
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Ernst & Young

Expected Shortfall Backtesting

Econometrics and Management Science

Quantitative Finance

Master’s Thesis - FEM21031-18

Florentijn Gelling (400295)

Supervisors: Karolina Scholtus (EUR)

Niels van der Kleij (EY)

Second assessor: Prof. Dr. Chen Zhou (EUR, DNB)

25th July 2019

1



Abstract

This paper is on the change in risk measure from Value at Risk (VaR) to Expected Shortfall (ES) as

stipulated by the Basel Committee of Banking Supervision, and in particular, the backtesting meth-

ods that have been developed for this new risk measure ES. The contribution of this research to the

literature is an analysis of the performance of the most relevant contemporary backtests in several

different modelling scenarios and a more simple scenario where their performances are compared to

the currently used VaR setting. We analyse the (size-adjusted) power of six different methods in a

variety of statistical modelling scenarios, and comment on computational time and implementational

complexity of these methods. This is done for the consideration of widespread use throughout the

financial system, and in particular for regulatory purposes. We observe that both the methods by

Graham and Pál (2014) (GP) and by Moldenhauer and Pitera (2018) (MP) outperform the other

methods in terms of size-adjusted power throughout the analyses. In terms of computational time,

the GP method beats out the calibration time necessary for the MP method, though the MP method

performs (daily) evaluations much faster, once the initial calibration is done. Furthermore, the MP

method is slightly more consistent than the GP method, and it is much more easily implemented

due to its relatively low mathematical complexity. Therefore, we recommend its use as the primary

methodology for backtesting ES in matters related to risk management in the financial sector. Lastly,

the MP method seems to be slightly more sensitive to misspecifications than the currently used VaR

backtest is in the VaR framework. This suggests that, if the MP method is to be applied, the quant-

ity and size of fees for inadequate risk management will increase for financial services organisations,

if their current models remain in use.
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1 Introduction

1.1 Background

Expected Shortfall (ES) is a risk measure that captures tail risk better than the Value at Risk (VaR)

measure that has been used for decennia. Despite the fact that regulatory authorities have been reluctant

to phase in this new risk measure in favour of the old one, possibly supported by lobbying financial

institutions, this is not to last. At the moment, discussion is still being held on the specifics, but current

estimates place this change around early 2022.

The Basel Committee on Banking Supervision stipulates that financial institutions will be required

to report daily ES estimates, using 97.5th percentile, one-tailed confidence levels (BCBS, 2016). Before

this is fully implemented, sound ways of backtesting these estimates must be developed. This is, however,

not as easy as one might think, coming from a VaR setting1.

Before discussing the VaR framework, we must understand what sort of data these tail risk meas-

urements are based on. For the scope of this research, we will use profits and losses (P&Ls) to indicate

the value of an investment. These P&L values are first differences of logarithms of spot prices of stocks

and derivatives, or a combination of several spot prices gathered in a portfolio. Since VaR values are

not additive, and neither are those of ES, portfolio risk measures are quite complicated to construct,

especially since lognormal returns are considered, which do not add up to any known distribution. The

current preferred way of dealing with this is by use of the Variance-Covariance method, which is discussed

in greater detail in Section 3.2.4.

We define the VaR risk measure as follows:

VaRν(X) = inf{x|FX(x) ≥ ν}. (1)

Some researchers define their VaR measure as the negative of Equation 1, such that the ‘daily loss’ is

artificially represented as a positive value; we will not. This ties into the choice for ν = 0.01 for VaR and

ν = 0.025 for ES, as the aforementioned researchers generally define ν to be 0.99 for VaR and 0.975 for

ES. We view the distribution as a whole profit and loss statement, where the losses are on the left side of

the curve (and are in fact negative numbers), of which we take the 2.5th percentile. As per illustration,

we refer to (Dimitriadis & Bayer, 2017), who utilise the same notation as we do.

For this risk measure multiple backtesting methods are proposed, they fall into one of the following

three categories (Holton, 2014):

• Coverage tests - assess whether the frequency of exceedances is consistent with the loss quantile

that the VaR level intended to reflect;

• Distribution tests - apply goodness-of-fit tests to overall loss distribution estimates;

• Independence tests - assess independence of results from one period (usually daily) to the next.

A good VaR prediction model should pass all these testing criteria, since these are complementary

and not interchangeable. The most straightforward of these types is the Coverage test, which is why we

1Which uses a 99th percentile, one-tailed confidence level
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will focus on this type of test for now. This backtest is also relatively easy to perform using known test

statistics (Chi-square for instance). The reason this works is that the VaR measure (in this test setup)

only cares about whether or not a P&L observation of a given day exceeds the threshold pertaining

to a specific VaR-percentile. Therefore, it can easily be shown that the total amount of exceedances

is Bernoulli distributed, assuming exceedances are independent (which requires confirmation from an

Independence test) and that the only necessary parameters for the probability density function (pdf) are

the sample size and the probability of an exceedance occurring. This gives an easy way to perform a test

on whether the predicted VaR threshold was reasonable, given the observations, since we simply need

to test the null hypothesis that the true exceedance proportion equals that which the VaR-percentile

suggests.

One of the greatest strengths of VaR is its simplicity in backtesting through its Bernoulli distribu-

tion (although Independence and Distribution tests are also necessary from a theoretical perspective).

However, one of the problems with the VaR measure is that it gives us no insight whatsoever in our tail

risk beyond the threshold value. It tells us the magnitude of the loss that will not be exceeded 1% of

the time, but it gives no details on how extreme the loss can get in those 1% outlier cases. Furthermore,

if the VaR backtest fails, the measure contains no information or suggestion on what the correct VaR

level truly is. As opposed to giving just a threshold for risk, the ES risk measure takes into account

what happens when the threshold is passed. It is the expected loss, given that this loss exceeds a certain

threshold:

ESν(X) =
1

ν

∫ ν

0

V aRµ(X)dµ. (2)

Through this fact, however, it cannot simply be backtested the way VaR is. Even more problematic,

though, is that ES is only concerned with P&L observations in this VaR-percentile, which means that

only the exceedances are relevant information for the ES measure, and all other observations above the

threshold are meaningless. Since Basel stipulates the use of the 97.5th percentile, backtesting over a

period of 1 year (252 trading days) gives us, by construction, an expected amount of useful data of about

6 observations. This small-sample problem is an issue that renders standard significance tests useless,

since testing power is in general heavily correlated with sample sizes.

As a practical illustration, we see that even a simple test for µ0 = 0 (population mean under null

hypothesis) requires an observation average that lies very far from zero in order to be rejected with a

confidence level of 1− α = 95%, when using a sample size of n = 6, shown here:

z =
x− µ0

σ/
√
n
, which gives: x/σ ≥ 1.96√

6
≈ 0.80, (3)

which means that the average of the 6 observations needs to be 0.8 standard deviations off µ0 = 0 to

reject µ0, but this is only true if the data is normally distributed and the variance of the population is

known. If the variance is unknown, we must use the sample variance S and the t-statistic with 5 degrees

of freedom (dof, denoted as θ), which gives a coefficient of 2.571. This results in an x/σ value of 1.04,

meaning that the observed average must be more than one standard deviation distance from µ0 in order
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to reject it, showing that the average of the data must be at least 25% more extreme in order to reject

the null hypothesis, if we do not know the underlying distribution, in this particular setup. To make

matters worse, P&L data has been repeatedly shown to be fat-tailed, so normal assumptions are rather

unrealistic for ES prediction and backtesting (Graham & Pál, 2014), (McNeil, Frey, Embrechts et al.,

2005). Note that this is also an issue for the VaR risk measure. So, if we also cannot rely on our data

to follow a normal distribution, the above test is only valid in approximation using the central limit

theorem, with the extra necessity of n ≥ 30. Analysing this situation shows us that standard methods

like the one utilised above are rather unfeasible in this research, and they require very extreme tail loss

observations for rejection of ES estimates to be confidently asserted.

When backtesting ES note that some methods assume the VaR level to be correct, and thus are

insensitive to large amounts of exceedances, while other methods implicitly test for the VaR level in their

procedure for testing ES. The ES measure has the same amount of violations as the VaR measure, by

construction, but ES takes the size of the loss into account too. Not all of the ES backtests, however,

actually also take the quantity of violations into account. Naturally, one must remember to evaluate

the VaR level separately, when relying on this type of ES backtests. Unless otherwise noted, we will

generally assume the VaR threshold to be correctly specified.

Graham and Pál (2014) give a very clear and concise summary of p-values, hypothesis testing

and rejection regions, which will be used rather extensively in our analysis. This, however, is assumed

common knowledge within the field of econometrics and quantitative finance and will not be discussed

in more detail.

1.2 General notes on ES backtesting

1.2.1 Simulation and empirical analysis

When researching the validity of any backtesting procedure using historical simulation, one cannot

discriminate between the two possible outcome scenarios, both when the backtest accepts the predictions

and when the backtest rejects the predictions. If the backtest accepts the prediction, this could be because

the prediction model was correct and the backtest is correct (or well enough calibrated to this specific

scenario), or it could be because the prediction model specification was incorrect, but the backtest is

also inaccurate/incorrect/misspecified/miscalibrated or simply put, flawed. Thus, either both were right

or two wrongs might make a right in terms of the significance test outcome. On the other hand, if the

backtest rejects the prediction this could be because the prediction model was incorrect and the backtest

is correct (for this specific scenario) such that it correctly rejects. The alternative is that the prediction

model was correctly specified (or close enough), but the backtest is flawed. This results in one wrong and

one right that together make a wrong significance test outcome; without additional information, there is

no way to tell which is which.

In order to get a ‘clean’ evaluation of the validity of a backtesting method, one must thus know

whether the prediction model was specified correctly or not. Only then can we know whether the
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backtest performs desirably or not. This is relatively easily done using simulated data, since this allows

a researcher to control, and thus know both the correct model specification and the true ES through

analytical calculation or MC methods.

We will analyse the difference in sensitivity to incorrect specifications between a common and

accepted VaR backtest and our ES backtests of interest. This can be instrumental in recognising,

understanding and dealing with the problems that come along with this structural change in the financial

reporting through the move of the Fundamental Review of the Trading Book (FRTB) from VaR to ES.

We can do this relatively easily since the VaR 99th and ES 97.5th percentile values are (almost) identical

for a normal distribution (Moldenhauer & Pitera, 2018). Thus, we can analyse whether the VaR backtests

start rejecting first, or the ES backtests, when model misspecifications get gradually more extreme.

1.2.2 Regulatory versus Corporate

We note a specific distinction between the regulator’s perspective and that of financial institutions, e.g.

banks, on the backtesting of tail risk.

First off, from a bank’s perspective we would like to monitor tail risk as accurately as possible, such

that we know exactly how much liquidity we need to hold in reserve to cover our risk, without being too

conservative with our assets and missing out on potential extra revenue. From a regulatory perspective

we wish to monitor tail risk as accurately as possible, to keep the financial system in check, such that no

large scale systemic risks are taken that endanger the economy as a whole. On the other hand, we must

not hinder or obstruct the financial system unnecessarily, such that it runs smoothly and does not suffer

inefficiencies. This is a balance on a knife’s edge due to the interactions between the two involved parties.

From a bank’s perspective the main objective is profit, whereas from a regulatory perspective the main

objective is risk mitigation2. We see that both have the same immediate goal of tail risk measurement,

and in an ideal world the preferences of the two should line up perfectly. However, given that measuring

risk is not an exact science (through its dependency on distributional assumptions) and the fact that

the involved parties do not have the same underlying reasons for their interest in tail risk, the financial

institutions will inevitably move towards the more risky side of the spectrum of risk assessment, while

regulators will move to the more conservative side.

Secondly, financial institutions develop highly specific and complex models for their tail risk assess-

ment. We can make our backtesting method highly model-specific by attuning it to one such underlying

prediction model, such that it calculates exactly the probability of the underlying model being correct,

given the observed data. On the other hand, regulatory authorities are only really interested in the

end result, the discrepancy between the predicted and the observed tail loss. Thus, the regulator would

ideally employ a backtesting methodology that can be used for all tail risk assessments in exactly the

same way. This method would simply take ES predictions and observations of a given year as input, and

2An argument can be made that a financial institution would rather have a ‘healthy’ risk assessment than maximise

profit at all costs, but the most important detail is that the financial institutions’ preferences will always be on the risky

side compared to the preferences of the regulator.
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produce a p-value as a result, regardless of the detail and complexity of the prediction model and error

distribution assumptions concerned.

In this research, preference is given to the regulatory perspective, for its much wider applicability

and usefulness compared to a backtesting method that is highly tailored to the tail risk measurement of

some singular financial institution. With that said, most of the methods still require the specification of

an assumed underlying pdf (empirical, normal, t, etc.). To deal with this, the methods are programmed

such that the distributional specification can be changed on the fly.

1.2.3 Quantifying the performance of a backtest

We discuss and define what a ‘good’ backtest consist of in this section. Size and power properties are

evaluated in virtually every piece of literature on the subject3. To these two measures we add the issue

of ease and appropriateness of widespread implementation. We list the four as follows:

• Power: sensitivity to incorrect specification (for low type 2 error);

• Size: acceptance rate for correct (or close enough) specification (for low type 1 error);

• Ease of implementation/complexity issue (for wide use by regulators and the financial system);

• Applicability in terms of what setting it works desirably/correctly for (for wide use by regulators

and the financial system).

Furthermore, size-adjusted power levels (Lloyd, 2005) will also be considered for the comparison

of methods in terms of power when their sizes are unequal.

1.3 Research question

This research is on the topic of methods for backtesting ES. The research concerns the following methods:

Del Brio, Mora-Valencia and Perote (2017)’s t-test, M. Righi and Ceretta (2013)’s truncated distribution

dispersion, Graham and Pál (2014)’s saddle-point method, Löser, Wied and Ziggel (2018)’s Irwin-Hall

transformation, Moldenhauer and Pitera (2018)’s secured position and Bayer and Dimitriadis (2018)’s

regression-based backtest.

The research focuses on the following question: ‘How do the methods mentioned above compare

for the purpose of backtesting Expected Shortfall (in terms of size, power, complexity and applicability)

when used by regulators as well as the financial system as a whole?’

This can be analysed in a simulated environment (Wimmerstedt, 2015), (Löser et al., 2018) and

(Bayer & Dimitriadis, 2018). However, if we are to get an indication of what impact the backtesting

of ES over that of VaR has, the performance of these backtests must be compared to the original VaR

backtest, in a common scenario that the latter is used in in practice. Apart from analysing which

backtests perform best in terms of power in a statistically complex environment, we hereby also research

3We follow Bayer and Dimitriadis (2018), who define the size of a test as the rejection frequency of the test under the

null hypothesis, which should equal the nominal signicance level, and the power of a test as the rejection frequency of

forecasts stemming from some misspecied model, which is optimally as close to one as possible.
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how these methods will change the field of tail risk management, when the switch to the ES risk measure

is fully realised.

The simulation scenarios consist of a data generating process (dgp) under a range of parametric

specifications (e.g. t-distributions with differing degrees of freedom) and predictions under a range of

hypotheses following the same parametric specifications. We deliberately both correctly and incorrectly

match these dgp’s with the predictions under certain hypotheses, in order to create several scenarios of

which we know a priori whether the predictions are theoretically correct or incorrect for the applied dgp.

Following this we apply the backtesting methods and observe whether these indicate rejection of the

prediction method used or not. In case that the method was matched correctly, we expect a rejection

rate of α = 5%. Alternatively, if the dgp and the prediction method were mismatched, we expect a

higher rejection rate, up to a limit of 100% rejection, depending on the severity of the mismatch4. From

this we can conclude which backtest is the most powerful across the defined scenarios.

Applying the above, we have a methodology at our disposal for researching the validity of ES

backtests in several parametric settings (following any arbitrary distribution). Furthermore, we can

compare these ES backtests with the currently employed method of analysing tail risk (which is VaR

backtesting), with the goal of researching which of the considered backtests is the preferred one for

widespread implementation.

2 Literature

When it comes to available literature, quite a lot of material on backtesting ES has been produced since

the turn of the millennium. After all, the Basel committee admitted that the difficulty of replacing VaR

by ES, which will be required by Basel soon, lies within the backtesting of prediction models (Dalne,

2017). Most of the proposed methods, however, have some caveats. Many of them depend heavily on

underlying distributional assumptions, which are hardly appropriate in a general application given the

documented non-normality of stock returns, or for financial excess returns in general for that matter

(Sheikh & Qiao, 2009). Section 2.1 focuses on what backtesting methods have been proposed, giving a

short description of the inner workings of those that are relevant to us and highlighting the pros and

cons in terms of applicability and assumptions used.

Given that we are especially interested in finding ways of backtesting ES predictions regardless of

what model or method was used in constructing these predictions, we will have to research how this lack

of validity of the underlying assumptions affects the power of such methods, or we must employ methods

that do not rely on these assumptions at all. Thus, in section 2.2, we will discuss how the power of a

backtest can be measured, according to previous literature.

4We illustrate this with the following example: when the dgp follows a t-distribution with 3 dof, we expect a much

larger rejection rate in the scenario where the null hypothesis is of a t-distribution with 30 dof than a scenario where the

null hypothesis is of a t-distribution with 5 dof, because the second hypothesis is much closer to the underlying data than

the first.
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2.1 Existing backtests of ES

The first methods that were developed for ES backtesting were published in the early 2000’s. McNeil

and Frey (2000) proposed a residual approach, taking the sum of the differences between ES predictions

and actual tail loss observations, scaled by volatility; and employing Extreme Value Theory (EVT).

After this, Kerkhof and Melenberg (2004) came up with the so-called functional delta method. Both

of these methods unfortunately rely on asymptotic statistics, which are inaccurate when dealing with

small sample sizes (Dalne, 2017). Other earlier methods include Berkowitz (2001)’s censored Gaussian

approach and Bradley and Taqqu (2003).

These earlier methods were not equipped to deal with small sample sizes, nor were they capable

of accurate predictions under non-normality. Wimmerstedt (2015) reviews the methods of Wong (2008),

M. Righi and Ceretta (2013), Acerbi and Szekely (2014) and Emmer, Kratz and Tasche (2015), which

we will discuss next.

We found an issue with Wimmerstedt’s execution of the analysis on accepting true predictions

for the method by Emmer et al. (2015). Because of this error, Wimmerstedt chooses in favour of the

other methods over Emmer’s. The problem itself lies in the rejection region of a discrete distribution. In

the case of continuous distributions, rejecting an observation if it is above the 95% cumulative density

threshold [p(X ≤ x) ≥ 95%] is equivalent to rejecting when it is in the outer right 5% tail of the

distribution [p(X ≥ x) ≤ 5%]. However, this is not necessarily true for discrete distributions (illustrated

in figure 1). If the cumulative probability of an observation in the discrete binomial distribution lies above

the 95% threshold, Wimmerstedt rejects this draw from the MC simulation. However, it is possible that

the outer right tail probability of this observation is still more than 5% [p(X ≥ x) ≥ 5%]. Due to this, in

the case of the VaR-99.5%, Wimmerstedt implicitly uses a confidence level of α ≈ 13%, which deviates

heavily from the usual α = 5% confidence level for rejection of a null hypothesis. This is an important

factor in the relatively low supposed acceptance rate for Emmer’s method of only 78%.

Figure 1: Continuous and discrete rejection regions; the bell curve represents a continuous function,

whereas the red blocks represent a discrete distribution

We already mentioned that we exclusively use a one-tailed rejection region; Graham and Pál (2014)
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explain the reasoning behind this. They state that a null hypothesis is rejected if the realised value of the

employed test statistic ẑ is significantly less than or significantly more than its assumed value under the

null hypothesis, denoted z0. However, only one of these instances (either z >> z0 or z << z0) represents

underestimation of tail risk, while the other provides evidence for excessive coverage of the tail risk,

through its overestimation. This last case indicates a conservative stance, and is therefore acceptable

from a regulatory viewpoint. On the other hand, overestimation will lead to inefficient use of capital

(Garcia-Jorcano, 2017), which is a concern for financial institutions.

Wong (2008) proposed using a saddle-point or small sample asymptotic technique for modelling of

the tail distribution, which is relatively robust for small samples. Still, it is reliant on the assumption

of normality. Graham and Pál (2014) expand upon this saddle-point technique, generalising it and

using non-parametric methods for the estimation of distributions and theoretical acceptance/rejection

thresholds, thus relaxing the normality assumption.

The method by M. Righi and Ceretta (2013) uses a dispersion of a truncated distribution by the

estimated VaR upper limit, as opposed to a dispersion of the full distribution like in Wong’s method.

This method also allows for daily evaluation of ES predictions, without needing to wait for an entire

backtesting period; and it is not limited to the normal distribution either, allowing the risk manager to

choose the most appropriate distribution in a given scenario (M. B. Righi & Ceretta, 2015). This is a

parametric bootstrapping method.

Acerbi and Szekely (2014) propose three backtest methodologies, which are rather comparable.

Simply put, these methods test the likelihood that the observed shortfall originated from the distribution

that was used for its prediction. This means that the actual ES prediction is of little consequence and

its mostly about the assumptions that the prediction is based on. Since the test statistics that are

given by Acerbi & Szekely dont follow any known distribution, they use Monte Carlo simulation for the

evaluation of the significance of the test. This generation of a grid of quantiles from the cumulative

density function (CDF) to compare to the observed exceedances is referred to as a parametric bootstrap.

The first method uses a setup that assumes VaR to be correct, the second tests both ES and VaR jointly.

The third method tests the tail observations by ranks, assuming these are uniformly distributed, which is

reminiscent of the method by Emmer et al. (2015), where this is done in a discrete manner. Seeing how

Wimmerstedt (2015) analysed all these methods and concluded that the first clearly had more power

than the other two, we disregard the second and third methods in favour of the first, in order to keep

the scope of this research manageable.

Del Brio et al. (2017) focus their research mainly on the optimisation of ES predictions, rather than

their backtesting. As with Dalne’s paper, however, this can still be of use to us, since it gives insight in

what backtesting methods are generally accepted and used in the field. The backtesting method that is

used here is a t-test based on VaR violation residuals. It seems comparable to a significance test where we

assume standard normal residuals, but do not know the variance and thus must compensate for the fact

that we use a sample standard error instead. Overall, this does not seem realistic, as already discussed
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in the introductory paragraph, and the whole method is a step back in terms of both complexity and

accuracy, compared to the more elegant methods discussed previously. We note that the test statistic is

a very intuitive and simple risk measure to work with, given that it is the ES estimation error scaled by

the estimated ES magnitude (distance from the total sample mean µ).

The main relevance of the paper by Garcia-Jorcano (2017) to us is that it contains an overview

of what backtesting methods have been used lately. In particular, they comment on the method by

Costanzino and Curran (2015), stating that ‘it is appropriate for backtesting any spectral risk measure,

including ES’; they also discuss the conditional test of Du and Escanciano (2016). Both of these methods

are in essence continuous limit adaptions of the idea of Emmer et al., since they jointly evaluate a

continuum of VaR levels. Furthermore, these two tests are two-sided and thus do not solely focus on

risk underestimation but also reject the null-hypothesis in case of risk overestimation (Garcia-Jorcano,

2017).

Unfortunately, most of the concluding points of the paper focus on what forecasting methods

perform best for the different backtesting methods, and thus the paper does not provide an objective

evaluation or nominal measure of accuracy of an ES prediction. Thus, the topic of backtests of ES is

not yet concluded. An interesting point, concerning Garcia-Jorcano’s conclusion, is that the method of

M. Righi and Ceretta (2013) and those of Acerbi and Szekely (2014) are more suitable for application

on non-parametric ES forecasts, while the Graham and Pál (2014), Costanzino and Curran (2015) and

Du and Escanciano (2016) methods are best used if we estimate ES by a parametric approach. Lastly,

particular emphasis is laid on the difference between 1-day and 10-day ES estimation horizons, resulting

in differing power levels for the prediction and backtesting sequences.

Bayer and Dimitriadis (2018) propose two regression-based backtests, which solely require ES

forecasts as input parameters. No other quantities (e.g. VaR, volatility, tail distributions) are necessary

for this method, as opposed to most previously mentioned backtesting procedures. Only one of these

tests is one-sided, but equivalent in almost all other aspects, thus, we will focus on this one over the

two-sided version. Its performance is compared to that of the Conditional Calibration backtest by Nolde,

Ziegel et al. (2017), and they find that their own method is more powerful. To keep the scope of the

research somewhat manageable, we will therefore not go into further detail on the methods by Nolde et

al. (2017).

Löser et al. (2018) propose a so-called ‘Unconditional Coverage’ backtest of ES, which is unique

in that it is appropriate in a multivariate setting. It is an extension to the method proposed by Du and

Escanciano (2016), and compared to this, its main advantage is that the distribution is known for finite

out-of-sample size (Löser et al., 2018). The researchers find that the proposed method clearly outperforms

the alternative of Du and Escanciano (2016), though the test suffers from slight size distortions when

using an in-sample period T < 2500.

Another method that is focused on Unconditional Coverage backtesting, by Moldenhauer and

Pitera (2018), employs a so-called ‘secured position’ as risk measure, which gives us an indication of
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whether the capital reserve of the financial product is sufficient to cover its risk. This method is compared

to the second test by Acerbi and Szekely (2014), and is reported to give slightly better or similar results.

Furthermore, they suggest a traffic light system for ES, comparable to that which is currently in

use in the VaR framework as stipulated by Basel regulation.

Finally, Moldenhauer and Pitera (2018) ‘note that the regulator proposed the reference risk level

change for VAR/ES migration in the similar fashion: ES-2.5%(X) is equal to 2.34, while VAR-1%(X) is

equal to 2.33. This allows a smooth transition between VAR and ES frameworks (at least if the secured

position distribution is close to normal).’

To conclude this part of the literature review, we have seen that there is quite a variety of flavours

to choose from, when we wish to backtest ES predictions. Furthermore, many of the proposed methods

build upon previous ones. Our task is to determine which of these are most appropriate to use in practice,

from a regulatory perspective, foremost. We select the best-developed method per type of backtesting

approach, and compare these to one another.

The method by Graham and Pál (2014) will be evaluated, because it expands upon the saddle-

point method by Wong (2008). Löser et al. (2018)’s method is more refined than those of Costanzino and

Curran (2015) and Du and Escanciano (2016), and the method by Moldenhauer and Pitera (2018) is based

on the same type of approach, thus comparing these two methods by Löser et al. and Moldenhauer &

Pitera respectively could give very valuable insights. The regression-based method (Bayer & Dimitriadis,

2018) approaches the problem from an entirely different angle, and will thus be considered as well.

Del Brio et al. (2017) use a rather simple method, which might be used as a baseline reference point

of how well the other methods perform. Finally, the method by M. Righi and Ceretta (2013) will be

analysed, as per their own suggestion: ‘controlled experiment approaches should be performed in order

to compare size and power of SD based ES backtest with other approaches’, which leads us to the section

on how this analysis can be done, according to previous literature.

2.2 The analysis of a backtesting method

Dalne (2017) uses the method by Righi and Ceretta for the backtesting of ES estimates of market risk

models, in order to select the most appropriate modelling distribution. This shows the practical applic-

ation of Righi and Ceretta’s method, though through this, the validity of Dalne’s conclusion depends

heavily upon the validity of Righi and Ceretta’s method. Furthermore, this illustrates the inherent is-

sue that all backtest results have: the uncertainty of whether the prediction method or the backtesting

method was inappropriate (in case of rejection) or that either both were correct or both were incorrect

(in case of acceptance).

The procedure of simulating data for the evaluation of relative power of backtesting methods is

used by Wimmerstedt (2015). The paper documents rejection and acceptance rates of the previously

mentioned methods of Wong (2008), M. Righi and Ceretta (2013), Acerbi and Szekely (2014) and Emmer

et al. (2015), when applied to predictive models based on the standard normal distribution as well as
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t-distributions with a variety of dof (representing more or less resemblance to the standard normal

distribution). The true underlying distribution that is used for the simulation is known (standard

normal), thus the researcher knows in which cases rejection is desirable and in which cases acceptance

is.

In addition to providing us with a useful backtest, Löser et al. (2018) also examine its power by

simulation, for the construction of a controllable but realistic scenario. They extend the setup of Du and

Escanciano (2016), which is in turn a more elaborate version of what Wimmerstedt (2015) does. Two

scenarios are considered; in the first, there is a structural break, and in the second the risk model is

misspecified. Data generation is done in the first scenario using an AR(1)-CCC-GARCH(1,1) model with

normal innovations before the break and t-distributed innovations afterwards. In the second scenario, a

multivariate GARCH in mean model with normal innovations is used.

Bayer and Dimitriadis (2018) also use an MC method for determining both the size and the power

of their backtest, along with that by McNeil and Frey (2000) and Nolde et al. (2017). They simulate an

EGARCH(1,1) model with t-distributed innovations, with parameters calibrated using S&P 500 daily

returns. Furthermore, they use a GARCH(1,1) model in a setting of continuous misspecification.

Lastly, an important part of backtest evaluations is size-adjusted power (Lloyd, 2005). This is a

distortion of the true rejection rate of a backtesting method, normalised at α = 5% when the underlying

data truly follows the distribution of the null hypothesis. Through this, backtesting methods can be com-

pared more fairly, despite having different sizes. For a detailed account of the procedure for constructing

size-adjusted power, see Appendix Section A.1 or the paper by Lloyd (2005).

2.3 Statistical properties of risk measures and backtesting

Acerbi and Szekely (2017) state that backtesting in general remains to date a collection of disparate

practices in the wait for a clear denition. They also comment on elicitability, stating that it serves to the

purpose of conducting relative nondirectional tests of goodness between competing models issuing point

predictions on a statistic. This type of procedure allows for model selection among multiple models rather

than model validation, which needs an absolute scale for testing even a single model, and is the goal of

a proper backtesting procedure. This suggests that the property of elicitability is irrelevant for proper

backtesting, despite previous literature’s insistence that this property is essential for the backtestability

of a risk measure (Fissler, Ziegel & Gneiting, 2015).

Acerbi and Szekely (2017) also define the property of ‘sharpness’. If a statistic is sharp, better

predictions of the true underlying value give a better ‘score’ for this statistic than worse predictions. This

is relevant for traffic light evaluations, since this gives a range of ordered values from better to worse,

as opposed to a simple binary evaluation of a ‘correct’ or ‘incorrect’ prediction. An elicitable statistic

is also sharp, but it does not necessarily provide directionality. It gives relative score, but not whether

the model is over- or underestimated. Thus, a model that underestimates can be ‘preferred’ to one that

overestimates ‘slightly more heavily’, which is not what we want for our research.
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3 Methodology

In this section we will present the methods to be analysed, after which we will discuss the simulation

scenarios that these methods will be tested in.

3.1 Backtesting methods

The following is a description with formulae of the backtesting methods that are analysed in this research.

They are ordered according to their complexity, though admittedly, this is a rather subjective measure.

Although all methods essentially test the null hypothesis of the ES being correctly specified, the methods

perform this test through a variety of different mechanics. Therefore, we describe the immediate property

that is tested as the method’s specific null hypothesis.

3.1.1 Del Brio, Mora-Valencia and Perote

The least complex/elaborate test that we analyse employs the t-statistic (Del Brio et al., 2017). We test

the returns against the predicted ES, scaled by the difference between the predicted ES and the sample

mean. Only the returns that exceed the estimated VaR level are considered. Thus, this method assumes

correct specification of the VaR level, and given this, tests the observed versus predicted loss, not the

whole distribution.

First, the violation residuals X are calculated from the returns, or first differences of the P&L

values, rt:

xt =

(
rt − êt(ν)

êt(ν)− µt

)
I{rt<qt(ν)}, (4)

where êt(ν) represents the estimated ES, qt(ν) represents the VaR threshold under the null hypothesis

and µt represents the conditional mean return over the past T observations, at time t. The test statistic

is obtained in the following way (McNeil et al., 2005):

t̂ =
X

S/
√
τ
, τ =

T∑
t=1

I{rt<qt(ν)}, (5)

with X and S denoting the sample mean and standard deviation of the violation residuals xt of T = 252

observations. The null hypothesis of zero mean violation residuals (X = 0) is thus tested through a

simple t-test with θ = τ − 1.

If the VaR level used in this methodology is misspecified, then this backtesting method could easily

give a ‘positive’ evaluation of an incorrectly specified ES level too. This can be argued easily analytically

as follows. The test statistic of Equation (5) is for the location of the mean of a subset of the observed

data, specifically the VaR exceedances. Consider a hypothetical situation in which both the ES and

VaR are misspecified, in the direction of underestimation of the tail risk, as illustrated in Figure 2. This

misspecification creates a situation where more than just the lowest 2.5% of observations are counted as

an exceedance to be used for the location of mean test, because the hypothesised VaR threshold is less

strict than the true VaR threshold. Due to this usage of an incorrect subset of the data, the ‘observed
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mean’ of the tail subset will always be greater than or equal to the true ES value of the data, causing

underestimation of the tail risk. Following this, the ‘observed ES’, which is a distortion of the true value,

will lie between the predicted ES and the true ES of the dataset. Through this mechanic, the VaR

misspecification will cause the test to give a much smaller p-value than it should, causing the rejection

rate to be far too low. We can conclude from this that it is necessary to perform a test on the VaR level

before or in parallel to this testing procedure, in order to evaluate the reliability of the results from this

test.

Figure 2: Depiction of left tail of an arbitrary distribution, with the true ES and VaR levels (green),

misspecified values (red) and numerical mean of exceedances of the misspecified VaR level VaR hat

(purple)

3.1.2 Righi and Ceretta

The backtesting method by M. Righi and Ceretta (2013) uses a dispersion of a truncated distribution

by the estimated VaR upper limit. It performs a one-tailed test with the null hypothesis being that the

most extreme 2.5% tail losses behave as specified by the assumed distributional form; the alternative

hypothesis being that the occurred tail losses of the specified level are more excessive than predicted

according to the specified prior distribution. Through this methodology, all observations are compared

to the predicted ES, scaled by the variance of the tail as per the specification of the assumed distribution.

Thus, the entire tail distribution under the null hypothesis is analysed. Because of this, the method does

not require a prior VaR backtest to be valid.

The backtest statistic is defined as follows:

BTt =
rt − êt(ν)

SDt(ν)
, (6)

where SDt+k(ν) represents the Shortfall Deviation, the standard deviation of any observation exceeding

the specified VaR level ν. This formula can be written out more explicitly as follows:

BTt =
rt − Et[rt|rt < F−1(ν|πt)]

(V art[rt|rt < F−1(ν|πt)])1/2
, (7)

with F−1(ν|πt) representing the analytical VaR threshold and πt the distribution parameters under the

assumed distribution of the null hypothesis, and Var representing the variance; giving us a test statistic

that ‘normalises’ VaR exceedances rt through subtraction of ES and division by SD of the corresponding

time period, under H0. The normalised statistic is compared to a grid of random draws (n = 105)
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from the distribution under the null hypothesis (of which only VaR threshold exceedances are taken

into account and normalised), according to the original methodology by Righi & Ceretta, to analyse the

likelihood of observing the given exceedance under the null hypothesis. We calculate the percentage of

values of the grid of draws n that is lower than BTt as p∗t . This MC sampling is done N = 103 times,

resulting in N values of p∗t ; we take the median of these values p∗t as the p-value of the backtest. The

MC algorithm for this method can be seen in M. Righi and Ceretta (2013).

This methodology backtests individual VaR exceedances, which is notably different from most

backtests that test a whole year’s worth of observations at once. The results must thus be adapted for

the comparison between this method and the others. For this adaptation, we simulate N = 105 yearly

scenarios of T = 252 random draws, instead of the N = 103 samples of n = 105 draws. We then take

the aggregate of the simulated BT values for the entire year, which gives a range of N values as per an

MC simulation. Next, we simply take the α ∗N -th order statistic as our threshold value to compare the

observed aggregated BT to, to give a yearly evaluation in favour of daily evaluations for all exceedances.

3.1.3 Moldenhauer and Pitera

As mentioned in the literature section, the method by Moldenhauer and Pitera (2018) employs a secured

position. The secured position is constructed as the difference between the risk estimator ES (êt) and

the P&L value at time t (rt), proportional to portfolio volatility:

xt =
rt − êt(ν)

−êt(ν)
= 1− rt

êt(ν)
, where êt(ν) < 0 ∀ t. (8)

Under the null hypothesis the sum of the lowest 2.5% secured positions is equal to 0:

H0 :

bνTc∑
i=1

x(i) = 0, (9)

with x(i) representing the i -th order statistic of x1, ..., xT . The test statistic that follows from this is

constructed in the following way:

GT =

T∑
i=1

I{x(1)+...+x(i)<0}

T
. (10)

What this represents in real terms is a count of how many of the most severe loss observations it takes

for their sum to be greater than the sum of their corresponding ES predictions. Though it might seem

a bit convoluted at first, it is actually a very intuitive measure of the ES. However, it calculates what

percentile of the observed sample corresponds with the given ES prediction, instead of analysing the

realised ES of the 97.5th percentile of the trading year. In short, we measure the sum of the biggest

number of worst P&L realisations that is still more negative than the sum of their corresponding ES

predictions. The implicit null hypothesis is that the percentile of the observed returns that gives the

same ES value as what was predicted is smaller than or equal to ν, or in terms of the test statistic:

GT ≤ ν.

The test statistic can additionally be transformed to match the original VaR framework and its

traffic light scheme. We use a transformation to nominal values: X = T ∗ GT = 252 ∗ 0.025 ≈ 6
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observations under the null hypothesis. The new traffic light system, given in table 1, gives the probability

levels and ‘danger zones’ corresponding to the nominal X values and GT intervals under normality.

zone observations probability GT

green X < 12 90% [0.00, 0.05)

yellow 12 ≤ X < 25 9.99% [0.05, 0.10)

red 25 ≤ X 0.01% [0.10, 1.00]

Table 1: Traffic lights of Moldenhauer and Pitera’s method under normality

In order to compare this method to the others, however, we will need to get the 95% confidence

level. Thus, we need the exact value of X (or GT ) that this corresponds to as rejection region. This

region depends on the underlying assumptions, though, and can be approximated using MC. For the

standard normal distribution, we know that ES2.5% = −2.34 (Moldenhauer & Pitera, 2018). What we

can do is take random samples from the normal distribution (50000 iterations) and analyse what value

of X (or GT ) we get for the given ES value in the 5% most extreme cases, for the comparability with the

other methods on a significance level of α = 5%. Whenever considering another distribution, this MC

method must be run once more, using draws from the corresponding distribution and the corresponding

ES value.

This method does not need any VaR prediction input and can thus be performed completely

independently from any VaR evaluation.

3.1.4 Bayer and Dimitriadis

The regression-based method by Bayer and Dimitriadis (2018) uses a joint regression on both ES and

VaR, though the VaR regression part is not strictly necessary for the one-sided test. The joint regression

framework for semi-parametric estimation is stated as follows:

rt = βq0 + βq1 êt(ν) + uqt , (11)

rt = βe0 + βe1 êt(ν) + uet , (12)

using the same notation as before. The following holds for the error terms: V aRν(uqt |It−1) = 0 and

ESν(uet |It−1) = 0. This also gives us:

ESν(rt|It−1) = βe0 + βe1 êt(ν). (13)

For the one-sided Intercept ESR Backtest, we fix β1 = 1, giving us the following regression equation:

rt − êt = βe0 + uet . (14)

We test whether parameter βe0 equals zero. The one-sided hypothesis is formulated as follows:

H1s
0 : βe0 ≥ 0 against H1s

1 : βe0 < 0, (15)
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on which we perform a t-test, based on an asymptotic covariance and bootstrap procedure. The t-statistic

for this Intercept ESR Backtest is given as follows:

tI =
β̂e0√

Σ̂22/T
, (16)

where Σ22 represents the bottom right element of the asymptotic covariance matrix, given in the joint

estimation of the sample Quantile and ES (Dimitriadis & Bayer, 2017), constructed by regressing the

observed losses on a constant only. The formulae for the elements of Σ are given as follows:

Σ11 =
ν(1− ν)

f2R(Q(ν))
, (17)

Σ12 = Σ21 = (1− ν)
q(ν)− Ê(ν)

fR(Q(ν))
, (18)

Σ22 =
1

ν
Var(R−Q(ν)|R ≤ Q(ν)) +

(1− ν)

ν
(Q(ν)− Ê(ν))2, (19)

where Q(ν) and Ê(ν) represent the VaR and ES under the null hypothesis in vector notation and R

represents the vector [r1 ... rT ]. As can be seen in Equation (16), we only need the bottom right element

of the covariance matrix, since this is the ES part, whereas Equation (17) concerns the Quantile part of

the formulation and the off-diagonal elements of Equation (18) are concerned with covariance, of course.

Therefore, we will not go into detail on fR.

A paired bootstrap procedure is used for the construction of the CI (Efron & Tibshirani, 1994),

since neither the loss function of the M-estimator, nor the asymptotic covariance depend on the temporal

ordering of pairs (rt, êt). We take M = 103 bootstrap samples from the errors uet = rt − êt(ν) as U (b).

The t-statistic is calculated as in (22), centered around the β̂e0 value:

t(b) =
ESν(U (b))− β̂e0√

Σ̂
(b)
22 /T

, (20)

where Σ̂(b), of course, represents the asymptotic covariance matrix estimate of bootstrap set U (b). This

gives us an evaluation of how unlikely the original tI was; we reject the null hypothesis if tI < t
(b)
(αM),

with t
(b)
(αM) representing the α ∗M -th order statistic of sample t(b).

This method uses the VaR level under the null hypothesis as input for calculation of Σ22, and is

thus dependent on the assumption of a correctly specified VaR level, as the DMP method in Section

3.1.1. his VaR-dependency issue can be lessened by using the empirical VaR value of the most recent

set of observations instead of basing the VaR off the same prediction method as the ES is. However,

performing a VaR backtest is advisable in any case. This goes for all the VaR-dependent methods.

3.1.5 Graham and Pál

The backtesting method by Graham and Pál (2014) expands upon the Lugannani-Rice approach by

Wong (2008) and generalises it. A small-sample asymptotic saddle-point technique is used, and made
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analytically tractable and operationally feasible. Simply put, the original method by Wong is made more

implementation-friendly.

Per exceedance of the VaR level, as specified under the null hypothesis, we calculate statistic xt.

There are several procedures for defining xt, namely via historical simulation (using an empirical CDF),

variance-covariance (fitting a standard known distribution) or MC simulation. This choice of CDF is

where we see the null hypothesis being tested, since this methodology essentially evaluates the fit of this

specification for the tail distribution on the observed data.

The simplest way of specifying xt is using the empirical distribution:

xet = ln

(∑N
i=1 I{rt−i≤rt}

νN

)
, (21)

where N represents the historical sample size used, which is set equal to T.

When using a standard distributional CDF, such as the normal or t-distribution, we use the

following:

xst = (ln Ft(rt|πt)− ln ν)I{ln Ft(rt|πt)<ln ν}, (22)

with Ft(·) being the percentile value of an observation within its forecast distribution (CDF), that is,

the prior assumed distribution that the predictions are based on.

Finally, an EVT tail model, in this case the GPD, can be used, giving us:

xEV Tt =


− 1
ξ ln

(
1 + ξ

1−ξ
qt(ν)−rt

rt(ν)−êt(ν)

)
, if 0 < ξ < 1,

rt−qt(ν)
qt(ν)−êt(ν) , if ξ = 0.

(23)

We tend to use distributional assumptions in our analyses, thus we generally apply Equation (22) in this

research, giving xt = xst . If we use this distributional CDF approach, we evaluate the entire hypothesised

tail distribution as was the case with Righi & Ceretta’s method of Section 3.1.2. Thus, again, we do not

strictly require a VaR backtest.

We take the mean of the statistics xt as X, in order to solve the saddle-point equation:

K ′(s) =
M ′(s)

M(s)
= − ν

(s+ 1)[s(1− ν) + 1]
= X for X < 0. (24)

This gives the unique solution s̃ on interval (−1,∞):

s̃ =
(ν − 2) +

√
∆

2(1− ν)
for ∆ = ν2 +

4ν(ν − 1)

X
. (25)

We define the following variables for the construction of the p-value:

η = −sX 4
√

∆

√
νT

ν
and ς = sgn(s)

√
2T (sX −K(s)), (26)

where sgn(s) takes the sign of s if s 6= 0, and is 0 otherwise, and K(s) = ln( ν
s+1 +1−ν). We can simplify

the formulae of Graham and Pál (2014) page 69 for K(·)’s second and third order derivatives as:

K ′′(0) = ν(2− ν), and K ′′′(0) = 2ν[(1− ν)− (2− ν)2], (27)
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since we have no need for the general forms K ′′(t) and K ′′′(t).

The calculation of the Lugannani-Rice formula is done next, resulting in the p-value under the null

hypothesis:

p̂ = P[x ≤ X] = Φ(ς)− φ(ς)

(
1

η
− 1

ς

)
for X 6= −ν, (28)

where Φ(·) and φ(·) represent the standard normal CDF and PDF, respectively.

In case that X = −ν, the p-value is calculated as follows:

p̂ = P[x ≤ X] =
1

2
+

K ′′′(0)

6
√

2πT [K ′′(0)]3
. (29)

This is highly uncommon in practice but will be necessary to define, given our tendency for large simu-

lations.

3.1.6 Löser, Wied and Ziggel

The LWZ backtest is based on the cumulative violation process; the sum of all VaR exceedances in a

given period. Through this, the method backtests VaR and ES jointly as a ridge backtest (Acerbi &

Szekely, 2017). Due to a transformation of the tail observations we get i.i.d. uniform random variables

(under the null hypothesis), the sum of which gives us the Irwin-Hall distribution (Hall, 1927). This

gives us the test statistic SUC in Equation (30), which is uniformly distributed from 0 to 1 under the

null hypothesis when T tends to infinity, thus giving the rejection region [0, 0.05).

SUC :=
1

1− νT
T∑
i=1

(
T

i

)
νi(1− ν)T−iΥi(Ĥ·n), (30)

where Ĥ·n represents the cumulative violation process for n observable trading days:

Ĥ·T =
1

ν

T∑
t=1

(ν − Ft|t−1(rt|πt))I{rt<F−1
t|t−1

(ν|πt}. (31)

Υi(·) represents the CDF of the Irwin-Hall distribution:

Υi(x) :=
1

i!

bxc∑
j=0

(−1)j
(
i

j

)
(x− j)i, (32)

for which we use a normal approximation due to mathematical instability:

Υi(x) ≈ Φ

(
x− i/2√
i/12

)
. (33)

The cumulative violation process Ĥ·T is dependent on the prior distributional assumption that the ES

predictions are based on, the validity of which is essentially what this procedure evaluates.

One could note the questionability of the assumption of T tending towards infinity. However,

T = 252, the amount of trading days that we employ throughout the research, is sufficient.
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3.2 Simulation analyses

Several analyses of the proposed methods are to be performed. These comparisons of the methods make

use of simulated data, which can easily be controlled to behave nicely, such that we can have a clear

evaluation of the performance of the backtest in question. There are four different scenarios that we will

be researching, the normal- and t-distribution setup by Wimmerstedt (2015), the CCC-GARCH setup

by Löser et al. (2018), the GARCH setup by Bayer and Dimitriadis (2018) and a simple portfolio setup

employing the Variance-Covariance method for VaR and ES prediction.

3.2.1 Wimmerstedt

The methodology of Wimmerstedt (2015)’s fourth and fifth chapters allows for a comparison of the

acceptance rates of the suggested methods in a setting where the ES predictions are specified to be correct

(meaning they are equal to the analytical expectation under the specification of the simulated data), and

the rejection rates in a setting where we know the predictions are incorrect. We use a combination of

the assumed and true tail distributions being equal to the standard normal or t3-distribution, giving us

the 4 scenarios of correctly assumed normal (i), incorrectly assumed normal with true t3 (ii), incorrectly

assumed t3 with true normal (iii) and correctly assumed t3 (iv). We expect a theoretically ideal backtest

to give 95% acceptance for both correct specifications (i) and (iv) and a very low acceptance rate for

the incorrect specification (ii). We expect an acceptance rate above 95% for incorrect specification (iii),

since we perform a one-sided backtest on underestimation of tail risk.

Whenever a t3-distributed tail is used, as is described in Wimmerstedt (2015), only the losses

in excess of the VaR quantile are drawn from a t3-distribution, while the rest of the innovations are

drawn from the (standard) normal distribution. The reason for this construction is that we do not get

a disproportionate amount of VaR exceedances this way, but only an increase in the size of any one

exceedance. Thus, we control for the backtesting methods’ sensitivity to high numbers of exceedances

and only test the capacity for detection of misspecification of the magnitude of the ES.

3.2.2 Löser, Wied and Ziggel

The setup by Löser et al. (2018), as discussed in their section on simulation, will be applied too. This

entails a (univariate) CCC-GARCH(1,1) model with a structural break. The innovations εt will be

drawn from a t-distribution with θ = ∞ up until the structural break point N, giving Gaussian white

noise. From period N + 1 onward, however, the innovations will be drawn from a t-distribution with

θ ∈ {∞, 30, 22, 15, 10, 7, 5, 3}. We expect this to give a range of rejection probabilities per method, such

that we can see how sensitive each method is to an increase in a ’fatness’ of the tail losses. The model

is specified as follows:

rt = ρrt−1 + vt, vt = σtεt, εt ∼ t(θ), (34)

σ2
t = ω + αv2t−1 + βσ2

t−1, (35)
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with |ρ| < 1, ω ≥ c > 0, α, β ≥ 0 for some constant c. This method is also more of a stepping stone for

the more elaborate simulation of Section 3.2.3.

3.2.3 Bayer and Dimitriadis

We also employ the simulation specifications by Bayer and Dimitriadis (2018). Again, a GARCH(1,1)

model is used, this time following a slightly different specification:

rt = σtzt, zt ∼ t(θ), (36)

σ2
t = γ0 + γ1r

2
t−1 + γ2σ

2
t−1, (37)

with γ0 = 0.01, γ1 = 0.1, γ2 = 0.85, and θ = 5 for the true model. Five misspecification designs are

defined, where the dgp is kept constant, but the assumed model is changed:

1. Changing how conditional variance reacts to squared returns, γ̃1 ∈ {0.02, 0.2}, with γ̃2 = 0.95− γ̃1
such that the process remains constant.

2. Changing unconditional variance to 0.4 - 0.01 by changing γ̃0.

3. Changing persistence in shocks to 0.90 - 0.999 by setting γ̃1 = cγ1 and γ̃2 = cγ2 for a constant c,

and γ̃0 = E[σ2
t ](1− γ̃1 − γ̃2) to keep the unconditional variance constant.

4. Increasing θ.

5. Increasing the threshold level ν to 5%.

Although item (5) will give a less extreme prediction of ES than the base scenario, which is the

type of misspecification that we are looking for, it is not a realistic problem setting that we are concerned

with. Bayer and Dimitriadis (2018) argue that it is a scenario of human error, when a forecaster submits

predictions for some incorrect level of ν̃ 6= ν. We research misspecifications in tail risk predictions and

thereby methods for detection of mismatches in assumed and observed error distributions, not manual

input errors for risk levels. Thus, we deem scenario (5) insignificant and beyond the scope of our research.

Scenario (4) will also not be considered, due to its similarity to the analysis of Section 3.2.2.

For this analysis, we will compare the methods’ size-adjusted power, since the sizes of the tests

are rather far apart. This will give us a much fairer evaluation than a naive power comparison (Lloyd,

2005). We refer to Appendix Section A.1 for some comments on size-adjusted power.

3.2.4 Variance-Covariance anaylsis

The final analysis we perform is a step back in terms of statistical complexity. Since one of the most

common methods for constructing a VaR prediction currently in use is the Variance-Covariance method,

which approximates the VaR level of a portfolio through the statistics of the individual stocks, we

construct a 2-stock portfolio from a bivariate normal distribution. Although the combination of two

normal distributions results in a normal distribution, we wish to have two separate distributions of

which we can manipulate parameter inputs, in order to research the effects of these misspecifications

on the Variance-Covariance approximation of the lower quantile risk estimate. Precisely because the
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method is an approximation and not necessarily the true analytical value, this allows us to compare our

ES backtesting methods more realistically to the currently used methodology for VaR estimation and

backtesting.

We use the following parameters under the null hypothesis, which the predicted ES and VaR values

are based on:

R = w1X1 + w2X2, with w1 = 0.6, w2 = 1− w1; (38)

X ∼ N(µ,Σ), µ = [0, 0], σ1 = 0.07, σ2 = 0.04, ρ = 0.3 and σ12 = ρσ1σ2, (39)

The VaR and ES predictions are constructed by use of the Variance-Covariance method. This

method is not perfect, but it is widely used; besides, the prediction of VaR and ES is not the main focus

of this research, and thus lies outside our scope, so we will regard the Variance-Covariance method as

adequate in this setup. We construct the predictions as follows:

VaR0.01 = investment ∗ z0.01
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12, (40)

ES0.025 = investment ∗ zES0.025

√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12, (41)

VaR0.025 = investment ∗ z0.025
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12, (42)

where investment is normalised to unity, for simplicity. The z-scores are taken from the standard

normal table: z0.01 = −z0.99 = −2.33 and z0.025 = z0.975 = −1.96. For the z-score for Equation (41) we

use the analytical 2.5% expected shortfall value of the standard normal distribution: zES0.025 = ES2.5% =

−2.34 (Moldenhauer & Pitera, 2018). VaR0.01 will be used for the VaR backtest, since that is the

threshold level that the VaR predictions have always had to be reported for, whereas ES0.025 is obviously

what the backtests will have to be performed on, as stated in the FRTB (BCBS, 2016). Furthermore,

some of the backtests need the VaR0.025 value as input, which is why we calculate this threshold value

too.

The VaR backtest that is applied in this setup is as simple as they come, we reject the prediction

if the observed amount of exceedances exceeds the predetermined threshold. For the appropriate size-

adjusted power in this discrete setup with T = 252 trading days, we need a mixture of the thresholds of

rejection at 5 or more exceedances (which gives a size of about 9%) and rejection at 6 or more exceedances

(which gives a size of about 4%). More on this in Appendix Section A.1.

For the scenarios of misspecification, we have 3 categories:

1. Changing the correlation coefficient ρ ∈ {0, 1}.

2. Changing the standard deviation of one of the stocks σ2 ∈ {0.02, 0.08}.

3. Changing the mean of one of the stocks µ1 ∈ {−0.14, 0.105}.

We start by changing ρ, since this is expected to increase the overall variance of the system. Thus,

we analyse how variance increases affect rejection rates without touching the shape of the tail as is done in

previous analyses, distorting the normal distribution into a t-distribution. The change in σ2 accomplishes
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much the same goal, and is there mostly to check for consistency. Finally, the change in mean makes

for an analysis on the correctness of the location of the distribution, and thereby of the tail. What is

interesting about this is that the ES risk measure might be influenced by this differently from the VaR

risk measure. Compared to an increase in variance that distorts the bell curve (stretches it horizontally),

the change in location simply moves the bell curve horizontally. This will also make for underestimation

of the tail risk, but in a different way from how an increase in variance does. Therefore, we expect our

methods to react in a different way from all the other misspecifications discussed in previous sections.

Contrary to the way the Bayer Analysis 3.2.3 is setup, we do not change the assumed distribution

this time, but instead the underlying data generating process. Because of this, the size-adjusted power

is completely accurate, whereas in the Bayer Analysis 3.2.3, this is not strictly the case, due to time

constraints and the manner in which one adjusts power for size. More details on this are in Appendix

Section A.1.

4 Results

The results of the analyses of the proposed backtesting methods will be discussed in this section. In

Section 4.1 we discuss the results of the methods in a setup that is comparable to that of Wimmerstedt

(2015)’s fourth and fifth chapter. In Section 4.2 we use the (univariate) GARCH structural break setup

as in Löser et al. (2018)’s chapter 3 on simulation. In Section 4.3 we report on the GARCH setup as in

Bayer and Dimitriadis (2018) and we discuss the results of the Variance-Covariance setup in Section 4.4.

Finally, we report on the computational time and complexity in Section 4.5.

Throughout this section, either acceptance or rejection rates will be reported for all performed

analyses, depending on what makes the most sense intuitively. Since the sum of acceptance and rejection

rates of any analysis always equals 1, we need only report one of the two. In the ‘size-adjusted power’

analyses, rejection rate (which is equivalent to power) is obviously what we report. Generally, though,

we report acceptance rates in correctly specified scenarios and rejection rates in incorrectly specified

scenarios.

4.1 Wimmerstedt simulation

Here, we report on the preliminary analysis of the methods by the setup of Wimmerstedt (2015). In

table 2, we show the acceptance rates of a correctly specified normally distributed setting (left column)

and rejection rates of a t3-distributed tail, when the assumed distribution is normal.

All methods have good acceptance rates of the true normal scenario, though BD seems to be too

lenient, with an acceptance rate closer to 100% than the expected 95% (which is theoretically correct).

Furthermore, LWZ is rather on the strict side with its acceptance rate of only 89%. This is particularly

strange, given that the method is far too lenient in terms of rejection of the false scenario, with a rate

of 47%. We would expect any method’s bias to be in the same direction, either too lenient for all
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specifications, or too strict for all, irrespective of what model assumptions are used. The rejection rate

of DMP also seems to be rather low, with rejection only in 79% of all simulations under misspecification.

The BD method is the worst-performing method in this setting, achieving a rejection rate of only 39%.

We will go into more detail on possible explanations of this later.

Appendix tables 5, 6, 7, 8, 9 and 10 show all the results of the analysis, with acceptance rates under

the four possible scenario combinations of normal or t-distributional assumptions and realisations. We

observe that all methods have higher or equal acceptance rates for the correctly specified t-distributed

tail with θ = 3 than for the correctly specified normal tail, suggesting that these methods perform

better under heavy-tailed specifications. Lastly, we observe an acceptance rate of 100% in all cases of

overestimation of risk, as expected in the one-tailed testing scenario.

Method Acceptance when true Rejection when false

DMP 0.9619 0.7934

RC 0.9589 0.9775

GP 0.9531 0.9777

LWZ 0.8878 0.4742

MP 0.9570 0.9325

BD 0.990 0.390

Table 2: Acceptance/rejection rates per backtesting model (for a random number of exceedances); the

true scenario being N(0, 1), with t3 being used for the false scenario. In order, the methods are those of

sections 3.1.1 (DMP), 3.1.2 (RC), 3.1.5 (GP), 3.1.6 (LWZ), 3.1.3 (MP) and 3.1.4 (BD).

For the Bayer & Dimitriadis method we use B = 103 bootstrap iterations, as per their suggestion.

We use N = 104 MC iterations, such that it takes about seven minutes (in the true normal case) for the

python script to run. Larger simulations are not completely unfeasible, if one is willing to wait for an

hour or more, and an important note here is that this does not reflect the time that the method normally

takes to run, since the N simulations are only necessary for an overall acceptance rate, but not for the

model evaluation of a single real data set. Furthermore, increasing these iteration amounts does not

influence the acceptance/rejection rates much, only changing the fourth and sometimes third decimals

of table 2.

When looking at the ‘Rejection when false’ column, a ‘good’ backtest should have a value as close

to 1 as possible, representing 100% rejection under misspecification (power property). The results for

the BD method, however, are far under par. Given that the rejection rate in the misspecified setting

is lower than 40%, we can conclude that this method is far too lenient in the given setup. This is also

supported by the acceptance rate, which would ideally be 95% (size property), but is much higher than

that. One explanation for this is that bootstraps of a heavy-tailed sample give large biases in their test

statistics. This hypothesis can be researched by using new simulations in favour of the bootstrapped
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sets5. If these consistently give better results, that would indicate the existence of a bias in resampling

when a small amount of extreme left tail losses is concerned. Furthermore, if we compute the t-statistics

of the bootstrap samples using the variance of the original sample instead of the bootstrapped sample,

we get better (and more reliable) results:

t
(b)
alt =

ESν(U (b))− β̂e0√
Σ̂22/T

. (43)

This approach and the original are equal if Σ̂
(b)
22 = Σ̂22. This is very unlikely to occur, since bootstrap

sample variances are much less stable than the original, due to the way the draws are done with re-

placements. As it turns out, this change in variance increases the rejection threshold, which results in a

stricter acceptance criterion, which leads me to recommend it over the original. The rejection rate when

false goes up to 0.7222, which is still not on par with the other methods, but it is an improvement on

the original.

We conclude that in this specific setup the RC, GP and MP methods outperform the others, with

the DMP method trailing closely. The LWZ and BD methods are both inaccurate in the true scenario,

and have very low power in the false scenario. Thus, we conclude that these last two methods are

inadequate at identifying incorrect specifications in this setup.

4.2 Löser, Wied and Ziggel simulation

The main methods of interest are analysed here in a similar manner to the previous section, this time

using the simulation setup by Löser et al. (2018). This analysis can be considered visually by plotting

θ against the resulting acceptance rate. The results are visible in Figure 3. One thing to note is the

x-axis, which is of irregular step length. Due to this the curvature gives a biased view, however, we are

primarily interested in the relative performance of the methods, which is very clear from this figure. We

see an irregularity for the GP method when θ = 3, in green in Figure 3, which should obviously converge

to 0% acceptance for low dof instead.

We see that the RC and DMP methods are the least sensitive and the BD method starts out rather

insensitive, but has a steeper slope around θ = 10 compared to the other methods. The remaining three

methods of LWZ, MP and GP have very similar performances and are the preferred methods when we

consider this analysis in isolation.

We see that the GP method is the quickest to react to the increased fat-tailedness through the

lowering of θ, in addition to it being the strictest method in its acceptance overall. One note for this

method is that it seems to break when the error terms behave too erradically. This is the case in the

setup with θ = 3, where the method gave an acceptance rate of over 40%, even though the less inaccurate

specification of θ = 5 resulted in a much lower acceptance rate. This is a very extreme situation, though,

and can easily be noticed and adjusted. On the other hand, if this method performs identically compared

to others overall, then this flaw would make for the choice against the GP method.

5This is outside the scope of our research, and thus we suggest it for future research.
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Figure 3: Acceptance rate per backtesting model plotted against θ, based on the GARCH structural

break setup (univariate)

When considering the BD methodology, we observe better size and power properties for the adjusted

version (BD*) compared to the original method for all levels of θ (see appendix Table 11). This result, in

addition to what was discussed in Section 4.1, leads us to employ the adjusted method for all subsequent

analyses instead of the original, abandoning the original altogether. Besides the observed favourability of

the adjusted method, we also have theoretical reasoning for this choice in the fact that the bootstrapped

variance is very unstable, giving much less reliable results compared to the original sample variance.

4.3 Bayer and Dimitriadis simulation

Here we present the results of the simulation from the setup by Bayer and Dimitriadis (2018). We

simulated the first three sets of scenario changes: increase in reaction to squared returns (Figure 8),

decrease of unconditional variance (Figure 9) and increase in persistence in shocks (Figure 10).

4.3.1 Impact on conditional variance estimates

In order to understand the impact on acceptance rates of the backtesting methods, we must first under-

stand the impact of the misspecification on the conditional variance predictions. The true values of the

conditional standard deviation σt are given in Figure 4.

Figures 5, 6 and 7 show true values of the conditional standard deviation σt (orange) versus

predictions σ̂t under the correct specification (blue dots), where the backtest should be rejected for

underestimation of risk according to Bayer and Dimitriadis (2018) (red line) and where the backtest

should be accepted for overestimation of risk according to Bayer and Dimitriadis (2018) (green line).

All graphs have been shown for the same period in the simulation, zoomed in for visibility; the

behaviour is consistent through the entire simulation period. What we expect based on the research of

Bayer and Dimitriadis is that the red lines are on average below the orange line, whereas the green lines

should be above it. The only situation where this is true is for the Unconditional variance change, Figure

6, which is why that analysis is the only one which is consistent with that of Bayer and Dimitriadis
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Figure 4: Conditional standard deviation σt in the simulation analysis of Bayer and Dimitriadis (2018)

Figure 5: Conditional standard deviation values under correct specification (orange & blue dots) and

several misspecifications of the ARCH parameter

Figure 6: Conditional standard deviation values under correct specification (orange & blue dots) and

several misspecifications of the unconditional variance

(2018).

The misspecification of the ARCH parameter makes the model less accurate (see Figure 5), but

it does not cause structural underestimation of the variance. It changes the impact of the returns on
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Figure 7: Conditional standard deviation values under correct specification (orange & blue dots) and

several misspecifications of the persistence

the conditional variance, which mostly makes the model ‘overshoot’ the true values, due to the large

jumps upwards compared to the many smaller drops downwards, visible in Figure 5. Because of this,

an increase in the ARCH parameter usually leads to an increase in the estimated conditional variance,

with a decrease in ARCH parameter acting in the opposite direction. This would suggest that lowering

the ARCH parameter decreases the acceptance rate of the backtesting methods, while increasing it can

increase the acceptance rate (which contradicts Bayer and Dimitriadis, who state the opposite).

If we consider the second scenario (Figure 6), we expect to agree with Bayer and Dimitriadis’

analysis that a decrease in unconditional variance will decrease the acceptance rates of the backtesting

methods. This is because this change very consistently makes for underestimation of the conditional

variance, and thus, underestimation of tail risk. An increase of the unconditional variance, of course,

has the exact opposite effect.

If we look at the last scenario, change in shock persistence (Figure 7), we see that a higher level of

persistence gives overestimation of conditional variance overall, while a lower level gives underestimation.

This is, as in scenario (1), opposite what Bayer and Dimitriadis state. Thus, we expect the backtesting

methods to give lower acceptance rates when the level of persistence is lowered.

4.3.2 Impact on acceptance rates

Here, we present the size-adjusted power graphs. Again, we must note the inconsistency in jumps on the

x-axis in all figures. Due to this, the curvatures of the methods can be misleading. As in Section 4.2, we

care more about the relative differences in performance, rather than the individual curvatures.

We also note on the LWZ method that it breaks for large sample sizes. When T = 252, what we

tend to use in most of the analyses, this is not a problem. For this particular section, though, we use

T = 2500, which makes the setup very numerically unstable. Thus, we must cap the simulation length

to T ∗ = 500 for the LWZ part of the analyses. This does make the results for this particular method less

reliable than for the remaining backtests. In practice, however, one tends to deal with one or two years
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of data, wich equals 252 to 504 datapoints, thus rendering this issue irrelevant for general backtesting

purposes.

From Figure 8 we see that the GP and MP methods have the best performance, since their size-

adjusted power goes up the most due to a decrease in the ARCH parameter γ̃1. In the most extreme

misspecification, their power even reaches the convergence point of 100%. Furthermore, we see that the

DMP, RC and BD* methods have very comparable size-adjusted power levels, but are slower to react

to the misspecification than the two mentioned above. Finally, the LWZ method seems to split the

difference, coming out in the middle of the group. When the ARCH parameter increases instead, all

methods’ rejection rates drop below the 5% level, as expected; this effect is most noticable for the GP,

LWZ and MP methods. When the parameter increases too much, though, the rejection rates curve back

up to around 5-6%.

Figure 8: Rejection rate (power) per backtesting model plotted against increase in reaction to squared

returns, grey vertical line represents true model; B&D setup

From Figure 9 we see again that the GP and MP methods are the most powerful, since they are

the most sensitive to changes in the unconditional variance. This time, GP slightly but visibly outclasses

MP in the more extreme misspecification scenarios. Again, LWZ performs better than the remaining

three methods, but this time BD* performs significantly worse than RC and DMP, seemingly having

hardly any sensitivity to this type of misspecification. Contrary to Figure 8, the methods do not seem

to converge on a power level of 100% under the extreme misspecification setting. The methods all do

seem to converge on very low rejection rates in the variance overestimation setting though, which is to

be expected in a one-sided testing setup.

Lastly, Figure 10 shows the same behaviour as before for most of the methods; GP and MP are

much more powerful than the other methods, with hardly any difference between the two. LWZ is the

third most powerful, and RC, DMP and BD* have approximately the same performance. These last

three methods’ sensitivity seems to pick up in the extreme scenario, as opposed to the flattening off of

the power level in Figure 9.

Again, the methods seem to converge on acceptance rates near 100% in the risk-overestimation

scenario, which is expected and desirable.
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Figure 9: Rejection rate (power) per backtesting model plotted against decrease in unconditional vari-

ance, grey vertical line represents true model; B&D setup

Figure 10: Rejection rate (power) per backtesting model plotted against increase in persistence in shocks,

grey vertical line represents true model; B&D setup

Overall, the results of the size-adjusted power analyses consistently indicate that the GP and MP

methods are the most powerful, with LWZ being third and the RC, DMP and BD* methods lagging

behind significantly.

We also observe sensitivity in the wrong direction (compared to Bayer and Dimitriadis’ analysis)

to changes in two of the misspecification categories. This is due to the fact that an increase in reaction to

squared returns does not necessarily cause underestimation of the tail risk, and an increase in persistence

causes overestimation of tail risk instead of underestimation.

This setup differs compared to the previous analyses in that it does not take ‘clean’ t-distributed

residuals, but the Y-variable observations of the GARCH model as input for the backtests. Furthermore,

this setup uses a time period of 10 years (T = 2500 observations), which is much larger than the sample

size for our previous analyses. Lastly, the conditional variance is very volatile under this specification, as

can be seen in Figure 4. Although the predicted values σ̂t follow the true conditional standard deviations

σt rather well under most of the misspecification scenarios, we do observe structural biases and inaccurate

sensitivities to shocks in the graph. This is of course exactly what is intended for this analysis, and our

backtesting methods should be able to notice these misspecifications.
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4.4 Variance-Covariance simulation

We present the results of our final analyses in this section, reporting on the findings of the Variance-

Covariance setup. The first two figures, Figure 11 and 12 are rather straightforward. We see that an

increase in variance of the portfolio through an increase in either the correlation coefficient ρ or the

standard deviation parameter σ2 triggers the backtesting methods to detect underestimation in tail risk.

Again, we see the two methods of MP and GP clearly perform very well, with the methods of DMP,

RC and BD* underperforming significantly in terms of size-adjusted power. What’s different in these

analyses compared to those of Section 4.3, though, is the fact that the LWZ method has the same power

level as MP and GP. Furthermore, we see that the power of the VaR backtest is slightly below the top

three contenders of MP, GP and LWZ.

Figure 11: Rejection rate (power) per backtesting model plotted against increase in correlation coefficient

ρ, grey vertical line represents true model; Variance-Covariance setup

Figure 12: Rejection rate (power) per backtesting model plotted against increase in standard deviation

σ2, grey vertical line represents true model; Variance-Covariance setup

When considering Figure 13, we see more interesting curvatures. The ordering of methods’ powers

is still the same, but there is less difference between the VaR backtest and the MP, GP and LWZ methods

than before and there seems to be more of a gap between these and the group of DMP, RC and BD*.

Lastly, all methods but RC and BD* seem to react as expected to the upwards shift in mean, since
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this makes for overestimation of tail risk. Only these last two methods follow almost exactly the same

concave curvature for a slight misspecification of the mean in the case of risk overestimation.

Figure 13: Rejection rate (power) per backtesting model plotted against increase in mean µ1, grey

vertical line represents true model; Variance-Covariance setup

We note the following regarding the comparison of our ES backtesting methods with the VaR

framework. The GP, MP and LWZ methods are all slightly more sensitive to misspecifications in this

bivariate normal setup than the VaR backtest that utilised the same underlying prediction mechanism,

namely the Variance-Covariande method. If we extrapolate, this observation gives an indication that

applying any of these methods when the risk measure reporting change is fully adopted, will result in a

slightly stricter regime in terms of tail risk model evaluation than is currently in use. Of course, this is

hardly conclusive evidence to this hypothesis, but more research into this area could prove interesting.

4.5 Implementational complexity

In this section, we report on the ease at which the methods can be implemented. This entails the

difficulty in terms of programming and understanding of the method, as well as computation time and

input requirements of the algorithms.

4.5.1 Computation time

Not all methods that we analyse have the same straightforward structure as, for instance, a t-test would.

The methods by Righi & Ceretta and Moldenhauer & Pitera compute a threshold value as a separate a

priori step, by simulation under the hypothesised distribution that the ES prediction was based on (using

MC methods). This is comparable to finding the appropriate rejection threshold for counting exceedances

in the VaR framework. This value is then compared to the statistic computed from observed data to

decide on acceptance or rejection. The determination of the threshold value generally demands much

computation time, but the calculation of the statistic for the observed data is usually near instant.

Because of this, the computation time required for a single evaluation of an ES prediction model will be

relatively large for the RC and MP methods, compared to the other methods. However, if evaluations

must be done regularly, say, every day, on the same prediction model, then these evaluations can be
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done much faster for the RC and MP method compared to the others. From this, it naturally follows

that the RC and MP methods easily win out in terms of computation time in the long run. The caveat

here is that this only goes so long as the prediction model remains identical; if any of the parameters are

adjusted or the underlying distribution changes, the initial calibration step of the backtesting method

has to be performed again.

The BD* method also requires MC iteration, suggesting that its computation time will be of a

larger order of magnitude than the remaining methods. Finally, some methods might be computationally

complex to such an extent that they take a relatively large amount of time to perform, which is what

we see in the LWZ method. We discuss the cause of this more extensively in Section 5.4.

Now for the results; the computation time can be quantified with relative ease, of course, as is

done in Table 3. Note that the RC and MP methods spend a relatively large amount of time on finding

the appropriate rejection threshold values for the specified null distribution (in brackets in Table 3), but

checking the observed test statistic against this critical value costs very little time for these methods,

as discussed above. Since the threshold value calculation is only required once per assumed underlying

distribution (only t5 is used), and not for every separate null hypothesis setting, this computation time

is not of much consequence for this test setup. The computation time of the observed test statistic, on

the other hand, has to be repeated for each scenario, as it takes both the observed values and the ES

predictions as input. When performing this method in a real scenario it is probably fair to take the

combined computation time of these parts, though. Furthermore, the LWZ method only uses one fifth of

the observations per iteration (due to computational limitations), which suggests that the computation

time should be multiplied by five for an appropriate comparison to the other methods.

We see that the methods by LWZ and BD* have computation durations far beyond those of the

other methods, though we noted above that the fair LWZ computation time is much greater still. The

RC and MP methods’ critical threshold calculations are rather similar in duration when the same amount

of iteration simulations is used (105 in this case). The computation time of GP is rather reasonable;

and finally, DMP’s speed is on par with the test statistic part of the RC and MP calculations, which is

negligible in comparison to all the other computation durations.

Method DMP RC GP LWZ MP BD*

Computation time 0.82 0.12 (44.94) 6.04 149.39 0.37 (64.49) 191.33

Variance 0.03 0.0 (27.54) 0.06 68.15 0.01 (62.99) 295.39

Table 3: Computation time (in seconds) and variance per backtesting model for one scenario of the B&D

simulation setup (N = 1000, T = 2500); values in brackets represent computation time for the rejection

threshold under the null hypothesis, where applicable

The complexity of the methodologies cannot be quantified in such a straightforward manner as the

other criteria to rate a backtesting methodology on. However, we can discuss the methods as described

in Section 3.1 rather well in a subjective manner. The DMP method is clearly rather trivial, in that
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it hardly differs from the commonly used t-test for location of mean. It uses a slight adjustment for

the distance between the sample mean and the ES estimation and the variance and dof used for the

calculation of t̂ are only based on the exceedances, instead of the whole dataset. The RC method also

employs what seems to be derived from the t-test, by taking the exceedance residuals and testing for

equality of their mean to the predicted ES value, dividing by the assumed standard deviation of the

exceedance under the null hypothesis. The added value here, compared to the DMP method, is an MC

simulation for finding the appropriate rejection threshold.

The MP method is tough to compare to the others, because of its drastically different approach.

The method is very intuitive in its way of evaluating the validity of the ES prediction, through its

simplicity and elegance. It also makes use of an MC simulation for the rejection threshold, which is why

it ranks higher than than DMP in terms of complexity, but it is on par with the RC method in this

regard.

The final methods of BD*, GP and LWZ are all very complex in their own regard, and they are

difficult to compare against each other because of it. In our experience, the LWZ method took the

most time and effort to implement correctly, but none of these methods are practical for widespread use

outside of well-polished and highly tailored software packages.

Lastly, we note on the required input for the methods. Apart from the obvious necessity of all

method to receive the observed data as input, the required inputs are given in Table 4. Interestingly

enough, the LWZ method is the only one that does not require the ES predictions, but rather test the

validity of the entire tail distribution. We also see that GP requires a lot of information, whereas MP

and BD* require rather very little.

Required input ÊS ˆV aR σ2 (tail) µ distribution

DMP YES YES NO YES NO

RC YES YES NO NO YES

GP YES YES YES NO YES

LWZ NO NO YES YES YES

MP YES NO NO NO YES

BD* YES YES NO NO NO

Table 4: Input requirements per backtesting method, in addition to the observed data

5 Discussion

In this section we discuss caveats and limitations that we uncovered during the research. We also make

recommendations for future research on the subject as a whole and specifically on some of the backtesting

methods that, in our opinion, could be improved in certain aspects.

One suggestion for future research, that we considered but did not get to due to time constraints,
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is a traffic light system for the ES framework as is also in place for the VaR framework. This can be

based on the p-value, using α2 = 10%, for instance as the starting point for a danger zone; there are

already papers that suggest applying this to their suggested ES backtesting method. This can also be

applied to the MP method in a very similar manner to the way it is done in the VaR framework, since

the MP method also uses a discrete test statistic. Therefore, a discrete range can be determined as a

danger zone, just as in the current VaR framework.

5.1 Empirical analyses

One remaining point of discussion is the use of historical simulation. Here, we discuss why using real

data would be relevant and beneficial. One of the reasons is that the performance of a backtest depends

heavily on what prediction model and what underlying data it concerns, as can be concluded from

Garcia-Jorcano (2017). To get the most accurate backtest evaluation, the analysis would thus need to

be performed on real market data. Another important factor is that regulators will not be performing

backtests on financial institutions’ ES estimates themselves, but simply periodically check up on the

backtesting methods and results that these institutions produce, in order to determine minimum capital

requirements for these institutions (as gathered from statements by professionals at the risk management

department of EY Amsterdam). Banks have been allowed to use internal models as a basis for calculating

their market risk capital requirements since 1997 (BCBS, 2014). These institutions will very likely also

be free to estimate their ES in whichever way they see fit in the new framework, but the backtesting

method must be approved by the regulator before use. From this we can conclude that we must be able

to backtest any ES prediction model, regardless of the underlying (distributional) assumptions used.

Therefore, performing an analysis on historical data rather than using parametric simulation would be

very insightful, if performed correctly.

Unfortunately, as of yet we do not have a procedure available for performing an empirical analysis

in such a way that we can control for the accuracy of the historical data-based ES predictions. We

have debated extensively on this, but we ultimately decided not to tackle this problem. We do have a

suggestion for dealing with the issue in future research, making use of the VaR backtest. If we assume

that the VaR backtest is sound, then we only need to investigate whether our to be analysed ES backtest

rejects predictions when the VaR backtest also does so on the VaR prediction using the same underlying

mechanics as the ES prediction. Still, this means we can only really analyse one backtest when assuming

another is always completely valid, but this seems much more valid when the ‘trusted’ backtest is the

one which we have been using for the past twenty odd years, with tons of empirical evidence to its name,

rather than any other handpicked ES backtest that has yet to prove its worth in financial regulation.

On the other hand, this rather undermines the whole point of moving away from VaR backtesting and

towards ES backtesting, if we calibrate all our ES backtests on the original VaR backtests.
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5.2 Moldenhauer and Pitera

Although the methodology of Moldenhauer and Pitera is quite straightforward and elegant, there is one

caveat to it. This comes in the form of what this method tests for, because it takes the set of exceedances,

and then tests how many of the observations just above the VaR threshold have to be added to this set

for the combined mean value to be larger than the mean of the ES predictions for all those observations.

It is not a drawback, necessarily, but it makes for a situation where the acceptance or rejection of the

ES of the lowest ν quantile is dependent on the observations just above this quantile. Thus, there is

an implicit assumption in play that more than just the outer 2.5% of the tail losses consists of relevant

observations, the shape of which concerns us. This also suggests that we implicitly assume that more

than just this 2.5% is one continuous distribution as specified under the null hypothesis, whereas most

methodologies only strictly test the outer 2.5% for adherence to this hypothesised distribution.

5.3 Bayer and Dimitriadis

We recommend future research on this topic to go deeper into the issues of the Bayer and Dimitriadis

regression backtest. As noted earlier, the bootstrapped sample variance used in this methodology has

serious issues in terms of validity. Research into the comparison between this method and our recom-

mended alternative of the original sample variance could be invaluable to the literature on this subject,

along with general research on the stability of bootstrap sample variances.

5.4 Löser, Wied and Ziggel

Despite the fact that the LWZ method does not employ any MC iteration, its computation time has been

disproportionately long throughout the simulations. This is due to the complexity of the algorithm, which

performs a transformation of the data to a uniformly distributed set of binomial draws of exceedances of

the VaR threshold (under the null hypothesis), employing the Irwin-Hall distribution (Hall, 1927). The

cumulative probability of the observed data is calculated as the sum of the probability mass function

(pmf) of the binomial distribution multiplied by the uniform transformation of the binomial successes

as outer left tail observations for all possible amounts of binomial successes that could have occurred.

For T = 252, this is a sum of k = 1 to 252 of the binomial pmf:
(
T
k

)
νk(1 − ν)T−k multiplied by the

CDF of the Irwin-Hall distribution. This is so numerically unstable that it is very difficult to evaluate.

However, this method would be very powerful if this computational issue can be avoided through an

elegant approximation of this huge sum of Irwin-Hall multiplied by binomial values. Therefore, I highly

recommend future research to be aimed at cracking this intricate combination of distributions for a

powerful and versatile ES backtest.
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5.5 Variance-Covariance analysis

The two-stock portfolio simulation that is done presents a simple and clear analysis on the currently

widely used Variance-Covariance method for VaR and ES estimation and its backtesting. However, one

could note that the two-stock portfolio of normal distributions simply provides a normally distributed

variable rt. Although the (assumed) parameter specifications of the two underlying stocks are in fact

used in the Variance-Covariance estimation method, the resulting estimates could easily be obtained

through the use of the one random variable too. Since it is probably also possible to reconstruct the

distortions that we applied in this analysis through the use of a single normal distribution for rt, it would

be insightful to apply more extreme distortions to just one of the stocks in the portfolio, such that the

resulting scenario cannot simply be reconstructed through the use of the single random variable (e.g. a

change from one of the stocks normal dgp to a t-distributed process). This would allow us to observe a

stronger effect of partial misspecifications in the portfolio on the Variance-Covariance estimates of VaR

and ES and the backtest evaluations.

6 Conclusion

This research is on the topic of the change in risk measure from VaR to ES. The ES initially lacked

a proper backtesting method, but many papers have been published since the early 2000’s describing

methodologies for backtesting this statistically difficult risk measure. The main problem here is the

small sample size of extreme tail events, that this risk measure inherently deals in. We analyse a set of

six of these methods, choosing those that are the furthest developed along their niche approach to the

backtesting issue at hand.

The core of the research is the analyses of these methods in a variety of simulation settings. These

are mostly focused on normal or t-distributed random variables, with slight but deliberate mismatches

in parameters such as variance and dof between the hypothesis underlying the predictions and the

dgp. All of the analyses are done in a one-sided testing setup, since we only care about detecting

underestimation of tail risk, whereas we are not interested in its potential overestimation. Through this,

we gain insight into the relative performances of all of these methods, using size-adjusted power as our

main performance measure. Secondary measures for adequacy of the methods are computation time

and ease of implementation, given that we are looking for backtesting methods that can be implemented

throughout the Risk Management sector of the financial world.

We observe that the methods by Graham and Pál and Moldenhauer and Pitera clearly outperform

the others throughout the simulation analyses in terms of size-adjusted power. A close runner-up is the

Löser, Wied and Ziggel method, though this method has issues when applied a sample of T > 500. It

performs very adequately and comparably to the GP and MP methods in normally distributed setups,

but drops off in the Bayer and Dimitriadis simulation setup 4.3 which has a more complex underlying

distribution, using a GARCH framework.
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When considering the difference between the GP and MP methods, we conclude that the MP

method reigns supreme. This is due to the fact that it is much more easily implemented through its

relative mathematical simplicity. Furthermore, it is the faster method of the two in terms of computation

time in the long run, for daily evaluations on a static prediction model throughout an entire year. Lastly,

the GP method showed some inconsistencies in situations of extremely erratic behaviour of conditional

variance and error term in the GARCH setup.

Our last analyses show that the recommended MP backtest for ES is slightly, but consistently

more sensitive to misspecifications of the underlying distribution than the basic VaR backtest is. This

comparison is not completely straightforward, but the ES0.025 and VaR0.01 predictions can be made

based on the same mechanics and assumptions, and are almost identical under normality. Therefore,

misspecifying the underlying mechanics and/or assumptions distorts both risk measures in exactly the

same way, and thus, the comparison between the sensitivity of the ES and VaR backtests can be made.

The results of these analyses indicate that the regulatory risk management standards will be

slightly stricter under the ES framework than they were under the VaR framework, if the MP method

will be employed. This could make for higher and more frequent fines for financial institutions, since the

regulators will be upholding a stricter risk management regime.

Lastly we note a limitation to our research. We are as of yet unable to find a way of properly

evaluating backtesting methods’ validity when using empirical observations. Thus, all of this research

is based on simulated scenarios where the data follows known distributions. Therefore, we cannot say

for certain if the methods discussed in this paper are appropriate in reality, without having to make

assumptions on the underlying distributions.
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A Appendix

A.1 Size-adjusted power

For a fair comparison of power of backtesting methods, an adjustment for size can be made (Lloyd,

2005). This is done by adjusting the critical value of the test statistic corresponding to the backtest in

such a way that the null hypothesis is rejected exactly α = 5% of the time when the test is performed on

simulated data drawn from the null hypothesis. Ideally, this is done through an invertible function G(t),

but with some trial and error of adjusting the critical value of the backtest, the appropriate percentage

of rejections can be obtained too. The only instances where this is impossible (for our methods) are the

discrete rejection thresholds of the method by Moldenhauer and Pitera (2018) and the VaR backtesting

method. We can illustrate this with relative ease by the example of the Bayer & Dimitriadis simulation

analyses 3.2.3. In this setup which utilises draws from the t5-distribution with T = 2500 observations,

the rejection threshold value for the MP method equals 83, giving a rejection rate (or size) of 4.5% when

the null hypothesis is specified correctly. For the appropriate size-adjusted power analysis we need a

rejection rate of 5%, but if we lower our critical value to 82, we get a rejection rate of 5.3% (anywhere

between 82 and 83 gives an equivalent result to using 83 in this discrete setup). To solve this issue, we use

a weighted average of the scenarios of threshold values 82 and 83 to obtain the exact size of 5%, which

will in turn give us the size-adjusted power that we are looking for in the scenarios of misspecification.

Note that, strictly speaking, the applied methodology for obtaining size-adjusted power levels in

the Bayer & Dimitriadis simulation analyses is not the same as what Lloyd (2005) describes. According

to Lloyd, the size adjustment of the real data must be calibrated on simulated data under the null

hypothesis. This suggests that the null hypothesis be kept constant, while the data input changes.

What we do, however, is change the assumed specification of the conditional variance and thus the null

hypothesis, while the data stays the same. This adaptation might give slightly different size-adjusted

power levels from what the methodology by Lloyd (2005) would suggest. It is much less time consuming

to implement, however, since the size calibration is only required once per method instead of separately

for each method for each of the 27 null hypotheses. In analysis 3.2.4 we keep the null hypothesis constant,

while changing the input data, thus following Lloyd’s methodology.

A.2 Acceptance rate tables

The following are the full tables of results from the preliminary analysis on all six backtesting methods.

The bottom left values are expected to all be (very close to) 1, since we are running one-sided backtests

and these scenarios correspond to the overestimation of the tail risk, which we are not interested in.

These are reported as a check on whether the confidence bounds/rejection regions are specified correctly.
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assumed \true Normal t3

Normal 0.9589 0.0225

t3 1.0 0.9765

Table 5: Acceptance rates Righi & Ceretta; for N(0, 1) and t3 tail scenarios

assumed \true Normal t3

Normal 0.9531 0.0223

t3 1.0 0.9531

Table 6: Acceptance rates Graham & Pál; for N(0, 1) and t3 tail scenarios

assumed \true Normal t3

Normal 0.9619 0.2066

t3 1.0 0.9809

Table 7: Acceptance rates Del Brio, Mora-Valencia & Perote; for N(0, 1) and t3 tail scenarios

assumed \true Normal t3

Normal 0.8878 0.5258

t3 1.0 0.9998

Table 8: Acceptance rates Löser, Wied & Ziggel; for N(0, 1) and t3 tail scenarios

assumed \true Normal t3

Normal 0.9570 0.0675

t3 1.0 0.9617

Table 9: Acceptance rates Moldenhauer & Pitera; for N(0, 1) and t3 tail scenarios

assumed \true Normal t3

Normal 0.990 0.610

t3 1.0 0.999

Table 10: Acceptance rates Bayer & Dimitriadis; for N(0, 1) and t3 tail scenarios

θ ∞ 30 22 15 10 7 5 3

BD 0.935 0.8305 0.769 0.6425 0.446 0.286 0.2785 0.905

BD* 0.942 0.823 0.756 0.5885 0.3355 0.1225 0.0155 0.0

Table 11: Acceptance rates Bayer & Dimitriadis original (BD) and adjusted (BD*); Löser et al. setup
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A.3 Bootstrap confidence interval

One of the most well-known methods of improving the usefulness of limiting amounts of data is the

bootstrap method (Efron & Tibshirani, 1994). If we use this to resample our data in a random way, we

can get a 95% confidence interval (CI) of the observed shortfall to compare with an ES estimate. If the

estimated ES is less extreme than the mildest 5th percentile of these resampled shortfalls (for a one-sided

test), then the bootstrap method suggests rejection of the ES estimate. This is one of the simplest ways

of testing the ES estimate, since it only depends on the observed data of the year to be tested for. The

bootstrap method just randomly draws from this observation pool to find our rejection region, and no

supporting assumptions are needed. One obvious downside is the computational time, which is rather

large due to the iterative resampling that this method employs.

First, we define a set of P&L observations O = {o1, ..., on}, with n = 252 trading days in a year.

The V aR exceedances of the observed P&L’s are denoted as E:

E = {oi ∈ O : oi < qi(ν)}ni=1. (44)

Note that we suspect an issue with bootstrapping rare tail loss events, causing major inaccuracies in

variance approximation. This is beyond the scope of the research, and thus has not been investigated

further, though there might exist literature on this topic already.

A.3.1 Bootstrap results

The bootstrap method is much slower in the Wimmerstedt setup than the other methods that we analyse.

It takes a large amount of resamplings of the randomly generated (standard normal or t-distributed)

data for the bootstrap method to get accurate rejection regions (B = 103 resamplings used); and the MC

simulation, on top of that, also requires a large number of iterations of random draws of data (N = 104

iterations used) in order to converge to a stable acceptance and rejection rate. In the other methods that

are discussed in this section, only the MC iteration amount N is relevant, but this effect compounds for

the bootstrap method.

Interestingly, using B = 102 and N = 103 takes about the same computational time as using

B = 104 and N = 10. This suggests that computational time scales by the product of the iteration

amounts, or T ∝ B ∗ N . This seems intuitive, since 10 times 10000 bootstraps and 1000 times 100

bootstraps equals the same amount of bootstraps. This proves to be approximately true when taking

a factor 10 or 100 more iterations for either B or N , resulting in 500 and 5000 seconds of computation

time, respectively (some algorithm optimisation for speed improvement can be applied here, though).

It also seems that using a low amount of MC simulations has much more influence in the significance

of the acceptance and rejection rates, than using low bootstrap amounts. Theoretically, the amount of

bootstrap iterations to run only influences how well one approximates the confidence level α = 5%, with

B = 10 giving a very crude rejection if H0 ≤ 9 out of 10 sample averages, and B = 102 already giving

a rather decent rejection if H0 ≤ 95 out of 100 sample averages. The amount of MC iterations is more
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important for the accuracy and significance of the rejection rate that the given confidence level grants

us; for instance, when performing the method several times with N = 103, the second decimal of the

resulting acceptance and rejection rates fluctuates greatly between runs. We suspect this is an issue of

accuracy versus consistency. Thus, 102 ≤ B ≤ 103, 104 ≤ N ≤ 105 is used, in the interest of time.

The results of the simulation are given in table 12. Getting these values took more than 80 minutes

(with B ∗ N = 107), and these values still fluctuate more on repeated runs of the script than those of

the other methods.

Bootstrap Acceptance when true Rejection when false

B = 103 0.8824 0.9153

B = 102 0.8785 0.9210

Table 12: Acceptance/rejection rates of the bootstrap method (using B ∗N = 107); for the false scenario

t3(0, 1) is used

For such a simple method, these rates are not all that bad. To put these in perspective, the

‘correct’ Emmer method, as shown in table 14, has a slightly higher power of accepting true scenarios,

but is slightly worse at rejecting false scenarios. Thus, despite the computational time issue, this seems

like a good benchmark to try to beat.

What is really interesting about this method, though, is that bootstrapping can be done in much

more elaborate ways, which will be especially useful when dealing with portfolios of data. Thus, this

might offer a reasonable, ‘simple’ alternative to tail simulation, which is very complex for portfolios of

intricate derivatives.

A.4 Bayer and Dimitriadis: two-sided Backtest

Here, we discuss the two-sided regression based backtest by Bayer and Dimitriadis. The Wald statistic

is used:

TESR =

(
(β̂e0 , β̂

e
1)− (0, 1)

)
Σ̂−1ES

(
(β̂e0 , β̂

e
1)− (0, 1)

)′
, (45)

This test statistic (asymptotically) follows a χ2 distribution with θ = 2:

TESR
d−→ χ2

2. (46)

The estimation of β0 is done by optimisation of the loss function ρ:

ρ(Yt, Xt, β) =
1

−X ′tβe

(
X ′tβ

e −X ′tβq +
(X ′tβ

q − Yt)I{Yt≤X′tβq}

τ

)
+ log(−X ′tβe), (47)

where X ′tβ
q = βq0 + βq1 êt(ν), and X ′tβ

e = βe0 + êt(ν). The following optimisation is done with respect to

βq and βe0 :

β̂T = argmin(β)
1

T

T∑
t=1

ρ(Yt, Xt, β). (48)
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We use the Powell method in the scipy.optimize package, for simplicity. Perhaps it is worth looking into

faster methods eventually, if this algorithm takes too long.

A.5 Relevance

This must still be explained: [There are plenty of ES backtesting procedures already developed; why is

finding a backtest still a problem?] - methods are not effective enough (in terms of true acceptance and

false rejection, type 1 and 2 errors) and/or they have unrealistic assumptions (mostly on the shape of the

tail distribution, which does not follow any known type of distribution [citation needed]). Furthermore,

the literature on backtesting ES is fairly new, thereby leaving a potential loophole for errors in ES

computations to go unnoticed for a while because financial industry applications may not yet perform

routine and powerful enough ES backtesting (Acerbi & Szekely, 2014), (Nesmith, Oh et al., 2017).

This research is relevant primarily for practical applications. The Basel guidelines are moving from

VaR as a regulatory tool towards ES, for a number of reasons. The main reason for this change having

been rather slow over the past decades is that ES is a much more difficult risk measure to backtest than

VaR. This research aims to adapt current methods of backtesting by solving the problems accompanied

with these methods that were not dealt with adequately in previous literature. This would be of much

interest to any regulatory authority that deals with market risk. Besides, it is of much use to any

organisation that deals with market risk and wishes to check the accuracy of their models for measuring

this risk.

I will focus on keeping these methods as generally applicable as possible, since that will be the

most useful in a general framework. In contrast, having one very powerful backtest for an ES prediction

based on a very specific underlying distributional assumption would be useful for internal backtesting

at whichever organisation makes use of this distribution for their tail loss predictions, but will be rather

useless for any other ES prediction scenario. This is because a backtest in such a scenario can be done

in a relatively straightforward manner, by assessing the probability that the observed exceedances were

drawn from the distribution that was used for construction of the ES prediction. This would be a simple

goodness-of-fit test of the data on the assumed distribution, and because of this, would only be valid for

backtesting in the case that this exact distribution is used for estimating tail loss. Thus, one would be

backtesting a single ES prediction methodology, which is completely irrelevant for all other ES prediction

methodologies.

Depending on what methods can be found to perform these backtests of ES well, the research

could be very interesting from a scientific point of view, too. If only a rather sloppy, ad-hoc method of

backtesting in a general framework can be found that lacks any sound theoretical background, this will

not have many scientific implications. If, however, we manage to find sound statistical grounds for a

significance test of some sort, this will most likely have consequences for the theoretical way we look at

tail distributions of P&L data, and by extension, the theory behind shocks spot prices of stocks.

To conclude, there is much interest in this field from both a theoretical and a practical standpoint,
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but the relevance of this research will depend, of course, on the type of findings.

A.6 Extension on Emmer, Kratz and Tasche

One idea, that is seen in Emmer et al., is looking at how VaR backtests work. These simply count the

VaR-threshold exceedances, which follow a binomial distribution with a success probability equal to the

VaR-percentile, by construction. We then simply compare the observed proportion of exceedances to its

expected value, and test whether this difference is significant. This VaR test has the luxury of relying on

the entire sample in this way, while ES backtests can generally only use the extreme loss tail as useful

sample space.

The main concept in Emmer et al. is to split the ES into a number of separate VaR-percentiles,

which can be interpreted as a crude approximation of a discretization of an integral, where the ES is

(theoretically) the integral of the tail loss of the p&l distribution, ranging from minus infinity to the

VaR-threshold. All that you are left with then, is a number of VaR-percentiles to backtest, which can

be done rather easily with the aforementioned binomial approach.

We can use several methods of combining the information of all these binomial distributions to

produce one single p-value (Heard & Rubin-Delanchy, 2017); Emmer’s method of rejecting the nullhy-

pothesis if any of the p-values is lower than α is basically a rough version of Tippett (1931)’s method:

ST = min(p1, ..., pm). Perhaps it is not as sophisticated as Tippett’s method, though, since it does not

use the Beta rejection region that they suggest this measure follows (ST ∼ Beta(1,m)). Another way of

combining these p-values is using Fisher’s combined probability test, which uses the following statistic:

− 2

m∑
i=1

ln(pi) ∼ χ2
2m, (Fisher,1934) (49)

where pi represents the p-value of the i-th VaR-percentile. We use m = 5 percentiles, starting at the

2.5-th percentile and moving down in increments of 0.5. What this gives is a single measure that follows

a Chi-squared distribution with dof 2m = 10.

As a sidenote, more sophisticated (and newer) methods are also available, like that of George and

Mudholkar (1979): SG = SF + SP =
∑m
i=1 log{pi/(1− pi)}.

A concern that arose when using Emmer’s method is that the VaR-exceedances are rather depend-

ent on each other (Wimmerstedt, 2015). Starting from the largest VaR-percentile of 2.5, all subsequent

percentiles, e.g. 2, 1.5 ..., are fully contained within the previous one, and thus their exceedances are

dependent on those of the previous level. The method by Fisher, however, relies on the p-values to be

independent. This issue can be solved in two ways, the first being to condition the binomial distribution

of the 2.5− 0.5i-th percentile on the amount of exceedances of the previous percentile. The second is to

define intervals that do not overlap. We define Xi as the observations in the following interval:

xi ∈ [V aR0.025−0.005(i−1), V aR0.025−0.005i]. (50)

Using this, we wish to test whether all of these disjoint regions contain the appropriate amount of

observations. Under the nullhypothesis that our VaR-percentiles are correct, all of these intervals should
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contain 0.5% of our data, or ∀ i ∈ {1, ..., 5} : Xi = X = 0.005n, with n being equal to the sample size.

Furthermore, the proportion of successes6 follows, as previously mentioned, the binomial distribution,

with p = 0.005. For independent binomial distributions, we can use the following cumulative probability

function:

P (Xi ≥ xi) = 1− F (xi − 1;n, p) = 1−
xi−1∑
k=0

(
n

k

)
pj(1− p)n−k; (51)

however, the disjoint intervals are still correlated, thus we must condition xi on x1, ..., xi−1. This gives

us:

pi|Ii−1 = p(Xi ≥ xi | x1, ..., xi−1) = 1− F
(
xi − 1; n∗i , p

∗
i

)
; (52)

where Ii represents the information of x1, ..., xi. This gives us adjusted values for our remaining sample

size n∗ and proportion p∗ given Ii−1:

n∗i = n−
i∑

j=1

xj , p∗i =
p

1− (i− 1)p
, (53)

for the calculation of independent p-values to be used for a combined probability method. If the p-values

are not independent, however, Brown’s method can be used as an extension on Fisher’s method (Brown,

1975).

Performing a backtest based on these conditional binomial probabilities should compare favourably

to the original backtest proposed by Emmer et al., since the tested regions are actually independent.

Given that Tippett’s method resembles Emmer’s method most closely out of the combined p-value

tests mentioned above, this would be a logical method to analyse, to see if any improvements over

Emmer’s performance can be found. The goal here is to find the appropriate mapping function such that

extremely low values of ST to correspond to low p-values of the Beta distribution (and thus rejection of

false models), but once ST goes up enough, we want the acceptance rate to increase fast enough as well

(thus accepting true models consistently). Therefore, we can look at the shape of the Beta function for

a variety of parameter combinations, compared to their acceptance rates in the setup that Wimmerstedt

(2015) uses to analyse their performance. The distribution that Tippett suggests is: ST ∼ Beta(1,m),

with m = 5 in our case. This curve, along with several others, is shown in figure 14 on the left. We will

not be very interested in what happens on the right side of this graph, since we will only be looking at

whether or not the p-value exceeds the confidence level α = 95%. Thus, we zoom in on the rejection

region on the right side of figure 14. We would like to analyse the Beta distributions that have the most

change in curvature right around the point that they pass through the horizontal line, representing the

rejection region, which corresponds to the following range of parameters: a = 2; b ∈ {4, ..., 8}.

However, the real problem of this method, and the original one by Emmer et al., is that we only

use the information of the lowest of the m = 5 p-values, which technically incorporates some information

on the others as well, but not nearly as much as we could be using. The issue that we must solve if we

want to use all the information available (and thus find the most powerful test) is how we can combine

6A success is defined as any observation inside the xi interval
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Figure 14: Beta distribution curves for several parameter combinations

these p-values in an appropriate and statistically correct manner. We want to be able to reject the

null hypothesis even when only one of the intervals has an extreme enough amount of observations, or

when several p-values are getting close to the α threshold, without actually exceeding it. What it comes

down to, mathematically, is the issue of finding the appropriate mapping function of the information

contained in a small sample of extreme events to a single p-value. Most of the previously mentioned

methods, however, do not indicate rejection until at least several of the inputs are lower than our required

confidence level α (which can be understood graphically from the paper by Heard and Rubin-Delanchy

(2017)).

This leads me to consider tests that are rather different in their setup, perhaps relying on the

symmetry and/or uniformity that we expect for our xi exceedance levels.

When looking for a way to test the uniformity of the discrete distribution of our xi values, there

exists a number of test, such as the Chi-square goodness of fit test. For this test we can use the following

formula:
m∑
i=1

(xi − Ei)2

Ei
∼ χ2

m−1 (54)

with m being equal to the amount of intervals to test, the 5 intervals as defined for xi previously and

the addition of x6, the amount of observations in the interval [V aR0.025, inf], thus m = 6. Ei represents

the expected amount of observations in interval i, being equal to 0.005n for i ∈ {1, ..., 5}, and 0.98n for

i = 6. Furthermore, the one-sided Chi-square test with θ = 5 has a rejection threshold of χ2
5 = 11.071

at significance level α = 95%.

A.6.1 Emmer Extension results

We wish to know whether our proposed extension on the method by Emmer et al. (2015) outperforms

the original. Therefore, we start our analysis with a simulation. We generate random draws (from the

standard normal distribution) and test for rejection of the ES-estimate using the Emmer Extension. We

do this using theoretical VaR-percentile thresholds that are correct for the standard normal distribution,

given in table 13, thus testing the acceptance rate of true predictions. We also want to know the

acceptance rates in a system where the true distribution is fat-tailed (but the assumed distribution is

normal), thus the t3 VaR-percentiles are also given.
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VaR-percentile z-value t3-value

2.5 1.96 3.18

2 2.06 3.48

1.5 2.17 3.90

1 2.33 4.54

0.5 2.58 5.84

Table 13: VaR-thresholds for given distributions

When a Monte Carlo simulation of 105 draws is run, we get results that should be directly compar-

able to those found in Wimmerstedt (2015); these are given in table 14. The methodology of Emmer et

al. (2015) is also implemented, which gave an acceptance rate very close to the amount found by Wim-

merstedt (which was 0.7793). We can see that the extension using Fisher’s method clearly outperforms

the original method in terms of accepting true scenarios. A sidenote here is that the acceptance rate is

larger than our confidence level of 95%, which could be an indicator of overconfidence, since we would

expect the random draw to be rejected in 5% of all simulation runs, by construction (using α = 5%).

Another note here is that Emmer et al. (2015)’s method was notable for its underperformance in exactly

this setting, compared to other backtests, and most other backtesting methods achieve acceptance rates

very close to 95% with this setup (Wimmerstedt, 2015). Furthermore, acceptance rates are given for the

method of Emmer et al. in the case that the ‘proper’ rejection threshold is used in a discrete setup, as

explained in the literature section; results from using Tippett’s method are given in table 15.

Method Acceptance when true Rejection when false

Emmer et al. 0.7808 0.9507

Emmer-Fisher 0.9890 0.2937

‘Correct’ Emmer 0.9095 0.8754

Emmer-Tippet 0.6938 0.9507

Table 14: Acceptance/rejection rates per backtesting model (for a random number of exceedances); for

the false scenario t3(0, 1) is used

The analysis of rejections of false predictions will be discussed now. The first step in this setting is

defining an incorrect prediction. As in Wimmerstedt (2015), we use draws from a t-distribution as the

‘true’ distribution, while still determining our ES-prediction using the standard normal distribution, as

in the previous section. The results of this simulation are also shown in table 14. We see that Emmer

et al.’s method performs very well here, but Fisher’s method is lacking considerably in rejection power.

A note can be made about the average p-value of Fisher’s method, which equals 0.354. This shows that

the combined method of Fisher does give doubt as to the validity of the ES-prediction, but it’s nowhere

near strict enough to actually reject the prediction consistently.
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b Acceptance when true Rejection when false

4 0.9663 0.7491

5 0.9507 0.7491

6 0.9107 0.8728

7 0.8979 0.8728

8 0.8858 0.8728

Table 15: Acceptance/rejection rates using Tippett’s method (a = 1)

We see that usage of the proper rejection threshold gives more conservative verdicts than the

original in Wimmerstedt (2015), as expected, given that it has a significantly lower rejection rate in both

the true scenario as well as the false scenario. Also, we can see that the use of Tippet’s method does not

do us much good, giving the same accuracy for rejection when false, but a lower acceptance rate when

true.

The analysis of the goodness-of-fit tests will be considered next. Table 16 shows the true acceptance

and false rejection rates just like tables 14 and 15 do.

Goodness-of-fit Acceptance when true Rejection when false

χ2
5 0.9377 0.7490

Table 16: Acceptance/rejection rates using goodness-of-fit tests

Overall, this analysis shows that the extension using Fisher’s method is better at recognising the

correct ES-predictions than the original method by Emmer et al., but this is rather meaningless when

it does not confidently reject ES-predictions that are clearly incorrect in a scenario of draws based on

a t3-distribution. Also, the other two methods show, at best, some improvement in one section, but

worse rates in the other. Therefore, I suggest finding a different way of combining the 5 p-values from

the thresholds, such that extreme events are weighed appropriately. Perhaps using symmetry and/or

uniformity of the expected amounts x1 through x5, will give better rejection rates in false scenarios.
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A.7 Generalised Pareto Distribution

The GPD is very useful for the modelling of tails of known continuous distributions. Throughout the

literature on tail risk, this model is very prevalent. Therefore, we mention it here and it could prove

useful for future analyses on the topic of tail risk management. Its CDF, given that the observation is

an exceedance of the threshold y < qt(ν) is given as follows:

Ft(y) =

Fqt(ν),ξ,βt
(y) = ν

(
1 + ξ(qt(ν)−y)

βt

)−1/ξ
, 0 < ξ < 1,

Fqt(ν),βt
(y) = ν exp

( qt(ν)−y
βt

)
, ξ = 0,

(55)

with qt(ν) representing the VaR threshold at time t. Graham and Pál (2014) note that, in general, it

is important to understand tail behaviour before using specific tail distribution models like the GPD.

Thus, researchers are advised to perform due diligence to ensure that EVT concepts are appropriate for

the specific setting, VaR confidence levels and portfolios used, before adopting these models.
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