

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis IBEB

Long Short-Term Memory: Can Artificial

Neural Networks beat Econometric Models?

Name Student: Damla Ogus

ID: 450623do

Supervisor: Rogier Quaedvlieg

Final Version Submitted on 29/07/2019

The views stated in this thesis are those of the author and not necessarily those of Erasmus

School of Economics or Erasmus University Rotterdam.

1

Abstract

Long Short-Term Memory (LSTM) is a modern artificial neural network architecture

for sequence learning which is capable of handling long-term dependencies and

detecting hidden patterns in the data. Even though it has not been widely employed

in the field of finance except for some very recent attempts, it is essentially suitable

for financial time series predictions.

In this paper, LSTM is compared to a set of traditional econometric models to

predict out-of-sample realized variances of the S&P 500 from 2010 until 2019. The

results show that the performance of the LSTM models are very sensitive to the

setting of their hyperparameters. Overall, it was obtained that ARMA and GJR-

GARCH gave the best estimates in terms of mean squared error (MSE) in the two

separate forecasting intervals belonging to 2010-2019 and that LSTM underperformed

all models in both periods. Different combinations of hyperparameters should be

experimented in order for LSTM to compete with the econometric models.

Keywords: forecasting volatility, artificial neural networks, recurrent neural networks,

GARCH models, HAR-RV

2

Table of Contents

1. Introduction ... 3

2. Literature Review: Econometric Models .. 4

2.1. ARCH Family .. 4

2.2. HAR-RV .. 6

3. Neural Networks: Design and Concepts ... 7

4. Types of Neural Nets ... 8

4.1. Feedforward Networks ... 9

4.2. Feedback (Recurrent) Networks .. 9

5. Literature Review: From ANN to Long Short-Term Memory 10

6. Contribution and Hypotheses .. 12

7. Data ... 13

7.1. Data Transformation ... 14

7.2. Descriptive Statistics ... 14

7.3. Software and Hardware ... 16

8. Definitions - Econometric Models .. 16

9. Long Short-Term Memory: Architecture ... 18

10. Long Short-Term Memory: Terminology.. 22

11. Long Short-Term Memory: Configuration .. 25

12. Performance Measure ... 27

13. Results ... 28

14. Discussion and Limitations .. 30

15. Conclusion and Suggestions.. 34

3

1. Introduction

Modeling the conditional variance of financial time series, which is viewed as a

measurement of risk, is important for the pricing of derivatives, their trading,

portfolio optimization and risk management (Hansen & Lunde, 2005; Tsay, 2005).

However, due to the complex relationships between financial variables, predicting

volatility represents a challenge for practitioners and financial institutions.

 Although in the past some experts had believed that financial assets’ return

variances cannot be predicted for short horizons, econometric literature has found

that this is actually possible with specific time series models (Franses & van Dijk,

1996). Many researchers have found Generalised Autoregressive Conditional

Heteroskedasticity (GARCH) model, introduced by Bollerslev in 1987, to give very

promising forecasts for the returns data (Franses & van Dijk, 1996; Brailsford & Faff,

1996). Some other researchers have also found the specifications of the GARCH

model, which account for asymmetries in past returns, to be the best performing in

their study samples (Glosten et al., 1993). Furthermore, some practitioners report the

Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV) proposed by

Corsi (2009), which models daily, weekly and monthly realized variances together, to

have good forecasting performance.

 On the other hand, modeling with these traditional linear or nonlinear time

series models require every mathematical statement of relationships to be predefined

in the computer environment, plus have a set of a priori assumptions to be fulfilled.

However, subtle and time-varying relationships may exist: Sometimes the connections

between the variables are unknown or hard to mathematically formulate (Zhang et

al., 1998).

 Hence a system which works with very few assumptions, which can recognize

without explicit programming the hidden patterns in a dataset, learn continuously

about the time-varying relationships between variables as well as their importance

towards the determination of an output of interest, referred as Neural Networks,

might improve the success of the current forecasts.

4

 By construction, these ‘computerized intelligence systems’ imitate the

structure of a human brain (Fadlala & Lin, 2001). Shown inputs or in other words

after some training, Neural Networks find the best procedure to achieve the desired

outputs via developing complex algorithms in its black box (Gonzalez Miranda &

Burgess, 1997). Along with many other researchers, Bildirici and Ersin suggest that

NN’s can capture the typical properties of financial returns, namely leptokurtosis,

volatility clustering, and leverage effects better than the GARCH models (2009).

 Hence, this study is an attempt to shed light on the comparative performances

of the Neural Networks and some frequently used econometric models to predict

return volatility. In the next sections, the daily realized variances of the S&P 500

Index are forecasted and compared to its real values. Additionally, a specification

amongst the Neural Network models is used in this research: Long-Short Term

Memory Recurrent Neural Network (LSTM). The reasoning of this choice is going to

be provided in the upcoming chapters.

 The remainder of this study is as follows: First, a detailed view on the

traditional econometric models, Neural Network family and specifically LSTM will be

given, together with the findings of the previous researchers. Next, the sample used in

this research will be analyzed in the Data section. Technical details about the models

and the analysis will be demonstrated in Methodology. Finally, the results,

discussion, and conclusive remarks will follow.

2. Literature Review: Econometric Models

2.1. ARCH Family

The volatility of financial returns is not directly observable, however literature has

found that it commonly exhibits some specific patterns: For example, squared

returns are serially correlated and they tend to appear in clusters via large (small)

positive or negative changes being followed by large (small) changes, of either sign

(Jondeau et al., 2007). They also fluctuate within a fixed range and do not diverge to

infinity, which means that volatility is mostly stationary. Being the first model until

5

then which takes into account these behaviors of asset returns, Engle has proposed in

1982 the Autoregressive Conditional Heteroskedasticity (ARCH) model for variance,

which was essentially an AR (Autoregressive) process. Later in 1986, Bollerslev has

proposed a specification of ARCH, namely Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model, which allows for a more parsimonious

representation as it estimates only two parameters instead of infinity in the case of

ARCH (Alberg et al., 2008).

 However, both econometric models suffer from some weaknesses, such as they

treat positive and negative shocks as if they have the same effect on return volatility.

In fact, negative unexpected returns cause higher volatility than the positive ones

(Donaldson & Kamstra, 1996). Therefore, in order to capture these asymmetric

effects, several extensions of the GARCH model were introduced. For example, the

conditional variance in GJR-GARCH by Glosten et al. (1993) responds differently to

positive and negative innovations (Bollerslev, 2008).

 There are many other separate, nested or hybrid models in the ARCH family

which account for the different properties of volatility. However, in this study, only

the above-mentioned asymmetric extension of the GARCH model is used, as it has

been found to be among the most popular forecasting methods. ‘Glossary to ARCH’

by Bollerslev (2008) can be revisited for the full family tree.

 Yet, the extensive literature on the performances of ARCH and its extensions

show mixed results. For example, in a study on Japanese daily stock returns by Engle

and Ng (1993), it was shown that among a class a of GARCH specifications where

GJR-GARCH was also included, none of the models consistently outperformed the

simple GARCH(1,1) model in-sample. However, they find that GJR-GARCH offered

the most potential in modeling the asymmetric effects. Nevertheless, Pagan and

Schwert (1990) draw attention to the fact that researchers should analyze the out-of-

sample prediction power to make any conclusions about the performance of a

volatility model. Donaldson and Kamstra (1997) explain that the greater in-sample

predictability might result from overfitting the data, and add that out-of-sample

performances had not been not widely discussed in previous research. Studying four

6

indexes with GARCH and two asymmetrical extensions, they find that GJR-GARCH

encompasses the other asymmetric GARCH model in the study for the S&P 500. For

NIKKEI, they argue that GARCH significantly underperforms compared to the

asymmetrical models. Another research is by Hansen and Lunde (2005), where they

forecast the one-day-ahead conditional variance of IBM returns as well as the DM-$

exchange rate with 330 models from the GARCH family. They find that while the

other models did not offer a significantly higher out-of-sample predictive power

compared to GARCH(1,1) in the case of exchange rate, asymmetrical models which

account for the leverage effect outperformed GARCH(1,1) in IBM returns.

2.2. HAR-RV

Another model which will be tested in this study is an AR-type model, called HAR-

RV by Corsi (2009) which is based on the Heterogeneous Market Hypothesis:

Investors with different investment period choices might react differently to volatility

changes (Müller et al., 1997). Therefore, the forecasted realized variance is a function

of daily, weekly and monthly realized variances. Researchers suggest that HAR-RV is

able to capture some stylized features of stock volatility, of which one of the most

important is long memory, meaning in the persistence of autocorrelations between

squared returns. For Andersen et al. (2007), HAR-RV deals with it better than the

standard GARCH model.

 Although not many studies were done which compares its forecast performance

to that of the asymmetrical ARCH specifications, Corsi (2009) has compared HAR-

RV to long-term AR(I)MA models, specifically to ARFIMA (Autoregressive

Fractionally Integrated Moving Average) and to the simple AR model. He has found

that for three sets of realized variance series, namely the USD/CHF, S&P500, and T-

Bonds, HAR-RV has a better out-of-sample performance. Nonetheless, many

researchers have extended the HAR-RV to include overnight returns, trading volume,

and additional leverage effects, etc. to increase the model’s predictive power (Wang

et al., 2015).

7

3. Neural Networks: Design and Concepts

As it was mentioned above, Neural Networks offer an improvement in traditional

forecasting methods as they are tolerant to incomplete and noisy data, can learn and

generalize when presented examples and create their own algorithms to solve a

problem (Taylor, 1995; Kristjanpoller et al., 2014). Essentially, its architecture was

inspired by the human brain: The latter consist of E+11 neurons which communicate

with each other via electrical signals. The receptors of a

neuron, so-called ‘dendrites’, constantly receive signals

from the outer environment which reach the cell-body,

the decision unit of the neuron. Some of these stimuli

excite the neuron and some have the inhibitory

property. If the stimuli are above a certain benchmark,

the neuron sends an impulse to the other neurons with

the help of ions. This ion exchange takes place in the

synapses, simply in the interneuronal spaces.

 In an artificial neuron as depicted in the below

figure, the inputs can be thought as the stimuli from the

outer environment or the impulses sent from other neurons. As some of them cause

an excitatory effect and some inhibitory, they are multiplied by ‘weights’, before

being summed up by the cell body equivalent. If the total passes the threshold, the

node produces the binary output 1. This basic model is called the binary decision

(BDN) model and is a simple representation

of the biological process.

 Artificial neural networks (ANN) refer

to a web of artificial neurons linked to each

other and they typically consist of 3 layers:

First is the input layer, which is passive and

which only carries the inputs entered in the

system without changing them. The data

Figure 1: A biological neuron. Reprinted from

Neural Networks, by J.G. Taylor, 1995,

Henley-on-Thames: Alfred Waller in

association with UNICOM.

Figure 2: An artificial neuron with BDN. Reprinted from

An Introduction to Artificial Neural Networks, by K.

Gurney, 1997, London: UCL Press.

8

points are then transformed into the hidden layer(s) with an associated weight,

depending on their relative importance in the dataset. Here, they pass through

neurons which possess an activation function (or unit step function): This function

determines if and to what extent that neuron is going to be active towards the

determination of the outputs in the next layer. These inputs are transformed in a

non-linear format via some mathematical operations such as the sigmoid

transformation to range values from [-∞, +∞] into [0, 1]. Without a nonlinear

transformation process, Neural Networks would act like simple linear regression and

would not be able to capture the non-linearity in the dataset (Taylor, 1995). Finally,

the output layer produces the end output of the system with the updated weights.

 Neural Networks can possess any amount of hidden layers or nodes. However,

the most used structure is with one hidden-layer. Furthermore, ANN’s with two or

more hidden layers are called ‘deep learning’ systems.

Figure 3: An artificial neuron with a more technical representation.

Reprinted from Artificial Neural Networks(Basics) | Introduction to
Neural Networks, by S. Saxena, 2017, Retrieved from

https://becominghuman.ai/artificial-neuron-networks-basics-

introduction-to-neural-networks-3082f1dcca8c

9

4. Types of Neural Nets

Neural Networks are mainly classified into two categories: Feedforward and feedback

(recurrent) networks.

4.1. Feedforward Networks

In feedforward networks, information only flows forward

from the input layer to the hidden layer(s) and finally to

the output layer. No feedback is fed to the previous

layers. The depiction to the right is an example of this

type of net. These neural Networks are also called Multi-

Layer Perceptron (MLP).

4.2. Feedback (Recurrent) Networks

Figure 5: A recurrent neural network. Reprinted from Neural Networks, by J.G. Taylor, 1995, Henley-on-Thames:

Alfred Waller in association with UNICOM.

Recurrent Neural Networks differ from Feedback Neural Networks as they do not

distinguish between input, hidden and output layers: Neurons of any layer can be

linked to each other. Computations obtained from previous layers are fed to the web

back again, which creates a form of ‘memory’. As financial time series data is

dependent on previous time points, RNN can offer better results than MLP (Kim &

Won, 2018).

Figure 4: A feedforward neural network.

Reprinted from The scientist and
engineer's guide to digital signal
processing, by S. W. Smith, 1997, San

Diego, CA: California Technical Hub.

10

5. Literature Review: From ANN to Long Short-Term Memory

The econometric models that have been explained in the previous chapters have been

frequently used in the literature and are well-grounded in the sense that they are

based on a statistical formulation. However, an important point is that they are built

on the assumption of explanatory variables all being stationary (Kim & Won, 2018).

In contrast, Artificial Neural Networks do not require prior assumptions of data

distribution, have weaker restrictions and are more noise-tolerant compared to the

traditional econometric models (Haykin, 1999; Cao & Tay, 2001). They are flexible

and powerful models to capture non-linearity. (Kim & Won, 2018; Haykin, 1999).

 Since the mid-1990s, many researchers applied ANN to make forecasts on

diverse subjects. In the context of finance, among various topics studied, exchange

rates (Zhang, 2003), inflation (Moshiri & Cameron, 2000), stock prices (Oliviera et

al., 2013) and GDP growth (Tkacz, 2001) can be exemplified.

Specifically for stock return volatility which is the subject of this paper, the

most popular approach was the Feedforward Neural Networks (or MLP). For

example, Gonzalez Maranda and Burgess (1997) forecasted IBEX 35 index options’

implied volatility and found that MLP has a better out-of-sample performance than

OLS and MA. Donaldson and Kamstra (1997) used a combined GARCH & Artificial

Neural Network approach on 4 different stock exchanges. They have shown that their

hybrid GARCH-ANN model makes better return volatility forecasts compared to

GARCH and its asymmetrical extensions including GJR-GARCH. Bildirici and Ersin

(2009) studied the volatility of daily returns in ISE between 1987-2008, and have

found that ANN integration brings improvement in forecast power for the ARCH

family models. Many studies in this field include both linear and non-linearly

hybridized ANN models.

On the other hand, some studies have used the Feedback (Recurrent) Neural

Networks for forecasting financial time series, which are simply MLP’s including lags

of dependent variable as explanatory variables (Bekiros & Georgoutsos, 2008). This

inclusion creates dynamic feedback on errors of past patterns, which might result in

11

richer modeling (Zhang, 2004). Among the first uses of RNN is the work by Kamijo

and Tanigawa (1990) on stock price pattern recognition and they have found that

RNN’s recognized 15 out of 16 patterns present in the data accurately. Another

study by Li et al. (2004) uses RNN on the prediction of short-term exchange rates

and finds that it performs better than MA and exponential smoothing methods.

Although RNN’s are effective in time series modeling, researchers have

recognized some technical problems in its engineering: Roughly speaking, when error

signals are fed back in the web (backpropagation) consisting of neurons with

application functions like sigmoid, their magnitude quickly vanishes, known as the

vanishing gradient issue (Schmidhuber et al., 1999). The detailed analysis can be

found in Hochreiter (1998). This problem makes difficult for RNN to learn if the time

lags between the signaling information and target event are greater than ten time

steps (Schmidhuber et al., 1999). So, long-term memory is in a sense vulnerable (Kim

& Won, 2018).

That is why an improved version which overcomes these architectural

difficulties was proposed by Hochreiter and Schmidhuber in 1997: the Long Short-

Term Memory. LSTM was used in language modeling and processing, handwriting

synthesis and speech recognition. In finance, this area still remains undiscovered as

too few research were found: Fischer and Krauss (2018) applied LSTM to predict the

probability for each S&P 500 stock to outperform the general market (of Fama &

French) between 1992 and 2015. They have found that LSTM outperforms a set of

memory-free neural network models in the study, including the standard deep neural

networks. Additionally, Kim and Won (2018) integrated LSTM with GARCH and its

specifications. They have found that their version of the hybrid model, GEW-LSTM

(GARCH, EGARCH, EWMA, and LSTM) gives the lowest prediction error. Sang

and Di Pierro (2019) used LSTM to improve traditional technical analysis trading

algorithms. They find that this combination of the two methods gives better

prediction power in comparison to the traditional technical analysis algorithms alone.

12

Furthermore, most of the other studies attempt to alter the technical

algorithms behind LSTM, such as in Liu (2019) and in Schwedersky et al. (2019).

Apparently, the integration of finance and LSTM is a very new concept.

6. Contribution and Hypotheses

As it was shown in the previous chapters, the time-series forecast performance of

LSTM models in comparison to traditional econometric models were not explicitly

analyzed in the literature. Rather, it was seen that LSTM was either hybridized with

econometric models or its technical algorithms were altered. On the other hand, there

are too few researches concentrating on both finance and stock returns. In general,

researchers have used LSTM to make predictions on topics related to linguistics.

 Therefore, this research aims to shed light on the applicability of LSTM in the

field of stock return volatility prediction. It is intended to offer a comparative

analysis on out-of-sample forecasts of econometric models versus the long short-term

memory model.

 Hence, some selections of econometric models are made. AR(1), ARMA(1,1),

GARCH(1,1), GJR-GARCH(1,1) and HAR-RV are chosen to be compared to LSTM

as they are among the most popular and effective models in the literature.

 Nonetheless, the findings of this research can be useful to practitioners,

researchers and academicians as long short-term memory recurrent neural networks

represent an opportunity to achieve better return volatility forecasts. This might

have financial implications as volatility estimation is essential in determining

investment strategies and is relevant in the calculation of important measures such as

Value at Risk (VaR) or the Sharpe ratio (Kristjanpoller et al., 2014). Especially, the

risk management field can benefit as the accurateness of the statistical estimates form

the base of the sector (Fleming et al., 2001).

13

 This paper tests the period of January 2010 to June 2019 to assess the models'

performances. Hence, it revolves around the following research question:

“Does LSTM outperform the econometric models in terms of return volatility

forecasting on S&P 500 between January 2010 and June 2019 ?”

Additionally, the testing period was chosen to be separated into two parts: 2010-2011

and 2012-2019. The reasoning of this choice is going to be explained in the next

chapter.

This preference resulted in the below two hypotheses:

H1: The LSTM forecasts on S&P 500 between January 2010 and December 2011

outperform those of the AR, ARMA, GARCH, GJR-GARCH and HAR models.

H2: The LSTM forecasts on S&P 500 between January 2012 and June 2019

outperform those of the AR, ARMA, GARCH, and GJR-GARCH models.

7. Data

The data of this research comes from the Realized Library of the Oxford-Man

Institute of Quantitative Finance. The dataset consists of daily frequencies of 5-min

realized return volatility and open-to-close returns of the S&P 500 Index. The period

studied is the trading days from the beginning of 2000 until the end of June 2019,

making a total of 4891 observations. The interval from the beginning of 2000 until

the end of 2009 will be used for the training of LSTM. Rest of the data points until

the end of June 2019 will be used as the test data to compare the forecasting

performances. Also, the testing period is analyzed in two parts: January 2010-

December 2011 and January 2012-June 2019. Further explanation for this is provided

in Descriptive Statistics.

14

7.1. Data Transformation

The open-to-close returns are multiplied by E+2 and realized variances by E+4 in

this research for the sake of easier reading.

7.2. Descriptive Statistics

Table 1: Descriptive Statistics for Realized Variance of the Full Sample

Figure 6: Historical Daily Realized Variances of the S&P 500 from January 2000 till June 2019. The red line

depicts the average realized variance.

Mean 1.071

Standard Deviation 2.428

Minimum 0.012

Maximum 77.477

*Real values multiplied by E+4.

Realized Variance*

15

Above figure shows the historical dispersion of the 5-minute realized variances of the

S&P 500. The preview of the sample shows that their average is 1.071, as represented

by the red horizontal line in Figure 5. Higher-than-average volatilities were

pronounced especially during three moments: From the beginning of the dataset until

2003, the fluctuations correspond to the Early 2000’s Recession due to the collapse of

the technology bubble and 9/11 terrorist attacks. The other period where the S&P

500 return volatility peaked was between 2007-2009, and it corresponds to the 2008

economic crisis where the housing bubble burst and US financial institutions have

failed due to the mortgage crisis. Especially on November 10, 2008, the highest value

in the dataset was observed: A realized variance of 77.477. Despite the decreases in

volatility, the fluctuations continued in the post-crisis period, as observed between

2010 to 2012.

 Furthermore, another large peak can be observed after 2015, which

corresponds to August 24. Such increase in the return volatility was related to big

sell-offs in Asia provoking declines in European and U.S. stock features. The sell-offs

resulted from China's economic slowdown (CNBC, 2016). Later, 2017 was one of the

historically least volatile periods since the ’60s for the market, which explains the

minimum value of 0.012 observed at the end of 2017 (Reuters, 2019). 2018 came with

slight fluctuations, with high and low return volatilities dominating the year (CNBC,

2018).

 Referring back to the testing period, the choice was made to analyze it in two

parts as 2010-Dec 2011 and 2012-June 2019. This decision is due to their different

characteristics that the post-crisis period consisted of many unexpected shocks and

2012 onwards being relatively stable with the exception of a peak in 2015.

16

7.3. Software and Hardware

In this research, two softwares are used: The analysis of AR, ARMA, GARCH, GJR-

GARCH, and HAR-RV are studied in STATA. The LSTM model is set in Python

3.7 with the use of numpy and pandas packages as in Fischer and Krauss (2018).

Additionally, the open-source library Keras which allows fast-experimentation with

neural networks was used on top of TensorFlow, the latter being another open-source

math library used for machine learning.

8. Definitions - Econometric Models

The definitions of the models used in this research are as follows:

AR (p):

The autoregressive process where the series stationary value yt depends on p past

values is represented by the below equation

𝑦𝑡 = 𝜇 + 𝑢𝑡 + 𝜙𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

where 𝜙𝑖 ... 𝜙𝑝 are the autoregressive coefficients, 𝑢𝑡 the white noise at time t and 𝜇

the constant.

ARMA (p,q):

ARMA of order p and q consists of two components: Autoregressive (AR) and

Moving Average (MA) processes.

𝑦𝑡 = 𝜇 + 𝑢𝑡 + 𝜙𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜃𝑖𝑢𝑡−𝑖

𝑞

𝑖=1

𝑦𝑡 in the equation above represents the series stationary value, 𝜙 and 𝜃 the

parameters of the model, 𝑢 the residuals and 𝜇 the constant.

17

The model is based on the idea that the value of a current observation in a time

series depends both on the value of its lagged observations and previous shocks.

GARCH (p,q):

GARCH model is built upon the theory that the conditional variance depends on p

lags of its values 𝜎2 and on q lags of the squared error, as noted by 𝑢2. The constant

is represented by 𝜇.

𝜎𝑡
2 = 𝜇 + 𝛼𝑖𝑢𝑡−𝑖

2

𝑞

𝑖=1

+ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

From the above volatility equation, it can be seen that the model accounts for

volatility clustering, as periods with high volatility tend to result in the next periods

having higher volatility via the last term of the equation.

GJR-GARCH:

One of the GARCH extensions which captures the asymmetrical effects is the GJR-

GARCH model. The general equation below has an indicator function noted by I,

which takes the value of 1 if the lagged unconditional standard deviation 𝑢𝑡−𝑖 is

smaller than 0. Indicator function helps at modeling the asymmetry caused by

positive and negative shocks: While a positive shock has an effect of α, negative news

has α+γ via the indicator function. Conditional variance is always positive through

some restrictions.

𝜎𝑡
2 = 𝜇 + 𝛼𝑖𝑢𝑡−𝑖

2

𝑞

𝑖=1

+ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

+ 𝛾𝑖𝑢𝑡−𝑖
2 𝐼𝑡−𝑖

𝑞

𝑖=1

𝑤𝑕𝑒𝑟𝑒 𝐼𝑡−1 = 1 𝑖𝑓 𝑢𝑡−1 < 0

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 = 0.

18

HAR-RV:

HAR model makes use of different time horizons to predict variance. In the below

equation, 𝑅𝑉𝑡
𝑑 , 𝑅𝑉𝑡

𝑤and 𝑅𝑉𝑡
𝑚 represent the daily, weekly and monthly realized

volatilities respectively.

𝑅𝑉𝑡+1𝑑
 𝑑

= 𝜇 + 𝛽(𝑑)𝑅𝑉𝑡
𝑑 + 𝛽(𝑤)𝑅𝑉𝑡

𝑤 + 𝛽(𝑚)𝑅𝑉𝑡
𝑚 + 𝑢𝑡+1𝑑

The weekly and monthly components of the equation are defined as the averaged

realized variances of the last 5 and 22 days (denoted by d), respectively.

𝑅𝑉𝑡
𝑤 =

1

5
 RVt−id

d

4

𝑖=0

, 𝑅𝑉𝑡
𝑚 =

1

22
 RVt−jd

d

21

𝑗=0

𝑤𝑕𝑒𝑟𝑒 𝑅𝑉𝑡
𝑤 =

1

5
(RVt

d + RVt−1d
d + RVt−2d

d + RVt−3d
d + RVt−4d

d)

All the above models will be used to make one-step-ahead forecasts of S&P 500

return volatility for the period between January 2010 and June 2019.

9. Long Short-Term Memory: Architecture

LSTM models are created to overcome the technical problems seen in the Recurrent

Neural Networks by Hochreiter & Schmidhuber (1997). As the latter systems were

not able to remember correlations between events separated by more than 10 steps,

LSTM models were built with memory blocks instead of neurons to overcome these

technical difficulties (Schmidhuber et al., 2007).

 The LSTM networks consist of input, output and hidden layer(s), just as in

the basic ANN architecture. Input layer only serves to transfer the inputs to the

hidden layer(s) without any change. The power of the LSTM's comes from the

hidden layer(s) as the latter contains memory blocks for each timestep t. These

memory cells have three gates that determine the cell state st, which is essentially the

19

memory of the cell of the optimal weights for all the connections in the LSTM model

to transform the inputs to the desired outputs.

Figure 7: The structure of an LSTM memory cell. Reprinted from "Deep learning with long short-term memory

networks for financial market predictions" by T. Fischer, C. Krauss, 2018, European Journal of Operational

Research, 270(2), p. 657.

 The three gates are named as input it, output gt and forget fg. At each time

step t, they receive the same information: The current inputs xt and the output of the

memory cell belonging to the previous time step, ht-1. However, each of them has a

different purpose:

-The forget gate determines which information to delete from the cell state st.

-The input gate determines which information to add to the cell state st.

-The output gate determines which information to send as an output to the next

timestep from cell state st.

 The following variables, also present in the above figure's notations, need to be

defined as they are the basis of the LSTM equations. Below-mentioned details are

extracted from Fischer and Krauss (2018).

 𝑥𝑡 : The input vector at time t

 𝑠𝑡 𝑎𝑛𝑑 𝑠 𝑡: The cell state (memory of the weights at time t) and candidate

value vectors (inputs to add to the cell state at time t) respectively.

 𝑊𝑓,𝑥 , 𝑊𝑓,𝑕 , 𝑊𝑠 ,𝑥 , 𝑊𝑠 ,𝑕 , 𝑊𝑖,𝑥 ,𝑊𝑖,𝑕 , 𝑊𝑜,𝑥 𝑎𝑛𝑑 𝑊𝑜,𝑕 : The weight matrices of the inputs

for three gates forget 𝑓, input 𝑖, output 𝑜, and the candidate values 𝑠 . The

20

second lower index represents the source of the information: 𝑥 refers to current

inputs and 𝑕 to the previous memory block's output.

 𝑏𝑓 , 𝑏𝑠 , 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑜 : the bias vectors. The term bias stands for a constant added to

the activation function, with the latter being a general name given to all

functions which transform an input to an output. Therefore, adding constant

results in the shifting of the activation function. Bias term can be useful if the

predictions are systematically far away from the real values: The addition of a

constant term to a function can shift the prediction line closer to the

benchmark line.

 𝑓𝑡 , 𝑖𝑡 𝑎𝑛𝑑 𝑜𝑡 : The activation value vectors for their corresponding gates at time

t. The activation value can be thought of as a benchmark value for

information flow at different gates. This is analog to the level of stimuli in a

biological neural network setting after which the neuron starts to send

impulses to the other neurons.

 𝑕𝑡 : The LSTM output vector which is sent to the memory block of the next

time step.

 Sigmoid function: A function which scales down values between 0 and 1 on the

basis of the following equation, where x represents the input to the function.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥 (1)

Values of 0 and 1 have different meanings for the different gates, which is

explained below.

 Hyperbolic tangent function (tanh): A function to regulate the network which

scales down values between -1 and 1 on the basis of the following equation,

where x represents the input to the function.

𝑡𝑎𝑛𝑕(𝑥) =
exp 𝑥 −exp (−𝑥)

exp 𝑥 +exp (−𝑥)
 (2)

21

The learning begins in the forget gate, where it is decided which information to

remove from the memory of the previous memory block, denoted as 𝑠𝑡−1. For this,

the activation value, in other words, the weighted sum of the forget gate inputs needs

to be calculated: It is a function of the current inputs xt, the outputs coming from the

memory block of the previous time step ht-1 and the bias term bf. The output of this

function passes through sigmoid function which squashes the values between [0,1],

determining the extent it is going to be forgotten. 0 stands for completely forgetting

the information and 1 for completely remembering.

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓,𝑡𝑥𝑡 + 𝑊𝑓,𝑕𝑕𝑡−1 + 𝑏𝑓) (3)

 Second, the input gate decides on which new combination of relationships

(information) to add in the cell state 𝑠𝑡 . This is done in two steps: Initially, the

candidate values 𝑠𝑡 which bring new information are calculated (4). Then, the

activation value for the input gate 𝑖𝑡 is determined (5).

𝑠 𝑡 = tanh(𝑊𝑠 ,𝑥𝑥𝑡 + 𝑊𝑠 ,𝑕𝑕𝑡−1 + 𝑏𝑠) (4)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖,𝑥𝑥𝑡 + 𝑊𝑖,𝑕𝑕𝑡−1 + 𝑏𝑖) (5)

Tanh in the candidate values equation (4) stands for the hyperbolic tangent

function. It serves as a network regulator by ranging values between [-1, 1]. For the

sigmoid function in the input gate activation equation (5), value 0 is interpreted as

the information not adding value, and 1 as bringing new insights.

All these above calculations on forgotten and added inputs should be fed into

the current memory of the cell 𝑠𝑡 . Let Θ denote the element-wise multiplication. The

current cell state is computed as follows:

𝑠𝑡 = 𝑓𝑡 Θ st−1 + it Θ 𝑠 𝑡 (6)

22

Hereby, the 𝑓𝑡 can be interpreted as the ratio of past information reaching the

current state, and 𝑖𝑡 as the ratio of candidate values that are added to the current

cell memory. The gates, therefore, prevent irrelevant inputs from entering the

memory and make long-term memory storage possible (Malhotra et al., 2015).

Finally, the combined information which needs to be sent to the memory block

in the next time-step, namely 𝑕𝑡 , is computed via the below two equations.

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜,𝑥𝑥𝑡 + 𝑊𝑜,𝑕𝑕𝑡−1 + 𝑏𝑜) (7)

𝑕𝑡 = 𝑜𝑡 Θ tanh(st) (8)

 It is also important to note that there exist different functions instead of

sigmoid and tanh. However, these are the standard and most used configurations of

LSTM, therefore they are chosen to be applied in this study. The logic of this

standard is provided in the Long Short-Term Memory: Configuration chapter.

10. Long Short-Term Memory: Terminology

 In the training of neural networks, the important terminologies are cost

function, gradient descent, backpropagation, epochs, batch size, and dropout

regularization. By the term training, we refer to finding the best combination of

weights and biases to be assigned to the neural connections in a network which gives

the closest values to a targeted output. To train a network, we need a training set

which is essentially a part of our dataset and a cost function. With the latter, we

refer to a function which measures the differences between the network output and

the desired target, namely the network error (Gurney, 1997). Cost functions have

many types, such as mean squared error, mean absolute error and mean error.

 In order to obtain the most accurate predictions, the network error needs to be

minimized. Therefore, the set of weights and biases which result in so should be

found. The methodology to achieve the lowest network error is called gradient

descent optimization.

23

 It is important to note that we cannot simply take the minimum of the cost

function and find the corresponding weights, because in artificial neural networks we

are dealing with non-linear optimization surfaces as a function of thousands of

weights and biases. Therefore, minimizing the network error represents navigating on

a 3D surface and gradually approximating towards the local minimum as depicted by

the lines in the below figure. However, it is not guaranteed the local minimum

reached is the global minimum of the cost function as there might exist many local

minima in the error surface. Notice that the below figure corresponding to the error

surface of a neural network model with two weights has more than one minimum

error points, colored with purple.

Figure 8: An exemplary error surface with 2 weights. Reprinted from 01 and 02: Introduction, Regression

Analaysis and Gradient Descent by A. Ng, ?, Retrieved from

http://www.holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_gr.html.

Two terms are essential in gradient descent optimization, first being gradient. This

term stands for the direction of the steepest increase of the error, given a starting

point on the error surface. The opposite of this vector naturally tells the directions of

the steepest ascent in the surrounding error surface, meaning the closest way towards

the local minimum.

 Another important term is the learning rate, which is the measure of how

quickly the model changes its weights to reach the local cost (error) minimum, or

how big its steps are while changing the weights and biases. If its value is too large,

24

the model might miss the local minimum. If it is too small, the algorithm will take a

long time to converge.

 The weight updates via the gradient optimization are based on the below

equations, where 𝑤𝑛+1 and 𝑤𝑛 are the new and old weights assigned to the

connections between neurons respectively, 𝛾 the learning rate and ∇𝑤𝑛 a vector being

the gradient of the cost function C. Bias updates 𝑏 are deduced in the same fashion.

𝑤𝑛+1 = 𝑤𝑛 − 𝛾. ∇𝑤𝑛 𝑤𝑕𝑒𝑟𝑒 ∇𝑤𝑛 =
𝜕𝐶(𝑤𝑛)

𝜕(𝑤𝑛)
 (9)

𝑏𝑛+1 = 𝑏𝑛 − 𝛾. ∇𝑏𝑛 𝑤𝑕𝑒𝑟𝑒 ∇𝑏𝑛 =
𝜕𝐶(𝑏𝑛)

𝜕(𝑏𝑛)
 (10)

 It is important to note that when the training data is fed into the system,

random weights and biases are assigned to all the connections in the network. The

network reaches an output, with some deviation from the desired values known as the

errors. The term back-propagation stands for these errors being distributed back from

the output to through the layers of the neural network, so as to tune all the weights

and biases via the gradient descent method to reach a minimized network error.

 However, this does not happen at a time: The algorithm does not immediately

come to a solution as the weight and bias changes happen in small steps. It means

that it does not fully learn every information in the data at one go, and an exposure

of the training set of multiple times is needed for it to converge towards the local

minima (we use the plural form here, as in each exposure we start with random

weights and biases which brings us to different minima). Therefore, we refer here to

the term epoch, representing the number of complete presentations of the training set

to the algorithm.

 Also, as the number of training data that the computer should analyze is

usually quite large, it was found that it is faster to analyze it in pieces: Hereby, we

refer to the term batches, the number of groups in which we pack the observations of

the training data.

25

 The final term to be explained is the dropout ratio, which is actually related to

the concept of overfitting: When the neural networks make predictions, they base

their estimates on their learnings from the training data. However, if the model fits

these limited data points too closely, it might not be able to generalise well when it is

given a deviating set. This is when an overfitting happens: The model performs too

well on the training set but produces high errors on the unseen data. The avoid this

situation, a technique called dropout regularization can be used. Via randomly

dropping a specified amount of neurons in the hidden layer(s) and their connections

in each epoch, we can remove the complexities in the model's configuration which

might be the reason why the model is not generalizing well. This method helps to

reduce the dependency of neurons to each other, meaning the fact that them

detecting the same features from the inputs. This dependency worsens the model's

performance as errors would be repeated by the dependent neurons. Randomly

dropping some hidden units from the model each time would, therefore, give a set of

more independently working neurons, decreasing the model's error.

11. Long Short-Term Memory: Configuration

The LSTM model implemented in this study to predict t+1 return volatility has the

below technical specifications:

Architecture

Type

Number of Hidden Layers

Number of LSTM Units in Each Layer

Inputs

Activation Functions

Number of epochs during training

Batch Size

Loss Function

Dropout Ratio

Training Set as of Total Data

Optimization Algorithm

Recurrent Neural Network

Long Short-Term Memory

Single LSTM layer

50

RVt-21 till RVt

50%

Adam

LSTM Model

Sigmoid and tanh

1000

32

Mean Squared Error

0.2

26

As explained in the LSTM Architecture section, the general configuration for the

LSTM models is to have sigmoid and hyperbolic tangent (tanh) as activation

functions. The sigmoid function is used in the three gates as it ranges information

between no flow and complete flow. On the other hand, we use tanh in the

calculation of the vector output of the memory block: LeCun et al. (1998) have

argued that due to the shape of the tanh function, its derivatives are larger than that

of the sigmoid which results in achieving the local minima faster (referring back to

the gradient issue, the steepest ascent). Therefore, these two standard functions are

used in our study.

 As inputs, the realized variances of the S&P 500 from t-21 until t were used to

make t+1 forecasts. This choice was inspired by the HAR model's inclusion of the

monthly component of the volatility process and being very effective at capturing its

stylized facts. A similar choice is also present in Kim and Won (2018).

 For the other factors such as the number of hidden layers, LSTM units in each

layer, epochs, batch size, dropout, and training set as of total data, it should be noted

that there is no definitive rule to find their optimal numbers. They are actually

hyperparameters which require trials with a set of different combinations so that the

lowest cost is achieved. However, as we are working with a very large dataset which

requires Python to run for hours, we selected to use the values commonly found in

the literature: The final selection was one single hidden layer with 50 LSTM units,

1000 epochs, batch size of 32 data points (it is a default value in the LSTM literature

as it yields faster and accurate computation of the local minima), 0.2 dropout rate

(20% of the hidden LSTM units are dropped randomly in each epoch) and 50% as the

ratio of training set to the total data.

 For the optimization algorithm, we have used an alternative of the previously

mentioned classical gradient descent model (also known as stochastic gradient

descent, SGD). 'Adam', in other words 'Adaptive Moment Estimation' is another

very popular machine learning algorithm. It is based on the idea of learning the

learning rates throughout training, as opposed to the classical model having a fixed

pre-determined learning rate. However, Adam's most important feature is that its

27

algorithm takes much less time to converge to the local minima compared to many

other optimization algorithms including SGD, therefore providing relatively faster

results (Sang & Pierro, 2019). That is why this optimizer was selected in our study

instead of the classical SGD model. The weight assignment equations for Adam will

not be provided as they are very complex to derive and that these derivations are out

of the scope of this analysis.

12. Performance Measure

Performances of the above models are going to be compared with Mean Squared

Error (MSE), which was prevalently used in literature (Kim & Won, 2018;

Kristjanpoller et al., 2014). MSE is defined by the below equation, where 𝑛 is the

number of observations in the forecasting period, 𝑅𝑉𝑖 and 𝑅𝑉 𝑖 the observed and

predicted realized variances respectively.

𝑀𝑆𝐸 =
1

𝑛
∗ (𝑅𝑉𝑖 − 𝑅𝑉 𝑖)

2

𝑛

𝑖=1

28

13. Results

 Below table reports the MSE's obtained of all models and their rankings in

this study.

Table 2: Mean Squared Error of the Models and Their Rankings

 Period 2010-2011

The graphs for the models of this period are attached under Appendix 1. The

outcome of the analysis is that ARMA(1,1) produced the best forecasts for this period

characterized by many fluctuations with an MSE of 2.453. The model is followed by

HAR with an MSE of 2.457. Interestingly, both models produced a very similar

pattern for this period, as exhibited by the figures 1A and 1B in the Appendix.

 The third best forecasting model was the AR(1) model with an MSE of 2.612

(Figure 1C in the Appendix). It is important to note that even though AR(1) was

more successful at predicting especially the fluctuations after July 2011 very well and

high realized variances corresponding to the peaks in general, it has its lower bound

of predictions lying much above than that of the realized values. This should be the

reason why it has a higher MSE than the first two models.

 Furthermore, the worst three processes were GJR-GARCH(1,1), GARCH(1,1)

and LSTM with out-of-sample error values of 2.812, 2.957 and 4.175 respectively. In

figure 1D and 1E in the Appendix, it can be seen that GJR-GARCH produced closer

Model MSE* Ranking Model MSE*

ARMA(1,1) 2.453 1 GJR-GARCH(1,1) 0.903

HAR 2.457 2 GARCH(1,1) 0.957

AR(1) 2.612 3 HAR 0.996

GJR-GARCH(1,1) 2.812 4 ARMA(1,1) 1.010

GARCH(1,1) 2.957 5 AR(1) 1.122

LSTM 4.175 6 LSTM 3.112

Period 2010-2011 Period 2012-2019

*Real MSE's multiplied by E+8

29

estimates to the realized values for the peaks than the GARCH model. It could also

predict the downward moves better than the latter: Overall, we have smaller

distances between the two lines during the period of study, pronounced for around

July 2010. Thus, it is expected that the GJR-GARCH(1,1) would give a better MSE

value than the GARCH(1,1) model.

 When the two models are compared to the best performing ARMA(1,1), it can

be observed that they were not as successful as the latter due to the fact that

ARMA(1,1) predictions were almost parallel to the realized line with just small

differences. The pattern is more irregular for GARCH and its asymmetric counterpart

GJR-GARCH, which were not able to capture the direction and the magnitude of the

fluctuations very well from around June 2010 until July 2011.

Finally, the worst predictive model is LSTM for this study period. It has an

MSE of 4.175, equaling almost 1.7 times the error for the best model ARMA(1,1).

Figure 1F in the Appendix shows that it tends to produce much higher estimates

than the realized values after a peak (marked with circles) and much lower values

after a drop (marked with diamonds) compared to the other models in this study.

Therefore, it resulted in having the lowest MSE. This model is apparently not

suitable for predicting time series with fluctuations.

 Period 2012-2019

The graphs for this period are attached in Appendix 2. The outcome was that the

best performing model was instead GJR-GARCH(1,1) with an MSE of .903 followed

by GARCH(1,1) with .957 (Appendix Figure 2A and 2B respectively). Two models

especially differed in high fluctuation moments of around January 2016 and January

2018 onwards: From the end of 2015 until the second half of 2016, GJR-GARCH

produced much closer estimates to the realized line. However, from the beginning of

January 2018, it overpredicted some points as opposed to GARCH giving closer

values. But overall, GJR-GARCH performed very well at capturing the up-and-

downs in this period and achieved the lowest MSE among all the models.

30

 Moreover, the next best performing models were HAR and ARMA(1,1) with

very close mean squared error values of .996 and 1.010 (Appendix 2C and 2D). It was

surprising to see that those two models performed at a similar level again as they did

in the 2010-2012 period. Overall, a very similar pattern of forecasting is detected,

with slight differences at the high fluctuation moments where HAR RV produced

closer estimates to the realized line than the ARMA(1,1) model. These periods

correspond to around January 2016 and January 2018 onwards.

Finally, the worst two forecasting models were AR(1) and LSTM (Appendix

2E and 2F). While the first model performed slightly worse than the ARMA(1,1)

with a value of 1.122, LSTM gave an MSE of 3.122 which is almost 3.5 times that of

the best performing GJR-GARCH(1,1). For the AR(1) model, it was noticed that

even though the predictions were mostly parallel to the realized line, the lower bound

of the estimates lie much above the red line. This feature was also detected in the

2010-2011 period. Additionally, until the end of 2015, the model had its upper bound

of predictions lie much closer to the blue line than those of GJR-GARCH(1,1).

 For LSTM, it was observed again that it predicted much higher variances after

a peak, but this time it did not estimate much lower values after a drop. Yet, it can

be said that this LSTM configuration is especially unsuccessful when there are

fluctuations and large shocks, as exemplified by the beginning and the end of 2015.

14. Discussion and Limitations

Due to the high fluctuations between 2010-2011, it was chosen to analyze the this

period separately from the rest of the data points until June 2019. The outcome of

the study was that ARMA(1,1) had the best predictive power between 2010-2011

while GJR-GARCH(1,1) performed the best between 2012-2019 in terms of the

performance metric MSE.

31

 2010-2011

 For this period, it was unexpected that ARMA provided better return

volatility forecasts than all the other models. In the literature, most of the findings

are in favor of the GARCH family models. However, in this sample, ARMA could

predict the ups and downs much more accurately and gave a much parallel look to

the realized values compared to both of the GARCH class models. This was probably

due to the nature of this period: The realized variance line depicts multiple shocks

followed by decreases in volatility which has a tendency to turn back to its average

level of around 1. This is what the ARMA process is actually aiming at: By a merger

of the autoregressive and the moving average components, it captures the effects of

mean reversion and of unexpected shocks. In that sense, it is reasonable that it

represented the movements in this period better than the others.

 The models which followed ARMA were HAR, AR, GJR-GARCH, GARCH,

and LSTM respectively. The HAR process almost had the same value of the error

metric as the ARMA model, and surprisingly it has given a very similar forecasting

pattern. In that sense, this result is supportive of the prior research concluding the

effectiveness of using daily, weekly and monthly components to forecast realized

variances.

 About the AR process which was the third best performing model on this

period, even though it has given an almost parallel line when compared to the real

values, it was observed that it over-predicted the mean. This was probably due to the

peaks throughout the dataset, inflating AR's estimates. On the other hand, the fact

that AR performed better than the GARCH family models was surprising as the

latter is known to capture the stylized facts of asset volatility such as volatility

clustering. However, this outcome is most probably due to the choice of the time

frame and not valid for the whole testing period.

 Another result from 2010-2011 was that GJR-GARCH had a lower MSE than

GARCH. This finding is also present in Awartani and Corradi (2005), where the

researchers conclude that GJR-GARCH predicts one-step-ahead better than GARCH

on S&P 500 between 1990 and 2001.

32

 Finally, the LSTM model showed the worst performance in this period. This

configuration was not able to predict the fluctuations and it has produced a 'delayed

look': After an upward directioned shock at time t, normally the real values tend to

go down in the next period t+1. However, instead of predicting a drop at t+1, the

model generally predicts very high estimates for t+1 than drops sharply at t+2,

replicating the shock and the volatility drop that happened in the previous time step.

It is obvious that these settings are not ideal to predict a period with many

unexpected shocks. Yet, as the machine learning models develop and update their

own algorithms continuously in their Black Box, it is not possible for us to know

what exactly caused this delayed look. We will refer to the possible treatments after

studying the model's performance in the second period.

 2012-2019

The second period of the study corresponds to a relatively stable time frame except

for one peak. The outcome was that GJR-GARCH provided the best forecasts,

followed by GARCH, HAR, ARMA, AR, and LSTM respectively. Therefore, we

conclude that in both of the study periods, the asymmetric version of the GARCH

model has beaten its parent GARCH. This is also in line with Hansen and Lunde

(2005), who have found that GARCH models which account for leverage effects such

as GJR-GARCH outperform GARCH(1,1) in their study on IBM returns.

 On the other hand, these two models resulting in better forecasts was in our

opinion due to the fact that this period was not characterized by many unexpected

shocks but rather it was stable as opposed to the first period. Therefore, a model

which accounts for the general characteristics of the stock volatilities fitting the

sample better than AR or ARMA models is intuitive.

 The next best performing models after the GARCH type processes are HAR

and ARMA. In this study period, the latter two also had very similar patterns with

this time HAR predicting the peaks better than ARMA.

33

 The worst two models were AR and LSTM. Also in this period, the first model

overpredicted the mean, and LSTM showed a delayed look. Even though not many

studies were done on index return volatility with LSTM, the model and its extensions

were effective at forecasting financial variables such as forecasting price movement in

Nelson et al. (2017). In that sense, our finding that LSTM is not successful at

forecasting return volatility is unexpected. However, it might be due to the

hyperparameter specifications which represent a challenge in the neural networks

setting as finding their optimal level are mostly based on trial and error: We have

detected that automated hyperparameter tuning services which test different

configurations to find the optimum values exist, however we have not observed any

researcher integrating the method into their studies in the field of finance. This is due

to the fact that the computational requirements and the costs are high (Domhan et

al., 2015): In order to process such large datasets with different sets of

hyperparameters, a lot of time and a very high performance computer is needed.

 Therefore, in a setting where the tuning automation is not applied, one of the

most important treatments can be to add more data points to the training set so that

the model can practice on more relationships, as adviced by Williams and Zipser

(1995). Similarly, a training set to total data ratio of 70% can be employed as in

Kristjanpoller et al. (2014) or of 75% as in Fischer and Krauss (2018).

 Moreover, trials with more epochs can be made as the latter represents the

number of steps the algorithm can take to reach a local minima from a point on the

error surface. More representations of the training set to the optimization algorithm

might bring lower losses since going more steps on the error surface could bring us to

a local minimum with a lower error value. However, due to time constraints,

different trials were not possible as just this configuration took 6 hours to converge.

Additionally, especially testing with different dropout ratios might enhance the

model's quality (Gal & Ghahramani, 2016): Maybe a model with much less

connections better suits this dataset. Last, it is also possible to try with different

numbers of layers, LSTM units, and batch sizes. The fact that there exists no pre-

34

defined optimal value for these hyperparameters is a challenge for the application of

the neural networks.

 Overall, we reject both of our hypotheses: This configuration of LSTM has

actually underperformed all the econometric models in this study in both periods.

15. Conclusion and Suggestions

In this study, a set of econometric models namely AR, ARMA, GARCH, GJR-

GARCH, and HAR-RV were compared to a specific type of Neural Network model:

Long Short-Term Memory, so as to analyze if NN's ability to capture non-linearities

in datasets can enhance index return volatility predictions. Two periods characterized

by fluctuations and stability were studied: Overall, it was seen that ARMA and the

asymmetric version of the GARCH model, namely GJR-GARCH, gave the best

forecasts in terms of the performance metric MSE for these periods respectively. In

both periods, LSTM underperformed all the other models on predicting daily return

volatilities of the S&P 500 Index. These results do not necessarily mean that LSTM

models are unsuccessful at predicting return volatility, but that the hyperparameter

selections are crucial for achieving a good model performance. Further trials should

be done with their different combinations to find a better forecasting LSTM model.

Furthermore, the inclusion of other types of inputs which can be signaling for return

volatility in extra to realized variances is advised to the future researchers. Nesting

GARCH family models, ARMA, HAR or their specifications into LSTM is also

recommended as it still remains as a field to be enlightened for forecasting return

volatility.

35

Bibliography

Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using

asymmetric GARCH models. Applied Financial Economics, 18(15), 1201-1208.

Andersen, T. G., Bollerslev, T., &Diebold, F. X. (2007). Roughing it up: Including

jump components in the measurement, modeling, and forecasting of return

volatility. The review of economics and statistics, 89(4), 701-720.

Awartani, B. M., &Corradi, V. (2005). Predicting the volatility of the S&P-500 stock

index via GARCH models: the role of asymmetries. International Journal of

Forecasting, 21(1), 167-183.

Bekiros, S. D., &Georgoutsos, D. A. (2008). Direction‐of‐change forecasting using a

volatility‐based recurrent neural network. Journal of Forecasting, 27(5), 407-417.

Bildirici, M., &Ersin, Ö. Ö. (2009). Improving forecasts of GARCH family models

with the artificial neural networks: An application to the daily returns in Istanbul

Stock Exchange. Expert Systems with Applications, 36(4), 7355-7362.

Bollerslev, T. (2008). Glossary to arch (garch). CREATES Research paper, 49.

Brailsford, T. J., & Faff, R. W. (1996). An evaluation of volatility forecasting

techniques. Journal of Banking & Finance, 20(3), 419-438.

Corsi, F. (2009). A simple approximate long-memory model of realized

volatility. Journal of Financial Econometrics, 7(2), 174-196.

Domhan, T., Springenberg, J. T., & Hutter, F. (2015, June). Speeding up automatic

hyperparameter optimization of deep neural networks by extrapolation of learning

curves. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

Donaldson, R. G., &Kamstra, M. (1996). Forecast combining with neural

networks. Journal of Forecasting, 15(1), 49-61.

36

Donaldson, R. G., &Kamstra, M. (1997). An artificial neural network-GARCH model

for international stock return volatility. Journal of Empirical Finance, 4(1), 17-46.

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on

volatility. The journal of finance, 48(5), 1749-1778.

Fadlalla, A., & Lin, C. H. (2001). An analysis of the applications of neural networks

in finance. Interfaces, 31(4), 112-122.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2), 654-669.

Foimbert. (2018, July 12). Just try to find a stock market year like 2018, because you

won't. Retrieved from https://www.cnbc.com/2018/07/12/bespoke-just-try-to-find-a-

stock-market-year-like-2018-because-you-wo.html

Franses, P. H., & Van Dijk, D. (1996). Forecasting stock market volatility using

(non‐linear) Garch models. Journal of Forecasting, 15(3), 229-235.

Gal, Y., &Ghahramani, Z. (2016, June). Dropout as a bayesian approximation:

Representing model uncertainty in deep learning. In international conference on

machine learning (pp. 1050-1059).

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual

prediction with LSTM.

Glosten, L. R., Jagannathan, R., &Runkle, D. E. (1993). On the relation between the

expected value and the volatility of the nominal excess return on stocks. The journal

of finance, 48(5), 1779-1801.

Gonzalez Miranda, F., & Burgess, N. (1997). Modelling market volatilities: the neural

network perspective. The European Journal of Finance, 3(2), 137-157.

Gurney, K. (1997). An introduction to neural networks, 1997. London: UCL Press.

37

Hansen, P. R., &Lunde, A. (2005). A forecast comparison of volatility models: does

anything beat a GARCH (1, 1)?. Journal of applied econometrics, 20(7), 873-889.

Haykin, S. (1999). Neural Networks and Learning Machines. New York: Prentice

Hall.

Hochreiter, S., &Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 6(02), 107-116.

Is the Stock Market More Volatile Now Than Ever Before? (2019, April 30).

Retrieved from https://www.reuters.com/article/idUSWAOA9NUAIRCF192L

Jondeau, E., Poon, S. H., &Rockinger, M. (2007). Financial modeling under non-

Gaussian distributions. Springer Science & Business Media.

Kamijo, K. I., &Tanigawa, T. (1990, June). Stock price pattern recognition-a

recurrent neural network approach. In 1990 IJCNN International Joint Conference on

Neural Networks (pp. 215-221). IEEE.

Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A

hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems

with Applications, 103, 25-37.

Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using

hybrid neural network models. Expert Systems with Applications, 41(5), 2437-2442.

LeCun, Y., Bottou, L., Bengio, Y., &Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

38

Li, L. K., Pang, W. K., Yu, W. T., &Troutt, M. D. (2004). Forecasting short-term

exchange rates: A recurrent neural network approach. In Neural Networks in

Business Forecasting(pp. 195-212). IGI Global.

Liu, Y. (2019). Novel volatility forecasting using deep learning–Long Short Term

Memory Recurrent Neural Networks. Expert Systems with Applications, 132, 99-109.

Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long short term

memory networks for anomaly detection in time series. In Proceedings (p. 89).

Presses universitaires de Louvain.

Moshiri, S., & Cameron, N. (2000). Neural network versus econometric models in

forecasting inflation. Journal of forecasting, 19(3), 201-217.

Müller, U. A., Dacorogna, M. M., Davé, R. D., Olsen, R. B., Pictet, O. V., & Von

Weizsäcker, J. E. (1997). Volatilities of different time resolutions—analyzing the

dynamics of market components. Journal of Empirical Finance, 4(2-3), 213-239.

Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017, May). Stock market's price

movement prediction with LSTM neural networks. In 2017 International Joint

Conference on Neural Networks (IJCNN) (pp. 1419-1426). IEEE.

Ng, A. (?). [The error surface of a neural network model]. Introduction, Regression

Analysis, and Gradient Descent. Retrieved from

http://www.holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_g

r.html

de Oliveira, F. A., Nobre, C. N., & Zarate, L. E. (2013). Applying Artificial Neural

Networks to prediction of stock price and improvement of the directional prediction

index–Case study of PETR4, Petrobras, Brazil. Expert Systems with

Applications, 40(18), 7596-7606.

Pagan, A. R., &Schwert, G. W. (1990). Alternative models for conditional stock

volatility. Journal of econometrics, 45(1-2), 267-290.

39

Sang, C., & Di Pierro, M. (2019). Improving trading technical analysis with

TensorFlow Long Short-Term Memory (LSTM) Neural Network. The Journal of

Finance and Data Science, 5(1), 1-11.

Saxena, S. (2017). Figure depicting the Activation function for ANN. Artificial

Neural Networks(Basics) | Introduction to Neural Networks. Retrieved from

https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-

networks-3082f1dcca8c

Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F. (2007). Training recurrent

networks by evolino. Neural computation, 19(3), 757-779.

Schwedersky, B. B., Flesch, R. C., &Dangui, H. A. (2019). Practical Nonlinear Model

Predictive Control Algorithm for Long Short-Term Memory Networks. IFAC-

PapersOnLine, 52(1), 468-473.

Smith, S. W. (1997). The scientist and engineer's guide to digital signal processing.

San Diego, CA: California Technical Hub.

Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial

time series forecasting. omega, 29(4), 309-317.

Taylor, J. C. (1995). Chapter 1: The promise of neural networks. Neural Networks.

Henley-on-Thames: Alfred Waller in association with UNICOM.

Tkacz, G. (2001). Neural network forecasting of Canadian GDP growth. International

Journal of Forecasting, 17(1), 57-69.

Tsay, R. S. (2005). Analysis of Financial Time Series Second Edition. New York: A

John Wiley & Sons.

Wang, X., Wu, C., &Xu, W. (2015). Volatility forecasting: The role of lunch-break

returns, overnight returns, trading volume and leverage effects. International Journal

of Forecasting, 31(3), 609-619.

40

Wells, N., &Chemi, E. (2016, August 24). A short history of stock market 'flash

crashes' and 'freezes'. Retrieved from https://www.cnbc.com/2016/08/24/a-short-

history-of-stock-market-crashes.html

Williams, R. J., &Zipser, D. (1995). Gradient-based learning algorithms for

recurrent. Backpropagation: Theory, architectures, and applications, 433.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural

networks:: The state of the art. International journal of forecasting, 14(1), 35-62.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural

network model. Neurocomputing, 50, 159-175.

Zhang, G. P. (Ed.). (2004). Neural networks in business forecasting. IGI global.

41

Appendix 1

Figure 1A: ARMA(1,1) RV Forecasts versus RV: 2010-2011.

Figure 1B: HAR RV Forecasts versus RV: 2010-2011.

42

Figure 1C: AR(1) RV Forecasts versus RV: 2010-2011.

Figure 1D: GJR-GARCH(1,1) RV Forecasts versus RV: 2010-2011.

43

Figure 1E: GARCH(1) RV Forecasts versus RV: 2010-2011.

Figure 1F: LSTM RV Forecasts versus RV: 2010-2011. The circles and the diamonds

represent the 'delayed look' of the model.

44

Appendix 2

Figure 2A: GJR-GARCH(1,1) RV Forecasts versus RV: 2012-2019.

Figure 2B: GARCH(1,1) RV Forecasts versus RV: 2012-2019.

45

Figure 2C: HAR RV Forecasts versus RV: 2012-2019.

Figure 2D: ARMA(1,1) RV Forecasts versus RV: 2012-2019.

46

Figure 2E: AR(1) RV Forecasts versus RV: 2012-2019.

Figure 2F: LSTM RV Forecasts versus RV: 2012-2019.

