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Abstract

The main objective of this study is to examine the predictability of Dutch electricity day-ahead
prices by identifying the optimal forecasting model within the AR(F)IMA model family, option-
ally extended with various dynamics. Based on a recent data set ranging from 2009 up to 2018,
evidence suggests that adding day-of-the-week dummies significantly improves forecasts, whereas
incorporating month-of-the-year dummies and normalizing price spikes do not. Day-ahead prices
are subject to a high-order autocovariance structure. As a result, the HAR model with weekly
and monthly dependency, H(7,30)AR(1), and day-of-the-week dummies is found optimal. Next
to that, this study is among the first to analyze the relationship between the day-ahead market
and the imbalance market. In particular, a negative relationship between day-ahead price pre-
dictability and imbalance price volatility is documented. These results have various implications
for traders on both power markets, and contribute to the academic foundation on Dutch prices.
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1 Introduction

One of the most prominent topics in modern economies is sustainability. In particular, carbon

dioxide emissions are considered a major threat to the climate. Induced by governmental policies,

such as the European strategy targets (European Union, 2009), and societal factors, many

countries aim towards a reduction of the use of fossil fuels to generate energy. In this pursuit,

electricity is a favorable alternative, as it can be generated using renewable sources, such as wind

and sun. However, electricity is subject to one major problem: it cannot be stored efficiently—

only on a relatively small scale. The economic consequence of this property is that in an efficient

and reliable electricity market, supply and demand should match continuously. But both supply

and demand suffer from shocks and imperfect predictability, leading to many frictions and

challenges. As the share of renewable sources increases, aggregated supply becomes even more

unpredictable and volatile. Consequently, electricity markets are structured in a complex manner

to provide a reliable grid system.

Most electricity is traded between wholesale parties on the day-ahead market, that is typically

classified as the spot market. For parties that trade on this market, price predictions are

crucial in their bidding strategies. Most importantly for profit maximization or reducing risk

on consumption or production (Tan, Zhang, Wang, & Xu, 2010). But mainly due to the non-

storability property, prices on this market are subject to complex and unique patterns, such

as systematic price differences between days of the week and months of the year, strong price

spikes and time-varying volatility.

Although large players on this market employ their own customized and optimized models,

forecasting models are not that accessible for new entrants or start-ups. A fundamental academic

basis describing electricity price dynamics is therefore crucial. Many studies have focused on

price forecasting within a wide range of power markets. However, there is a substantial academic

gap as to the Dutch day-ahead market. The main objective of this study is therefore to address

the day-ahead price predictability in the Dutch market. Using a recent price set from 2009 up

to 2018, a range of AR(F)IMA time series models are extended with expected price dynamics

aimed towards optimizing the forecasts. The goal is to identify the optimal predictive model,

and identifying relevant price patterns in the process.

To provide a reliable power transmission system, the imbalance market acts as a balancing

mechanism. In this market, real-time shortages or surpluses of electricity are balanced by means

of a semi-economic mechanism (TenneT Holding B.V., 2016). Naturally, this market is subject to
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strong volatility driven by heavy supply and demand shocks. As such, it provides opportunities

for emerging business models, such as ”smart” appliances detecting whether electricity is cheap

or expensive at a certain moment in time. But as of yet, studies analyzing this market are scarce.

Logically, the imbalance market is expected to be related to the predictability component on

the day-ahead market. More specifically, when day-ahead prices are relatively unpredictable,

the imbalance market is expected to be subject to more or stronger shocks. This study is among

the first to assess this relationship in an empirical manner, using a variety of measures.

The research question is formulated according to the two described components.

Research Question To what extent are Dutch electricity day-ahead prices predictable and how

does predictability relate to intra-day imbalance trading?

Using an out-of-sample period of two years (2017 and 2018), in combination with an in-sample

rolling window of eight years, the main conclusion is that an H(7,30)AR(1) model with day-of-

the-week dummies is optimal in a predictive context, based on both performance and parsimony.

The mean absolute percentage error is equal to 7.59%, relatively in line with other studies.

Based on different specifications, the day-of-the-week effect clearly enhances forecasts, whereas

incorporating month-of-the-year dummies does not. Pre-filtering the prices for spikes does not

yield significant improvements either. The comprehensive analysis of various forecasting models

is very helpful for emerging businesses that seek optimal predictions on the day-ahead market.

As for the imbalance market, a negative relationship was found between intra-day price volatility

and the predictability of day-ahead prices. For investors, this implies that positive profits can be

achieved by trading on the imbalance market when day-ahead prices are relatively unpredictable.

However, insufficient evidence was found for a negative relationship to exist between day-ahead

price predictability and the daily imbalance market volume. Trading parties presumably adjust

their capacity rapidly after supply and demand shocks, minimizing the impact on the daily

aggregated volume.

The remainder of this study is structured as follows. Chapter 2 develops a theoretical basis

for the research question and formulates the theoretical hypotheses. Subsequently, in Chapter 3,

the analyzed data set is presented and described in detail. Chapter 4 elaborates on the methods

that are applied on the data set in order to arrive at relevant results. The prediction results are

presented and discussed in Chapter 5 and Chapter 6 documents the analysis on the imbalance

market. Finally, the research question is evaluated in Chapter 7, along with a discussion and

recommendations for future studies.
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2 Theory

2.1 Fundamentals

Electricity represents a unique commodity class due to its special characteristics. Most impor-

tantly, the current state in technology does not provide a way of storing electricity efficiently

and economically. As a result, trading electricity comes with many complexities relative to other

commodities. Because of this non-storability property, demand and supply must match at all

times. Surpluses cannot be deferred for consumption later. At the same time, shortages can

induce dramatic economic and societal consequences. As a consequence, sophisticated market

structures are required to provide a reliable power system. This section develops a foundation

for the study by elaborating on the Dutch market structure and its key dynamics.

In the Netherlands, TenneT is the transmission system operator (TSO) for electricity and

the institution that is responsible for a reliable grid system. Electricity is generally traded

between wholesale parties, distributed over four different markets, each representing different

purposes and dynamics (TenneT Holding B.V., 2018). Firstly, for long horizons, parties can buy

and sell power via standardized futures contracts. Secondly, the day-ahead market provides a

trading base for the delivery of power for the next day. The intra-day market further allows for

high-frequency hourly trading. Finally, the imbalance market provides a way of dealing with

mismatches that cannot be assimilated in the other markets.

The main objective of this study is to assess the predictability of day-ahead prices, that

are typically used as a proxy for spot prices. Therefore, the day-ahead market is introduced in

more detail. The secondary part of the research question concerns the relationship between the

day-ahead price predictability and the imbalance market. Consequently, the fundamentals of

the imbalance market are elaborated on as well.

2.1.1 Day-ahead market

Along with rapidly improving technology, many countries have been liberalizing and deregulating

their electricity sectors, generally aimed at introducing incentives to innovate and to improve

efficiency (Weron, 2006, p. 1). As a result, trading electricity has become easier and more

accessible. Many commodities trade in a spot market in which parties trade instantaneously.

However, as electricity is a sensitive commodity that requires a high level of reliability, the trading

mechanism is characterized by a one-day delay so that the TSO can effectively manage the

transmission system (Weron, 2006, p. 7). Nevertheless, day-ahead prices are typically referred
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to as electricity spot prices. European day-ahead markets have been becoming more integrated

in the recent decades, a development that is referred to as market coupling (Zachmann, 2008;

Huisman & Kiliç, 2013). As of 2015, trading on the Dutch day-ahead market is centralized

at the European Power Exchange (EPEX) on the EPEX spot market (TenneT Holding B.V.,

2018). Therefore, day-ahead electricity prices are referred to as EPEX spot prices. Trading on

the day-ahead market is not restricted to trading hours only, the market is active every hour of

every day. Up to 12 AM, market participants can file their orders for delivery on the next day

for all hours simultaneously into the EPEX market system. Subsequently, demand and supply

are matched and an equilibrium price is constructed automatically (EPEX SPOT SE, 2018).

Based on the established price, market participants execute (a portion of) their orders.

Electricity day-ahead prices have been investigated extensively. For several European coun-

tries, Huisman, Huurman, and Mahieu (2007) demonstrate that hourly day-ahead prices do not

form an aggregated time series. Instead, they form a panel of individual time series indicated

by a specific mean and volatility distribution, implying that prices differ between hours and

that hourly prices are related inter-daily. Even though this suggests that hourly prices contain

valuable information, most studies focus on base load prices, computed as daily 24-hour averages

(Huisman et al., 2007). This is however justified, as base load prices are broadly employed as

proxies for daily spot prices and referencing instruments for derivatives (Raviv, Bouwman, &

van Dijk, 2015).

The structure of day-ahead markets depends on particular fundamentals. Especially due to

the non-storability property, dynamics of supply and demand play a central role in modelling

electricity markets. The supply curve is typically driven by the merit order effect, where power

production processes are deployed based on their marginal production costs to match demand

(Mulder & Schoonbeek, 2013; Clò, Cataldi, & Zoppoli, 2015). As a result, the supply curve

exhibits a convex step-by-step structure. Electricity demand is, at least on the short term, close

to being perfectly inelastic (Borenstein, 2002). Due to these dynamics, established electricity

prices are determined by the marginal cost of the most expensive energy source needed to fulfill

demand.

As a consequence of these particular market dynamics, day-ahead prices are subject to spe-

cific patterns. Most series of electricity spot prices are described by a stationary process, imply-

ing that statistical methods can be employed effectively (Knittel & Roberts, 2005). Aligned with

stationarity, electricity spot price processes are typically mean-reverting and therefore sometimes

referred to as anti-persistent (Weron, 2008). However, electricity prices are also found to con-

tain high-order autocovariance structures and thereby exhibit long-memory behavior (Haldrup
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& Ørregaard Nielsen, 2006). In other words, due to a relatively long-term autocorrelation,

prices are clustered in wide intervals. Another key property is the seasonal dependence along

different dimensions (Knittel & Roberts, 2005). On the demand side, economic activity as well

as weather conditions are important drivers. Supply may also be influenced by weather prop-

erties, conditional on the production mix that is employed. These seasonality effects manifest

in differences in mean and volatility distributions between days of the week and months of the

year (Weron, 2008). Finally, electricity spot prices typically suffer from infrequent extremes,

generally referred to as spikes. In contrast to equity markets in which jumps typically persist,

spikes in electricity markets quickly die out and revert back to the local mean (Huisman &

Mahieu, 2003). Price spikes occur as a result of demand and supply shocks in the short run, for

example as a result of extreme weather conditions (Huisman, 2008), and cause electricity prices

to exhibit an extreme volatility structure, relative to prices of various financial products and

other energy-related commodities (Weron, 2006, p. 26).

2.1.2 Imbalance market

Due to the non-storability property of electricity and the fact that supply and demand cannot

be predicted perfectly, the futures, day-ahead and intra-day markets are not sufficient to provide

a reliable grid system. In that regard, the imbalance market (or balancing market) provides a

last resort for mismatches. Most importantly, it provides a safety net for incurred shortages of

electricity, that can be compensated by other Balance Responsible Parties (BRPs) or reserves

held by the operator. On the other hand, overproduction can be sold through this market,

benefiting BRPs. The existence of this market essentially transforms the balancing problem to

a structured economic process. The market is managed by the TSO, TenneT, who acts as an

administrative counterparty in all transactions (TenneT Holding B.V., 2016). The importance of

the imbalance market is highlighted in different studies. As the share of renewable energy sources

increases, the role of the imbalance market becomes more important as an instrument to provide

reserves (Purvins, Zubaryeva, Llorente, Tzimas, & Mercier, 2011). As a result, Farahmand and

Doorman (2012) argue that integrating imbalance markets in Northern Europe would improve

the aggregated efficiency.

In contrast to the day-ahead market where orders are hourly-based, the imbalance market is

structured along Program Time Units (PTUs) that represent windows of 15 minutes (TenneT

Holding B.V., 2016). For every PTU, the market encompasses supply and demand, combined

creating an imbalance that represents either a surplus or a shortage. Although a specific pricing

scheme applies, for example penalties that create an incentive to minimize the system imbalance

(TenneT Holding B.V., 2016), dominating prices are simply driven by the relative equality of
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supply and demand. More specifically, the occurring imbalance is negatively correlated with the

established price. This implies that when there is more supply than demand, electricity is cheap

and vice versa. As a result, trading on the imbalance market can be employed as a profitable

strategy by providing short-term storage. The most prominent and topical application is the

introduction of ”smart” appliances—for example electrical vehicle charging stations known as

vehicle-to-grid (Gough, Dickerson, Rowley, & Walsh, 2017)—that detect whether electricity is

cheap or expensive at specific moments.

2.2 Literature review

In building predictive models, it is key to incorporate relevant dynamics and correct assumptions.

Therefore, and based on the previous sections describing the fundamentals of electricity markets,

this section reviews the current state of academic literature regarding forecasting frameworks.

The goal is to develop a theoretical foundation of the predictive approaches that have been

applied through time to base both the hypotheses and methodology on.

As a result of the deregulation and integration of many electricity markets, forecasting exer-

cises have been employed broadly since approximately 20 years ago. Nogales, Contreras, Conejo,

and Espinola (2002) and Contreras, Espinola, Nogales, and Conejo (2003) analyze the Spanish

and Californian markets and were among the first to successfully introduce time series models in

day-ahead forecasting based on the identified dynamics in these markets. Although these studies

analyze only a limited horizon of electricity prices of only a few weeks on an hourly basis, they

find relatively small one-digit average daily errors, suggesting that utilizing time series models in

predictive frameworks is attractive. Cuaresma, Hlouskova, Kossmeier, and Obersteiner (2004)

further extend this approach in a day-ahead context and analyze hourly electricity prices from

the Leipzig Power Exchange. Next to a broader selection of models, they explicitly incorporate

day-of-the-week dummies, month-of-the-year dummies and an additional factor describing price

spikes. Their results clearly suggest presence and predictive power of seasonality components,

and allowing for spikes sometimes induces marginal improvements. In terms of absolute per-

formance, they observe mean average errors between approximately 3.2 and 7.1 and root mean

squared errors between 4.9 and 10.0. Kristiansen (2012) similarly applies an autoregressive spec-

ification on hourly prices, incorporating the day-of-the-week effect by including dummies. As

an extension, both wind power and electricity demand are included as exogenous explanatory

variables, which turn out to have a significant effect on the established price. Hourly mean

absolute percentage errors of approximately 5% are obtained. More recently, Raviv et al. (2015)

employ predictive models on prices from the Nordic power market, incorporating both the day-

of-the-week effect and the month-of-the-year effect. In addition, they propose heterogeneous
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autoregressive (HAR) models to allow for the long-memory property. In forecasting base load

prices, they observe mean average errors ranging from 9.5 to 11.9, as well as root mean squared

errors between 19.7 and 23.4. Overall, it is evident that studies yield very different results,

mainly as a result of differences in methodology and sample selection.

Through time, many extensions have been applied to basic time series models to correct

for electricity-specific dynamics. Garcia, Contreras, van Akkeren, and Garcia (2005) introduce

GARCH modelling to deal with heteroskedasticity in the volatility distribution in ARMA pro-

cesses. Subsequent studies followed this approach (Bowden & Payne, 2008; Liu & Shi, 2013).

Other studies employ wavelet transformations to obtain more convenient price subsets that are

more suitable for individual models (Conejo, Plazas, Espinola, & Molina, 2005; Tan et al., 2010),

use other techniques such as artificial neural networks (Amjady, 2006) or include exogenous pa-

rameters to provide additional predictive power (Kristiansen, 2012).

The most apparent difficulty in econometric electricity models is the existence of price spikes.

Many studies focus on explicitly modelling these. Clewlow and Strickland (2000) introduce the

Merton (1976) jump diffusion model as an instrument to explain the behaviour of extreme

prices. Huisman and Mahieu (2003) complement the stochastic jump diffusion model class

by introducing switching regimes, and document substantial improvements as mean reversion

is more effectively incorporated. From a forward-looking perspective, Mount, Ning, and Cai

(2006) develop a framework to predict the occurrence of spikes based on one-day ahead forecast

loads. However, their model is heavily sensitive to the availability and reliability of external

information. As a consequence, the existence of spikes still represents a considerable problem in

price forecasting models, most importantly as their occurrence is hard to predict.

In a predictive context, most studies employ a two-step pre-processing methodology, where

spikes are first identified and subsequently normalized before processed in statistical frameworks

(Janczura, Trück, Weron, & Wolff, 2013). Boogert and Dupont (2008) classify any price above

a fixed threshold as a spike. Other studies construct recursive variable thresholds for either

prices or returns based on confidence intervals around the local or global mean and, typically,

three times the standard deviation (Weron, 2008; Keles, Genoese, Möst, & Fichtner, 2012).

Normalizing the spikes is however much more complex. The fundamental problem is the absence

of a definition for a normal price (Weron, 2008). Different treatments include limiting to the

relevant boundary or replacing with surrounding prices (Weron, 2006, p. 167). Shahidehpour,

Yamin, and Li (2002, p. 83) further prescribe a dampening procedure based on a logarithmic

transformation, having a milder effect on spikes and thereby leaving the price structure more

intact. As of yet, there is no consensus as to what spike pre-processing approach works best.
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Complementary to differences in dynamics between distinct electricity markets, data frequency

(hourly or daily) as well as forecasting horizons can have a substantial impact on the effectiveness

of pre-filter algorithms in predictive frameworks.

2.3 Hypotheses

Currently, modern countries are shifting towards more sustainability, prompted by government

policy and driven by societal factors. A major consequence is that electricity is becoming

more important as a source for energy, incrementally replacing fossil fuels. In conjunction with

evolving electricity markets, it is economically crucial to develop a broad and strong empirical

foundation regarding dynamics that currently manifest in electricity prices. Furthermore, being

able to forecast prices is especially relevant for emerging businesses trying to develop business

models around the energy transition.

Literature around electricity price forecasting is relatively broad. Due to different pricing

characteristics, time series models clearly represent reasonable instruments for predictive pur-

poses. However, there is an evident empirical gap regarding the Dutch market. Although some

studies have focused on identifying patterns in Dutch electricity prices, the predictability is not

yet examined. The present study attempts to fill that gap, by applying AR(F)IMA time series

models on Dutch electricity spot (day-ahead) prices. In that attempt, it is crucial to assess

which pricing dynamics are present in the utilized data set and, more importantly, which fac-

tors improve forecasting performance. Various dynamics are observed in academic literature.

Therefore, several theoretical hypotheses are established representing these dynamics and their

expected effect on predictive models. Based on these hypotheses, one or more optimal models

will be selected.

Firstly, electricity prices typically differ between days of the week. Incorporating this in

predictive models is consequently expected to improve forecasts. This expectation is reflected

in the first hypothesis.

Hypothesis 1 Adding a day-of-the-week effect improves the forecasting performance for Dutch

day-ahead electricity prices.

Additionally, due to changing weather conditions, day-ahead prices are subject to changes

between different months of the year. During summer and winter, prices are typically high-

est. Accounting for this is expected to have a positive effect on forecasting approaches, and is

materialized in the second hypothesis.

Hypothesis 2 Incorporating a month-of-the-year dependency improves statistical forecasting

power for Dutch electricity spot prices.
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Various studies note that electricity spot prices suffer from high-order autocovariance struc-

tures. Incorporating this dynamic requires specific models, and is expected to be present in

Dutch prices as well. The third hypothesis is defined as follows.

Hypothesis 3 The forecasting accuracy of Dutch electricity spot prices improves by accounting

for a long-memory feature.

Price spikes are also documented to have a substantial impact on predictive frameworks.

Combined with mean-reversion, filters can be developed to deal with these spikes ex ante. Cor-

recting for these spikes is therefore expected to positively affect predictive power.

Hypothesis 4 Dutch day-ahead electricity price predictions improve when spikes are filtered.

Related to day-ahead predictability, the imbalance market represents striking dynamics.

Fluctuating demand and supply of electricity on the short term (within the day) causes day-

ahead quantity predictions to be imperfect. The imbalance market is then needed to compensate

for surpluses or shortages on a real-time basis. Since the pricing mechanism on the day-ahead

market is based on the intersection between supply and demand, price predictability can be used

as a proxy for the predictability of supply and demand. It follows that if day-ahead prices are

relatively unpredictable, the imbalance market will be subject to supply and demand shocks.

Supply and demand shocks on this market materialize into a large price volatility. This translates

into the following hypothesis:

Hypothesis 5 The predictability of Dutch day-ahead electricity prices relates negatively to price

volatility on the imbalance market.

Lower levels of day-ahead predictability imply that the imbalance market is required to

compensate a larger volume. In effect, this would yield greater system imbalances, correlated

with greater price deviations, as argued by the previous hypothesis. Additionally, this would

imply that total daily volumes would be larger as well. Using this metric is however less reliable,

since PTU-specific observations are simply aggregated and individually faded. However, with

great price uncertainty, it is expected that the imbalance market exhibits more activity. The

final hypothesis is therefore formulated as:

Hypothesis 6 Daily volumes on the Dutch imbalance market negatively relate to price pre-

dictability on the day-ahead market.
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3 Data

3.1 Selection and construction

In every study, selecting appropriate data is crucial. The main objective of this study is to

employ statistical models to assess the predictability of electricity spot prices in the Dutch day-

ahead market. Initially, 24-hour Dutch EPEX spot price data spanning from January 2000

up until December 2018 is obtained from Bloomberg, resulting in 6,940 days of hourly quotes

(166,560 quotes in total). In contrast to securities on stock markets, electricity is traded every

hour of every day—not only during trading periods. However, up until July 2000, prices during

weekends are not or only partially documented. Consequently, and since time series play the

central role in this study, year 2000 is excluded as a whole from the data set.

From 2001 to 2018, a small fraction of observations is missing (approximately 10 days in

total). Additionally, some market dynamics—including a summer-winter time transition result-

ing in one-hour differences between days—led to blanks. These missing observations are simply

replaced by the hourly quote of the day before. The adjusted full sample of day-ahead prices

consists of 6,574 days ranging from January 1, 2001 up to December 31, 2018 and a total of

6, 574 · 24 = 157, 776 hourly prices.

Similarly to related literature studying electricity spot prices, a daily base load price Pt is

constructed as the average of the 24 daily quotes (Huisman & Kiliç, 2013; Raviv et al., 2015).

That is

Pt =
1

24

24∑
h=1

Pt,h, (1)

where Pt,h denotes the quoted price at day t for hour h = 1, 2, · · · , 24.

To test for predictability, it is key to define both an in-sample data range and an out-of-

sample range, for estimating models on and evaluating the models’ accuracy with, respectively.

On the one hand, practitioners should utilize as many observations in the in-sample range to

maximize the models’ accuracy by using a high number of data points. However, if the time

series exhibits great time variance, including obsolete observations reduces the applicability on

more recent observations. Raviv et al. (2015) compute out-of-sample forecasts for approximately

two years using a rolling window of five years, arguing that a window of five years is sufficient

for the construction of valid coefficients while allowing for time variety. Cuaresma et al. (2004)

conduct forecasting models using a window of only approximately one year. However, these
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studies employ relatively simple models, as compared to the current study. Therefore, the aim

is to include as many reliable observations as possible. A background analysis, that is elaborated

on in more detail in Section 3.2, has shown that prices before 2009 exhibit very different dynamics

than after. To obtain consequent and realistic results, all observations before 2009 are dropped.

The last two years of the adjusted sample, 2017 and 2018, are used as an out-of-sample period to

provide a representative large number of forecasts, and the eight preceding years as the in-sample

subset.

Additionally to the day-ahead market, the imbalance market is analyzed. All intra-day data

is obtained from TenneT, the TSO for the Dutch market. Aligned with the day-ahead range, the

initial sample consists of intra-day data ranging from January 1, 2009 to December 31, 2018.

Each day reports 24 · 4 = 96 entries (by a 15-minute window) comprising different variables

related to market activity. The sample contains 3,652 days and hence 3, 652 ·96 = 350, 592 PTU

observations. First, buy and sell prices are reported. For convenience, one general imbalance

price P�t,u, for PTU u at day t is calculated by taking their average. To measure the intra-day

volatility of electricity prices, σ�t is calculated as the standard deviation of the imbalance prices.

That is

σ�t =

√√√√ 1

96

96∑
u=1

(P�t,u − P
�
t )

2
, (2)

where P
�
t = 96−1

∑96
u=1 P

�
t,u and the superscript � indicates a variable related to the imbalance

market.

Next to prices, quantities are reported. Let S�t,u and D�t,u denote the supply and demand

of electricity on the imbalance market, respectively, for day t and PTU u. Then, at that data

point, the imbalance market is constituted by the total volume V �t,u = S�t,u+D�t,u. The daily size

of the imbalance market is consequently measured by the aggregated volume

V �t =

96∑
u=1

V �t,u, (3)

expressing the extent to which the imbalance market is needed to deal with deficits and surpluses

between the production and consumption of electricity. Table 1 contains an overview of the final

samples that are utilized in the analysis.

3.2 Day-ahead properties

As discussed in the previous chapter, day-ahead markets typically exhibit specific characteristics

such as stationarity, mean reversion, seasonality and autocorrelation. A preliminary analysis of

11
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Market Sample Start Date End Date Frequency Observations

Day-ahead
In-sample1 01/01/2009 12/31/2016 Daily 2,922

Out-of-sample 01/01/2017 12/31/2018 Daily 730

Imbalance In-sample 01/01/2009 12/31/2018 Daily 3,652

1 The in-sample set is employed as a rolling window used in forecasting the out-of-
sample set.

Table 1: Description of the different data sets employed in the analyses

the selected data will therefore be informative and shed light on the fundamentals of the Dutch

electricity market specifically. Further, a careful assessment of the autocovariance structure is

needed to match time series models with.

Figure 1 illustrates the average daily electricity price on the EPEX spot market for the

full data set, where both the in-sample and out-of-sample range are featured. It is evident that

there is a break in volatility and mean distribution around the beginning of 2009. A quantitative

analysis supports this claim, and clearly documents different dependencies on, for example, time

fixed effects. The more stable structure of electricity prices from 2009 onward is consistent with

improved market coupling in the European Union (Zachmann, 2008; de Menezes, Houllier, &

Tamvakis, 2016). Further, the price process exhibits a mean reverting effect, consistent with

findings of related literature.

Figure 1: The development of Dutch day-ahead prices for the full initial sample
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3.2.1 Stationarity

Before working with time series data in forecasting frameworks, it is crucial that the data

exhibits a stationary structure. Running estimations on non-stationary data can lead to spurious

regressions and therefore invalid relationships (Brooks, 2014, p. 354). As a consequence, forecasts

based on a non-stationary series presumably turn out poor. A process that is weakly stationary,

which is the standard requirement for time series modelling, generally has a constant mean,

variance and autocovariance structure, typically resulting in a plot that hovers around a static

12



mean.

Figure 2: The development of Dutch day-ahead prices for the select sample
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Figure 2 illustrates the day-ahead price development throughout the selected sample starting

in 2009. The graph exhibits no clear trend through time. However, it is evident that some periods

contain more extremes and higher variance than other periods. Periods with extreme values die

out, but slowly. It is therefore key to assess the stationarity using quantitative tests.

Non-stationarity can manifest in different forms. A predominantly encountered problem is

the case of unit root, where a time series is stated to be integrated of order 1—denoted as ∼ I(1),

which implies that the series should be differenced once to become ∼ I(0), stationary (Brooks,

2014, p. 362). The presence of a unit root yields a situation in which a time series cannot

be modelled, since the expected values are simply a sum of the inherent shocks. The Dickey-

Fuller test essentially estimates whether the coefficient is equal to one in a simple AR(1) setting

(Dickey & Fuller, 1979). Table 2 presents the results of a Dickey-Fuller test without trend,

with a constant. The 1%-significant statistics for both the full sample and in-sample range

imply that the null hypothesis of the series containing a unit root is rejected, which suggests

that the electricity prices are not integrated with factor 1. The Phillips and Perron (1988)

test is included as well, which adds additional power to the Dickey-Fuller test by correcting for

potential serial correlation in the errors by incorporating Newey and West (1987) errors (similar

to the Augmented Dickey-Fuller test, which allows for one or more lags).

To complement the results of the unit root tests, the KPSS test is employed. Conversely

to the unit root tests, the KPSS approach has stationarity in its null hypothesis against the

series containing a unit root under the alternative hypothesis (Kwiatkowski et al., 1992). Table

2 contains the results of the test, from which it clearly follows that the null hypothesis of the

process following an I(0) process, is rejected.

Although these results suggest the absence of a unit root, stationarity is rejected as well.

However, the KPSS test typically fails to identify fractionally integrated stationarity (with
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Test H0
Statistic Critical Values

Full sample In-sample 1% 5% 10%

Dickey-Fuller
Pt ∼ I(1)

-18.785*** -17.472*** -3.430 -2.860 -2.570

Philips-Perron -17.775*** -16.791*** -3.480 -2.860 -2.570

Kwiatkowski-Philips-Schmidt-Shin Pt ∼ I(0) 16.1*** 22.6*** 0.216 0.146 0.119

Notes: This table represents an assessment of the stationarity of both the full sample and in-sample sets. In
particular, results for the Dickey and Fuller (1979), Phillips and Perron (1988) and Kwiatkowski, Phillips, Schmidt,
and Shin (1992) tests are documented. All tests are conducted on non-differenced prices (lag 0) and *** denotes
1% significance.

Table 2: Results of stationarity tests for electricity prices

0 < d < 1) in its null hypothesis (Lee & Schmidt, 1996). Fractionally integrated series fol-

low an I(d) process where d is not an integer, but another real number. This phenomenon

results in observations being clustered with high autocorrelation, such that the dependence is

relatively long-term, but not sufficiently to form a unit root. Such series can be modelled in

an ARFIMA(p,d,q) specification, as introduced by Hosking (1981). Lee and Schmidt (1996)

further emphasize that a series following an I(d) process with −0.5 < d < 0.5 is revertible and

stationary.

From an ARFIMA(0,d,0) analysis d is estimated as d̂ ≈ 0.496 < 0.5 over the entire sample

and d̂ ≈ 0.491 for the in-sample range specifically. Although the hard boundary of 0.5 is not

reached, coefficient estimates typically never approach extreme values, which is the precise reason

why a Dickey and Fuller (1979) test is required instead of a regular regression to test whether

the AR(1) coefficient is equal to one. A widely employed alternative is the transformation into

returns, that typically yields a stationary series. In order to assess whether regular prices are

reasonably stationary, out-of-sample forecasts are computed for AR(p) models with p = 1, · · · , 10

from the perspective of both prices and returns, of which Table 12 in Appendix A presents the

performance criteria. It is evident that modelling returns instead of prices does not improve

predictive power. The set of electricity prices is thus assumed a fractionally stationary series—

explicitly differencing the series is therefore unnecessary. Further, d̂ < 1 proves mean reversion

(Baillie, 1996). Another relevant implication from this result is that fractionally integrated

specifications are likely to outperform similar ARMA(p,q) models, since they fit the data better.

3.2.2 Descriptive statistics

A summary of quantitative statistical measures is provided in Table 3. The day-ahead prices are

classified in two dimensions: per day of the week and per month of the year. It is evident that

electricity prices differ in days of the week and that electricity is cheapest during the weekends

and the most expensive around Wednesdays. The volatility also increases with the mean. Prices
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differ between months of the year as well. Electricity is relatively expensive during winter and

also during fall. Between April and August, electricity prices are, on average, steady and low,

hovering around e41 per megawatt hour. Summers do not seem to have an upward effect on

prices, in contrast to the findings of, for example, Knittel and Roberts (2005). The skewness

and kurtosis metrics indicate the extent to which the data exhibits a normal distribution. For

most subsets, the skewness is far from zero, indicating that prices are not symmetric. Some

subsets suffer from heavy tails and others light tails, corresponding to a kurtosis measure larger

and smaller than three, respectively. Overall, base load electricity prices cannot be assumed

following a normal distribution on a consistent basis.

Subset Observations Mean Stdev Minimum Maximum Skewness Kurtosis

Panel A: Per day of the week

Monday 522 45.532 9.973 15.432 79.267 0.191 3.136

Tuesday 521 46.745 9.857 24.710 85.585 0.283 3.035

Wednesday 521 46.553 10.248 23.115 98.982 0.397 3.772

Thursday 522 46.467 10.041 20.392 84.089 0.308 3.178

Friday 522 45.962 9.830 21.042 88.975 0.311 3.570

Saturday 522 41.086 9.013 19.158 67.423 0.118 2.737

Sunday 522 36.934 9.263 15.372 64.771 0.197 2.619

Panel B: Per month

January 310 45.596 10.443 21.049 85.585 0.462 3.853

February 282 45.690 10.978 16.808 98.982 0.213 5.282

March 310 42.954 11.337 15.432 88.975 0.537 3.683

April 300 41.435 9.935 17.178 66.776 0.140 2.698

May 310 41.216 10.702 15.372 68.299 0.234 2.529

June 300 41.675 9.478 22.717 63.009 0.196 2.175

July 310 41.772 8.736 18.628 65.262 0.029 2.118

August 310 41.525 9.813 17.541 69.826 0.301 2.830

September 300 45.528 9.733 21.379 72.876 0.318 3.025

October 310 47.125 8.376 22.343 70.733 0.102 2.885

November 300 48.130 10.006 21.373 84.089 0.210 3.210

December 310 47.668 10.546 21.042 74.687 0.075 2.528

Aggregated 3652 44.181 10.348 15.372 98.982 0.239 3.225

Table 3: Description of the different data sets employed in the analyses

In predicting day-ahead electricity prices, it is key to assess the autocorrelation between the

observations for selecting appropriate forecasting models. As depicted in Figure 3, electricity

prices are strongly driven by both autocorrelation and partial autocorrelation. Autocorrelation

is present for an unknown number of lags, at least up until lag 40. Partial autocorrelation, which

captures the direct correlation with a particular lag k excluding the autocorrelation up until lag

k − 1, is at least present up until the ninth lag. From lag ten onward, it gradually decays with
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Figure 3: (Partial) autocorrelation for APX electricity day-ahead prices
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occasional spikes occurring, which confirms the long-memory observation as mentioned earlier.

The correlation spikes are likely driven by the day-of-the-week effect.

3.3 Imbalance properties

The imbalance market typically exhibits even more fluctuations than the day-ahead market.

In fact, prices can become negative due to the great dispersion between supply and demand.

Approximately 6% of PTU-based prices are reported negative from January 2009 up to December

2018. Figure 4 illustrates average prices and volumes for each PTU.

Figure 4: PTU averages of imbalance prices and volumes
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During the night, the imbalance market entails less activity and lower price volatility. Prices

tend to spike when upward jumps in volume are observed. It further appears that volume shocks

are greatest in the evening and between 06:00 and 08:00 in the morning, typically referred to

as peak hours. Wholesale parties apparently suffer from supply/demand jumps during these

periods. The volume seems relatively stable between 08:00 and 16:00, but hovers around a

relatively high level. One explanation for this is that the market for electricity as a whole is

much larger during this period, making it easier to provide a cushion for imbalances, while at

the same time having more capabilities of adjusting short-term production.
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Figure 5: Development of the imbalance market over time
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(b) Daily price standard deviation with trend
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Figure 5a presents the development of the imbalance market over time. Average daily prices

and total daily volumes are included. Although one would expect that due to technological

advantages electricity supply and demand would be matched more efficiently, the imbalance

market provides no evidence for that. Instead, volumes are on average subject to a positive

trend, confirmed by a significant coefficient β̂ ≈ 1.43 in a regression setting V �t = α + βt + εt,

which implies that the volume of the imbalance market has increased by approximately 1.43

megawatt hour per day between 2009 and 2018. The predominant explanation is the increased

share of renewable energy sources in electricity production, which induces supply volatility. This

explanation is substantiated by a significant coefficient β̂ ≈ 1.26× 10−5 in V �t /Vt = α+ βt+ εt,

where Vt denotes the daily volume on the day-ahead market, which implies that the size of the

imbalance market has also increased relative to the day-ahead market. Imbalance prices also

still suffer from heavy shocks, in some instances resulting in negative prices.

On average, Figure 5b exhibits a small upward trend as well. However, it is not clear that

the daily standard deviation is still increasing, as the process seems to have become more stable

from 2014 onward. At least, we can conclude that technological developments have not led to

more stable imbalance prices over the last ten years, but that there is no continuous increase in

volatility either.

Quantitative metrics are included in Table 4 for both the daily price volatility and aggregated

market volume. Similar to the day-ahead analysis, weekends typically exhibit relatively low price

volatility and low trading volumes, accompanied by a low standard deviation. On Mondays,

the imbalance market is most active with an average volume of 10,646 megawatt hour and an

average price volatility of approximately e56. Panel B classifies daily price volatility and market

volume by month of the year. Volatility and volume seem to be correlated in this regard, high

price volatility typically coincides with large volumes. As observed with day-ahead prices, the

imbalance market is most active during winter and fall. At least, this analysis shows that the

imbalance market suffers from time fixed effects that cannot be ignored.
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Subsample Observations
Price volatility Market volume in GWH1

Mean Stdev Min Max Mean Stdev Min Max

Panel A: Per day of the week

Monday 522 56.177 25.544 8.067 186.569 10.646 3.204 5.076 29.572

Tuesday 521 53.011 27.876 11.532 194.191 10.575 3.387 5.458 39.259

Wednesday 521 50.825 25.474 8.344 153.788 10.520 3.286 5.488 27.675

Thursday 522 53.646 26.981 6.453 155.888 10.506 3.220 5.430 24.629

Friday 522 50.796 25.737 7.521 160.222 10.431 4.340 4.966 81.480

Saturday 522 36.369 20.047 5.757 120.845 9.596 2.900 4.810 24.318

Sunday 522 39.567 21.134 8.213 159.080 9.574 2.909 4.259 22.690

Panel B: Per month

January 310 54.205 26.224 7.791 139.395 11.134 3.173 5.607 29.572

February 282 46.555 24.551 9.388 160.222 10.064 2.527 5.315 19.153

March 310 50.713 27.537 8.301 194.191 10.763 3.254 6.158 27.675

April 300 45.015 25.049 6.453 193.773 10.253 3.499 5.687 24.309

May 310 44.056 24.233 7.540 159.080 9.872 3.675 5.076 39.259

June 300 46.594 25.574 8.213 163.645 9.855 5.195 4.259 81.480

July 310 47.951 27.266 5.757 154.633 10.033 2.974 4.810 22.803

August 310 45.663 23.157 8.308 127.402 9.839 3.055 4.587 20.110

September 300 49.592 25.297 9.276 142.701 9.747 2.935 5.130 23.852

October 310 49.273 26.607 7.521 165.304 10.195 3.263 5.076 26.768

November 300 52.586 25.228 11.283 153.788 10.183 2.922 5.562 24.629

December 310 51.092 26.487 11.244 176.478 11.175 2.942 6.369 22.690

Aggregated 3652 48.625 25.783 5.757 194.191 10.264 3.376 4.259 81.480

1 Although the analysis is based on megawatt hours, the descriptive statistics are reported in 1,000 megawatt
hours (gigawatt hours) for convenience.

Table 4: Descriptive statistics of imbalance prices
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4 Methodology

4.1 Price predicting

In modelling and forecasting electricity spot prices, several specifications are employed. This

section contains a detailed description of how each is composed. Every specification aims to

provide a prediction for the electricity spot price P for observation (day) t + 1 while assuming

all information up to t to be available. Formally, let fm(t) denote the function representing the

electricity spot price forecast for day t using model specification m. Then, for the t+ 1 forecast,

fm(t+ 1) ≡ Em(Pt+1|Ωt), (4)

where the predicted value Em(Pt+1) is estimated by model m, requiring that all prior price

information up until t is known.

To adhere to the given requirement and to enable autocorrelation modelling, a rolling-window

approach is employed, where a window of prior observations Pt−k+1, Pt−k+2, · · · , Pt−1, Pt with

length k, satisfying t − k + 1 ≥ 1 and t < T is used to estimate the models’ coefficients with.

These coefficients are then used to provide a forecast for Pt+1.

In this study, the models are built according to a bottom-up approach, where small and gen-

eral models are subsequently refined by adding additional coefficients and levels of complexity

to identify the optimal specification. Since the goal of the study is to optimize forecasts through

time series analyses, the autocovariance structure is leading. Therefore, the first step is to max-

imize the explanatory power for electricity prices by finding the optimal AR(p) and, optionally,

MA(q) parameters. Thereafter, electricity prices are forecast by employing different adjustments

and extensions to the optimal model to get a better fit and to evaluate the hypotheses as defined

in Chapter 2.

4.1.1 Models

The general approach in modelling time series is the AR(F)IMA model family, which is expressed

as

Pt = α+ (1− L)−dϑ(L)−1Θ(L)εt, (5)

where L is the backshift operator with LiPt = Pt−i, d represents the difference parameter, and

ϑ(L) = 1−ϑ1L−ϑ2L
2−· · ·−ϑpLp and Θ(L) = 1 + Θ1L+ Θ2L

2 + · · ·+ ΘqL
q denote the AR(p)
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and MA(q) components, respectively (Baillie, 1996). The constant is stated α and the residuals

εt satisfying E(εt) = 0.

If p > 0, the model contains p autoregressive lags and encompasses an AR(p) component.

Parameter q similarly represents moving average lags—MA(q). If d 6= 0 and d ∈ Z, the series

is differenced d times in the estimation process and transformed from an ARMA model into an

ARIMA specification. In the case when d 6= 0 but is not an integer, that is d /∈ Z, the model is

classified as an ARFIMA model.

AR(p)

The starting point of modelling a time series with the presence of autocorrelation is a basic AR(p)

specification. It is especially applicable when the data exhibits mean-reversion (Cuaresma et al.,

2004). Essentially, the dependent variable, Pt, is expressed as a function of p of its own previous

values. Formally, it is defined as a special case of Equation 5 with d = 0 and Θ(L) = 1.

From the autocorrelation analysis in the data section it follows that partial autocorrelation

is highly present up to the ninth lag. To confirm this observation, information criteria are

constructed to assess the most plausible parameter p for a predictive context. Information

criteria establish a balance between the combined fit of a set of coefficients and the number

of coefficients in a model (Brooks, 2014, pp. 275-286). A low criterion implies that a model is

more likely to deliver better forecasts. In empirical research, the Akaike (1974) and Bayesian

(Schwarz, 1978) criteria are broadly employed and defined

AIC = ln (σ̂2) + 2n/T (6)

and

BIC = ln (σ̂2) + ln (T )n/T, (7)

respectively. Here, the sample size is expressed by T and the number of coefficients in the model

by n. Factor σ̂2 denotes the residual variance.

Since there is no consensus as to what criterion performs best, both the AIC and BIC are

computed for AR(p) models with p = 1, · · · , 10. Longer-horizon autocorrelation is likely to be

captured by heterogeneous parameters and therefore p = 10 is assumed as the maximum lag.

Furthermore, it is likely that partial autocorrelation spikes for lags > 10 are captured by time

fixed effects, such as the day-of-the-week effect. By analyzing the entire data set in this regard,

continuity of the autocovariance structure is implicitly assumed spanning both the in-sample

and out-of-sample subsets, even though this may not be the case. To prevent violation of the
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independence assumption for the out-of-sample range, information criteria are documented for

both the entire sample and the in-sample subset, where the latter is leading.

Table 13 in Appendix B documents the results. Both the AIC and BIC are evidently lowest

for the AR(9) model, consistent for both sets. Therefore, the AR(9) specification is assumed

optimal and utilized as the fundamental model in the remainder of this study. However, the

one-lagged alternative is maintained as well, mainly to provide insight in the power of hetero-

geneous parameters representing long-memory effects, similarly to Raviv et al. (2015).

ARMA(p,q)

Most time series do not follow straight autoregressive processes. Whereas AR(p) parameters

capture autocorrelation directly with lags 1, · · · , p, moving average (MA) factors model the

residuals of preceding observations. Combining both processes may fit the data better and is

referred to as ARMA(p,q) specification. It is expressed using d = 0 in the fundamental model

of Equation 5.

Series that follow an ARMA(p,q) structure typically exhibit autocorrelation and partial au-

tocorrelation functions that both decline geometrically (Brooks, 2014, pp. 268-269). The former

was clearly observed in the data section, and the latter to a lesser extent. Although computation

processes become much more complex, adding a few moving average parameters may improve

the predictive power. Information criteria are computed for ARMA(p,q) models for p = 1, 9

and q = 1, 2, 3 in Table 13 (Appendix B). First, adding 1, 2 and 3 moving average terms seems

attractive for AR(1) models. Also, the AIC for the ARMA(9,2) model is smaller than the AIC

for the basic AR(9) model, but the difference is only marginal. Furthermore, the BIC of this

model exceeds that of the basic AR(9) model. Therefore, moving average terms will only be

added as an extension later, not in the basic model.

ARFIMA(p,d,q)

As elaborated on in the data section, the Dutch electricity spot prices exhibit a fractionally

integrated process due to the long-memory feature. The ARFIMA(p,d,q) specification essentially

provides a bridge between modelling I(0) and I(1) series and it is used as a prediction instrument

in several related studies (Gianfreda & Grossi, 2012; Haldrup & Ørregaard Nielsen, 2006).

ARFIMA models essentially capture short-run and long-run effects along different dimensions,

and are specified as in Equation 5, with a particular structure on d. Short-run influences are

not differenced, d = 0, and long-run are differenced with d̂, where the latter is estimated by a

maximum likelihood optimization.
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Table 13 in Appendix B depicts the information criteria for both an ARFIMA(1,d,0) and an

ARFIMA(9,d,0) specification estimated on the entire data set, as well as on the in-sample range

only. Both criteria in both samples confirm that ARFIMA frameworks fit the data slightly better

than general AR models. An ARFIMA(9,d,2) specification performs best. In light of the third

hypothesis, therefore, ARFIMA-type models will be estimated to correct for the long-memory

feature in the data.

H(b1, · · · , bn)ARMA(p,q)

The goal of ARFIMA modelling is to capture high-order autocorrelation described as a long-

memory property. However, estimating ARFIMA models is typically problematic with a high

number of parameters due to its high complexity. Raviv et al. (2015) introduce the heterogeneous

autoregressive (HAR) specification (Corsi, 2009) as a suitable alternative in this regard. In

this specification, high-order autocorrelation is captured whilst maintaining a small number of

coefficients and hence less complexity. Instead of expressing the autocorrelation up to order b

by b coefficients, one coefficient is added representing the average of the previous b observations.

In terms of the fundamental model as defined in Equation 5, HAR parameters impose a

specific structure on the autoregressive specification ϑ(L). That is

ϑ(L) = 1− ϑAR,1L
1 − · · · − ϑAR,pL

p − ϑHAR,b1L̄
1,b1 − · · · − ϑHAR,bnL̄

1,bn , (8)

where L̄1,b = b−1
∑b

i=1 L
i and denotes the average of the b previous lags.

Essentially, n coefficients are added representing different dimensions of aggregated auto-

correlation. Following Raviv et al. (2015), two parameters are selected by default: weekly and

monthly, that is H(7, 30). For any autoregressive model with seven lags or more, the weekly

factor will be omitted since the dependency of the previous week is already factored in in the

autocovariance structure. The heterogeneous parameters are imposed as an alternative to the

ARFIMA model for the third hypothesis.

4.1.2 Time fixed effects

Complementary to autocorrelation patterns, electricity spot prices suffer from calendar effects.

Most importantly, prices differ between the days of the week. Similarly to Cuaresma et al.

(2004), the fundamental model specification (Equation 5) is supplemented with the factor Υt =∑7
i=2 βΥ,iIΥ,t,i, resulting in

Pt = α+ (1− L)−dϑ(L)−1Θ(L)εt +
7∑
i=2

βΥ,iIΥ,t,i, (9)
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where βΥ,i denotes the coefficient belonging to the dummy variable IΥ,t,i defined by the following

system:

IΥ,t,i =


1, if the day-of-the-week of t = i

0, otherwise

(10)

where i = 1, 2, · · · , 7 and represents an array ranging from Monday (1) to Sunday (7). The

factor IΥ,t,1—corresponding to Monday—is excluded to avoid a dummy multicollinearity.

In addition to day-of-the-week effects, prices typically differ between months. Similar to

the day-of-the-week effect, the AR(F)IMA-type models are complemented with the factor Φt =∑12
i=2 βΦ,iIΦ,t,i:

Pt = α+ (1− L)−dϑ(L)−1Θ(L)εt +
12∑
i=2

βΦ,iIΦ,t,i, (11)

where i = 1, 2, · · · , 12 and denotes the number of the month and IΦ,t,i the dummy variable being

equal to 1 if the month corresponding to t is equal to i, and 0 otherwise.

4.1.3 Spikes

Another important property of the spot prices is the presence of spikes, where extreme prices

occur regularly and typically revert back to the local mean rapidly. In time series analyses,

these spikes are problematic as their behavior is simply assumed to be normal. Especially when

modelling autoregressive specifications, past spikes influence subsequent forecasts and result in

prediction errors.

The first step in correcting for these spikes is identifying at which observations they oc-

cur. In equity markets, extreme prices are typically referred to as jumps, thereby relaxing the

assumption that a rapid mean reversion process is present. The processes driving jumps are

extensively researched in equity markets. Lee and Mykland (2007) introduce a non-parametric

test to detect jumps in high-frequency stock markets, comparing the return from t to t + 1

with the returns made in k previous observations, all based on logarithmic transformations.

Andersen, Bollerslev, and Dobrev (2007) propose a similar methodology, evaluating individual

returns with a constructed threshold. However, electricity markets fundamentally differ from

stock markets. Most importantly, whereas stock returns are typically assumed to be completely

stochastic, electricity prices suffer from predetermined patterns, making the identification of

spikes substantially more difficult.

In electricity markets, different approaches have been proposed. Boogert and Dupont (2008)

determine a fixed threshold for normal prices, where violations are identified as spikes. Alter-
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natively, some studies incorporate a variable threshold as described by Clewlow and Strickland

(2000), where the aggregated standard deviation is, on a recursive basis, used as an upper and

lower bound for a short window of hourly power prices. However, for longer windows of prices,

with lower frequencies—as is the case in the present study—these methods are likely to become

problematic. Employing a fixed threshold fails to account for time variation and a variable

threshold based on the standard deviation of the whole sample suffers from the same problem.

Local spikes are unlikely to be accurately identified. Furthermore, many studies fail to correct

for the seasonality component (Janczura et al., 2013).

In this study, a new framework is proposed as an attempt to improve the predictive power

by filtering spikes, combining the seasonality property as analyzed by Janczura et al. (2013),

the iterative approach of Lee and Mykland (2007) and the threshold method of Clewlow and

Strickland (2000). To accurately identify price spikes, the unexpected component should be

extracted from the price. Formally, prices are driven by a stochastic component zt and a sea-

sonality component yt (Janczura et al., 2013). Assuming the seasonality factor consists of the

day-of-the-week effect, the month-of-the-year effect and a (long) memory component in two

dimensions (weekly and monthly), yt it can be expressed as:

yt = α+

7∑
i=2

βΥ,iIΥ,t,i +

12∑
i=2

βΦ,iIΦ,t,i + βΨ,7Pt−1,7 + βΨ,30Pt−1,30 (12)

where IΥ,t,i and IΦ,t,i denote day-of-the-week and month-of-the-year dummies respectively, α

denotes a static constant and heterogeneous parameters Pt−1,b are calculated as b−1
∑b

i=1 Pt−i.

Then, the model Pt = yt + zt can be predicted to obtain an estimate of the seasonal component

ŷt = P̂t and the stochastic component zt ∼ N(0, σ2
z) by capturing the residuals. That is

zt = Pt − ŷt. (13)

The regression estimation process is based on the in-sample data range, to prevent data mining

issues. One problem with this approach is that logarithmic transformations that are proposed

in different studies are no longer available, since zt can become negative as well. Although the

variance structure would become more stable when a logarithmic transformation is applied, the

benefit of deseasonalizing the prices is of higher importance.

In addition to average prices, price volatility differs through time. Therefore, the interval in

which prices can be interpreted as normal is time varying. In line with Lee and Mykland (2007),

the price series will be processed in an iterative rolling window algorithm, where prices that are

identified as a spike are subsequently filtered and considered as such in follow-up iterations.
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In this pre-filtering approach, stochastic prices zt that exceed a certain confidence interval

spanning the distribution around the previous k observations are identified as a spike. One

would typically remove these extreme observations (outliers) from the sample in conventional

statistical frameworks. However, since autocorrelation is key in this study, observations cannot

simply be removed. Instead, individual spikes should be substituted by more reasonable alter-

natives. Weron (2006, p. 126) analyses three distinct methods to normalize spikes. Firstly, the

observation could be limited to the boundary that it exceeds. Secondly, a dampening scheme

can be applied, where the extreme value is decreased but only proportionally to the violation.

The advantage of this approach is that extreme prices are retained to a certain extent. Thirdly,

the price can be substituted by a similar price, for example that of the previous day. Janczura

et al. (2013) add another method when deseasonalized data is employed, where the spike com-

ponent zt is simply substituted by the mean of its corresponding rolling window z̄t,k (averaging).

Although the window-specific means are on average equal to zero as forced by the deseasonaliza-

tion model, time variation would be neutralized if the averaging method would simply replace

zt by zero.

Empirical research has not yet reached consensus as to an optimal method to deal with

spikes. Therefore, all four proposed methods (limiting, dampening, replacing and averaging)

are implemented. The dampening approach is described by a formula incorporating a loga-

rithmic transformation (Shahidehpour et al., 2002, p. 83). However, deseasonalized data also

yields negative values that cannot be converted to logarithms. To resolve that restriction, the

dampening scheme will be applied on the log-normal boundary prices, derived back from the

residual analysis. In other words, while the regular identification process is based on residuals,

the dampening technique is applied on the boundary prices to prevent negative inputs.

The pre-filter framework is documented in the following algorithm, requiring two static

inputs, k and z∗. A graphical analysis showed that a rolling window size of k = 30 is an

acceptable assumption, since it accurately identifies most of the observations at which a spike

is expected. Increasing the size does not add additional power and lowering k causes unstable

and unreliable confidence intervals. For the identification of spikes using the variable threshold

approach, literature tends to select z∗ = 3 (Clewlow & Strickland, 2000; Keles et al., 2012). This

critical value seems reasonable in the current data set as well, based on a graphical investigation.

Algorithm 1 (Spike pre-filter). Let k denote the rolling window size, Pt the observed price at

time t, ŷt the seasonal price component at time t, T the number of observations for the stochastic

electricity prices zt, z
∗ the critical value representing the confidence interval and Ξt a categorical

variable ∈ {1,−1, 0} classifying observation t as a positive spike, negative spike or no spike,
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respectively. Then, for each t = k + 1, · · · , T :

1. Calculate mean of zt over k previous observations. That is z̄t,k = k−1
∑k

j=1 zt−j.

2. Similarly, compute the standard deviation by σt,k =
√

(k − 1)−1
∑k

j=1(zt−j − z̄t,k)2.

3. Assign the spike factor based on the boundaries Ξt =


1, if zt > z

{1}
t = zt,k + z∗σt,k

−1, if zt < z
{−1}
t = zt,k − z∗σt,k

0, otherwise.

4. Derive upper price bound P
{1}
t = ŷt + z

{1}
t and lower price bound P

{−1}
t = ŷt + z

{−1}
t .

5. Only if Ξt 6= 0, apply treatment scheme on Pt conditional on selected method:

Pt =



ŷt + z
{Ξt}
t , with limiting scheme

P
{Ξt}
t + P

{Ξt}
t log(Pt/P

{Ξt}
t ), with dampening scheme

ŷt + zt−1, with replacing scheme

ŷt + z̄t,k, with averaging method.

6. Enter back the stochastic component zt for the purpose of calculating the statistics for the

next iterations. That is zt = Pt − ŷt.

A major advantage of this iterative approach is that it is only dependent on preceding observa-

tions. Therefore, for any new observation that enters the sample, this procedure can be repeated

only for that observation, making it a convenient algorithm to work with in practice.

Even though the pre-filter algorithm is based on actual observed dynamics, the fact that

it is not used before in this particular composition requires additional validation. One way to

assess its reliability is to apply it on a fictive price series, composed by a specific data generating

process (DGP). In this study, the simulation setup is based on Janczura et al. (2013) to generate

electricity prices from 2008 up to 2019. The algebraic specifics are highlighted in Appendix C.

Subsequently, price spikes are added to the series by splitting the sample of 3,652 prices in pieces

of a 100 observations, excluding the first 52 for convenience, which is justified since the pre-filter

algorithm starts after the fist rolling window anyway. In each of the 36 sub-samples, one random

spike (positive or negative) is added by replacing one random observation with P̄ + δλσ, where

P̄ and σ denote the average electricity price and standard deviation of electricity prices in that

specific sub-sample, respectively. Factor δ represents the sign of the spike, δ ∈ {−1, 1}, whereas

λ expresses the spike’s magnitude, which is randomly picked and satisfies 3.5 ≤ λ ≤ 4.5.

Figure 6 presents the development of a simulated series, in conjunction with identified spikes

using the limiting approach. It is evident that the spike filtering algorithm has detected 100%

(36 out of 36) of the spikes that were randomly inserted. On top of that, it identified 23 prices

that are not classified as spikes. It follows that the limiting pre-filter algorithm performs well in
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this case in terms of power, but the size property requires additional attention.

Figure 6: Simulation of a price series with inserted spikes

Jan09 Jan11 Jan13 Jan15 Jan17 Dec18
0

20

40

60

80

100

P
ri

c
e

in
E

U
R

/
M

W
H

Base load price Identified spike Placed spike Bounds

Notes: In this figure, the inserted spikes (36) are presented as a green cross within a simulated series (see Appendix
C) of daily base load electricity prices ranging from January 2009 to December 2018. Identified spikes (59) are
presented as a red dot. The identification is based on the iterative rolling window algorithm (Algorithm 1) using
the limiting scheme. The grey area represents the confidence interval for spike detection.

Method
Power Size

Average score ≥ 90% ≥ 95% Average score ≤ 1% ≤ 5%

Limiting 96.33% 95.20% 62.60% 0.67% 98.70% 100.00%

Dampening 95.94% 95.30% 56.60% 0.60% 99.60% 100.00%

Replacing 86.39% 25.10% 3.60% 0.46% 100.00% 100.00%

Averaging 86.62% 27.10% 4.30% 0.46% 100.00% 100.00%

Notes: This table contains results of the spike pre-filter algorithm, applied on 1,000 simulations of each treatment
method. The power of the algorithm represents the ability to detect spikes that are present and is calculated as
the fraction of randomly inserted spikes that were identified to the total number of randomly identified spikes. A
score of 100% implies that the algorithm works perfectly in identifying the spikes that were inserted. The filter’s
statistical size is calculated as the number of identified spikes that are not real spikes divided by the total number
of observations that do not exhibit a spike, that is 3, 652− 36 = 3, 616. Next to the average score of both metrics,
the relative number of simulations that performed better than or equal to a certain threshold are reported.

Table 5: Simulation results of the spike pre-filter algorithm

To corroborate this single simulation, another 1,000 simulations have been generated for all

four pre-filter methods. For every simulation, both the power and size are computed representing

the ability to identify present spikes and the probability that the algorithm identifies a spike

that is not a real spike, respectively. The results are summarized in Table 5. A high power

and low size imply that the algorithm is a sound technique to detect price spikes. In terms of

size, every method seems appropriate, none identifies more than 5% of non-spikes as a spike. It

is evident that the limiting and dampening methods are powerful, on average both identifying

approximately 96% of the inserted spikes. Furthermore, approximately 95% of all simulations
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produced a power score with a minimum of 90%. However, the replacing and averaging methods

perform substantially worse, both having an average score close to 86%, and an extremely small

fraction that identifies at least 90% of the spikes.

Evidence suggests that the pre-filter algorithm works well in identifying the spikes, but only

when the limiting or dampening method is applied. It should be noted though that some compo-

nents in the simulation setup are relatively arbitrary, such as the fixed sub-sample structure and

the predetermined magnitudes of the spikes. However, since the simulated price processes are

strongly in line with observed EPEX spot prices, the simulation analysis is considered reliable.

4.1.4 Optimization

Although the theoretical hypotheses focus on relatively standard AR(p) models with, optionally,

HAR components, it may be possible to further improve these by including moving average terms

or allowing models that can handle different distributions. Although no formal hypotheses have

been formed to substantiate possible improvements, it is still useful to assess whether technical

adjustments can decrease prediction errors.

Firstly, moving average (MA) terms are added. As documented in the data section, adding

two MA terms may improve forecasting accuracy, although the improvement is expected to be

marginal, since information criteria are not unambiguously lower.

Secondly, it is evident that the distribution of electricity prices cannot be assumed normal,

due to heavy tails and asymmetry. Although the prices are sufficiently covariance stationary,

prediction models are sensitive for atypical distributions. In that regard, a log-normal transfor-

mation, as employed by Cuaresma et al. (2004), may reduce the variance and generate a more

stable distribution. The optimal model(s) as determined by the first four hypotheses will there-

fore be estimated on log(Pt) as well, where the predicted log-normal prices are subsequently

converted back to normal prices. By transforming normal models with εt ∼ N(0, σ2
ε) to natural

logarithms, it is implicitly and incorrectly assumed that exp (εt) ∼ logN(0, σ2
ε). Consequently,

forecasts should be adjusted to correct for the incorrectly specified mean (Mount et al., 2006).

Algebraically, the forecast function becomes

fm(t+ 1) ≡ exp
[
Em(Pt+1|Ωt) +

1

2
σ̂2
ε

]
, (14)

where Em(Pt+1|Ωt) denotes the prediction for time t+1 based on log-normal model m assuming

that all pricing information up until t is known and σ̂2
ε the estimated variance of the forecast

errors.
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4.1.5 Evaluation

Different measures are available to assess the accuracy of forecasts against realized observations.

Since the sign of the deviation is typically irrelevant, most measures examine absolute values

of deviations from the real observations. The most direct measure is the mean average error

(MAE), which captures the average absolute error over the predicted values. In the finite sample

of electricity prices 1, · · · , T , let t0, · · · , t1 denote the prediction window with 1 < t0 ≤ t1 ≤ T

and length t1 − t0 + 1 that is forecast using model m. Then, the MAE function is defined by

MAEm(t0, t1) ≡ 1

t1 − t0 + 1

t1∑
t=t0

∣∣Pt − fm(t)
∣∣, (15)

where Pt and fm(t) denote the real and forecast price at time t, respectively.

A similar alternative is the mean squared error (MSE), which has the additional property

that it is measured quadratically, thereby punishing extreme errors more aggressively. This

metric is more appropriate when large deviations are disproportionally undesirable. It is defined

as

MSEm(t0, t1) ≡ 1

t1 − t0 + 1

t1∑
t=t0

[
Pt − fm(t)

]2
. (16)

These two metrics however tell little about the relative deviation of the predicted prices—they

only report absolute values. The mean average percentage error (MAPE) provides the average

error in terms of a percentage of real prices. It is calculated as

MAPEm(t0, t1) ≡ 1

t1 − t0 + 1

t1∑
t=t0

∣∣∣∣Pt − fm(t)

Pt

∣∣∣∣, (17)

where fm(t) and Pt denote the forecast function for model m and real price and day t, respec-

tively.

In comparing price prediction models, a lower error measure indicates better forecasting

performance. However, the extent to which a certain model outperforms another model, at least

for assessing the validity of the stated hypotheses, should be assessed by means of a statistical

test. A too small difference between two models could simply be the result of idiosyncratic

factors, for example a sample selection bias. Diebold and Mariano (1995) propose a pairwise

statistical test to compare forecast performances of two models based on their loss functions.

Their procedure involves standardizing the differences between two series of loss functions to

their distribution in a single number. Mainly due to its simplicity and its universal applicability,

many studies in electricity prices use this test as a reliable instrument to evaluate forecasts with
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(Cuaresma et al., 2004; Lago, Ridder, Vrancx, & Schutter, 2018; Nowotarski & Weron, 2016).

For that reason, the Diebold and Mariano (1995) procedure is employed in the present study as

well to test whether a more sophisticated model m2 outperforms its basic alternative m1.

Let `
{x}
m denote the x-based loss function for observation t with x ∈ {AE,SE,APE}, cor-

responding to observation-specific metrics for the MAE, the MSE and MAPE, respectively.

Formally,

`{x}m ≡


|Pt − fm(t)|, if x = AE,

[Pt − fm(t)]2, if x = SE,

P−1
t |Pt − fm(t)|, if x = APE.

(18)

Then, the loss differential given x between model m1 and m2 is calculated as

dm1,m2(t)|x = `{x}m1
(t)− `{x}m2

(t). (19)

Under the null hypothesis, the expected difference in predictive accuracy is equal to zero. That

is

H0 : E[dm1,m2(t)] = 0. (20)

In this study, model comparisons are initially based on one-sided evaluations, since a refined

model m2 is expected to outperform its more basic alternative m1. Therefore, the alternative

hypothesis is defined as

Ha : E[dm1,m2(t)] > 0. (21)

To evaluate whether the null hypothesis should be rejected, Diebold and Mariano (1995) pre-

scribe the test statistic

tDMm1,m2
=

d̄m1,m2√
σ̂2
m1,m2

/N
, (22)

where d̄m1,m2 and σ̂2
m1,m2

denote the mean and estimated unconditional variance of the perfor-

mance differentials dm1,m2(t) of N point forecasts, respectively1. In estimating the variance, an

estimator is employed that is referred to as a Newey-West type. Therefore, potential autocorre-

lation and heteroskedasticity issues are corrected for. Since m1 and m2 can simply be flipped,

outperformance can be approached from two directions. Based on the student t distribution,

1The Diebold and Mariano (1995) test statistics are computed using MATLAB.
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it follows that the null hypothesis should be rejected if tDMm1,m2
> t∗5% = 1.645. Conversely,

tDMm1,m2
< −1.645 simply implies outperformance of model m1 relative to m2.

When comparing many models, however, pairwise procedures are insufficient as an instru-

ment to identify the best performing specification(s). Typically, the data set does not yield a

set of unambiguously superior models, due to a lack of complete information (Hansen, Lunde, &

Nason, 2011). For that purpose specifically, Hansen et al. (2011) propose the model confidence

set (MCS) procedure, which has been applied in electricity pricing (Bordignon, Bunn, Lisi, &

Nan, 2013), that aims at identifying a set of modelsM∗1−α that are superior in an initial model

set M0. Formally, the superior set of models M∗1−α ⊆M0 is defined by

M∗ ≡ {i ∈M0 : µi,j ≤ 0 ∀ j ∈M0}, (23)

which represents a selection of models that perform equally and outperform every other model

on an (1−α)% confidence level. Through a series of sequential equivalence tests between models

i, j ∈ M0, inferior models are removed from the subset M until this process converges. The

null hypotheses are similar to the Diebold and Mariano (1995) procedure,

H0,M : µi,j = 0, ∀ i, j ∈M, (24)

where µi,j = E[d̄i,j(t)] (see Equation 19). If H0,M is rejected, δM = 1 and δM = 0 otherwise. To

formally test these null hypotheses, pairwise student-t statistics are constructed similar to the

Diebold and Mariano (1995) statistic. The p-value is then calculated for the highest absolute

student-t statistic that represents the most extreme inter-model difference2. If the p-value is

smaller than 5%, the null hypothesis of equal predictive performance is rejected and the worst

performing model, according to elimination rule eM, is removed from subset M. Formally, the

Hansen et al. (2011) algorithm is described as follows.

Algorithm 2 (Model confidence set procedure). Let M0 denote a set of predictive models.

1. Assign M =M0.

2. Test whether H0,M holds based on confidence level α.

• If δM = 1, eliminate model eM and rerun step 2.

• If δM = 0, finish the algorithm and set M̂∗1−α =M.

4.2 Imbalance dynamics

The remainder of the methodology chapter focuses on the relation between the day-ahead spot

prices and the dynamics in the imbalance market. In particular, the goal is to assess whether the

2The MCS procedures are performed using the MFE Toolbox by Kevin Sheppard in MATLAB.
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predictability of Dutch electricity spot prices is related to quantities and prices on the imbalance

market. To establish such a framework, the first step is to express the spot price predictability

numerically.

4.2.1 Predictability measures

The predictability of spot prices can be approximated in different ways—no unique method

exists. Electricity prices suffer from strong effects of autocorrelation. Therefore, the extent to

which the price at t + 1 is predictable can be simply measured by the correlation between the

hourly prices at t and hourly prices at t+ 1. The first and most direct measure of predictability

at day t is

ρ(t) ≡ Cov(P t−1,P t)

σ(P t−1)σ(P t)
, (25)

where −1 ≤ ρ(t) ≤ 1 and P t denotes the 1×24 vector [Pt,1, Pt,2, · · · , Pt,24] including all 24 hourly

prices of day t and σ(·) the standard deviation of a price vector. Note that the autocorrelation

metric is not perfect to assess predictability, since relatively high inter-day differences could be,

in fact, be predictable on the basis of time fixed effects. However, these effects can be corrected

for ex post by including control variables. Furthermore, it is crucial to take into account that

hourly prices are in fact determined by the market system, whereas base load prices merely

represent an aggregated price. Therefore, utilizing hourly prices in assessing the predictability

is considered optimal, and this measure is expected to be the most direct and reliable.

A problem with measuring predictability by comparing two individual days, is that idiosyn-

cratic factors can rapidly influence the results. Estimating autocorrelation on the base load price

using a broader interval might give a more reliable estimate, although becoming less applicable

to a specific day. The autocovariance function for lag |v| < t1 − t0 + 1 based on a price series

Pt0 , · · · , Pt1 can be written as a function with three arguments. That is

τ(v, t0, t1) ≡ 1

t1 − t0 + 1

t1−|v|∑
i=t0

(Pi − P̄t0,t1)(Pi+v − P̄t0,t1), (26)

where P̄t0,t1 = (t1− t0 + 1)−1
∑t1

i=t0
Pi and represents the average electricity price in the window

t0, · · · , t1. Let k = 20 denote the length, in days, of the rolling window to estimate the v = 1

autocorrelation for each t ≥ k. Then, the autocorrelation function from the perspective of t can

be written as

γ(t) ≡ τ(1, t− 19, t)

τ(0, t− 19, t)
=

∑t−1
i=t−19(Pi − P̄t−19,t)(Pi+1 − P̄t−19,t)∑t

i=t−19(Pi − P̄t−19,t)2
, (27)
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by construction satisfying −1 ≤ γ(t) ≤ 1. A high γ(t) implies a strong degree of predictability.

Finally, model implied accuracy can be employed as an instrument for measuring predictabil-

ity. More specifically, loss functions can be used as a proxy. Let `(t) denote the absolute pre-

diction error for day t given an optimal forecasting model m, which is to be determined in the

results section. We have

`(t) ≡
∣∣fm(t)− Pt

∣∣, (28)

where fm(t) denotes the forecasting function and Pt the observed price. It should be noted,

however, that model implied predictability is subject to model risk. That is, the model that is

selected could be misspecified and not realistically reflecting predictability in real markets. This

measure is therefore assumed the least reliable.

4.2.2 Relation analysis

Hypotheses five and six aim towards finding (negative) relationships between the predictability

of day-ahead spot prices and intra-day imbalance activity. First, it is expected that the intra-day

price volatility in the imbalance market is negatively related to the predictability of day-ahead

power prices. To assess the existence of this relationship, a regression analysis is deployed

covering the whole sample. We define g(t) as the generalized predictability function with g ∈
{ρ, γ, `}. Then, the regression model is expressed as

σ�t = α+ β · g(t) + εt, (29)

where α denotes a static constant and εt ∼ N(0, σ2
ε) the error term.

The sixth hypothesis focuses on the daily aggregated volume on the imbalance market, and

expects a negative relationship with day-ahead predictability as well. Similarly, the model is

V �t = α+ β · g(t) + εt, (30)

with constant α and error term εt ∼ N(0, σ2
ε). Note that when the model implied predictability

is analyzed, only the out-of-sample day-ahead range is included.

Although both models expect a negative relationship, it is also interesting to observe any

positive betas. Correspondingly, the betas will be tested in a two-sided manner:

H0 : β = 0

Ha : β 6= 0.
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The null hypothesis is rejected if the test statistic |tOLS | = |β̂/SE(β̂)| > t∗5%/2 = 1.960 (Brooks,

2014, pp. 99-103).

To prevent heteroskedasticity resulting in incorrect standard errors, both regressions in-

corporate robust White (1980) errors. Additionally, an apparent pitfall of these models is

endogeneity—omitted variables could result in a spurious relationship. For example, the cor-

relation between day-ahead prices is presumably high between Saturday and Sunday. But this

pattern is present in imbalance markets as well: price volatility is very similar between these

days. If this effect outweighs the other five days, then it is possible that the regression models

yield significant coefficients. To limit the possibility of such a bias, various control variables are

added to both regression models. Firstly, the models are complemented with day-of-the-week

and month-of-the-year dummies. Secondly, the t variable is added to filter out the average

trend.
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5 Forecasting

Initially, basic AR(1) and AR(9) models are employed as forecasting instruments for the out-of-

sample range. Figures 7a and 7b depict the graphical accuracy of these models as opposed to

the real prices. Although the average absolute prediction error of the AR(9) model seems lower,

it does not predict extreme price spikes well. In this regard, the AR(1) model seems to perform

a substantially better. Further, it is evident that one or more fundamental components are

missing—both models show structural deviations that could potentially be reduced by controlling

for time fixed effects. Lastly, price spikes evidently yield the highest prediction errors and

factoring these in might improve performance.

Figure 7: Basic autoregressive model forecasts
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(b) AR(9)
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Notes: Figures (a) and (b) illustrate the predictive performance of a basic AR(1) and AR(9) model, respectively,
relative to the observed out-of-sample electricity prices.

5.1 Time fixed effects

The first extension to the basic models is the day-of-the-week effect. Figures 8a and 8b illustrate

the predictive performance of an AR(1) and AR(9), respectively, incorporating day-of-the-week

dummies. At least, it is clear that the performances have improved as compared to the basic

models without dummies. Again, it is unclear which autoregressive specification performs best

in this regard, since the AR(9) model seems to underperform with extreme prices. Similarly,

Figures 8c and 8d describe the price forecasts when a month-of-the-year effect is included.

When compared to the basic autoregressive models, it is not clear whether this time fixed

effect improves performance. Lastly, the extension with both the day-of-the-week and month-

of-the-year effect is presented in Figures 8e and 8f. Graphically, it is inconclusive whether these

specifications show superior performance as compared to the previous models.
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Figure 8: Autoregressive model forecasts with time fixed effects.

(a) AR(1) with day-of-the-week effects
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(b) AR(9) with day-of-the-week effects
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(c) AR(1) with month-of-the-year effects
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(d) AR(9) with month-of-the-year effects
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(e) AR(1) with both effects effects
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(f) AR(9) with both effects
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Notes: The figures on the left (right) side exhibit the performance of electricity price forecasts for the out-of-
sample range based on an AR(p) model with p = 1 (p = 9). Additionally, from top to bottom, the models are
extended with day-of-the-week and month-of-the-year effects.

Table 6 contains the predictive performances of the AR(1) and AR(9) specifications com-

plemented with time fixed effects. It is clear that all three loss functions (MAE, RMSE and

MAPE) are inter consistent. That is, the conclusions inferred from this table are independent

of the choice of the loss function and therefore robust in that regard.

Panel A presents the performance of the inclusion of time fixed effects in the AR(1) model.

It follows that the day-of-the-week effect improves the performance significantly, as indicated

by substantial lower loss functions and 1% significant Diebold and Mariano (1995) statistics.
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Model MAE MAE vs basic MSE MSE vs basic MAPE MAPE vs basic

Panel A: AR(1)

Basic 4.287 35.424 9.53%

Day-of-week 3.689 5.37*** 25.938 6.10*** 8.04% 5.59***

Month-of-year 4.273 0.75 35.515 -0.36 9.48% 1.12

Both 3.687 5.32*** 26.122 5.89*** 8.03% 5.59***

Panel B: AR(9)

Basic 3.841 28.842 8.38%

Day-of-week 3.503 3.97*** 23.330 4.65*** 7.63% 3.79***

Month-of-year 3.863 -2.06** 29.014 -1.66** 8.43% -1.97**

Both 3.514 3.79*** 23.510 4.44*** 7.65% 3.63***

Notes: This table documents predictive performance metrics for both AR(1) and AR(9) specifications. The
mean average error (MAE), mean squared error (MSE) and mean average percentage error (MAPE) measures
are reported. In addition, Diebold and Mariano (1995) test statistics are included comparing row and column
specifications, where a positive (negative) value indicates that the row (column) model performs better either
not significantly, or significantly on a 10% level, 5% level or 1% level, denoted by *, ** and ***, respectively.
An underlined metric indicates that, according to this metric, the specified model is present in the 95% model
confidence set within the panel. Metrics in bold imply presence in the 95% confidence set of all panels combined.

Table 6: Forecasting performance with time fixed effects

The day-of-the-week AR(1) specification yields forecasts that are, on average, approximately

1.5 percent point more accurate than the basic AR(1) model, resulting in a average prediction

error of 8.04%. However, the month-of-the-year effect is not as meliorative. Adding a month-

of-the-year factor only lowers the average prediction error with 0.05 percent points, confirmed

by the insignificant DM statistic for all three metrics. Logically, combining both the day-of-the-

week effect and the month-of-the-year effect yields similar prediction errors to the day-of-the-

week effect only, confirmed by the presence of both models in the model confidence set. Since

the day-of-the-week model consists of substantially less coefficients, this model is preferred.

Consequently, in AR(1) forecasting models, incorporating a month-of-the-year effect is trivial

and the day-of-the-week alternative is considered optimal.

For the AR(9) specifications, documented in Panel B, the results are similar. The day-of-

the-week model significantly outperforms its basic alternative. Including a month-of-the-year

factor only insignificantly improves the forecasting accuracy relative to the basic specification,

and yields a slightly higher prediction error in conjunction with the day-of-the-week effect.

The first hypothesis was defined as follows:

Hypothesis 1 Adding a day-of-the-week effect improves the forecasting performance for Dutch

day-ahead electricity prices.

From the analysis in this section, sufficient evidence is found to support this claim. Incor-

porating the day-of-the-week effect enhances the accuracy of the predictions.
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Hypothesis 2 Incorporating a month-of-the-year dependency improves statistical forecasting

power for Dutch electricity spot prices.

In contrast, no evidence was found to support the second hypothesis. Despite the monthly

price differences as observed in the data section, accounting for this in forecasting models does

not improve power. Consequently, the month-of-the-year effect will be omitted in further anal-

yses.

Table 6 further documents that AR(9) specifications with day-of-the-week effects and both

effects outperform AR(1) alternatives. Including nine lags is therefore considered optimal. How-

ever, this does not imply that AR(1) models should be removed from any further analyses. AR(1)

specifications could very well outperform nine-lagged alternatives when long memory effects are

considered. In conclusion, the day-of-the-week AR(9) model performs best and leads to an

average prediction error of 7.63%.

5.2 Long memory

In addition to calendar effects that have a fixed effect on the development of daily electricity

prices, the pricing process tends to move over time due to the long memory property. To

account for this, two model classes are introduced. Firstly, ARFIMA models are estimated.

Day-of-the-week supplemented ARFIMA(9,d,q) models, however, are subject to severe unit circle

errors, which implies that the data exhibits non-stationarity in some combinations, due to the

high complexity. Therefore, ARFIMA(8,d,q) specifications are estimated instead. Secondly,

heterogeneous parameters are introduced representing different dependency effects. The AR(1)

model is complemented with two heterogeneous parameters representing a weekly and monthly

subjection. For the AR(9) model, only a monthly parameter is added, as it already encompasses

a weekly dependency effect by its first seven lags.

Figures 9a to 9d present graphical analyses on the electricity price forecasts incorporating

long memory features. It is not unambiguous that accounting for this improves performance.

Spikes are still subject to large prediction errors. However, the extensions may very well lead

to lower average errors and thus better performance. A quantitative analysis will shed light

thereon.

The performance measures are documented in Table 7. Panel A describes the predictive

accuracy from the perspective of the AR(1) model with day-of-the-week effects. It is evident

that including long memory components decreases forecasting errors significantly, consistent

for every loss function. The MAPE is decreased from 8.04% to 7.59%, 7.68% and 7.59% in

the ARFIMA(1,d,0), H(7)AR(1) and H(7,30)AR(1) models, respectively. Further, the model
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Figure 9: Long-memory price forecasts

(a) ARFIMA(1,d,0)
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(b) ARFIMA(8,d,0)
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(c) H(7,30)AR(1)
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(d) H(30)AR(9)
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Notes: The figures on the left (right) side exhibit the performance of electricity price forecasts for the out-of-
sample range based on an AR(p) model with p = 1 (p = 9 or, in the case of ARFIMA specifications, p = 8). All
specifications are equipped with day-of-the-week fixed effects.

confidence set indicates that the H(7)AR(1) specification is outperformed by the former and the

latter in terms of the MAE.

For the AR(9) models, the results are less consistent. ARFIMA(8,d,0) day-of-the-week sig-

nificantly beat the AR(9) model in terms of the MAE and the MAPE, but not in terms of

the MSE. The H(30)AR(9) model, however, does not yield any significant improvement on at

least a 5% level. Adding a monthly dependency does parameter does not significantly improve

the AR(9) specification. The panel-specific 95% model confidence set that includes all alterna-

tives including the original AR(9) model, further implies that all alternatives perform relatively

equally.

The hypothesis addressing the long memory property was stated as:

Hypothesis 3 The forecasting accuracy of Dutch electricity spot prices improves by accounting

for a long-memory feature.

Based on the previous reasoning, sufficient evidence is found for the presence of a long mem-

ory effect and forecasting improvements due to modelling it, most importantly when ARFIMA
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Model MAE MAE vs AR MSE MSE vs AR MAPE MAPE vs AR

Panel A: AR(1)

AR(1) 3.689 25.938 8.04%

ARFIMA(1,d,0) 3.486 3.88*** 23.317 3.33*** 7.59% 4.08***

H(7)AR(1) 3.527 2.68*** 23.668 2.72*** 7.68% 2.75***

H(7,30)AR(1) 3.478 3.49*** 23.203 3.30*** 7.59% 3.44***

Panel B: AR(9)

AR(9) 3.503 23.330 7.63%

ARFIMA(8,d,0) 3.477 1.72** 23.242 0.45 7.55% 2.46***

H(30)AR(9) 3.478 1.55* 23.212 0.63 7.58% 1.43*

Notes: This table describes the predictive performances in terms of the MAE, the MSE and the MAPE of day-of-
the-week forecasting models that incorporate long memory behaviour by means of ARFIMA transformations or
heterogeneous parameters. Panel A documents AR(1) alternatives whereas panel B classifies AR(9) alternatives.
Diebold and Mariano (1995) statistics are included as an instrument for comparing models on a significance level,
that is denoted *, ** and *** representing 10%, 5% and 1%, respectively. A positive DM statistic implies that
the row model outperforms the column model, and vice versa. Both panels are further classified in 95% model
confidence sets, and underlined metrics indicate presence in these sets. Metrics in bold indicate that, according
to that metric, the model is present in the combined model confidence set comprising all panels.

Table 7: Forecast performances with long memory components

specifications are considered.

On the basis of the aggregated model confidence set, it is striking that AR(1) models equipped

with heterogeneous parameters perform relatively equal to the AR(9) alternatives. In particular,

the H(7,30)AR(1) model seems to perform similar to the H(30)AR(9) model, even though it

contains 70% less parameters. Whereas ARFIMA alternatives come with substantial higher

complexity, including heterogeneous parameters does not. Therefore, an important conclusion

from this section is that the H(7,30)AR(1) day-of-the-week specification is a better alternative

compared to the day-of-the-week AR(9), as it simply comprises less parameters. However, it

is not unambiguous that this conclusion holds when spikes are incorporated or when technical

optimization methods are applied. Consequently, the remainder of this study will focus on the

H(7,30)AR(1) specification primarily but report quantitative results for the AR(9) model as

well.

5.3 Spikes

Although the simulation analysis on the filter’s identification ability was conclusive, the impact

of applying the algorithm in forecasting models is yet to be determined. Figure 10 illustrates

the 72 identified spikes by the limiting approach, together with the confidence interval of normal

prices. It follows that the algorithm has identified a reasonably number of spikes, and that most

identifications are in line with graphical expectations. However, the analysis also shows spikes
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that are in some instances grouped. In such periods, treating the spikes might actually increase

prediction errors as subsequent prices are predicted to be even lower. The extent to which pre-

filtering improves forecasting performance is therefore subject to a trade-off: applying extreme

treatment schemes may improve performance for periods where prices are relatively normal, but

deteriorate in periods where extreme prices are present.

Figure 10: Spike identification process
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Notes: In this figure, the identified spikes (72) are presented as a red dot within a series of daily base load
electricity prices ranging from January 2009 to December 2018. The identification is based on the iterative rolling
window algorithm using the limiting scheme (Algorithm 1). The grey area represents the range to which normal
prices are restricted.

Price spikes are treated using different methods, of which the predictive performances are

presented in Figures 11a to 11d for the H(7,30)AR(1) day-of-the-week model. The replacing

and averaging schemes evidently cause high prediction errors in periods with extreme prices.

These two methods therefore treat spikes to aggressively and disturb the series too heavily. The

limiting and dampening schemes seem to perform relatively equally. However, the performance

of the four methods is less observable in periods without extremes. Therefore, a quantitative

analysis is required.

Table 8 exhibits the predictive performances of spike-filtered forecasts, based on the two

optimal models, H(7,30)AR(1) and AR(9), complemented with day-of-the-week effects. It is

evident that none of the treatment techniques leads to significant improvements, consistent

for both models. Moreover, the replacing and averaging methods yield significantly higher

prediction errors than their unfiltered alternative, both being significant on 1% level. In line

with the employed simulations, the replacing and averaging methods are unattractive for the

purpose of forecasting. For each of the two models, and consistent for both the MAE and MAPE

evaluation metrics, limiting or dampening the spikes is a better alternative, indicated by the

MCS. However, both do not yield significant improvements relative to unfiltered models. On
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Figure 11: H(7,30)AR(1) day-of-the-week forecasts with different spike treatment schemes

(a) Limiting scheme (72 spikes)
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(b) Dampening scheme (67 spikes)
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(c) Replacing scheme (40 spikes)
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(d) Averaging scheme (40 spikes)
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Notes: These four figures present the predictive accuracy of spike pre-processed electricity prices, based on four
different techniques. All models are based on H(7,30)AR(1) specifications with day-of-the-week effects only.

the aggregated level, the MAE and MAPE both indicate that the H(7,30)AR(1) and AR(9)

specifications perform equally in limiting or dampening spikes. It is striking, though, that in

terms of the MSE, all treatment schemes are present in the combined MCS. A more thorough

analysis showed that in this MCS procedure, most p-values are just above 10%, and consequently

insignificant.

The corresponding hypothesis was defined as follows.

Hypothesis 4 Dutch day-ahead electricity price predictions improve when spikes are filtered.

In the Dutch day-ahead electricity market, price spikes cause impose challenges in forecasting

models. But as observed, correcting for these spikes is difficult. Insufficient evidence is found for

the claim that controlling for spikes improves forecasting performance. In fact, some techniques

even yield higher prediction errors. Although the limiting and dampening schemes outperform

the replacing and averaging schemes in most cases, no significant improvements are observed

compared to unfiltered models. Using Figure 10, periods in which prices climb rapidly over

subsequent days occur regularly. Pre-filtering the prices does probably not sufficiently correct

for these situations, as the iterative framework implicitly assumes that every spike is incidental
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Treatment MAE MAE vs unfiltered MSE MSE vs unfiltered MAPE MAPE vs unfiltered

Panel A: H(7,30)AR(1)

Limiting 3.479 -0.15 23.377 -0.99 7.59% 0.14

Dampening 3.472 0.72 23.246 -0.41 7.58% 0.98

Replacing 3.779 -3.85*** 30.352 -2.59*** 8.09% -3.60***

Averaging 3.778 -3.86*** 30.281 -2.60*** 8.09% -3.61***

Panel B: AR(9)

Limiting 3.500 0.25 23.377 -0.21 7.60% 0.60

Dampening 3.492 1.10 23.262 0.49 7.59% 1.36*

Replacing 3.977 -4.12*** 36.877 -2.78*** 8.44% -4.15***

Averaging 3.975 -4.12*** 36.702 -2.80*** 8.44% -4.16***

Notes: This table presents the mean average error (MAE), the mean squared error (MSE) and the mean absolute
percentage error (MAPE) for spike pre-filtered forecasts. Diebold and Mariano (1995) are reported indicating
whether a specific treatment scheme yields lower prediction errors as compared to the base model, indicated
with *, ** and ***, indicating 10%, 5% and 1% significance, respectively. Furthermore, 95% model confidence
sets are constructed for each panel, where an underlined statistics implies presence in a particular set. Metrics
documented in bold imply presence in the model confidence set combining all panels.

Table 8: Predictive performances of spike pre-filtered spot prices

and not succeeded by other spikes.

5.4 Optimization

The first optimization approach is adding moving average terms, of which Panel A (Table 9)

documents the results. It is evident that adding q = 1, 2, 3 moving average lags to H(7,30)AR(1)

models does not yield improvements. Both the MAE, MSE and MAPE are very similar to that

of the H(7,30)AR(1), while the models become more complex in the process. For the AR(9)

model, adding two moving average terms does in fact reduce prediction errors, consistently for

all three metrics on a 5% level. The MAPE is decreased by 0.05 percent points.

Even though the series of day-ahead prices is far from normally distributed, logarithmic

transformations are ineligible. In fact, for both models, logarithmic predictions yield significantly

higher prediction errors on a 1% level, increasing the MAPE by three to four percent points

(Panel B). Panel C further highlights that combining moving average terms and logarithmic

transformations also produces much higher prediction errors. Logarithmic transformations are

therefore undesirable.

Despite the higher number of parameters, the ARMA(9,2) day-of-the-week model outper-

forms the AR(9) alternative. Consequently, two specifications are considered optimal at this

point: the ARMA(9,2) and H(7,30)AR(1) day-of-the-week models, without spike filters. Panel

D evaluates both models by means the model confidence set approach, and documents that both
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models perform equally. But since the H(7,30)AR(1) model is more parsimonious—it contains

more than 70% less parameters—the final conclusion is that electricity prices are most accu-

rately predicted with an AR(1) model that is extended with both day-of-the-week dummies and

two heterogeneous parameters, representing a weekly and monthly dependency.

Model MAE MAE vs basic MSE MSE vs basic MAPE MAPE vs basic

Panel A: Moving average terms (vs. non-MA)

H(7,30)ARMA(1,1) 3.478 -0.02 23.124 1.08 7.59% 0.02

H(7,30)ARMA(1,2) 3.479 -0.16 23.135 0.93 7.59% -0.06

H(7,30)ARMA(1,3) 3.483 -0.79 23.169 0.46 7.60% -0.62

ARMA(9,1) 3.491 1.26 23.236 1.11 7.61% 1.04

ARMA(9,2) 3.476 2.23** 23.014 2.10** 7.58% 1.85**

Panel B: Logarithms (vs. non-logarithms)

H(7,30)AR(1) in logs 4.979 -11.73*** 40.041 -9.66*** 11.69% -12.56***

AR(9) in logs 4.466 -8.97*** 34.725 -7.42*** 10.15% -9.97***

Panel C: Combined

H(7,30)ARMA(1,1) in logs 5.147 42.391 11.94%

H(7,30)ARMA(1,2) in logs 4.706 35.855 10.84%

H(7,30)ARMA(1,3) in logs 4.705 35.707 10.84%

ARMA(9,1) in logs 4.467 34.730 10.15%

ARMA(9,2) in logs 4.442 34.443 10.09%

Panel D: Evaluation of optimal models

H(7,30)AR(1) 3.478 23.203 7.59%

ARMA(9,2) 3.476 23.014 7.58%

Notes: This table documents the predictive performance of two optimisation techniques: moving average terms
(Panel A) and logarithmic transformations (Panel B), as well as combinations of both (Panel C). All models
include day-of-the-week dummies. Diebold and Mariano (1995) statistics are reported indicating whether the
specified model outperforms its basic alternative. Significance is expressed by *, ** and ***, indicating a 10%,
5% or 1% level, respectively. To measure inter-model performance, 95% model confidence sets are constructed for
each panel, where an underlined statistic refers to presence in that particular set based on that statistic. Panel
D documents the performances of the optimal models as selected by the previous panels in combination with
previous results.

Table 9: Predictive performances resulting from two optimisation techniques
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6 Relation analysis

This chapter covers the relationship analysis between day-ahead electricity price predictability

and activity on the intra-day imbalance market. Both the imbalance price volatility and the

aggregated daily volume are regressed on three distinct predictability measures. Based on the

theory regarding the purpose of the imbalance market, it is expected that price predictability on

the day-ahead market is negatively related to both metrics. When prices are harder to predict

for day t, uncertainty arises and the imbalance market is likely affected by a larger trading

volume and price volatility.

6.1 Price volatility

Firstly, the imbalance price volatility, measured by the standard deviation, is analyzed from three

angles. Table 10 documents the results of the regression models. Models I and II depict the

relationship between the price volatility and the 24-hour inter-day correlation, ρ(t), as a measure

of day-ahead predictability. It is evident that in both models, the constant coefficient is strong

and highly significant, constituting approximately e51.28 and e60.93 in average price deviation,

respectively, for every 15-minute window. In the stand-alone model, ρ(t) is only significant at

a 10% level. However, when time fixed effects are included, its effect becomes stronger and

significant on a 5% level. Consequently, from the perspective of predictability measure ρ(t),

evidence is found for a negative relationship with price volatility on the imbalance market. More

specifically, the coefficient of -5.790 implies that every decrease of 1 in the correlation coefficient

of the 24-hour day-ahead prices between day t− 1 and day t, coincides with an average increase

of e5.79 per megawatt hour in 15-minute price volatility on the imbalance market on day t. It

should be noted, though, that the R2 measure is very small for ρ(t) only—the 24-hour correlation

does not explain much variation in price volatility. Further, including control variables leads to

strong increases in the (adjusted) R2, which indicates that time fixed effects are present.

The second predictability measure, γ(t), is a broader metric of correlation, and is calculated

by the first-lag serial correlation of base load prices within a window t − 19, · · · , t with length

20. Similarly to the previous models, the constant coefficient in models III and IV is high and

significant on a 1% level. However, γ(t) is insignificant and even positive in both the stand-alone

model and the model supplemented with control variables. Combined with very low (adjusted)

R2 metrics, insufficient evidence is found for the existence of a relationship between measure

γ(t) and 15-minute price volatility on the imbalance market.
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Lastly, model-implied predictability is employed as an instrument for measuring predictabil-

ity on the day-ahead market, based on the optimal H(7,30)AR(1) model with day-of-the-week

effects. Models V and VI present a marginal positive and insignificant coefficient, as well as low

R2 measures. Therefore, no evidence is found for a negative relationship between the model

implied predictability and price volatility on the imbalance market.

Volatility
Model

I II III IV V VI

α
51.282*** 60.933*** 47.990*** 55.886*** 44.732*** 59.151***

(1.425) (2.438) (0.915) (2.254) (1.409) (15.254)

ρ(t)
-3.602* -5.790**

(1.872) (2.510)

γ(t)
1.830 2.463

(2.435) (2.444)

`(t)
1.028 0.515

(0.346) (0.344)

Time fixed effects × X × X × X

R2 0.0009 0.1018 0.0002 0.1002 0.0193 0.1281

Adjusted R2 0.0007 0.0971 -0.0001 0.0955 0.0179 0.1047

Observations 3652 3652 3633 3633 730 730

Notes: This table documents the results of six regression models. For every predictability measure, ρ(t), γ(t) and
`(t), defined in Equation 25, 27 and 28, respectively, two models are estimated. The first model includes only
the measure and a constant, whereas the second also contains time fixed effects (month-of-the-year dummies,
day-of-the-week dummies and day-specific parameter t) as control instruments. White (1980) standard errors
are mentioned between parentheses below the coefficient estimates. Significance on a 10%, 5% and 1% level is
denoted *, ** and ***, respectively.

Table 10: Regressions with daily imbalance price volatility as dependent variable

The corresponding hypothesis was formulated as follows:

Hypothesis 5 The predictability of Dutch day-ahead electricity prices relates negatively to price

volatility on the imbalance market.

Comparing all three predictability metrics, the hourly price inter-day correlation was argued

most reliable, as it incorporates real established prices instead of statistical aggregated base

load prices. Furthermore, it is day-specific and therefore very precise, in contrast to the rolling

window autocorrelation approach. Predictability implied by prediction errors was assumed as

the least reliable measure, as it is subject to model risk.

In conclusion, a negative relationship was found based on the hourly inter-day correlation.

The other two metrics are clearly undesirable in measuring predictability. Therefore, sufficient

evidence is found to support the claim of this hypothesis. On average, a lower (higher) day-

ahead price predictability, as based on the correlation with the hourly prices of the previous day,

coincides with greater (smaller) imbalance price volatility on that day.
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6.2 Market volume

Next to prices on the imbalance market, quantities are analyzed. When day-ahead price pre-

dictability is lower for a specific day t, it is likely that volumes traded on the day-ahead market

are also uncertain. In that case, the imbalance market is, indirectly, expected to be subject to

higher trade due to mismatches on the day-ahead market.

Inter-day correlation of hourly day-ahead prices between t − 1 and t, expressed ρ(t), is

analyzed first. Models I and II in Table 11 document significant constants. On average, with

(without) time fixed effects and assuming ρ(t) = 0, approximately 11.859 (9.370) gigawatt hours

are traded on a daily basis. Whereas a negative significant coefficient -2.162 is reported for ρ(t)

in the stand-alone model, controlling for time fixed effects reduces its influence to an insignificant

coefficient -0.399. Since the (adjusted) R2 increases substantially when time fixed effects are

added, model II is clearly more relevant than model I. Therefore, insufficient evidence is found for

the existence of a consistent relationship between ρ(t) and the daily imbalance market volume.

Secondly, first-lag serial correlation on a rolling window is used as a proxy for day-ahead pre-

dictability. Constants α are significant and similar to models I and II. Surprisingly, γ(t) is found

significantly positive in the stand-alone specification. Correcting for time fixed effects increases

its coefficient even more. Measuring day-ahead price predictability by means of γ(t) therefore

seems positively related to aggregated daily volumes on the imbalance market. Controlled for

time fixed effects, an increase of 1 in the rolling window autocorrelation on average coincides

with an increase of approximately 1.625 gigawatt hours in total daily volume on the imbalance

market. Again, the R2 is very small, below 1%, for the γ(t) coefficient individually. The ob-

served positive relationship is rather puzzling. A high γ(t) implies that, on average, day-ahead

prices in the window t−18, · · · , t are strongly and positively dependent on their preceding price.

However, this does not necessarily reflect the predictability for day t specifically. This approach

can consequently be interpreted as indirect and possibly inaccurate, substantiated by a very

low correlation with ρ(t) of approximately 0.05. The observed positive relationship is illustrated

by means of scatter plots (Appendix D). Although some outliers are present, removing these

does not substantially reduce the positive relationship, for both the standalone case and the

case where time fixed effects are filtered out. At least, the relationship is not negative, but the

positive relationship cannot be elucidated either.

Lastly, day-ahead price predictability is represented by the mean absolute error of the

H(7,30)AR(1) model, of which the results are presented in models V and VI. Both the stan-

dalone model and the model including time fixed effects document no significant relationship.

Emphasized by a standalone R2 of less than 1%, using the prediction errors as a measure for

47



predictability is clearly undesirable. Since market participants likely employ very different and

more complex models, not necessarily driven by time series, model risk clearly materializes.

Volume
Model

I II III IV V VI

α
11.859*** 9.370*** 9.747*** 8.312*** 13.618*** 5.408***

(0.191) (0.282) (0.115) (0.248) (0.170) (1.732)

ρ(t)
-2.162*** -0.399

(0.247) (0.274)

γ(t)
1.546*** 1.625***

(0.321) (0.293)

`(t)
0.041 -0.013

(0.037) (0.038)

Time fixed effects × X × X × X

R2 0.0194 0.2396 0.0064 0.2463 0.0023 0.1220

Adjusted R2 0.0192 0.2356 0.0061 0.2424 0.0009 0.0985

Observations 3652 3652 3633 3633 730 730

Notes: In this table, coefficient estimations are presented with the aggregated daily volume, V �
t , as the regressand,

and different predictability measures, ρ(t), γ(t) and `(t), as regressors. Time fixed effects consisting of month-
of-the-year dummies, day-of-the-week dummies and a daily factor t = 1, · · · , T , are added as control variables.
Robust White (1980) standard errors are documented between parentheses below coefficient estimates. Significant
coefficients are appended with *, ** or ***, corresponding to significance on a 10%, 5% or 1% level, respectively.

Table 11: Regression models with aggregated daily imbalance volume as dependent variable

The expected relationship between day-ahead price predictability and daily volumes on the

imbalance market was formulated by the following hypothesis:

Hypothesis 6 Daily volumes on the Dutch imbalance market negatively relate to price pre-

dictability on the day-ahead market.

As elaborated on in the previous section, inter-day hourly price correlation is considered

the optimal metric to proxy for predictability on the day-ahead market. Through a significant

negative coefficient, evidence is found for a negative relationship to exist. However, its effect

is heavily reduced to an insignificant coefficient when control variables are included. Moreover,

using the rolling window autocorrelation metric exhibits a consistent positive relationship with

predictability, which is puzzling at least. Consequently, insufficient evidence is found for this

hypothesis and for a significant negative relationship to exist. The most appealing cause for the

absence of a strong negative relationship is that market players rapidly adjust their capacity

after strong demand or supply shocks. As a result, PTU-specific shocks would be compensated

by inverse reactions and aggregating these on a daily basis would cancel out these shocks. Using

the daily averaged PTU imbalance might yield a more reliable estimate. However, this would

presumably yield very similar results to the price volatility.
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7 Conclusion

This study focuses on Dutch electricity prices. Most importantly, it attempts to fill the academic

gap in predicting day-ahead prices. Next to that, the imbalance market is analyzed by examining

its relationship with day-ahead price predictability. The research question was formulated as

follows:

Research Question To what extent are Dutch electricity day-ahead prices predictable and how

does predictability relate to intra-day imbalance trading?

Dutch day-ahead prices ranging from 2009 to 2018 are examined in a predictive framework,

based on AR(F)IMA type specifications supplemented with various extensions. Strong autocor-

relation effects are observed, and the autocovariance structure is therefore leading. Extending

different types of models with day-of-the-week dummies enhances the predictive performance.

However, incorporating month-of-the-year effects does not. Since autocorrelation is present up

to a high number of lags, long-memory properties are modelled using ARFIMA and HAR compo-

nents. Another key property of electricity prices is the occurrence of spikes. This study proposes

a new pre-filter algorithm that aims towards improving forecasting models. Although simulations

suggest that the algorithm is accurate using multiple techniques, significant forecast improve-

ments are not achieved. Based on performance as well as on parsimony, the H(7,30)AR(1) model

with day-of-the-week effects is found optimal for predictive processes, with a MAE, MSE and

MAPE of 3.478, 23.203 and 7.59%, respectively. It follows that, on average, day-ahead prices

are predictable for approximately 92%. These results are relatively in line with both Cuaresma

et al. (2004) and Kristiansen (2012), analyzing the Leipzig Power Exchange and Nordic power

market, respectively. Whereas Raviv et al. (2015) observe that HAR models do not provide any

additional power relative to the other models, the present study finds that HAR specifications

represent better and less complex alternatives to high-order AR models. Overall, it is evident

that the dynamics on the Dutch market are relatively in line with other markets, and that time

series models are appropriate in a predictive context. This study contributes to the academic

foundation of the Dutch market, and helps in building predictive pricing models.

Day-ahead price predictability is expected to influence the imbalance market, on which real-

time surpluses and shortages are traded. Whenever day-ahead prices are difficult to predict and

supply and/or demand suffer from uncertainty, the imbalance market is expected to be needed

for compensation. Using the inter-day correlation of hourly day-ahead prices as a proxy for
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predictability, a negative relationship is observed with daily price volatility on the imbalance

market. Other things equal, when day-ahead prices are highly predictable (unpredictable),

imbalance prices are relatively stable (volatile). The aggregated daily volume on the imbalance

market is not found negatively related to day-ahead predictability. In terms of volume, the

imbalance market is therefore found relatively efficient, as PTU-specific supply and demand

shocks do not have a substantial impact on the daily aggregated volume. In conclusion, this

study finds that the day-ahead market and imbalance market are related and that the lower the

day-ahead price predictability, the more price volatility emerges on the imbalance market. The

economic implication is that trading on the imbalance market can be employed as a profitable

strategy when day-ahead price predictability is low. The relationship between these markets

also emphasizes the relevance of having accurate prediction models.

The objective of this study is to build an academic foundation for Dutch electricity prices,

using a relevant and recent data set. However, since the analysis is mainly based on prediction

results, price dynamics are not studied in detail in terms of their relevance in-sample. This

represents a clear limitation. In order to disentangle the presence of the day-of-the-week effect

or month-of-the-year effect, it would be helpful to study the dummy coefficients individually.

Furthermore, it is crucial to note that the models that are employed are relatively simple.

Most importantly, they comprise only the autocovariance structure, time fixed effects and long-

memory components. In order to improve the forecasts, future studies could add additional

exogenous variables that contain valuable price information (ARMAX), such as the predicted

load or weather conditions (Kristiansen, 2012). The models could also be improved by explic-

itly allowing a time-varying volatility structure using GARCH effects (Garcia et al., 2005), or

decomposing the series by a wavelet transform methodology to attain sub-series that can be

modelled more effectively (Tan et al., 2010). Especially when analyzing large samples, model

combination techniques could be employed to allow for time-varying dynamics (Raviv et al.,

2015). Finally, as Cuaresma et al. (2004) and Raviv et al. (2015) argue, predicting hourly price

series individually is likely to improve the results relative to predicting base load prices, mainly

due to the fact that hourly prices are actually determined by the market system and exhibit a

specific mean and volatility structure (Huisman et al., 2007).
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Appendices

A Prices and returns

Model
Prices Returns

MAE MSE MAPE MAE MSE MAPE

AR(1) 4.287 35.424 9.53% 4.498 38.246 9.96%

AR(2) 4.283 35.254 9.52% 4.411 34.915 9.80%

AR(3) 4.170 32.782 9.25% 4.360 33.997 9.69%

AR(4) 4.149 32.286 9.21% 4.354 33.761 9.71%

AR(5) 4.141 31.996 9.20% 4.197 31.654 9.34%

AR(6) 3.994 29.952 8.83% 4.168 31.620 9.19%

AR(7) 3.896 29.111 8.53% 4.027 30.887 8.85%

AR(8) 3.825 28.619 8.35% 4.042 31.217 8.87%

AR(9) 3.841 28.842 8.38% 4.043 31.209 8.87%

AR(10) 3.843 28.839 8.38% 4.047 31.234 8.88%

Notes: Out-of-sample prediction metrics are reported for both
prices and returns, to determine if modelling prices is justified
as a non-I(0) series.

Table 12: Out-of-sample performance criteria for both prices and returns
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B Information criteria

Model
Full sample In-sample

AIC BIC AIC BIC

Panel A: AR(p)

AR(1) 23299.277 23317.886 18616.519 18634.459

AR(2) 23295.289 23320.101 18615.617 18639.537

AR(3) 23096.321 23127.336 18472.324 18502.224

AR(4) 23045.278 23082.496 18433.345 18469.226

AR(5) 22945.015 22988.436 18339.737 18381.597

AR(6) 22446.477 22496.101 17887.803 17935.644

AR(7) 22075.595 22131.422 17531.124 17584.945

AR(8) 21862.380 21924.410 17318.195 17377.995

AR(9) 21854.285 21922.518 17304.999 17370.779

AR(10) 21856.049 21930.486 17306.879 17378.640

Panel B: ARMA(p,q)

ARMA(1,1) 23286.616 23311.428 18611.828 18635.748

ARMA(1,2) 22713.924 22744.939 18153.383 18183.283

ARMA(1,3) 22695.512 22732.730 18138.670 18174.550

ARMA(9,1) 21856.097 21930.533 17306.890 17378.650

ARMA(9,2) 21842.172 21922.811 17294.278 17372.018

ARMA(9,3) 21843.644 21930.487 17296.095 17379.815

Panel C: ARFIMA(p,d,q)

ARFIMA(1,d,0) 22884.660 22909.470 18287.210 18311.130

ARFIMA(1,d,1) 22797.260 22828.280 18217.260 18247.160

ARFIMA(1,d,2) 22727.490 22764.710 18158.230 18194.110

ARFIMA(1,d,3) 22778.630 22822.060 18206.690 18248.550

ARFIMA(9,d,0) 21828.180 21902.620 17282.690 17354.450

ARFIMA(9,d,1) 21821.760 21902.400 17275.370 17353.110

ARFIMA(9,d,2) 21809.640 21896.480 17264.120 17347.840

ARFIMA(9,d,3) 21811.520 21904.570 17265.740 17355.440

Notes: This table documents Akaike (1974) and Schwarz (1978) (Bayesian) informa-
tion criteria, abbreviated AIC and BIC, respectively, for three model classes. A lower
metric indicates a better model that potentially yields higher predictive accuracy. In
the AR(p) family, p = 9 performs best and panel B and C are therefore based on nine
autoregressive parameters.

Table 13: Model comparisons for different classes based on information criteria
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C Spike simulation DGP

Pseudo asset prices are simulated from 2009 up to 2018 (T = 3, 652), based on the simulation

setup of Janczura et al. (2013). Essentially, both the long-term component and time fixed effects

are extracted and retained. The resulting stochastic residuals are simulated to generate a fictive

process. The main advantage of this approach is that its structure is based on real prices,

thereby providing a realistic price process.

First, the long-term seasonal component is described by a sinusoidal combined with an

exponentially weighted moving average (EWMA) component, where the latter is computed by

EWMAλ
t = (1− λ)Pt + λEWMAλ

t−1, (31)

where EWMAλ
1 is set to the average price over the whole sample. Then, the long-term trajectory

Tt is formally defined by

Tt = α1 sin

[
2π

(
t

365
+ α2

)]
+ α3 + α4EWMAλ

t , (32)

where decay factor λ = 0.975 and coefficients αi are estimated using a nonlinear regression.

Subsequently, the day-of-the-week component st is extracted by regressing Pt − T̂t = α +∑7
i=2 βiIt,i + εt and computing

ŝt = α̂+
7∑
i=2

β̂iIt,i, (33)

where It,i denotes a dummy variable indicating whether the day of the week of observation t is

i. The stochastic price component is then derived as

X̂t = Pt − T̂t − ŝt. (34)

Based on Janczura et al. (2013), extreme observations Xt exceeding a two-sided 5% confidence

interval are replaced by the mean of the interval. Further, the stochastic component Xt is

modelled by a mean reverting process that is described by

Xt = α+ (1− β)Xt−1 + σεt, (35)

where σ denotes the standard deviation. Coefficients α and β are calibrated as α̂ ≈ 0.001 and

β̂ ≈ 0.316 using real prices. Based on these coefficients, the stochastic component is generated
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by

dXt = (α− βXt)dt+ 0.8σdWt, (36)

where dt = 1 (daily frequency) and Wt ∼ N(0, 1) denotes a Brownian motion process. The

volatility component is reduced by 20% to obtain a more stable price series, that is more in line

with the Dutch market and allows for more effective testing of the pre-filter algorithm.

Based on the stochastic process described by Equation 36, a price series is generated by

adding the estimated seasonal and time fixed components. That is

Pt = T̂t + ŝt +Xt. (37)
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D Relation analysis

Figure 12: Correlation analysis between γ(t) and V �t

(a) Not corrected for time fixed effects
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(b) Corrected for time fixed effects
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Notes: Figures (a) and (b) illustrate the correlation between day-ahead price predictability based on the one-
lag autocorrelation within a rolling window of twenty days (x-axis) and the aggregated daily imbalance volume
(y-axis). It is evident that the correlation is positive, also when time fixed effects are filtered out.
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