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1. Introduction 
 
The administrative department of a hospital has to face several rather complex tasks 
regarding the construction of time schedules, one of which is scheduling surgeries of a 
varying flow of patients. Currently hospitals construct operating room schedules over 
and over again, given the list of elective patients. Elective patients are patients that 
require surgical procedures which are not emergent and therefore can be scheduled 
some period ahead in time. The current way of scheduling is a time consuming and 
complex task. Furthermore, it results in unstable operating room schedules and in 
variability in occupation of hospital beds in wards and intensive care units.  
 
The construction of a cyclical operating room schedule is one way to make 
improvements with regard to these issues. Such a cyclical operation room schedule is 
called a Master Surgical Schedule (MSS). The MSS recurrently assigns time slots for 
types of frequently performed elective surgical procedures to the available OR-days 
within the cycle. The term OR-day is used to denote the capacity of one Operating 
Room per day. The implementation of an MSS is beneficial to the hospital since it 
ensures most information about the future surgery schedule to be known on forehand.     
 
Applying the MSS, a patient will be scheduled, if possible, within one of the available 
time slots for the appropriate surgery type within the planning horizon. A planning 
horizon contains a certain number of cycles of the MSS. In case all available time 
slots of a certain surgical procedure are occupied within the planning horizon, the 
patient can be scheduled within so-called dummy space of the MSS. Using a dummy 
time slot for such a patient means that the patient can still be scheduled within the 
planning horizon, as opposed to assigning the patient to a waiting list, in which case 
the patient will not be scheduled before the end of the planning horizon. Thus, the use 
of available dummy space for a patient results in a reduction of the waiting time for 
those patients. Extending the length of the planning horizon on the other hand, 
provides us with more available time slots which are explicitly reserved for the 
appropriate surgery type. Scheduling the patient in one of those slots provides us with 
a more stable schedule, but increases the patients waiting time.  
 
Excessive lengths of waiting lists are a great issue in the Dutch healthcare system. On 
the one hand, short waiting lists seem to be desirable, while on the other hand longer 
waiting lists provide the schedule maker with a higher probability that all available 
time slots can be filled with their appropriate surgery type, which means providing a 
more stable schedule. Factors like stability in the schedule and in the amount of 
required hospital beds can help healthcare costs decrease significantly. 
 
This research consists of the following parts: 
  
• First of all, the influence of the length of the planning horizon on several factors of 
interest for both patients and hospital will be measured. These factors include 
measures like waiting time, stability of the schedule and demand for hospital beds. 
• Secondly, the effects of other input factors in the planning process are investigated. 
By other effects we mean for example including the possibility of rescheduling.  
• Also, we are interested in the relations in the demand pattern for hospital beds 
between consecutive days.    
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2. Literature Review 
 
The interest in applications of operations research to healthcare scheduling problems 
has increased strongly over the last decade. Models suggested in literature to provide 
stable cyclical operating room schedules (MSS), are even more recent. They can be 
found in [1] to [5], although with slightly different definitions of the MSS. The 
definition used in this paper is the one formulated in [5] by Van Oostrum et al.: ‘An 
MSS specifies for each OR-day (i.e. operation room on a day) of the planning cycle a 
list of recurring surgical procedure types that must be performed.’ 
 
While several approaches to improve healthcare planning are proposed in literature, 
the actual implementation of such tools in practice however, is rather scarce. This is 
due to managerial implications such as substantial influence of for instance surgeons 
and anaesthesiologists. Van Oostrum et al. [6] argue that the MSS, contrary to other 
planning approaches, is very suitable to be actually implemented in hospital 
organisations. 
 
From an operations research point of view an MSS in operating room scheduling can 
be more or less compared to an MPS in production planning. The MPS (Master 
Production Schedule) assigns production moments and production amounts to the 
available moments in time in order to meet time varying demand. Resulting from the 
MPS, an MRP (Material Requirements Planning) can be constructed. The MRP gives 
a detailed description about the need for components and raw materials necessary to 
produce the final products, present in the MPS. The similarities between the MPS to 
the MSS with respect to these features are the following:  
 

• The MPS is used to decide when and how much to produce in order to meet 
time varying demand. The MSS is used to decide when surgeries are 
scheduled, based on a varying flow of patients. Thus, the ‘demand’ in the MSS 
is the list of surgeries that need to be performed. 

• In the MPS production amounts are assigned to one of all possible time slots 
on one of all available machines. In the MSS surgeries are assigned to one of 
all possible time slots within one of all available operation rooms.  

• The MRP is a time schedule regarding the material inputs, necessary for the 
MPS to be carried out. The ‘inputs’ necessary for the surgeries of the MSS to 
be performed, are the surgeons and assisting hospital personnel. Like the MRP 
is a result of the MPS, the hospital personnel schedule is a result of the MSS. 
Also, the demand level for hospital beds is a direct result of scheduling 
patients based on the MSS. 

 
The main difference between an MPS and an MSS can be found looking at the way 
time varying demand is handled. The MPS is constructed based on the information 
about demand sizes of the coming period. Variation in future demands can result in 
variation in the production amounts and production moments prescribed by the MPS. 
Frequent changes in the MPS can induce major changes in the detailed MRP 
schedules, a phenomenon referred to as nervousness. Using the MPS, production 
amounts of several different future time periods can be produced all at once in 
advance. The products needed in order to meet future demand maintain in inventory, 
until they reach their due date. For operating room scheduling the situation is 
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different. The MSS is a fixed time schedule that contains time slots for surgery types 
that may or not may be occupied by the appropriate surgery types because of the 
varying flow of patients. When no patients are present, no surgeries can be performed. 
In that case, time slots of the MSS will remain empty. In other words, no extra work 
can be performed in periods of low demand in order to compensate future periods of 
high demand when no patients are ‘available’. Thus, an unstable MPS results in cost 
increase in the MRP process for machine scheduling, while an unstable output of the 
MSS results in instability of demand levels for hospital beds, operating room 
schedules and time schedules of hospital personnel. In order to reduce schedule 
instability in operating room scheduling, it might be helpful to look at some ways of 
improving schedule stability in production scheduling mentioned in literature.  
 
In production scheduling, one way to resolve nervousness is freezing a part of the 
planning horizon. Once the production times and production amounts within the 
frozen horizon are decided upon, they will not be changed, even when information 
about future demands beyond the planning horizon becomes available. In this way, 
using a frozen interval gives the manufacturer some certainty about the production 
amounts necessary in the near future. In [7] Shirdharan et al. use simulation in order 
to investigate the effect of the freezing method, the effect of the length of the frozen 
interval and the length of the planning horizon. The effects are measured by means of 
production and inventory cost and deterioration in customer service. The authors 
show that freezing up to 50 percent of the planning horizon has marginal effect on the 
measures just mentioned. In a next article [8], the same authors use the same input 
decisions, but now in order to measure the effect on schedule stability. In operating 
room scheduling, freezing a part of the planning horizon can be applied to improve 
the knowledge of the hospital management about the operating room and personnel 
schedules in the coming period. On the other hand, the frozen interval results in an 
increase in the patients’ average waiting time to be scheduled for surgery, since time 
slots of the frozen horizon are not available for scheduling new arrivals. 
 
In [9] Campbell and Mabert investigated cyclical scheduling in order to improve 
schedule stability in the MPS. Cyclical scheduling indicates that the time between 
production periods for each item is constant, contrary to varying intervals between 
production moments as a result of cost minimization. In fact, this same feature is 
already incorporated in the MSS: for each surgery type, the possible surgery moments 
are fixed and are repeated every cycle. Campbell and Mabert investigated the 
additional cost of cyclical scheduling. They developed a mathematical programming 
model which showed that cyclical schedules result on average in only 4.4 percent 
higher cost than non-cyclical ones. This is a bit hard to relate to operating room 
scheduling since we are mainly interested in measures like patients’ waiting time and 
schedule stability. We don’t encounter a trade-off between set-up costs and inventory 
cost like in production scheduling. Applying a cyclical schedule in production 
planning can also result in a decrease in customer satisfaction since it increases the 
average time the customer has to wait before receiving the requested products. The 
same applies to the MSS: the cyclic nature of the MSS results in an increase in the 
patients’ average waiting time, since surgeries cannot be scheduled simply at the first 
available OR-day.   
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The articles just mentioned about improving schedule stability considered a fixed 
dynamic future demand. Uncertainty about the demand levels was neglected. In 
reality however, demand forecasts of feature periods might include forecast errors. In 
[10] Neng-Pai and Krajewski investigated the effects of demand uncertainty on 
several factors, including the stability of the MPS. Uncertainty in future demand 
results in additional costs. When customer satisfaction plays an important role, a 
reasonable amount of safety stock is required in order to compensate demands which 
exceed the expected demand level. The use of safety stock in the MPS can be related 
to the use of dummies in the MSS. The amount of patients requiring a certain surgery 
type might exceed the expected amount of patients of that surgery type. Scheduling 
such a patient within dummy space can be compared to the use of safety stock in 
production planning. Without extending the patient’s waiting time, the patient can still 
be scheduled for surgery, comparable to the customer that can still receive his 
products without experiencing additional waiting time. So demand uncertainty is 
already incorporated in the MSS by the use of dummy space. Neng-Pai and Krajewski 
showed that one way of improving schedule stability is increasing the amount of 
safety stock, which can be compared to adding dummy space in the MSS.  
 
An additional way of increasing schedule stability is considering rescheduling. 
Different ways of rescheduling in production planning are mentioned in [11] to [13]. 
For the MPS rescheduling means adding or deleting orders. It involves minimizing 
costs resulting from schedule changes related to lower-level items. The higher the 
number of levels the MRP contains, the more complicated the rescheduling 
optimization will get. This is a problem we will not encounter when rescheduling in 
the MSS, since increasing stability in operating room schedules merely comes down 
to trying to fill all time slots with the appropriate surgery type. As the stability in the 
operating room schedule increases, the stability in the resulting personnel schedules 
and hospital bed occupation levels will increase as well.  
 
An analytical approach of deriving performance measures of appointment driven 
systems, like hospitals and doctors offices, is described in [14] and [15]. Both articles 
use a vacation model in order to derive the performance measures of the system. In 
the first article two queuing systems are combined within one analytical model. First, 
the queuing system that starts when making the appointment up to the arrival at the 
service facility is considered. Second, the customer will arrive into a next queue at the 
service facility itself. Article [15] considers appointment driven systems without that 
second queue. Another difference between these two articles is the kind of arrival 
distribution that is used in the model. 
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3. Problem description 
 
Let OR-day (i,j) denote operating room number j on the ith day within the cycle. We 
define the MSS as a cyclical operating room schedule which specifies for each OR-
day (i,j) of the planning cycle a list of recurring surgical procedure types that must be 
performed. This schedule contains only types of surgery which occur on average at 
least once per cycle (category A surgeries). Slack is located within the MSS for the 
surgery types which occur on average less than once per cycle time (category B) and 
for emergency operations (category C). The slack for category B surgeries is 
represented in the MSS by so called dummies. Resulting from these definitions, the 
choice of the length of the cycle determines the number of category A surgeries and 
thus the amount of planned slack for category B surgeries.  
 
Consider an MSS which contains surgery types of different specialties. Suppose all 
possible surgeries within each specialty are divided into a number of different surgery 
types. We will introduce the following notations, which will be used throughout this 
report. 
 

• I  The set of surgery types 
• S The set of specialties 
• ais Surgery type Ii∈ of specialty Ss∈ , belonging to category A 
• bis Surgery type Ii∈ of specialty Ss∈ , belonging to category B 
• λis  The expected arrival rate of surgery type i of specialty s  
• nis The number of time slots of type ais included in the MSS 

 
Figure 1 graphically shows the process of using available time slots when scheduling 
patients for surgery by means of the MSS. 
 

 
Figure 1: available OR days in the rolling horizon planning process, planning horizon 4 weeks 



 9

The cycle length of the MSS which will be considered in this research is one week. 
This means that after each week the schedule containing available time slots for 
category A, B and C surgeries repeats itself. The length of future period that is 
considered to schedule the current list of patients, is called the planning horizon. The 
planning horizon contains an integer number of cycles which is a variable factor in 
this research. Patients that don’t fit within the planning horizon end up on the waiting 
list. As mentioned before, elective surgeries (category A and B) are scheduled some 
time ahead. In this research, the minimum period between the arrival of a patient and 
the planned surgery date is one week, which corresponds to one cycle length of the 
MSS. Thus, we will make use of a frozen horizon with the length of one week. All 
patients arriving during a certain week are accumulated. Next, they will all be 
scheduled, if possible, within the planning horizon, but without using the time slots of 
the upcoming week. Since patients can’t be scheduled within the first cycle, the 
planning horizon should contain at least two cycles in order to be able to assign time 
slots of the MSS to these patients. 
 
The length of the planning horizon in figure 1 is four weeks. The patients that have 
arrived during the previous week are accumulated. So at the start of week 1 we have a 
list of patients that have arrived during week 0. These patients can be scheduled 
starting from week 2, up to and until the end of week 4. Each patient of category A 
will be scheduled within the first available time slot of its own surgery type ais. If the 
total of all nis time slots for type ais are occupied within this planning horizon, the 
patient will be scheduled in the first available dummy space. A patient of category B 
on the other hand, will be scheduled, if possible, in the dummy space mentioned right 
away. A distinction is made between dummies assigned to different specialties.  
 
In case a patient cannot be scheduled within the available dummy space, again all 
dummies will be checked, but now by adding some planned overtime. This feature is 
included, because it reflects reality. Consider for example a surgery which has an 
expected duration of 80 minutes. If an OR-day has an available dummy space of only 
70 minutes, in reality this OR-day is likely to be used for this surgery nevertheless. In 
doing so, one ends up with a planned overtime of ten minutes. We have decided upon 
a maximum use of planned overtime of 50% of the capacity that is assigned the 
category C surgeries within the OR-day.  
 
If a patient cannot be scheduled within the planning horizon, the patient will be 
assigned to a waiting list. Next, when simulating the flow of patients at week 2, the 
end of the planning horizon will move to the end of week 5. Before trying to schedule 
the patients just simulated, we first check for newly available time slots to schedule 
the patients from the waiting list in. Continuing in this matter, at each following week 
the schedule is extended by one week again. This extending feature, while 
maintaining the surgeries scheduled so far, is called a rolling horizon. This process is 
illustrated in figure 2. The ranks 1 and 2 denote the order in which the patients are 
scheduled. Patients on the waiting list are scheduled before the new arrivals. 
 
Figure 2 shows a decision chart, containing all scheduling decisions just mentioned. 
The list of simulated patients contains both category A and B patients. It contains no 
category C patients, since emergency patients cannot be scheduled on forehand. 
Starting from the top of the list, the patients are scheduled in descending order. 



 10

Figure 2: decision chart for scheduling patients 
 
 
The main object of this research is investigating the effect of the length of the 
planning horizon on several performance measures. The following measures will be 
considered: 
 
• The patient’s waiting time (average value and distribution) 
• The length of the waiting list 
• The percentage of category A surgeries scheduled in A time slots 
• Planned overtime (the amount of times it occurs and its average duration)   
• OR utilisation, which indicates the percentage of used capacity 
• Demand for hospital beds (average value and distribution) 
 
The exact definitions of these performance measures will be discussed in section 5.4. 
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4. Data      
 
The data that is used in this research originates from the urology and general surgery 
department of the Dutch Beatrix Hospital. First, the main features of the patient data 
are described in section 4.1. Next, a division of the surgery types of both departments 
is shown in section 4.2, each with their own expected surgery duration. Based on this 
specific data, an MSS has been designed which will be presented in section 4.3. 
Finally, the available dummy capacity resulting from the MSS and the capacity of 
both departments will be given in section 4.4. 
 
4.1 Patient data 
Since we consider data originating from two different departments, we have { }2,1∈s  
in this research, were 1=s denotes general surgery and 2=s denotes urology. Both 
departments are categorized into thirteen different surgery types, { }13,,2,1 K∈i . Data 
about the surgeries that took place in both departments during one year is available. 
For each patient, information is given such as: specialty (urology or general surgery), 
surgery type, surgery duration and the time spent in the ward. The data file contains 
information about a total of 1862 patients.  
 
4.2 Expected surgery times 
The following table shows the expected surgery durations and yearly frequencies for 
each surgery type of both the urology and general surgery department. The values are 
based on the one-year-patient data.  
 

  Duration 
(minutes) 

Frequency  
(per year) 

Surgery 
type 

General 
surgery 

Urology General 
surgery 

Urology 

1 196 54 59 137 
2 41 108 418 3 
3 217 37 10 93 

4 67 65 3 94 

5 223 186 10 3 
6 60 121 463 6 
7 285 298 8 6 
8 146 124 58 2 
9 85 53 156 60 
10 65 169 7 14 
11 70 421 184 2 
12 83 333 50 10 
13 423 131 2 4 

Table 1: Expected surgery durations and yearly frequencies 
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4.3 MSS 
An MSS specially designed for the urology and general surgery department of the 
Beatrix Hospital is used in this research. The MSS has been constructed by means of 
optimisation with regards to the OR utilisation and the stability of its resulting 
demand for hospital beds. The OR-days within the MSS contain time slots that will be 
used for category A patients and those that will be used as dummy space. All OR-days 
contain a certain amount of time that is supposed to remain unoccupied for the 
emergency surgeries. A distinction is made between the dummies assigned to the 
urology department and the dummies assigned to the general surgery department. No 
adjustments to this schedule will be made. Only the effects of the ways of applying 
this MSS will be investigated. The cycle length of this MSS is exactly one week, it 
contains 40 surgeries divided over a total of ten OR-days, see table 2.  
 

 Day 1 1 2 3 3 4 4 5 5 5 

 OR 2 3 3 2 4 2 4 2 3 4 

specialism type                     

General surgery 1     1               

General surgery 2   2 1 5     1       

General surgery 6 6 1 2 1             

General surgery 8           1         

General surgery 9               2 1   

General surgery 11           3 1       

General surgery 12             1       

General surgery dummy             1 1     

Urology 1                   3 

Urology 3         2           

Urology 4         1         1 

Urology 9         1           

Urology dummy                   1 

Table 2: The MSS 
 
4.4 Dummy capacity  
The MSS just given, contains dummies specifically assigned to certain OR-days. 
However, we checked all OR-days for possible overcapacity which could be added to 
the dummy space as well. The available dummy capacity per OR-day is determined 
by the difference between the total capacity and the planned capacity for type A and C 
surgeries. The planned capacity for type A surgeries follows directly from the 
expected durations of the surgeries within the MSS. The time assigned to type C 
surgeries, the emergency surgeries, results from the following restriction: 
 

Capacity for C = (1 – norm utilisation) · Total Capacity  
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For the urology and general surgery department a norm utilisation of respectively 
81% and 75% is used. OR-days (3,4) and (5,4) are used for urology procedures. The 
other eight OR-days are assigned to the general surgery department. Applying this 
information on the given MSS, combined with available data about the total capacity 
per OR-day, one gets the following result for the available time left for dummy 
surgeries, shown in table 3. 
 

Day 1 1 2 3 3 4 4 5 5 5 
OR 2 3 3 2 4 2 4 2 3 4 
total capacity 480 210 480 480 270 480 480 480 210 480 
type A capacity 357 141 356 264 192 357 195 171 85 225 
type C capacity   120 53 120 120 51 120 120 120 53 91 

time left for type B  
capacity  

3 16 4 96 27 3 165 189 72 164 

 

  General surgery dummy space 

  Urology dummy space 

Table 3: division of scheduled time between surgery types per OR-day 
 
The MSS prescribes that the dummy time that results in OR-days (4,4) and (5,2) will 
be used  exclusively for dummies from the general surgery department, while OR-day 
(5,4) is meant to be used only for dummies from the urology department. How to 
handle the available capacity in the remaining OR-days is discussed in section  
5.2.2. 
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5. Simulation 
 
We have decided upon the use of simulation, because the problem is too complex to 
derive all desired performance measures analytically. Although the situation 
considered in this research is an appointment driven system which resembles the 
system mentioned in [15], the methods suggested in the article are not suitable for this 
research. First of all, the vacation models do not include the use of dummy space for 
appointments. Since the use of dummy space is a main feature of this problem, 
deriving analytical performance measures disregarding the use of dummies does not 
seem appropriate. Next, the vacation models include certain aspects that don’t apply 
to this research, like the possibility of arrivals that receive immediate treatment if they 
arrive during the appropriate time slots (vacations) in case the queue is empty. This is 
certainly not the case for this problem, since we assume a frozen horizon of the first 
week in this research. Therefore, the solution methods of the vacation models are not 
appropriate to evaluate this case analytically. 
 
The simulation process consists of the following steps. First of all, we will explain 
how a weekly flow of patients is simulated and scheduled within the planning horizon 
(section 5.1). Next, we will define input and output variables of the simulation process 
(section 5.2 and 5.3). The input factors are decisions and assumptions regarding the 
scheduling process. Different input factors result in different output factors. By 
varying between the possible input factors we will create different scenarios of which 
the performance will be measured by means of the output factors. A choice is made 
for all input factors in order to construct a basic scenario (section 5.4). Next, we will 
explain how much cycles are included within one simulation run. This is done by 
determining the warm-up period and the run length. The warm-up period contains at 
least the amount of cycles the system needs in order to arrive at a stable situation 
(section 5.5). After the warm-up period a certain amount of cycles and simulations is 
used to evaluate the effect of the inputs in the different scenarios (section 5.6). The 
figure below gives an overview of the inputs and outputs that will be discussed in the 
next sections. 
 

 
5.1 Simulating and scheduling patients 
First, assumptions with regard to the arrival process of the patients will need to be 
made. For our data, the distribution should have an expected value of 40 patients per 
week (rounded down to an integer number of patients). Then, for each cycle, a 
realisation out of the arrival distribution is drawn to represent the amount of patients 
that will be randomly selected out of the patient data. The choice of simulating only 
once per cycle time, as opposed to simulating a continuous flow of patients, is 
because of the use of a frozen first cycle in the planning process. All patients arriving 
during a certain week, are accumulated at the start of the next week. Thus, simulating 
a continuous flow of patients is not necessary. 
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This research covers only the scheduling of elective patients, which means that only 
the flow of category A and B patients will be simulated. In the MSS a certain amount 
of capacity will be left open explicitly for category C, the emergency patients. For 
each patient that is selected out of the data in the simulation, its surgery type is 
known. And for each type of surgery the expected surgery time is given, as in table 1. 
In this research the expected surgery time will not be simulated. Instead, the surgery is 
assumed to require exactly the amount of time expected. Since this MSS is already 
assumed to be optimal with respect to the expected OR utilisation, taking empirical 
values of the surgery durations in the simulation is not of interest. After we have 
simulated the patients that have arrived during one week, these patients need to be 
scheduled for surgery. This is done as described in chapter 3.  
 
5.2 Input decisions 
Several decisions and assumptions regarding the input of the simulation and 
scheduling process have to be made. By selecting one of the possible options for each 
of those input variables, we create a certain scenario. In the next subsection, one of all 
possible scenarios is chosen to be the so-called ‘basic scenario’. After evaluation of 
the performance of this basic scenario, the next scenarios will be obtained by differing 
only one of the input factors, ceteris paribus. In this way the effect of the individual 
input parameters on the performance measures can be evaluated. Since the main 
object of this research is investigating the effect of the length of the planning horizon, 
we will first create scenarios by only changing the length of the planning horizon. 
Next, the effect of other input decisions, which will be mentioned in this subsection, 
will be measured likewise.    
   
5.2.1 Arrival process 
A common assumption in queuing theory is that the arrival process follows a Poisson 
distribution. Applying this assumption to this research, we set the expected value of 
the arrival distribution equal to the average number of patients arriving during one 
cycle. A drawback of the Poisson distribution is that its first and second moment are 
the same. That is, the variance equals the expected value. The data does not allow us 
to make any judgements about the variance of the arrival process, since it contains 
only surgery dates and no arrival dates. A way to implement a variance that differs 
from the expectation is by applying another commonly used arrival distribution. In the 
scenarios we will select between the use of either the Poisson or the Gamma arrival 
distribution. The Gamma distribution has two parameters which result in separate 
values for the first and second moment.  
 
The expected value of the arrival distribution, obtained by the data of this research is 
rounded down to the integer number of 40 patients per week. The Beatrix Hospital 
performs elective surgeries only during a total of 46 weeks within one year. The MSS 
has been constructed, using this information. The total number of surgeries performed 
in one year, was divided by 46 in order to obtain the average number of 40 surgeries 
performed per week. Arrivals of elective patients can only take place during the 46 
weeks in which the hospital is open. Furthermore, the length of the waiting list at the 
end of the year was about the same as at the beginning of the year. Thus, the average 
number of arrivals per week equals the average number of performed surgeries per 
week. 
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For a Poisson distributed variable X we know that λ== )()( XVarXE , which means 
that using a Poisson distribution with 40=λ implies not only a mean of 40 patients 
per week, but also a variance of 40. In case X is Gamma ( )βα ,  distributed it holds 
that αβ=)(XE and 2)( αβ=XVar . Applying this to our data with 40)( =XE we will 
define scenarios using the following three settings: 
 

20)(
5.0

80
=

⎭
⎬
⎫

=
=

XVar
β
α

  80)(
2
20

=
⎭
⎬
⎫

=
=

XVar
β
α

  160)(
4
10

=
⎭
⎬
⎫

=
=

XVar
β
α

 

 
We do not simulate a gamma distribution with a variance of 40 since this resembles 
the Poisson distribution with 40=λ quite a lot. Furthermore, we decided to include a 
benchmark scenario at which the constant value of 40 patients will be simulated every 
cycle, which implies zero variance. The probability density functions of the above 
three Gamma distributions are shown in figure 11 in appendix B.1. Figure 12 in the 
same appendix shows the similarity between the probability density functions of a 
Poisson and a Gamma distribution, both with 40)()( == XVarXE . 
 
5.2.2 Lower bound on dummy space 
The MSS prescribes that the available dummy time that results in OR-days (4,4) and 
(5,2) will be used exclusively for dummies from the general surgery department, 
while OR-day (5,4) is meant to be used only for dummies from the urology 
department (see table 2, the MSS). Using only the available dummy capacity of these 
three OR-days, would be a waste of the available time in the other OR-days shown in 
table 3. OR-day (3,2) for example contains an unplanned capacity of 96 minutes 
which could well be used for scheduling dummy surgeries with a relatively short 
expected duration. On the other hand, table 3 also shows that the capacity of certain 
OR-days is almost fully assigned to type A and type C surgeries. OR day (1,2) for 
example, contains no more than three minutes of unplanned capacity. Because we 
would like to avoid planned overtime as much as possible, it seems reasonable to 
prescribe a lower bound on the available unplanned capacity before assigning it to the 
dummy space. 
 
For our data, the shortest expected surgery duration is 37 minutes (urology, surgery 
type 3). In practice it does happen that hospitals allow some planned overtime when 
scheduling surgeries. If the surgery with the expected duration of 37 minutes would 
be scheduled in OR-day (3,4) one would allow 10 minutes of planned overtime. Since 
cases like these happen in practice, it seems reasonable to define a minimum number 
of minutes of free capacity that an OR-day should contain, in order for it to be used 
for dummy surgeries. Another way to define the lower bound could be to take a 
certain percentage of the shortest expected surgery duration. Including the 27 minutes 
of OR-day (3,4) in the dummy space and excluding the OR-days with less time 
available for dummy space could be a choice for this research case. Adding a 
maximum allowed overtime of 50 percent of the type C durations to the dummy space 
that remains after applying the lower bound, one obtains the available dummy 
capacities given in table 4. Six OR-days remain in which dummy scheduling is 
allowed. Three of which have a specific department to which they are assigned, while 
the other three can be used for surgeries out of both the urology and the general 
surgery department. 
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Day 1 1 2 3 3 4 4 5 5 5 
OR 2 3 3 2 4 2 4 2 3 4 
• dummy space with  
lower bound 20 minutes 

0 0 0 96 27 0 165 189 72 164 

• dummy space with 
lower bound & 50% of C 
for planned overtime 

0 0 0 156 53 0 225 249 99 210 

 

 General surgery dummy space 
 Urology dummy space 

Table 4: available dummy space, without and with the possibility of planned overtime 
 
In general, for deciding upon the available dummy space within the MSS, a lower 
bound needs to be defined on the remaining unassigned capacities in the OR-days. 
Within the scenarios we will vary this lower bound between two absolute levels: 20 
minutes (which includes OR-day (3,4)) and 40 minutes (which excludes OR-day 
(3,4)).  
 
Looking at the available dummy capacity in table 4 and the expected surgery 
durations of each surgery type, we notice five surgery types of which the expected 
duration exceeds the maximum available dummy space of 225 minutes. These five are 
all category B surgeries and they do not occur very often, as the yearly frequencies 
show. Still, a way to handle such surgeries has to be determined. We have decided 
upon scheduling these surgeries in the fist OR-day which has one of the three highest 
dummy capacities. This means using OR-day (4,4), (5,2) or (5,4) only if no dummy 
capacity of the OR-day has been already used for other surgeries. To ensure available 
capacity for these surgeries, we schedule these types before any other type within the 
planning process. 
 
5.2.3 Distinction between dummies 
In the MSS a distinction is made between the OR-days that are explicitly assigned to 
one specialty (see table 4). By allowing other specialties to use the restricted dummy 
space as well, one obtains more flexibility in the use of the MSS. It’s questionable 
whether this relaxation has that much influence on the performance measures. This 
will be investigated by adding a scenario which disregards the distinction between 
urology and general surgery dummies.  
 
5.2.4 Shift ‘late’ A surgeries from dummy to A space 
Once surgeries have been scheduled for the coming period, it could be beneficial to 
consider rescheduling some of those surgeries. In particular, we would like to 
consider scenarios in which category A surgeries that were initially scheduled in 
dummy time slots are rescheduled, if possible, into newly available category A time 
slots. New time slots are the ones that are present in the cycle which is added to the 
future planning schedule, the moment the horizon ‘rolls’ forward. The implementation 
of this replanning feature is considered because it provides a more predictable (or 
stable) schedule. Waiting time on the other hand increases for the particular patients.  
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Surgery ais was initially scheduled within dummy space only if all time slots for ais 
within the planning horizon were already occupied. When more than one surgery ais is 
initially scheduled within dummy space, selecting the one which was scheduled the 
furthest ahead in time gives the least increase in waiting time. For implementing this 
feature, we need to define a replanning horizon. This is the number of cycles which 
are considered to reschedule surgeries from, starting from the end of the planning 
horizon and counting backwards the number of cycles of the replanning horizon.  
 
To illustrate this replanning feature, figure 3 shows rescheduling surgery type a42 for a 
planning horizon of four weeks and a replanning horizon of two weeks. The available 
time slots are located in the MSS on the fifth and tenth OR-day, (3,4) and (5,4).  
The order of scheduling is indicated in figure 3 by ranks 1, 2 and 3. This means that 
rescheduling takes place in case one or more type a42 time slots remain empty after 
the regular new arrivals have been scheduled. In this example, only one type a42 
patient arrived during week 1, which results in one OR-day left empty in week 5. The 
first type a42 surgery considered for rescheduling is the one originally scheduled in 
dummy space of week 4. Thus, this surgery is rescheduled to the available type A 
time slot of week 5. In case both OR-days of week 5 would have been empty, the 
surgery scheduled in dummy space of week 3 would have been rescheduled as well. It 
is possible that type A time slots of the last week remain empty, even after 
rescheduling. This happens when the number of available ais time slots after 
scheduling the new arrivals exceeds the number of ais surgeries present in the 
replanning horizon. We will construct scenarios by defining different replanning 
horizons containing an integer number of weeks. Note that the length of the 
replanning horizon cannot exceed the length of the planning horizon -1 because of the 
rolling horizon. 
 

 
Figure 3: Rescheduling a42 from dummy to A slot. Planning horizon: 4. Replanning horizon: 2. 
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5.3 The basic scenario 
For all of the previously mentioned input factors in the simulation and planning 
process, one of the possible options is selected in order to obtain the basic scenario. 
The input parameters we have selected to define the basic scenario are the following: 
 

• The arrival process is assumed to be Poisson distributed, with the parameter 
for expected value and variance of 40 patients per week. 

• The lower bound on available unscheduled capacity for it to be used as 
dummy space is set at 20 minutes. Applying this to our data, OR-day (3,4) is 
included in the available dummy space. 

• The distinction between urology and general surgery dummies is 
implemented as prescribed by the MSS. 

• No shifting of category A surgeries from dummy space to newly available 
category A time slots will take place. 

• The planning horizon chosen for the basic scenario is five weeks. 
 
5.4 Performance measures 
Since we are interested in the effects of the length of the planning horizon and the 
other input variables just mentioned, we need to define the measures by means of 
which these effects will be evaluated. 
 
With the use of a relatively long planning horizon two issues occur. On the one hand, 
we are likely to obtain a stable schedule, since category A patients are provided with 
more available time slots of their own type and thus they are less likely to be 
scheduled in a dummy OR-day. On the other hand, the waiting time for those patients 
is likely to be larger than it would have been with the use of a shorter horizon. Since 
short waiting times and stability of the schedule are the two conflicting issues here, 
we are interested in measurements of the patients waiting times, the amount of 
patients that end up on a waiting list and the number of category A patients do and do 
not end up being scheduled within a time slot of their own surgery type. Also, we will 
measure the amount of planned overtime, the OR utilisation and the demand pattern 
for hospital beds resulting from the scheduling process. These performance measures 
are described in the next subsections.       
 
5.4.1 Waiting time 
The waiting time of the patients will be expressed by the number of weeks it takes 
between the arrival of a patient and the scheduled date of surgery. Consider a patient 
arriving at week 1. The patients that have arrived during week 1 are accumulated at 
the beginning of week 2 and are scheduled in available time slots starting from week 
3. The reason for this is the prescribed minimum period of one week between the date 
of arrival and the surgery date. On average though, if a patient arriving at week 1 is 
scheduled for surgery at week 3, the patient has been waiting for two weeks. During 
the simulation we will keep track of the waiting times in integer number of weeks, 
which implies a minimum simulated waiting time of two weeks for any patient. We 
will not only consider the average waiting time per patient, but also the distribution of 
the waiting time. Finally, we will also consider the proportion of patients that have to 
wait eight weeks or less. We include this last measure because hospitals often agree 
with health insurance companies upon an upper bound of this proportion. 
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5.4.2 Length of waiting list 
The length of the waiting list is another measure to make judgments about a scenario. 
Like mentioned earlier, long waiting list don’t seem desirable from the patients’ point 
of view. For the schedule maker however, the more patients on the waiting list, the 
less likely it gets that time slots will not be filled. In other words, long waiting lists 
are more likely to provide a stable schedule.  
 
Because of the problem description we only consider patients to be on the waiting list 
when they don’t fit within the current planning horizon. The consequence of this 
definition is that a short waiting list or no waiting list at all, does not necessarily 
imply that the patients don’t have to wait relatively long before their surgery, 
especially when a long planning horizon is used. Thus, this performance measure is 
one that is only of interest for the schedule maker.  
 
When the capacity of all OR-days exceeds the expected OR utilisation, which is the 
case for our data, we expect the waiting list to decrease when we increase the 
planning horizon. A patient ends up on the waiting list when its surgery type does not 
fit within the planning horizon. For longer planning horizons, weekly arrivals which 
exceed the number of available time slots within one cycle, can be compensated by 
lower arrival amounts of other weeks, all within the same planning horizon. 
Statistically, adding different realisations out of the same arrival distribution results in 
a decrease in the standard deviation of the average of the realisations. Thus, the 
expected amount of patients that end up on the waiting list decreases, especially when 
the total available capacity exceeds the expected need for OR capacity. 
  
5.4.3 Percentage of A scheduled in A 
One way to express the stability of the schedule is by keeping track of the percentage 
of type A surgeries that will be scheduled in the type A time slots of the MSS. Type A 
patients that don’t get to be scheduled within category A time slots are the ones that 
were placed in dummy space because the A time slots were already fully occupied 
within the horizon. As we just explained, the expected amount of patients ending up 
on the waiting list decreases as the planning horizon increases. The same holds for the 
proportion of type A patients ending up being scheduled in a dummy time slot. Thus, 
we expect increasing rates of type A patients that do fit within type A time slots, as 
we increase the planning horizon.  
 
5.4.4 Planned overtime 
Since we use the expected surgery durations in the simulation, the amount of overtime 
resulting from category A surgeries within the appropriate time slots prescribed by the 
MSS, is left out of consideration. The expected overtime in the OR-days containing 
dummies on the other hand, is a feature that defers per simulation, depending on the 
surgeries that are scheduled in the OR-day. Like mentioned before, each OR-day 
contains a certain amount of time that is assigned to the possible arrival of emergent 
patients. A dummy OR-day contains planned overtime when some of the time for 
category C patients is used for scheduling the elective patients. Because of this 
possibility, we will keep track of the total amount of this kind of expected overtime 
and the number of times it occurs. 
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5.4.5 OR utilisation 
We define OR utilisation as the percentage of OR capacity that is used to schedule 
elective surgeries in. Since surgery durations are not taken stochastically in the 
simulation, we measure the expected surgery time of the scheduled surgeries relative 
to the available OR capacity. We will distinguish three types of OR utilisation:  
 

1. The proportion of the total available minutes of OR capacity of all OR-days 
(the first row of table 3) that is used for scheduling all types of surgery. 

2. The utilisation of the time capacity of the type A slots in the MSS (the second 
row of table 3). These slots can only be occupied by type A surgeries. 

3. The utilisation of the dummy time slots, including the extra capacity of 50 
percent of the capacity for type C surgeries (the second row of table 4). The 
dummy slots are used to schedule both type A and type B surgeries in.  

 
We expect no change in the overall OR utilisation when changing the planning 
horizon since the overall expected surgery time only depends on the expected amount 
of arriving patients. For the OR utilisation of type A and B slots on the other hand, we 
do expect a changing pattern when changing the planning horizon. All elective 
surgeries are scheduled at least one week ahead. It is possible that the upcoming week 
contains certain type A time slots that remain empty. When this happens the hospital 
experiences lower utilisation of the type A time slots. The longer the planning 
horizon, the less likely this is to happen. For a planning horizon of two weeks, the 
only arrivals available to occupy the time slots of the upcoming week are last week’s 
arrivals. For longer planning horizons however, the arrivals of previous weeks also 
could have possibly helped avoiding empty type A slots of the upcoming week. 
 
5.4.6 Demand for hospital beds 
In the simulation process, each cycle a number of patients is randomly drawn from the 
given patient data. For each of these patients the number of days the patient spent in 
the hospital to recover from surgery is given. These individual periods are used in the 
simulation process by means of which the daily number of required hospital beds can 
be reported in the end. The levels of required hospital beds were taken into account 
when the MSS was designed. The goal is to keep the demand for hospital beds within 
a certain range. Whether or not this range will also result from applying the MSS to 
the simulated patient data, will be shown by the performance measures which give the 
mean and standard deviation of the demand for hospital beds. For the demand levels 
we make a distinction between weekends and the days from Monday to Friday. The 
average levels are likely to be different since no patients are scheduled for surgery 
during weekends.  
 
5.5 Warm-up period 
Plotting the weekly results of a performance measure, one can visually determine the 
time period it takes before the performance remains in a certain stationary situation. 
Stationarity means that the unconditional mean, unconditional variance and  
autocorrelations of the observations are constant over time (p.130 [16]). Applying this 
to all performance measures and taking the maximum of the required time periods for 
the process to reach stationarity, gives us the warm-up period. 
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Of course, some performance measures will be more suitable than others when it 
comes to identifying the warm-up period. The performance measure ‘length of the 
waiting list’ for example doesn’t seem suitable because the waiting list might stay 
empty forever, especially when using a long planning horizon. A more suitable 
measure would be to look at the number of patients that are scheduled at least two 
weeks ahead. Consider for example a planning horizon of four weeks. Patients 
simulated at the start of week i are scheduled between the start of week i+1 and the 
end of i+3, if possible. At the beginning of the simulation process, say at week 1, it is 
not likely that patients simulated at the very first cycle end up being scheduled 
somewhere in week 4 already. But as time ‘rolls on’ the use of time slots beyond the 
upcoming week gets more likely. Thus, the number of patients scheduled at least two 
weeks ahead, which means in this case between week i+2 end i+4, seems a good 
measure for determination of the warm up period. Note that this measure doesn’t exist 
when a planning horizon of two weeks is used.  
 
The longer the planning horizon is chosen, the more time the system is expected to 
take to become stationary. Therefore, we have measured the weekly number of 
scheduled patients beyond the upcoming week for a planning horizon of 50 weeks. 
This is the highest length of the planning horizon that we will investigate. We’ve 
plotted four of these time series to determine the warm-up period. 
 

Number of surgeries scheduled at least 2 weeks ahead. 
Planning horizon = 50.
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Figure 4: times series of the number of surgeries scheduled at least two weeks ahead of four 
independent simulations with a planning horizon of 50 weeks. Warm-up estimated at 800 weeks. 
 
Based on figure 4 we have determined a warm-up period of 800 weeks for a planning 
horizon of 50 weeks. Appendix B.2 shows that the plotted time series for the planning 
horizons of 5 and 15 have lower required warm-up periods, as expected. Since we are 
looking for a warm-up period which can be used for all scenarios, we define a warm-
up period of 800 weeks.  
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5.6 Run length and number of simulations  
One simulation consists of a warm-up period followed by a certain run length. Of 
course, the longer the run length is chosen, the more accurate the estimates of the 
performance measures will become. Still, it is not sufficient in this case to perform 
only one simulation per scenario. The issue here is the dependence between the 
performance measures of successive cycles. The demand for hospital beds for 
example, depends for a great part on the number of hospital beds occupied at the 
previous day. We have chosen a run length of 2000 cycles. There is no specific reason 
for this amount other than the goal of increasing accuracy, still obtainable within 
reasonable amount of runtime of the simulation program.  
 
To make justified statistical judgments about the performance the following holds: 
After simulation i one can determine the sample mean Xi for a certain performance 
measure. When n separate independent simulations have been performed, a ( )α−1 % 
confidence interval can be constructed by: 
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and 2/αz the z-statistic of the standard normal distribution. That is, in case 30≥n , 
otherwise a t-statistic is required. 
 
Note that Xi does not denote the value of a performance measure at cycle i, but the 
sample mean of the performance measure over all cycles within simulation i, in our 
case a simulation with warm-up period of 800 and run length of 2000. Doing so, 
( )α−1 % of all intervals constructed in this manner will contain the actual mean. 
 
Equation (1) shows that increasing the number of independent simulations n decreases 
the size of the confidence interval around the mean of the performance measure by a 
factor n . Determining the size of n depends on one’s desire for the absolute size of 
the intervals. When a test size of 1n does not give the desired interval yet, one can 
increase 1n  to 2n such that 212/ nszα  has the desired size, where 1s is the variance of 
the 1n  sample means [17]. For the construction of the confidence intervals, we have 
set 100=n , which can be adjusted if requested.  
 
For the performance measure which gives the standard deviation of the demand 
pattern for hospital beds we need to define Xi as the variance of the demand pattern of 
simulation i. Doing so, we first calculate the average variance Var using the n 
simulations by: 
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In the end, we can report the result by transforming Var  to a standard deviation 
sd again. Taking the average of the standard deviations of the n demand patterns 
won’t be correct. To see this, take for example n = 2 and A and B two demand 
patterns of separate simulations. The following applies for the calculation of the 
average standard deviation: 
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6. Results 
 
Table 5 summarizes the mean values of the performance measures for all scenarios 
constructed, based on 100 simulations with warm-up 800 and run length 2000.  
 

input variables     performance measures                  
AP LB DD RH PH  WT  8W WL AA NPO DPO OR ORA ORB DB (sd) DBwe (sd)

P(40) 20 Y 0 2 2.24 99.86 9.44 83.95 4.45 48.14 71.12 86.33 86.73 17.13 3.57 14.35 3.37
P(40) 20 Y 0 3 2.58 100.00 1.18 90.42 2.46 58.76 71.13 92.70 71.64 17.16 3.22 14.30 3.17
P(40) 20 Y 0 4 3.04 100.00 0.34 93.01 1.62 79.71 71.13 95.62 64.72 17.18 3.05 14.24 3.03
P(40) 20 Y 0 5 3.52 100.00 0.13 94.23 1.40 88.00 71.12 97.05 61.34 17.19 2.97 14.21 2.96
P(40) 20 Y 0 6 3.99 100.00 0.03 94.91 1.34 90.82 71.12 97.85 59.44 17.20 2.94 14.20 2.92
P(40) 20 Y 0 7 4.47 100.00 0.01 95.33 1.32 92.27 71.12 98.33 58.30 17.20 2.91 14.19 2.90
P(40) 20 Y 0 8 4.94 100.00 0.00 95.61 1.31 92.90 71.12 98.65 57.55 17.20 2.90 14.19 2.89
P(40) 20 Y 0 9 5.41 87.71 0.00 95.80 1.30 93.19 71.12 98.87 57.03 17.20 2.89 14.18 2.87
P(40) 20 Y 0 10 5.87 77.26 0.00 95.95 1.30 93.32 71.13 99.03 56.66 17.20 2.88 14.18 2.87
P(40) 20 Y 0 11 6.33 68.96 0.00 96.06 1.30 93.40 71.13 99.15 56.38 17.20 2.88 14.18 2.86
P(40) 20 Y 0 12 6.79 63.71 0.00 96.15 1.30 93.44 71.13 99.24 56.16 17.20 2.87 14.18 2.86
P(40) 20 Y 0 13 7.24 60.00 0.00 96.23 1.30 93.47 71.12 99.31 55.99 17.20 2.87 14.18 2.85
P(40) 20 Y 0 14 7.67 56.80 0.00 96.28 1.30 93.49 71.12 99.37 55.85 17.21 2.86 14.18 2.85
P(40) 20 Y 0 15 8.10 55.03 0.00 96.33 1.30 93.50 71.12 99.41 55.74 17.21 2.86 14.18 2.85
P(40) 20 Y 0 25 11.59 45.89 0.00 96.58 1.29 93.52 71.12 99.61 55.19 17.20 2.85 14.17 2.83
P(40) 20 Y 0 50 18.97 44.07 0.00 96.70 1.29 93.92 71.12 99.72 54.96 17.19 2.84 14.16 2.82

C(40) 20 Y 0 5 3.50 100.00 0.06 94.50 1.37 89.50 71.16 97.37 60.73 17.22 2.90 14.21 2.90
G(80,0.5) 20 Y 0 5 3.51 100.00 0.09 94.33 1.38 88.84 71.18 97.21 61.17 17.21 2.95 14.22 2.93
G(20,2) 20 Y 0 5 3.54 100.00 0.25 93.92 1.48 85.15 71.15 96.79 62.06 17.19 3.06 14.24 3.02
G(10,4) 20 Y 0 5 3.58 100.00 0.67 93.37 1.67 79.64 71.18 96.29 63.36 17.19 3.22 14.26 3.14
P(40) 40 Y 0 5 3.52 100.00 0.13 94.23 1.40 87.99 71.12 97.05 61.34 17.19 2.97 14.21 2.96
P(40) 20 N 0 5 3.49 100.00 0.07 94.23 1.38 88.44 71.12 97.05 61.34 17.19 2.99 14.21 2.97
P(40) 20 Y 1 5 3.57 100.00 0.12 94.42 1.31 88.60 71.12 97.35 60.62 17.18 3.01 14.25 3.00
P(40) 20 Y 2 5 3.58 100.00 0.13 94.41 1.35 87.81 71.12 97.37 60.59 17.18 3.00 14.23 2.99
P(40) 20 Y 3 5 3.64 100.00 0.19 94.49 1.39 87.22 71.12 97.46 60.36 17.18 2.98 14.23 2.96
P(40) 20 Y 4 5 3.74 100.00 0.24 94.66 1.35 87.11 71.12 97.64 59.93 17.18 2.95 14.23 2.93
P(40) 20 Y 1 2 2.26 99.86 9.44 86.84 3.94 50.05 71.12 89.35 79.59 17.15 3.43 14.30 3.28

 
 

AP Arrival Process: P for Poisson (parameter1), C for Constant (parameter1), G for Gamma (parameter1, parameter2) 
LB Lower Bound (in minutes) on available unplanned capacity in order for it to be assigned to dummy space 
DD Distinction made between urology and general surgery Dummy space: Y(es) or N(o) 
RH Replanning Horizon (0 if no rescheduling takes place) 
PH Planning Horizon 
WT Average Waiting time (in weeks) 
8W Percentage of patients that experience a waiting time of Eight Weeks or less 
WL Average length of the waiting list (number of patients) 
AA Percentage of category A surgeries scheduled in type A time slots 
NPO Average Number of times Planned Overtime is scheduled 
DPO Average Duration of Planned Overtime 
OR OR utilisation 
ORA OR utilisation of the time scheduled for category A surgeries 
ORB OR utilisation of the time scheduled for category B surgeries, including 50% of time for C 
DB Average (and standard deviation) of daily Demand for hospital Beds during week days 
DBwe Average (and standard deviation) of daily Demand for hospital Beds during weekends 

Table 5: Mean values over 100 simulations. Run length: 2000 weeks, warm-up period: 800 weeks. 
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The values of the performance measures given in table 5 are the averages of the total 
of n = 100 simulations, each performed containing a warm-up length of 800 cycles 
and a run length of 2000 cycles. Table 6 in the appendix contains the 95% confidence 
intervals around these averages of the performance measures, constructed as 
described in section 5.6. 
 
The interpretation of the results in table 5 will be discussed in this chapter. The 
scenarios in the upper part of table 5 are constructed by only adjusting the length of 
the planning horizon from the basic scenario. Using the results of these scenarios 
section 6.1 discusses the influence of the planning horizon. Next, new scenarios were 
constructed by changing one of the other input variables from the basic scenario, 
ceteris paribus. The influence of these input variables is discussed in section 6.2. 
 
6.1 Effects of the planning horizon 
The influence of the planning horizon is discussed in this section, using the results in 
the upper part of table 5 and by looking at some effects in more detail using additional 
descriptive statistics.  
 
6.1.1 Waiting time 
Clearly, as shown in table 5, the longer the planning horizon, the longer a patient has 
to wait on average before surgery. The next figure shows the dependence of these two 
variables graphically. Using the statistical software SPSS we have estimated the 
relation between planning horizon (P) and the average waiting time (W) by means of 
the function 704.0187.1 PW = . 

 
Model Summary Parameter Estimates 

Equation R Square F df1 df2 Sig. Constant B1 
Power .996 4412.315 1 19 .000 1.187 .704

Figure 5: relation between planning horizon and average waiting time 
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To illustrate the distribution of the waiting time figure 6 shows the proportion of 
patients that experienced a waiting time of size { }50,3,2 K∈i  weeks, when a planning 
horizon of 50 weeks is used. The probabilities are estimated using 100 simulations, 
each consisting of a warm-up period of 800 followed by a run length of 2000. 
Appendix B.4 contains the waiting time distributions for smaller planning horizons. 
 

Waiting time distribution for all surgery types. 
Planning horizon = 50.
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Figure 6: Waiting time distribution for all types of surgery.  Probabilities obtained over 100 
simulations. Run length: 2000 weeks, warm-up period: 800 weeks. Planning horizon: 50 weeks. 
 
The bar chart indicates that most patients either have to wait relatively long or 
relatively short. To investigate this issue further we look at the distribution of 
individual surgery types separately. The two charts in appendix B.5 give the 
distribution of the waiting time for surgery types a91 and a12 respectively. Clearly, 
there is a difference between both distributions. The chart of surgery type a91 shows 
increasing amounts of long waiting time near the end of the planning horizon, while 
the next chart shows that increasing waiting times for type a12 surgeries have 
decreasing probabilities. The explanation of this phenomenon can be found looking at 
the construction of the MSS. If we calculate the weekly frequencies λis (using the 
yearly frequencies from table 1, divided by 46 weeks), we find that the frequency λ91 
was rounded down to obtain the number of surgeries in the MSS (n91), while the 
weekly frequency λ12 was rounded up. On average surgery type a91 occurs 3.39 times 
per cycle and surgery type a12 2.98 times. Rounding these frequencies results in nis = 3 
surgeries included in the MSS for both type a91 and type a12 surgeries (see table 2).  
 
In general, if λis exceeds nis, all time slots specifically meant for type ais within the 
planning horizon will gradually become occupied as time rolls on. In that case, the 
only time slots available specifically for type ais are the new ones of the MSS that are 
added at the end of the planning horizon as time rolls on. In case that number of 
available time slots is not sufficient for the arrivals within one cycle, some patients of 
type ais will be scheduled within the fist available dummy time slot. These dummy 
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slots are situated near the beginning of the planning horizon. This process is reflected 
by the distribution of the waiting time for surgery type a91. When λis lies below nis, the 
probability of a certain waiting time seems to decline exponentially towards zero. 
Because the amount of available dummy capacity exceeds the expected required 
dummy capacity, the same applies for waiting times for surgeries scheduled in 
dummy time slots. Combining the two possibilities just mentioned, results in the 
distribution pattern of figure 6. These findings show that, judging from the patients’ 
point of view, using a long planning horizon is not beneficial. The possibility that a 
type ais patient with isis n>λ  has to wait (almost) as long as the length of the planning 
horizon is rather large. 
 
Finally, the proportion of patients that experience waiting times of eight weeks or 
less, is directly obtained by cumulating the probabilities of waiting times from two to 
eight weeks in the waiting time distributions. As the average waiting time increases 
when the planning horizon increases, this proportion shows a decreasing pattern.  
 
6.1.2 Length of waiting list 
The length of the waiting list declines to zero as we increase the planning horizon. 
Because the available OR capacity exceeds the expected demand for OR capacity, the 
probability of shortage of capacity declines as the planning horizon increases, which 
explains the pattern just mentioned.  
 
The length of the waiting list can be related to the distributions of waiting time in 
appendix B4. The figures show that for small planning horizons some patients have 
waiting times which exceed the length of the planning horizon. This can only be the 
case for patients that did not fit within the planning horizon they faced right after their 
arrival. If that happens, these patients are placed on the waiting list. Thus, we have a 
positive average length of the waiting list, if and only if the waiting time distribution 
shows positive probability of waiting time longer than the planning horizon. 
 
6.1.3 Percentage A scheduled in A 
Table 5 clearly shows an increase in percentage of type A surgeries scheduled in A 
slots as we increase the planning horizon. The shorter the planning horizon, the higher 
the expected probability gets that the total amount of arrivals of type A patients within 
the planning horizon exceeds the available type A time slots within the planning 
horizon, resulting in dummy use for type A patients. Thus, using higher planning 
horizons decreases this ‘risk’ and increases the percentage of type A surgeries 
scheduled in type A time slots.   
 
Of course, the percentage of A surgeries scheduled in A slots will never exceed 100 
percent. Suppose the expected arrival rates λis for all surgery types Ii∈ and Ss∈  lie 
below nis. In that case, the higher the planning horizon is chosen, the lower the 
probability becomes that type A patients won’t fit within their time slots of the MSS 
within the planning horizon. Thus, the more likely it gets that all type A patients are 
scheduled within type A slots. Thus, when all type A surgeries have expected arrival 
rates isis n<λ , the percentage of A scheduled in A has an asymptotic upper bound of 
100 percent. Now, suppose isis n>λ . The percentage of type ais scheduled in ais time 
slots will asymptotically reach un upper bound upper of  nis / λis. If the MSS contains 
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amounts of nis of which some were obtained by rounding up the value of λis and others 
by rounding down the value of λis, combining both types of upper bounds results in an 
overall asymptotic upper bound of U, where 
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Looking at the results for AA in table 5 we recognize the above mentioned asymptotic 
behaviour. Applying formula (2) for U to our data, results in an asymptotic upper 
bound of 97.15 percent1 of A surgeries scheduled in A slots as we increase the 
planning horizon. This value is the result of the fact that rounding the expected arrival 
rates of our data resulted in values of nis almost all below the expected values λis.  
  
6.1.4 Planned overtime 
Since we included the possibility of scheduling surgeries using at most 50% of the 
capacity for type C surgeries, we are interested in the effect of the planning horizon 
on the average duration of overtime (DPO) and the amount of times scheduling, using 
planned overtime occurs (NPO). The results show a decrease in number of times 
planned overtime is scheduled and an increase in the average duration of planned 
overtime as we increase the planning horizon.  
 
The explanation for this pattern is related to the percentage of A surgeries scheduled 
in A slots. As we just discussed, increasing the planning horizon, increases the 
percentage of A surgeries scheduled in A slots. Or, increasing the planning horizon 
results in a decrease of dummy use for type A. Type B surgeries are always scheduled 
in dummy space, so the amount of overtime resulting from type B surgeries is not 
influenced by the planning horizon. Increasing the planning horizon, the number of 
times planned overtime is scheduled (NPO) decreases as a result of a decrease of 
dummy use for type A surgeries.  
 
On average the duration of type A surgeries is shorter than the duration of type B 
surgeries, especially since some type B surgeries have expected durations exceeding 
the maximum available dummy space per OR-day. Because of a decrease in dummy 
use of type A surgeries when increasing the planning horizon, the greater the 
influence of relatively large overtime caused by type B surgeries becomes. This 
explains the increase of the average duration of overtime (DPO), shown in table 5.  
 
6.1.5 OR utilisation 
As we increase the planning horizon the average total OR utilisation remains equal. 
This statement is justified looking at the 95 percent confidence intervals, which all 
show an overlap. This is not surprising, because the expected total required surgery 
time of all arrivals is independent of the planning horizon. All surgeries, no matter 
what the waiting time might be, will eventually be scheduled. 

                                                 
1 The weekly frequencies were obtained by first dividing the yearly frequencies from table 1 by 46 
weeks. Next, these values were multiplied by (40/40.48) in order to obtain the values λis because in the 
simulation we use the rounded overall arrival rate of 40 patients per week, instead of the arrival rate of 
40.48 patients per week resulting from the data.  
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The utilisation of the time slots for type A on the other hand, increases as the planning 
horizon increases. The reason for this was mentioned before. The longer the planning 
horizon, the less likely it gets that type A slots of future cycles remain empty. Since 
for longer planning horizons more type A surgeries are scheduled within A time slots, 
the use of dummy space for A surgeries occurs less often. Therefore, the utilisation of 
type B time slots decreases as the planning horizon increases. 
 
Note that there is a difference between the asymptotic upper bound for the percentage 
of type A surgeries scheduled in type A slots and the expected utilisation of OR 
capacity for type A slots. The more the arrival rate for surgery type ais exceeds the 
number of available time slots in the MSS for this surgery type nis, the lower the 
asymptotic upper bound for AA gets. The OR utilisation of type A time slots on the 
other hand, is more likely to reach towards 100 percent when we face more expected 
arrivals than the number of available time slots for type A surgeries. When 
considering arrival rates λis below nis, we get the opposite effect of an upper bound of 
AA of 100 percent and an expected OR utility below 100. We get: 
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Where ⎯⎯ →⎯ ∞→ph  denotes the asymptotic behaviour of the performance measures 
‘percentage of type A surgeries scheduled in type A time slots’ and the ‘OR utilisation 
of the type A time slots’ respectively, as we increase the planning horizon. 
  
6.1.6 Demand for hospital beds  
In table 5 a distinction is made between the average daily demand for hospital beds 
from Monday through Friday and the average daily demand during weekends. Taking 
the weighted average results in 16.34 beds occupied on average for all days of the 
week, for all planning horizons. When we calculate the intervals of the weighted 
values for all planning horizons in the same manner, all intervals coincide. This 
indicates no influence of the planning horizon on the average daily demand for 
hospital beds. Like the overall OR utilisation, the average daily demand for hospital 
beds also only depends on the arrival rate of patients. 
  
Although the average demand level over all days of the week doesn’t depend on the 
planning horizon, the distribution of demand between week days and weekend days 
does seem to be influenced by the planning horizon. Comparing the use of planning 
horizons 2 and 3 to higher planning horizons, the demand for hospital beds is 
significantly lower from Monday through Friday and significantly higher during 
weekends. The reason for this is the following. When a short planning horizon is 
used, relatively a lot of surgeries are scheduled within dummy space, which we 
already concluded when evaluating the levels of OR utilisation of dummy space 
(ORB). Since most of the dummy space is located at the end of the week (see table 4), 
the demand of hospital beds is high near the end of each week, relative to the use of 
longer planning horizons.  
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Furthermore, looking at the standard deviations, the fluctuation in demand for hospital 
beds seems to decrease as we increase the planning horizon. This intuitively makes 
sense since we achieve higher schedule stability when increasing the planning 
horizon. Appendix B.6 shows the average demand for hospital beds from Monday to 
Sunday for planning horizons 2 and 50. Planning horizon 50 shows less deviation 
between the days of the week than planning horizon 2. 
 
When measuring the relative frequencies of the demand levels we get the following 
distribution, obtained over a total of 100 simulations, each with once again a warm-up 
period of 800 and a run length of 2000. The frequencies show a normal distribution, 
for which the first and second moment can be estimated using the average and 
standard deviation for the appropriate planning horizon, obtained from the simulation. 
To verify the normality of these distributions appendix B.7 shows QQ-plots of the 
demand levels for hospital beds for planning horizon 2. The distributions for higher 
planning horizons have a comparable shape, but have expected values end variances 
which correspond to the values reported in table 5. 
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Figure 7: distribution of daily demand for hospital beds. Probabilities obtained over 100 
simulations. Run length: 2000 weeks, warm-up period: 800 weeks. Planning horizon: 2 weeks. 
 
6.2 Effect of other input decisions 
Now that we’ve evaluated the effect of the planning horizon on the regular scheduling 
process, we will look at the effects of adjustments to this scheduling process. That is, 
we will look at the effect of the input parameters mentioned in section 5.4. Because 
no information is given about the distribution of the arrivals, we will first look at the 
influence of different arrival distributions. The next three input parameters involve 
decisions that have to be made regarding the way of scheduling. We will look at the 
decision when to include capacity of an OR-day to the available dummy space, the 
effect of relaxing the prescriptions regarding the exclusive dummy space and the 
effect of rescheduling A surgeries from dummy to A time slots.  
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6.2.1 Arrival process 
A clear pattern in the effect of the variance of the arrival distribution is shown by the 
fist four rows of the second part of table 5. The constant arrival function (with zero 
variance) is followed by the gamma distributions with variances of 20, 80 and 160 
respectively. The basic scenario has variance 40. Higher variances have negative 
effects on all performance measures. By negative effect we mean a less desirable 
effect for both patients and hospital. The average waiting time as well as the average 
length of the waiting list increase, which is unbeneficial for patients. A higher 
variance also results in less use of type A time slots, more cases of planned overtime 
and a higher variance in the demand level for hospital beds, all unbeneficial effects 
for the hospital. Note that the variance of the arrival function is not a parameter that 
can be adjusted in the scheduling process, like the other input parameters. The reason 
for evaluating the effect of different variances is merely to investigate the effect of an 
unknown parameter about reality.  
 
6.2.2 Lower bound on dummy space 
The dummy capacity was defined as the time left after taking the capacity for type A 
and C surgeries into account, but by restricting this capacity by means of a lower 
bound. After applying the lower bound, 50 percent of the capacity for type C surgeries 
was added to the dummy capacity, allowing the possibility of scheduling with 
overtime. Considering the dummy capacity, the scenario which prescribes a lower 
bound of 40 minutes excludes only one OR-day more then the basic scenario, which 
prescribes a lower bound of 20 minutes. The result show no significant difference 
between both scenarios, which indicates that hardly any surgeries were scheduled in 
OR-day (3,2) in the basic scenario to begin with. 
 
6.2.3 Distinction between dummies 
Disregarding the distinction between urology and general surgery dummies results in 
slightly improved results for the average waiting time and waiting list. Also, the 
amount of times planned overtime occurs, decreases slightly. When the distinction 
between the two types of dummy capacity is a highly valued factor of schedule 
stability for the hospital, the positive effects of disregarding this distinction are 
probably not beneficial enough to be seriously considered.     
 
6.2.4 Shift ‘late’ A surgeries from dummy to A space 
As for the possibility of rescheduling type A surgeries from dummy to A space in the 
MSS, we have considered all possible replanning horizons in case a planning horizon 
of five weeks in used. That is, we have considered the type A surgeries scheduled 
within dummy slots of the last one to four weeks of the planning horizon for 
rescheduling. Of course, the longer the replanning horizon is chosen, the higher the 
number of surgeries considered for rescheduling. This results in an increase in both 
the percentage of A surgeries scheduled in A slots and the utilisation of the A 
capacity. As utilisation of A slots increases, utilisation of B slots decreases because of 
the shifts made from B to A space in the MSS. This effect is beneficial to the hospital 
since it increases schedule stability. For the patients on the other hand, the results 
show a slight increase in the average waiting time as the replanning horizon goes up. 
Looking at the process of rescheduling we know that the maximum increase in 
individual waiting time is at most the size of the replanning horizon, since surgeries 
before the replanning horizon will not be rescheduled. 
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Comparing the length of the waiting list when rescheduling to the length of the 
waiting list of the basic scenario, the waiting list is shorter on average when a 
replanning horizon of 1 is used and longer on average when a higher replanning 
horizon is used. This is due to two different aspects of rescheduling. On the one hand, 
rescheduling a surgery from a dummy to a type A slot provides an newly available 
dummy. This dummy can be occupied by several different surgery types, while the 
type A slot to which the surgery was moved was exclusively available for one specific 
surgery type. A surgery that could have ended up on the waiting list, can now possibly 
be scheduled within the newly available dummy. This decreases the average length of 
the waiting list. On the other hand, the possibility of the dummy remaining 
unoccupied exists, because the horizon eventually rolls on, not containing the dummy 
location anymore. The closer the newly available dummy was situated near the 
beginning of the planning horizon, the more likely this gets. Consider a type A 
surgery of the same type as the one that was rescheduled earlier. When such a surgery 
arrives, it encounters one less available time slot of its own type. If the dummy 
location, from which the other surgery was rescheduled, is not available within the 
planning horizon anymore, the possibility of this surgery ending up on the waiting list 
exists. When this happens, it increases the average length of the waiting list. 
 
Besides rescheduling at a planning horizon of five weeks, we have added one extra 
scenario of the use of a planning horizon of two weeks for which one week is the only 
possible replanning horizon. This results in a relatively high gain in schedule stability. 
The process of rescheduling is depictured below for surgery type a42, which has its 
time slots in the MSS on OR-days 5 and 10.  
 

 
Figure 8: Rescheduling a42 from dummy to A slot. Planning horizon: 2. Replanning horizon: 1. 
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In a scenario without rescheduling, one or two time slots for type a42 in week 3 will 
remain empty in case the number of patients of type a42 arriving at week 1 (and the 
ones on the waiting list) is less than two. This gives loss of utilisation of type A time 
slots, since patients arriving at week 2 will be scheduled starting from week 4 and the 
slots of week 3 would remain empty.  
 
Now, if rescheduling of type A surgeries from dummy to A slots is allowed, the type 
A time slots which would otherwise have remained empty, will be occupied if week 2 
contains type a42 surgeries initially scheduled in dummy space. The results show quite 
an improvement in the percentage of type A surgeries scheduled in type A slots, 
which raises from 83.95 percent to 86.84 percent. The OR utilisation of type A time 
slots also raises about three percent, only with an average increase in waiting time of 
0.028 week (rounded to three decimal accuracy). This increase of 0.028 indicates that 
on average 2.8 patients out of 100 patients are rescheduled from dummy to A space. 
This reasoning only applies when a planning horizon of two weeks is used, because in 
that case the increase in waiting time always is one week per patient when 
rescheduling. The data shows that on average about 95 percent of all patients are of 
type A (see table 1). So, rescheduling at a planning horizon of two weeks results in an 
increase in the percentage of A patients scheduled in A slots (2.8 / 95 · 100) about 2.9 
percent. This explains the relation between the increase in average waiting time and 
the increase in percentage of type A surgeries scheduled in type A time slots, for 
planning horizon 2 and replanning horizon 1. The same kind of relation can be found 
between waiting time and the OR utilisation of type A. Since the MSS contains 37 
type A time slots out of a total of 40 time slots (which is 92.5 percent), we have an 
increase of (2.8 / 92.5 · 100) about 3.0 percent. These calculations are meant to give 
an impression about the relationship between these three performance measures for 
this specific case of rescheduling.    
  
The gain in schedule stability is relatively high when rescheduling is implemented for 
a planning horizon of two weeks and a replanning horizon of one week. There are two 
reasons for this relatively high gain: 
 

1. If rescheduling takes place for a planning horizon of two weeks, the surgery is 
always shifted to the upcoming week. Using a longer planning horizon, this is 
not the case (see for example figure 3 in section 5.2). Rescheduling to the 
upcoming week will occupy type A slots that would otherwise have remained 
empty. 

2. Secondly, without rescheduling, the only patients available for occupying type 
A slots of week i+2 are the ones arriving at week i and possibly a few patients 
from the waiting list (see figure 8). This means that loss of utilisation of A 
slots is more likely to occur for a planning horizon of two weeks than for a 
higher planning horizon. Thus, relatively there is more opportunity for gain of 
utilisation of A slots when rescheduling at a planning horizon of two weeks, 
than for example when rescheduling at five weeks. The use of a planning 
horizon of five week already has a high utilisation of type A slots to begin 
with. The results show a utilisation of type A slots for planning horizon five 
without rescheduling of already 94.23 percent, as opposed to ‘only’ 83.95 
percent without rescheduling for planning horizon two. 
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6.3 Time series of bed occupation levels 
We would like to investigate the demand pattern for hospital beds in more detail. 
Section 6.1.6 already showed that increasing the planning horizon, decreases the 
standard deviation of the demand levels. Appendix B.6 shows that the demand levels 
of the days within the cycle start to deviate less from one another as the planning 
horizon is chosen higher. 
 
When we look at the outcomes of the simulation for the demand levels for hospital 
beds of consecutive days, we are in fact looking at a time series. We will investigate 
the properties of two of such time series: one resulting from a planning horizon of two 
weeks and the other resulting from a planning horizon of 50 weeks. Figure 9 shows 
two of such time series, containing the first 200 values after the warm-up period.  
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Figure 9: time series of the first 200 demand levels after a warm-up period of 800 weeks 
 
A first step in identifying a time series model is investigating the (partial) 
autocorrelation function. Appendix B.8 shows these functions by means of a 
correlogram of 14000 demand levels resulting from simulation runs of both planning 
horizons 2 and 50. The empirical autocorrelation functions of both time series show a 
typical pattern. We find large positive values at lags 7, 14, 21 etc. This shows that bed 
occupation levels of the same day within different cycles are closely related, which is 
an indication of a seasonal pattern within the time series. This is not surprising since 
the occupation of hospital beds of a certain day within the cycle depends for a great 
part on the surgeries that are scheduled for that day by means of the MSS. The 
different values between the average daily levels within the cycle in appendix B.6 
support this idea of seasonality. If the occupation of hospital beds would not depend 
on the day within the cycle, the daily levels in appendix B.6 would be closer to one 
another. Those average daily levels can be defined as µs, where { }7,,2,1 K∈s  denotes 
the day of the week, starting at 1=s denoting Monday. Subtracting the appropriate µs 
from the series Yt we obtain a new deseasonalised time series stt YY μ−=* , when t 
corresponds to day s. Appendix B.8 also shows the correlograms of the 
deseasonalised time series of the demand levels for planning horizons 2 and 50.  
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The basic class of so-called autoregressive (AR) models takes the value of the time 
series at time t to be a linear function of the values at times t-1 to t-p. For an AR(p) 
model the autocorrelation function has values which decline exponentially towards 
zero, while the partial autocorrelation function has values of zero for k-th order partial 
autocorrelations with pk > [16]. Appling this to the correlograms of both 
deseasonalised time series, an AR(1) model seems to be appropriate. For our time 
series this results in the following seasonal AR(1) model, containing seven ‘seasons’. 
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(3)

• tY  The demand level for hospital beds at day t  

• sμ  The average value of the demand level at day s { }7,,2,1 K∈  

corresponding to the values given in Appendix B.6 
• tsD ,  Seasonal dummy variable: 1 if t corresponds to day s, 0 otherwise 

• tε  The error term at day t 

 
The model represented by (3) has the unconditional mean demand level of 

stYE μ=)( when t corresponds to day s, which implies 0)( * =tYE  for the 
deseasonalised time series. Regressing the deseasonalised series *

tY on *
1−tY  gives us 

the estimate ofφ , which represents the dependence between two consecutive days 
when disregarding the seasonal pattern. The results of the least squares regressions are 
included in appendix B.8. Rounding the estimate to two decimal accuracy gives us:  

 
71.0ˆ ≈φ  

 
for both planning horizons. The similarity between this estimated parameter of the 
models of both planning horizons indicates that the speed at which a demand level 
returns to the average daily value is independent of the planning horizon. This can be 
related to the patients who are present in the wards and intensive care units at a certain 
point in time. Since the expected time a patient spends in the hospital for recovery 
depends only on its surgery type and not on the planning horizon that was used in the 
scheduling process, the rate at which patients leave the hospital is not influenced by 
the planning horizon. This means that when the hospital encounters days with 
excessively high demand for hospital beds, the rate at which the demand level will 
decrease towards the daily average is roughly the same for all planning horizons.   
 
Furthermore, the decrease in the standard deviation of the demand pattern for hospital 
beds when increasing the planning horizon, is not only due to the deviation between 
the daily averages within one week. Judging from the estimation results of the AR(1) 
models in Appendix B.8, the variation between the daily levels of different weeks is 
larger for smaller planning horizons. This can be concluded from the standard error 
(S.E.) of the regression, which is larger for the AR(1) model of planning horizon 2 
than for the AR(1) model of planning horizon 50.  
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Using the model (3) figure 10 shows the fitted deseasonalised time series along with 
the actual deseasonalised series for the first 500 days after a warm-up period of 800 
weeks. A similar figure is shown in Appendix B.8 for planning horizon 50. 
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Figure 10: Actual, fitted and residual time series of the deseasonalised time series Yt* for 
planning horizon 2, shown for the first 500 observations, after a warm-up period of 800 weeks. 
 
Suppose the hospital departments only have 20 beds available. Demands exceeding 
this level result in shortages which could for example be handled by temporarily using 
beds of other departments. This is of course not a desirable situation. A useful 
application of the time series we just modelled, could be to estimate the time it will 
take before the demand decreases below a certain desirable level. Let’s consider the 
following example of a incidentally high demand of 30 hospital beds at Tt = , 
corresponding to a Monday. Suppose the hospital uses a planning horizon of two 
weeks. Then, the following expected demand pattern shows that the departments 
encounter a shortage of beds during an estimated period of five consecutive days. 
 

• 30=TY , where T corresponds to 1=s  (representing Monday) 
• 97.22)34.1730(71.098.13)()( 121 =−+=−+=+ μφμ TT YYE  
• 53.24)98.1397.22(71.015.18))(()( 2132 =−+=−+= ++ μφμ TT YEYE  
• 87.20)15.1853.24(71.034.16))(()( 3243 =−+=−+= ++ μφμ TT YEYE  
• 03.23)34.1687.20(71.082.19))(()( 4354 =−+=−+= ++ μφμ TT YEYE  
• 74.18)82.1903.23(71.019.16))(()( 5465 =−+=−+= ++ μφμ TT YEYE  
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7. Discussion 
 
We have evaluated the relation between input and output factors of the scheduling 
process in a Master Surgical Schedule. The main feature we encountered looking at 
the results, was a trade-off between the patients’ waiting time and schedule stability. 
We did not make any judgements about the quality of a scenario. The evaluation of 
the performance of a scenario is a subjective issue. From a patient’s point of view, 
short planning horizons are preferred, since these result in short waiting times. The 
hospital management on the other hand, benefits from a stable (hence predictable) 
schedule. When the management knows what kind of surgeries to expect when and 
where, they can use this information in order to reduce costs. For example, stable 
operating room schedules will lead to stable time schedules of hospital personnel. 
This implies less overtime within the working hours of personnel, which reduces costs 
for the hospital. This also brings us to a beneficial effect of schedule stability for 
hospital personnel: they will experience less stress because of unstable working hours. 
In the end, the hospital management should select a scheduling procedure which 
provides the best balance between their view of the importance of the patients’ 
waiting time versus schedule stability. 
 
Some aspects about the data of this research forced us to make assumptions. These 
assumptions are part of the inputs of the scheduling process and might have had their 
influence on the results in some way. First of all, we have assumed an expected 
arrival rate of 40 patients per week. Since the hospital schedules elective surgeries 
only during a total of 46 weeks per year, one could argue that the expected number of 
arrivals per week will defer during the year depending on time, because of a 
temporary increased amount of patients who might arrive after certain holidays. This 
time conditional hetroskedastisity could be modelled by using a non-homogeneous 
Poisson distribution. This aspect was left out of consideration and due to further 
research.  
 
Also, we made a decision how to handle type B surgeries with high expected surgery 
times. Those surgeries have an expected duration which exceeds the maximum 
available dummy space in one OR-day. We decided upon scheduling these surgeries 
within one of the three largest dummy spaces of the cycle, if empty, still causing quite 
a large amount of planned overtime. The effect of this decision is clearly visible in the 
results. The longer the planning horizon is chosen, the less the amount of type A 
surgeries gets which are scheduled in dummy space. Thus, for long planning horizons, 
the total planned overtime is mainly the result of the type B surgeries just mentioned. 
Since these surgeries have high planned overtime, the average amount of planned 
overtime increases towards the excess duration of these type B surgeries. It might be 
worthwhile considering other ways of handling these surgeries in further research. For 
example, once in a while an extra OR-day could be assigned to such surgeries, and by 
doing so, avoiding planned overtime for these surgeries.   
 
The last assumption we would like to mention here, is the use of capacity for type C 
surgeries to extend the dummy space with. We decided upon a maximum use of 50 
percent of the type C surgeries, allowing planned overtime when scheduling surgeries 
in dummy space. Combined with the measure just mentioned above, the effect of not 
allowing any planned overtime at all could also be a subject of further research. 
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8. Conclusion 
 
In this research we have investigated the effect of inputs in a Master Surgical 
Schedule by means of simulation. The main feature of investigation was the effect of 
the planning horizon. As expected, increasing the planning horizon increases schedule 
stability but also increases the patients’ average waiting time. The schedule stability 
was captured by the percentage of type A surgeries scheduled in time A slots, the 
amount and duration of planned overtime, the OR utilisation of both type A and B 
slots and the stability in the demand pattern for hospital beds. A remarkable pattern 
was shown in the distribution of the patients waiting time. With high probabilities 
patients seem to experience either relatively short or relatively long waiting times. 
The explanation for this phenomenon can be found by comparing the expected arrival 
rates to the number of available time slots within the MSS per surgery type. When the 
expected arrival rate exceeds the number of available time slots, all time slots within 
the planning horizon will gradually get occupied, resulting in surgeries being 
scheduled either in type A slots near the end of the planning horizon or in dummies 
near the beginning of the planning horizon. The difference between the expected 
arrival rate and the number of available time slots also effects the upper bounds of the 
percentage of type A surgeries scheduled in type A time slots and the OR utilisation 
of type A time slots. 
 
Besides the effect of the planning horizon we also investigated the effect of the 
unknown variance of the arrival distribution and decisions regarding the scheduling 
process. The higher the variance of the arrival distribution, the less desirable effects 
are found for both patients and hospital: waiting times increase and schedule stability 
decreases. When defining the dummy capacity of the MSS, raising the upper bound of 
free capacity before assigning it to the dummy capacity might result in higher average 
waiting times. This was not the case for our data, since the dummy space with low 
time capacity seemed to be hardly ever used to begin with. Disregarding the 
distinction between dummy capacities of different specialties on the other hand did 
have slight effect on the average waiting time and length of the waiting list, which 
both decreased slightly. Rescheduling type A surgeries from dummy time slots to 
newly available type A time slots also effects the performance of the scheduling 
process. Slightly increased waiting times go along with an increase in schedule 
stability. This effect is most profitable when a planning horizon of two weeks is used 
with a replanning horizon of one week. With those settings, type A slots which would 
have remained empty without rescheduling, are then possibly used for shifting type A 
patients to. This only increases the waiting time of such patients by one week.          
 
We modelled the time pattern of the demand level for hospital beds by means of a 
seasonal AR(1) model. The model captures the relation between demand levels of 
consecutive days, taking into account the expected level of the appropriate day within 
the cycle. 
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B. Appendix 
 
B.1 Gamma and Poisson distributions 
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Figure 11: probability density functions of Gamma distribution with E(X) = 40 for all three and 
Var(X) = 20, Var(X) = 80 and Var(X) = 160 respectively. 
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Figure 12: probability density functions of Gamma distribution and a Poisson distribution, both 
with E(X) = Var(X) = 40. 
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B.2 Time series in relation to warm-up period 
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Figure 13: times series of the number of surgeries scheduled at least two weeks ahead of four 
independent simulations with a planning horizon of 15 weeks.  
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Figure 14: times series of the number of surgeries scheduled at least two weeks ahead of three 
independent simulations with a planning horizon of 5 weeks.  
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B.3 95% confidence intervals of the performance measures 

 

 
Table 6: 95% intervals. 100 simulations. Run length: 2000 weeks, warm-up period: 800 weeks. 
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B.4 Distribution of waiting time for all surgery types 
(for planning horizons 2 to 10 and 15) 
 

Waiting time distribution. Planning horizon = 2.
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Figure 15: Waiting time distribution for all types of surgery.  Planning horizon: 2 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 40) < 0.0003. P(waiting time = t, t >40) = 0. 
 

Waiting time distribution. Planning horizon = 3.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

waiting time (in weeks)

pr
ob

ab
ili

ty

pdf 0 0.4542 0.5197 0.0234 0.0023 0.0003 6.6E-05 1.4E-05 1.9E-06 7.5E-07

1 2 3 4 5 6 7 8 9 10

Figure 16: Waiting time distribution for all types of surgery. Planning horizon: 3 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 12) < 1.4 · 10-7. P(waiting time = t, t >12) = 0. 
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Waiting time distribution. Planning horizon = 4.
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Figure 17: Waiting time distribution for all types of surgery. Planning horizon: 4 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 13) < 4.9 · 10-6. P(waiting time = t, t >13) = 0. 
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Figure 18: Waiting time distribution for all types of surgery. Planning horizon: 5 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 12) < 6.4 · 10-6. P(waiting time = t, t >12) = 0. 
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Waiting time distribution. Planning horizon = 6.
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Figure 19: Waiting time distribution for all types of surgery. Planning horizon: 6 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 12) < 6.4 · 10-7. P(waiting time = t, t >1) = 0. 
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Figure 20: Waiting time distribution for all types of surgery. Planning horizon: 7 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 13) < 1.2 · 10-6. P(waiting time = t, t >13) = 0. 
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Waiting time distribution. Planning horizon = 8.
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Figure 21: Waiting time distribution for all types of surgery. Planning horizon: 8 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 13) < 1.2 · 10-6. P(waiting time = t, t >13) = 0. 
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Figure 22: Waiting time distribution for all types of surgery. Planning horizon: 9 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 13) < 2.0 · 10-6. P(waiting time = t, t >13) = 0. 
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Waiting time distribution. Planning horizon = 10.
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Figure 23: Waiting time distribution for all types of surgery. Planning horizon: 10 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. 0 < P(waiting time = t, 10 < t ≤ 13) < 6.4 · 10-6. P(waiting time = t, t >13) = 0. 
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Figure 24: Waiting time distribution for all types of surgery. Planning horizon: 15 weeks. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. P(waiting time = t, t >  15) = 0. 
 



 49

B.5 Distribution of waiting time per surgery type 
(for different surgery types with planning horizon 50) 
 

Waiting time distribution for surgery type a91. 
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Figure 25: Waiting time distribution for surgery type a91.  n91 = 3. λ91 = 3,39. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. Planning horizon: 50 weeks. 
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Figure 26: Waiting time distribution for surgery type a12.  n12 = 3.  λ 12 = 2,98. 
Probabilities obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 
weeks. Planning horizon: 50 weeks. 
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B.6 Distribution of bed occupation within cycle  
(for planning horizons 2 and 50) 
 

Average demand for hospital beds per day. 
Planning horizon = 2.

0
2
4
6
8

10
12
14
16
18
20

daily demand 17.34 13.98 18.15 16.34 19.82 16.19 12.62

Monday Tuesday Wednesday Thursday  Friday Saturday Sunday

 
Figure 27:Average demand for hospital beds per day for planning horizon 2 weeks. Demand 
levels obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 weeks. 
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Figure 28: Average demand for hospital beds per day for planning horizon 50 weeks. Demand 
levels obtained over 100 simulations. Run length: 2000 weeks, warm-up period: 800 weeks. 
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B.7 QQ-plots: normality of demand levels for hospital beds  
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Figure 29: QQ-plot of demand levels for hospital beds from Monday to Friday 
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Figure 30: QQ-plot of demand levels for hospital beds during weekends 
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B.8 Time series identification of bed occupation levels 
 

 
Table 7: correlogram containing the (partial) autocorrelations of 14000 demand levels resulting 
from one simulation run with planning horizon 2.  
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Table 8: correlogram containing the (partial) autocorrelations of 14000 demand levels resulting 
from one simulation run with planning horizon 50.  
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Table 9: correlogram containing the (partial) autocorrelations of 14000 deseasonalised values 
indicating the deviation from the daily average resulting from one simulation run with planning 
horizon 2.  
 
 

 
Table 10: outcomes of the least squares regression of the seasonal AR(1) model, based on 14000 
deseasonalised values resulting from one simulation run with planning horizon 2.  
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Table 11: correlogram containing the (partial) autocorrelations of 14000 deseasonalized values 
indicating the deviation from the daily average resulting from one simulation run with planning 
horizon 50.  
 
 

 
Table 12: outcomes of the least squares regression of the seasonal AR(1) model, based on 14000 
deseasonalized values resulting from one simulation run with planning horizon 50.  
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Figure 31: Actual, fitted and residual time series of the deseasonalised time series Yt* for 
planning horizon 50, shown for the first 500 observations, after a warm-up period of 800 weeks. 
 


