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Abstract

Socio-economic status (SES) is correlated with better health and
longer lifetime. The determinants of socio-economic status are, how-
ever, unclear, as there are many observed and unobserved factors feed-
ing back and forth and causing reverse causality. This paper aims to
verify whether physical appearance, in the form of height and body
mass index (BMI), has a causal effect on SES. Possible explanations of
the phenomenon include discrimination on the labor market as well as
health problems. To investigate this relationship, I use insights from
genetic studies and the Mendelian randomization approach. In this,
genes work as instrumental variables to mitigate the issues of reverse
causality and omitted variables bias. Analyzing data from the Health
and Retirement Study (HRS) focused on the elderly American popula-
tion, I find significant causal effects of BMI for four out of six proxies of
SES while height influences income only. More specifically, I find that
individuals with lower stature and higher BMI are at disadvantage for
what concerns education and labor market outcomes.
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Introduction

Insight from health economics reveals that heterogeneity in socio-economic

status (i.e. the social standing of an individual measured as a combination

of education, income and occupation) might lead to differences in health

outcomes and in health service consumption (Smith, 2007; Vyas & Ku-

maranayake, 2006). Scholars explain this relationship through different hy-

potheses (the direct income hypothesis, the productive time hypothesis, etc.)

but all seem to agree that socio-economic status (SES) has a positive effect

on the health of an individual (Adler et al., 1994). Higher SES, moreover, is

associated with higher life expectancy (Lin, Rogot, Johnson, Sorlie, & Arias,

2003). Marmot (2017), for example, found a difference of 20 years in male life

expectancy between the richest and the poorest neighborhoods of Baltimore

(US).

Based on this evidence, SES seems an important factor that affects the

health and the life expectancy of citizens, this notion is known in literature as

the socio-economic gradient of health. Due to the impact of SES on health,

many policies in the healthcare sector take it into account. An example is

provided by risk equalization: in the Netherlands, one of the risk factors in-

cluded in risk equalization payments is indeed SES. Given that SES is such

a vital element for current healthcare policies, a thorough understanding of

its nature and of its determinants is beneficial. Unraveling the factors that

affect SES will allow to analyze possible causes of disparity in health and

healthcare consumption, enabling policy-makers to address the problem at

its source.

In this regard, past research has been focusing on the impact that body

appearance and physical attributes might have on SES (Roszell, Kennedy,

& Grabb, 1989). Recent literature identified two physical variables that are

associated with SES, namely body mass index (BMI) and height. For both

variables, most research aims to explain the correlation through the causal

effect of SES on an individual’s weight and height (Jansen & Hazebroek-
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Kampschreur, 1997; Murasko, 2009). Lower income may impact obesity

through different mechanisms: lack of access to healthy food, unhealthy

lifestyle, as well as psychosocial factors that derive from relative depriva-

tion (Kim & von dem Knesebeck, 2018). Moreover, low SES in childhood

might have a negative impact on growth, this leading to lower height (Tyrrell

et al., 2016).

Alongside these theories, scholars have also started investigating the pos-

sibility of reverse causality: BMI and height could be the causes of a certain

SES rather than its effect (Sobal & Stunkard, 1989). The explanation for this

could be found in social stigma: obese and shorter people may appear as less

productive and be discriminated on the labor market (Bann, Johnson, Li,

Kuh, & Hardy, 2017; Kim & von dem Knesebeck, 2018). Another possible

explanation could be that high BMI leads to lower health and this might

in turn have a negative effect on the time dedicated to work and education.

This paper aims to further understand the direction of this relationship, the

following research question is thus presented:

“To what extent do body mass index (BMI) and height have a causal

effect on socio-economic status (SES) indicators in a sample of American

citizens?”

Understanding the causality in this relationship is of high social and sci-

entific relevance. First, it will be beneficial in shaping policies aimed at

promoting greater health among citizens. In case of a causal effect of BMI

and height on SES, policies could either aim at counteracting social stigma

and labor market discrimination or to fight obesity by taxing unhealthy food.

In this sense, incentives to contrast poor parental food and lifestyle choices

could be effective in reducing obesity and fostering a healthy growth. Deter-

mining whether the causal effect is present is therefore socially relevant.

In terms of scientific relevance, this paper aims at expanding the existing

literature on the effect of BMI and height on SES. To do so, I use Mendelian
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randomization, a tool that has just recently gained relevance in economic

studies. The analysis follows the framework of Tyrrell et al. (2016), who

analyzed the effect of BMI and height on SES using genetic data coming

from the UK Biobank. The key contributions of this research is twofold.

First, I employ data coming from the US. So far, the main studies on this

topic were conducted with data coming from English databases (Bann et al.,

2017; Tyrrell et al., 2016), analyzing the relationship with data from another

country allows to check for the external validity of past results. Second, I

use different proxies for SES that were not analyzed before, these include

individual total wealth and position with respect to a poverty threshold.

After the introduction, I include the theoretical framework, in which

I critically assess the main completed research on the effect of BMI and

height on SES. I then present the methodology and discuss the technique of

Mendelian randomization and its assumptions. Afterwards, I describe the

data sampling process and include descriptive statics as well as an explana-

tion of the transformations applied to the data. I then present the results

and interpret them. Finally, I discuss the main findings and address the

limitations of this paper.

Theoretical Framework

BMI and SES

For what concerns BMI, scholars have extensively researched the economic

consequences of obesity, assessing whether obesity lowers wages or reduces

employment and education (Atella, Pace, & Vuri, 2008; Cawley, 2007; Con-

ley & Glauber, 2006; Morris, 2007). Obesity could result in worse SES for

several reasons. First, obesity is associated with many diseases, such as

hypertension, coronary heart disease, and diabetes (Greve, 2008). The wors-

ened health deriving from such diseases might lead to lower productivity and

thus to lower wages (Hu, 2008). Second, obesity might lead to discrimina-

tion on the labor market, as studies suggest that obese individuals are more
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likely to be perceived as lazy and unable to self-control (Puhl & Latner, 2007;

Rooth, 2009). Rooth (2007) found that discrimination against obese people

in the hiring process is more common in occupations with more customer con-

tact, this suggesting that obese people may appear unfit to convey a proper

impression of the business. Third, these stereotypes are often internalized

by the individuals themselves, this leading to self-stigma and psychological

problems, which might in turn lower productivity (Kim & von dem Knese-

beck, 2018). Finally, the impact of obesity on education follows a similar

mechanism, with obese students possibly being self-aware of their issue and

limited in their productivity and soft skills.

Beyond the possible mechanisms, different estimations of the effect are

also present. The magnitude of the effect of BMI on SES varies widely from

research to research, due to the different econometric techniques used to ac-

count for the issues of omitted variable bias and reverse causality. Many

researchers used the weight of a relative as an instrument, exploiting the fact

that there is a strong heritable component of BMI. Brunello and d’Hombres

(2007) found that a 10% increase in BMI leads to a decrease in wages of

3.27% and 1.86% for males and females respectively. On the other side, Caw-

ley (2007) found an effect on women only, with a difference of two standard

deviation from the mean BMI leading to a decrease in wage of 9%. Using the

weight of a relative as an instrument, however, rises concerns about possible

confounders, as there could be variables that affect both the BMI of the rel-

ative and the outcome variable. For this reason, Mendelian randomization

has been used in recent research. As later explained, Mendelian randomiza-

tion is a technique which uses genes variants as instrumental variables and

exploits their exogeneity to account for confounders. Among the main stud-

ies, Tyrrell et al. (2016) found that a standard deviation from the mean in

BMI leads to a decrease of £210 and £1890 in household annual income for

men and women respectively. This paper aims to confirm these results and

extend them to a different dataset. Given past research, it seems reasonable

to expect a negative effect of BMI on different measures of SES, I thus for-

mulate the following hypothesis:
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H1. There is a negative causal relationship between an individual’s BMI

and SES

Height and SES

Research on the effect of height on SES uses similar reasoning as the one for

BMI. Also in this case, a possible mechanism through which height affects

SES relies on social consideration. Scholars have underlined how factors such

as social dominance (Hensley, 1993) and self-esteem (Young & French, 1996)

might help taller people in the labor market. To this extent, Judge and

Cable (2004) found that height is correlated to measures of social esteem,

leader emergence and performance. Frieze, Olson, and Good (1990) argued

that, due to these stereotypes, short people might be considered less favor-

ably and thus have a disadvantage when arranging interpersonal dealings. In

this regard, Rosenberg (2009) claimed that heightism, i.e. the prejudice or

discrimination of a person based on his height, is a common phenomenon in

the labor market. Evidence for this was also found by Cinnirella and Win-

ter (2009), who determined a link between height and salaries for employed

workers and not for the self-employed, this possibly implying employer dis-

crimination. Finally, another possible mechanism by which height influences

SES is introduced by Persico, Postlewaite, and Silverman (2004), who argued

that the height premium is partially mediated through participation in high

school sports and clubs, which helps to build productive human capital.

Also for height, the estimation of the effect varies widely across research

and depend on the methods employed to account for reverse causality. Us-

ing sibling data from Sweden, Magnusson, Rasmussen, and Gyllensten (2006)

found that men taller than 1.94 meters are twice more likely to pursue higher

education as compared to men shorter than 1.65 m. Hübler (2009) found that

on the labor market in Germany a 10-cm height increase was associated with

a 2.5% wage increase for men, with a lower estimation for women. Using

Mendelian randomization, Tyrrell et al. (2016) found that a standard devia-
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tion increase from the mean height leads to 0.06 years more years of education

completed as well as increasing the odds of working in a skilled profession.

The literature suggests therefore a positive impact of height on education

and labor market outcomes, to test this claim I formulate the following hy-

pothesis:

H2. There is a positive causal relationship between an individual’s height

and SES

Methodology

Mendelian randomization

As mentioned, this paper relies on the methodology of Tyrrell et al. (2016)

and uses the method of Mendelian randomization. Mendelian randomization

is an approach that employs genetic variants as instrumental variables to

analyze the causal effects of one trait (the ‘exposure’) on another (the ‘out-

come’) (Brumpton et al., 2019). In this case, genetic scores associated with

BMI and height are used as instrumental variables to investigate the effect of

BMI and height on SES. Mendelian randomization has recently gained pop-

ularity due to decrease in the cost of genotyping and the consequent increase

in the availability of genetic data. Mendelian randomization, moreover, can

help alleviating the issues of omitted variables and reverse causality common

to other methods (Brumpton et al., 2019). For Mendelian randomization

to give an unbiased estimation, the three conditions of instrument variables

need to be met.

First, the instrument needs to be relevant, or, in other words, the genetic

score needs to be associated with the exposure; this assumption is met due

to the predictive power of the genetic variants for BMI and height. A study

conducted on the dataset in analysis found that the genetic scores for height

and BMI can explain the 24.6% of the variance of height and 6.0% of the

variance of BMI respectively (Yengo et al., 2018).
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Second, the instrument must be independent, so that there are no con-

founders that affect both the instrument and the outcome. In other words,

the height and BMI genetic scores should not be associated with confounding

factors that could bias the associations between height/BMI and socioeco-

nomic status. This assumption is reasonably met, as genes are per se exoge-

nous. Recent research, however, has suggested the possibility of bias coming

from dynasty effects and assortative mating (Brumpton et al., 2019; Hartwig,

Davies, & Davey Smith, 2018). Dynasty effects imply that the genes of the

parents are linked both to the genes of the offspring and the SES of the

children during childhood, which in turn affects the SES of the individual

in a later stage of life. Assortative mating occurs when individuals choose a

partner for certain characteristic or, in other words, for certain genes they

possess. This can lead to spurious genetic associations in the offspring and

then result in biased estimations. To solve these issues, two approaches could

be undertaken. Brumpton et al. (2019) suggest that a within-family design

could be implemented as this would permit to control for family fixed effects

and account for those variables that are caused by parents’ genes and affect

the living situation of the children. Alternatively, the genetic scores of the

parents could be used as control variables (Hartwig et al., 2018). Unfortu-

nately, the dataset used contains very limited information about the family

of origins and therefore it is not possible to control for family fixed effects

nor to use genetic data of the parents. The possible violation of this assump-

tion remains therefore a major limitation of the paper and will be further

discussed in the conclusion.

The third and final assumption, i.e. the exclusion restriction, specifies

that the genes should affect the outcome entirely through the exposure. In

this case, BMI/height genes should affect SES only through their effect on

BMI and height. A concern about this assumption is also present, due to the

possibility of horizontal pleiotropy. Horizontal pleiotropy occurs when the

genetic variant affects traits outside of the pathway of interest that in turn

have an impact on the outcome (Verbanck, Chen, Neale, & Do, 2018). In this
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case, it might be that genes associated with BMI could also influence other

characteristics (education propensity, etc.) that have an impact on SES. To

investigate whether this is a problem in this research, I could undertake two

approaches, following the argumentation of Böckerman et al. (2019). First, a

qualitative study of the literature indicates that genes associated with BMI

and height seem not to affect other traits that could in turn affect SES out-

comes. More specifically, it was found that the genes have no effect on an

individual’s intelligence (Speliotes et al., 2010). Another way to investigate

possible pleiotropy follows the idea of McClellan, McNeil, and Newhouse

(1994) and makes use of a placebo test, whose procedure I explain later. In

conclusion, given that the assumptions are met and considering the limita-

tions, the method of Mendelian Randomization seems opportune to find a

causal effect due to the elimination of most confounders, as represented in

the causal pathway in Figure 1.

Figure 1: Causal Pathway

Implementation

To test the first hypothesis, I use six instrumental regression analyses. The

exposure (independent) variable is BMI, the instrument is the genetic score

related to BMI and the independent variables are six different proxies for

SES. The proxies include years of education, whether the individual attended

college (binary variable), individual earnings, total wealth, position with re-

spect to a poverty threshold (a binary variable created by the Health and

Retirement Study that combines income and household composition) and
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labor force status (binary variable). Finally, I add control variables both in

the first and second stage. The control variables are the age of the individual

in months and ten principal components, which can be employed to adjust

for population structure and potential outliers. The variable PC is therefore

an array of 10 variables representing the principal components. Moreover,

given the results of the Placebo test discussed later, I also include parental

education as a control in the form of two variables, maternal and paternal

education. The first stage of the regression model is the following:

BMIi = α1 +γBMIBMIscorei +µ1Agei +ρ1PCi +ζ1ParentalEducationi + εi

(1)

Where BMIscore is the genetic score of an individual, γBMI its coefficient,

α1 the constant and εi the error term. Such an equation is used to find the

predicted values for BMI used in the second stage:

Yi = δ1 + βBMIB̂MIi + µ2Agei + ρ2PCi + ζ2ParentalEducationi + ei (2)

Where Y is the value of the different proxies, B̂MI i the predicted value

of BMI, δ1 the constant and ei the error term. Note that in the case that Y is

a binary variable, I use a linear probability model (LPM), as done by Norton

and Han (2008). This makes the interpretation of the coefficients more im-

mediate and does not meaningfully change the conclusions when compared

to results from a Probit model (Norton & Han, 2008). Still, the coefficients

should be interpreted with cautions as the LPM model might lead to predic-

tions outside the 0-1 range. For the hypothesis not to be rejected, a negative

sign for the coefficient βBMI is expected.

To test the second hypothesis, the same approach is used. Like before, I

employ six instrumental regression analyses with the same proxies for SES.

The first stage of the regression model is:
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Heighti = α2+γHeightHeightscorei+µ3Agei+ρ3PCi+ζ3ParentalEducationi+fi

(3)

Where Heightscore is the genetic score of an individual, γheight its coef-

ficient, α2 the constant and fi the error term. Such an equation is used to

find the predicted values for height used in the second stage:

Yi = δ2 +βHeight
̂Heighti +µ4Agei +ρ4PCi +ζ4ParentalEducationi + ti (4)

As before, Y is the value of different proxies and a positive coefficient for

βheight is expected, δ2 will be the constant and ti the error term. As before,

when Y is a binary variable, I employ an LPM. Since past research found

different estimation for different genders, I conduct also each regression sep-

arately for men and women.

As mentioned, I also include a placebo test to investigate the presence

of pleiotropy and dynasty effects. I divide the sample into two groups, one

with above-average genetic score and the other with below-average values.

Afterwards, I test whether the two groups significantly differ in their observ-

able characteristics (parents’ education, cognition scores) that are likely to

be correlated with SES or with parents’ genes. Similarity for the two groups

in the observed variables, although not proving it, would be consistent with

the exclusion restriction and the independence assumption. In addition, I

perform a regression with the genetic scores (dependent variables) and the

aforementioned variables (independent variables). Insignificant coefficients

would also provide support to the assumptions.

10



Data

Sampling

The paper uses data from the Health and Retirement Study (HRS), a lon-

gitudinal household survey conducted in the US, and combines two publicly

available datasets, the RAND HRS Longitudinal File and the Polygenic Score

Data. The RAND HRS Longitudinal File contains data on 12 survey sessions,

or waves, completed by 37495 individuals between 1992 and 2014. In this

paper, I use data from wave 10 (interviews recorded in 2010), as it contains

the highest number of observations for the variables of interest. Moreover, I

consider only individuals still active in the labor market at the time of the

interview as, only for them, BMI and height could still influence income.

Retired and disabled individuals are therefore removed from the sample, fol-

lowing the example of Tyrrell et al. (2016). Moreover, given that the genetic

data employed is scaled on European descent, I use only observations from

individuals of white/Caucasian race. Eventually, the sample includes 3156

observations. The variables of interest taken from the sample include infor-

mation regarding BMI and height (exposure variables) as well as individual

earnings, total wealth, labor force status, poverty threshold, total education

and highest level of education reached (outcome variables). Note that the

BMI and height at the time of education are not available in the dataset,

this problem is solved by considering BMI and height in wave 10 as proxies

for BMI and height throughout life, as done by Tyrrell et al. (2016). From

the same dataset, other demographic information is collected, such as year of

birth and gender, plus other variables needed for the placebo test (parents’

education, imputed cognition scores). For retrieving genetic information, I

use the Polygenic Score Data. It contains polygenic scores (PGSs) for a vari-

ety of phenotypes for HRS respondents who provided salivary DNA between

2006 and 2012; from it, I retrieve the genetic scores for BMI and height.
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Description & Transformation

Demographic Variables

Demographic variables include gender and year of birth, the sample con-

tains individuals born between 1942 and 1980, with a prevalence of female

(54.37%).

Table 1: Descriptive Statistics
N mean sd min max

Gender 3,156 0.544 0.498 0 1
Year of Birth 3,156 1,954 5.565 1,942 1,980
Age (months) 3,156 679.3 66.27 368 829

Instrumental Variables and Exposure Variables

The BMIScore is a polygenetic score (PGS) created using results from a

2015 study conducted by the Genetic Investigation of ANthropometric Traits

(GIANT) consortium. PGSs are obtained by computing the weighted sum

of trait-associated alleles, in other words they combine different single nu-

cleotide polymorphisms (SNPs). SNPs are the most common type of genetic

variation in human DNA and each of them represents a difference in a single

DNA nucleotide; in this case, all SNPs that influence BMI are included to

compute the PGS. The PGS used here has been standardized within ethnic-

ity to a standard normal curve (mean=0, standard deviation = 1) and refers

to individuals of European ancestry. Similarly, the HeightScore is a PGS cre-

ated by the same consortium in a study of 2014. Also in this case, the PGS

was normalized within ethnicity. For what concerns the exposure variables,

BMI is measured in kg/m2 and presents an average of 28.68 kg/m2 and a

standard deviation of 5.897 kg/m2 while height is measured in meters, with

an average of 1.71 meters and a standard deviation of 10 cm. Descriptive

statistics for the principal components can be found in Table A1.
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Table 2: Descriptive Statistics

N mean sd min max

BMIScore 3,156 0.00450 1.005 -3.633 3.637

HeightScore 3,156 -0.00882 0.985 -4.337 2.662

BMI 3,156 28.73 5.897 14.10 57.90

Height 3,156 1.709 0.100 1.410 2.083

Outcome Variables

YearsEduc is a continuous variable indicating the number of school years

completed by an individual. HighEduc is a binary variable assuming a value

of 1 if the individual has finished college and 0 otherwise. Income is a con-

tinuous variable and indicates individual earnings measured in US dollars; in

order to simplify the interpretation and account for outliers, I take the natu-

ral logarithm. When taking the natural logarithm, observations with a value

of 0 are not identified and are therefore dropped from the sample, with an

elimination of about 400 observations. TotalWealth is a continuous variable

and represents the net value of total wealth in US dollars, also in this case the

logarithm is employed for the same reasons as before. Due to the presence

of negative values and values of 0, also in this case there is a loss of about

300 observations. LaborStatus is a binary value taking a value of 1 if the

individual is working full or part-time and a value of 0 if unemployed (retired

and disabled individuals are excluded from the sample). Finally, Poverty is

a binary variable that takes a value if the household of the individual has

an income below the poverty threshold. The poverty threshold used by HRS

is the one employed by the US Census Bureau and assumes different values

based on the size of the family unit, the measurement I use here accounts for

the size of the household already.
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Table 3: Descriptive Statistics

N mean sd min max

YearsEduc 3,137 14.09 2.197 0 17

TotalWealth 3,156 434,816 1.001e+06 -471,000 1.740e+07

Income 3,156 48,740 53,194 0 650,000

Poverty 3,156 0.0241 0.153 0 1

HighEduc 3,156 0.358 0.479 0 1

LogIncome 2,681 10.59 0.974 4.248 13.38

LogWealth 2,883 12.07 1.626 1.609 16.67

LaborStatus 3,156 0.918 0.274 0 1

Placebo Test Variables

Variables included in the placebo test follow the ones chosen by Böckerman et

al. (2019). I employ mother’s and father’s education when available. More-

over, I also use different cognition scores (that could possibly be genes-related

and affect SES). The NumberScore is created to follow a normal distribution

with a mean of 500 and measures quantitative reasoning ability. The Men-

talScore comprehends scores from different tasks and measures mental ability

as well as memory; the score ranges between 5 and 15.

Table 4: Descriptive Statistics

N mean sd min max

MotherEduc 3,023 12.03 2.545 0 17

FatherEduc 2,875 11.81 3.230 0 17

NumberScore 3,085 522.1 30.58 390.2 579.6

MentalScore 1,577 13.59 1.532 5 15
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Results

Placebo Tests

To provide robustness to the estimations, I perform a placebo test. In-

dividuals are divided in two groups, one with below average BMI genetic

score (LowBMIScore) and one with above average BMI genetic score (High-

BMIScore). I compare the means of the two groups for a series of outcomes

through a T-test to assess whether the two groups significantly differ (Table

5). Parental education is found to be significantly higher for people with a

lower BMIscore. This finding could be reconducted to the presence of dynasty

effects: parents with a lower BMIscore might achieve a higher education and

then pass on their genes to their children. The independence assumption

seems therefore to be a serious limitation in this analysis. To partially adjust

for this, parental education can be included in the instrumental regression

as a control variable. For what concerns the scores in mental tasks, I find

no significant difference among the two groups for the general mental score,

which provides support for the exclusion restriction, with the genes of BMI

not having an effect on proxies of intelligence. On the contrary, a signifi-

cantly higher numerical score is achieved for individuals with below average

BMI. This could be suggestive of pleiotropy but, at the same time, it could

be mediated by education (lower BMI might lead to higher achieved educa-

tion which in turn might endow with better mathematical skills). As such,

a definite conclusion on the matter of pleiotropy is not possible.

Table 5: Placebo Test: T-Test for Low and High BMIScores

LowBMIScore HighBMIScore P-Value

FatherEduc 12.05688 11.56409 0.0000

MotherEduc 12.20606 11.85728 0.0002

NumberScore 523.3667 520.939 0.0275

MentalScore 13.62644 13.55764 0.3726

I complete the same placebo test dividing individuals according to their
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genetic score for height (Table 6). In this case, the only significant difference

between the two groups is found to be in the education of the mother. Also for

height, therefore, a possible violation of the independence assumption seems

to be present and the issue could be partially addressed by including parental

education as a control variable in the instrumental regression. On the other

side, the lack of difference in the mental capability scores is supportive of the

exclusion restriction.

Table 6: Placebo Test: T-Test for Low and High HeightScores

LowHeightScore HighHeightScore P-Value

FatherEduc 11.75021 11.84976 0.4152

MotherEduc 11.90087 12.12129 0.0187

NumberScore 521.1138 522.85 0.1197

MentalScore 13.56143 13.61574 0.4844

In order to further check for possible violations, I also perform a regres-

sion of the genetic scores (dependent variables) on the variables of interest,

with the principal components and age as control variables (Table 7). These

findings partially contradict the results of the T-test as only maternal ed-

ucation seem to have an impact and on the genetic score for height only.

Nonetheless, this provides ground to the idea of adding parental education

as a control variable in the upcoming regressions.
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Table 7: Regression of BMIScore and HeightScore on Placebo Variables

(1) (2)

BMIScore HeightScore

MotherEduc -0.00527 0.0156**

(0.0126) (0.00707)

FatherEduc -0.0120 -0.00184

(0.00993) (0.00558)

MentalScore -0.0251 -0.00125

(0.0183) (0.0103)

NumberScore -0.000342 -9.13e-05

(0.000945) (0.000531)

Constant 0.730 -0.0965

(0.471) (0.264)

Observations 1,393 1,393

R-squared 0.118 0.708

Controls YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

BMI and SES

The first stage regression for the pooled sample has an F-statistic of 19.05,

this provides support to the first assumption of instrumental variables as

the instrument, i.e. BMIscore, seems to be predictive of the exposure, i.e.

BMI (Table A2). Moreover, the R2 has a value of 10.8%, and is therefore

in line with previous studies, which found a value of 6%; the difference may

be due to the restriction of the analyzed sample (Yengo et al., 2018). Note,

moreover, that the sample is uniformized across the different proxies, with

a final count of 2.194 observations so to make the results comparable. For

what concerns the effects on the outcome, I find significant negative effects

of BMI in line with the expectations on three out of six proxies (Table 8).
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For what concerns years of education, an increase of one unit of BMI (1

kg/m2) leads to a decrease of 0.0692 years of education, ceteris paribus.

Brumpton et al. (2019) found a similar yet more conservative estimate, with

1 additional unit of BMI decreasing years of education by 0.037. To make

the results comparable to other studies, I include an interpretation in terms

of standard deviations as well. One standard deviation (SD, 5.897 kg/m2)

increase in BMI leads to a decrease in education of 0.4 years, ceteris paribus.

A SD increase in BMI also decreases by 0.015 the likelihood of completing

higher education. For total wealth, an increase of one SD of BMI leads to

a decrease in total wealth of 0.37%, all else being the same. No significant

effects are found for the logarithm of income, for the employment status of

the individuals and for the probability of being in poverty.

Table 8: Pooled Second Stage Regression for the Effect of BMI on SES
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

BMI -0.0692*** -0.0150*** -0.0188 -0.0622*** -0.00289 -0.00211*

(0.0242) (0.00565) (0.0117) (0.0181) (0.00273) (0.00123)

Constant 11.59*** -0.188 9.998*** 10.23*** 0.933*** 0.0836*

(0.956) (0.223) (0.462) (0.716) (0.108) (0.0485)

Observations 2,194 2,194 2,194 2,194 2,194 2,194

R-squared 0.140 0.116 0.030 0.103 0.008

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

To verify the existence of differences across genders, I rerun the regres-

sions differentiating for men and women. The first stage regressions (Table

A2) once more supports the assumption of relevance, with an F-statistic of

11.82 and 17.06 respectively. For men (Table 9), total wealth and higher

education become insignificant at a 5% significance level. At the same time

the coefficients of BMI on income and the likelihood of being in poverty, com-

pared to the pool regression, become negative and significant. For women

(Table 10), the coefficients of BMI for the two proxies of education become
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insignificant at a 5% significance level. The only proxy that seems to be sig-

nificantly affected by BMI for women is therefore total wealth. These results

are in contrast with the findings of Cawley (2007) and Tyrrell et al. (2016),

who found a causal effect of BMI on income for women only. The difference

between genders may be due to the fact that different social standards may

exist with respect to the weight of male and females and discrimination based

on body size could be affected by this (Griffin, 2006).

Table 9: Second Stage Regression for the Effect of BMI on SES for Men Only
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

BMI -0.131*** -0.0201* -0.0419** -0.0583* -0.00134 -0.00450**

(0.0481) (0.0109) (0.0214) (0.0351) (0.00539) (0.00203)

Constant 11.59*** -0.466 11.45*** 9.528*** 0.867*** 0.180**

(1.840) (0.415) (0.817) (1.342) (0.206) (0.0774)

Observations 975 975 975 975 975 975

R-squared 0.109 0.112 0.030 0.085 0.014

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 10: Second Stage Regression for the Effect of BMI on SES for Women

Only
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

BMI -0.0253 -0.0105* -0.00544 -0.0605*** -0.00381 -0.000914

(0.0268) (0.00638) (0.0133) (0.0204) (0.00304) (0.00155)

Constant 11.49*** -0.0263 9.464*** 10.54*** 0.969*** 0.0352

(1.114) (0.265) (0.554) (0.848) (0.126) (0.0645)

Observations 1,219 1,219 1,219 1,219 1,219 1,219

R-squared 0.166 0.130 0.032 0.131 0.009 0.006

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

All in all, causal effects are found for four indicators of SES, with differ-

ences between genders concerning income and education (effect only on men).

The negative sign of the coefficients suggests that an increase in BMI has a

negative causal effect on SES, as such the first hypothesis is not rejected.

Height and SES

The first stage regression for the pooled sample has an F-statistic of 21.15,

this provides support to the first assumption of instrumental analysis (Table

A3). The R2 has a value of 9.6% that is lower than the 24% found by previous

literature; by looking at men and women separately, however, the R2 has a

value of 18.7% and 21.5%, getting closer to the estimates of Yengo et al.

(2018). For what concerns the effects on the outcome, significant positive

effects of height in line with the expectations are found for only one out of

six proxies of SES, namely income (Table 11). For income, an increase of one

SD (10cm) in height leads to a decrease in income of 0.15%, ceteris paribus.

As for BMI, no significant effects are found for the employment status of

the individuals nor for the probability of being in poverty, moreover, no

significant effects at a 5% significance level are present for the education
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proxies and for total wealth. This seems to suggest that the effect of height

on SES is less strong than the one for BMI. The motivation for this might be

found in the mechanism: discrimination on the labor market, or in education,

is more likely to be due to BMI than height, as BMI is a characteristic that

seems more reflective of an individual’s motivation and self-control.

Table 11: Pooled Second Stage Regression for the Effect of Height on SES
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

Height 0.953 0.170 1.534** 2.101* -0.0270 0.0957

(1.567) (0.366) (0.747) (1.201) (0.178) (0.0801)

Constant 7.733*** -0.963 6.845*** 4.707** 0.882*** -0.144

(2.636) (0.615) (1.256) (2.020) (0.300) (0.135)

Observations 2,194 2,194 2,194 2,194 2,194 2,194

R-squared 0.152 0.125 0.072 0.074 0.005

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

To verify the existence of differences across genders, I run the regressions

again differentiating for men and women. The first stage regressions (Table

A3) once more supports the assumption of relevance, with an F-statistic of

20.93 and 29.57 respectively. The estimation for each outcome can be found

in Tables 12 and 13. For men, no significant effects are found for any of the

proxies. For what concerns women, it is possible to notice a significant effect

for income, while the other proxies are not significantly impacted by height.

These results seem to contradict Tyrrell et al. (2016), who found a much

stronger effect of height on income for men than for women. The results also

differ from the conclusion of Hübler (2009), whose estimates for the effect

of height on income were higher for men than women. On the contrary, the

results seem to agree with the finding of Heineck (2008) whose effect of height

on wages was more relevant for a female population.
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Table 12: Second Stage Regression for the Effect of Height on SES for Men

Only
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

Height 1.486 0.146 -0.538 2.632 -0.00207 0.144

(2.688) (0.617) (1.228) (2.019) (0.310) (0.114)

Constant 4.449 -1.410 11.03*** 2.729 0.825 -0.237

(5.018) (1.151) (2.292) (3.770) (0.578) (0.213)

Observations 975 975 975 975 975 975

R-squared 0.159 0.133 0.031 0.084 0.011

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 13: Second Stage Regression for the Effect of Height on SES for Women

Only
(1) (2) (3) (4) (5) (6)

YearsEduc HighEduc LogIncome LogWealth LaborStatus Poverty

Height 0.776 0.224 2.726*** 1.935 -0.0817 0.0592

(1.899) (0.452) (0.950) (1.472) (0.215) (0.110)

Constant 9.349*** -0.754 4.753*** 5.289** 0.976*** -0.0940

(3.220) (0.766) (1.610) (2.497) (0.365) (0.186)

Observations 1,219 1,219 1,219 1,219 1,219 1,219

R-squared 0.164 0.129 0.019 0.096 0.012 0.006

Controls YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

All in all, a causal effect of height is found only on income and seems

to impact exclusively women. There is therefore a positive causal effect of

height on at least one measure of SES, while for the other indicators no

significant results are found. As such, there is no clear evidence for rejecting

or not rejecting the second hypothesis.
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Discussion & Conclusion

In this paper, I analyzed the causal effect of two physical appearance as-

pects, namely BMI and height, on different proxies of socio-economic status.

To account for reverse causality and confounders, I employed the technique

of Mendelian randomization, which uses genetic scores associated with BMI

and height as instrumental variables. In doing so, I tried to isolate the causal

effect that BMI and height have on different proxies of SES. The effect of

BMI on SES was found to be negative and significant for years of education,

the pursuit of higher education, income and total wealth, with differences

between genders concerning income and education (effect only on men). The

gender differences were in contrast with previous literature (Cawley, 2007;

Tyrrell et al., 2016), which found an effect of BMI on income mostly for

women. The reason for this discrepancy is not clear but it might concern dif-

ferent social standards in weight in the sample analyzed. On the other side,

the effect of height was found to be positive and significant, with taller stature

increasing income. This result, however, applied to women only. Moreover,

no significant effects were found for the other proxies of SES. Altogether,

these findings allow to address the research question:

“To what extent do body mass index (BMI) and height have a causal

effect on socio-economic status (SES) indicators in a sample of American

citizens?”

This analysis found evidence that physical appearance, in the form of

height and especially BMI, plays an important role in determining different

aspects of an individual SES, affecting education as well as labor market

outcomes. In particular, higher BMI and shorter height, as estimated by ge-

netics, causally lead to lower socio-economic status. These findings have im-

portant social and health implications, supporting evidence that overweight

and shorter people are at disadvantage for what concerns many SES indica-

tors. Policies could try to address the problem in different ways. The first

solution would be to try to address the problem at its source and try to
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reduce obesity. In this sense, policies could aim at increasing the availability

and affordability of healthier food options while discouraging citizens to buy

unhealthy food. The intervention could be implemented in different settings,

from the promotion of healthy food in schools to an increase in taxation of

fast-foods (Zhang, Liu, Liu, Xue, & Wang, 2014). Another solution would be

to affect one of the possible mechanisms by which lower stature and higher

BMI affect SES, namely the discrimination on the labor market. In this case,

the government could intervene with laws and policies to prohibit discrimina-

tion. In this regard, Puhl et al. (2015) found evidence that public support in

the United States, Canada, and Australia agrees that the government should

have specific laws in place to prohibit weight discrimination. Similarly, ju-

risdiction could protect from height discrimination. An example that could

be followed is the one of Victoria in Australia, which included height in its

prohibition on discrimination based on physical appearance under the Equal

Opportunity Act of 1995 (Charlesworth, 2008).

Despite the results being in line with the predictions and with past re-

search, this analysis is still subject to several limitations in terms of both

internal and external validity. For what concerns internal validity, although

the technique of Mendelian randomization is helpful in alleviating issues of

confounding and reverse causality, problems associated with using genes as

instrumental variables are still present. As already introduced in the method-

ology, the possible violation of the independence assumption is a particularly

severe problem. In this case, dynasty effects could be an issue with parental

genes having an effect both on the genes of the offspring and the SES of

the offspring during childhood. I tried to partially address this issue by con-

trolling for parental education, there might still be, however, a bias in the

estimation of the effect and an overestimation of the coefficients. In this

regard, Brumpton et al. (2019) found that, after controlling for family fixed

effects by mean of a sibling study, the effects of BMI and height on education

largely decreased in within-family analyses. Another limitation derives from

the variables employed. First, BMI is not a perfect approximation for obe-

sity. As Johansson, Böckerman, Kiiskinen, and Heliövaara (2009) argue, BMI
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does not take into consideration the proportion of fat mass of an individual;

other measurements, like waist circumference, would be more suitable for the

purpose. Secondly, the proxies for SES may not cover the entirety of social

status and may be subject to measurement error as they are self-reported.

Another limitation of this research concerns the unavailability of BMI and

height at the time that education was completed. This leads to possibly bi-

ased results and eliminates the possibility of accounting for growth sprouts,

which were found to be an important factor for the effect of height on SES by

past literature (Persico et al., 2004). For what concerns the external validity,

only people of European descent are taken into consideration due to data

availability. This prevents from extending the conclusions to individuals of

African descendent that might be differently affected by BMI and stature.

The sample comprehended, moreover, individuals aged between 30 and 68

and therefore focuses on an older population, not considering people in their

twenties. These individuals might be impacted by BMI and height differently,

Norton and Han (2008), for example, found little to no effect for this category.

Despite its limitations, this paper can be the starting point of future

research. The first possibility would be to reproduce the results while try-

ing to solve the violation of the independence assumption. To do so, a more

comprehensive dataset would be needed, containing either information about

parental genes or about siblings. Controlling for parents’ genes would allow

to mitigate for dynasty effects, the same results could be obtained by using

family fixed effects, on the model of Brumpton et al. (2019). Another sug-

gestion for further research could be the analysis of the studied phenomenon

for individuals at different stages of their lives. This would allow to check

whether appearance has a different effect on SES at the start or at later

stages of an individual’s working life. Finally, research might aim at explor-

ing the mechanism by which lower stature and higher BMI lead to lower

SES. As discussed, one of the possible mechanisms is the discrimination on

the labor market. To assess whether such discrimination is actually taking

place, a design similar to the one of Bertrand and Mullainathan (2004) could

be implemented. Fictitious resumes could be send, presenting people with
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the same qualifications but with pictures indicative of a different BMI. A

significant difference in callbacks rates would be suggestive of discrimination

based on BMI and provide support for the aforementioned mechanism.
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Appendices

Table A1: Descriptive Statistics

N mean sd min max

PC1 5A 3,156 5.91e-05 0.00875 -0.0357 0.0447

PC1 5B 3,156 -0.000305 0.00910 -0.0507 0.0128

PC1 5C 3,156 -0.000273 0.00907 -0.0234 0.0198

PC1 5D 3,156 -0.000275 0.00909 -0.0410 0.0319

PC1 5E 3,156 -0.000150 0.00887 -0.0427 0.0110

PC6 10A 3,156 -0.000127 0.00894 -0.0317 0.0348

PC6 10B 3,156 -1.12e-05 0.00882 -0.0326 0.0294

PC6 10C 3,156 0.000124 0.00926 -0.0342 0.0335

PC6 10D 3,156 -1.75e-05 0.00900 -0.0291 0.0346

PC6 10E 3,156 0.000155 0.00894 -0.0402 0.0261

Table A2: First Stage Regression for the Effect of BMIScore on BMI

(1) (2) (3)

BMI BMI (Men Only) BMI (Women Only)

BMIScore 1.907*** 1.564*** 2.199***

(0.118) (0.154) (0.172)

Constant 29.79*** 29.36*** 30.94***

(1.191) (1.697) (1.643)

Controls YES YES YES

Observations 2,458 1,095 1,363

R-squared 0.106 0.095 0.133

F-Stat 19.05 11.82 17.06

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table A3: First Stage Regression for the Effect of HeightScore on Height

(1) (2) (3)

Height Height (Men Only) Height (Women Only)

HeightScore 0.0483*** 0.0460*** 0.0525***

(0.00357) (0.00356) (0.00298)

Constant 1.704*** 1.864*** 1.700***

(0.0203) (0.0215) (0.0163)

Controls YES YES YES

Observations 2,458 1,095 1,363

R-squared 0.081 0.167 0.215

F-stat 21.15 20.93 29.57

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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