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Abstract: The effectiveness of alternative volatility forecasting models is a thoroughly explored area. 
This study explores a less saturated topic; the effectiveness of the size of the estimation window on 
the accuracy of one-day and 126-day forecasts in foreign exchange markets. This is done using a 
rolling window methodology and forecasting 126-days ahead of our in-sample period with 
GARCH(1,1) and ARIMA(1,1,1) models. We use exchange rate data of three currency pairs; 
USD/EURO, USD/GBP and EURO/GBP over the period 21/01/2009 to 29/03/2019. This paper finds 
that generally more data increases model forecast accuracy, although this statement is not universally 
found to be true. 
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1. Introduction 
 

Volatility prediction is an essential element of risk management. Following subsequent financial crises, 

and the aftermath of the global financial crisis international and domestic regulatory requirements have 

become evermore pressing ensuring risk management is as critical as ever. Having effective procedures 

that accurately predict risk allows financial institutions to ensure they can meet internal and regulatory 

requirements. Volatility and variance are a critical component to the calculation of modern risk 

measures, such as Value-at-Risk. By accurately modelling measures such as VaR financial institutions 

can ensure not just that they are able to meet liquidity and operational requirements, but to ensure that 

they can remain solvent in periods of economic stress. The minimum liquidity requirements financial 

institutions are mandated to meet have increased in strain and complexity under the progressive Basel 

Accords (I, II, III) and so institutions must employ the most effective modelling techniques available to 

meet the demands of the modern financial world. 

There has been much investment of resources in computational finance from academic and professional 

sources and with it there have been many advances in technology and methods. Calculations that once 

took days can now be done in minutes from standard computers allowing for much more sophisticated 

methods to be employed on a commercially viable basis. As a result, there has been a great deal of 

research into the effectiveness of alternative volatility models, and derivations of those models. There 

has however been less research into the implications of other parameters involved in the modelling 

process. And so, this study aims to shed more light on an area that has received less attention to date, 

namely, the implications of how much data to use in volatility forecasting; the size of the estimation 

window. Obtaining sufficient data can often be costly, or not viable; indeed, during this study we found 

ourselves limited on data availability when calculating realized volatility and so a proxy was required. 

Given that there are often real-world strains on data availability, it is important to know the implications 

of limited data obtainability. How large are the consequences of limited data? This study aims to 

examine the implications of the size of the estimation window on the accuracy of volatility forecasts 

using two relatively basic forecasting models; GARCH(1,1) and ARIMA(1,1,1). We model next day, 

and 126 days into the future to test the implications on the short and median term. It is expected that 

longer estimation windows will result in more accurate forecasts, with the implications being much 

larger for the 126-day forecasts and the one-day forecasts. It would also be expected that the 

implications of more data are more beneficial to GARCH than ARIMA. 

The paper is structured as follows; after this introduction, the second section provides the background 

of the paper through an examination of the surrounding literature. An examination of the surrounding 

academia proves that there is a great deal of research on the effectiveness of differing volatility models, 

however, the size of estimations windows is comparatively neglected. The literature provides 
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techniques that we shall employ in this study; section three provides discussion of the theoretical 

background which provides justification of the internal workings of the models. This is then followed 

by section four which states the research hypothesises this piece of work will investigate. Next is section 

five and six which discusses the data and methodology employed within in this paper respectively, 

which provide insight into how we will address our hypotheses. We use GARCH(1,1) and 

ARIMA(1,1,1) models which are evaluated using RMSE and MAPE performance measures.  

Following this, we have an examination of our results in section seven; this paper finds that generally 

more data improves the accuracy of volatility forecasts, however this is not a unanimous result and the 

benefits are not consistent across estimation window size, models or forecast horizons. The benefits of 

more data are greater for GARCH than ARIMA and somewhat more important for 126-day forecasts 

than 1-day forecasts. The scope of this paper is limited, leaving much room for subsequent research 

discussed in section 8. The field would benefit from an investigation over a larger range of forecasting 

horizons such as 10 and 20 days due to their common reference in regulatory requirements. An 

investigation with different iterations of models would also benefit the field. The paper is then finished 

with a conclusion found in section 9. 

 

2. Literature review 
 

Volatility prediction 

 

The literature surrounding volatility prediction in financial markets is rich and has evolved greatly over 

the preceding decades. Academic and professional innovations and advances in computational power 

have allowed more sophisticated methods to be pioneered and adopted more widely, and so this field 

has continued to grow. Poon and Granger (2003) provide a summary of the literature on financial 

markets volatility forecasting and discuss how the field has changed over time. As they note, the issues 

found within financial data have become well known within the field, such as fat tail distributions of 

risky asset returns, volatility clustering, asymmetry and mean reversion. The former two of these issues, 

fat tails, and volatility clustering are closely related. Many models employed for volatility forecasting 

rely on the normal distribution whereas actual data is more clustered, often experiencing kurtosis, that 

is a higher probability of extreme returns than the normal distribution predicts. This phenomenon is 

well documented, such as the 1987 ‘Black Monday' and the 2007 global financial crisis when financial 

markets became extremely volatile. It is also common to observe skew, a difference in the third order 

moment of the distribution which occurs when data is not symmetrically distributed (Duffie and Pan, 

1997). Although, the nature of skew is often dependent on the specific asset, or even instrument. The 

story of volatility prediction is that of evolving methodologies to more accurately model data. 
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GARCH 

 

In 1982 as a means of modelling UK inflation Engle developed Autoregressive Conditional 

Heteroscedastic (ARCH) modelling. This innovation was then built upon further by Bollerslev (1986) 

extending to Generalised Autoregressive Conditional Heteroscedastic (GARCH). These models capture 

the long-run average variance which is considered heteroscedastic and they describe the probability 

distribution of returns conditionally. The GARCH model includes dependency on lags of past 

conditional variances providing greater weight to more recent data, which allows the incorporation of 

clustering found in financial data. The weights decrease as data moves back further in time; however, 

it never reaches a weight of zero. As noted by Alexander and Sheedy (2008) a drawback of GARCH is 

that the process requires a large amount of data to work effectively. 

 

The success of GARCH has led to many iterations of the model, which raises the question, which 

GARCH is best? In an attempt to answer this question Hansen and Lunde (2005) performed an analysis 

of daily movements in the Deutsche Mark-Dollar exchange rate and IBM stock returns. Through the 

use of 330 GARCH type models, they do not find evidence to support the use of more elaborate GARCH 

models for volatility estimation in the Deutsche Mark-Dollar exchange rate. However, through testing 

out-of-sample results for IBM returns, Hansen and Lunde find that asymmetric models generate 

predictions that are significantly more accurate. This is likely due to their ability to cope with the 

leverage effect, a reason for Nelson (1991) developing EGARCH, a methodology that adjusts weights 

based on if returns are positive or negative. 

 

ARIMA 

 

ARIMA or Auto-Regressive Integrated Moving Average was first popularised by Box and Jenkins in 

their 1970 seminal textbook "Time Series Analysis: Forecasting and Control". The method has since 

become a staple of time series forecasting.  The story of ARIMA begins in 1926 when Yule first 

introduced Auto-Regressive (AR) models, that is, that the output variable depends linearly on its own 

preceding values and on a stochastic term (an imperfectly expected term). Another key development 

occurred in 1937 when Slutsky (1937) introduced Moving Averages (MA) to consider the changes in 

trends over time. These two elements were combined in 1938 by Wold who created the ARMA model, 

demonstrating that the process can be used to model stationary time series data provided the appropriate 

order (p) and the number of MA (q) terms are specified. These models would then go on to be 

developed, by the inclusion of an ability for ARMA models to cope with stationarity by differencing 

(I) the data by Box and Jenkins thus creating ARIMA. 
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Due to its relative simplicity, ARIMA has become a very popular model in time-series data. Adebayo 

and Sivasamy (2014) conduct a study using ARIMA to forecast stock market returns. They find that the 

functional form of the appropriate ARIMA model is not consistent across stock markets in different 

countries. 

 

Performance Testing 

 

Performance testing is an essential aspect of any investigation into the accuracy of forecasting. There 

is a very broad selection of performance testing methods available, one of the most popular of which is 

RMSE, or root mean square error. RMSE is a performance measure that aggregates the magnitude of 

the errors, that is the difference between predicted and realized values, into a single measure of 

predictive power (Hyndman and Koehler, 2006). RMSE is the square root of the average squared errors 

which means that the effect of errors on the RMSE is proportional to the size of the squared error; thus, 

higher magnitude errors have a disproportionally large impact on the RMSE metric (Willmott and 

Matsuura, 2005). 

 

Willmott and Matsuura (2006) raised an additional concern that RMSE is inferior to Mean Absolute 

Error (MAE) due to its inability to describe the average error. MAE is simply the average absolute 

difference between the predicted and realized value. Indeed, although RMSE is not complicated, 

interpretation of MAE is much more intuitive. Despite these concerns, Chai & Draxler (2014) find that 

the RMSE is a sufficient measure to compare model predictions hence why the measure is used in so 

many studies (Taylor, 1987; Adebayo and Sivasmy, 2014; Ganbold et al, 2017). Chen et al (2017) 

discuss the limitations of both RMSE and MAE, with a primary concern being scale dependence. With 

regards to this issue, the two-performance metrics are not able to consider the relative standing of their 

errors. Without this context, it is difficult to know what the size of the metrics really means. A solution 

to this problem is the use of percentage-based measures, such as Mean Absolute Percentage Error 

(MAPE). MAPE is very similar to MAE, but with the inclusive of scale context by converting MAE 

into a percentage of the magnitude of the error relative to the observed variable. 

 

Within the literature, it is very common to use multiple performance testing criteria. A 2014 paper by 

Miswan et al compares the performance of ARIMA and GARCH models for forecasting the volatilities 

of the Malaysian Property and Equities markets from July 1997 to July 2012. Using Akaike's 

Information Criterion (AIC), Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error 

(RMSE) as performance measures they conclude that GARCH models do not outperform ARIMA. A 

rationale they provide for these findings is that there is not sufficient kurtosis in the returns for GARCH 

to offer increased performance over ARIMA. Although not mentioned in their paper, the perhaps 

inappropriate time period used in their data set could have distorting effects; the study starts in July 
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1997, the exact time of the 1997 Asian financial crisis, in which Malaysia was involved. Adebayo and 

Sivasamy (2014) using a plethora of performance measures, i.e., AIC, BIC, HQC, RMSE, and MAE 

find that ARIMA (3, 1, 1) and ARIMA (1, 1, 4) models are best at forecasting models for Botswana 

and Nigeria stock markets respectively. 

 

Horizons and Estimation periods 

 

Whilst the accuracy of alternative forecasting models has been thoroughly explored, other parameters 

in the estimation process have been comparatively neglected, including the estimation window and its 

relationship with forecasting horizons. A notable exception to this is a 2012 paper by Brownless et al 

who investigate the type of model, the amount of data to use in the estimation, the frequency of 

estimation update, and the relevance of heavy-tailed likelihoods for volatility forecasting. This study is 

conducted across a variety of assets, including equity and foreign exchange where ten exchange rates 

are examined. How much data to use in estimation becomes an important issue if parameters are 

unstable, as data that is excessively aged can bias estimates and cloud forecasts. The authors' estimates 

reveal slowly varying movements in model parameters and the results show that using the longest 

possible estimation window provides the most accurate forecast results. However, even when using 

long data histories, the paper finds that models should be re-estimated at least once per week to mitigate 

the effects of parameter drift. These results hold across the 5 GARCH based models used in the paper.  

The Brownless et al paper uses a quasi-likelihood loss (QL) and the mean square error (MSE) 

performance measures. 

 

These findings are consistent with the earlier work on estimation periods. Ng and Lam (2006) who 

conduct a study on the implications of the size of the estimation window on GARCH, MEM-GARCH 

model effectiveness for the NASDAQ composite index. Their estimation window sample sizes consist 

of 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1500, 2000 and 3000.  Through an investigation 

of the correlation of conditional variances at the different sample sizes, they recommend 1000 samples 

for GARCH and 800 for MEM-GARCH. Hwang and Pereira (2006) study the implications of small 

sample sizes for GARCH and ARCH models. Using S&P500 index daily returns and Monte Carlo 

simulations, the authors demonstrate that a high level of persistence in GARCH(1,1) models obtained 

from the use of a large number of observations have autocorrelations lower than these estimations 

suggest in smaller samples. This is consistent with negative biases in small samples in the maximum 

likely-hood estimates of ARCH and GARCH parameters. Therefore, in small samples, there may be 

significant convergence errors from the negatively biased ARCH and GARCH estimates. Considering 

the size of biases and convergence errors, it is proposed that at least 250 observations are needed for 

ARCH(1,1,1) models and 500 observations for GARCH(1,1) models. 
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The implications of forecasting horizons on volatility prediction accuracy is an important area for risk 

management. A comprehensive piece of work in this field was conducted in 2010 by Chan et al. The 

paper empirically tests how and to what extent the choice of the sampling frequency, realized volatility 

measure, forecasting horizon, and time-series model affect the quality of volatility forecast. The study 

finds that the quality of prediction is significantly affected by the forecasting horizons, that is, there is 

forecasting accuracy decay over longer horizons. The finding is intuitive; with longer forecasting 

horizons there is greater potential for forecasting errors. Similar findings are echoed by Yıldıran and 

Fettahoğlu (2017) who find that when predicting US treasury rates, short term ARIMA models 

outperform longer-term models over the years 2005-2017. 

 

Volatility forecasting in foreign exchange markets 

 

Volatility prediction in foreign exchange markets is an extensively explored field, although there 

remains much to be discovered. In a 2017 paper, Lahmiri uses various volatility models, including 

GARCH, EGARCH, and ANN (artificial neural networks) methodology to forecast US/Canada and 

US/Euro exchange rates volatilities. The paper concludes that ANN with technical analysis indicators 

outperformed conventional GARCH type models in terms of mean absolute error, mean of squared 

errors, and the Theil index. In an effort to assess the efficiency of foreign exchange markets at 

incorporating data, Pilbeam and Langeland (2014) assess the relative effectiveness of GARCH and 

implied volatility models at forecasting exchange rate volatility. Over the period 2002-2012 the authors 

find that implied volatility forecasts outperform GARCH based models in periods of high and low 

volatility. From this, the authors conclude that the results suggest markets efficiently price in future 

volatility. 

 

Amongst GARCH models there is no consensus on which models perform the best. Vilasuso (2002) 

finds that the FIGARCH model is more able to capture the salient features of exchange rate volatility 

than are the more commonly used GARCH and IGARCH models. And perhaps more importantly, the 

FIGARCH model generates superior out-of-sample volatility forecasts, and the gains in forecast 

accuracy using MAE and MSR (Mean square error) performance assessments are substantial.  Three 

years later Hansen and Lunde (2005) find that when assessing 330 GARCH type models they do not 

find evidence to support the use of more elaborate GARCH based models for volatility estimation in 

the Deutsche Mark-Dollar exchange rate. This demonstrates the lack of agreement on the topic. Further, 

Dunis and Williams (2003) examine the medium-term forecasting ability of several alternative models 

of currency volatility, including GARCH and Auto-regressive models with respect to 8 currency pairs. 

They find that no specific volatility model outperforms in forecasting volatility for the period 1991-99. 

Ganbold et al (2017) study volatility forecasting in the Turkish Lira exchange rate, which makes for an 

interesting study due to the consistent growth in political uncertainties causing volatility in financial 
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markets. The authors forecast the volatility of the TL/USD with three models, ARIMA, SARIMA, and 

SVAR. The forecast comparison by RMSE and MAE finds that the SARIMA model forecasts are more 

accurate than the other models. 

 

Realized volatility  

 

An important element of studies that evaluate volatility forecasting is what the forecasts are being 

compared to; the benchmark. Taylor and Xu (1997) and Andersen and Bollerslev (1998) show that 

measurement errors in the estimation of realized volatility can have profound detrimental implications 

on the informational content of volatility forecasts. By having an inaccurate benchmark which results 

are compared to, the validity of a study is easily questionable. An effective method of calculating 

realized volatility is through the use of intraday returns, a methodology employed by Hansen and Lunde 

(2005).  This method is powerful in that it uses a relatively large amount of data for a specific day, 

making it a precise measure. The importance of realized volatility is emphasised by Chan et al (2010) 

who assess four measures of realized volatility; intraday, total, scaled total, and close-to-close volatility 

measures. The authors find that the impact of forecasting horizon does not only depend on forecasting 

models but also on the choice of ex-post volatility. In general, the choice of realized volatility measure 

is at least as important as the choice of forecasting models. 

 

Unfortunately, obtaining intraday returns can be a challenging endeavour. Andrade et al encounter this 

problem in a 2004 conference proceeding assessing volatility in the Brazilian Real exchange rate against 

the US Dollar. As a solution, the authors aim to improve the quality of their measures of realized 

volatility by using the Parkinson (1980) estimator, which improves the efficiency of realized volatility 

measures by using information embedded in daily high and low prices. Garman and Klass (1980) proved 

that this is an unbiased estimator of volatility, which is around five times more efficient than the sample 

standard deviation. 
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3. Theoretical background  
 

This next section will provide theoretical information on the models and concepts used in this study. 

The most basic of which is our definition of return which is defined as the natural logarithm of the spot 

exchange rate at time t divided by the spot exchange rate of the previous period outlined below in 

equation 1.0. 

 

 𝑅𝑅𝑡𝑡+1 = ln (
𝑆𝑆𝑡𝑡+1
𝑆𝑆𝑡𝑡

) 

 

(1.0) 

 

GARCH(p,q) 

The GARCH model is specified by two terms p and q. These terms specify the number of lagged squared 

returns (p) and lagged variances (q) to make to make a next day (t+1) variance forecast. The model 

consists of autoregression (AR), conditional variance, and heteroskedasticity. The first of these 

elements, autoregression, specifies that tomorrows variance is a regressed-on today’s variance, hence it 

regresses on itself. The second element, conditional variance, means that tomorrows variance is 

dependent on today’s variance. The final term, heteroskedasticity, specifies that variance varies over 

time; variance is not constant. Variance, as seen in equation 2.0 in the next period denoted by 𝜎𝜎𝑡𝑡+12  is a 

function of a constant (𝜔𝜔)  plus squared returns at time t multiplied by a coefficient (𝛼𝛼𝑟𝑟𝑡𝑡2) plus the 

squared volatility at time t multiplied by a coefficient (𝛽𝛽𝜎𝜎𝑡𝑡2). The weights denoted 𝛼𝛼 & 𝛽𝛽 are calculated 

to determine the relevance of the square returns and variance of the previous period on the next period 

variance, along with a constant denoted 𝜔𝜔. The weights of denoted 𝛼𝛼 & 𝛽𝛽 must be less than 1 (2.1). 

 

 

 𝜎𝜎𝑡𝑡+12 =  𝜔𝜔 +  𝛼𝛼𝑟𝑟𝑡𝑡2 + 𝛽𝛽𝜎𝜎𝑡𝑡2 

 

(2.0) 

 Where 𝛼𝛼 +  𝛽𝛽 < 1 

 

(2.1) 
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ARIMA 

The ARIMA(p,d,q) model is characterised by three elements; p, d and q. The autoregressive term (p) 

allows for the incorporation of past values into the model by regressing the variable of interest on its 

own prior values, hence autoregressive. The moving average term (q) denotes the number of lagged 

forecast errors in the prediction equation. The third term (d) specifies the number of differences 

represented by the “I” term in ARIMA for “integrated”.  The number of differences is the difference 

between the current value and previous values which is used to remove non-stationarity from the 

forecasting equation.  

 

The Parkinson estimator realized volatility measure  

The 1980 Parkinson estimator incorporates the natural logarithm of the highest and lowest spot 

exchange rate on day t, denoted by 𝐻𝐻𝑡𝑡 and 𝐿𝐿𝑡𝑡 respectively. The equation for calculation can be found 

below in equation 3.0. 

 

𝑷𝑷𝑲𝑲𝒕𝒕 =  �
𝟏𝟏

𝟒𝟒𝟒𝟒𝟒𝟒(𝟐𝟐)
𝟏𝟏
𝑻𝑻𝒕𝒕
�(𝑯𝑯𝒕𝒕+𝒌𝒌 − 𝑳𝑳𝒕𝒕+𝒌𝒌)𝟐𝟐
𝑻𝑻𝒕𝒕

𝒌𝒌=𝟏𝟏

 

 

(3.0) 

 

RMSE 

The RMSE performance measure takes the square root of the average squared prediction error, with the 

predicted value denoted P and the observed O. The equation can be found at 4.0. 

 
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  �

∑ (𝑷𝑷𝒊𝒊 − 𝑶𝑶𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
 

 

(4.0) 

 

MAPE 

The MAPE measure takes an average of the absolute percentage prediction error, that is, the difference 

between the predicted and observed value denoted P and O respectively. By dividing the absolute 

difference between the predicted and observed by the observed value, the scale, i.e the relative size of 

the error is accounted for. This is demonstrated in equation 5.0 below. 
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𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  

𝟏𝟏𝟏𝟏𝟏𝟏%
𝒏𝒏

�
[𝑶𝑶𝒊𝒊 − 𝑷𝑷𝒊𝒊]

𝑶𝑶𝒊𝒊

𝒏𝒏

𝒕𝒕=𝟏𝟏
 

 

(5.0) 

 

 

4. Research Hypotheses  
 

Based on the findings of the surrounding literature we arrive at three formal hypotheses regarding 
our volatility forecasts in foreign exchange markets that we research in this study: 

Hypothesis one: Longer estimation periods will result in more accurate volatility forecasts  

Hypothesis two: The benefits of longer estimation periods in terms of accuracy will be greater for 
forecasts that are further into the future 

Hypothesis three: The benefits of longer estimation periods in terms of accuracy will be greater for 
GARCH forecasts than ARIMA forecasts 

 

5. Data 
 

This study investigates the currency asset class as this area had studies that were somewhat similar, but 

a significant literature gap remained that this piece of work aims to contribute to whilst being 

complementary to other research. We use exchange rate data of three currency pairs; USD/EURO, 

USD/GBP and EURO/GBP over the period 21/01/2009 to 29/03/2019. These currency pairs were 

chosen in an attempt to mitigate external factors that may interfere with our research; these pairs have 

large flow volumes and similar economic development of the countries they represent. The time period 

was chosen to avoid the unpredictability of including the global financial crises whilst being up-to date 

to remain relevant and having a sufficiently large dataset. Starting in 2009 we do not completely avoid 

the abnormal impacts of the global financial crisis; however, this was a trade-off between avoiding this 

element and incorporating more data into the study. We use closing price at 16:00 GMT for the currency 

spot rate combined with daily high and low spot rates for our calculation of realized volatility consistent 

with the Parkinson Estimator (equation 3.0). The data is obtained from Thomas Reuters Datastream. 
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Summary statistics  

Figure 1 below shows the descriptive statistics for the currency pairs used in this study. The EURGBP 

currency pair has a much lower standard deviation than either of these currencies have with the dollar, 

which could indicate that the dollar is a more volatile currency, or that the Euro and GBP  have a greater 

correlation with each other, which is very possible as the UK and Eurozone have a high degree of 

economic integration despite independent monetary policies. The EURGBP currency pair is the only 

pair to exhibit positive skew and kurtosis. This means that extreme returns in the right tail of the 

distribution i.e extreme appreciation in the exchange rate is more likely than the normal distribution 

would predict over our sample period. 

Figure 1: Descriptive Statistics 
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6. Methodology  
 

This study assesses the implications of the of the size of the estimation window in model forecasting 

accuracy. To achieve this, in its most basic form, this study assesses the accuracy of our exchange rate 

volatility predictions by comparing our forecasted results generated from alternative parameter models 

from the actual observed results in the foreign exchange markets. To assess the implications of changing 

the size of the estimation window parameter we use windows of different sizes. These include windows 

of two years, one year, half a year, and a quarter of a year. For this we require window sizes of 504, 

252, 126, 63 observations respectively to compensate for the number of trading days in a year. We use 

one-day and 126-day forecast horizons to consider the impact on forecast accuracy on short-term and 

longer-term predictions. For our one-day predictions, we use a rolling window methodology and so the 

size of the estimation window is equal to the size of the rolling window. The window moves forward 

by one for each iteration of the model with the model re-estimated for each forward roll. Our half year 

volatility forecasts predict from the end of our sample period to 126 days ahead of the in-sample period, 

which brings us to the date 29/03/2019. Most of our empirical analysis is conducted in MATLAB, with 

minor usage of excel. 

To achieve our estimations, we use GARCH (1,1) and ARIMA (1,1,1) models. The literature 

surrounding which volatility models are best employed is vast, and so as the purpose of this paper is 

not to investigate volatility model accuracy. We simplify the controversial topic and employ two of the 

most basic and common models available whilst using two models for the purpose of checking 

robustness. Once our models have been specified, we use Monte Carlo simulations to model the 

probability of different outcomes in a process that uses random variables. The use of this process 

incorporates the risk arising from the random element of our forecasting procedure. We run 1,000 

iterations for each estimate. 

To determine the accuracy of our model forecast we employ the RMSE and MAPE measures, both of 

which are commonly found in the literature. These measures compare the predicted results with the 

observed results, that is, realized volatility. To provide additional support we investigate our 126-day 

forecast errors to determine if we can see any trends that may provide further support for our findings. 

The results of our findings can be found in figure 2 with the forecast errors of the 126-day predictions 

plotted in figures 3-9; the findings of these are discussed and explained in section 7. For all measures, 

smaller results indicate more accurate volatility forecasting as our predictions are on average closer to 

the realized volatility measure. Ideally, we would have used intra-day returns to calculate daily 

volatility, however we were unable to obtain this data. To compensate, as a proxy for realized daily 

volatility we use the Parkinson (1980) estimator, which incorporates daily high and low exchange rate 

data to make a prediction on volatility. This allows us to incorporate data on the nature of daily 

movements, rather than simply the closing price, a very simple methodology. The Parkinson estimator 
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is said by Duque & Paxson (2019) to be 10 times more efficient compare with the classical volatility 

estimator, and it is crucial that our realized volatility estimate is accurate as it serves as our benchmark 

from which we compare our model estimations. 

 

7. Results 
 

In this section we discuss the findings of our empirical analysis. First, we will examine the GARCH 

forecast results, then followed by the ARIMA results. After these two elements have been discussed we 

will compare the two models results to gain a deeper understanding of the implications of the size of 

the estimation period. The GARCH results can be found in figure 2 whilst the ARIMA results can be 

found in figure 6; both of which specify RMSE and MAPE values over different estimation windows 

at one and 126-day forecasts. This is complimented by an inspection of the model 126-day forecast 

errors found in figures 3-5 for GARCH and figures 7-9 for ARIMA. The lower the RMSE and MAPE 

meaures in figures 2 and 6 the more accurate the forecast in terms of being closer to our observed 

volatility. Figures 3-5 for GARCH and figures 7-9 for ARIMA show a plot of the 126-day forecast 

errors, that is, the absolute difference between our forecasted results and the benchmark observed 

volatility for each of the three curreney pairs. The X-axis represents time in days whereas the Y-axis 

demonstrates the size of the absolute forecast errror; smaller absoute forecast errors represent more 

accurate results. 

GARCH 

Firstly, we will investigate the results from our GARCH estimation model, which can be found in 

figure.2. With regards to the one-day forecasts, we can see that the USDGBP currency pair is the only 

pair of the three to have consistently more accurate forecasts in terms of both RMSE and MAPE as the 

length of the estimation period increases. The EURGBP currency pair demonstrates more accurate 

forecasts for longer estimation periods for MAPE, however there is a marginal increase from 0.000916 

to 0.000948 between estimation periods 252 and 504 for the RMSE measure. For the USDEUR currency 

pair performance measures improve up to and including the 252-estimation period, with a noticeable 

decrease in performance at the 504-estimation period, although performance is still much greater than 

the 126-estimation period for both RMSE and MAPE. For all measures we can suggest that longer 

estimation periods increase accuracy up until the 252-estimation period at which point forecasts become 

less accurate, or the marginal rate of improvement decreases. This could indicate that there is a point at 

which too much data becomes detrimental, or less useful to forecast one-day ahead volatility. This 

evidence somewhat supports hypothesis one; a larger estimation window does increase one-day 

forecasts, but only up to a point, after which it can become detrimental or the marginal benefit decreases.  

We will now move the investigation to the 126-day GARCH forecasts. The trend in these results is 
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much more clear cut than the one-day forecasts; other than an increase in the USBGBP MAPE measure 

from estimation period 63 to 126, for the rest of the performance measures across all currency pairs 

there is persistent increase in performance with longer estimation periods for both RMSE and MAPE. 

The results indicate that longer estimation periods almost always result in more accurate 126-day 

forecasts providing significant support to hypothesis one. 

We can obtain additional support for this statement from an inspection of the 126-day absolute forecast 

errors plotted in figures 3-5. In these graphs we see that beyond the forecast period of 10 days the 504 

day estimation period forecasts are always at least as good as the other estimation period forecasts, 

having substantially lower errors than the 63-day and 126-day forecasts in all currency pairs, and the 

252-day estimation period forecasts in the USDEUR and EURGBP currency pairs, with the USDGBP 

252-day and 504-day difference appearing quite marginal. From comparison with the other currency 

pairs, it appears this is due to the USDGBP 504-day estimation period forecasts doing relatively poorer 

rather than the 252-day estimation period results delivering higher performance. Generally, the plots 

show that longer estimation periods result in lower errors, although after roughly the 60-day forecast 

the 63-day and 126-day estimation period errors converge in all currency pairs. 

The results in figure 2 appear to support hypothesis two; the trend in the 126-day forecasts is clear that 

longer estimation windows result in more accurate forecasts in the RMSE and MAPE measures whereas 

this trend is only partial, that is, up to a certain size in the one-day forecasts. 

 

Figure 2: GARCH Performance 
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Figure 3: GARCH 126-Day Forecast Errors USDEUR 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between 

forecasted and realzied volatility) 

 

Figure 4: GARCH 126-Day Forecast Errors USDGBP 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between 

forecasted and realzied volatility) 
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Figure 5: GARCH 126-Day Forecast Errors EURGBP 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between 

forecasted and realzied volatility) 

 

ARIMA 

We will now investigate the results of our ARIMA forecast, the results of our RMSE and MAPE 

performance measures can be found in figure 6. The one-day forecasts show improvements in 

performance measures up until the 252 estimation period, after which point the RMSE and MAPE 

measures degrade in performance across all currnecy pairs. This provides somewhat weak support for 

hypothesis one; a larger estimation window does increase one-day forecasts, but only up to a point, after 

which it becomes detrimental to the ARIMA forecasts. Discussing the 126-day forecasts, across all 

currency pairs there is an increase in performance as the estimation period increases with an exception; 

the 126 estimation period performs worse than the 63 and 252 estimations. This phenomenom can also 

be seen in figures 7-9 which demonstatres a plot of the absolute forecast errors. Past a forecast of 

roughly 30-days the 63-day estimation window forecasts outperform the 126-day estimation window 

results across all three currnecy pairs. Figures 7-9 also show that aside from the unexpected performance 

of the 63-day estimation, or indeed the 126-day estimation window forecasts that more data improves 

the accuracy of ARIMA forecasts. Although in general it does appear that more data results in more 

accurate 126-day forecasts, however we can only say that the results provide some support. It is 

particuarly interesting that the 126-day esimtation results are unexpected considering this is the size of 

the forecast horizon. With regards to the unexpected 63-day vs 126 day result, and we are unaware of 

any potential rationale that sufficiently explains the phenomenon. 
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The results of figure 6 do not sufficiently support hypothesis two. The one-day results increase 

performance up to an estimation period of 252, with results becoming detrimental thereafter. However, 

this is only one estimation window (504) out of the four. The 126-day results increase performance with 

the size of the estimation window in all estimation windows apart from the 126 estimation window, 

which is also one of the four. 

Figure 6: ARIMA Performance 

 

 

Figure 7: ARIMA 126-Day Forecast Errors USDEUR 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between forecasted 

and realzied volatility) 
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Figure 8: ARIMA 126-Day Forecast Errors USDGBP 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between 

forecasted and realzied volatility) 

 

Figure 9: ARIMA 126-Day Forecast Errors EURGBP 

 

The X- axis signifies time in days and the Y-axis shows the absolute forecast error (Absolute difference between 

forecasted and realzied volatility) 
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Comparison of the GARCH and ARIMA forecasts 

For the GARCH and ARIMA forecasts a general trend can be seen across both models; more data results 

in more accurate forecasts, although there are many caveats to this statement. Writing generally, for 

both models the one-day forecasts witness increased performance until a point, after which there is a 

nominal or marginal decrease in performance as the estimation period increases. This provides some 

but not universal support for hypothesis one. With the 126-day forecasts the GARCH results are almost 

universal with an increase in performance with longer estimation periods, this applies to the ARIMA 

forecasts although with an exception for the 126 day forecasts; this is the same period in which the 

GARCH 126-day forecasts notice a decrease in the MAPE performance measure in the 126-day 

USDGBP currency pair. Perhaps the rationale for this occcurance in the two models is linked, although 

this would require further investiagtion. Again, the 126-day results provides some but not universal 

support for hypothesis one. 

It appears that longer estimation periods are more critical to the GARCH one-day and 126-day forecasts 

than those of the ARIMA models, supporting hypothesis three. The GARCH forecasts performance 

measures start out very poorly at the 63 day estimation periods and generally improve drastically with 

longer estimation periods for both measures. The increase in performance is large in both nominal and 

relative terms. With the ARIMA forecasts, there is comparatively much less improvement from the 63-

day forecasts to any of the longer estimation period results. This can be observed noticabily in forecast 

error plot seen in figures 3-5 for GARCH and 7-9 for ARIMA. The benefits of longer estimation 

windows can be seen as substiantial for GARCH but comparitively marginal for ARIMA; interestingly, 

the differences in performance are apparent early on in the GARCH forecasts but they only become 

more noticable towards the end of the ARIMA forecasts. With the one-day forecasts, the improvement 

in performance of the ARIMA forecasts is indeed very small; a statement that also somewhat applies to 

the early ARIMA 126-day forecast errors. This is as would be expected; the literature notes that it is 

critical GARCH estimates have sufficient data to make acccurate forecasts, which our findings echo. 
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8. Further research 
 

The scope of this study is limited, and so the field could benefit from further investigation of elements 

this article does not sufficiently, or at all address. A primary aspect that warrants further investigation 

is the implications of estimation windows over different forecast horizons on a rolling basis. This study 

investigates rolling one-day forecasts and 126-days from the end of the in-sample period; methodology 

that investigates rolling estimation windows over 10-day and 20-day forecasts would be an important 

development for the private sector due to the importance of 10-day and 20-day forecasts in regulatory 

capital requirements. Further investigation into the size of estimation windows is also warranted; as we 

only conducted our research into four window sizes we were unable to support hypothesis two in the 

ARIMA forecasts as both the one-day and 126-day forecasts had one estimation window size that 

delivered less accurate forecasts than the window before it. Perhaps a methodology that assesses 

estimation windows on a continuous basis would be helpful, although this would be computationally 

very straining.  Another subtopic that deserves attention is the implications of the estimation window 

on different forecasting models. The performance of different models is a saturated topic and so this 

study investigated two of the most basic; GARCH(1,1) and ARIMA(1,1,1). A justified twist would be 

the performance of these models under different parameters, including the size of the estimation 

window.  

9. Conclusion  
 

Overall, this study finds that generally more data leads to more accurate forecasts in foreign exchange 

rate volatility providing some support to hypothesis one. The results are not unanimous, with some 

unexpected results. The one-day forecasts accuracy increases with more data up to a point, after which 

more data becomes detrimental, or the marginal increase decreases for both GARCH and ARIMA. 

More data is more important for the 126-day forecasts than the one-day forecasts for GARCH however 

we cannot say the same for ARIMA. Overall, this provides some but not complete support for 

hypothesis two. Having more data is more important for GARCH estimations than for those of ARIMA, 

supporting hypothesis three, which is consistent with other research. And so, if data is limited the 

detrimental impact is not so great with one-day forecasts, or when ARIMA(1,1,1) forecast models are 

used. Agents should consider which model to use when faced with limited data, or endeavour to acquire 

more data. 
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