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Abstract

The subjective choice of which variables should be included in a Probability of Default

(PD) model of a mortgage portfolio can significantly influence the outcome of the predic-

tion. Bayesian Variable Selection (BVS) can be used to objectively estimate which variables

should be included in the model, by assigning posterior probabilities to different variable

combinations. Bayesian Model Averaging (BMA) can be used to average between these

different combinations with the aim of decreasing the model specific errors. This paper in-

vestigates the improvements in prediction performance of PD models that can be achieved

by implementing BVS and BMA. It is shown that BVS outperforms the benchmark variable

selection criteria. It follows that implementing BMA results in a accuracy loss compared

to specific BVS models, but results in more stability, robustness and overall more accurate

predictions for selected model combinations.
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1 Introduction

Previously issued financial instruments like mortgage loans are sold in secondary financial mar-

kets. Investors like the American Federal Home Loan Mortgage Corporation, also known as

Freddie Mac, buy these loans with the goal of selling them as mortgage-backed securities. One

of the most important factors of the valuation of these loans is estimating the Probability of

Default (PD). Accurate models that predict the PD before a mortgage loan is bought, can be

used as an acceptance rule or important valuation factor. Kotz (2009) states that the inability

to correctly model these mortgage loans may have disastrous consequences, as was the case

with the financial crisis of 2008. A widely used technique to model the PD is the logistic re-

gression model, which calculates the relation between the PD of a mortgage loan and selected

explanatory variables. Examples of these variables are a pre-calculated Credit Score, the Loan-

To-Value Ratio or the Interest Rate of the loan. However, as it is not straightforward which

variables should be included in the regression, the subjective choice of which to include can

substantively influence the predictions of the model. Bayesian Variable Selection (BVS) can

be used to estimate the optimal subset of included explanatory variables. The method uses

Bayesian inference to calculate the posterior probability, which indicates the relative likelihood

that the data is generated by the specified model, and can be used as a selection criteria. This

makes it possible to objectively investigate which subset of explanatory variables should be used

in a regression model. This paper starts with investigating the posterior probability of different

subsets of explanatory variables, with the goal of estimating the optimal subset to be used in a

PD model.

BVS assign’s weights to different subsets of explanatory variables. In practice, this might

result in different subsets that are comparably likely to be the optimal, but have significantly

different parameter estimates. Choosing only one of these models incorporates model specific

errors, that can be diversified by averaging between different potential models. This paper

analyses Bayesian Model Averaging (BMA), which can be seen as an extension of BVS, and

combines selected models weighted by their posterior probability as calculated with BVS. That

way, different models containing different subsets of explanatory variables are combined with

the goal of improving the prediction performance of the PD model. Consequently, the predicted

PD becomes a weighted average of multiple models.

This paper analyses the corresponding changes in prediction performance obtained by the

described Bayesian methods in comparison with traditional variable selection and model aver-

aging methods, by answering the research question:

Does the use of Bayesian Variable Selection and Bayesian Model Averaging result in an increase

in prediction performance when modelling the Probability of Default of mortgage portfolios?

The remainder of this section introduces the structure of the model, Bayesian inference, BVS,

BMA, the prediction performance, a short summary of the results and this papers’ contribution.

The existing literature relevant for these topics is evaluated and the corresponding methods and

criteria that best fit this research are selected.

Different modelling methods for the PD are intensively described in the existing literature.

Beaver (1966) writes about models that predict defaults using financial ratios. In response, Alt-
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man (1968) uses the dimension reduction technique called Multiple Discriminant Analysis to

effectively model defaults, which is considered to be the most common technique for modelling

PD in the years thereafter. Ohlson (1980) lies the foundation for the use of a logistic regression

for these models. This method uses a logistic function to describe the relation between the

explanatory variables and the PD. As Hosmer Jr et al. (2013) state, it has the advantages of

being flexible, simplistic and gives a meaningful interpretation to the obtained results. Fur-

thermore, it is the most commonly used technique in the contemporary literature. This paper

uses the logistic regression model to describe the PD. As Menard (2002) states, the Ordinary

Least Squares estimation assumptions of homoscedasticity, linearity and normality are likely to

be violated for this type of regression, resulting in inefficient estimates. Therefore, after com-

pleting BVS, this paper estimates the selected models through Iteratively Re-weighted Least

Squares (IRLS), as described by Green (1984), that uses Maximum Likelihood as estimation

method for the parameters. Hence, after the use of the Bayesian methodology, a frequentist

approach is used to estimate the models. This method is selected as Bayesian methodology,

including Bayesian estimation, is not commonly used in the field of credit risk. Hence it is inves-

tigated whether the variable selection techniques can improve the existing PD models, instead

of whether they can be used for models that are not used in practise. As IRLS is commonly

used to estimate logistic regression model in the field of credit risk, the obtained results are

generally applicable. In short, it is investigated if the use of BVS and BMA can improve models

based on the current estimation methods used in the field of credit risk.

The foundation of both BVS and BMA lies in Bayesian inference, that applies probabilities to

statistical problems. Prior believes about the distribution of vector θ, containing the parameters

of interest, are denoted by π(θ). They are updated by likelihood of the data D, as a function

of these parameters, denoted by π(D|θ). The product is proportional to the posterior beliefs

π(θ|D) about the parameters given the data. This is written as

π(θ|D) ∝ π(D|θ)π(θ). (1)

When explaining these three different components of Bayesian inference, we start with the

analysis of a single model. Furthermore, when moving on to BVS and BMA, the aim is to

compare different models.

Bayesian inference starts with specifying prior believes about the parameters π(θ). They are

called the prior distribution, a set of initial beliefs about the parameters θ without observing the

data. A broad selection of differently shaped priors is available in literature. Different industries,

topics or regression types result in different prior beliefs about the parameters. Consequently,

the use of a logistic regression model results in its own set of potential priors. Fragoso et al.

(2018) gives an overview of the available options analysed in literature. As described above,

after obtaining the BVS results, the logistic regression is estimated by using IRLS, which does

not require priors. Carefully selected priors are however required to enhance the effectiveness of

BVS. Most commonly used are the so called spike-and-slab priors. The basic idea of these priors

is comparable with the classical Lasso and Ridge regressions (Owen, 2007). By shrinking the

coefficients of the variables that are less relevant when describing the dependent variable, they

highlight the difference in importance between the explanatory variables. George & McCulloch
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(1993) describe a set of parameter priors that are based on this concept and adapted to be used

with the efficient sampling method called Stochastic Search Variable Selection (SSVS). This

prior significantly adds to the effectiveness of BVS and is required for an effective implementation

of the SSVS technique, which is used in this paper. This paper uses a version of this prior,

which is modified to be compatible with the use of a logistic regression and tuned to fit to the

data set.

Next, we specify the likelihood function π(D|θ). In order to do so we have to model the

probability of obtaining the observed data, given the specified parameters. This is done by

specifying the model and the corresponding distribution of its parameters. As described above,

the PD is described by using a logistic regression. As stated by Czepiel (2002), the likelihood

function corresponding to this type of regression is based on the Binomial distribution.

Analytically calculating the posterior distribution π(θ|D) can be difficult. The use of a non-

conjugate prior, a prior that has a different distribution than the posterior, also significantly

increases the computational power required to obtain the posterior distribution. Moreover,

for some model specifications, like for example the logistic regression, it is not possible to

analytically obtain marginal posterior results. Monte Carlo Markov Chain (MCMC) methods,

like the Gibbs sampler and Metropolis-Hasting algorithms (Roberts & Smith, 1994), can be

used to simulate from posterior distribution. The literature also introduces new, more robust

sampling methods like Hamiltionian Monte Carlo (Hoffman & Gelman, 2014). These sampling

methods can be used to sample from the distribution of the posterior.

The posterior distribution of a single model can be used for predicting. Posterior distribu-

tions of multiple models can be used to estimate posterior probabilities, that are used as variable

selection criteria for BVS. The posterior probability describes the relative probability that one

model best describes the data by evaluating the posterior probability. By analyzing every possi-

ble combination of potential explanatory variables as a separate model, the subsets are ordered

on their posterior probability. This paper evaluates the relative effect of BVS by comparing

prediction performance of the obtained top combinations with the traditional variable selection

criteria Bayesian Information Criteria (BIC) and Aikake Information Criteria (AIC). For p ex-

planatory variables, there are k = 2p different possible combinations. Because every different

combination implies a new model, this results in k different models Ml, ...,Mk. In this research

we investigate the potential inclusion of 9 different explanatory variable, resulting in 29 = 512

different models. Estimating the posterior probability of all of these models is inefficient, since

there is solely an interest in the models that have a large posterior probability. Therefore,

researchers developed a wide range of BVS algorithms that deal with this inefficiency. The

most commonly used methods are the Stochastic Search Variable Selection (SSVS) algorithm,

first described by George & McCulloch (1993), and the Monte Carlo Markov Chain Reverse

Jump (MCMCRJ) algorithm, as stated by Green (1995). SSVS uses the Gibbs sampler in com-

bination with the earlier described spike-and-slab prior, in order to identify the models with

higher posterior probabilities. MCMCRJ has a different approach. It first analyses the number

of included explanatory variables, and secondly determines which ones to include specifically

using the Metropolis Hastings sampler. The SSVS technique is used, which is in line with the

use of the SSVS prior as stated earlier. The effectiveness of its application is comparable to that
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of MCMCRJ (O’Hara et al., 2009), but the technique is more effective given the used prior.

BMA combines different models, weighted by their posterior probability, as described by

Fragoso et al. (2018). This is the same criteria as used by BVS. Madigan & Raftery (1994)

state that this model averaging method increases the prediction performance, in comparison to

the use of a single model. There is no general consensus in existing literature about the number

of models that should be included in the weighted combination. Madigan & Raftery (1994)

describe two main rules of inclusion for models. The first is that models that predict the data

’far less well’ than the optimal model should not be included. Secondly, a model should not

be included if a subset of the models’ parameters has a higher prediction performance. This

paper investigates the effectiveness of the application of these rules separately and together.

Additionally, this paper experiments with different combinations of selected models, with the

aim of finding the combination that has the overall highest prediction performance for this

research. This is done using the top 10 models with the highest posterior probability obtained

by BVS. The selected different combinations are evaluated on their prediction performance, and

compared to the results of the individual models obtained through BVS.

Literature shows a large range of different weights that can be used when combining models,

often proportional to some calculated model selection criteria. In addition to the posterior

probability, Zhang et al. (2006) state that the Aikake Information Criteria (AIC) or the Bayesian

Information Criteria (BIC) can be used as weight. Another option is a simple average, where

the weights of all h models are set equal at 1
h . This paper will use these more traditional weights

as a benchmark.

The prediction performance of the different models is measured in terms of the model’s

ability to discriminate between defaults and non-defaults, and the prediction accuracy. The

discriminatory performance is quantified using the Accuracy Ratio (AR), and the Area Under

the Curve (AUC) as described by Lingo & Winkler (2008). Abdi (2007) describes the Binomial

test, that quantifies the model’s accuracy. These are some of the industry standard backtesting

measures.

The results obtained in this paper show that BVS does outperform the traditional criteria

and algorithms that are used as a benchmark, and hence results in an increase in prediction

performance. Furthermore, carefully selected BMA combinations on average have a better

prediction performance than BVS, and also shows less variation in the model specific errors.

However, BMA does not significantly outperform the traditional weighting benchmark. Hence

averaging the through BVS obtained models, with for example BMA, results in combinations

with improved prediction performance.

Literature gives a broad description of different applications of BVS and BMA for logistic

regressions. However, its application to credit risk is limited, and the focus on the PD of single

family household mortgage loans is a new concept. Additionally there are few examples of

the application of SSVS for a logistic regression, none of them focusing on the topic of credit

risk. This paper contributes to existing literature by quantifying the changes in prediction

prediction performance as a consequence of BVS and BMA. Furthermore, the comparison with

more traditional variable selection and model averaging methods such as AIC and BIC is a

new concept in the field of credit risk. The same goes for the analysis of the relation of the
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PD with the selected optimal subset of explanatory variables as estimated with BVS. Lastly,

this research will investigate the effectiveness of the few available guidelines for the number of

included models in BMA, and investigates potential new and more robust solutions.

The remainder of this paper has the following structure. Section 2 describes the methodol-

ogy behind the research, stating and elaborating on the formulas describing the PD, Bayesian

inference, BVS, BMA, the prediction performance criteria, and describing the used program-

ming tools. Section 3 describes the data set, and explains how the data is used in this research.

Section 4 describes the obtained results of BVS and BMA, and compares them to each other.

Lastly, Section 5 states the conclusions and provides recommendations for the direction of fur-

ther research.

2 Methodology

In this section, the methodology is presented. Section 2.1 starts with a description of the lo-

gistic regression model that is used to model the PD. Section 2.2 and 2.3 give an overview of

Bayesian inference, and elaborate on the criteria used to compare different models, e.g., Bayes

factors, posterior odds and the posterior probability. Additionally, the link to the posterior

probability is shown. Section 2.4 elaborates on BVS and different traditional variable selection

techniques. It describes SSVS and the selected prior distribution, the likelihood, and the pos-

terior distribution. Section 2.5 describes BMA and different traditional weights that can be

used for model averaging. Section 2.6 defines prediction performance and the corresponding

performance selection criteria that are used in this paper. Section 2.7 gives an overview of the

described algorithms and criteria and explains how the different results are compared. Section

2.8 describes the programming tools and packages used in this paper. Finally, Section 2.9 de-

scribes the assumptions made throughout this paper. Figure 1 gives a graphical overview of the

methodology section.
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Figure 1: An overview of the build-up of the Methodology section. Starting with model specific Bayesian inference,
thereafter explaining the link to comparing models with the Posterior Probability, selecting them with Bayesian
Variable Selection and combining them with Bayesian Model Averaging. Finally the results are compared on
prediction performance, where traditional methods using traditional criteria are used as a benchmark.

In Figure 1, θ = (θ1, ..., θg) indicates a vector including the g parameters of the model, and

y is a (n× 1) vector containing the binary dependent variable indicating a default as 1, and a

non-default as 0.

2.1 The Logistic PD Model

This paper uses a logistic regression to model the PD. Based on the description in Hosmer Jr et

al. (2013), we define the PD as the mean of y conditional on X. That is π(x) = E(y|X), where

X is a (n× p+ 1) matrix containing a constant and p explanatory variables. The defaults can

be expressed as y = π(x) + ε, where y ∼ Bi(n, π(x)). π(x) indicates the PD conditional on the

explanatory variables, and can be expressed as

π(x) = E(y|X) = F (β′x) =
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
. (2)

Here, β = (β0, β1, ..., βp), where β0 indicates the constant, and βi represents the regression

coefficient for explanatory variable xi. Using a logit transformation we obtain

g(x) = ln

[
π(x)

1− π(x)

]
= β0 + β1x1 + ...+ βpxp, (3)
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where the parameters of g(x) are linear, and the function has a range of (−∞,∞). The likelihood

function corresponding to the Binomial distribution of the logistic regression is of the form

π(y|β) =

n∏
i=1

π(x)yi(1− π(x))(1−yi), (4)

where yi = 1 indicates a default of observation i, and π(xi) is the probability of this default for

observation i. By substituting Equation 2 into Equation 4, we obtain the likelihood function

π(y|β) =

n∏
i=1

[(
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)yi(
1− eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)(1−yi)]
. (5)

After selecting the optimal set of explanatory variables, the parameters are estimated using

IRLS. As described in Green (1984), this method iteratively uses the standard Newton-Raphson

algorithm to obtain the maximum likelihood estimates for Equation 5.

2.2 Bayesian Inference

The Bayesian inference model used in this research is described in Raftery (1995). The prior

beliefs about the unknown parameter vector β of a single model, are described by the probability

density function π(β). The likelihood function is described as π(y|β). The product of the

likelihood function and the prior beliefs is proportional to the posterior distribution of the

parameters conditional on the data, as

π(β|y) =
π(y|β)π(β)

π(y)
=

π(y|β)π(β)∫
π(y|β)π(β)dβ

∝ π(y|β)π(β)). (6)

The equality in the middle is obtained by the law of total probability, which states

π(y) =

∫
π(y|β)π(β)dβ. (7)

This is called the marginal likelihood and is the cornerstone of Bayesian model comparison and

hence variable selection. Proper density functions, that integrate to 1, are required for model

selection in order to make unbiased comparisons between models. By obtaining the marginal

likelihood, the product of the likelihood function and a proper prior can be transformed into a

proper density function.

2.3 Bayes Factors

Bayes factors are used to quantify the probability that a model is correct, in comparison to one

or more different models. For model l, we define the marginal likelihood function of the model

as

πl(y) =

∫
πl(y|β)πl(β)dβ. (8)
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Now the Bayes factor of model l to model j, can be obtained by

BFlj =
πl(y)

πj(y)
, (9)

where BFlj ≥ 1 states that Ml is equally or more likely than Mj given that both models are

equally likely a priori. Casella & George (1992) describe that, when one model is a priori more

likely than another model, the ratio of the prior likeliness can be used to calculate the posterior

odds of the data supporting Ml over Mj as Posterior Odds = Prior Odds×Bayes Factor, or

Pr(Ml|y)

Pr(Mj |y)
=
Pr(Ml)

Pr(Mj)
×BFlj , (10)

where Pr(Ml) states the prior probability that Ml is the correct model. Note that the prior odds

depend on the prior distribution of gamma as specified in Equation 20. A lower prior probability

of including a variable results in a preference for models with less explanatory variables.

By calculating the Bayes factors of all the potential models against a selected baseline model

M1, the Bayes factor between any two models can be calculated. For Ml, the posterior odds

against Mj are calculated using both models Bayes factors with the baseline model. This is

done with the formula

BFij =
πl(y)

πj(y)
=
πl(y)

π1(y)
× π1(y)

πj(y)
= BFi1 ×

1

BFj1
=
BFl1
BFj1

. (11)

This can be done in a similar manner for the prior and posterior odds.

By comparing the posterior odds of a model against all other potential models, the posterior

probability is obtained. As stated by Fragoso et al. (2018), for k different models, and l ∈ 1, ..., k,

we estimate

Pr(Ml|y) =
πl(y)Pr(Ml)∑k
j=1 πj(y)Pr(Mj)

, (12)

with the assumption that all models are equally likely a priori and by substituting Equation 9

and Equation 11 into Equation 12, we obtain the formula for the posterior probability of model

l in terms of the Bayes factors, that is

Pr(Ml|y) =
BFl1∑k
j=1BFj1

. (13)

This posterior probability is the criteria used in both BVS and BMA. This relation works two

ways. When we estimate the posterior probability of a model through simulation, Equation 13

can be used to calculate the Bayes factors. This can be used to quantify the relative probability

between two or multiple models.

2.4 Variable Selection

The goal of variable selection is to investigate whether different explanatory variables should be

included in a model. On one hand, adding a variable can increase the accuracy of the model.

On the other hand, it will also increase the complexity of a model and the possibility of over-
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fitting on some aspects of the data set. Therefore, the model’s optimal ratio between being

accurate and being parsimonious should be evaluated. There are multiple methods available

that investigate this ratio using different algorithms and selection criteria. This paper will

analyse the BVS method in its ability to calculate the optimal subset of explanatory variables,

and uses traditional variable selection methods as a benchmark.

2.4.1 Bayesian Variable Selection

BVS uses the posterior probability, calculated in Equation 12, as selection criteria. This paper

uses the SSVS algorithm to select the models with the largest posterior probability for BVS.

The following sections will elaborate on the SSVS algorithm, including the Gibbs sampler, the

selected priors, likelihood function and corresponding posterior distribution. Lastly, traditional

benchmark methods and criteria are described and selected.

2.4.1.1 Stochastic Search Variable Selection

Calculating the posterior distribution of all potential models is inefficient, since we are only

interested in the models with relatively large posterior probabilities. As mentioned in Section

1, this paper uses the SSVS algorithm as described by George & McCulloch (1993), to only

select the models with a large posterior probability. Furthermore, the algorithm uses the Gibbs

sampler to simulate from this posterior probability.

We introduce the latent binary variable γi ∈ γ = (γ1, ..., γp), which has value 1 for including

xi, and value 0 for excluding xi in the model. Conditionally γi, βi is distributed as the normal

mixture model

βi|γi ∼ (1− γi)N(0, τ2i ) + γiN(0, c2i τ
2
i ). (14)

This distribution is based on the concept of spike-and-slab as stated in Section 1. Here, τi

is small, so if |βi| ≤ 3τi, it is assumed that βi = 0 and the explanatory variable should not

be included in the optimal subset. ci is larger, stating that if |βi| ≥ 3ciτi, the corresponding

explanatory variable should be included in the optimal subset. Hence the sizes of ci and τi are

data specific and different options are evaluated in Section 4. Consequently, the probability that

βi has an estimate that differs from 0 and hence xi should be included in the optimal subset of

variables and is denoted as

P (γi = 1) = 1− P (γi = 0) = pi. (15)

The vector γ contains p random variables that are either 0 or 1, indicating whether the corre-

sponding variables are included. Hence, the different vectors of γ indicate different combinations

of explanatory variables and consequently different models M1, ...,Mk.

2.4.1.2 The Gibbs Sampler

First off, the separate distributions of β and γ, conditional on the data and the other parameter,

are obtained. Secondly, a Markov chain of the parameters is constructed from which the limit of

the distribution converges towards the marginal posterior distribution of the parameters. This
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’Gibbs sequence’ has the form

β0,γ0,β1,γ1...,βj ,γj , .., (16)

where γj is the jth sample of γ. An iterative procedure is used to sample from these distribu-

tions. The used method is called the Gibbs sampler, and sequentially updates the parameters

by sampling j = 1, ...,m iterations from the conditional distributions of the parameters. Raftery

& Lewis (1991) state that 1000 to 5000 iterations are required, therefore we set m = 5000 for

this paper. Additionally, we make use of a burn in period of 500 observations. For βj and

γji ∈ γj = (γj1, ..., β
j
p), we sample

βj ∼ f(βj |βj−1,y,γj−1) ∝ π(y|β,γ)× π(βj−1|γj−1),

and γji ∼ f(γji |β
j ,γj(i)) ∝ Bernoulli

(
aj

1 + aj

)
,

where aj =
π(β|γi = 1,γj(i))

π(β|γi = 0,γj(i))
×
π(γi = 1,γj(i))

π(γi = 0,γj(i))
,

(17)

where γj(i) = (γj1, ..., γ
j
i−1, γ

j−1
i+1 , ..., γ

j−1
p ). Note that the distribution of γji is independent of

y. The generated sequence γ1, ...,γm rapidly converges to the marginal posterior distribution

γ ∼ f(γ|y). In this sequence, the γ’s that imply a model with a higher posterior probability

will come up more often. By simply counting the appearances of different γ’s, the models can

be ranked on posterior probability. We say that #γMl
equals the amount of times that we

sample the vector γMl
, that is the vector indicating the inclusion set of explanatory variables

that result in the model Ml. Consequently, the posterior probability of Mj can be estimated as

Pr(Ml|y) =
#γMl

m
. (18)

The priors and likelihood functions from which the samples are taken are evaluated in the next

section.

2.4.1.3 The Prior Distribution

Prior distribution gives the possibility to incorporate a priori known information about the

parameters into the model. For the logistic regression, we need to specify our prior believes

about the parameter vectors β and γ. That is π(β|γ), and π(γ). As stated by George &

McCulloch (1993), the prior of β should be be used to shape the distribution in a form that is

compatible with SSVS. Furthermore, this prior includes scaling variables that can be used to

adapt the models to the specific research and data requirements. For β, a multivariate normally

distributed prior is selected, which is defined as

π(β|γ) ∼ Np(0,DγRDγ), (19)

where R is the correlation matrix of the prior distribution and Dγ ≡ diag[a1τ1, ..., apτp] where

ai = 1 for γi = 0, and ai = ci for γi = 1. With the use of this prior, the mixture model as

stated in Equation 14 is obtained. Here, τi and ci are fitted to the data as explained in Section
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2.4.1.1. We set R = I, which implies that the β conditional on γ is independent.

For γ, the choice of prior should include any information that is known a priori about which

explanatory variables should be included in the optimal subset. Two options, stated by George

& McCulloch (1993), are investigated. These are

π(γ) =
n∏
i=1

pγii (1− pi)(1−γi),

and π(γ) = 2−p.

(20)

The first prior implies independent γi’s. We will investigate the consequences of different values

for pi in Section 4. The second prior is a special case of the first one, stating that the probability

of inclusion for every explanatory variable is equal to p = 1
2 .

2.4.1.4 The Likelihood Function

The likelihood function is similar to Equation 5. Additionally, y now also depends on γ through

β. This can be stated as

π(y|β,γ) =
n∏
i=1

[(
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)yi(
1− eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)(1−yi)]
. (21)

2.4.1.5 The Posterior Distribution

As stated in Equation 6, the posterior distribution is proportional to the product of the likelihood

and the priors. In this hierarchical Bayesian model, the posterior distribution can be written as

π(β,γ|y) ∝ π(y|β,γ)× π(β|γ)× π(γ). (22)

The three functions on the right are stated in Equation 21, Equation 19, and 20. Hence, by

substituting these equations into Equation 22, we obtain

π(β,γ|y) ∝
n∏
i=1

[(
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)yi(
1− eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)(1−yi)

× 1

(2π)
2
p (DγRDγ)

1
2

exp
{
− 1

2
β′DγRDγβ

}
× pγii (1− pi)(1−γi)

]
, and

π(β,γ|y) ∝
n∏
i=1

[(
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)yi(
1− eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)(1−yi)

× 1

(2π)
2
p (DγRDγ)

1
2

exp
{
− 1

2
β′DγRDγβ

}
× 2−p

]
.

(23)

Consequently, the posterior distributions are made proper by dividing them by their marginal

likelihood as calculated with Equation 8. In this formula, model i relates to the explanatory

variable combination as stated by the corresponding γ. As stated earlier, the Gibbs sampler of

the SSVS algorithm is used to sample from this distribution and obtain the part that we are
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interested in, that is the posterior marginal distribution described by γ ∼ f(γ|y). This is used

to estimate the posterior probability as stated in Equation 18.

2.4.2 Traditional Variable Selection

Three algorithms that are commonly used for variable selection are Forward Selection (FS),

Backwards Eliminations (BE), and Stepwise Selection (SS). FS starts with a model without

explanatory variables. Given a selection criteria, it investigates which variable should be added

to the model. This continues until the addition of another variable significantly decreases the

selected criteria. Now the model, consisting of the subset of variables with the highest selection

criteria, is selected. BE follows the same principle, but starts with all available variables and

eliminates them one by one from the regression with the goal of optimizing the selection criteria

in every step. SS is a hybrid of the two other algorithms, considering both eliminating and

including potential variables in every step given selected criteria.

Raftery (1999) states that for a linear regression with specifically specified priors, the BIC

approximates the Bayes factors. As the regression used in this paper is logistic, the results

obtained when using the BIC criteria can be used as a benchmark. Additionally, AIC is selected.

This paper uses these criteria in combination with the FS, BE, and SS algorithms as a benchmark

for BVS.

2.5 Model Averaging

Model averaging is used to create a weighted average that diversifies the model specific errors.

By doing so, this paper aims to create a combination of models that has increased prediction

performance. A weighted combination of h selected models is used to create an averaged

estimate of the conditional PD as calculated in Equation 2. This is described by

¯π(x) = w1π(x)1 + w2π(x)2 + ...+ whπ(x)h, (24)

where w1 indicates the weight, and π(x)1 the conditional PD, corresponding to Model 1. The

sum of the weights equals 1. The following sections will elaborate on BMA. Furthermore, the

effects of traditional model averaging weights are analysed as a benchmark.

2.5.1 Bayesian Model Averaging

BMA creates a weighted combination of h models with a high posterior probability. For the

weights, the posterior probability of model i relative to the other included models, is calculated

as

wBMAi =
BFl1∑h
j=1BFj1

. (25)

This equation differs from Equation 13, that is used as criteria for BVS, in that only the h models

that are included in the combined average are taken into account, in contrast to including all k

models. Consequently, the weights are not equal to the posterior probabilities as described by

Equation 13, but proportional to them, constrained by the rule that their sum is 1. In short, the

same criteria are used for both BVS and BMA, but for BMA its value is proportionally corrected
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for the number of models combined. As stated in Section 1, there is no consensus about the

number of models that should be combined. This paper will analyse different combinations of

models and evaluate them on their prediction performance. Possibilities for a ’rule of thumb’

for the number of combined models are investigated.

2.5.2 Traditional Model Averaging Weights

In literature, there is a large amount of potential weights available. Most of them are based on

variable selection criteria. This paper will analyse three different options: Equal weights, AIC

and BIC. Equal weights indicates that all h models are assigned the same weight, that is

weq =
1

h
. (26)

The AIC and BIC weights are based on the inverse of their relative criteria size, as described

by Posada & Buckley (2004). For model i, this corresponds to

wAICi =
1

AICi∑h
i=1

1
AICj

, where AICi = 2gi − 2ln(L̂i),

and wBICi =
1

BICi∑h
i=1

1
BICj

, where BICi = ln(n)gi − 2ln(L̂i),

(27)

where gi indicates the number of parameters estimated by model i. For the logistic regression,

this equals the p regression coefficients of the model specific explanatory variables, a constant

and the variance of the error term. Li indicates the maximum value of model i’s likelihood

function and n equals the number of observation. Smaller values of the criteria result in larger

weights for the corresponding model, hence the weights are proportional to the model’s like-

lihood, penalized by the amount of parameters. For n ≥ 4, the penalty on an additional

parameter is larger for BIC, resulting in lower weights for larger models.

2.6 Evaluating Prediction Performance

By splitting the data set in two, a train and a test set are created. The test set is used to

validate the out-of-sample prediction performance of the models. This is done by analyzing a

model’s ability to discriminate between defaults and non-defaults, and its prediction accuracy.

The posterior probability of a model is also a criteria that can be used to select models on

their prediction performance. Hence models with a higher posterior probability are expected to

have a higher prediction performance. The used prediction performance criteria are a modified

version of the Accuracy Ratio (AR), the Area Under the Curve (AUC), and the Binomial test.

The first two tests indicate a model’s discrimination performance, whereas the last test indicates

the model’s accuracy.

After predicting the probability of default of the different portfolios, a threshold is set

that indicates for which probabilities a portfolio is predicted to default. This results in a

binary variable indicating a predicted default or non-default. When the amount of defaults

are approximately equal to the non-defaults, an optimal threshold can be calculated, for which
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both increasing and decreasing the threshold would result in lower discriminatory power of

the model. In this paper, the amount of defaults is relatively low, consequently the optimal

threshold would qualify all observations as a non-default. A loss function, putting more weight

on a falsely predicted default (FN), is a possible solution to this problem. However, as there

is no general economically interpretable solution for the difference in weight, the subjective

choice of a loss function can influence the general application of the results. Hence we make use

of another threshold, indicating the minimum percentage of correctly predicted defaults, also

known as the True Positive Rate (TPR). The amount of FP, given the minimum percentage of

TPR is compared between the different models. This is done for thresholds of 60%, 90% and

the average in the range of 50% to 100%. Additionally for some models, the amount of wrongly

predicted non-defaults is plotted against this threshold ranging from 0 to 1. This measurement

can be considered a modified version of the AR, as the AR simply states the ratios of correct

predicted defaults, false predicted defaults, correct predicted non-defaults and false predicted

non-defaults.

The AUC tests also models the ability to discriminate between defaults and non-defaults. By

plotting the defaults and non-defaults separately on their predicted PD, Figure 2a is obtained.

Additionally to the above described abbreviations, TP indicates a correctly predicted default,

and TN corresponds to a correctly predicted non-default. The threshold for the PD indicates

that portfolios with a higher PD are predicted to default. The ratio between TP and FP is

plotted for all possible thresholds. The curve in this figure is known as the Receiver Operator

Curve (ROC) and displayed in Figure 2b. The area underneath this curve ranges from 0 to 1,

where a larger value indicates that the model is better able to discriminate between defaults

and non-defaults. Specifically, 1 states a perfect ability to separate, 0.5 states not being able to

separate and 0 states that the model reciprocates the classes.

(a) Two distributions actual defaults and non-
defaults, plotted against their predicted PD.
The threshold indicates the criteria that is used
to predict whether a portfolio defaults or not.
In this case, if the probability of default exceeds
0.5 a default is predicted. TP indicates the
correctly predicted defaults and FP the falsely
predicted defaults. Similar, TN corresponds
to correctly predicted non-defaults and FP to
falsely predicted non-defaults.

(b) The ROC curve. Displays the True Pos-
itive Ratio (TPR) on the Y-axis, indicating
the correctly predicted defaults. On the X-
axis, the False Positive Ratio (FPR) is dis-
played, indicating the wrongly predicted de-
faults. The range of both axes indicates the
threshold, ranging from 0 to 1. The area under-
neath the curve indicates the models discrimi-
natory power.

The Binomial test approaches the binomial distribution of the defaulting observations by

a normal distribution, and investigates whether the amount of predicted defaults significantly
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differs from the actual defaults. Using a Z-test, we test

Z =
nπ(x)−

∑n
i=1 yi√

nπ(x)(1− π(x))
. (28)

It follows that, for a 95% confidence interval, Z ≤ 1.96 indicates that the predicted number of

defaults does not significantly differ from the actual number of defaults. As a consequence of

setting the TPR at a high percentage, all models will have Z-values that lie outside the 95%

confidence interval. Nevertheless the estimated Z-value can be considered a criteria indicating

the accuracy of the amount of predicted defaults normalized by the models variance, and hence

compared between the different models.

2.7 Comparing Models Set-up

Figure 8 gives an overview of the methods and criteria analysed and compared in this paper.

For BVS, different options for ci and f(γ) and their corresponding selected models are first

investigated. Furthermore, the top 5 models with the highest posterior probability is analysed

in terms of prediction performance and their traditional criteria values. Next the results are

compared to the models created with the FS, BE, and SS algorithms. Lastly, it is investigated

whether the obtained results also hold for different test sets. For BMA, different weighted com-

binations of the top 10 models are evaluated. Here it is investigated which inclusion rules result

in the combinations with the highest prediction performance. Next, the selected combinations

are weighted by the traditional model averaging criteria and the results are compared. Lastly,

it is again investigated whether the obtained results hold for different test sets. Finally, the

prediction performance of the BVS models is compared to the BMA combinations.
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Figure 3: An overview of the analysed algorithms, selection criteria and their corresponding prediction perfor-
mance criteria
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2.8 Programming

The programming language used for the methodology as described in this paper is R. Addition-

ally, the MCMC simulations and the corresponding models are estimated using Just Another

Gibbs Sampler (JAGS). These two languages are connected by using the ’RJAGS’ package in R.

All other packages and functions are available in R. The parameters of the logistic regression,

estimated with IRLS, are obtained with the ’glm’ function of the ’stats’ package, by choosing

’method = glm.fit’. The sampling of the posterior probability is done with the ’coda.sampling’

function from the ’RJAGS’ package. The predictions and prediction accuracy are obtained

using the ’prediction’ and ’performance’ functions in the ’ROCR’ package.

2.9 Assumptions

In this section, the assumptions that are made throughout this paper are described. For

Bayesian inference, it is assumed that the observations of the dependent variable are inde-

pendently distributed, conditional on the unknown parameters. This assumption is met as

all observations are randomly sampled from the dataset. Additionally, assumptions are made

about the distribution of the priors and likelihood as described above. The prior odds of the

different models is assumed to be equal. If information about these probabilities was available

a priori, this could be used to improve the effectiveness of the BVS. It is assumed that the

sampling γ through SSVS results in an accurate representation of the posterior distribution
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f(γ|y). Lastly, it is assume that this posterior distribution of f(γ|y) is a representation of the

prediction performance of the different models.

For the logistic regression, we make assumptions about the analysed data set. As Bewick

et al. (2005) describe, we assume that the dependent variable is binomial distributed, and the

explanatory variables are not strongly correlated. As the variables CLTV and LTV have a

correlation of 95%, we correct for this by subtracting the value of LTV from CLTV, effectively

decreasing this correlation to 11%. Additionally, the observations are assumed to be independent

and the data set should be sufficiently large.

3 Data

Table 1: The explanatory variables, their description, range limits, their label used in the coding, and the unit
of measurement.

Variable Description Range Code Label Unit

Credit Score
A number summarizing the borrowers creditworthiness,
prepared by a third party. Also known as Fico Score.

301-850 fico #

Insurance
The percentage of loss coverage on the loan, at the time of Freddie
Mac’s purchase of the mortgage loan that a mortgage insurer is
providing to cover losses incurred as a result of a default on the loan.

1-55 mi pct %

Units Binary variable indicating whether the mortgage is a one-, or more-unit property.
0 = One
1 = More
than one

cnt units #

CLTV

Combined Loan-To-Value (CLTV). In the case of a purchase mortgage
loan, the ratio is obtained by dividing the original mortgage
loan amount on the note date and any secondary mortgage loan amount
disclosed by the seller, by the lesser of the mortgaged property’s appraised
value on the note date or its purchase price.

0-200 CLTV %

DTI

Debt-To-Income (DTI). Disclosure of the debt to income ratio is
based on (1) the sum of the borrower’s monthly debt payments,
including monthly housing expenses that incorporate the mortgage
payment the borrower is making at the time of the delivery of the
mortgage loan to Freddie Mac, divided by (2) the total monthly
income used to underwrite the loan as of the date of the origination
of the loan.

0-65 dti %

UPB
Unpaid Principle Balance (UPB). The amount of UPB of the mortgage
on the note date.

UPB >0 orig upb $

LTV

Loan-To-Value (LTV). In the case of a purchase mortgage loan,
the ratio obtained by dividing the original mortgage loan amount
on the note date by the lesser of the mortgaged property’s appraised
value on the note date or its purchase price.

6-105 ltv %

Interest Rate The note rate as indicated on the mortgage note. 0-100 int rt Rate %

Borrowers
A binary variable indicating whether there is only one, or more than one,
borrower obliged to pay the mortgage note.

0 = One
1 = More
than one

cnt borr #
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This paper uses data from the Freddie Mac’s Single Family Loan-Level data set. The full

data set includes information on fully amortizing fixed-rate mortgages that Freddy Mac bought

between 1999 and 2017. For each year, there is a random sample available, containing the

information of 50.000 mortgage loans. The data set consists of a large amount of potential

explanatory variables, from which p = 9 are selected. The default of a loan in this research

is defined as a loan that is past due for three months or longer, and is converted to a binary

variable indicating a default as 1 and a non-defaults as 0. The selected explanatory variables

are all the available numerical variables in the Freddie Mac data set and three binary variables.

Table 1 states a description and summary of these variables. The data set is not normalized or

transformed, as this influences the economical interpretability of the results and is not required

for the effective application of the methodology. We visually inspect the data set, however this

will not lead to the deletion of any outliers. Additionally, the variable CLTV is corrected by the

variable LTV to solve the appearing multicollinearity. Table 2 gives overview of the descriptive

data statistics.

Table 2: Overview of the descriptive values of the explanatory variables of the train set.

Credit Score Insurance Units CLTV DTI UPB LTV Interest Rate Borrowers

Min Value 300.0 0.0 0.0 0.0 1.0 21000.0 8.0 3.8 0.0
Mean 738.8 5.0 0.0 74.2 1.3 205987.0 73.0 5.3 0.5
Median 749.0 0.0 0.0 80.0 0.0 182000.0 78.0 5.3 1.0
Max Value 842.0 37.0 1.0 54.0 65.0 802000.0 100.0 7.8 1.0
Sd 52.6 10.6 0.2 16.2 4.7 111943.9 16.1 0.7 0.5

When modelling the PD, a distinction should be made between data that is analysed

Through The Cycle (TTC) or at a Point In Time (PIT). Aguais et al. (2004) state that TTC

data has a time span of at least five years, incorporating underlying cyclical patterns of reces-

sions and expansions in the business cycle. This makes this type of data more suitable to be

analysed for PD predictions with a longer time span. By taking a time span that includes the

whole business cycle, its overall effects are cancelled out and predictions can be made about the

long term average. Alternatively, PIT data has a time span of one year at the most, and there-

fore should be used to make short term predictions. These predictions are conditional on the

position on the business cycle of that specific period in time. To be able to make unconditional

predictions, information regarding this position is required. The contribution of this research

lies not in creating a complex PD model that competes on TTC prediction performance with

the best models present in the literature, but in investigating the added value of the the above

described Bayesian methods in a new field of interest. Therefore, data from only four different

years, at four different places in the business cycle and with equal time gaps between them,

is analysed. That is, a pre-crisis sample of 2005, a during crisis sample of 2008, a post-crisis

sample of 2011 and an outside-crisis sample of 2014. This can be seen as four different PIT data

sets that are combined with the purpose of making the obtained results generally applicable in

multiple stages of the business cycle.

This research starts with analyzing a small part of the full data set. The four yearly samples

will each have 3000 randomly selected observation, resulting in a sample size of 12000. These are

randomly split in a train and test sample, both including of n = 6000 observations. Only the PD

within the first year is investigated. The analysis will contain the p = 9 described explanatory.
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An explanatory variable that is generally highly informative for PD models is the variable

arrear, indicating whether there has been an arrear in monthly payments in the past. However,

this variable is not available for the model analysed in this paper, as we model the PD in the

first year. Additionally, two random samples also consisting of n = 6000 observations are taken

independently from the first sample. These are additionally used to test the consistency of the

estimated out-of-sample prediction performance for different independent samples. Note that

the amount of observed defaults is relatively low. The train set has 30 defaulting observations,

whereas the three test sets have 30, 18, and 22 observed defaults respectively.

4 Results

4.1 Bayesian Variable Selection

In this section, the main results of BVS are displayed and commented on. First the model

specifications are tuned to increase the efficiency of the SSVS algorithm. By experimenting

with different values of ci and f(γ), the best data driven fit is investigated. Secondly, a list

of the top 5 models with the highest posterior probability is presented and their regression

coefficients and prediction performance are evaluated. Furthermore, the AIC and BIC of these

models is analysed with the aim of investigating whether the effectiveness of BVS differs from

these traditional variable selection criteria. Additionally, the more traditional variable selection

algorithms FS, BE, and SS are used to obtain models that are used as a benchmark. Figure

4 gives a graphical overview of this section. Since we are comparing the model top 5, we set

h = 5. Consequently the posterior probability of the 5 top models sums up to one. Note that

for the readers convenience, the cells displaying the best prediction performance criteria value

of a table are colored grey.
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Figure 4: A graphical overview of the result section of BVS.

4.1.1 Tuning ci and f(γ)

George & McCulloch (1993) describe different possibilities to obtain the optimal tuning values

of ci and f(γ). Overall, it is stated that these potential solutions should not be seen as hard and

fast rules, and ci should be seen as a tuning constant that calibrates the available information

about f(γ). Furthermore, for f(γ), the priors used in this paper are recommended, as they

have proven to work well when used for practical application. O’Hara et al. (2009) suggest that

data-driven priors should be used for the tuning variables with the goal of improving the mixing

of the MCMC chains. This paper will implement this data driven approach, by exploring the

effect of changes in the values ci and f(γ) separately, while keeping the other constant.

ci can be interpreted as the prior odds of excluding xi when βi is close to zero, hence it

defines the threshold between including or excluding an explanatory variable. Note that the

relation between ci and this threshold is not linear, as the threshold only slightly decreases

when ci increases. As shown in Equation 14, the effect of ci depends on its size relative to τ ,

which is set at τ = 1
100 in this paper. ci is defined for values larger than 0, and the initial

value of ci is set at 30, 000, which is roughly three times the mean of the standard deviation of

the explanatory variables. pi can be interpreted as the prior odds of including a explanatory

variable into the model. Consequently, pi is a probability, and is defined for values between 0

and 1. For f(γ), we define the prior as described by Equation 20, starting with f(γ) = p−2i
which indicates a uniform indifferent prior that states P (γi = 1) = pi = 0.5, indicating that the

probability of including a variable is equal to not including a variable. In this paper, both pi
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and ci are assumed to be constant within an observation, that is ci = c and pi = p. Finally, the

values c = 500.000 and p = 0.9 are selected.
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Table 3: Top 5 models with the highest posterior probability for different values for c, given P (γi = 1) = 0.90,
and their corresponding prediction performance criteria. Here M1 implies the model with highest posterior
probability. PosProb = Posterior probability, FP60 = amount of FP observations given a TRP rate of 60%,
FP90 = amount of FP observations given a TRP rate of 90%, FP50-100 = average amount of FP observations
in the TPR range of 50% − 100%, Z-value based on a TPR of 100%. K stands for thousand, and M stands for
million.

Ml Top 5 models PosProb FN60 FN90 FN50-100 AUC Z-value

c = 5 M1
Credit Score, Insurance, Units, CLTV,
DTI, UPB, LTV, Interest Rate, Borrowers

0.497 429 3073 1531 0.867 106.666

M2
Insurance, Units, CLTV, DTI,
UPB, LTV, Interest Rate, Borrowers

0.127 425 3178 1765 0.844 145.413

M3
Credit Score, Insurance, Units,
CLTV, DTI, UPB, Interest Rate, Borrowers

0.127 439 3045 1536 0.867 106.388

M4
Credit Score, Insurance, Units,
CLTV, DTI, LTV, Interest Rate, Borrowers

0.126 279 2505 1280 0.890 127.033

M5
Credit Score, Units, CLTV, DTI,
UPB, LTV, Interest Rate, Borrowers

0.122 453 2309 1377 0.879 108.152

c = 500 M1
Insurance, Units, CLTV,
Interest Rate, Borrowers

0.263 327 2573 1574 0.865 116.732

M2
Insurance, Units, Interest Rate,
Borrowers

0.262 328 2591 1589 0.863 117.852

M3
Units, Interest Rate, Borrowers

0.185 344 3047 1547 0.870 100.021

M4
Units, CLTV, Interest Rate, Borrowers

0.154 330 2957 1503 0.874 98.179

M5
Insurance, Units, CLTV,
LTV, Interest Rate, Borrowers

0.137 330 2454 1543 0.865 119.957

c = 50K M1
Insurance, Units, Interest Rate,
Borrowers

0.362 328 2591 1589 0.863 117.852

M2
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.272 283 2460 1283 0.890 126.119

M3
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.174 288 2488 1291 0.889 126.655

M4
Insurance, Units, CLTV,
Interest Rate, Borrowers

0.129 327 2573 1574 0.865 116.732

M5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.063 282 2454 1279 0.890 126.119

c = 500K
& c = 5M

M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.395 283 2460 1283 0.890 126.119

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.278 288 2488 1291 0.889 126.655

M3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.142 280 2479 1274 0.890 125.959

M4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.093 280 2503 1282 0.890 126.871

M5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.093 282 2454 1279 0.890 126.119

c = 50M M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.404 283 2460 1283 0.890 126.119

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.240 288 2488 1291 0.889 126.655

M3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.171 280 2479 1274 0.890 125.959

M4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.114 280 2503 1282 0.890 126.871

M5
Credit Score, Insurance, Units,
CLTV, DTI, Interest Rate, Borrowers

0.071 282 2482 1286 0.889 126.763

c = 500M M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.615 283 2460 1283 0.890 126.119

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.165 288 2488 1291 0.889 126.655

M3
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.089 282 2454 1279 0.890 126.119

M4
Credit Score, Insurance, Interest Rate,
Borrowers

0.074 289 2463 1287 0.889 126.763

M5
Credit Score, Insurance, CLTV,
Interest Rate

0.057 394 1741 1376 0.879 196.345

24



Table 3 displays the effect of different values for c on the obtained top 5 models in terms

of posterior probability, and shows the corresponding values of their prediction performance

criteria. Here, p is set at 0.9. Setting c low results in a low threshold for including variables,

and results in including many variables into the model. This can be seen in the top models

for c = 5, that incorporate a relatively large amount of explanatory variables which results in

low prediction performance for almost every model. When evaluating c in the range of 500

to 500K, the obtained optimal models, and the number of included variables, are constantly

changing. Here, the prediction performance on average increases as the value of c increases. For

c in the range of 500K to 5M , the optimal models do not change, and the only differences is

the posterior probability. The results of c = 5m are presented in the appendix. For values of c

that are higher than 5M , the prediction performance becomes less good. Moreover, it can be

seen that models with high and low values for c have relatively higher posterior probabilities

for their best models. This can result in models that are selected because of the fit of their

explanatory variables with the model set-up, rather than because their explanatory variables

are more likely to describe the underlying data. Especially for the analysis of model averaging

this has large consequences, as disproportional values of the posterior probability directly affect

the BMA weights and consequently the obtained results. Consequently c = 500.000 is set for

the remainder of this paper, as it has the highest prediction performance criteria values and

non-disproportional values for the posterior probability.
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Table 4: Top 5 models ordered on their highest posterior probability for different values for p, given c = 500, 000,
and their corresponding prediction performance criteria. Here M1 implies the model with highest posterior
probability. PosProb = Posterior probability, FP60 = amount of FP observations given a TRP rate of 60%,
FP90 = amount of FP observations given a TRP rate of 90%, FP50-100 = average amount of FP observations
in the TPR range of 50% − 100%, Z-value based on a TPR of 100%.

Ml Top 5 models PosProb FN60 FN90 FN50-100 AUC Z-value

p = 0.95 M1

Credit Score, Insurance, Units,
CLTV, Interest Rate,
Borrowers

0.302 288 2488 1291 0.889 126.66

M2
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.236 280 2503 1282 0.890 126.87

M3
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.229 283 2460 1283 0.890 126.12

M4
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.127 280 2479 1274 0.890 125.96

M5
Credit Score, Insurance, Units,
CLTV, DTI, LTV, Interest Rate, Borrowers

0.106 279 2505 1280 0.890 127.03

p = 0.90 M1

Credit Score, Insurance, Units,
Interest Rate,
Borrowers

0.395 283 2460 1283 0.890 126.119

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.278 288 2488 1291 0.889 126.655

M3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.142 280 2479 1274 0.890 125.959

M4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.093 280 2503 1282 0.890 126.871

M5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.093 282 2454 1279 0.890 126.119

p = 0.85 M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.506 283 2460 1283 0.890 126.12

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.220 288 2488 1291 0.889 126.66

M3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.103 280 2479 1274 0.890 125.96

M4
Insurance, Units, Interest Rate,
Borrowers

0.089 328 2591 1589 0.863 117.85

M5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.081 282 2454 1279 0.890 126.12

p = 0.80 M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.487 283 2460 1283 0.890 126.12

M2
Credit Score, Insurance, Interest Rate,
Borrowers

0.211 289 2463 1287 0.889 126.76

M3
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.134 288 2488 1291 0.889 126.66

M4
Insurance, Units, Interest Rate,
Borrowers

0.111 328 2591 1589 0.863 117.85

M5
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.059 280 2479 1274 0.890 125.96

p = 0.50 M1
Interest Rate, Borrowers

0.473 355 3075 1565 0.869 100.71

M2
Insurance, Interest Rate, Borrowers

0.208 329 2604 1597 0.863 118.66

M3
Interest Rate

0.132 386 3147 1804 0.855 134.71

M4
Insurance, Units, Interest Rate,
Borrowers

0.095 328 2591 1589 0.863 117.85

M5
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.092 283 2460 1283 0.890 126.12

Table 4 displays the effect of different values for p on the top 5 models in terms of posterior

probability, and shows their corresponding prediction performance. Here c is set at 500, 000. As

for extreme values, setting p = 0 includes zero variables into the model, resulting in a model with
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only a constant and very little prediction performance. On the contrary, setting p = 1.0 results

in a model that includes all explanatory variables. The vague prior p = 0.5 results in relatively

small models, where the model with the highest probability only has two variables and low

prediction performance. Setting the probability of including a variable higher results in models

with a larger amount of explanatory variables. When focusing on all prediction performance

criteria except for the Z-value, setting p = 0.9 results in the best performing models. Hence,

this is set as the prior value of p for the remainder of this paper.

4.1.2 The optimal Bayesian Variable Selection Models

Table 5: Top 5 models obtained through BVS for tuning values p = 0.9 and c = 500, 000.

Model PosProb

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.395

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.278

Model 3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.142

Model 4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate,
Borrowers

0.093

Model 5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.093

Given the above described tuning values, Table 5 gives a list of the top 5 BVS models based on

highest posterior probability and displays the included variables. As we are investigating the

effectiveness and accuracy of BVS, we separately analyse the top 5 models that BVS labels as

most likely. The relative likeliness between the models can be described with Bayes factors, as

shown in Section 2.3. Consequently, the Bayes factor of Model 1 to Model 2 can be estimated

by 0.395
0.278 = 1.421. This indicates that, given that either Model 1 or Model 2 is correct, the

probability that model 1 is correct is estimated by 1.421
1+1.421 = 0.0.587. Also note that Model 4

and Model 5 are equally likely. All selected models include an intercept, and the explanatory

variables Credit Score, Insurance, Units, Interest Rate, and Borrowers. The difference in the

models lies in the inclusion of CLTV, DTI and LTV. UPB is not included in any of the models.
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Table 6: Regression coefficients of the top 5 models with the highest posterior probability given p = 0.90 and
c = 500, 000, and the FS and BE SS models. For the explanatory variables included in the models, the regression
coefficients are stated with their standard errors in parenthesis. ∗ = Coefficient significantly differs from 0, for a
95% significance level.

Intercept Credit Score Insurance Units CLTV DTI UPB LTV Interest Rate Borrowers
Model 1 -7.072∗ -0.010∗ 0.054∗ -0.160 1.509∗ -1.115∗

(2.930) (0.003) (0.014) (1.044) (0.288) (0.443)
Model 2 7.076∗ -0.010∗ 0.054∗ -0.156 0.008 1.510∗ -1.116∗

(2.931) (0.003) (0.014) (1.045) (0.058) (0.289) (0.443)
Model 3 -7.269∗ -0.010∗ 0.051∗ -0.155 0.003 1.508∗ -1.115∗

(3.330) (0.003) (0.024) (1.045) (0.024) (0.288) (0.443)
Model 4 -7.273∗ -0.010∗ 0.052∗ -0.151 0.008 0.003 1.508∗ -1.115∗

(3.330) (0.003) (0.024) (1.046) (0.059) (0.024) (0.289) (0.443)
Model 5 -7.104∗ -0.010∗ 0.054∗ -0.162 0.001 1.507∗ -1.114∗

(2.996) (0.003) (0.014) (1.045) (0.016) (0.290) (0.444)
FS -8.223∗ -0.012∗ 0.057∗ -0.846 -0.012 -0.007 6.320E-06∗ 0.003 1.664∗ -1.317∗

(3.552) (0.003) (0.025) (1.104) (0.062) (0.017) (1.759E-06) (0.025) (0.297) (0.451)
BE & SS -7.994∗ -0.011∗ 0.060∗ 5.726E-06∗ 1.614∗ -1.262∗

(2.991) (0.003) (0.014) (1.605E-06) (0.291) (0.447)

The first 5 models in Table 6 show the regression coefficients of the top BVS models, calcu-

lated with IRLS. The regression estimates as calculated through BVS are presented in Equation

17 in the Appendix. They do not significantly differ from the IRLS results. Except for Units,

the coefficients of all variables that are included in all 5 top models, significantly differ from 0

at a 95% significance level. Hence, depending on the sign of the coefficient, we can say that

there is at least a 95% probability that these variables have a positive or negative influence

on the PD of the mortgage portfolios. When the variables CLTV or LTV are included, they

are insignificant and only slightly change the coefficients of the other included variables. In-

cluding DTI also gives an insignificant regression coefficient, however this has more impact on

the regression coefficients of the other included variables. The variable UPB is never included,

which indicates that this variable has a negative impact on the posterior probability of a model.

Hence, according to BVS, this variable has a negative impact on the prediction performance of

a model.

For the interpretation of the coefficients, we look at its relation to the odds ratio of the PD as

described in Equation 3. Recall that the odds ratio of the PD is described by the probability of

a default, divided by the probability of a non-default. Hence the regression coefficient represent

the changes in the log odds ratio of the PD. When assuming that the other variables stay

constant, the change in the odds ratio resulting from an increase of 1 unit in variable xi can be

described by eβi . Here βi indicates the regression coefficient as presented in the Table 6. The

odds ratio is converted to the actual change in PD as described in Equation 2.

We analyse the binary variable Borrowers of model 1 as an example. The regression coeffi-

cient is −1.115. Consequently, the odds ratio of having more than one borrower versus having

only one borrower is e−1.115 = 0.328. Hence the average difference in the PD when having

more than one borrower is 0,328
1+0.328 −

1
1+0.328 = −0.506, all else equal. This negative influence of

multiple borrowers on the PD can be explained by the fact that, when one borrower is not able

to pay the mortgage, the other borrowers are responsible. As a second example we show the

effect of the continuous variable Interest Rate of Model 1. Note that the Interest Rate values in

the data set range from 3, 75% until 8, 38%. An increase of 1% in the Interest Rate, results in

an average increase of e1,509 = 4.522 in the odds of defaulting, independent of the base Interest

Rate and assuming all else equal. The actual difference in PD depends on the base value of the
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Interest Rate. This positive relation between Interest Rate and PD is a logical consequence of

a higher risk premium when the mortgage loan has a higher PD.

It follows that significantly positive regression coefficients have a positive impact on the PD.

Hence, we can say that the variable Insurance has a positive effect on the PD of a variable. This

can be explained by adverse selection, as it is more profitable for loans with a higher PD to buy

an insurance against a default. Furthermore, the variable Credit Score describes the borrowers

creditworthiness, hence the negative relation with the PD is as expected. The variable ’ UPB’ is

not included in the first five models. However the positive relation as described by the last two

models can be explained as a larger sum of remaining unpaid principle balance takes a longer

time, or larger monthly payments, to pay back. Both cases logically increase the PD. The signs

of the remaining variables do not significantly differ from zero, hence no conclusions about their

impact can be made.

Table 7: Top 5 models with the highest posterior probability given P = 0.90 and ci = 500, 000, and their
corresponding prediction performance criteria. The included explanatory variables, AIC and BIC are calculated
by the training set. The prediction performance criteria are calculated with test set 1. PosProb = Posterior
probability, FP60 = amount of FP observations given a TRP rate of 60%, FP90 = amount of FP observations
given a TRP rate of 90%, FP50-100 = average amount of FP observations in the TPR range of 50% − 100%,
Z-value based on a TPR of 100%.

Model AIC BIC FN60 FN90 FN50-100 AUC Z-value

BVS
model 1

Credit Score, Insurance, Units,
Interest Rate, Borrowers

291.170 331.367 283 2460 1283 0.890 126.119

BVS
model 2

Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

293.152 340.049 288 2488 1291 0.889 126.655

BVS
model 3

Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

293.154 340.050 280 2479 1274 0.890 125.959

BVS
model 4

Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

295.136 348.732 280 2503 1282 0.890 126.871

BVS
model 5

Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

293.167 340.064 282 2454 1279 0.890 126.119

FS
model

Credit Score, Insurance, Units,CLTV,
DTI, UPB, LTV, Interest Rate, Borrowers

287.398 354.393 429 3073 1531 0.867 106.666

BE & SS
model

Credit Score, Insurance, UPB,
Interest Rate, Borrowers

280.327 320.524 442 2952 1506 0.870 112.867

In Table 7, the first 5 models presented are again the top BVS models with the highest

posterior probability, The FP60 and FP90 criteria indicate the number of FP, given a TPR

of 60% and 90%, e.g., the best obtained FP60 rate of 280 indicates that in order to correctly

predict 60% of the defaults, 280 non-defaulting portfolios are falsely predicted as a default. This

corresponds to 280
6000−30 = 4, 71% wrongly predicted non-defaulting portfolios. Here 30 indicates

the total amount of defaults in the test data set of n = 6000 observations. Note however, that

these criteria only indicate the prediction performance of the model at the specific TPR rates.

An overall more informative criteria is FN50-100, which indicates the average rounded number

of FP within the TRP range of 50%− 100%. A lower value here indicates that on average less

FP are needed for a model, for the indicated TPR range. The AUC criteria indicates the models

ability to discriminate between default and non-defaults. As this criteria describes the whole

TRP range, it is considered informative. Lastly, the Z-value indicates the models prediction

accuracy at a TPR rate of 100%, which is corrected by the variation.

When looking at the order of the models, BVS is not able to order them strictly from the

highest to the lowest prediction performance. However, these are the top 5 models from a
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set of 29 = 512 models, hence roughly the top 1% models. When comparing these 5 models

with all other models evaluated in this paper, four of them are among the overall top 5 models

with the highest prediction performance. This indicates that BVS succeeds in attaching high

probabilities to models with a relatively high prediction performance. When looking at the

traditional variable selecting criteria AIC and BIC for these 5 models, Model 4 and Model 5

would have been substituted, which results in a better order of the prediction power. Hence

given the top 5 as calculated by BVS, the traditional criteria result a better ordered list in this

case.

Figure 5: Amount of FP given the TPR plotted in the range of 50% − 100%. Based on test set 1.

4.1.3 Comparison to the Traditional Benchmark Models

The traditional algorithms FS, BE, and SS are used to create benchmark models. Both opti-

mizing criteria AIC and BIC result in identical models for all three algorithms. Furthermore

BE and SS both obtain the same model. The model obtained by FS and the model obtained by

both BE and SS are presented as the last two models in Table 6 and Table 7. The AIC value

of the benchmark model is lower compared to the BVS models. However, when looking at the

BIC, the value of the FS model is higher compared to the other models. This is an unexpected

result, as the algorithm explicitly filters models that have a high value for this criteria. This

indicates that the FS algorithm stopped at a local optimum.

In the FS model, all potential variables are included. The variables included in Model BE &

SS are also different from the BVS models. Consequently, the estimated regression coefficients

and hence the corresponding predictions are also different. When we make the comparison

between the prediction performance of the BVS models and the benchmark models, the BVS

models have higher criteria values, except for the Z-value. The reason for this is visualized in

Figure 5, which gives a graphical representation of the required FP plotted against the TPR
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values. It shows that the prediction performance of the BVS models in general is better than

the traditional models. However, at a TPR of 100% the traditional models result in a lower

amount of FP. This indicates that, when restricting the model to predicting all actual defaults,

the BVS models do not have the highest prediction performance. Is is concluded that the BVS

models on average outperform the benchmark models.

4.1.4 Multiple Test Sets

In order to prevent accepting specific results as general conclusions, two extra test samples of

n = 6000 are taken from the remainder of the full data set, as described in Section 3. Tables

and figures similar to Table 7 and Figure 5, but estimated using the data of the other two

test sets are presented in the appendix. Note that the posterior probability, AIC and BIC are

calculated using the training set, and hence do not change when we estimate using another test

set. Furthermore, for these extra test sets, it is concluded that most of the above described

findings are considered to be general. For every test set, the BVS models outperform the

benchmark on average, but the benchmark has a lower Z-value. This signals that BVS focuses

on the whole TPR range, whereas the traditional criteria focus on models that predict all of

the actual defaults. Model 4 has the highest AIC and BIC values, but the best prediction

performance for the other two test sets. Hence, here BVS is better in ordering the prediction

performance of the models within the top 5. Another observed difference is that for both extra

sets, the FP60 criteria is lower for the traditional selected models. As these results were not

observed for test set 1, no general conclusion can be drawn.

In general, it is concluded that, for high TPR’s, the BVS significantly outperform the bench-

mark. However, when requiring a TPR of 100%, the benchmark models have a higher prediction

performance.

4.2 Bayesian Model Averaging

In this section, the main BMA results are reported and commented on. For BVS, the goal is

to eventually select one optimal model, whereas BMA aims to combine multiple models with

a high probability. Therefore, in order to more thoroughly investigate BMA and its potential

model combinations, both the top 10 and top 5 models is analysed. Table 8 displays the top 10

models ordered on posterior probability. Different combinations of these models are evaluated

on their prediction performance. These are both simple combinations and combinations made

according to the rules of thumb as described in Section 1. For BMA, the different models

are weighted by the relative size of their posterior probability. Additionally, the results of the

same model combinations, but weighted by their AIC, BIC or using equal weights are used as

a benchmark. Lastly, the results of the two additional test sets are analysed with the goal of

making the application of the conclusions more general. Figure 6 gives a detailed overview of

this part of the result section. Furthermore, in this section it is investigated which rules result

in the combinations with the best prediction performance.
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Figure 6: An overview of the result section of Bayesian Model Averaging, including a comparison schedule.

Table 8: Prediction performance of the top 10 models with the highest posterior probability, as calculated with
BVS. Estimated with test set 1.

Variables PosProb AIC BIC FP60 FP90 FP50-100 AUC Z-score

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 291.170 331.367 283 2460 1283 0.890 126.119

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 293.152 340.049 288 2488 1291 0.889 126.655

Model 3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.118 293.154 340.050 280 2479 1274 0.890 125.959

Model 4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.077 295.136 348.732 280 2503 1282 0.890 126.871

Model 5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.077 293.167 340.064 282 2454 1279 0.890 126.119

Model 6
Credit Score, Insurance, Units,
CLTV, DTI, Interest Rate, Borrowers

0.054 295.149 348.746 282 2482 1286 0.889 126.763

Model 7
Credit Score, Insurance, Interest Rate,
Borrowers

0.048 289.194 322.692 289 2463 1287 0.889 126.763

Model 8
Insurance, Units, Interest Rate,
Borrowers

0.026 300.384 333.882 328 2591 1589 0.863 117.852

Model 9
Credit Score, Insurance, CLTV,
Interest Rate, Borrowers

0.025 291.175 331.372 290 2490 1295 0.889 127.413

Model 10
Credit Score, Insurance, Units,
DTI, LTV, Interest Rate, Borrowers

0.016 295.151 348.747 278 2477 1271 0.891 126.280
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4.2.1 Analysis of Model Combinations

Table 9: Prediction performance of analysed different simple combinations of models, weighted with BMA. The
combined models are described in Table 8.

BMA simple combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 287 2476 1287 0.889 126.333
Model 1, 2 & 3 282 2479 1285 0.890 126.173
Model 1, 2, 3 & 4 281 2480 1284 0.890 126.226
Model 1, 2, 3, 4 & 5 281 2480 1284 0.890 126.280
Model 1, 2, 3, 4, 5 & 6 281 2480 1284 0.890 126.280
Model 1, 2, 3, 4, 5, 6 & 7 281 2479 1284 0.890 126.280
Model 1, 2, 3, 4, 5, 6, 7 & 8 279 2501 1288 0.889 126.066
Model 1, 2, 3, 4, 5, 6, 7, 8 & 9 279 2501 1288 0.889 126.119
Model 1, 2, 3, 4, 5, 6, 7, 8 , 9 & 10 279 2500 1287 0.889 126.066

Table 9 present different simple BMA combinations of the top models calculated by BVS, or-

dered on their posterior probability. We start with the two models with the highest posterior

probability and sequentially add the next best model for every new combination, until a com-

bination of all 10 top models is obtained. The first three BMA combinations in Table 10 are

the same simple combinations of the first two, first three and all ten models. The remaining

combinations are selected using the described inclusion rules, applied to the top 5 and top 10

models respectively. That is, the combinations that are in the blue cells, are made out of models

that have a high prediction performance when analysed individually. The yellow combinations

are created by the rule that excludes a model from the combination when a subset of this model

is available with a better prediction performance. The green combinations are made using both

inclusion rules.

Table 10: Prediction performance of model combinations created by applying the inclusion rules, and weighted
with BMA. The blue cells indicate combinations that are made by the rule that includes models with a high
prediction performance. The yellow combinations are made by the rule that excludes a model from the combi-
nation when a subset of this model is available that has better prediction performance. The green combinations
are made using both inclusion rules. The combined models are described in Table 8.

BMA combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 287 2476 1287 0.889 126.333
Model 1, 2 & 3 282 2479 1285 0.890 126.173
All models 279 2500 1287 0.889 126.066
Model 1, 3, 4 & 5 281 2472 1280 0.890 126.119
Model 1, 3, 4, 5 & 10 281 2472 1280 0.890 126.119
Model 1, 3 & 5 281 2465 1280 0.890 125.960
Model 1, 3, 5, 7, 8, 9 & 10 274 2508 1287 0.889 125.641
Model 3 & 5 280 2470 1276 0.890 126.173
Model 1, 3, 5 & 10 281 2465 1280 0.890 126.066

For the simple combinations, the results indicate that middle sized combinations of four

to seven models, with larger posterior probability, outperform small and large combinations.

Additionally, Table 10 shows that the combinations that are created by applying both rules

outperform all other combinations including the simple ones. This is concluded as they have the

best values for the criteria that are based on the strongest prediction performance criteria FP50-

100 and AUC. Note that the combinations created by excluding the models that have better
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subsets show strong TPR specific criteria values for FN60, FN90, and the Z-value. However,

overall they have a lower prediction performance. Because of the large diversity in the number

of combined models in the best obtained combinations, no general conclusions can be drawn

about the optimal number of combined models. Furthermore, the general application of the

results is investigated in Section 4.2.3.

4.2.2 Comparison to the Traditional Benchmark Combinations

Table 11: Prediction performance of analysed different combinations of models, weighted equally. Based on test
set 1.

AIC combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 287 2478 1288 0.889 126.494
Model 1, 2 & 3 281 2479 1283 0.890 126.226
All models 261 2595 1299 0.888 124.329
Model 1, 3, 4 & 5 281 2479 1280 0.890 126.280
Model 1, 3, 4, 5 & 10 280 2478 1278 0.890 126.280
Model 1, 3 & 5 281 2465 1279 0.890 126.066
Model 1, 3, 5, 7, 8, 9 & 10 255 2581 1301 0.888 123.145
Model 3 & 5 280 2467 1276 0.890 126.119
Model 1, 3, 5 & 10 280 2467 1276 0.890 126.119

In this section, the above described results of the BMA combinations are compared to the

benchmark combinations weighted by the traditional weights. Table 11 displays the prediction

performance of the selected combinations weighted equally. The results obtained using AIC

and BIC as weight are only marginally different from the equally weighted results. This is

a logical consequence from the fact that the AIC and BIC values of the different models are

large and only slightly different, hence using them as a weight is comparable to using equal

weights. Consequently, only the AIC results are presented and discussed. It is concluded that

the results of the optimal BMA combinations are almost similar to the results of the traditional

weighted models. Specifically, when looking at the average performance of the combinations,

the differences between the methods are neglectable. However, the differences become larger for

combinations that include both models located in the upper and lower area of the top 10. This

is as expected, as the larger difference in posterior probability of these models make the weights

differ from the traditional benchmark. The finding that the combinations created by applying

both rules perform better on average, is also applicable for the traditionally weighted benchmark

combinations. The differences between the results obtained using the other traditional weights

are small. As this difference is small, the results of the other two test sets is investigated in the

next section.

4.2.3 Multiple Test Sets

In order to obtain more generally applicable conclusions, the prediction performance of the

selected combinations is analysed for the other two test sets. For the simple combinations,

the results of the other two sets are displayed in the appendix. The above described results

are in favor of the middle sized models combinations. The other two sets show results in
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favor of small to medium sized sets. Overall, models with a high ranking in the top 10 have

a higher prediction performance. Combining models that individually have a high prediction

performance results in a high prediction performance. Hence, in general it is concluded that

small to medium combinations of models with a high posterior probability outperform larger

model combinations. No evidence is discovered for an optimal amount of included models.

Table 12 gives an overview of the average criteria values of differently obtained combinations.

Table 12: Average values of the criteria values for different combinations and models. (5) states that the top 5
models are used for the combinations, where (10) indicates the top 10 model are used. ’Same set 2 rules’ indicates
the average criteria values over the three sets, for the model combination obtained by applying both rules to the
results of that same set. ’Other set 2 rules’ indicates that the model combinations are made with another set.
’Train set 2 rules’ indicates that the model combinations are made with the train set

Table Averages FP60 FP90 FP50-100 AUC Z-score

Simple combination (5) 719 2647 1620 0.857 207.454
Simple combination (10) 719 2638 1617 0.857 207.904
Same set 2 rules (5) 709 2653 1607 0.858 202.820
Same set 2 rules (10) 687 2624 1609 0.857 207.383
Other set 2 rules (5) 710 2653 1611 0.857 203.683
Other set 2 rules (10) 720 2647 1621 0.857 207.927
Train set 2 rules (5) 718 2636 1618 0.857 208.105
Train set 2 rules (10) 693 2634 1618 0.857 209.243

Individual models (5) 712 2642 1615 0.857 206.466
Individual models (10) 705 2718 1664 0.853 209.054

35



4.2.3.1 Analysis of Additional Model Combinations

Table 13: Prediction performance of different BMA combinations estimated with test set 1.The different combi-
nations are based on applying the model inclusion rules to the top 10 models estimated with test set 1 (orange),
2 (light blue) 3 (red).

BMA combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 287 2476 1287 0.889 126.333
Model 1, 2 & 3 282 2479 1285 0.890 126.173
All models 279 2500 1287 0.889 126.066

Combinations based on set 1

Model 1, 3, 4 & 5 281 2472 1280 0.890 126.119
Model 1, 3, 4, 5 & 10 281 2472 1280 0.890 126.119
Model 1, 3 & 5 281 2465 1280 0.890 125.960
Model 1, 3, 5, 7, 8, 9 & 10 274 2508 1287 0.889 125.641
Model 3 & 5 280 2470 1276 0.890 126.173
Model 1, 3, 5 & 10 281 2465 1280 0.890 126.066

Combinations based on set 2

Model 2, 3 & 4 281 2491 1284 0.890 126.602
Model 2, 3, 4, 6, 9 & 10 281 2492 1284 0.890 126.655
Model 1, 2, 3 & 4 281 2480 1284 0.890 126.226
Model 1, 2, 3, 4, 6, 7, 8 & 9 279 2505 1289 0.889 126.119
Model 3 & 4 280 2491 1278 0.890 126.280
Model 2, 3, 4, 6 & 9 281 2493 1285 0.890 126.602

Combinations based on set 3

Model 2, 3 & 4 281 2491 1284 0.890 126.602
Model 2, 4, 7 & 9 285 2491 1289 0.889 126.709
Model 1, 2, 3 & 4 281 2480 1284 0.890 126.226
Model 7, 8 & 9 273 2580 1323 0.886 121.482
Model 3 & 4 280 2491 1278 0.890 126.280
Model 7 & 9 290 2474 1290 0.889 127.141

By applying the above described inclusion rules similarly to the other two test sets, new com-

binations are obtained. Next, all different combinations are estimated using the three test sets.

Table 13 displays the results of all different combinations, estimated with test set 1. The first

nine combinations are similar to the ones described above, but stated again to make the com-

parison to the other test sets. Here, the orange colored cells indicate the same combinations

based on test set 1. The light blue cells indicate the combinations based on test set 2, and

the red cells show the combinations based on test set 3. The results obtained when estimating

these combinations with the other two test sets are displayed in the appendix. For the most

informative criteria FN50-100 and AUC, the best values are obtained by the combinations that

are created by applying both rules to the top 5 models estimated with test set 1. That is, the

combination of Model 3 & 5. Moreover, as stated by Table 23 in the appendix, the best pre-

diction performance for test set 2 is obtained via the combinations that are made by applying

both rules to the 5 top models estimated by test set 2. That is the combination Model 3 &

4. The best combination for test set 3 are however obtained by applying both rules to the top

10, as stated in Table 29 in the appendix. Moreover, Table 12 shows that, on average the best

combination of models for a specific test set is obtained by applying both inclusion rules to the

top 5 models estimated by that specific set.
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By applying the rules of inclusion, the prediction performance of the test set is used, hence

make use of out-of-sample information. However, it is often the case that one cannot estimate

these results, because the out-of-sample data is not available. A possible solution is making

simple combinations as described above. Another solution is looking at the model combinations

obtained by one test set, and evaluating these combinations with estimates from another test

set. For example, the blue model combinations in Table 13 show the prediction performance

of model combinations based on test set 2, estimated with test set 1. The results of the model

combinations estimated with test set 2 and 3 are displayed in the appendix in Table 23 and Table

29. Table 12 shows that, on average the combinations based on another test set outperform

simple combinations for the top 5 models. A third option is creating model combinations using

the train set. The analysis of these combinations is described in Section 6.1.1 in the appendix.

It is concluded that these train set combinations do not outperform the other combinations,

which is also shown in Table 12.

4.2.3.2 Traditional Benchmark for the Additional Model Combinations

The analysis of this comparison is described in Section 6.1.2 in the appendix. Overall, it is

concluded that the BMA weights only outperform the traditional weights for larger model com-

binations, as this results in significantly assigning larger weights to models with a higher predic-

tion performance. Furthermore, the performance of BMA compared to the traditional weights

is dependent on the ability of BVS to order the different models on prediction performance. An

increase in this ability also increases the performance of the simple BMA model combinations

compared to different combinations based on rules, as a combination of perfectly ordered models

weighted from high to lower is the optimal combination. Furthermore, when BVS becomes more

robust for different out-of-sample sets, the combinations based on different sets or the train set

approach the combinations based on the same set, increasing the performance of BMA.
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4.3 Comparing BVS and BMA

Table 14: Top 10 BVS models and simple BMA combinations. Indicates the absolute difference between the best
value for the criteria and the result of the model or combination, summed over all three test sets. Average (5)
indicates the average criteria differences for the best 5 models or their simple combinations, where average (10)
shows the averages of the best 10 models or their simple combinations.

Top 10 Models FP60 FP90 FP50-100 AUC Z-score

Model 1 176 75 62 0.006 71.718

Model 2 169 136 53 0.005 75.758

Model 3 137 154 28 0.003 53.183

Model 4 120 216 19 0.002 58.930

Model 5 173 71 63 0.006 73.527

Model 6 179 129 53 0.005 77.237

Model 7 92 81 60 0.006 72.883

Model 8 50 1415 1214 0.131 127.301

Model 9 108 144 50 0.004 77.287

Model 10 129 155 30 0.003 56.024

Average (5) 129 109 38 0.004 55.519

Average (10) 133 258 163 0.017 74.385

Model Combinations

Model 1 & 2
188 105 56 0.006 73.384

Model 1, 2 & 3
173 113 53 0.005 71.540

Model 1, 2, 3, & 4
172 126 48 0.004 69.812

Model 1, 2, 3, 4
& 5

170 123 49 0.004 69.011

Model 1, 2, 3, 4,
5 & 6

174 125 49 0.004 69.866

Model 1, 2, 3, 4,
5, 6 & 7

175 120 50 0.004 69.923

Model 1, 2, 3, 4,
5, 6, 7 & 8

171 201 75 0.007 67.202

Model 1, 2, 3, 4,
5, 6, 7, 8 & 9

173 200 75 0.007 67.910

Model 1, 2, 3, 4,
5, 6, 7, 8 , 9 & 10

171 200 73 0.007 67.618

Average (5) 176 117 52 0.005 70.937

Average (10) 174 146 59 0.005 69.585

Table 14 displays the differences between the optimal criteria values and the values of the se-

lected models and combinations summed over the three test sets. It is concluded that the

optimal individual BVS models outperforms the optimal BMA combination in terms of predic-

tion performance. As the results might be biased because some test sets have larger differences

on average, Table 30 in the appendix displays the average differences in percentages. However,

there are no differences in which model or combination has the optimal criteria value. By ana-

lyzing the earlier described tables with individual models and model combinations, it is shown
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that this result also holds for the test sets separately. Hence, it is concluded that the optimal

BVS performing models outperform the optimal BMA combinations.

However, BVS orders the models on their posterior probability, which in practice does not

consistently result in the models being perfectly ordered on prediction performance for every test

set. For example Model 1, with the highest posterior probability, is on average outperformed

by the averages of the BMA combinations. Consequently, when predicting out-of-sample, one

does not know exactly which models will have higher prediction performance and which ones

will not. For example as stated in Table 14, Model 10 has shows strong prediction power over

the three test sets, whereas Model 8 has been assigned higher posterior probability by BVS,

but has significantly lower prediction performance.

As stated in the introduction, BVS can result in two different models that are compa-

rably likely, but have different explanatory variables, regression coefficients and consequently

predictions for the PD. As both models might be over-fitting on some aspects of the train-

ing set, averaging them results in a more robust and stable estimate. This is illustrated with

an example focusing on Model 1 and Model 2. The Bayes factor of model 1 over model 2

is calculated as BF35 = 0.328
0.231 = 1.42. Given that one of the two models is correct, we have

P (M3) = 1.42
2.42 = 0.0.587, and P (M5) = 0.413, indicating that their likeliness does not signif-

icantly differ. Table 15 displays the prediction performance criteria of these two models, and

their BMA combination, for all three sets separately and the average over the sets. As shown in

Table 6, the regression coefficients are almost identical for the variables that are included in both

models. The difference is that Model 2 also consists of the variable CLTV. Hence by weighting

the models, a weighted variable CLTV is included. For test set 1, Model 1 has higher average

prediction performance, for test set 2 Model 2 has higher average prediction performance, and

for test set 3 Model 1 has only slightly higher average prediction performance. Consequently,

the combination of the two models almost always has an average prediction performance, and

for test set 3 even the best prediction performance. With the use of BMA, the BVS models

are averaged, resulting in a loss in accuracy for the best models, but increased robustness and

stability in the prediction performance. Hence, possible outliers in the data or in models will

also have less influence on the results obtained by BMA. This is also shown in Table 14, where

the differences in prediction criteria values between the different models are clearly larger than

the differences between the combinations. For example, the values for FP50-100 range from 48

to 75 for the different BMA combinations, whereas they range from 19 to 1214 for the individual

models.
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Table 15: The results of model 1, model 2 and the BMA combination of model 1 and 2, for all three test sets
and the average over the test sets.

Set 1 PosProb FP60 FP90 FP50-100 AUC Z-score

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 283 2460 1283 0.890 126.119

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 288 2488 1291 0.889 126.655

Model 1 & 2 287 2476 1287 0.889 126.333

Set 2

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 781 3863 2072 0.822 366.512

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 787 3879 2057 0.824 369.550

Model 1 & 2 782 3873 2065 0.823 368.022

Set 3

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 1094 1548 1507 0.857 131.863

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 1076 1565 1505 0.857 132.329

Model 1 & 2 1101 1552 1504 0.857 131.805

Average

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 719 2624 1621 0.856 208.164

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 717 2644 1618 0.856 209.511

Model 1 & 2 723 2634 1619 0.856 208.720

In Section 4.2, it is stated that an increase in the ability of BVS to order the models on their

prediction performance results in a better performance of BMA in contrast to the benchmark

weights. This result remains valid, nevertheless this inability is the reason that BMA results in

more robust and stable predictions compared to BVS. When BVS would result in one model

that robustly outperforms all other models, combining this model would always result in a loss

in prediction performance. However, the existence of such a model is dependent on the data

set, and is for almost every set not available.

Lastly, Table 12 displays the average criteria values for the individual models and different

model combinations. The results show that the combinations created by the inclusion rules

on average outperform the individual models, for both the top 5 and top 10 models. This is

an important result, as it shows that for the right combinations, BMA does not only result in

decreased variation in the model specific errors, but also in increased prediction performance

on average.

For the practical implementation of the results, it follows from this result that BMA can best

be used for the modelling of the PD of mortgage portfolios. As shown before BVS outperforms

the traditional variable selection algorithms FS, BE, and SS. Additionally, BMA outperforms

BVS in that it is more robust and stable, which is an improves a PD model, as it might have

to deal with outliers and high variation in the observations. Consequently, for combinations

created with both inclusion rules, BMA also results in higher prediction performance on average.

40



5 Conclusions and Extensions

This paper investigates the effects of BVS and BMA on predicting the PD of a mortgage

portfolio. More specifically, it answers the question whether the use of BVS and BMA results

in an increase in prediction performance when modelling the PD of mortgage portfolios. As

a benchmark traditional criteria and weights are evaluated. Given the top 5 models selected

with BVS, the comparison between BVS and the traditional benchmark criteria AIC and BIC

is not consistent for the different test sets. Hence no strong evidence in favour of BVS is

discovered. However, when considering models outside this top 5, BVS does obtain better results

than the traditional benchmark criteria. The only criteria for which the benchmark models

strictly outperform BVS is the Z-score, indicating that these models have better prediction

performance for a TPR of 100%, that is when all defaults are required to be predicted as defaults.

Nevertheless, BVS does on average outperform the traditional variable selection algorithms FS,

BE and SS. Furthermore, for different test sets, the BVS models also outperform the models

obtained by these traditional algorithms. Hence, BVS does increase the prediction performance

of a PD model compared to the benchmark.

For BMA different combinations are compared on prediction performance and are compared

to traditional weighted combinations. The best performing BMA combinations are created

by applying the two inclusion rules to the result of the same test set. However, as this is

not possible for out-of-sample data, applying both rules to the results of another test set is

a good alternative. It results in higher prediction performance compared to creating simple

model combinations. The best performing combinations are small to medium sized, ranging

from two to seven included models. For these best combinations, the BMA combinations do

not outperform the traditional weighting benchmark. However, for larger combinations with

models from different places in the top 10, BMA does outperform the benchmark.

The optimal individual BVS models outperform the optimal BMA combinations. Neverthe-

less, BMA combinations decrease the variation in the model specific errors, increases robustness

for different test sets, and on average outperform the BVS models on prediction performance.

Better ability of BVS to robustly order the models on prediction performance would result in

better performance of BMA compared to the benchmark criteria, but would also decrease the

overall effect of averaging models, as the optimal model can simply be selected.

Hence in short, BVS outperforms the benchmark in selecting the optimal subset of included

explanatory variables, BMA does not significantly outperform the benchmark, but does on

average outperform the prediction performance of BVS for model combinations created with

both inclusion rules. Hence, it is concluded that applying BVS does increase the prediction

performance of the PD model, and making simple combinations of the optimal models, with for

example BMA, results in a PD model with improved prediction performance and less variation

in the model specific errors. The use of this methodology does significantly decrease the model

specific error and increases the prediction performance of models used to predict the PD of a

mortgage portfolio.

Further research could investigate the wider application of the obtained result in the field

of credit risk. The sample analysed in this paper is relatively small compared to the population
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of mortgage loans. Additionally, data from four out of nineteen available years is used. Further

research could potentially investigate larger data sets to increase the general application of

the results. This can include more observations, investigating a longer time span of the loan,

or analysing more years of loan origin. Furthermore, different explanatory variables could be

included. For example, when a longer time span of the loan is examined, the variable indicating

arrear payments in the past can be included. Moreover, when analysing multiple years of origin,

a variable describing the underlying business cycle could be included.

Another possible extension is the comparison of SSVS with other BVS methods. As de-

scribed in Section 1, literature describes a wide variety of different BVS methods. This paper

investigates SSVS, however further research could also investigate the application of for ex-

ample MCMCRJ for modelling the PD. These obtained results of the different models can be

compared on prediction performance, but also on for example the speed of the method, or the

ease of adapting it to a different set-up or topic.

Furthermore, this paper analyses traditional variable selection methods and criteria like FS

or AIC as a benchmark. Existing literature also describes a variety of different new methods

that can be used as a benchmark. For example, machine learning techniques can be used to

create PD models. Further research can investigate the differences of BVS and these methods.

This can be done on efficiency or predictive performance, but also applicability due to differences

in for example transparency and subjectivity.
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6 Appendix

6.1 Additional results

6.1.1 Creating Combinations using the Train set

Here, the possibility of estimating the model combinations on estimates obtained by the the

train data set is investigated. Table 18 in the appendix states the prediction performance

obtained when estimating the top 10 models with the train set. Here it is shown that when

both rules are applied to the top 5 and top 10, the combinations Model 1, 2 & 3, and Model 7 &

9 are obtained respectively. These are the same models obtained by test set 3, and are presented
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in Table 29. Consequently, for estimates obtained with test set 3, the prediction performance

is high. However, for the other two test sets the estimates show lower prediction performance.

As displayed in Table 12, on average the prediction performance of the combinations obtained

by the train set do not outperform the other above described combinations.

6.1.2 Analysis of the Traditional Benchmark Criteria for the Additional Model

Combinations

Table 16: Prediction performance of different AIC weighted combinations estimated with test set 1. The different
combinations are based on applying the model inclusion rules to the top 10 models estimated with test set 1, 2
3.

AIC Combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 287 2478 1288 0.889 126.494
Model 1, 2 & 3 281 2479 1283 0.890 126.226
All models 261 2595 1299 0.888 124.329

Combinations based on set 1

Model 1, 3, 4 & 5 281 2479 1280 0.890 126.280
Model 1, 3, 4, 5 & 10 280 2478 1278 0.89 126.280
Model 1, 3 & 5 281 2465 1279 0.890 126.066
Model 1, 3, 5, 7, 8, 9 & 10 255 2581 1301 0.888 123.145
Model 3 & 5 280 2467 1276 0.890 126.119
Model 1, 3, 5 & 10 280 2467 1276 0.890 126.119

Combinations based on set 2

Model 2, 3 & 4 281 2494 1282 0.890 126.602
Model 2, 3, 4, 6, 9 & 10 281 2488 1283 0.890 126.871
Model 1, 2, 3 & 4 281 2489 1283 0.890 126.387
Model 1, 2, 3, 4, 6, 7, 8 & 9 260 2598 1303 0.888 123.760
Model 3 & 4 280 2492 1279 0.890 126.333
Model 2, 3, 4, 6 & 9 281 2491 1285 0.890 126.925

Combinations based on set 3

Model 2, 3 & 4 281 2494 1282 0.890 126.602
Model 2, 4, 7 & 9 285 2488 1288 0.889 126.979
Model 1, 2, 3 & 4 281 2489 1283 0.890 126.387
Model 7, 8 & 9 282 2573 1339 0.884 119.473
Model 3 & 4 280 2492 1279 0.890 126.333
Model 7 & 9 290 2480 1292 0.889 127.196

For the other two test sets, results of the model combinations weighted by AIC, BIC and

equal weights are again only marginal different from each other, where the AIC weights show

marginally better results. The results of the AIC weights estimated with test set 1, for the

different combinations created by all three test sets, are located in Tabel 16. Here it is shown

that the average prediction performance of the best benchmark combinations is similar to the

best BMA combinations, displayed in Table 10. This is a general result, as it is confirmed by

the results of the same combinations estimated for the other two sets as shown in the appendix.

An explanation for this is that most best performing combinations are made out of models that

are ordered closely to each other, resulting in small differences in weights and hence results that

are comparable to the traditional weights. If we focus on the model combinations with a large

number of models, the BMA models outperform the traditional weights, e.g., the combinations

45



’All Models’, and Model 1, 3, 5, 7, 8, 9 & 10. Overall, it is concluded that the BMA weights only

outperform the traditional weights for larger model combinations, as this results in significantly

assigning larger weights to models with a higher prediction performance.

A general explanation why BMA does not outperform the traditional weights in general, as

stated in Section 4.1, is that BVS is able to select top performing models, but does not perfectly

order them on prediction performance. As stated earlier, combining individual models with high

prediction performance results in combinations with high prediction performance. Furthermore,

combinations of models with low prediction performance and high posterior probabilities with

models with high prediction performance and low posterior probabilities is outperformed by an

equally weighted combination of these models. Hence, the effectiveness of BVS has a direct

influence on the effectiveness of BMA. Another factor that should be kept in mind is that we

evaluate out-of-sample prediction performance. That is, the results are in some way always

dependent on the comparability of the train set and the test set. A clear example is the

simple combination Model 1 & 2. For test set 1, Model 1 has lower prediction performance,

resulting in the traditional weights outperforming BMA as BMA assigns a higher weight to

Model 1. However, for test set 3, Model 1 has higher prediction performance resulting in BMA

outperforming the traditional weights. This would not be possible if prediction the performance

of the models was consistent for different test sets. This is however partially dependent on the

effectiveness of BVS, and partially on the specific data set.

6.2 Train Set

Table 17: Comparison of the regression coefficients of the top 5 models estimate with BVS and IRLS. ’Bayesian’
states the regression coefficients estimated using BVS, ’Traditional’ states the regression coefficients estimated
with IRLS. ’SE’ are the IRLS standard errors in parenthesis. The Bayesian estimates do not differ significantly
from the IRLS estimates, for a 95% (traditional) significance interval.

Statistic fico mi pct cnt units cltv dti orig upb ltv int rt cnt borr

Model 1 Bayesian -0.012 0.062 -0.408 1.378 -1.07
Traditional -0.010 0.054 -0.160 1.509 -1.115
SE (0.003) (0.014) (1.044) (0.288) (0.443)

Model 2 Bayesian -0.013 0.061 -0.319 -0.047 1.385 -1.024
Traditional -0.010 0.054 -0.156 0.008 1.510 -1.116
SE (0.003) (0.014) (1.045) (0.058) (0.289) (0.443)

Model 3 Bayesian -0.014 0.076 -0.315 -0.014 1.324 -1.033
Traditional -0.010 0.051 -0.155 0.003 1.508 -1.115
SE (0.003) (0.024) (1.045) (0.024) (0.288) (0.443)

Model 4 Bayesian -0.014 0.079 -0.223 -0.045 -0.017 1.264 -0.942
Traditional -0.010 0.052 -0.151 0.008 0.003 1.508 -1.115
SE (0.003) (0.024) (1.046) (0.059) (0.024) (0.289) (0.443)

Model 5 Bayesian -0.013 0.063 -0.331 -0.009 1.346 -1.031
Traditional -0.010 0.054 -0.162 0.001 1.507 -1.114
SE (0.003) (0.014) (1.045) (0.016) (0.290) (0.444)
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Table 18: Prediction performance of the top 10 models with the highest posterior probability, as calculated with
BVS for test the train set.

Variables PosProb AIC BIC FP60 FP90 FP50-100 AUC Z-score

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 291.170 331.367 279 1562 1234 0.896 165.63

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 293.152 340.049 281 1500 1233 0.896 166.68

Model 3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.118 293.154 340.050 275 1522 1235 0.896 176.21

Model 4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.077 295.136 348.732 276 1468 1234 0.896 177.09

Model 5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.077 293.167 340.064 276 1568 1237 0.896 166.20

Model 6
Credit Score, Insurance, Units,
CLTV, DTI, Interest Rate, Borrowers

0.054 295.149 348.746 276 1505 1234 0.896 166.88

Model 7
Credit Score, Insurance, Interest Rate,
Borrowers

0.048 289.194 322.692 281 1420 1226 0.896 165.35

Model 8
Insurance, Units, Interest Rate,
Borrowers

0.026 300.384 333.882 337 1828 1361 0.886 371.10

Model 9
Credit Score, Insurance, CLTV,
Interest Rate, Borrowers

0.025 291.175 331.372 282 1354 1224 0.896 166.20

Model 10
Credit Score, Insurance, Units,
DTI, LTV, Interest Rate, Borrowers

0.016 295.151 348.747 271 1532 1237 0.896 176.87

6.3 Results Test Set 1

6.3.1 Bayesian Variable Selection

Table 19: results for c = 5M , with the same models and prediction performance but different posterior probability
as c = 500K.

Ml Top 5 models —PosProb FN60 FN90 FN50-100 AUC Z-value

c = 50M M1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.415 283 2460 1283 0.890 126.119

M2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.307 288 2488 1291 0.889 126.655

M3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.122 280 2479 1274 0.890 125.959

M4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.080 280 2503 1282 0.890 126.871

M5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.076 282 2454 1279 0.890 126.119
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6.4 Test set 2

6.4.1 Bayesian Variable Selection

Table 20: Top 5 models with the highest posterior probability given p = 0.90 and c = 500, 000, and their
corresponding prediction performance criteria. The included explantory variables, AIC and BIC are calculated
by the training set. The prediction performance criteria are calculated with test set 2. PosProb = Posterior
probability, FP60 = amount of FP observations given a TRP rate of 60%, FP90 = amount of FP observations
given a TRP rate of 90%, FP50-100 = average amount of FP observations in the TPR range of 50% − 100%,
Z-value based on a TPR of 100%.

Model AIC BIC FN60 FN90 FN50-100 AUC Z-value

BVS
model 1

Credit Score, Insurance, Units,
Interest Rate, Borrowers

291.170 331.367 781 3863 2072 0.822 366.512

BVS
model 2

Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

293.152 340.049 787 3879 2057 0.824 369.550

BVS
model 3

Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

293.154 340.050 761 3799 2048 0.825 350.978

BVS
model 4

Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

295.136 348.732 770 3820 2033 0.826 355.029

BVS
model 5

Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

293.167 340.064 779 3870 2075 0.822 368.784

FS
model

Credit Score, Insurance, Units, CLTV,
DTI, UPB, LTV, Interest Rate, Borrowers

287.398 354.393 539 4767 2447 0.791 186.556

BE & SS
model

Credit Score, Insurance, UPB,
Interest Rate, Borrowers

280.327 320.524 502 4795 2430 0.792 205.176

Figure 7: Amount of FP given the TPR plotted in the range of 50% − 100%. Based on test set 2.
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Table 21: Prediction performance of the top 10 models with the highest posterior probability, as calculated with
BVS. Estimated with test set 2.

Variables PosProb AIC BIC FP60 FP90 FP50-100 AUC Z-score

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 291.170 331.367 781 3863 2072 0.822 366.512

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 293.152 340.049 787 3879 2057 0.824 369.550

Model 3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.118 293.154 340.050 761 3799 2048 0.825 350.978

Model 4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.077 295.136 348.732 770 3820 2033 0.826 355.029

Model 5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.077 293.167 340.064 779 3870 2075 0.822 368.784

Model 6
Credit Score, Insurance, Units,
CLTV, DTI, Interest Rate, Borrowers

0.054 295.149 348.746 785 3884 2061 0.824 371.096

Model 7
Credit Score, Insurance, Interest Rate,
Borrowers

0.048 289.194 322.692 786 3866 2074 0.822 367.265

Model 8
Insurance, Units, Interest Rate,
Borrowers

0.026 300.384 333.882 719 4314 2579 0.783 306.068

Model 9
Credit Score, Insurance, CLTV,
Interest Rate, Borrowers

0.025 291.175 331.372 791 3885 2059 0.824 370.321

Model 10
Credit Score, Insurance, Units, DTI,
LTV, Interest Rate, Borrowers

0.016 295.151 348.747 754 3807 2051 0.824 353.664

6.4.2 Bayesian Model Averaging

Table 22: Prediction performance of analysed different simple combinations of models, estimated using test set
2, weighted by BMA.

BMA simple combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 782 3873 2065 0.823 368.022
Model 1, 2 & 3 777 3855 2062 0.823 366.512
Model 1, 2, 3 & 4 777 3853 2058 0.824 365.019
Model 1, 2, 3, 4 & 5 776 3853 2059 0.824 364.279
Model 1, 2, 3, 4, 5 & 6 777 3858 2059 0.824 365.019
Model 1, 2, 3, 4, 5, 6 & 7 777 3857 2060 0.824 365.019
Model 1, 2, 3, 4, 5, 6, 7 & 8 784 3884 2071 0.823 359.926
Model 1, 2, 3, 4, 5, 6, 7, 8 & 9 785 3883 2071 0.823 360.641
Model 1, 2, 3, 4, 5, 6, 7, 8 , 9 & 10 783 3882 2070 0.823 360.641
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Table 23: Prediction performance of different BMA combinations estimated with test set 2. The different
combinations are based on applying the model inclusion rules to the top 10 models estimated with test set 1, 2
3.

BMA combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 782 3873 2065 0.823 368.022
Model 1, 2 & 3 777 3855 2062 0.823 366.512
All models 783 3882 2070 0.823 360.641

Combinations based on set 1

Model 1, 3, 4 & 5 776 3845 2062 0.823 363.543
Model 1, 3, 4, 5 & 10 775 3843 2061 0.824 362.084
Model 1, 3 & 5 775 3846 2066 0.823 362.811
Model 1, 3, 5, 7, 8, 9 & 10 781 3891 2080 0.822 357.804
Model 3 & 5 766 3825 2058 0.824 357.104
Model 1, 3, 5 & 10 775 3846 2067 0.823 362.811

Combinations based on set 2

Model 2, 3 & 4 776 3850 2049 0.825 363.543
Model 2, 3, 4, 6, 9 & 10 778 3852 2050 0.825 363.543
Model 1, 2, 3 & 4 777 3853 2058 0.824 365.019
Model 1, 2, 3, 4, 6, 7, 8 & 9 784 3886 2070 0.823 360.641
Model 3 & 4 764 3808 2039 0.826 352.987
Model 2, 3, 4, 6 & 9 778 3855 2051 0.824 364.279

Combinations based on set 3

Model 2, 3 & 4 776 3850 2049 0.825 363.543
Model 2, 4, 7 & 9 781 3861 2055 0.824 368.022
Model 1, 2, 3 & 4 777 3853 2058 0.824 365.019
Model 7, 8 & 9 821 4059 2167 0.815 344.506
Model 3 & 4 764 3808 2039 0.826 352.987
Model 7 & 9 786 3876 2068 0.823 368.784
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Table 24: Prediction performance of different AIC weighted combinations estimated with test set 2. The different
combinations are based on applying the model inclusion rules to the top 10 models estimated with test set 1,2
3.

AIC combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 783 3874 2063 0.823 368.784
Model 1, 2 & 3 775 3846 2057 0.824 363.543
All models 795 3940 2096 0.821 355.029

Combinations based on set 1

Model 1, 3, 4 & 5 769 3839 2055 0.824 359.215
Model 1, 3, 4, 5 & 10 766 3832 2054 0.824 358.507
Model 1, 3 & 5 772 3838 2064 0.823 361.361
Model 1, 3, 5, 7, 8, 9 & 10 800 3973 2116 0.819 349.656
Model 3 & 5 767 3830 2060 0.824 357.804
Model 1, 3, 5 & 10 767 3830 2060 0.824 357.804

Combinations based on set 2

Model 2, 3 & 4 774 3835 2045 0.825 358.507
Model 2, 3, 4, 6, 9 & 10 774 3848 2050 0.825 359.926
Model 1, 2, 3 & 4 772 3844 2050 0.824 361.361
Model 1, 2, 3, 4, 6, 7, 8 & 9 803 3967 2103 0.82 352.314
Model 3 & 4 765 3811 2038 0.826 353.664
Model 2, 3, 4, 6 & 9 778 3853 2051 0.824 363.543

Combinations based on set 3

Model 2, 3 & 4 774 3835 2045 0.825 358.507
Model 2, 4, 7 & 9 781 3861 2055 0.824 367.264
Model 1, 2, 3 & 4 772 3844 2050 0.824 361.361
Model 7, 8 & 9 797 4117 2198 0.812 334.814
Model 3 & 4 765 3811 2038 0.826 353.664
Model 7 & 9 787 3880 2065 0.823 369.55

6.5 Test set 3

6.5.1 Bayesian Variable Selection

Table 25: Top 5 models with the highest posterior probability given p = 0.90 and c = 500, 000, and their
corresponding prediction performance criteria. The included explantory variables, AIC and BIC are calculated
by the training set. The prediction performance criteria are calculated with test set 3. PosProb = Posterior
probability, FP60 = amount of FP observations given a TRP rate of 60%, FP90 = amount of FP observations
given a TRP rate of 90%, FP50-100 = average amount of FP observations in the TPR range of 50% − 100%,
Z-value based on a TPR of 100%.

Model AIC BIC FN60 FN90 FN50-100 AUC Z-value

BVS
model 1

Credit Score, Insurance, Units,
Interest Rate, Borrowers

291.170 331.367 1094 1548 1507 0.857 131.863

BVS
model 2

Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

293.152 340.049 1076 1565 1505 0.857 132.329

BVS
model 3

Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

293.154 340.050 1078 1672 1506 0.857 129.022

BVS
model 4

Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

295.136 348.732 1052 1689 1504 0.857 129.806

BVS
model 5

Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

293.167 340.064 1094 1543 1509 0.857 131.400

FS
model

Credit Score, Insurance, Units, CLTV,
DTI, UPB, LTV, Interest Rate, Borrowers

287.398 354.393 878 2784 1709 0.842 74.677

BE & SS
model

Credit Score, Insurance, UPB,
Interest Rate, Borrowers

280.327 320.524 771 2637 1617 0.850 75.130
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Figure 8: Indicates the amount of FP given the TPR plotted in the range of 50% − 100%. Based on test set 3.

Table 26: Prediction performance of the top 10 models with the highest posterior probability, as calculated with
BVS. Estimated with test set 3.

Variables PosProb AIC BIC FP60 FP90 FP50-100 AUC Z-score

Model 1
Credit Score, Insurance, Units,
Interest Rate, Borrowers

0.328 291.170 331.367 1094 1548 1507 0.857 131.863

Model 2
Credit Score, Insurance, Units,
CLTV, Interest Rate, Borrowers

0.231 293.152 340.049 1076 1565 1505 0.857 132.329

Model 3
Credit Score, Insurance, Units,
LTV, Interest Rate, Borrowers

0.118 293.154 340.050 1078 1672 1506 0.857 129.022

Model 4
Credit Score, Insurance, Units,
CLTV, LTV, Interest Rate, Borrowers

0.077 295.136 348.732 1052 1689 1504 0.857 129.806

Model 5
Credit Score, Insurance, Units,
DTI, Interest Rate, Borrowers

0.077 293.167 340.064 1094 1543 1509 0.857 131.400

Model 6
Credit Score, Insurance, Units,
CLTV, DTI, Interest Rate, Borrowers

0.054 295.149 348.746 1094 1559 1506 0.857 132.154

Model 7
Credit Score, Insurance, Interest Rate,
Borrowers

0.048 289.194 322.692 999 1548 1499 0.858 131.631

Model 8
Insurance, Units, Interest Rate,
Borrowers

0.026 300.384 333.882 985 3306 2146 0.798 256.157

Model 9
Credit Score, Insurance, CLTV,
Interest Rate, Borrowers

0.025 291.175 331.372 1009 1565 1496 0.858 132.329

Model 10
Credit Score, Insurance, Units,
DTI, LTV, Interest Rate, Borrowers

0.016 295.151 348.747 1079 1667 1508 0.857 128.856
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6.5.2 Bayesian Model Averaging

Table 27: Prediction performance of analysed different simple combinations of models, estimated using test set
3, weighted by BMA.

BMA simple combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 1101 1552 1504 0.857 131.805
Model 1, 2 & 3 1096 1575 1506 0.857 131.631
Model 1, 2, 3 & 4 1096 1589 1506 0.857 131.343
Model 1, 2, 3, 4 & 5 1095 1586 1506 0.857 131.228
Model 1, 2, 3, 4, 5 & 6 1098 1583 1506 0.857 131.343
Model 1, 2, 3, 4, 5, 6 & 7 1099 1580 1506 0.857 131.400
Model 1, 2, 3, 4, 5, 6, 7 & 8 1090 1612 1516 0.856 133.986
Model 1, 2, 3, 4, 5, 6, 7, 8 & 9 1091 1612 1516 0.856 133.926
Model 1, 2, 3, 4, 5, 6, 7, 8 , 9 & 10 1091 1614 1516 0.856 133.687

Table 28: Prediction performance of different BMA combinations estimated with test set 3. The different
combinations are based on applying the model inclusion rules to the top 10 models estimated with test set 1,2
3.

BMA combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 1101 1552 1504 0.857 131.805
Model 1, 2 & 3 1096 1575 1506 0.857 131.631
All models 1091 1614 1516 0.856 133.687

Combinations based on set 1

Model 1, 3, 4 & 5 1090 1590 1507 0.857 130.712
Model 1, 3, 4, 5 & 10 1090 1594 1507 0.857 130.655
Model 1, 3 & 5 1091 1578 1509 0.857 131.113
Model 1, 3, 5, 7, 8, 9 & 10 1086 1625 1524 0.855 134.648
Model 3 & 5 1085 1620 1507 0.857 130.144
Model 1, 3, 5 & 10 1091 1582 1509 0.857 131.113

Combinations based on set 2

Model 2, 3 & 4 1097 1617 1505 0.857 131.17
Model 2, 3, 4, 6, 9 & 10 1097 1613 1504 0.857 131.113
Model 1, 2, 3 & 4 1096 1589 1506 0.857 131.343
Model 1, 2, 3, 4, 6, 7, 8 & 9 1090 1616 1515 0.856 134.046
Model 3 & 4 1082 1680 1505 0.857 129.301
Model 2, 3, 4, 6 & 9 1097 1610 1504 0.857 131.113

Combinations based on set 3

Model 2, 3 & 4 1097 1617 1505 0.857 131.17
Model 2, 4, 7 & 9 1087 1588 1503 0.857 132.037
Model 1, 2, 3 & 4 1096 1589 1506 0.857 131.343
Model 7, 8 & 9 1018 1904 1604 0.847 149.465
Model 3 & 4 1082 1680 1505 0.857 129.301
Model 7 & 9 1003 1551 1497 0.858 131.805
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Table 29: Prediction performance of different AIC weighted combinations estimated with test set 3. The different
combinations are based on applying the model inclusion rules to the top 10 models estimated with test set 1,2
3.

AIC Combinations FP60 FP90 FP50-100 AUC Z-score

Model 1 & 2 1102 1555 1505 0.857 131.921
Model 1, 2 & 3 1091 1596 1505 0.857 130.941
All models 1075 1732 1547 0.853 138.572

Combinations based on set 1

Model 1, 3, 4 & 5 1089 1617 1507 0.857 130.428
Model 1, 3, 4, 5 & 10 1087 1624 1507 0.857 130.201
Model 1, 3 & 5 1088 1591 1508 0.857 130.655
Model 1, 3, 5, 7, 8, 9 & 10 1062 1789 1566 0.851 141.32
Model 3 & 5 1086 1608 1509 0.857 130.314
Model 1, 3, 5 & 10 1086 1608 1509 0.857 130.314

Combinations based on set 2

Model 2, 3 & 4 1094 1641 1504 0.857 130.371
Model 2, 3, 4, 6, 9 & 10 1098 1621 1504 0.857 130.655
Model 1, 2, 3 & 4 1095 1620 1505 0.857 130.541
Model 1, 2, 3, 4, 6, 7, 8 & 9 1074 1760 1554 0.852 140.524
Model 3 & 4 1083 1682 1504 0.857 129.357
Model 2, 3, 4, 6 & 9 1098 1613 1503 0.857 131.228

Combinations based on set 3

Model 2, 3 & 4 1094 1641 1504 0.857 130.371
Model 2, 4, 7 & 9 1060 1593 1501 0.858 131.631
Model 1, 2, 3 & 4 1095 1620 1505 0.857 130.541
Model 7, 8 & 9 977 2001 1642 0.843 155.019
Model 3 & 4 1083 1682 1504 0.857 129.357
Model 7 & 9 1003 1556 1497 0.858 131.921
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6.6 Results over all three test sets

Table 30: Top 10 BVS models and simple BMA combinations. Indicates the average percentage difference
between the best value for the criteria and the result of the model or combination, summed over all three test
sets. Average (5) indicates the average criteria differences for the best 5 models or their simple combinations,
where average (10) shows the averages of the best 10 models or their simple combinations.

Top 10 Models (in %) FP60 FP90 FP50-100 AUC Z-score

Model 1 7.20 0.80 1.20 0.20 9.70

Model 2 7.40 1.60 1.10 0.20 10.30

Model 3 5.30 3.10 0.50 0.10 7.20

Model 4 4.90 4.00 0.50 0.10 8.10

Model 5 6.90 0.60 1.20 0.20 9.80

Model 6 7.20 1.50 1.10 0.20 10.50

Model 7 4.90 0.80 1.20 0.20 9.90

Model 8 6.00 44.50 31.80 5.10 32.90

Model 9 5.60 1.70 1.10 0.20 10.60

Model 10 4.80 3.10 0.60 0.10 7.60

Average (5) 6.34 2.02 0.90 0.16 9.02

Average (10) 6.02 6.17 4.03 0.66 11.66

Model Combinations (in %)

Model 1 & 2
7.90 1.10 1.10 0.20 9.90

Model 1, 2 & 3
6.90 1.50 1.10 0.20 9.70

Model 2, 3, & 4
6.80 1.80 1.00 0.20 9.40

Model 1, 2, 3, 4
& 5

6.70 1.80 1.00 0.20 9.30

Model 1, 2, 3, 4,
5 & 6

6.90 1.70 1.00 0.20 9.40

Model 1, 2, 3, 4,
5, 6 & 7

6.90 1.60 1.00 0.20 9.50

Model 1, 2, 3, 4,
5, 6, 7 & 8

6.70 2.90 1.50 0.30 9.50

Model 1, 2, 3, 4,
5, 6, 7, 8 & 9

6.80 2.90 1.50 0.30 9.60

Model 1, 2, 3, 4,
5, 6, 7, 8 , 9 & 10

6.70 2.90 1.50 0.30 9.50

Average (5) 7.08 1.55 1.05 0.20 9.58

Average (10) 6.92 2.02 1.19 0.23 9.53
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