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Abstract

This study investigates which pricing model is more appropriate in a low or negative

interest rate setting in terms of pricing accuracy. We compare six different option pric-

ing models where each model assume different dynamics of the interest rate and the

volatility. The models incorporate either a constant, Vasicek or CIR type dynamic for

the interest rate and the models incorporate either a constant or Heston type dynamic

for the volatilty. We test which pricing model has the better performance in either

interest rate setting. Our simulation study shows that the pricing models that rely on

a CIR type short-rate process exhibit abnormal parameter values and drastically un-

derperform in terms of pricing accuracy in comparison with models based on a Vasicek

type short-rate process. The models are calibrated on real world S&P 500 option data

from the time period 2010 to 2015 and we find that the Heston-Vasicek model has the

best pricing performance. In contrast, the Heston-CIR models shows a relatively poor

out-of-sample pricing performance.

Keywords: Option Pricing; Negative Interest Rates; Stochastic Interest Rates; Stochas-

tic Volatility
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1 Introduction

In recent events we observe a major shift in nominal interest rates across the world.

Since the financial crisis in 2008, interest rates have reached all-time lows were we even

observe negative interest rates on long-term maturities in Europe, the US and other

parts of the world. Several banks introduced a negative interest rate policy since the

crisis of 2008 in order to bolster the local economy. Central banks such as the Swiss

National Bank, the European Central Bank and the Bank of Japan employed negative

rates. This has major economic consequences and also has considerable technical im-

plications. Modeling in derivative pricing usually require (high) positive risk-free rates

as certain models do not allow for negative values. For example, the Cox-Ingersoll-Ross

(CIR) short-rate model only allows positive inputs and can therefore not be used to

model negative interest rates. Furthermore, the diffusion term of the CIR short-rate

model is dependent on the current level of the interest rate. When the interest rate

goes to zero, the diffusion term will go to zero as well which does not occur in prac-

tice. The question then remains what derivative pricing model is appropriate in this

low-interest-rate environment and more importantly, more accurate in terms of pricing

accuracy.

Several recent studies have investigated the matter of negative interest rates on

derivative pricing. Giribone et al. (2017) study the effects of negative rates on the

pricing of interest rate options with regards to the option sensitivities (the Greeks).

They examine a normal framework as opposed to the traditionally used log-normal

framework and assess the Greek discrepancies between the two. Cafferata et al. (2017)

study the effect of negative interest rates on the pricing of American calls and highlights

the differences between estimation using quasi-closed formulas and an approximation

method represented by a stochastic trinomial tree. Recchioni et al. (2017) investigate

if models that allow for negative interest rates improve option pricing and implied

volatility forecasting. They use an adjusted Heston model where they allow the interest

rate to follow a stochastic Vasicek process. The latter study forms an important focus
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for this thesis as we use the same model to price S&P 500 index call and put options.

This model incorporates both stochastic volatility and stochastic interest rates.

In this study, we relax the assumption of a constant interest rate and we consider

stochastic short rate models as they are able to capture the dynamics of interest rate

dynamics in order to price financial derivatives. Additionally, some of those models are

highly tractable that can lead to closed-form approximations of financial derivatives

which depend on the interest rate. Numerous short-rate models have been developed

to model the stochastic interest rates. A few examples are the Vasicek (1977) model,

the Hull and White (1993) model, the Cox-Ingersoll-Ross (1985) model and the Heath

et al. (1992) model. We focus in this study on the models of Cox-Ingersoll-Ross (CIR)

and Vasicek as closed-form solutions for call and put options are available. The Vasicek

model assumes a normal distribution of the interest rate and thus they assign positive

probabilities to interest rate levels considerably lower than zero. Traditionally, this was

considered a major flaw of the model as interest rates were believed never to reach

negative values (Brigo & Mercurio, 2001). For the same reasoning, the CIR model was

a more realistic approach in the sense that only positive inputs were allowed for the

short rate. However, in recent events we do observe negative interest rates and it is a

point of interest how the Vasicek model is able to facilitate the pricing of derivatives

compared to the CIR model. Incorporating stochastic interest rates has practical use

as Abudy and Izhakian (2011) finds that derivative pricing models where the interest

rate dynamic is modeled by a Vasicek process has better pricing performance in terms

of a lower mean squared errors.

In addition to stochastic interest rates, we also consider stochastic volatility of the

underlying asset. There are two kinds of volatility models, which in comparison with

the Black-Scholes model, relaxes the assumption of a constant volatility. These are the

local volatility models and the stochastic volatility models. The local volatility model,

first introduced by Dupire et al. (1994), is a model where the volatility is a deterministic

function of the stock price. This model was able to accurately account for the volatility

smile observed in current real markets. However, local volatility models have consider-
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able drawbacks. Hagan et al. (2002) finds that local volatility models are not able to

accurately predict future smiles and skews. Specifically, the local volatility models actu-

ally predict the exact opposite behavior observed in real markets and suggests the use of

the stochastic volatility models instead. The Heston model is an example of a stochastic

volatility model. Although it is not able to perfectly match the volatility smile of cur-

rent market prices, it is able to provide realistic volatility surfaces at future moments.

Stochastic volatility models have considerable positive impact on modeling derivative

prices and is documented by several papers, such as Bakshi et al. (1997), Nandi (1998)

and Jones (2003). The aforementioned studies consider single-factor stochastic volatil-

ity. However, Christoffersen et al. (2009) argue that single-factor stochastic volatility

models are still overly restrictive in generating the proper smiles and smirks of the

volatility surface. Christoffersen et al. (2009) find that two-factor stochastic volatility

models are better able to model the stylized facts of volatility smiles and smirks and

result in an improved statistical fit.

Numerous studies have incorporated multi-factor stochastic volatility models where

one of the factors is the stochastic interest rate. Zhu (2000) establishes a multi-factor

model that is able to generate skew patterns for equity. We note that the stochas-

tic interest rate is uncorrelated with the equity. Andreasen (2006) uses a multi-factor

Heston stochastic volatility model where the model specifies an indirect correlation be-

tween the stochastic interest rate and the equity. Ahlip (2008) presents a derivative

model for foreign exchange options which incorporates both stochastic volatility and

stochastic interest rates. The volatility process is mean-reverting and is directly corre-

lated with the exchange rate. This study derives an analytical expression for the price

of a call option on the foreign exchange rate. Haastrecht et al. (2010) introduces a

Schobel-Zhu-Hull-White model where the short rate and volatility dynamics follow an

Ornstein-Uhlenbeck process. Initially, the model is not of an affine form but can be

made affine by adding a fourth state variable. Grzelak and Oosterlee (2011) extends

the Heston stochastic volatility model with stochastic interest rates and specifies two

variants: one variant where the short rate is specified by the Hull-White process and the
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other variant where the short rate is specified by the CIR process. More recently, the

work of Recchioni and Sun (2016) and Recchioni et al. (2017) modifies the multi-factor

Heston model proposed by Grzelak and Oosterlee (2011). The model still preserves

the main features of the model, but in addition is now analytically tractable allowing

for explicit formula’s for the moments of the asset price variable and allows for simple

one-dimensional approximations for European call and put options.

The goal of this thesis is to gain insight how option pricing models are able to price

call and put options on the S&P 500 index in periods of low or negative interest rates.

We consider six pricing models: the standard Black-Scholes (BS) model, the Black-

Scholes-Vasicek (BS-VS) model, the Black-Scholes-CIR (BS-CIR) model, the standard

Heston (H) model, the Heston-Vasicek (H-VS) model and the Heston-CIR (H-CIR)

model. In order to gain an understanding of the pricing performance of the six models,

we perform both a simulation study and an empirical study.

In the empirical study we apply the models to real market data where the sample

data spans the period from 2010 to 2015 where interest rates reached record lows. We

obtain data for a total of 86,020 weekly observations. In-sample results show that the

standard BS model has the worst performance. Extensions of the BS model with the

Vasicek and CIR stochastic interest rates show considerable pricing improvement. The

BS-VS model performs better than the BS-CIR model and we attribute this to the

CIR model not being able to properly model the dynamics of low and negative interest

rates. We find the same results for the Heston models. Including either of the stochastic

rates increases pricing performance compared to the standard Heston model. The H-VS

model outperforms the H-CIR model in terms of pricing accuracy when we consider the

in-sample results. When we consider the out-of-sample results, we still observe that the

BS-VS and BS-CIR models outperform the standard BS model. However, the H-CIR

model is considerably under performing compared to the H-VS and standard Heston

models. Apparently, the H-CIR is not well specified to deal with low or negative interest

rates.

We contribute to existing literature in three ways. First, we test multiple models
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in a setting of low and negative interest rates. We know that negative interest rates

have a huge impact on valuing derivatives and this makes a lot of models unsuitable for

use. However, we do not know exactly to what extent this hurts option pricing. This

study will measure the performance of the pricing models using in and out-of-sample

goodness of fit tests where the sample period is selected in a period of low and negative

interest rates. Second, we perform a simulation study under a setting of low interest

rates and under a setting of negative interest rates. Through this study, we will be able

to identify misspecification in the model parameters and examine the consequences to

the pricing performance. And third, we use option data from a relatively large sample

period of time containing a wide variety of in and out-of-the-money options across

different maturities compared to our benchmark study of Recchioni et al. (2017). We

use a 6-year time period, while our benchmark study only selects a time period of 2

months with a very narrow range of option quotes.

Section 2 considers the methodology used in this study and introduces the option

pricing models and the calibration method. Section 3 presents the results of the simu-

lation study. In Section 4 we apply our models to empirical data. Results regarding the

implied parameters and the real pricing performance will be presented here. Section 5

concludes.
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2 Methodology

This section describes the methodology where we start with briefly discussing the op-

tion pricing models used in this study. Section 2.1 describes the Black-Scholes model.

We then relax the assumption of a constant interest rate by allowing the interest rate to

be stochastic. Sections 2.2 and 2.3 describe the Black-Scholes-Vasicek and the Black-

Scholes-CIR models, respectively. Section 2.4 describes the Heston stochastic volatility

model. Sections 2.5 and 2.6 discuss the Heston-Vasicek and Heston-CIR models, re-

spectively. Afterwards, we describe the calibration procedure in section 2.7.

2.1 Black-Scholes model

The Black-Scholes model assumes a geometric Brownian motion for the underlying

stock price St such that

dSt = rStdt+ σStdWt, (1)

under the risk-neutral measure, where r is the interest rate, σ is the volatility of the

stock price and Wt is a standard Brownian Motion. In order to price a call option V

the Black-scholes formula is used and is given by

V =S0Φ(d1)−Ke−rTΦ(d2), (2)

d1 =
log(S0

K
) + (r0 + σ2/2)T

σ
√
T

, (3)

d2 =d1− σ
√
T , (4)

where Φ(.) is the cumulative probability function of a standard normal distribution.

This model is only a simple representation of real-world circumstances and makes several

assumptions. For example, the Black-Scholes model assumes a log-normal distribution

of the stock returns and assumes that during the lifetime of an option no dividends are

paid out. Additionally, the model assumes that the volatility of the underlying and the

interest rate are constant over time. The Black-Scholes model can be extended such
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that it incorporates stochastic interest rates. We discuss this in the next section.

2.2 Black-Scholes Vasicek model

We consider a Black-Scholes economy where we relax the assumption of a constant

risk-free rate. Instead, we assume a Vasicek (1977) stochastic short rate process such

that St and rt are given by

dSt =rStdt+ σStdWt, (5)

drt =λ(θ − rt)dt+ ηdZt, (6)

under the risk-neutral measure, where λ represents the speed of mean-reversion of the

interest rate, θ the long-run mean, η is the volatility of the short rate and dZt and dWt

are standard Wiener process correlated with the instantaneous correlation parameter

ρ. We follow the deriviation of Abudy and Izhakian (2011) which presents the value of

a call options V as

V =SΦ
[ ln S

K
+ A− 1

2
υ2τ

σ
√
τ

+ υ
√
τ
]

−Ke−A+ 1
2
B2τΦ

[ ln S
K

+ A− 1
2
υ2τ

σ
√
τ

−B
√
τ
]
, (7)

(8)

where

υ2 =σ2 +B2 − 2ρσB, (9)

A =
α

β
τ + (rt −

α

β
)λ, (10)

B =
ε

β

√
τ − λ− β

2
λ2, (11)

λ =
1

β
(1− e−βτ ). (12)
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The intuition behind expression (7) is that the price of a call option is dependent

whether the unexpected excess returns is higher than a given threshold (Abudy &

Izhakian, 2011).

2.3 Black-Scholes-CIR model

We consider the same Black-Scholes economy but instead we relax the assumption that

the interest rate is constant. We assume that the stochastic interest rate follows a

process introduced by Cox et al. (1985) such that St and rt are given by

dSt =rStdt+ σStdWt, (13)

drt =λ(θ − rt)dt+ η
√
rtdZt, (14)

under the risk-neutral measure, where λ represents the speed of mean-reversion of the

interest rate, θ is the long-run mean of the interest rate, η is the volatility of the

interest rate, Wt and Zt are standard Wiener process correlated with the instantaneous

correlation parameter ρ. The feller condition 2λθ ≥ η2 ensures that the interest rate

process remains positive. Kim (2002) presents the value of the of call option V under

a CIR type stochastic interest rate process as

V =
[
S0Φ(d1)−Ke−

∫ T
0 r∗t dtΦ(d2)

]
+ ηC0

[
S0φ(d1)−Ke−

∫ T
0 r∗t dt(φ(d2)− δ

√
TΦ(d2))

]
(15)

+ ηC1

[
d2S0φ(d1)− d1Ke

−
∫ T
0 r∗t dtφ(d2)

]
,

where the quantities C0, C1, C11 and ψ are given in (A1), (A2), (A3) and (A4)

2.4 Heston model

The model of Heston (1993) is a well-known stochastic volatility model, which in con-

trast to the Black-Scholes model, relaxes the assumption that the volatility of the
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underlying is constant. The Heston model assumes that the variance follows a CIR

type square root process that is correlated with the underlying asset. The stock price

St and the variance vt are given by the following stochastic differential equation (SDE):

dSt =µStdt+
√
vtStdW1,t, (16)

dvt =χ(v∗ − vt)dt+ γ
√
vtdW2,t, (17)

where EP[dW1,t, dW2,t] = ρdt, µ is the drift of the process of the stock, χ is the speed

of mean-reversion for the variance, v∗ is the long-run mean of the variance and γ is the

volatility of the volatility (vol-of-vol).1 The feller condition 2χv∗ ≥ γ2 ensures that the

variance process remains strictly positive. The processes in equation (16) and (17) are

under the historical measure P. However, for option pricing we require the processes

to be under the risk-neutral measure Q. Applying Girsanov’s theorem we obtain the

following process for the stock price and variance:

dSt =rStdt+
√
vtStdW̃1,t, (18)

dvt =χ(v∗ − vt)dt+ γ
√
vtdW̃2,t, (19)

where EQ[dW̃1,t, dW̃2,t] = ρdt under the risk-neutral measure Q and r is the risk-free

rate. Heston (1993) provides a closed-form solution for the value of a call options V.

The complete derivation of the Heston formula is well documented and we omit the

details here. We simply state that the value of a call option V is given by

V = StP1 −KerτP2 (20)

1We note that traditionally, the parameters of the speed of mean-reversion, the long-run mean and
the vol-of-vol for the Heston model are given by κ, θ and σ, respectively. We rename the parameter
names here to avoid confusion when we introduce a multi-factor Heston model later on.
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where P1 and P2 are

Pj =
1

2
+

1

π

∫ +∞

0

[eιψ lnKfi(φ;x;v)

ιφ

]
dφ, (21)

fj(φ;xj, vt) =exp(Cj(τ, φ) +Dj(τ, φ)vt + ιφxt), (22)

Dj(τ ;φ) =
bj − ρσιφ+ dj

σ2

( 1− edjτ

1− gjedtτ
)
, (23)

Cj =rιφτ +
a

σ2

[
(bj − ρσιφ+ dj)τ − ln

(1− gjedjτ

1− gj

)]
, (24)

g =
bj − ρσφ+ d

σ2

( 1− edr

1− gedr
)
, (25)

d =
√

(ρσφι− bj)2 − σ2(2ujφι− φ2), (26)

where α = χv∗. The integral in expression (21) cannot be evaluated analytically but

has to be evaluated numerically.

2.5 Heston-Vasicek model

Recchioni et al. (2017) provides a framework for a multi-factor Heston model where

the model is able to incorporate negative interest rates. This framework is an adjusted

model of the Heston-CIR in Recchioni and Sun (2016) where now the Vasicek model

used to model stochastic interest rates, instead of the CIR model. In this study, we call

this model the Heston-Vasicek model. The process for the stock price St, the variance

vt and the interest rate rt is given by

dSt = Strtdt+ St
√
vtdW

v
t + St∆

√
vtdZ

v
t + StΩdW

r
t , (27)

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t , (28)

drt = λ(θ − rt)dt+ ηdZr
t , (29)

where Ω and ∆ are non-negative constants. χ is the speed of mean reversion for the

variance, v∗ is the long-run mean of the variance and γ is the vol-of-vol. χ, v∗ and γ are

positive constants. The variance vt stays positive if the feller condition 2χv∗

γ2
> 1 holds.
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λ is the speed of mean-reversion for the interest rate, θ is the long-run mean and η is

the volatility of the interest rate. λ and η are positive numbers, while θ can be both

positive or negative as the Vasicek allows for negative interest rates. W v
t , W u

t , Zv
t and

Zr
t are Wiener process with the following correlations:

E(dW v
t dZ

v
t ) = ρvdt, (30)

E(dW r
t dZ

r
t ) = ρrdt. (31)

The formulation of a multi-factor Heston model with stochastic interest rates is not new

and has been done before. Grzelak and Oosterlee (2011) provides a similar framework

of a multi-factor Heston model where the main difference lies in the parameter Ω.

Grzelak and Oosterlee (2011) assumes Ω to be variable and dependent on vt while

Recchioni and Sun (2016) assumes Ω to be constant. By assuming a constant Ω the

model becomes analytically tractable such that explicit moments of the price variables

are available. As a consequence, it is possible to approximate European call and put

options with only one-dimensional integrals which can be efficiently computed using

numerical integration. We provide a brief explanation of the relevant expressions used

to determine European call and put options. For futher details we refer to the work of

Recchioni et al. (2017). To deduce the analytical formula’s for the value of call and put

options, we first apply ito’s lemma and derive the following SDEs with the log-price

process xt = ln (St/S0):

dxt =
[
rt −

1

2
(ψ̃vt + Ω2)

]
dt+

√
vtdW

v
t + ∆

√
vtdZ

v
t + ΩdW r

t , (32)

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t , (33)

drt = λ(θ − rt)dt+ η dZr
t , (34)

where ψ̃ is given by

ψ̃ = 1 + ∆2 + 2ρv∆. (35)
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The price of a vanilla call and put options is given by

C(S0, T,K, r0, v0) = EQ
(
e−

∫ T
0 rtdt(S0e

xT −K)+

)
, (36)

P (S0, T,K, r0, v0) = EQ
(
e−

∫ T
0 rtdt(K − S0e

xT )+

)
, (37)

where (.)+ = max{., 0}. The expressions for vanilla call and put options in (36) and (37)

require the evaluation of three-dimensional integrals. Numerical integration would not

be efficient and would take a long time to compute. Recchioni et al. (2017) approximates

term e
∫ T
0 r(t)dt using

e
∫ T
0 r(t)dt ≈ e−r0(1−ω)T e−rT , (38)

where ω is

ω =
1

T

(T −Ψ1,λ(T ))

λΨ1,λ(T )
. (39)

The stochastic integral in (36) and (37) can then be approximated by using a quadrature

rule. The weights are chosen such that it incorporates the features of this particular

stochastic interest rate process. Using the results of the expressions of the various

moments of the pricing variable, expressions (36), (37) and (38) we get an approximation

of the value of a European vanilla call and put option, Va, which is

Va(S0, T,K, r0, v0) =e−(θT+(r0−θ)Ψ1,λ(T ))e(ωT )2 η
2

2
Ψ2,λ(T ) (40)

× S0

2π

∫ +∞

−∞

(
S0

K

)q−1−ιk
eQv,q(T,v0,k;Θv)eQr,q(T,r0,k;Θ)

−k2 − (q1− 1)ιk + q(q − 1)

× e(ιk−q)ωT
(

ΩρrηΨ1,λ(T )+ η2

λ
(Ψ1,λ−Ψ2,λ)

)
.

The quantities (A5) to (A14) are required and are presented in the appendix. Expression

(40) approximates the value of a call option for q > 1, and approximates the value of

a put option for q < −1. The integral that appears in this expression is a smooth

function, therefore numerical integration can be done efficiently using a quadrature

rule. It is possible to take the limit of Ω→0+, λ→0+ and η →0+ which eliminates the
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stochastic interest rate and reverts the Heston-Vasicek model into the standard Heston

model such that expression (40) turns into

VH(S0, T,K, r0, v0) = e−r0T
S0

2π

∫ +∞

−∞

(
S0

K

)q−1−ιk
eQv,q(T,v0,k;Θ)e−(ιk−q)r0T

−k2 − (q1− 1)ιk + q(q − 1)
dk, (41)

This formula approximates the value of a call option for q > 1 and a put option for

q < −1 under constant interest rates. We verify that (41) approximates the closed-form

Heston expression (20).

2.6 Heston-CIR model

For the Heston model where the interest rate follows a CIR type process, we again

follow the procedures as mentioned in Recchioni and Sun (2016). We start with the

process dynamics of the stock price St, the variance vt and the interest rate rt

dSt = Strtdt+ St
√
vtdW

v
t + St∆

√
vtdZ

v
t + StΩ

√
rtdW

r
t , (42)

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t , (43)

drt = λ(θ − rt)dt+ η
√
rtdZ

r
t , (44)

where Ω and ∆ are non-negative constants. χ is the speed of mean reversion for the

variance, v∗ is the long-run mean of the variance and γ the vol-of-vol. χ, v∗ and γ are

positive constants. The variance v stays positive if the feller condition 2χv∗

γ2
> 1 holds.

λ is the speed of mean-reversion for the interest rate, θ is the long-run mean and η is

the volatility of the interest rate. λ, θ and η are positive numbers. W v
t , W u

t , Zv
t and

Zr
t are Wiener process with the following correlations:

E(dW v
t dZ

v
t ) = ρvdt, (45)

E(dW r
t dZ

r
t ) = ρrdt, (46)
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To derive the value of a call option, we follow the steps similar to the Heston-Vasicek

model. We rewrite with ito’s lemma with xt = ln (St/S0):

dxt = [rt − 1
2
(ψ̃vt + Ω2rt)]dt+

√
vtdW

p,v
t + ∆

√
vtdW

v
t + Ω

√
rtdW

p,r
t , (47)

dvt = χ(v∗ − vt)dt+ γ
√
vtdW

v
t , (48)

drt = λ(θ − rt)dt+ η
√
rtdW

r
t , (49)

where ψ̃ is

ψ̃ = 1 + ∆2 + 2ρv∆. (50)

Similar to the Heston-VS model in section 2.5, we use the expressions of the various

moments of the pricing variable and expressions (36)-(39) to derive an approximation

of the value V of an option for the Heston-CIR model and is given by

Va(S0, T,K, r0, v0) =e−(θT+(r0−θ)Ψ1,λ(T ))e(ωT )2 η
2

2
Ψ2,λ(T ) (51)

× S0

2π

∫ +∞

−∞

(
S0

K

)q−1−ιk
eQv,q(T,v0,k;Θv)eQr,q(T,r0,k;Θ)

−k2 − (q1− 1)ιk + q(q − 1)

× e(ιk−q)ωT
(

ΩρrηΨ1,λ(T )+ η2

λ
(Ψ1,λ−Ψ2,λ)

)
,

where the quantities (A15) to (A25) are required. This formula approximates the value

of a call option for q > 1 and a put option for q < −1.

2.7 Calibration Method

In this study, the loss function approach is chosen where we minimize the error between

the quoted (simulated) price and the theoretical model price. We minimize the dollar-
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Table 1: Upper and Lower bounds of the parameters

λ θ η ρr χ v∗ γ v0 ρv Ω ∆

Upper bound 5 1 1 1 5 1 1 1 1 4 3
Lower bound 0 -1/0 0 −1 0 0 0 0 −1 0 0
Starting value 3 0.05 0.01 −0.8 0.5 0.05 0.1 0.1 −0.9 0.3 1.5

measure of the mean squared error ($MSE) loss function which is given by

min
Θm

1

N +M

[ N∑
i=1

(Co(St, Ki, τi)− CΠ(ΘΠ;St, Ki, τi)
2

+
M∑
j=1

(Po(St, Ki, τi)− PΠ(ΘΠ;St, Ki, τi)
2
]

(52)

+ α(ΘΠ −Θ0)′(ΘΠ −Θ0),

where Co(St, Ki, τi) is the observed call option price, Po(St, Ki, τi) the observed put

option price, CΠ(ΘΠ;St, Ki, τi) is the theoretical model call price, PΠ(ΘΠ;St, Ki, τi) is

the theoretical model put price, N is the amount of call options and M the amount of put

options. We use matlab’s in-built function lsqnonlin to minimize our objective function.

The solver requires additional inputs, namely the starting values of the calibration

process. Because the solver is not a global optimizer, the starting values can provide

bias in the estimation of the parameters. For this reason we set multiple starting

points using Matlab’s multistart function. This function uses uniformly distributed

starting points within the upper and lower limit of the bounds specified by the user.

Table 1 displays the upper and lower bounds of all the variables. We note that the

multistart function still prompts us for an initial starting value. This starting value is

also displayed in the same table.

The last term in expression (52) is the regularization term where α is the regular-

ization parameter, ΘΠ is the parameter set to be calibrated from the theoretical model

and Θ0 is a initial set of parameter values. The regularization term is essential for the

parameters resulting from the calibration procedure to remain stable. Regarding reg-

ularization, there is a trade-off between accuracy and regularity and the choice of α is

15



therefore crucial (Zeng et al., 2014). If α is too small, the parameter estimates will vary

too greatly and will lead to instability. If α is too large, the results will be oversmoothed

and might cause bias which is introduced in the initial set Θ0. In general, there is no

widely accepted method to determine the regularization parameter α and there are two

approaches to determine α. The first approach is to use a priori methods where the

value of α is determined based on the noise of the data. The second approach is to use

a posteriori methods and is the most frequently used approach in financial literature

(Zeng et al., 2014). An example of an a posteriori method is the use of discrepancy

principles where the regularization parameter α is set to the level so that the data

fidelity is not greater than the noise of the observations. Several recent contributions

have been made on determining the implied volatility’s of financial derivatives by Wang

and Yang (2014) and Liu and Liu (2018) who implement a total variation regularization

strategy. This regularization technique is able to better characterize the properties of

the implied volatility’s compared to other regularization techniques. Determining the

optimal value of α is outside the scope of this study as the expressions required for the

regularization algorithm are not readily available for the pricing models used in this

study. We leave it up to future research to explore this topic further.

16



3 Simulation Study

In this section we perform a simulation study regarding the performance of the six

pricing models from section 2 when we apply them in periods of low or negative interest

rates. Our goal is twofold. First, we want to verify if the calibration procedure is

adequate such that our pricing models are able to closely replicate simulated option

prices. And second, we want to examine how the pricing models behave in terms of

their parameter values in periods of low and negative interest rates. Section 3.1 explains

the process of simulating the option prices and calibrating the pricing models to these

options. Section 3.2 evaluates the models in terms of their pricing errors and parameter

values.

3.1 Simulation Procedure

A set of call option contracts are made with varying maturities and strike prices. Four

time-to-maturities τi are considered where τi ∈ { 1
12

, 1
4
, 1

2
, 1} for i = 1, ..., 4. This

represents a time-to-maturity of 1-month, 3-month, 6-month and 1-year, respectively.

Six different strikes Kj are selected with Kj = S0

1.08−0.03(j−1)
for j = 1, 2, ..., 6 where S0 is

the current spot price. This represents six option contracts with different strike prices.

We use the moneyness ratio (S/K ) to obtain a balanced set of in-the-money and out-

of-the-money call options. With this procedure, we obtain a set of 24 (4 × 6) options

with different time-to-maturities and strikes. We then construct the simulated option

market prices CMP (S0, Kj, τi, ) using the closed-form approximations of the pricing

models explained in section 2. We use the notation CΠ(ΘΠ;S0, Kj, τi, ) for the closed-

form approximation where CΠ with Π ∈ {BS, BS-VS, BS-CIR, H, H-VS, H-CIR}2

represents one of the six pricing models and ΘΠ represents the respective parameter set

for model Π.

In this study we do not model the prices directly by simulating the risk-neutral

2BS and H stand for the Black-Scholes and Heston models, respectively. VS and CIR stand for the
Vasicek and CIR stochastic interest rate process, respectively.
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processes of the respective models. We only consider vanilla call and put options where

the closed-form expressions in section 2 are able to correctly approximate the values of

the options. If we were to simulate the paths directly, given enough simulations, the

average value of the options resulting from each path would converge to the value of the

closed-form approximation. Therefore, directly simulating the paths is not necessary.

In order to construct the simulated option price CMP (S0, Kj, τi), we first need to

determine the model parameters which represents a setting of low or negative interest

rates. We create a set of parameters for the pricing models and we use the parameter

values from Recchioni and Sun (2016) and Recchioni et al. (2017) as benchmark. In the

aforementioned studies the H-CIR and H-VS models are calibrated on empirical data

in a period where the interest rate was negative. We assume that the parameter values

from the studies capture the interest rate dynamics under these extreme circumstances.

Another point of interest is how option models behave when the interest rate is very

low, instead of negative. Therefore, we create another set where we slightly adjust

the parameters of the first set to a context more befitting of a period with very low

interest rates. Table 2 displays the chosen parameter sets in order to determine the

simulated option prices. Panel A of table 2 shows the parameter values under period

of low interest rates where we set r0 = 0.005. Panel B shows the parameter values

under negative interest rates where we set r0 = −0.005. We note that we only let

the parameters vary regarding the stochastic interest rate process as this is our point

of interest. The parameters regarding the stochastic volatility remain constant for all

models.

After determining the parameter values, we are able to obtain simulated prices for a

set of call option contracts using the six pricing models as the data generating process

(DGP). We can now begin to calibrate the models using our calibration procedure

explained in section 2.7. The amount of starting points is set to 50, such that 50

calibrations are performed for each model. We set the regularization parameter α for

the simulation study equal to zero. Our reasoning is that it is unclear what the proper

value for the initial parameter set Θ0 is. Instead, we let Matlab’s multistart function
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Table 2: Initial Parameters for the Simulated Option Prices

Panel A: Low interest rates (r0 = 0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

BS 0.05

BS-VS 3.62 0.003 0.02 −0.81 0.05

BS-CIR 3.62 0.003 0.0098 −0.81 0.05

H 0.65 0.0345 0.08 0.05 −0.97

H-VS 3.62 0.003 0.02 −0.81 0.65 0.0345 0.08 0.05 −0.97 0.26 1.23

H-CIR 3.62 0.003 0.0098 −0.81 0.65 0.0345 0.08 0.05 −0.97 2.51 1.98

Panel B: Negative interest rates (r0 = -0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

BS 0.05

BS-VS 3.62 0.002 0.02 −0.81 0.05

H 0.65 0.0345 0.08 0.05 −0.97

H-VS 3.62 0.002 0.02 −0.81 0.65 0.0345 0.08 0.05 −0.97 0.26 1.23

This table presents the initial parameters sets required to simulate the option prices for each model.
Panel A shows the parameter sets under a low interest rate setting. Panel B shows the parameters sets
under a negative interest rate setting. The BS-CIR and H-CIR models are not used under a negative
interest rate setting.

search for a global optimum.

3.2 Simulation Results

We now discuss the results produced in our simulation study. As a result of the calibra-

tion process, we obtain for each model a set of parameters and the pricing performance.

A proper model should be able to accurately price the simulated option prices. Table 3

displays the average price of the models after calibration where the percentage error is

shown in parenthesis. The simulated options are created using the models displayed on

the top of each column (DGP) in Table 3 for each panel. The models on the left-hand

side of each panel are the models calibrated on the aforementioned simulated options.

No options are created for the BS-CIR and H-CIR models in panel B, as they do not

allow for negative inputs.
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Table 3: Average Price and Pricing errors

Panel A: Low interest rates (r0 = 0.005)
DGP

BS BS-VS BS-CIR H H-VS H-CIR

BS 122.855 124.905 122.811 118.527 143.140 152.158
(0.000) (0.923) (-0.015) (-0.993) (-0.644) (-0.812)

BS-VS 122.855 124.568 122.814 118.681 143.376 152.510
(0.000) (0.000) (-0.005) (-0.727) (-0.094) (-0.112)

BS-CIR 122.855 124.563 122.816 119.272 143.401 152.541
(0.000) (-0.052) (0.000) (0.969) (-0.081) (-0.087)

H 122.853 124.556 122.812 119.236 143.409 152.563
(-0.007) (0.008) (-0.009) (0.000) (-0.021) (-0.005)

H-VS 122.855 124.568 122.816 119.234 143.416 152.563
(0.000) (-0.002) (0.000) (-0.030) (0.000) (-0.001)

H-CIR 122.855 124.568 122.816 119.234 143.418 152.564
(0.000) (0.004) (0.009) (-0.033) (0.007) (0.000)

Panel B: Negative interest rates (r0 = -0.005)
DGP

BS BS-VS BS-CIR H H-VS H-CIR

BS 118.611 123.650 114.011 141.880
(0.000) (2.464) (-0.820) (0.435)

BS-VS 118.611 122.859 114.198 141.662
(0.000) (0.000) (-0.957) (-0.109)

BS-CIR 117.275 119.341 115.722 139.052
(-1.483) (-2.778) (1.463) (-1.838)

H 118.609 122.858 114.749 141.705
(-0.007) (-0.113) (0.000) (0.081)

H-VS 118.611 122.859 114.754 141.704
(0.000) (0.000) (0.036) (0.000)

H-CIR 116.621 120.384 113.082 139.351
(-1.453) (-1.670) (-1.302) (-1.632)

This table presents the average price of the options. The percentage error is shown in
parenthesis. The simulated options are created using the models displayed on the top
of each column (DGP). The models on the left-hand side of each panel are the models
calibrated on the aforementioned simulated options. No options are created for the BS-
CIR and H-CIR models in panel B, as they do not allow for negative inputs. Underlined
values are the best performing models for each DGP (values on the diagonal are excluded).

20



In panel A were we consider a setting of low interest rates (r0 = 0.005), we observe

that on the diagonal that each calibrated model is able to accurately price the options

where the simulated prices are derived from the same model. The percentage error

is 0.000% for these models. The BS model has overall the worst performance of all

six models as the percentage error percentage error are generally higher compared to

the other models. This is expected as the BS model is not able to model either the

stochastic interest rate or the stochastic volatility. For example, the standard BS model

has a percentage error of -0.644% and -0.812% when it tries to match the data generated

by the H-VS and H-cir models, respectively. The BS-V model and BS-CIR model have

more or less the same performance. The H-VS and H-CIR have the most accurate

performance with percentage errors close to 0% across all the different DGP’s. These

models are able to both incorporate stochastic volatility and interest rates. We note

that these models contain more parameters (11 total) which greatly aids in fitting the

data (compared to the 5 parameters for the BS-VS and BS-CIR models).

Panel B considers the setting of negative interest rates (r0 = -0.005) and we find

stark differences in percentage error of the models which rely on the CIR stochastic

interest rate process. The BS-CIR has percentage errors of -1.483% and -2.778% where

the DGP are the BS model and BS-VS model, respectively. These percentage errors

were only 0.000% and -0.052% under periods of low interest rates in panel A. With

the H model and H-VS models as DGP, the BS-CIR has percentage errors of 1.463%

and -1.838%, respectively. Which is quite higher than the percentages of 0.969% and

-0.081% under periods of low negative interest rate. Apparently, the CIR interest rate

is not able to properly model the option prices under negative rates. We observe the

same pattern for the H-CIR model, which has higher percentage errors across the board

under the setting of negative interest rates in panel B, compared to the setting in panel

A. Next we will look at the parameter estimates of the model. Based on this finding, we

expect that the parameter estimates for the models extended with the CIR framework

to greatly differ under a negative interest rate setting leading to unusual high (or low)

parameter settings.
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Tables 4 and 5 and show the calibrated parameters where the DGP are BS-VS

and H-VS models, respectively. Table 4 shows the calibrated parameters where the

DGP is the BS-VS model. In panel A, we observe that the the BS-CIR model takes

on extraordinary parameters. The long-run mean Θ is 0.002 and the volatility of the

short rate η is 0.770 which is remarkably high. The correlation parameter ρr is also

significantly different then the starting value of -0.800 with 0.382. Yet, the pricing of

this model was accurate according to table 3 in Panel A with the average price only

being -0.052% off. The same applies to the H-CIR model where the volatility of the

interest rate η and the correlation parameter ρr are considerably different with a value

of 0.679 and 0.171 respectively. Yet the pricing error to the simulated price is small

with only 0.004%. It seems that the calibration procedure assigns high volatility and

correlation parameter values in order for the models to accurately approximate the

simulated prices even though the parameters do not accurately describe the underlying

dynamics of the DGP. Next we look at Panel B where we consider a setting of negative

interest rates where we set the initial interest rate r0 equal to -0.005. We expect that the

models which assume a CIR type interest rate will have difficulty in establishing proper

parameters as they do not allow for negative inputs. The BS-CIR model assumes a

value of 1.000 for η which is equal to the value of the earlier established upper bounds.

The correlation parameter ρr is also equal to the upper bound of 1. The pricing error of

this model as mentioned earlier is -2.778% and coupled with the inaccurate parameter

estimates indicate that the BS-CIR model is not correctly specified to handle this

negative interest rate setting. The H-CIR model, which assumes the same CIR type

short rate process, does not exhibit the same extreme values as the BS-CIR model.

However, The initial volatility v0 and the long run mean v∗ are considerably higher

than the initial variance of the BS-CIR model. It is likely that the parameters of the

stochastic process of the volatility are trying to (unsuccessfully) capture the variation

in the data. This is unsuccessful as we established earlier from table 3 that average

pricing error is considerable for the H-CIR model under negative interest rates.
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Table 4: Calibration results with the Black-Scholes-Vasicek model as DGP

DGP : Black − Scholes− V asicek dSt = Strtdt+ StσdW
r
t

drt = λ(θ − rt)dt+ ηdZr
t

Panel A: Low interest rates (r0 = 0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 3.620 0.003 0.020 −0.800 0.050

BS 0.052
(4.036)

BS-VS 3.620 0.003 0.020 −0.800 0.050
(0.000) (0.000) (0.000) (0.000) (-0.001)

BS-CIR 0.525 0.002 0.770 0.382 0.050
(-85.508) (-18.469) (3752.217) (-147.763) (-0.698)

H 0.616 0.061 0.013 0.050 0.435
(-0.316)

H-VS 2.133 0.002 0.161 −0.188 2.235 0.131 0.001 0.075 −0.931 0.199 1.003
(-41.073) (-16.731) (703.241) (-76.532) (49.016)

H-CIR 0.205 0.001 0.679 0.171 1.057 0.182 0.033 0.160 −0.834 0.000 0.916
(-94.336) (-39.989) (3293.711) (-121.355) (219.27)

Panel B: Negative interest rates (r0 = -0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 3.620 0.002 0.020 −0.810 0.050

BS 0.055
10.008

BS-VS 3.620 0.002 0.020 −0.810 0.050
(0.000) (0.000) (0.000) (0.000) (-0.)

BS-CIR 1.790 0.001 1.000 0.999 0.049
(-50.548) (-41.379) (4900.00) (-223.333) (-1.308)

H 0.393 0.096 0.125 0.050 −0.166
(-0.326)

H-VS 3.800 0.002 0.097 −0.410 1.889 0.091 0.001 0.021 −0.920 0.215 1.043
(4.963) (-9.722) (383.011) (-49.37) (-57.585)

H-CIR 0.986 0.010 0.182 0.428 5.000 0.216 0.261 0.214 −0.882 0.835 0.959
(-72.77) (379.586) (810.484) (-152.842) (327.262)

This table presents the calibration parameters of the six pricing models on simulated option prices where
the Black-Scholes-Vasicek is the DGP. The percentage error between the calibrated parameter and the
true value is shown in parenthesis (if applicable). Panel A shows the results where the true parameters of
the DGP are chosen in a low interest rate setting. Panel B shows the results where the true parameters
of the DGP are chosen in a negative interest rate setting.
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Table 5: Calibration results with the Heston-Vasicek model as DGP

DGP : Heston− V asicek dSt = Strtdt+ St
√
vtdW

v
t + St∆

√
vtdZ

v
t + StΩdW

r
t

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t

drt = λ(θ − rt)dt+ ηdZr
t

Panel A: Low interest rates (r0 = 0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 3.620 0.003 0.020 −0.800 0.650 0.035 0.080 0.050 −0.970 0.260 1.230

BS 0.071
(42.99)

BS-VS 3.082 0.001 0.092 0.999 0.073
(-14.87) (-97.74) (360.06) (-224.87) (46.33)

BS-CIR 2.525 0.002 0.546 −0.437 0.074
(-30.26) (-35.79) (2632.43) (-45.41) (47.86)

H 1.897 0.068 0.021 0.074 0.418
(191.92) (97.86) (-73.58) (47.78) (-143.13)

H-VS 3.620 0.003 0.020 −0.800 0.650 0.035 0.080 0.050 −0.970 0.260 1.230
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

H-CIR 0.513 0.024 0.001 −0.913 0.686 0.073 0.065 0.101 −0.592 0.180 0.881
(-85.82) (687.48) (-92.54) (14.17) (5.49) (110.2) (-18.47) (101.3) (-39.) (-30.95) (-28.39)

Panel B: Negative interest rates r0 = -0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 3.620 0.002 0.020 −0.810 0.650 0.035 0.080 0.050 −0.970 0.260 1.230

BS 0.075
(49.71)

BS-VS 4.937 0.000 0.143 −0.999 0.073
(36.37) (-105.71) (616.22) (23.33) (46.15)

BS-CIR 4.264 0.001 1.000 −0.999 0.072
(17.79) (-98.11) (4900.) (23.33) (44.76)

H 0.080 0.173 0.148 0.073 −0.113
(-87.69) (400.) (84.52) (46.94) (-88.33)

H-VS 3.620 0.002 0.020 −0.810 0.650 0.035 0.080 0.050 −0.970 0.260 1.230
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

H-CIR 0.222 0.029 0.136 0.555 0.760 0.280 0.060 0.334 −0.918 0.295 1.166
(-93.87) (1342.13) (577.51) (-168.47) (16.98) (711.71) (-24.93) (567.86) (-5.33) (13.54) (-5.21)

This table presents the calibration parameters of the six pricing models on simulated option prices where
the Heston-Vasicek is the DGP. The percentage error between the calibrated parameter and the true
value is shown in parenthesis (if applicable). Panel A shows the results where the true parameters of the
DGP are chosen in a low interest rate setting. Panel B shows the results where the true parameters of
the DGP are chosen in a negative interest rate setting.
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4 Empirical Results

This section presents the results regarding the performance of the pricing models using

the empirical data on S&P 500 options in the period from 2010 to 2015. Section 4.1

provides the discrition of the data used in this study. Section 4.2 explains the estimation

procedure. Section 4.3 presents the results of the estimated parameters as a result of

the calibration procedure. Section 4.4 presents the MSE results of the pricing models.

4.1 Data Description

This study uses the prices of S&P 500 call and put options that are obtained from

OptionMetrics. We choose the time period from January 1st, 2010 to December 31st,

2015 as around this time period interest rates reached record lows. We use the mid-

point of the current day’s lowest ask price and highest bid price as a proxy for the

market price. The US three-month government bond yields are used as values of the

risk-free interest rates and are obtained from Bloomberg3. The closing value of the S&P

500 index is used as the current day’s spot price. The S&P 500 index includes dividend

pay-outs and needs to be excluded for this study and this requires that the index needs

to be adjusted. OptionMetrics provides the annualized S&P 500 dividend yield and we

use this to discount the spot price to the remaining lifespan of the option. Therefore

we adjust the spot price using

S̄t,i = St,i × e−divt×τi (53)

where St,i is the unadjusted spot price, divt is the annualized dividend yield for the

respective day and τi is the time to maturity in days for the i -th contract.

Furthermore, we apply several common option filters which are used throughout

other option pricing literature such as Bakshi et al. (1997). We remove options where

the time-to-maturity is smaller than 10 days, and we remove options where the time-

3The yield series is called USGG3M in Bloomberg.
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to-maturity is larger than 365 days. We also remove options where the trading volume

on a giving day is smaller than 50. Options where the mid-point of the bid-ask quotes

is below 0.5 are removed. Additionally, options where the implied volatility is higher

than 70% are also excluded. Finally, we only select the option prices on Wednesdays to

significantly reduce computation time for our calibration problem. Wednesday excludes

end-of-the-week effects and is the day of the week that is the least likely day to be a

holiday. If Wednesday is a holiday, the next following trading day is selected. After

applying the option filters, we have a total of 86,020 weekly observations (32,782 calls;

53,238 puts) which spans a six year period (01/01/2010 - 31/12/15).

Table 6 provides the descriptive statistics of the S&P 500 call and put options. The

data is separated in several moneyness and maturity bins where we define moneyness

as S/K where S is the spot price and K is the strike price. We consider call options

in-the-money (ITM) if S/K >1.03 and out-of-the-money (OTM) if S/K <0.97. Values

between 0.97 and 1.03 are considered at-the-money (ATM). The opposite holds true for

put options such that S/K >1.03 is OTM and S/K <0.97 are in-the-money options.

We also categorize options based on the days to maturity (DTM) of the option contract.

We consider short-term (DTM <60), medium-term (60 ≤ DTM <120), long-term (120

≤ DTM <180) and very long-term maturities (DTM ≥ 180).

We observe that 48 % of the call options are traded ATM and are the most actively

traded option contracts. About 6% percent of the call options are traded ITM while

46% of the call options are traded OTM. The call options also differ in terms of the time

to maturity where options with short, medium, long and very long time to maturities

account for 61%, 21%, 7% and 11% of all call options, respectively. The average call

option price is $30.26 however we note that the average call options can greatly vary

when we consider the different maturity and moneyness bins. For example, the average

price for a deep ITM call options with a very long maturity is $235.03. High values of

the call price can have considerable impact on our results as our loss function for the

calibration procedure is based on the $MSE. The calibration procedure will then place

larger weights on the high value option contracts as they contribute a large amount to
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Table 6: Summary Statistics of S&P 500 Call and Put Options

Panel A: Call Options
D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

Number of Observations

S/K <0.94 2169 1944 889 1690 6692
0.94 ≤ S/K <0.97 5809 1709 426 593 8537
0.97 ≤ S/K <1.00 8028 1863 460 875 11226
1.00 ≤ S/K <1.03 3042 869 197 303 4411
1.03 ≤ S/K <1.06 659 173 66 96 994

S/K ≥ 1.06 413 234 100 175 922
Total 20120 6792 2138 3732 32782

Average Price (Standard Deviation)

S/K <0.94 2.19 (2.41) 5.04 (5.11) 9.92 (8.22) 22.69 (16.77) 9.22 (12.51)
0.94 ≤ S/K <0.97 4.09 (4.3) 14.80 (9.1) 29.97 (11.04) 59.00 (17.26) 11.34 (16.41)
0.97 ≤ S/K <1.00 14.08 (9.62) 36.68 (12.55) 55.83 (13.02) 84.99 (18.16) 25.07 (23.5)
1.00 ≤ S/K <1.03 37.98 (13.19) 59.46 (14.34) 79.15 (14.82) 106.43 (18.54) 48.76 (23.79)
1.03 ≤ S/K <1.06 74.96 (17.02) 91.91 (18.88) 107.77 (17.52) 137.09 (19.46) 86.09 (26.11)

S/K ≥ 1.06 124.59 (44.02) 156.34 (57.81) 187.62 (59.36) 235.03 (64.72) 172.60 (51.3)
Total 18.82 (22.54) 35.38 (25.38) 48.52 (31.19) 72.14 (43.08) 30.26 (33.43)

Panel B: Put Options
D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

Number of Observations

S/K <0.94 179 112 60 91 442
0.94 ≤ S/K <0.97 402 159 80 140 781
0.97 ≤ S/K <1.00 3028 1140 343 737 5248
1.00 ≤ S/K <1.03 6790 1655 432 633 9510
1.03 ≤ S/K <1.06 6138 1332 372 489 8331

S/K ≥ 1.06 16767 6391 2260 3508 28926
Total 33304 10789 3547 5598 53238

Average Price (Standard Deviation)

S/K <0.94 110.39 (33.46) 141.70 (45.92) 184.10 (49.04) 218.55 (56.78) 151.30 (48.70)
0.94 ≤ S/K <0.97 75.52 (19.68) 87.09 (17.98) 103.33 (21.17) 123.31 (19.94) 89.29 (26.62)
0.97 ≤ S/K <1.00 36.79 (12.76) 56.86 (13.27) 73.96 (14.16) 101.85 (18.03) 52.72 (26.64)
1.00 ≤ S/K <1.03 18.88 (9.55) 40.80 (11.6) 58.81 (12.69) 83.48 (16.60) 28.81 (21.2)
1.03 ≤ S/K <1.06 9.71 (6.94) 27.36 (9.51) 44.07 (10.49) 68.57 (16.31) 17.52 (17.76)

S/K ≥ 1.06 3.81 (4.01) 9.56 (8.51) 16.60 (12.66) 28.98 (20.71) 9.13 (12.59)
Total 12.67 (19.21) 25.09 (35.83) 36.13 (47.44) 53.63 (46.95) 21.06 (32.35)

This table shows the descriptive statistics of the call and put options on the S&P 500 index for the period from 01/01/2010
to 12/31/2015. The upper section of each panel shows the number of observations. The lower part of each panel shows the
average price where the standard deviation is displayed in parenthesis. Moneyness is defined as S/K where S stands for the spot
price and K is the strike price. D is the duration in days and represents the time to maturity. The sample is divided into six
moneyness bins and four maturity bins.
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the squared errors in the loss function. Overall, the average call option price rises if

either the moneyness and/or the time-to-maturity increases.

The proportion of the amount of options contracts across the moneyness bins are

considerably different for put options. Around 70% of the put options are traded OTM

and are the most actively traded contracts. Followed by the ATM put options with 28%

and ITM contracts with 2%. The average put price is 21.06 and, similarly to the call

option contracts, we observe high fluctuations of the average prices across the different

moneyness and time-to-maturity bins. The highest prices are when contracts are ITM

(S/K <0.97) and will lead in turn for the calibration procedure to lay greater emphasis

on these contracts. This partially offsets the low average prices of the call values in

the same moneyness bin. The same applies for the higher moneyness bins (S/K >1.03)

where the low average price of the put options and the high average price of the call

options counteract each other which results for the calibration procedure to place equal

weights on options across all the moneyness bins. The proportion of the amount of the

amount of put options across maturities is roughly the same as the call options. For

short, medium, long and very long maturities we observe the respective proportions of

63%, 19%, 7% and 11%

Our sample data is considerably different then Recchioni and Sun (2016) and Recchioni

et al. (2017). Their sample uses data from the period 2 April 2012 to 2 July 2012 where

the expiry date from these options is on 16 March 2013. The data sample only selects

a 2-month period where the call and put options have long time-to-maturities. Our

reasoning for choosing a di fferent and larger time period is that the period of low

and negative spans the entire period from 2010 to 2015. We also include options with

shorter expiry dates in order to make a better comparison how the option models are

able to price options across the different time-to-maturity bins.
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4.2 Estimation Procedure

As mentioned in section 4.1, we use quoted prices from the time period 1 January 2010

to 31 December 2015 where we use the daily observations on every Wednesday. This

leaves us with 312 windows of daily quoted prices of call and put options. On each single

window we perform the calibration process where we minimize the dollar-measure mean

squared errors using the objective function (52) in section 2.7.

We perform this for every pricing model. For every calibration run on each daily

window, we set multiple starting points using Matlab’s multistart. We set the amount

of starting points to 3. Ideally, we would like this amount to be higher but the cali-

bration time over the whole time period is already quite cumbersome. The last term

in expression (52) is the regularization term where α is the regularization parameter,

ΘΠ is the parameter set to be calibrated from the theoretical model and Θ0 is a initial

set of parameter values. We use a pragmatic approach and set α equal to 1 where the

stability of our calibrated parameters seemed acceptable.4 To determine Θ0, we first

perform a calibration run on the total set without regularization. We set Θ0 equal to

the long-run average of the calibrated parameters.

4.3 Implied Parameters

In this section we will analyze the implied parameters which are obtained after per-

forming the calibration procedure as explained in section 4.2. A point of interest is how

the models manage to model the different parameters under periods of low and negative

interest rates. Figure 1 shows the implied parameters over the complete time period of

01/01/2010 to 31/12/2015. The graphs show the moving average of the last 10 daily

calibrated parameters. Table 7 shows the mean values of the implied parameters. The

calibration process is performed on the full sample from 01/01/2010 to 31/12/2015. The

standard deviation of the implied parameters is shown in parenthesis. We note that

4We perform additional calibration runs with different values of α. Calibration runs with α < 1
generate very unstable parameter estimates while calibration runs with α > 5 result in very biased
parameter estimates which are caused by the initial set of parameters θ0.
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Table 7: Implied Parameters of the pricing models (01/01/2010 - 31/12/2015)

Model λ θ η ρr χ v∗ γ v0 ρv Ω ∆

BS 0.033
(0.018)

BS-VS 5.018 -0.010 0.137 -0.765 0.027
(0.024) (0.008) (0.061) (0.095) (0.018)

BS-CIR 0.908 0.009 0.761 0.645 0.031
(0.063) (0.006) (0.114) (0.332) (0.019)

H 4.376 0.063 1.110 0.028 -0.735
(1.647) (0.026) (0.342) (0.026) (0.056)

H-VS 4.950 0.005 0.193 -0.856 4.022 0.059 1.359 0.033 -0.947 0.082 0.225
(0.201) (0.003) (0.145) (0.096) (0.223) (0.030) (0.220) (0.031) (0.046) (0.03) (0.097)

H-CIR 2.150 0.016 0.599 -0.876 3.913 0.030 0.032 0.065 -0.929 2.653 1.437
(0.524) (0.006) (0.107) (0.051) (0.313) (0.013) (0.109) (0.045) (0.022) (0.202) (0.211)

This table presents the average value of the implied parameters derived from the calibration process on S&P 500 index call
and put options for the period from 01/01/2010 to 31/12/2015. The standard deviation is shown in parenthesis. BS stands
for the Black-Scholes (1973) model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate
models of Vasicek (1977) and Cox-Ingersroll-Rox (1985), respectively.

the Black-Scholes (BS) model uses the parameter σ for the volatility of the underlying

while the Heston model uses vt for the variance. In order to make results comparable,

we present the results from both models as the variance vt. We therefore compute the

variance from the Black-Scholes models by squaring the volatility’s derived from the

calibration procedure.

We will first discuss the calibrated parameters of the BS model and their extensions.

The average value of the variance parameter v0 is 0.033 for the normal BS model. This is

marginally higher than the variance of the BS-VS and BS-CIR models of 0.027 and 0.031

respectively. This makes sense as the normal BS model only consists of one parameter,

while the BS-VS and BS-CIR extensions contains five parameters each. It seems that

part of the variation in the data is explained by the parameters of the stochastic interest

rate process which in turn leads to a decrease of the variance parameter. When we look

closely at the differences between the BS-VS and BS-CIR models, we observe that the
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Figure 1: Implied Parameters of the pricing models (01/01/2010 - 31/12/2015)

(a) Moving average of the last 10 daily calibrated parameters of the stochastic interest rate
process where λ is the speed of mean reversion, θ is the long-run mean, η is the volatility
of the short rate, ρr is the correlation between the short rate and the underlying. Ω is a
nonnegative constant required for the H-VS and H-CIR models.

(b) Moving average of the last 10 daily calibrated parameters of the stochastic volatility
process where is the speed of mean reversion, v∗ is the long-run mean of the volatility, γ is
the volatility of volatility, ρv is the correlation between volatility and underlying, v0 is the
initial stochastic volatility. ∆ is a nonnegative contstant required for the H-VS and H-CIR
models. 31



long-run mean of the short rate θ is negative with -0.010 for the BS-VS model and just

slightly positive 0.009 for the BS-CIR model. The BS-VS model has the ability to model

negative interest rates while the BS-CIR model cannot. We notice that the volatility

of the short rate η is 0.137 for the BS-VS model, while this value is significantly larger

for the BS-CIR model with a mean of 0.761. Additionally, the implied parameter for

the correlation ρr is positive and high with 0.645. It seems that due to the inability

for the BS-CIR model to incorporate low and negative interest rates, a large part of

the variation of the data is explained by a high volatility of the short rate and high

possitive corrleation value. The speed of mean reversion λ is also relatively low for the

BS-CIR with a value of 0.91. This leads to a very low drift value, where changes in the

short rate are primarily determined by the high shocks in the short rate.

Next, we will discuss the Heston models and their stochastic interest rate extensions.

The volatility of the H model is lower than H-VS, this is in line with the BS models in

the sense that the stochastic interest rate parameters manage to explain some part of

the data which in turn leads to the H-VS model attributing less weight to the stochastic

volatility process. The stochastic volatility process of the H-CIR model is different than

the other two models. Whereas the standard Heston and H-VS models have a low initial

variance v0 of around 0.030, and high long term mean v∗ around 0.06. The H-CIR model

has a high initial variance of 0.065 and a lower long-run mean of only 0.030. We note

that the H-CIR model has a considerable lower vol-of-vol γ value of 0.032 (vs. 1.110 for

the Heston model; 1.359 for H-VS). Additionally, the volatility of the interest rate η is

much higher for H-CIR (0.599) than H-VS (0.145). This is in line with the notion that

the CIR process is not able to properly model the low or negative interest rates, and

requires a high volatility parameter η to accurately match the model with the data.

4.4 Goodness of Fit tests

This section shows the performance of the pricing models in terms of the dollar-measure

mean-squared errors ($MSE) when applied to empirical data. The sample data contains

32



Table 8: Average $MSE on Call and Put Options on the S&P 500 index(2010-2015)

Panel A: Call Options
In-Sample 1-step ahead Out-of-Sample 5-step ahead Out-of-Sample

BS 41.55 54.18 82.89
BS-VS 24.98 38.93 67.30
BS-CIR 33.65 48.39 79.59
H 1.35 17.04 45.90
H-VS 0.90 17.39 44.79
H-CIR 0.92 22.89 48.13

Panel B: Put Options
In-Sample 1-step ahead Out-of-Sample 5-step ahead Out-of-Sample

BS 40.77 50.73 70.67
BS-VS 34.98 47.54 68.20
BS-CIR 35.93 46.68 67.56
H 1.91 16.77 43.73
H-VS 0.66 16.07 38.74
H-CIR 0.71 18.01 46.36

This table presents the in-sample, 1-step ahead out-of-sample and 5-step ahead out-of-sample $MSEs
of call and put options on the S&P 500 index using the Black-Scholes and Heston models and their
stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands
for the Black-Scholes (1973) model and H for the Heston (1993) model. VS and CIR stands for the
stochastic interest rate models of Vasicek and Cox-Ingersroll-Rox, respectively.

the entire period from January 1, 2010 to December 31, 2015.

Table 8 presents the total average $MSE of the call and put options on the S&P

500 index. The table shows the in-sample, 1 step-ahead OOS and 5 step-ahead OOS

results. We first discuss the in-sample results. Panel A of Table 8 shows $MSE of

the call options. The BS model performs by far the worst with a MSE of 41.55 for call

options. This is roughly 25% more worse than the BS-CIR model which reports an MSE

of 33.65, and 73% more worse than the BS-VS model which reports 24.98. Apparently,

modeling the risk-free interest rate as a stochastic process improves pricing accuracy

compared to assuming a constant interest rate. We reach the same conclusion when we

look at the pricing performance of the put options in panel B. The BS model has the

worst performance with a $MSE of 40.77 for put options. This is roughly 16% higher

than the $MSEs of the BS-VS and BS-CIR models of 34.98 and 35.93, respectively. The

bad performance of the standard BS model is expected, as it is quite an naive model

that doesn’t assume a complex process for either the interest rate or the volatility.
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According to our expectations, the BS-VS model has a better performance than the

BS-CIR model for both call and put options. As we know that the CIR process is

unable to properly model negative or low interest rates, we appoint this the cause of

the bad performance of the BS-CIR model. Table 9 shows the average in-sample $MSE

results for call options where the data is categorized in moneyness and maturity bins.

We observe at the bottom of Table 9 that the differences between the $MSE values of

the BS-VS and BS-CIR models grow larger as the time-to-maturity increases.

Next, we look at the Heston model which relaxes the assumption of a constant

volatility of the underlying. We observe that the pricing performance of the Heston

models and their extensions is considerably better than the BS models. As shown

in Table 8, the standard Heston model reports an in-sample $MSE of 1.35 for call

options, while the H-VS and H-CIR models report 0.90 and 0.92, respectively. The

performance of the standard Heston model is roughly 50% more worse. When we

consider only puts, the standard Heston model performs roughly 190% more worse

with a $MSE of 1.91 compared to the $MSE of the H-VS and H-CIR models of 0.66

and 0.71, respectively. Our findings are similar to the results reported in Recchioni

et al. (2017). Their results, spanning a time window over 2 months in 2012, show

that the standard Heston model has considerable higher percentage errors compared

to the H-VS model and attributes this to the ability of the H-VS model to incorporate

stochastic interest rates. Additionally, they find that the H-VS outperforms the H-CIR

and contributes this to the fact that the H-VS allows for negative interest rates. In

our sample, which covers the period from 2010 to 2015, we are able to report similar

findings that the H-VS model outperforms the H-CIR model.

We note that the number of parameters of a model plays a crucial role in how the

model is able to explain the data. A model with more parameters is capable of more

accurately fitting the data compared to a model with less parameters. This does come

at a cost, as models with more parameters are more likely to overfit the data which

makes them unsuitable for out-of-sample analysis. A point of interest is whether the

extended Heston models with their high number of parameters are able to correctly
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Table 9: In-Sample Average $MSE on Call Options on the S&P 500 index(2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K < 0.94 BS 23.88 59.01 82.53 92.33 59.16
BS-VS 15.05 39.37 63.47 102.55 50.64
BS-CIR 21.03 51.61 80.05 137.34 67.13
H 0.28 0.39 0.60 2.20 0.84
H-VS 0.49 0.82 0.92 2.44 1.14
H-CIR 0.53 0.74 0.85 2.42 1.16

0.94 <S/K <0.97 BS 34.35 71.13 50.56 27.42 42.04
BS-VS 15.43 37.02 35.58 28.34 21.65
BS-CIR 25.49 54.53 53.49 47.48 34.23
H 0.69 0.78 1.02 1.30 0.77
H-VS 0.52 0.74 0.77 1.33 0.63
H-CIR 0.51 0.80 0.81 1.32 0.64

0.97 <S/K <1.00 BS 34.78 27.36 8.72 65.66 34.89
BS-VS 9.13 7.44 6.18 18.69 9.48
BS-CIR 20.32 17.09 8.46 17.49 19.07
H 0.75 1.29 2.16 3.98 1.15
H-VS 0.81 0.78 0.64 0.83 0.80
H-CIR 0.76 0.78 0.63 0.84 0.82

1.00 <S/K <1.03 BS 11.63 6.77 21.11 140.21 19.93
BS-VS 5.24 12.69 30.78 56.37 11.36
BS-CIR 6.41 7.00 18.85 42.41 9.55
H 1.80 1.29 2.97 6.98 2.10
H-VS 1.40 0.99 0.53 0.44 1.21
H-CIR 1.41 0.91 0.49 0.43 1.22

1.03 <S/K <1.06 BS 10.27 26.55 71.64 239.58 39.33
BS-VS 21.37 63.67 98.42 160.92 47.32
BS-CIR 13.95 39.25 66.89 127.51 32.83
H 1.80 1.85 4.23 10.17 2.78
H-VS 1.58 0.69 0.49 0.52 1.25
H-CIR 1.44 0.68 0.52 0.56 1.30

S/K ≥ 1.06 BS 12.84 46.15 122.27 345.12 96.23
BS-VS 19.97 72.96 169.63 281.29 99.25
BS-CIR 14.58 53.41 123.02 239.57 78.90
H 3.30 12.34 7.93 11.93 7.73
H-VS 1.63 0.86 0.56 0.97 1.19
H-CIR 1.70 0.80 0.54 0.90 1.24

Total Sample BS 28.73 45.42 56.14 95.29 41.55
BS-VS 11.62 28.38 48.62 77.23 24.98
BS-CIR 19.46 36.91 55.32 91.79 33.65
H 0.93 1.30 1.69 3.53 1.35
H-VS 0.82 0.81 0.77 1.61 0.90
H-CIR 0.87 0.81 0.83 1.66 0.92

This table presents the in-sample $MSE of call options on the S&P 500 index using the Black-Scholes and Heston models and their
stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes (1973) model
and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-Ingersroll-Rox,
respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration in days and
represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values are the
smallest $MSE values within their respective bins.
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price out-of-sample option contracts.

Table 8 also presents the 1 step-ahead OOS MSE for call options. The $MSE for

the Black-Scholes model is 54.18 for the whole sample, whereas this is 38.93 and 48.39

for the BS-VS and BS-CIR, respectively. Even in a out-of-sample setting, the BS-VS

model is the better performer. The same holds when we view the 1-day out-of-sample

MSE for put options. The MSE for the BS-VS model is 47.54 (50.73 for BS; 46.68 for

BS-CIR). It seems that the Vasicek interest rate specification is able to more accurately

price options than the CIR interest type specification. Furthermore, we observe that

the standard Heston model marginally outperforms the H-VS and H-CIR models with a

MSE of 17.04 (17.39 for H-VS; 18.89 for H-CIR) for 1-step OOS call options. We expect

that the H-VS and H-CIR models would outperform the standard Heston model because

the specifications of the H-VS and H-CIR models allows them to more intricately model

the dynamic processes regarding the stochastic interest rates. It seems that the high

amount of parameters for the H-VS and H-CIR models allowed the models to overfit

the data, leading to relatively bad out-of-sample results. In panel B of Table 8 we

observe that the $MSE of the H-VS model is 16.07 is marginally better (vs. 16.77 for

the standard Heston model; 18.01 for H-CIR). The H-CIR model has relatively bad

performance given the case that the in-sample fit was fairly decent. Apparently, the

calibrated parameters for the H-CIR model are not adequate for out-of-sample use and

we attribute this to the fact that the CIR process is not able to correctly model low

and negative interest rates.

Table 8 shows the 5-day out-of-sample results for call and put options, respectively.

We first examine the Black-Scholes models and we observe that the BS-VS model ($MSE

of 67.30) outperforms the standard BS model (82.89) and the BS-CIR model (79.59)

by a significant margin when we consider call options for the whole sample. This is in

line with the notion that the Vasicek interest rate type is a better specification of the

current interest rate dynamics compared to the constant and CIR type rates. Similarly,

for the Heston models we observe a better performance for the H-VS models compared

to the standard Heston and H-CIR models. For the 5-day out-of-sample put options
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we observe a MSE of 38.74 for the H-VS model, while this is 43.73 and 46.36 for the

Heston and H-CIR model, respectively.

Table 10 presents the Diebold-Mariano (DM) statistics which compares the pric-

ing performance between the six models. The test is performed using the Harvey-

Leybourne-Newbold bias correction. The differential d̄ is calculated using the pricing

errors of the models in the left column minus the pricing errors of the models in the top

row. The values above the diagonal are the pricing errors derived from the 1 step-ahead

OOS forecasts, while the values below the diagonal are the pricing errors derived from

the 5 step-ahead OOS forecasts. We observe in Table 10 that all pricing differences

between the models are significant based on a confidence level of 5%. We note that the

DM-test infers several assumptions about the models which may not be applicable in

our case. The DM-test assumes that the models are non-nested and linear. However,

our pricing models do not satisfy these assumptions. We still present our findings but

one must take care in further interpreting the results.

Based on our empirical study, we find that the models that incorporate a Vasicek

type interest rate process seems to have better a pricing performance compared to

a constant or CIR type interest rate process. Our results indicate that this happens

across all maturity and moneyness bins. We note that the H-CIR model performed well

regarding the in-sample test in comparison with the standard Heston model. However,

the out-of-sample results for the H-CIR model are slightly worse than the standard

Heston model. We further note that the performance of the standard Heston model

is considerably better than the standard Black-Scholes model across all maturity and

moneyness bins. Adding a stochastic interest rate process on top of the standard models

only yields a marginally small increase in performance for the Heston model, while it

has a considerable impact on the increase in performance for the Black-Scholes model.
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Table 10: Diebold-Mariano test for comparing predictive accuracy between models

BS BS-VS BS-CIR H H-VS H-CIR

BS 8.90 14.92 40.09 39.68 36.60
(0.000) (0.000) (0.000) (0.000) (0.000)

BS-VS −5.37 0.90 29.19 28.74 24.85
(0.000) (0.371) (0.000) (0.000) (0.000)

BS-CIR −4.30 6.57 47.05 46.48 46.72
(0.000) (0.000) (0.000) (0.000) (0.000)

H-std −11.81 −28.13 −27.84 1.79 −3.67
(0.000) (0.000) (0.000) (0.039) (0.000)

H-VS −13.74 −30.30 −33.82 −4.38 −3.38
(0.000) (0.000) (0.000) (0.000) (0.000)

H-CIR −10.27 −21.44 −23.19 3.47 6.71
(0.000) (0.000) (0.000) (0.000) (0.000)

This table presents the Diebold-Mariano (DM) test statistics with the Harvey-Leybourne-
Newbold bias correction. The DM-test compares predictive accuracy between models
by testing if the differential between models has expectation zero. The differential d̄ =
f(modeli) − f(modelj), where f(.) is the predictive error of modeli, and i and j are one
of the six pricing models. The model at the left of each row is modeli. The model at the
top of each column is modelj . The values above the diagonal are the pricing error derived
from the 1 step-ahead OOS forecasts. The values below the diagonal are the pricing errors
derived from the 5 step-ahead OOS forecasts.
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5 Conclusion

In this study, we consider a setting of low or negative interest rates as these scenario’s

have considerable technical implications on option pricing. We examine the Vasicek and

Cox-Ingersoll-Ross (CIR) type short rate processes and expect that the CIR type short

rate model is inadequate in modelling option prices due to the inherent limitation of

not accepting negative inputs. Six pricing models are considered namely the standard

Black-Scholes (BS) model, the BS-VS model, the BS-CIR model, the standard Heston

(H) model, the H-VS model and the H-CIR model. Our goal is to gain insight how

the models are able to capture the interest rate dynamics under either low or negative

interest rates and how accurate they are in terms of option pricing. A simulation study

is performed which considers different levels of interest rates. Additionally, an empirical

study is implemented which applies the six option model to historical data.

The simulation study has shown that the models which assume a CIR type interest

rate process are not able to adequately model the simulated option prices under negative

rates. The average percentage errors between simulated prices and theoretical prices

are considerably higher compared to the other models that do no rely on a CIR type

interest rate. Additionally, the calibrated parameter values under both low and negative

rates show considerably different values compared to the initial values specified by the

DGP. Notably, the volatility of the stochastic interest rate process and the correlation

parameter show abnormal values. The question remains whether the out-of-sample

performance for the models that rely on a CIR type interest rate is adequate as the

calibrated parameters show that the models assume different dynamics of the underlying

dynamics.

For the empirical study, we calibrate the pricing models on historical data of S&P

500 index options from the period 01/01/2010 to 31/12/2015 where interest interests

are extremely low. The standard BS model has the worst pricing performance which is

to be expected as the BS model is not able to intricately model either the volatility or

the interest rate. Between the BS-VS and BS-CIR models, the BS-VS has the better
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pricing performance for both in-sample and out-of-sample. We attribute this to the fact

that the CIR type interest rate is not able to properly model the dynamics of low interest

rates in our sample period. The standard Heston model has a considerable better pricing

performance compared to the BS models and their extensions. Apparently, modeling

the stochastic volatility has a high impact on pricing performance. The H-VS model

is able to outperform the standard Heston model in terms of both the in-sample and

out-of-sample fit. The H-CIR model is also able to beat the standard Heston model

in terms of the in-sample fit. However, the out-of-sample results show that the H-CIR

models performs worse than the standard Heston model. It seems that the the H-CIR

model is misspecified as the CIR stochastic interest rate is not able to properly model

the interest rate dynamics.

We have a few remarks about our study. First, as we mentioned earlier, the regular-

ization method of the calibration procedure plays an important role in determining the

estimated parameters. While we do not expect that the conclusions from this study will

drastically change. We do expect that the relative pricing performance between models

can vary to a certain degree as a result of a different regularization method. Second,

we only consider relatively simple financial products as closed-form expressions of the

more complex products are not available. While computationally cumbersome, addi-

tional analysis can be done on more complex financial instruments using simulations.

We suggest one topic for further research which is the use of a shifted CIR model in

combination with the Heston stochastic volatility. A shifted CIR model shifts the short

rate upwards away from the zero lower bound such that the model is still applicable in

periods of low or negative interest rates. However, this has technical implications as we

then introduce another parameter to be estimated, namely the shift parameter.
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A Option Pricing Models

In this section, we display the remaining required quantities which are required to

compute the value of an option for the respective model.

A.1 Black-Scholes-CIR

C0 =
1

η
√
T

[ζ(r0 − θ)
λ

(1− e−λT

λ
− Te−λT

)
+
ζθT

λ

(
1− 1− e−λT

λ

)]
(A1)

C1 =− ρr
ηT

C11 (A2)

C11 =
2
√
θ
(

(1 + 2eλT
√
r0 − 3e

λT
2

√
r0 − θ(1− eλT )

)
+
(
θ(1 + 2eλT )− r0

)
ψ

2eλTλ2
√
θ

(A3)

ψ = log
(θ(2eλT − 1 + r0 + 2e

λT
2

√
θ2(e + θr0)

(
√
r0 +

√
θ)2

)
(A4)
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A.2 Heston-Vasicek

Ψj,λ(τ) =
1− e−jλτ

jλ
, τ > 0 (A5)

φq(k) =
k2

2
+ ι

k

2
(sq − 1)− 1

2
(q2 − q), (A6)

µq,v =− 1

2
(χ+ (ιk − q)γ(ρv + ∆)) (A7)

ζq,v =
1

2
[4µ2

v + 2γ2φq(k)ψ̃]1/2 (A8)

sq,v,g =1− e−2ζq,vτ (A9)

sq,v,b =(ζq,v + µq,v)e
−2ζq,vτ + (ζq,v − µq,v) (A10)

Q0(τ, k) =ψq(k)Ω2τ − aq,r(k)
(ιk − q)

λ
(τ −Ψ1,λ(τ)) (A11)

+
η2

2

(ιk − q)2

λ2
(τ − 2Ψ1,λ(τ) + Ψ2,λ(τ))

aq,r =λθ − (ιk − q)Ωρrη (A12)

Qv,q(τ, v, ; Θv) =
−2v∗

γ2
ln(sq,v,b/(2ζq,v)) (A13)

− 2χv∗

γ2
(ζq,v + µq,v)τ

− 2v

γ2
(ζ2
q,v − µ2

q,v)
sq,v,g
sq,v,b

Qr,q(τ, r, k; Θr) =− r(ιk − q)Ψ1,λ(τ) +Q0(τ, k) (A14)
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A.3 Heston-CIR

φq(k) =
k2

2
+ ι

k

2
(sq − 1)− 1

2
(q2 − q), (A15)

µq,v =− 1

2
(χ+ (ιk − q)γ(ρv + ∆)) (A16)

ζq,v =
1

2
[4µ2

v + 2γ2φq(k)ψ̃]1/2 (A17)

sq,v,g =1− e−2ζq,vτ (A18)

sq,v,b =(ζq,v + µq,v)e
−2ζq,vτ + (ζq,v − µq,v) (A19)

Wv,q =e
− 2T χ vs (µqv+ζqv)

γ2 e
−

2χ vs ln

(
sqvb
2 ζqv

)
γ2 e

2 sqvg v0 (µqv2−ζqv2)
γ2 sqvb (A20)

µq,r =− 1

2
(χ+ (ιk − q)γΩρp,r) (A21)

ζq,r =
1

2
[4µ2

r + 2η2φq(k)Ω2 − q + ιk)]1/2 (A22)

sq,r,g =1− e−2ζq,rτ (A23)

sq,r,b =(ζq,r + µq,r)e
−2ζq,rτ + (ζq,r − µq,r) (A24)

Wr,q =e
− 2T λ theta (µqr+ζqr)

η2 e
−

2λ theta ln

(
sqrb
2 ζqr

)
η2 e

2 r0 sqrg (µqr2−ζqr2)
η2 sqrb (A25)
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B Calibrated Parameters on Simulated Data

[Results on next page]
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Table 11: Calibration results with the Black-Scholes model as DGP

DGP : Black − Scholes− V asicek dSt = Strtdt+ StσdW
r
t

Panel A: Low interest rates (r0 = 0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 0.050

BS 0.050
(0.0)

BS-VS 1.135 0.005 0.000 0.892 0.050
(-0.)

BS-CIR 1.619 0.005 0.272 0.000 0.050
(0.)

H 4.998 0.050 0.075 0.050 0.001
(0.089)

H-VS 0.594 0.005 0.030 −0.707 0.752 0.112 0.003 0.023 −0.937 0.216 1.059
(-53.25)

H-CIR 0.081 0.005 0.008 −0.879 0.000 0.288 0.001 0.086 −0.698 0.585 0.923
(71.155)

Panel B: Negative interest rates (r0 = -0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 0.050

BS 0.050
(0)

BS-VS 0.000 0.000 0.000 0.998 0.050
(-0.)

BS-CIR 0.007 0.013 0.991 −0.981 0.049
(-2.62)

H 4.967 0.050 0.082 0.050 0.000
(0.101)

H-VS 0.007 0.001 0.001 −0.748 0.208 0.126 0.001 0.113 −0.949 0.185 1.148
(126.116)

H-CIR 2.667 0.192 0.236 0.040 1.662 0.670 0.717 0.953 0.863 2.807 2.989
(1806.531)

This table presents the calibration parameters of the six pricing models on simulated option prices where
the Black-Scholes model is the DGP. The percentage error between the calibrated parameter and the
true value is shown in parenthesis (if applicable). Panel A shows the results where the true parameters of
the DGP are chosen in a low interest rate setting. Panel B shows the results where the true parameters
of the DGP are chosen in a negative interest rate setting.
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Table 12: Calibration results with the Heston model as DGP

DGP : Heston dSt = rStdt+
√
vtStdW

v
t

dvt = χ(v∗ − vt)dt+ γ
√
vtdW

v
t

Panel A: Low interest rates (r0 = 0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 0.650 0.034 0.800 0.050 −0.970

BS 0.046
(-8.289)

BS-VS 4.599 0.026 1.000 0.999 0.044
(-11.545)

BS-CIR 2.215 0.038 1.000 −0.999 0.051
(1.979)

H 0.669 0.036 0.122 0.050 −0.721
(2.966) (4.592) (-84.783) (0.045) (-25.686)

H-VS 2.099 0.001 0.031 −0.775 0.255 0.042 0.144 0.046 −0.954 0.115 0.111
(-60.822) (22.187) (-81.967) (-8.23) (-1.679)

H-CIR 3.681 0.002 0.791 −0.999 0.434 0.189 0.294 0.252 −0.947 0.180 0.639
(-33.257) (456.134) (-63.279) (403.687) (-2.346)

Panel B: Negative interest rates r0 = -0.005)
λ θ η ρr χ v∗ γ v0 ρv Ω ∆

True Value 0.650 0.034 0.800 0.050 −0.970

BS 0.046
(-8.773)

BS-VS 4.565 0.016 1.000 0.999 0.044
(-11.535)

BS-CIR 1.612 0.030 1.000 −0.999 0.048
(-3.971)

H 0.659 0.035 0.122 0.050 −0.722
(1.337) (4.096) (-84.804) (0.041) (-25.58)

H-VS 0.001 0.000 0.063 −0.783 0.556 0.085 0.247 0.066 −0.876 0.130 0.359
(-14.448) (149.602) (-69.066) (32.299) (-9.671)

H-CIR 3.198 0.020 0.442 −0.999 1.785 0.042 0.008 0.126 −0.893 0.591 1.329
(174.685) (23.899) (-98.94) (152.673) (-7.973)

This table presents the calibration parameters of the six pricing models on simulated option prices where
the Heston model is the DGP. The percentage error between the calibrated parameter and the true value
is shown in parenthesis (if applicable). Panel A shows the results where the true parameters of the DGP
are chosen in a low interest rate setting. Panel B shows the results where the true parameters of the
DGP are chosen in a negative interest rate setting.
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C Additional $MSE results

[Results on next page]
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Table 13: In-Sample Average $MSE on Put Options on the S&P 500 index (2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K<0.94 BS 13.67 65.84 89.04 160.09 67.26
BS-VS 16.52 104.54 154.64 377.24 131.84
BS-CIR 13.65 59.83 87.33 228.02 79.49
H 2.24 2.37 3.87 29.50 8.11
H-VS 1.99 2.74 0.71 2.06 2.02
H-CIR 2.10 2.80 0.73 2.18 2.20

0.94≤ S/K <0.97 BS 30.16 72.01 68.91 39.94 44.40
BS-VS 24.07 72.55 123.87 195.75 74.94
BS-CIR 25.90 53.92 72.49 67.90 43.91
H 1.80 2.14 3.66 13.43 4.14
H-VS 2.24 1.39 1.57 4.97 2.49
H-CIR 2.31 1.28 1.68 4.59 2.70

0.97≤ S/K <1.00 BS 28.27 25.66 11.99 19.27 25.37
BS-VS 9.29 16.70 30.84 103.65 25.56
BS-CIR 15.21 15.04 11.75 26.21 16.49
H 1.03 1.00 1.94 8.99 2.20
H-VS 1.56 0.82 0.93 2.00 1.42
H-CIR 1.44 0.79 0.93 2.09 1.45

1.00≤ S/K <1.03 BS 10.47 7.54 12.73 68.29 13.91
BS-VS 6.54 5.10 6.99 29.33 7.82
BS-CIR 6.69 7.00 10.70 18.47 7.71
H 1.63 0.75 1.10 4.08 1.62
H-VS 0.74 0.82 0.96 1.76 0.83
H-CIR 0.75 0.78 0.98 1.83 0.84

S/K>1.06 BS 12.30 25.52 65.17 164.33 25.70
BS-VS 19.62 34.44 39.89 25.13 23.22
BS-CIR 15.42 35.79 61.22 72.16 24.05
H 1.03 0.44 0.68 1.65 0.96
H-VS 0.49 0.53 0.61 1.33 0.55
H-CIR 0.46 0.51 0.61 1.31 0.56

S/K >1.06 BS 12.01 42.53 99.93 264.31 56.22
BS-VS 14.00 47.19 95.06 168.91 46.46
BS-CIR 12.79 46.72 101.29 211.26 51.27
H 2.63 1.42 1.12 1.26 2.08
H-VS 0.37 0.46 0.47 0.62 0.43
H-CIR 0.37 0.44 0.45 0.63 0.45

Total Sample BS 13.46 33.95 76.28 193.84 40.77
BS-VS 13.22 36.90 73.99 136.03 34.98
BS-CIR 12.42 36.17 76.51 149.63 35.93
H 1.98 1.17 1.26 3.39 1.91
H-VS 0.61 0.60 0.62 1.12 0.66
H-CIR 0.62 0.61 0.62 1.16 0.71

This table presents the in-sample average $MSE of put options on the S&P 500 index using the Black-Scholes and Heston models and
their stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes (1973)
model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-Ingersroll-
Rox, respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration in days
and represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values are the
smallest $MSE values within their respective bins.
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Table 14: 1-Day Out-Of-Sample average $MSE on Call options on the S&P 500 index (2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K<0.94 BS 24.47 63.31 95.09 115.22 68.07
BS-VS 16.36 43.80 76.25 126.66 60.17
BS-CIR 22.95 56.58 96.64 166.36 78.76
H 3.10 6.90 11.79 19.96 9.62
H-VS 4.18 8.15 14.01 21.58 11.04
H-CIR 4.67 9.83 16.83 20.77 13.54

0.94≤ S/K <0.97 BS 39.75 84.74 80.03 66.40 52.61
BS-VS 22.06 51.26 61.44 54.73 32.13
BS-CIR 33.35 69.89 89.86 82.04 46.86
H 6.94 18.29 23.75 36.86 12.13
H-VS 7.93 19.13 24.45 36.81 13.00
H-CIR 7.43 18.71 24.10 49.12 12.56

0.97≤ S/K <1.00 BS 45.53 50.98 40.73 99.15 50.41
BS-VS 21.90 31.98 33.84 45.00 25.86
BS-CIR 34.53 40.91 39.31 46.45 36.71
H 16.67 30.77 32.24 35.05 21.08
H-VS 16.78 30.98 31.29 32.19 20.93
H-CIR 22.29 41.13 31.76 33.62 28.03

1.00≤ S/K <1.03 BS 25.47 37.33 46.82 159.75 37.94
BS-VS 20.63 43.10 55.46 80.67 30.71
BS-CIR 23.02 37.14 42.33 68.38 29.76
H 22.45 36.46 31.12 34.07 26.39
H-VS 22.73 38.13 31.60 32.50 26.82
H-CIR 22.59 37.30 31.36 33.28 35.40

S/K>1.06 BS 17.77 44.94 61.83 244.32 47.37
BS-VS 29.36 78.71 96.15 183.18 57.28
BS-CIR 22.50 56.32 65.91 123.86 41.08
H 16.00 35.39 22.22 35.42 21.66
H-VS 16.97 38.42 26.03 31.60 22.72
H-CIR 16.49 48.70 31.53 45.32 22.19

S/K >1.06 BS 16.24 51.09 116.13 348.03 98.98
BS-VS 24.65 81.75 182.09 395.66 126.67
BS-CIR 18.23 58.70 124.60 237.71 81.70
H 9.79 26.82 15.76 23.38 17.32
H-VS 8.26 10.39 12.17 13.81 10.28
H-CIR 12.29 27.54 19.22 26.39 19.57

Total Sample BS 37.05 61.11 75.89 121.57 54.18
BS-VS 21.46 44.53 67.78 106.48 38.93
BS-CIR 30.48 53.21 78.30 119.20 48.39
H 13.11 21.50 20.86 27.88 17.04
H-VS 13.60 21.86 21.72 27.27 17.39
H-CIR 17.73 24.85 26.29 36.87 18.89

This table presents the 1-day out-of-sample $MSE of call options on the S&P 500 index using the Black-Scholes and Heston models
and their stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes
(1973) model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-
Ingersroll-Rox, respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration
in days and represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values
are the smallest $MSE values within their respective bins.
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Table 15: 1-Day Out-Of-Sample average $MSE on Put options on the S&P 500 index (2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K<0.94 BS 15.04 52.12 121.52 202.24 77.49
BS-VS 18.89 92.31 212.01 604.13 184.41
BS-CIR 18.08 46.44 122.45 282.73 94.03
H 12.49 14.89 25.27 71.72 27.06
H-VS 13.33 19.48 30.26 49.41 24.63
H-CIR 17.08 17.19 27.76 84.47 25.84

0.94≤ S/K <0.97 BS 37.10 72.81 83.02 76.99 56.18
BS-VS 33.94 72.34 147.76 247.70 91.56
BS-CIR 40.39 61.52 106.39 108.83 63.67
H 30.03 43.67 62.31 64.99 42.35
H-VS 32.75 48.03 71.68 70.67 46.61
H-CIR 31.39 45.85 87.76 67.83 44.48

0.97≤ S/K <1.00 BS 40.92 46.36 38.95 54.12 43.82
BS-VS 27.76 41.96 61.37 168.67 52.81
BS-CIR 34.21 38.75 39.85 59.76 39.15
H 29.73 35.79 31.40 39.08 32.47
H-VS 28.86 38.57 34.43 36.72 32.43
H-CIR 29.29 49.11 32.92 50.93 32.45

1.00≤ S/K <1.03 BS 23.56 36.21 50.30 117.69 33.22
BS-VS 23.76 37.85 48.08 75.48 30.74
BS-CIR 23.27 37.00 47.94 54.04 28.82
H 21.71 32.68 37.48 41.43 25.64
H-VS 21.83 34.56 39.85 42.19 26.21
H-CIR 21.77 44.51 41.15 45.62 34.47

S/K>1.06 BS 21.44 49.57 91.25 187.77 38.82
BS-VS 30.80 62.67 69.15 54.45 38.99
BS-CIR 26.23 60.81 83.78 95.35 38.38
H 14.73 26.66 29.28 29.40 18.15
H-VS 14.88 28.02 30.45 30.31 18.58
H-CIR 19.72 36.22 39.63 29.86 20.41

S/K >1.06 BS 13.84 48.05 106.22 277.99 60.62
BS-VS 16.04 53.55 101.82 183.32 51.29
BS-CIR 14.82 52.32 106.68 219.99 55.14
H 7.73 11.10 12.16 15.49 9.76
H-VS 5.24 9.82 12.09 15.99 8.09
H-CIR 6.48 14.16 12.13 15.74 12.18

Total Sample BS 19.97 46.64 91.07 216.27 50.73
BS-VS 21.63 51.72 90.85 166.38 47.54
BS-CIR 20.74 49.65 90.93 167.49 46.68
H 14.17 19.47 20.25 24.89 16.77
H-VS 12.93 19.57 21.21 24.84 16.07
H-CIR 13.55 26.01 21.73 24.87 18.01

This table presents the 1-day out-of-sample $MSE of put options on the S&P 500 index using the Black-Scholes and Heston models
and their stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes
(1973) model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-
Ingersroll-Rox, respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration
in days and represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values
are the smallest $MSE values within their respective bins.
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Table 16: 5-Day Out-Of-Sample average $MSE on Call options on the S&P 500 index (2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K<0.94 BS 26.90 69.02 128.75 167.05 88.10
BS-VS 19.31 50.23 107.96 178.00 80.17
BS-CIR 26.67 64.70 131.95 228.86 102.80
H 5.70 14.71 28.95 68.66 27.31
H-VS 7.07 17.05 33.64 68.42 28.94
H-CIR 6.59 20.49 35.99 79.06 33.58

0.94≤ S/K <0.97 BS 52.00 123.48 147.36 161.99 78.68
BS-VS 34.80 88.91 124.84 135.04 57.06
BS-CIR 48.35 109.16 158.22 183.50 75.36
H 14.89 46.44 76.54 120.58 31.60
H-VS 17.75 48.66 68.67 94.90 31.67
H-CIR 20.59 49.99 92.70 111.57 33.81

0.97≤ S/K <1.00 BS 70.31 100.05 108.78 184.02 85.60
BS-VS 49.30 81.78 91.66 102.99 60.56
BS-CIR 61.05 94.25 108.30 134.93 74.18
H 45.96 80.18 91.89 108.81 58.36
H-VS 46.19 70.45 80.60 95.06 55.31
H-CIR 58.42 93.88 112.49 133.19 61.82

1.00≤ S/K <1.03 BS 53.69 90.34 112.58 227.27 75.30
BS-VS 52.41 98.44 105.85 134.19 69.38
BS-CIR 52.74 92.62 108.22 132.75 68.47
H 63.02 86.11 94.22 106.50 71.89
H-VS 63.71 79.32 78.56 97.47 69.68
H-CIR 82.36 91.03 110.54 103.67 73.25

S/K>1.06 BS 30.03 93.28 104.83 276.87 70.02
BS-VS 40.68 125.95 133.14 227.27 79.74
BS-CIR 34.45 102.71 119.42 169.09 64.98
H 40.16 72.77 61.20 82.25 51.31
H-VS 41.91 70.09 69.13 89.47 53.21
H-CIR 46.35 77.58 66.85 93.39 53.61

S/K >1.06 BS 17.79 62.13 111.32 346.02 101.54
BS-VS 24.72 92.24 178.12 394.49 128.64
BS-CIR 19.25 69.62 119.05 249.26 86.49
H 16.21 41.20 33.92 44.92 29.94
H-VS 16.74 25.57 27.56 39.98 24.57
H-CIR 17.67 39.99 34.18 52.35 35.80

Total Sample BS 55.49 94.35 125.17 186.37 82.89
BS-VS 41.61 78.16 111.60 161.49 67.30
BS-CIR 50.74 88.71 128.97 191.24 79.59
H 34.49 52.19 59.23 88.65 45.90
H-VS 35.72 49.17 55.54 80.35 44.79
H-CIR 35.25 54.63 67.46 91.46 48.13

This table presents the 5-day out-of-sample $MSE of call options on the S&P 500 index using the Black-Scholes and Heston models
and their stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes
(1973) model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-
Ingersroll-Rox, respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration
in days and represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values
are the smallest $MSE values within their respective bins.
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Table 17: 5-Day Out-Of-Sample average $MSE on Put options on the S&P 500 index (2010-2015)

D <60 60 ≤ D <120 120 ≤ D <180 D ≥ 180 Total Sample

S/K<0.94 BS 15.31 47.54 160.00 197.52 81.05
BS-VS 16.72 65.86 260.16 497.04 162.31
BS-CIR 16.32 46.10 171.49 275.10 98.84
H 17.08 42.71 60.45 117.00 50.27
H-VS 17.42 54.54 48.19 94.70 46.86
H-CIR 18.52 54.15 61.20 124.98 54.75

0.94≤ S/K <0.97 BS 55.68 121.89 190.76 231.87 115.00
BS-VS 59.52 119.09 225.08 369.24 144.79
BS-CIR 61.08 119.49 211.07 246.91 122.08
H 58.56 130.55 178.62 186.95 108.87
H-VS 66.42 93.65 110.71 140.41 89.12
H-CIR 73.69 114.30 189.14 223.75 102.49

0.97≤ S/K <1.00 BS 69.70 106.97 111.70 152.36 92.09
BS-VS 63.82 104.25 138.92 250.05 103.53
BS-CIR 67.58 106.11 118.45 163.48 92.68
H 76.18 99.97 95.93 124.00 89.32
H-VS 64.16 79.82 83.44 100.31 73.81
H-CIR 76.56 120.84 100.28 121.03 79.63

1.00≤ S/K <1.03 BS 48.52 89.49 143.05 210.17 70.54
BS-VS 53.45 91.77 134.52 158.75 70.69
BS-CIR 51.90 93.00 141.07 143.99 69.12
H 57.48 86.56 120.40 122.70 69.65
H-VS 53.98 70.73 90.52 98.38 61.36
H-CIR 72.68 88.15 134.88 112.72 70.93

S/K>1.06 BS 34.14 85.00 136.31 269.31 60.52
BS-VS 45.10 99.84 117.20 142.56 62.71
BS-CIR 40.00 95.82 128.52 176.32 60.78
H 37.03 66.41 85.08 118.68 48.61
H-VS 37.51 62.86 74.69 102.94 46.94
H-CIR 41.78 75.03 105.69 147.04 50.62

S/K >1.06 BS 16.33 59.26 111.16 308.46 68.41
BS-VS 18.64 65.57 106.48 211.12 59.05
BS-CIR 17.46 63.63 111.65 245.71 62.51
H 15.16 28.27 33.53 49.53 23.63
H-VS 12.42 25.88 33.71 47.39 21.26
H-CIR 17.90 30.42 38.40 59.92 23.10

Total Sample BS 31.51 72.92 120.35 269.59 70.67
BS-VS 35.23 78.70 119.44 213.02 68.20
BS-CIR 33.73 77.25 120.92 217.81 67.56
H 33.92 51.15 59.29 78.27 43.73
H-VS 30.87 44.13 51.44 67.82 38.74
H-CIR 34.17 52.12 59.26 83.03 46.36

This table presents the 5-day out-of-sample $MSE of put options on the S&P 500 index using the Black-Scholes and Heston models
and their stochastic interest rate extensions. The sample period is from 01/01/2010 to 31/12/2015. BS stands for the Black-Scholes
(1973) model and H for the Heston (1993) model. VS and CIR stands for the stochastic interest rate models of Vasicek and Cox-
Ingersroll-Rox, respectively. Moneyness is defined as S/K where S stands for the spot price and K is the strike price. D is the duration
in days and represents the time to maturity. The sample is divided into six moneyness bins and four maturity bins. Underlined values
are the smallest $MSE values within their respective bins.
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