason why it has a higher MSE than the first two models. 

 Furthermore, the worst three processes were GJR-GARCH(1,1), GARCH(1,1) 

and LSTM with out-of-sample error values of 2.812, 2.957 and 4.175 respectively. In 

figure 1D and 1E in the Appendix, it can be seen that GJR-GARCH produced closer 

Model MSE* Ranking Model MSE*

ARMA(1,1) 2.453 1 GJR-GARCH(1,1) 0.903

HAR 2.457 2 GARCH(1,1) 0.957

AR(1) 2.612 3 HAR 0.996

GJR-GARCH(1,1) 2.812 4 ARMA(1,1) 1.010

GARCH(1,1) 2.957 5 AR(1) 1.122

LSTM 4.175 6 LSTM 3.112

Period 2010-2011 Period 2012-2019

*Real MSE's multiplied by E+8
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estimates to the realized values for the peaks than the GARCH model. It could also 

predict the downward moves better than the latter: Overall, we have smaller 

distances between the two lines during the period of study, pronounced for around 

July 2010. Thus, it is expected that the GJR-GARCH(1,1) would give a better MSE 

value than the GARCH(1,1) model.   

 When the two models are compared to the best performing ARMA(1,1), it can 

be observed that they were not as successful as the latter due to the fact that 

ARMA(1,1) predictions were almost parallel to the realized line with just small 

differences. The pattern is more irregular for GARCH and its asymmetric counterpart 

GJR-GARCH, which were not able to capture the direction and the magnitude of the 

fluctuations very well from around June 2010 until July 2011. 

Finally, the worst predictive model is LSTM for this study period. It has an 

MSE of 4.175, equaling almost 1.7 times the error for the best model ARMA(1,1). 

Figure 1F in the Appendix shows that it tends to produce much higher estimates 

than the realized values after a peak (marked with circles) and much lower values 

after a drop (marked with diamonds) compared to the other models in this study. 

Therefore, it resulted in having the lowest MSE. This model is apparently not 

suitable for predicting time series with fluctuations.  

 

 Period 2012-2019 

The graphs for this period are attached in Appendix 2. The outcome was that the 

best performing model was instead GJR-GARCH(1,1) with an MSE of .903 followed 

by GARCH(1,1) with .957 (Appendix Figure 2A and 2B respectively). Two models 

especially differed in high fluctuation moments of around January 2016 and January 

2018 onwards: From the end of 2015 until the second half of 2016, GJR-GARCH 

produced much closer estimates to the realized line. However, from the beginning of 

January 2018, it overpredicted some points as opposed to GARCH giving closer 

values. But overall, GJR-GARCH performed very well at capturing the up-and-

downs in this period and achieved the lowest MSE among all the models. 
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 Moreover, the next best performing models were HAR and ARMA(1,1) with 

very close mean squared error values of .996 and 1.010 (Appendix 2C and 2D). It was 

surprising to see that those two models performed at a similar level again as they did 

in the 2010-2012 period. Overall, a very similar pattern of forecasting is detected, 

with slight differences at the high fluctuation moments where HAR RV produced 

closer estimates to the realized line than the ARMA(1,1) model. These periods 

correspond to around January 2016 and January 2018 onwards. 

Finally, the worst two forecasting models were AR(1) and LSTM (Appendix 

2E and 2F). While the first model performed slightly worse than the ARMA(1,1) 

with a value of 1.122, LSTM gave an MSE of 3.122 which is almost 3.5 times that of 

the best performing GJR-GARCH(1,1). For the AR(1) model, it was noticed that 

even though the predictions were mostly parallel to the realized line, the lower bound 

of the estimates lie much above the red line. This feature was also detected in the 

2010-2011 period. Additionally, until the end of 2015, the model had its upper bound 

of predictions lie much closer to the blue line than those of GJR-GARCH(1,1). 

 For LSTM, it was observed again that it predicted much higher variances after 

a peak, but this time it did not estimate much lower values after a drop. Yet, it can 

be said that this LSTM configuration is especially unsuccessful when there are 

fluctuations and large shocks, as exemplified by the beginning and the end of 2015.  

 

14. Discussion and Limitations 

Due to the high fluctuations between 2010-2011, it was chosen to analyze the this 

period separately from the rest of the data points until June 2019. The outcome of 

the study was that ARMA(1,1) had the best predictive power between 2010-2011 

while GJR-GARCH(1,1) performed the best between 2012-2019 in terms of the 

performance metric MSE. 
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 2010-2011 

 For this period, it was unexpected that ARMA provided better return 

volatility forecasts than all the other models. In the literature, most of the findings 

are in favor of the GARCH family models. However, in this sample, ARMA could 

predict the ups and downs much more accurately and gave a much parallel look to 

the realized values compared to both of the GARCH class models. This was probably 

due to the nature of this period: The realized variance line depicts multiple shocks 

followed by decreases in volatility which has a tendency to turn back to its average 

level of around 1. This is what the ARMA process is actually aiming at: By a merger 

of the autoregressive and the moving average components, it captures the effects of 

mean reversion and of unexpected shocks. In that sense, it is reasonable that it 

represented the movements in this period better than the others.  

 The models which followed ARMA were HAR, AR, GJR-GARCH, GARCH, 

and LSTM respectively. The HAR process almost had the same value of the error 

metric as the ARMA model, and surprisingly it has given a very similar forecasting 

pattern. In that sense, this result is supportive of the prior research concluding the 

effectiveness of using daily, weekly and monthly components to forecast realized 

variances. 

 About the AR process which was the third best performing model on this 

period, even though it has given an almost parallel line when compared to the real 

values, it was observed that it over-predicted the mean. This was probably due to the 

peaks throughout the dataset, inflating AR's estimates. On the other hand, the fact 

that AR performed better than the GARCH family models was surprising as the 

latter is known to capture the stylized facts of asset volatility such as volatility 

clustering. However, this outcome is most probably due to the choice of the time 

frame and not valid for the whole testing period. 

 Another result from 2010-2011 was that GJR-GARCH had a lower MSE than 

GARCH. This finding is also present in Awartani and Corradi (2005), where the 

researchers conclude that GJR-GARCH predicts one-step-ahead better than GARCH 

on S&P 500 between  1990 and 2001.  
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 Finally, the LSTM model showed the worst performance in this period. This 

configuration was not able to predict the fluctuations and it has produced a 'delayed 

look': After an upward directioned shock at time t, normally the real values tend to 

go down in the next period t+1. However, instead of predicting a drop at t+1, the 

model generally predicts very high estimates for t+1 than drops sharply at t+2, 

replicating the shock and the volatility drop that happened in the previous time step. 

It is obvious that these settings are not ideal to predict a period with many 

unexpected shocks.  Yet, as the machine learning models develop and update their 

own algorithms continuously in their Black Box, it is not possible for us to know 

what exactly caused this delayed look. We will refer to the possible treatments after 

studying the model's performance in the second period. 

 2012-2019 

The second period of the study corresponds to a relatively stable time frame except 

for one peak. The outcome was that GJR-GARCH provided the best forecasts, 

followed by GARCH, HAR, ARMA, AR, and LSTM respectively. Therefore, we 

conclude that in both of the study periods, the asymmetric version of the GARCH 

model has beaten its parent GARCH. This is also in line with Hansen and Lunde 

(2005), who have found that GARCH models which account for leverage effects such 

as GJR-GARCH outperform GARCH(1,1) in their study on IBM returns.  

 On the other hand, these two models resulting in better forecasts was in our 

opinion due to the fact that this period was not characterized by many unexpected 

shocks but rather it was stable as opposed to the first period. Therefore, a model 

which accounts for the general characteristics of the stock volatilities fitting the 

sample better than AR or ARMA models is intuitive. 

 The next best performing models after the GARCH type processes are HAR 

and ARMA. In this study period, the latter two also had very similar patterns with 

this time HAR predicting the peaks better than ARMA.  
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 The worst two models were AR and LSTM. Also in this period, the first model 

overpredicted the mean, and LSTM showed a delayed look. Even though not many 

studies were done on index return volatility with LSTM, the model and its extensions 

were effective at forecasting financial variables such as forecasting price movement in 

Nelson et al. (2017). In that sense, our finding that LSTM is not successful at 

forecasting return volatility is unexpected. However, it might be due to the 

hyperparameter specifications which represent a challenge in the neural networks 

setting as finding their optimal level are mostly based on trial and error: We have 

detected that automated hyperparameter tuning services which test different 

configurations to find the optimum values exist, however we have not observed any 

researcher integrating the method into their studies in the field of finance. This is due 

to the fact that the computational requirements and the costs are high (Domhan et 

al., 2015): In order to process such large datasets with different sets of 

hyperparameters, a lot of time and a very high performance computer is needed.   

 Therefore, in a setting where the tuning automation is not applied, one of the 

most important treatments can be to add more data points to the training set so that 

the model can practice on more relationships, as adviced by Williams and Zipser 

(1995). Similarly, a training set to total data ratio of 70% can be employed as in 

Kristjanpoller et al. (2014) or of 75% as in Fischer and Krauss (2018).  

 Moreover, trials with more epochs can be made as the latter represents the 

number of steps the algorithm can take to reach a local minima from a point on the 

error surface. More representations of the training set to the optimization algorithm 

might bring lower losses since going more steps on the error surface could bring us to 

a local minimum with a lower error value.  However, due to time constraints, 

different trials were not possible as just this configuration took 6 hours to converge. 

Additionally, especially testing with different dropout ratios might enhance the 

model's quality (Gal & Ghahramani, 2016): Maybe a model with much less 

connections better suits this dataset. Last, it is also possible to try with different 

numbers of layers, LSTM units, and batch sizes. The fact that there exists no pre-
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defined optimal value for these hyperparameters is a challenge for the application of 

the neural networks. 

 Overall, we reject both of our hypotheses: This configuration of LSTM has 

actually underperformed all the econometric models in this study in both periods. 

 

15. Conclusion and Suggestions 

In this study, a set of econometric models namely AR, ARMA, GARCH, GJR-

GARCH, and HAR-RV were compared to a specific type of Neural Network model: 

Long Short-Term Memory,  so as to analyze if NN's ability to capture non-linearities 

in datasets can enhance index return volatility predictions. Two periods characterized 

by fluctuations and stability were studied: Overall, it was seen that ARMA and the 

asymmetric version of the GARCH model, namely GJR-GARCH, gave the best 

forecasts in terms of the performance metric MSE for these periods respectively. In 

both periods,  LSTM underperformed all the other models on predicting daily return 

volatilities of the S&P 500 Index. These results do not necessarily mean that LSTM 

models are unsuccessful at predicting return volatility, but that the hyperparameter 

selections are crucial for achieving a good model performance. Further trials should 

be done with their different combinations to find a better forecasting LSTM model. 

Furthermore, the inclusion of other types of inputs which can be signaling for return 

volatility in extra to realized variances is advised to the future researchers. Nesting 

GARCH family models, ARMA, HAR or their specifications into LSTM is also 

recommended as it still remains as a field to be enlightened for forecasting return 

volatility. 
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Appendix 1 

 

Figure 1A: ARMA(1,1) RV Forecasts versus RV: 2010-2011. 

 

 

Figure 1B:  HAR RV Forecasts versus RV: 2010-2011. 
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Figure 1C: AR(1) RV Forecasts versus RV: 2010-2011. 

 

 

Figure 1D: GJR-GARCH(1,1) RV Forecasts versus RV: 2010-2011. 
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Figure 1E: GARCH(1) RV Forecasts versus RV: 2010-2011. 

  

 

Figure 1F: LSTM RV Forecasts versus RV: 2010-2011. The circles and the diamonds 

represent the 'delayed look' of the model. 
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Appendix 2 

 

Figure 2A: GJR-GARCH(1,1) RV Forecasts versus RV: 2012-2019. 

 

 

Figure 2B: GARCH(1,1) RV Forecasts versus RV: 2012-2019. 
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Figure 2C: HAR RV Forecasts versus RV: 2012-2019. 

 

 

Figure 2D: ARMA(1,1) RV Forecasts versus RV: 2012-2019. 
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Figure 2E: AR(1) RV Forecasts versus RV: 2012-2019. 

 

 

Figure 2F: LSTM RV Forecasts versus RV: 2012-2019. 

 


