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1. Introduction 

Recently, Dutch Minister for Legal Protection Sander Dekker was under pressure for the events surrounding 

the intended early release of criminal Michael P. During an unsupervised leave, which was in preparation 

of this early release, P. committed a murder on a young woman. In recent times, similar cases in the 

Netherlands have occurred, in which a criminal psychiatric patient was released and thereafter relapsed 

into crime, including the murder of Els Borst and a fatal stabbing in the metro of Amsterdam (Boersema, 

2019; Meijer, 2019).The decision to release a criminal from a psychiatric clinic is obviously complicated, but 

will entail a cost-benefit analysis nonetheless. On one side, there is the, rather easy to observe, reduction 

in costs after a patient is released, such as the cost of an occupied cell and the cost of continued therapy. 

On the other side, the potential risks (or costs) of releasing the patient – i.e. will the patient recidivate – is 

much harder to observe, even for specialists. This problem is intensified by the fact that budget cuts by the 

government have led to understaffing in the mental health care sector (Meijer, 2019; Nieuwenhuis, 2019). 

Now suppose that the decision to release a patient is made by a psychiatrist in consultation with the 

director of the patient’s psychiatric clinic (hereafter: “the director”) by comparing the cost reductions with 

the probability of recidivating. By spending time on this specific patient, the psychiatrist is able to obtain 

an estimate of the probability of the patient recidivating. The accuracy of this estimate increases with the 

time invested by the psychiatrist. The director, on the other hand, is able to observe the exact cost 

reduction resulting from the release of the patient, with virtually zero effort. Additionally, suppose that due 

to private motives, for example a very tight clinic-wide budget or wanting to achieve certain performance 

goals, the director is just somewhat biased towards releasing the patient in comparison to the psychiatrist. 

In order to arrive at the best possible decision for society as a whole, who should be given the authority to 

make the final decision? The (initially) less informed psychiatrist or the biased director? Additionally, given 

the difference in preferences, how much information can they credibly communicate to one another? And 

how much time is the psychiatrist going to invest in the patient to obtain information?  

This example, albeit possibly a somewhat simplified version of the actual procedures, illustrates the 

intricacy of information acquisition, communication and decision making when faced with incongruent 

preferences. The communication in this paper takes the form of cheap talk. Decision making in conjunction 

with cheap-talk communication was first researched by Crawford & Sobel (1982) (hereafter: 𝐶𝑆).1 One of 

the implicit characteristics of the 𝐶𝑆-model is that it would be better for the receiver, who is responsible 

 
1 More specifically, when referring to 𝐶𝑆, I’m referring to the well-known uniform-quadratic example of section 4 of 

Crawford & Sobel (1982). 
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for making the final decision, to let the sender make the final decision and essentially cut himself out of the 

process altogether. This is due to the receiver holding no information, except for what he is told by the 

sender. In reality, a person charged with the responsibility to make executive decisions often has the 

possibility to collect at least some information regarding the subject at hand. When the amount or accuracy 

of this information is less than that of the other person involved, this introduces a tradeoff. One could keep 

the decision-making authority to himself, knowing that he has less information than the other, or the other 

person could be asked to make the decision, even though that person has different preferences. Of course, 

the person that is not making the final decision can be asked to disclose his information to the other, but 

without being able to confirm the correctness of the shared information, this leaves room for strategic 

communication.  

The main objective of this paper is to examine the influence of the possibility of information acquisition for 

the principal on the communication and optimal decision-making process in the presence of incongruent 

preferences between the principal and the agent. To this end, I develop a model where two players, a 

principal and an agent, face a decision regarding the implementation of a project with an uncertain payoff. 

This payoff is the resultant of the revenues and expenditures associated with the project, which are 

independent of each other. Both players care equally about the payoff of the project, except for the agent 

being somewhat biased towards its implementation. Before anything else, the principal has to decide on 

the allocation of the decision-making authority. She can either decide to delegate the authority to the agent 

or keep it herself. In both scenarios, the principal is able to acquire an estimate of the revenues of the 

project by spending costly effort. The more effort spent, the more accurate the estimate. The agent, on the 

other hand, can simply observe the expenditures associated with the project without any cost. In the 

delegation scenario, the principal will send a cheap talk message regarding her information on the revenues 

of the project to the agent. In the nondelegation scenario, these roles are reversed; the principal will receive 

a cheap talk message from the agent prior to making the implementation decision. 

The main result of this paper is that delegation of the decision-making authority yields identical results as 

retainment of this authority for both the principal and the agent in terms of payoff, given that the most 
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informative equilibrium is reached.2 Conversely, in this most informative equilibrium, the principal has 

acquired relatively little information regarding the revenues of the project. In both the delegation and the 

nondelegation scenario, the coarseness of the principal’s information allows for more informative 

communication between the players and thus, for better decision making, compared to the case where 

the principal has acquired full information regarding the revenues of the project. This even applies when 

the acquisition of the principal’s information is assumed to be costless. As the principal is ex ante less 

informed than the agent, this result contrasts with the original cheap talk model of 𝐶𝑆, where it would 

always be better for both players to let the ex ante best informed player, i.e. the sender, make the final 

decision.  

Intuitively, the results of the most informative equilibria can be explained through the information 

acquisition mechanism. Through this mechanism, the principal observes an estimate of the revenues of the 

project, which is deliberately left relatively coarse in the most informative equilibria. In order to make the 

implementation decision, the decision maker (which of the two players this is, depends on whether or not 

the decision-making authority was delegated) compares the expected revenues to the expected costs. In 

the delegation scenario, the principal is able to communicate all her information to the agent, due to the 

deliberate coarseness of this information. Thus, at the moment of the implementation decision, the agent 

will have obtained all the information available in the game, leading to an optimal decision for the agent. 

In the nondelegation scenario, the agent does not communicate all his information to the principal. Instead, 

he constructs message intervals such that the principal is able to infer whether the expected costs are lower 

or higher than the expected revenues for all possible values of the expected revenues. However, the agent 

constructs the messages in such a way that the principal will also implement the project in those cases 

where this is profitable for the agent, but detrimental to the principal. The principal is not able to remedy 

this, again due to the coarseness of her information. The decision made by the principal is therefore again 

 
2 Cheap talk models generally face the issue of having multiple equilibria. The maximum amount of informative 

communication is limited by the degree of incongruence between the players’ preferences, but equilibria with less 

communication than this maximum usually also exist. In this paper I focus on two types of equilibria: the equilibrium 

with the most informative communication and the equilibrium where the principal has acquired the maximum 

amount of information prior to communication. The first type is the main focus of the paper, since this is expected 

to lead to the best decision making. The latter type serves to show what happens when the information acquisition 

mechanism is essentially replaced with the assumption that the principal simply observes the value of the revenues. 

I abstain from discussing the problem of equilibrium refinement. For a suitable application of this to my model, see 

Section 4 of Bijkerk, Delfgaauw, Karamychev, & Swank (2018). 
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optimal for the agent, given the available information. Hence, the outcome is equal between the two 

scenarios.  

Even though these outcomes are optimal for the agent in both cases, the principal benefits from the 

relatively high level of communication as well. In the equilibria where the principal acquires full information 

regarding the revenues of the project, thereby being able to perfectly observe its value, the decision making 

is inferior. This is due to the limited communication that is possible in these equilibria, which recedes to 

the form of the communication in 𝐶𝑆.  

The foundations of the cheap talk literature, and therefore of this paper, lie in the paper of 𝐶𝑆. One of the 

implicit characteristics of 𝐶𝑆 is that in all cases where informative communication could have taken place, 

it is better for both players if the sender3 would simply make the final decision, meaning that the receiver 

would take no part in the game. This result was made more explicit by Dessein (2002), who considered the 

allocation of the decision rights to be endogenous. Le Quement (2009) extends this model to include 

information acquisition by the agent. In line with Dessein, he finds that both players prefer delegation of 

the decision rights whenever the agent’s information is sufficiently high. However, for lower levels of 

information acquisition, the principal is better off making the final decision himself. Similar to Dessein and 

Le Quement, in my model, the right to allocate the decision authority is held by the principal. However, my 

results do not show either of the two players to be making better decisions for both players compared to 

the other player. 

Both 𝐶𝑆 and Dessein (2002) assume that the receiver relies solely on the sender for information, meaning 

that there can be no communication in the case of delegation of the decision authority to the sender. The 

main feature of my model is the possibility of information acquisition for the principal, resulting in both 

players (potentially) observing information. Therefore, informative communication can exist, regardless of 

who holds the decision-making authority. Two-sided information is not new to cheap talk models, however. 

Even so, most papers have assumed this information to be exogenously given. Both Chen (2009) and 

Moreno de Barreda (2010) discuss a framework in which the decision maker observes a signal regarding 

the state of the world. Chen finds that the decision maker cannot improve communication by trying to 

 
3 Throughout the literature, the two players have received different names, depending on their exact role. What I 

call ‘the agent’ is in other papers often referred to as ‘the expert’ or ‘the sender’. Similarly, ‘the principal’ is often 

referred to as ‘the decision maker’ or ‘the receiver’. However, in my paper the agent and principal switch between 

sending information and making the implementation decision. Therefore, throughout this paper, the terms ‘the 

sender’ and ‘the decision maker’ refer to whichever player is fulfilling these roles, regardless of the delegation 

decision. 
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reveal her private information to the sender, prior to communication. Moreno de Barreda finds that private 

information of the decision maker hampers communication, since it makes exaggeration more attractive. 

Similarly, Lai (2014) assumes the decision maker observes whether the state of the world is low or high. 

Again, this information hampers communication, but contrary to Moreno de Barreda, Lai finds that the 

private information is often enough to offset the loss in communication, meaning that the decision maker 

benefits from the private information. Interestingly, Ishida & Shimizu (2018) show that the availability of 

private information for a decision maker can actually improve communication, when the decision maker is 

uncertain whether his information is correct. They argue that information acquisition by the decision maker 

and communication can either be complements or substitutes, depending on the degree of uncertainty 

concerning the correctness of the principal’s information. These papers all assumed the private information 

of the decision maker to concern the same variable as the sender’s information. Watson (1996) introduced 

the notion of the decision maker observing a second variable, where both variables are relevant for the 

decision maker’s optimal decision, which is similar to my model. He finds that the presence of two-sided 

information makes it possible for the sender to fully reveal his information. This is in line with my results in 

the delegation scenario, in which case the principal is the sender of the communication. 

The information of the principal is not exogenously given in my model. Instead, the information is assumed 

to be endogenously acquired by the principal. In the literature different mechanisms of endogenous 

information acquisition have been incorporated into the 𝐶𝑆 model.4 The mechanism of information 

acquisition of my model is most related to the models of Ivanov (2010), Pei (2015), Argenziano, Severinov 

& Squintani (2016) and Bijkerk, Delfgaauw, Karamychev, & Swank (2018). Ivanov considers the case where 

a principal is able to limit the information observed by the agent, by dividing the interval on which the state 

of the world is distributed into subintervals of any size, after which the agent only observes in which 

subinterval the true state of the world falls. This informational control is costless. Ivanov compares this 

informational control to delegation of the decision authority as two tools that the principal has in order to 

elicit a higher payoff. He finds that informational control is superior to delegation whenever informational 

communication is possible. Pei incorporates the same information acquisition mechanism as Ivanov, except 

in Pei’s model, the sender is able to determine the information acquisition himself. Additionally, in Pei’s 

model, finer subintervals are costlier. Pei finds that the agent will always communicate all his information, 

 
4 Austen-Smith (1994) and Hidir (2017) consider a sender that can buy a perfectly revealing signal of the state of the 

world for a given price. Other papers, such as Che & Kartik (2009), Dewatripont and Tirole (1999), Le Quement 

(2009) and Dur & Swank (2005) assume that the sender is able to invest in information, where a higher investment 

means a higher probability that the observed signal is fully informative. See Sobel (2013) for a more extensive 

summary of some of the different information acquisition mechanisms used in the one-sided information models. 
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since if he is planning to withhold information, he can always make the intervals coarser and incur less costs 

in the process. Both models assume that the size of the subintervals can be of any size. Conversely, my 

model assumes the size of the subintervals to be uniform in size. Argenziano, Severinov & Squintani model 

the information acquisition by letting the agent decide on a number of binary trials. The probability that 

the trial is a success is equal to the true value of the state of the world. Thus, more successes mean a higher 

expected state of the world.  

However, none of the previously discussed papers analyze the presence of two-sided information on two 

separate variables in combination with information acquisition. Bijkerk et al. (2018) do exactly that. Their 

model contains a company’s executive and insider contemplating the implementation of a project. The 

insider is able to observe one of the two performance indicators of the project, whereas the executive is 

able to invest costly effort in order to acquire information regarding the second indicator. She does this by 

partitioning the total interval in equally sized subintervals and subsequently observing in which subinterval 

the indicator falls. The executive communicates to the insider and two external parties. The executive 

wants to accurately inform the insider, but at the same time wants the value of the performance indicator 

perceived by the external parties to be as high as possible. They find that transparent communication, 

where all parties can observe the executive’s message, is key for informative communication to the external 

parties, which in turn constrains communication to the insider. Additionally, they find that less accurate 

information acquisition allows for more informative communication. My model can be perceived as a 

stripped-down model of Bijkerk et al., where the assumption of the agent’s bias replaces the need to 

impress the external parties. My main contribution is the consideration of the possibility of delegation in 

this setting. This is, to the best of my knowledge, the first time that the option to delegate is considered in 

a setting where the principal has acquired his own (imperfect) information. 

The next section describes the model. In order to gain some intuition behind the model, a relatively simple 

version of the model is discussed in Section 3. In this version, the principal can maximally observe the 

revenues of the project to be high or low, if she chooses to acquire any information. Section 4 discusses 

the full model, which entails the principal being able to acquire more accurate information if she so desires. 

In this section the focus will be on two types of equilibria, the most informative equilibria and the equilibria 

where the principal has acquired full information. Section 5 compares these equilibria in terms of dynamics 

and outcome. Section 5 will also contain a comparison between the equilibria of my model and 𝐶𝑆. I 

conclude in Section 6. 
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2. The model 

The model includes two players, the principal 𝑃 (she) and the agent 𝐴 (he). Together, they have to decide 

on the implementation of a project. For ease of exposition, a principal-agent setting is used throughout the 

model of this paper. However, it should be noted that the model is also applicable to situations where there 

is no authority relationship between the players, such as the introductory example regarding the potential 

release of the patient from the psychiatric clinic. In this light, the project can also be thought of as a public 

good, such as a new highway, that could potentially be provided to the public, where two independent 

governmental institutions must decide on its merits for society. Additionally, an example which fits the 

traditional principal-agent setting better would be an investment opportunity faced by a firm, where a CEO 

together with a lower-level manager must judge the potential investment on its profitability.  

The value of the project is dependent on two independent variables. The first variable represents the 

benefits or revenues resulting from the project, denoted by 𝑟~𝑈[0,1]. The second variable 𝑒~𝑈[0,1] 

represent the costs or expenses associated with the project. The total value of the project thus amounts to 

𝑟 − 𝑒. The two players are able to obtain information regarding the values of 𝑟 and 𝑒 respectively. At the 

start of the game, 𝑃 must decide on the accuracy of the information he receives on the value of 𝑟. This 

accuracy is determined through 𝑠 ∈ ℕ. The interval [0,1] on which 𝑟 is distributed is divided into 𝑠 

subintervals of equal length. 𝑃 then observes in which subinterval 𝑟 falls. This particular subinterval 

[𝑟̅𝑡−1, 𝑟̅𝑡] is denoted by 𝑡, which is drawn from the set of feasible types 𝑇 = {1, … , 𝑠}, with 𝑟̅𝑡 =
𝑡

𝑠
. 

Throughout this paper 𝑡 is referred to as 𝑃’s type. When 𝑠 = 1, there is only one interval and therefore 𝑃 

will have no additional information. More accurate information is costlier; the cost of the information is 𝑐 

per extra subinterval, meaning that the total cost of the information acquisition amounts to (𝑠 − 1)𝑐. After 

learning her type, 𝑃’s expectation of 𝑟, denoted by 𝑟𝑡, will be: 

 𝐸[𝑟|𝑡, 𝑠] = 𝑟𝑡 =
2𝑡−1

2𝑠
 (1) 

On the other hand, 𝐴 simply observes the value of 𝑒 perfectly and without cost. 𝑒 will hereafter be referred 

to as 𝐴’s type. While 𝑃’s choice of 𝑠 is assumed to be common knowledge, both players’ types remain 

private information. Additionally, no proof can be provided regarding the values of these variables. Figure 

1 provides a visual representation of the information acquisition for both players. As an example, it is 

assumed that 𝑟 =
9

16
 and 𝑒 =

1

3
. The top line depicts the interval of 𝑟, where 𝑃 has set 𝑠 = 4. 𝑃 does not 

observe the value of 𝑟, but instead observes 𝑡 = 3. The bottom line depicts the interval on which 𝑒 is 

distributed. The value of 𝑒 is simply observed by 𝐴. 
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Figure 1: information acquisition. 
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Figure 2: message space in the delegation scenario for 𝑠 = 4. 

 

 

 

 

 

 

The decision-making process can proceed in two different manners, hereafter referred to as the delegation 

and nondelegation scenario. Before the game starts, it is 𝑃’s responsibility to decide which of the two 

scenarios will be effectuated. In the delegation scenario, 𝑃 will send a cheap talk message 𝑚𝑃 to 𝐴 in order 

to convey information regarding the value of 𝑟. In a cheap talk model, the actual form of the messages is 

irrelevant for the players’ payoffs; the information conveyed in these messages is only able to affect the 

equilibrium outcome through the implementation decision of the decision maker. This means that in 

equilibrium, the communication can essentially take any form, as long as the content of the message is 

clear to the other player. In order to avoid working with an infinitely big message space, it is assumed that 

the set of possible messages 𝑀𝑃 is just big enough for 𝑃 to be able to disclose all information she possesses 

to 𝐴, meaning that 𝑀𝑃 = 𝑇. Adding any additional messages to 𝑀𝑃 does not lead to any different outcomes 

of this scenario. Figure 2 depicts this for 𝑠 = 4, where the number of messages is equal to the number of 

possible types. After receiving the message, 𝐴 will make the final implementation decision 𝑑𝐴 ∈ {0,1} 

regarding the project, where 𝑑𝐴 = 0 denotes 𝐴 deciding against implementation of the project, and 𝑑𝐴 =

1 denotes the decision to implement the project. Rejection of the project means that both players receive 

a payoff of 0, minus possible costs for the information acquisition regarding the value of 𝑟. Implementation 

of the project means that the project value is realized for both players. 
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Figure 3: message space in the nondelegation scenario for 𝑠 = 4. 
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In the nondelegation scenario, 𝐴 will send a cheap talk message 𝑚𝐴 to 𝑃 regarding the value of 𝑒, after 

which 𝑃 will make the implementation decision 𝑑𝑃 ∈ {0,1}. Again, it is assumed that the message space of 

𝐴 is just big enough to be able to convey all useful information to 𝑃. Figure 3 depicts an example for 𝑠 = 4. 

When 𝑠 = 4, there exist four potential values of 𝑟𝑡: one for each different type. Since the implementation 

decision is binary, the maximum amount of relevant information 𝑃 can receive from 𝐴 is knowing whether 

𝑒 is smaller or bigger than 𝑟𝑡. However, since 𝐴 does not observe 𝑡, he cannot simply communicate whether 

𝑒 is higher than 𝑟𝑡. Instead, when 𝐴 wants to communicate the maximum amount of useful information, he 

has to use four messages to communicate that 𝑒 < 𝑟𝑡 for 𝑡𝜖{1,2,3,4}, plus one message communicating 

that 𝑒 is even bigger than 𝑟4. For example, message 𝑚2
𝐴 tells 𝑃 that the costs of the project are smaller than 

the expected revenues for 𝑡 = 2 (and thus, for 𝑡 > 2), but that the costs are higher than the expected 

revenues for 𝑡 = 1. In general, the message space that is needed for the exchange of the maximum amount 

of relevant information in the nondelegation scenario is 𝑀𝐴 = 𝑇 + 1. Again, adding any additional 

messages does not lead to any different outcomes. Note that both 𝑀𝑃 and 𝑀𝐴 consist of the messages 

that the players 𝑐𝑎𝑛 use to communicate in the delegation and nondelegation scenarios respectively, but 

whether this will actually be an equilibrium strategy depends on the degree of incongruence between the 

players’ preferences.  

 

 

 

 

 

 

With respect to 𝑃’s implementation decision, 𝑑𝑃 = 0 denotes no implementation of the project, whereas 

𝑑𝑃 = 1 means that 𝑃 decides to implement the project. Whilst either sending the message or making the 

implementation decision, both players apply a strategy aimed at maximizing their own payoffs. It is 

assumed that 𝑃’s payoff simply consists of the project value contingent on implementation, minus the cost 

of information acquisition. For 𝑖 ∈ {𝑃, 𝐴}, the payoff of 𝑃 is equal to: 

 𝑈𝑃 = (𝑟 − 𝑒)𝑑𝑖 − (𝑠 − 1)𝑐 (2) 
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Regarding 𝐴′𝑠 payoff, it is assumed that his payoff is the same as 𝑃’s payoff, apart from a bias towards 

wanting the project to be implemented. This bias can be interpreted as an additional motive of 𝐴 to want 

to see the project implemented, not shared by others. In the example of the decision to release the patient 

from the psychiatric clinic, this bias might represent the director being under pressure for his clinic to 

perform well, where one of the performance indicators is the number of patients cured. In this case, signing 

the patient off as cured will look good on paper, and will additionally free up valuable resources towards 

other or new patients. This bias is represented by the constant 𝑏. 𝐴’s payoff is therefore: 

 𝑈𝐴 = (𝑟 + 𝑏 − 𝑒)𝑑𝑖 − (𝑠 − 1)𝑐 (3) 

Thus, the project will still be profitable for 𝐴 when 𝑟 + 𝑏 ≥ 𝑒, whilst 𝑃 will only want to see the project 

implemented when 𝑟 ≥ 𝑒. The value of 𝑏 is common knowledge. This creates a tradeoff. Either 𝑃 grants 

decision-making rights to 𝐴, who is better informed than her but at the same time has a bias towards 

implementation, or she will make the implementation decision herself. Of course, this all depends on the 

communication between the players and how much information they are willing and able to share with 

one another. 

The two scenarios are solved for Perfect Bayesian Equilibria (PBE). In the delegation scenario, such an 

equilibrium consists of a collection (𝜎, 𝜇𝑃(𝑠, 𝑡)) of strategies for 𝑃 and an approval strategy 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) 

and belief 𝐺(𝑡|𝑠, 𝑚𝑃) regarding 𝑃′𝑠 type for 𝐴, such that: 

1. for any 𝑒, 𝑠 and 𝑚𝑃, decision 𝑑𝐴 = 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) maximizes 𝐴′𝑠 expected value of (3), given belief 

𝐺(𝑡|𝑠, 𝑚𝑃); 

2. for any 𝑠 and 𝑡, sending message 𝑚𝑃 = 𝜇𝑃(𝑠, 𝑡) maximizes 𝑃′𝑠 expected value of (2). 

3. the accuracy of information 𝑠 = 𝜎 maximizes 𝑃′𝑠 expected value of (2). 

4. belief 𝐺(𝑡|𝑠, 𝑚𝑃) follows Bayes’ rule on all information sets. 

In the nondelegation scenario, a PBE consists of a collection (𝜎, 𝛿𝑃(𝑠, 𝑡, 𝑚𝑃)) of strategies and belief 

𝐻(𝑒|𝑚𝐴) regarding the value of 𝑒 for 𝑃 and a messaging strategy 𝜇𝐴(𝑒, 𝑠) for 𝐴, such that: 

1. for any 𝑠, 𝑡 and 𝑚𝐴, decision 𝑑𝑃 = 𝛿𝑃(𝑠, 𝑡, 𝑚𝐴) maximizes 𝑃′𝑠 expected value of (2), given belief 

𝐻(𝑒|𝑚𝐴); 

2. for any 𝑒 and 𝑠, sending message 𝑚𝐴 = 𝜇𝐴(𝑒, 𝑠) maximizes 𝐴′𝑠 expected value of (3). 

3. the accuracy of information 𝑠 =  𝜎 maximizes 𝑃′𝑠 expected value of (2). 

4. belief 𝐻(𝑒|𝑚𝐴) follows Bayes’ rule on all information sets.  
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3. Restricted possibility for information acquisition 

The two scenarios will first be analyzed for the relatively simple case where the maximum number of 

subintervals that can be chosen by 𝑃 is exogenously restricted to two, essentially creating a model where 

𝑃 observes the revenues of the project to be either low or high. The four aspects that constitute a PBE, as 

discussed in the previous section, will hereafter be discussed consecutively per scenario. The sections 

below offer an intuitive and relatively informal analysis of the model. A more formal approach can be found 

in Appendix 1 and 2 for the delegation and nondelegation scenario respectively. 

3.1 Delegation 

In the delegation scenario, the implementation decision is made by 𝐴 after receiving a cheap talk message 

from 𝑃. Using backward induction, the analysis starts at the last aspect of the players’ strategies, which is 

the implementation decision. After that, the communication strategy of 𝑃 is discussed, together with 𝐴’s 

beliefs after receiving the message. Finally, 𝑃’s decision regarding the accuracy of the information 

acquisition is analyzed. 

3.1.1 A’s decision strategy 

After the information acquisition and the communication have taken place, 𝐴 will implement the project if 

he expects the project to yield him a positive payoff. From (3) it can be seen that this will only be the case 

if the costs of the project are less than the expected revenues plus the value of 𝐴’s bias, meaning that: 

𝑑𝐴 = 1    if 𝑒 < 𝐸[𝑟|𝑚𝑃 , 𝑠] + 𝑏  

𝑑𝐴 = 0    otherwise 

3.1.2 Communication from P to A 

Next, the communication between 𝑃 and A is analyzed. It is assumed for now that 𝑃 has set 𝑠 = 2, such 

that there actually is some information to be communicated. In the next section it will be discussed when 

𝑃 has an incentive to deviate from 𝑠 = 2.  

The decision strategy described in the previous section is anticipated by 𝑃. 𝐴 will implement the project if 

the costs are lower than the expected revenues plus 𝐴’s bias, meaning that for 𝑃, conditional upon 

implementation of the project, the expected value of 𝑒 equals:  

𝐸[𝑒|𝑑𝐴 = 1] =
1

2
𝐸[𝑟|𝑚𝑃 , 𝑠] +

1

2
𝑏 
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Figure 4: Communication by 𝑃 for 𝑠 = 2 and 𝑏 ≤
1

4
 

𝑡 = 1 𝑡 = 2 

Furthermore, 𝑃 knows that the probability that 𝐴 implements the project is equal to the probability that 

the costs are smaller than the expected revenues plus 𝐴’s bias. Since 𝑒 is uniformly distributed on the 

interval [0,1], this yields: 

𝑃(𝑑𝐴 = 1) = 𝑃(𝑒 < 𝐸[𝑟|𝑚𝑃 , 𝑠] + 𝑏) = 𝐸[𝑟|𝑚𝑃 , 𝑠] + 𝑏 

These last two expressions are dependent on the expected value of 𝑟 from 𝐴’s perspective, which is in turn 

dependent on the message received. From 𝑃’s perspective, the expected value of 𝑟 for the low type will be 

𝑟1 =
1

4
 and for the high type 𝑟2 =

3

4
. Since 𝑠 = 2, if 𝑃 wants to convey any information to 𝐴, her only option 

is that both types will send messages to 𝐴 wherein they truthfully reveal their types. Let these messages 

be denoted by 𝑚𝑡
𝐴, where 𝑡 ∈ {1,2}. In Appendix 1 it is shown that this equilibrium only holds for 𝑏 ≤

1

4
. A 

visual representation of this communication strategy by 𝑃 is provided in Figure 4.  

 

 

 

 

The reason P is not able to exploit a more nuanced communication strategy is because of the limitedness 

of her information. Since P only knows whether her type is high or low, those will be the only messages she 

will be able to use. After all, there is no point in stating “my type is medium” when the receiver of the 

communication is aware that you have no way of knowing this. Both the low and the high type will therefore 

have to disclose their types honestly if any information is to be conveyed. Logically, when either of the two 

types has an incentive to deviate and send the other type’s message, both types will pool and no 

information will be conveyed. This happens when the players’ preferences run too far apart, which is at 

𝑏 >
1

4
. The high type of P will then want to send the low type’s message in order to counteract A’s eagerness 

to implement the project.  

Revisiting 𝐴’s decision strategy, the communication described in this section means that 𝐴 has the same 

information as 𝑃 regarding 𝑟, meaning that 𝐸[𝑟|𝑚𝑃, 𝑠] = 𝑟𝑡. The decision strategy of 𝐴 is therefore equal 

to:  

𝑑𝐴 = 1   if 𝑒 < 𝑟𝑡 + 𝑏  

𝑑𝐴 = 0   otherwise 
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Finally, the ex ante payoff of both players in the equilibrium with 𝑠 = 2 is: 

 𝐸[𝑈𝑃|𝑠 = 2] =
5

32
−

1

2
𝑏2 − 𝑐 (4) 

 𝐸[𝑈𝐴|𝑠 = 2] =
5

32
+

1

2
𝑏 +

1

2
𝑏2 − 𝑐 (5) 

Unsurprisingly, 𝑃’s payoff has a negative relationship with 𝑏. The negative effect of 𝑏 is due to the cases 

where 𝑟𝑡 < 𝑒 < 𝑟𝑡 + 𝑏, for which 𝑑𝐴 = 1, representing a distortion in the decision making from 𝑃’s 

perspective. Conversely, 𝐴’s payoff has a positive relationship with 𝑏, since the value of 𝑏 is added to 𝐴’s 

payoff whenever the project is implemented. Note that, given the available information, the decision 

making in this equilibrium is optimal for 𝐴. Indeed, even if 𝐴 would be able to do the information acquisition 

regarding the revenues himself, meaning that 𝑃 is cut out of the whole process, the results would not be 

different. 

3.1.3 Information acquisition by 𝑃 

Up until now it was assumed that 𝑠 = 2. The remaining question is whether 𝑃 has an incentive to deviate 

from choosing 𝑠 = 2. When choosing 𝑠 = 2, her expected payoff will be given by (4). When choosing 𝑠 =

1, her expected payoff will be: 

𝐸[𝑈𝑃|𝑠 = 1] = (
1

2
−

1

4
−

1

2
𝑏) (

1

2
+ 𝑏) =

1

8
−

1

2
𝑏2 

Therefore, 𝑃 will choose 𝑠 = 2 if 𝑐 <
1

32
 and 𝑠 = 1 otherwise. 

To summarize, given 𝑠 ∈ {1,2}, the following equilibrium exists: 

• 𝑃’s decision on the amount of information acquisition: 

- 𝜎 = 1 if 𝑐 >
1

32
 or 𝑏 >

1

4
 

- 𝜎 = 2  if 𝑐 ≤
1

32
 and 𝑏 ≤

1

4
 

 

• 𝑃’s messaging strategy: 

- 𝑃 sends a truthful message about her type to A:  𝜇𝑃(𝑠, 𝑡) = 𝑚𝑡
𝑃 

 

• 𝐴’s decision strategy: 

- 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) = 1  If 𝑒 < 𝑟𝑡 + 𝑏 

- 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) = 0 otherwise 
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In the original 𝐶𝑆-model, the sender has perfect information. Barring credibility problems, this means the 

sender is able to essentially send an infinite number of messages regarding the value of her type. At first 

glance, the sender in the delegation scenario (𝑃) might seem to be at a disadvantage compared to the 

sender from 𝐶𝑆, since in my model the sender is not able to influence the decision maker (𝐴) towards 

making a more favorable decision for herself by having a more nuanced communication strategy. However, 

in 𝐶𝑆, this temptation to influence the receiver leads to a situation where communication needs to be 

relatively coarse, since the communication would not be credible otherwise. The results obtained here 

suggest that the limited possibilities of the sender in terms of communication might not be a disadvantage, 

since in both my model as the 𝐶𝑆-model, two distinct messages are possible in equilibrium for equal levels 

of incongruency between the players’ preferences, namely 𝑏 ≤
1

4
. In fact, the resulting equilibrium 

described in my model contains two messages that represent an equal-sized subinterval, whereas in the 

𝐶𝑆-model the messages are unbalanced by default. This means that the messages used in the equilibrium 

described in this section contain more information than the messages used in 𝐶𝑆. In general, given any 

number of messages, the use of the messages is more efficient if the subintervals belonging to these 

messages are more balanced.5 This notion, and the comparison with the 𝐶𝑆 model, will be further examined 

in Section 4, where the model is analyzed without the restriction on the amount of information that 𝑃 can 

acquire.  

3.2 Nondelegation 

The implementation decision in the nondelegation scenario is made by 𝑃 herself. In order to make a more 

informed decision, 𝑃 will ask 𝐴 to inform her on the value of 𝑒, which 𝐴 does by sending message 𝑚𝐴. The 

analysis is again based on backward induction, meaning that 𝑃’s decision strategy is discussed first. It is still 

assumed, for now, that 𝑠 ∈ {1,2}. 

 
 5 As an example, two messages that are sent by an equal number of types such that the interval [0,1] is divided 

evenly, convey more information than when the two messages represent 
3

4
 and 

1

4
 of the interval respectively. The 

first case has variance ∫ (𝑣 −
1

2
0

1

4
)2 𝑑𝑣 + ∫ (𝑣 −

1
1

2

1

4
)2 𝑑𝑣 =

1

24
, whilst the second case has variance ∫ (𝑣 −

3

4
0

3

8
)

4

3
 𝑑𝑣 +

∫ (𝑣 −
1

3

4

7

8
)4 𝑑𝑣 =

5

96
. Since 

5

96
>

1

24
, this means that the balanced messages convey more information. 
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Figure 5: Communication by 𝐴 for 𝑠 = 2 and 𝑏 ≤
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3.2.1 P’s decision strategy 

𝑃 will implement the project if he expects the project to be profitable to her. From (1) and (2) it can be 

seen that this will be the case if the expected revenues of the project exceed the expected costs. Thus, 𝑃’s 

decision strategy will be: 

𝑑𝑃 = 1    if 𝐸[𝑒|𝑚𝐴] < 𝑟𝑡 

𝑑𝑃 = 0    otherwise 

3.2.2 Communication from 𝐴 to 𝑃 

At the time 𝑃 receives the message from 𝐴, 𝑃 will know her own type and will compare the resulting 𝑟𝑡 to 

the expected value of 𝑒. The latter is dependent on the message received. It is again assumed, for now, 

that 𝑠 = 2. This means that the content of 𝐴’s message can result in one of the following three reactions 

by 𝑃: 

1. The expected value of 𝑒 is low enough for 𝑃 to implement the project, even if her type is low.  

2. The expected value of 𝑒 is only low enough for 𝑃 to implement the project when her type is high and 

thus, she will reject the project when her type is low. 

3. The expected value of 𝑒 is too high for any type of 𝑃 to implement the project. 

Let the messages that prompt reaction 1, 2 and 3 be denoted by 𝑚1
𝐴, 𝑚2

𝐴 and 𝑚3
𝐴. In Appendix 2 it is shown 

that in this equilibrium, 𝐴 will send 𝑚1
𝐴 when 𝑒 ∈ [0,

1

4
+ 𝑏], 𝑚2

𝐴 when 𝑒 ∈ [
1

4
+ 𝑏,

3

4
+ 𝑏], and 𝑚3

𝐴 when 𝑒 ∈

[
3

4
+ 𝑏, 1]. This messaging strategy is depicted in Figure 5, where it can be seen that 𝐴 divides the interval 

of 𝑒 in three partitions, each belonging to a separate message. The boundaries of these messages are equal 

to 𝑟𝑡 + 𝑏 for 𝑡 ∈ {1,2}.  Additionally, this equilibrium, just like the equilibrium in the delegation scenario, is 

only feasible when 𝑏 ≤
1

4
.  When 𝑏 >

1

4
, the expected value of the cost upon observing 𝑚1

𝐴 and 𝑚2
𝐴 is too 

high for 𝑃 to behave as described under reaction 1 and 2 above.  
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Additionally, in Appendix 2 it is shown that other equilibria, where 𝐴 only sends two messages instead of 

three, also require 𝑏 ≤
1

4
. The three-message equilibrium is superior in terms of information transmission 

and subsequent decision making, making it the more logical equilibrium to focus on.  

The dynamics here are different than the delegation scenario. In the delegation scenario, the sender of the 

information (𝑃) had rather limited information on the value of 𝑟, meaning that she was equally limited in 

the maximum amount of information that she could convey. In the nondelegation scenario, the sender (𝐴) 

has perfect information regarding the value of 𝑒. This means that he could essentially send any value 

between 0 and 1 to 𝑃. However, 𝑃 knows that 𝐴 has an incentive to understate the value of the costs, 

meaning that messages with very specific values of 𝑒 are not credible. Instead, just as in the 𝐶𝑆-model, 𝐴 

will have to send messages stating that 𝑒 is in a specific partition. These partitions have to be big enough 

to ensure that it becomes too expensive for 𝐴 to understate the value of 𝑒 by sending the message 

belonging to a lower partition. 𝑃 compares the expected revenues to the expected costs in order to make 

the implementation decision. This means that the messages sent by 𝐴 will have to be tailored to the 

information that 𝑃 possesses on the expected revenues of the project. 𝑃 knows whether his type is low,  

meaning that the expected revenues are 
1

4
, or high, with expected revenues of 

3

4
. It is therefore of no use 

when, for example, 𝐴 sends two messages, where one states ‘the costs are in the interval [
1

4
,

1

2
]’ and the 

other states ‘the costs are in the interval [
1

2
,

3

4
]’, since for both messages 𝑃 will only implement the project 

when his type is high, resulting in the exact same outcome. The maximum number of messages that is not 

outcome-equivalent is three, which is the communication described above. 

When comparing the communication described here to the communication in the delegation scenario, it 

stands out that for an equal bias, more messages can be sent. The partition belonging to the second 

message in the nondelegation scenario is of equal size as either of the two messages in the delegation 

scenario.  Hence, the communication under nondelegation conveys more information on the value of 𝑒 

than the communication under delegation on the value of 𝑟, since the size of the partition of the remaining 

message in the delegation scenario is divided over two messages in the nondelegation scenario. 

The payoffs for both players that follow from this communication are as follows:  

 𝐸[𝑈𝑃|𝑠 = 2] =
5

32
−

1

2
𝑏2 − 𝑐 (6) 

 

 𝐸[𝑈𝐴|𝑠 = 2] =
5

32
+

1

2
𝑏 +

1

2
𝑏2 − 𝑐 (7) 

 



18 
 

These payoffs are the same as under the delegation scenario with 𝑠 = 2. The same distorting effect on the 

decision making from 𝑃’s perspective can thus be observed in this scenario.  

3.2.3 𝑃’s decision on the information acquisition 

For 𝑃, choosing 𝑠 = 2 will yield her the expected payoff given by (6). The alternative to 𝑠 = 2 is the 

situation where no information is acquired by 𝑃, meaning that 𝐸[𝑟] =
1

2
. For 𝑏 <

1

2
, 𝐴 can still communicate 

some information to 𝑃.  Dependent on the value of 𝑒, 𝐴 can send either 𝑚1
𝐴, when 𝑒 ∈ [0,

1

2
+ 𝑏], or 𝑚2

𝐴, 

when 𝑒 ∈ [
1

2
+ 𝑏, 1]. In turn, 𝑃 will only implement the project after receiving 𝑚1

𝐴, which will yield her: 

𝐸[𝑈𝑃|𝑚𝐴, 𝑠 = 1] = (
1

2
−

1

4
−

1

2
𝑏) (

1

2
+ 𝑏) =

1

8
−

1

2
𝑏2 

meaning that, just like in the delegation scenario, 𝑃 will choose 𝑠 = 2 if 𝑐 ≤
1

32
 and 𝑠 = 1 otherwise. 

To summarize, given 𝑠 ∈ {1,2}, the following equilibrium exists: 

• 𝑃’s decision on the amount of information acquisition: 

- 𝜎 = 1 if 𝑐 >
1

32
 or 𝑏 >

1

4
 

- 𝜎 = 2  if 𝑐 ≤
1

32
 and 𝑏 ≤

1

4
 

 

• 𝐴’s messaging strategy, if 𝜎 = 2: 

 𝑚1
𝐴 If 𝑒 ∈ [0,

1

4
+ 𝑏] 

- 𝜇𝐴(𝑒, 𝑠) = 𝑚2
𝐴 If 𝑒 ∈ [

1

4
+ 𝑏,

3

4
+ 𝑏] 

 𝑚3
𝐴 If 𝑒 ∈ [

3

4
+ 𝑏, 1] 

 

• 𝑃’s decision strategy: 

  

- 𝛿𝑃(𝑠, 𝑡, 𝑚𝐴) = 1 if 

 

- 𝛿𝑃(𝑠, 𝑡, 𝑚𝐴) = 0 otherwise 

  

In conclusion, when the principal is limited to 𝑠 ∈ {1,2}, the decision-making processes of the two scenarios 

yield equal results for both players. Under delegation, 𝐴 is the one to make the implementation decision. 

In the equilibrium where 𝑠 = 2 and informational communication has taken place, 𝐴 knows both the exact 

 

𝑡 = 1 and 𝑚𝐴 = 𝑚1
𝐴 

𝑡 = 2 and 𝑚𝐴𝜖{𝑚1
𝐴, 𝑚2

𝐴} 
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value of the costs and 𝑃’s type. This means that 𝐴 possesses all the available information regarding the 

project value before making the implementation decision. However, apart from the cases where 𝑒 < 𝑟𝑡,  𝐴 

will also implement the project for situations where 𝑟𝑡 < 𝑒 < 𝑟𝑡 + 𝑏, which is detrimental for 𝑃’s payoff. In 

the nondelegation scenario, 𝑃 is the one to make the implementation decision. She knows her type but has 

somewhat limited information on the value of 𝑒 since she only knows in which of the three partitions 𝑒 

falls. This is also where 𝐴’s bias comes into play. The three messages sent by 𝐴 only inform 𝑃 on whether 

the costs of the project are smaller or larger than 𝑟𝑡 + 𝑏. If the costs are lower than 𝑟𝑡 + 𝑏, 𝑃 will implement 

the project, since the expected value of the costs is then lower than the expected revenues of the project. 

Thus, due to the design of the messages, 𝑃 will also inadvertently implement the project for some cases 

where the costs are higher than the revenues, or 𝑟𝑡 < 𝑒 < 𝑟𝑡 + 𝑏.  
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4 Unrestricted possibility for information acquisition 

The analysis in the previous section was restricted to the situation where 𝑃 could choose 𝑠 to be either 1 

or 2, meaning that at best 𝑃 could observe whether the revenues of the project were ‘high’ or ‘low’. This 

section describes the more general case, where 𝑠 ∈ ℕ+. Thus, in this section 𝑃 is able to set any number of 

subintervals and thereby determine the accuracy of the acquired information more freely, bearing in mind 

that more accurate information is, of course, still more expensive. 

Allowing 𝑠 ∈ ℕ+ introduces a problem, however. Like many other cheap talk models, the model of this 

paper has numerous equilibria that satisfy the requirements of a PBE. These equilibria include separating 

equilibria, partial pooling equilibria and babbling equilibria. A separating equilibrium in the delegation 

scenario is an equilibrium in which each type of 𝑃 sends a unique message to 𝐴, thereby always revealing 

her type. Letting 𝑁 denote the number of informational messages that is being used in equilibrium, this 

means that in a separating equilibrium 𝑁 = 𝑠. This is different for a partial pooling equilibrium, in which 

multiple types of 𝑃 send the same message to 𝐴, but still different messages are used by different groups 

of types. A partial pooling equilibrium can therefore be characterized by 1 < 𝑁 < 𝑠. Finally, a babbling 

equilibrium is an equilibrium in which no information is conveyed, because the message that is sent by 𝑃 is 

independent of its type. In Section 4.1, the analysis will first focus on the separating equilibria, since this 

yields the highest number of messages relative to the cost of information and can therefore be expected 

to yield the highest payoffs. This equilibrium will hereafter be referred to as the ‘most informative 

equilibrium’ of the delegation scenario. In Section 4.2 a different equilibrium will be analyzed, namely 

where 𝑃 sets 𝑠 → ∞. The resulting equilibrium will hereafter be referred to as the ‘partial pooling 

equilibrium’ of the delegation scenario. Ex ante, this equilibrium seems attractive, since 𝑃 obtains perfect 

information regarding the revenues of the project. However, as will be shown, this actually leads to a very 

limited capacity to communicate information, much in the same way as the 𝐶𝑆-model. 

In the nondelegation scenario, in which 𝐴 perfectly observes 𝑒 and sends a message to 𝑃 regarding its 

value, a separating equilibrium is technically not possible for 𝑏 > 0. After all, a separating equilibrium 

means, by definition, that 𝐴 would reveal the exact value of 𝑒 to 𝑃, which would not be credible for even 

the smallest bias. Instead, there is an equilibrium in the nondelegation scenario that is equivalent to the 

most informative equilibrium in the delegation scenario. This is the equilibrium where the number of 

messages being used by 𝐴 is one greater than the number of subintervals set by 𝑃, or 𝑁 = 𝑠 + 1. This 

equilibrium is equivalent to the most informative equilibrium of the delegation scenario in the sense that 

it utilizes the maximum number of meaningful messages, given 𝑠. Therefore, it will hereafter also be 
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referred to as the ‘most informative equilibrium’ of the nondelegation scenario and will be discussed in 

Section 4.3. In Section 4.4, the partial pooling equilibrium with 𝑠 → ∞ will again be analyzed, but this time 

under the nondelegation scenario. This equilibrium will hereafter simply be referred to as the ‘partial 

pooling equilibrium’ of the nondelegation scenario. The outcomes of these different equilibria in the 

delegation and nondelegation scenarios will be compared to each other in Section 5. 

4.1 Most informative equilibrium under delegation 

4.1.1 A’s decision strategy 

𝐴’s decision strategy is unaffected by the fact that 𝑠 ∈ ℕ+, Thus, he will implement the project if the costs 

of the project are lower than the expected revenues, given 𝑚𝑃, plus his bias. He will reject the project 

otherwise. As stated previously, the most informative equilibrium in the delegation scenario is a separating 

equilibrium, which means that 𝑃 honestly reveals his type to 𝐴. This means that 𝐸[𝑟|𝑚𝑃 , 𝑠] = 𝐸[𝑟|𝑡, 𝑠] =

𝑟𝑡. 𝐴’s decision strategy is therefore: 

𝑑𝐴 = 1    if 𝑒 < 𝑟𝑡 + 𝑏  

𝑑𝐴 = 0    otherwise 

4.1.2 Communication from P to A 

Let a type 𝑡 send message 𝑚𝑡
𝑃. For this to hold, a type 𝑡 must prefer sending 𝑚𝑡

𝑃 over 𝑚𝑡−1
𝑃 . The reason for 

solely considering a deviation to 𝑚𝑡−1
𝑃  is because 𝐴 is more eager to implement the project than 𝑃, due 

to 𝐴’s bias. Therefore, 𝐴 might implement the project, even though the project might not be profitable for 

𝑃. This causes 𝑃 to be tempted to downplay the expected revenues, such that 𝐴 will only implement the 

project when it is actually profitable to 𝑃. Hence, 𝑃 has nothing to gain by communicating 𝑚𝑡+1
𝑃 . 

Additionally, as 𝑏 increases, 𝑃 will want to downplay the expected value of 𝑟 with small amounts first, 

meaning that she will first be inclined to deviate to 𝑚𝑡−1
𝑃  rather than 𝑚𝑡−2

𝑃  or any other message, at which 

point the separating equilibrium will already break down. The formal proof of this equilibrium is shown in 

Appendix 3, considering both the communication and 𝑃’s choice of 𝑠. A more intuitive exposition follows 

here. 

The question is how much subintervals can be set by 𝑃 whilst still supporting a separating equilibrium. From 

𝑃’s perspective, 𝐴’s bias causes him to be too eager to implement the project. 𝑃’s reaction to that would 

be to downplay the expected revenues of the project. For any given bias, 𝑃 would optimally like to 

downplay the expected revenues by the exact value of the bias. In the hypothetical case where 𝐴 would 

believe the downplayed value communicated by 𝑃, 𝐴 would then proceed to implement the project only 
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when 𝑟𝑡 − 𝑏 + 𝑏 > 𝑒, which is the optimal decision from 𝑃’s perspective. The problem with this is that 𝐴 

will not believe the value communicated by 𝑃. Instead, 𝐴 will adjust his beliefs because he knows 𝑃 has an 

incentive to lie, to which 𝑃 will react by downplaying the value of the expected revenues even more, to 

which 𝐴 will adjust his beliefs even more, etc. This does not lead to an informative equilibrium. For 𝑃 to 

commit herself to telling the truth in equilibrium, the costs of lying about her type need to be sufficiently 

high. This can be achieved by keeping the intervals observed by 𝑃 intentionally coarse, such that 

downplaying the expected revenues by sending the message belonging to the type that is one lower, 𝑚𝑡−1
𝑃 , 

is too big of a deviation from the truth. This also means that a lower bias will allow for finer subintervals 

and thus for more accurate information acquisition by 𝑃. In Appendix 3 it is shown that the most 

informative equilibrium is feasible when 𝑏 <
1

2𝑠
. Put differently, letting 𝑠̅ denote the maximum number of 

subintervals that supports the most informative equilibrium, it follows that: 

 𝑠̅ = ⌊
1

2𝑏
⌋   6 (8) 

4.1.3 𝑃’s decision on the information acquisition 

The value of 𝑠̅ is the maximum number of subintervals that supports the most informative equilibrium. 

Whether 𝑃 will also set 𝑠 = 𝑠̅ is dependent on the cost of information acquisition, which is 𝑐 per extra 

subinterval. Let thee ex ante payoff of both players in the most informative equilibrium be denoted by 

𝑈𝑀𝐼
𝑖 (𝑠). This is the expected utility of the players as a function of 𝑠, before 𝑃’s type is revealed, yielding: 

 𝑈𝑀𝐼
𝑃 (𝑠) =

1

24
(4 −

1

𝑠2) −
1

2
𝑏2 − (𝑠 − 1)𝑐  

 𝑈𝑀𝐼
𝐴 (𝑠) =

1

24
(4 −

1

𝑠2) +
1

2
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐   

𝑏’s effect is twofold. As can be seen by (8), 𝑏 limits the amount of information that can be acquired. 

Additionally, 𝑏 distorts the decision making by 𝐴. Remarkably, the degree to which the latter effect affects 

the payoffs is independent of the number of messages used in equilibrium. This distorting effect of 𝑏 is 

caused by the implementation of the project for cases where 𝑟𝑡 < 𝑒 < 𝑟𝑡 + 𝑏. Indeed, this will occur with 

a probability equal to the value of 𝑏 regardless of 𝑃’s type and the value of 𝑠. As will be shown below, this 

is different for partial pooling equilibria. 

 
6 The notation 𝑦 = ⌊𝑥⌋ denotes the so-called floor function of 𝑥, which means that 𝑦 takes the value of the greatest 

integer smaller than or equal to 𝑥. For example 𝑦 = ⌊2.86⌋ = 2. Similarly, as will be used later on in this paper, 𝑦 =

⌊𝑥⌉ denotes the nearest integer function of 𝑥, which means that 𝑦 takes the value of the integer nearest to 𝑥. For 

example 𝑦 = ⌊2.86⌉ = 3. 
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𝑃’s optimal choice of 𝑠 is a tradeoff between the costs of the information acquisition and better decision 

making by 𝐴. At the same time, 𝑃 is limited by 𝑠̅, since for any 𝑠 > 𝑠̅ a separating equilibrium will not be 

possible. If the costs of the information acquisition are sufficiently low, 𝑃 will set 𝑠 = 𝑠̅. If the costs are too 

high however, 𝑃 will set 𝑠 to the nearest integer of the value where the marginal benefits of an extra 

subinterval are equal to the costs, which is 𝑠𝑜𝑝𝑡 = √
1

12𝑐

3
. This yields the following value for 𝑠∗, which is the 

optimal value for 𝑠 in the most informative equilibrium: 

𝑠∗ = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3

 ⌉ , ⌊
1

2𝑏
⌋) 

Interestingly, since 𝐴 has all the available information at the time of making the implementation decision, 

he could not make a better decision even if he could observe the expected revenues himself, given 𝑠. After 

all, in this most informative equilibrium, all types of 𝑃 honestly reveal their type to 𝐴. Moreover, in the 

cases where  𝑠𝑜𝑝𝑡 <  𝑠̅, 𝐴 could not have done better himself, even if he was able to control the information 

acquisition himself, since in those cases the limitation on the information acquisition are not caused by the 

discrepancy between the players’ preferences. The outcome of the most informative equilibrium is 

therefore rather favorable towards 𝐴. 

In short, the most informative equilibrium in the delegation scenario with 𝑠 ∈ ℕ+ is as follows: 

• 𝑃’s decision on the amount of information acquisition: 

- 𝜎 = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3
 ⌉ , ⌊

1

2𝑏
⌋) 

 

• 𝑃’s messaging strategy: 

- 𝑃 sends a truthful message about her type to A:  𝜇𝑃(𝑠, 𝑡) = 𝑚𝑡
𝑃. 

 

• 𝐴’s decision strategy: 

- 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) = 1  if 𝑒 < 𝑟𝑡 + 𝑏 

- 𝛿𝐴(𝑒, 𝑠, 𝑚𝑃) = 0 otherwise 
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4.2 Partial pooling equilibrium under delegation 

Up until this point the focus was on the most informative equilibrium in the form of a separating 

equilibrium. A question that remains is whether such equilibria are the most optimal for both players in 

terms of payoffs, given the value of 𝑏. For example, for  
1

6
< 𝑏 ≤

1

4
, it follows from (8) that 𝑠̅ = 2 in the 

most informative equilibrium. However, both players might still be better off in an equilibrium where 𝑠 >

2. In such an equilibrium not every type of 𝑃 will communicate her exact type, meaning this equilibrium 

can be characterized as a partial pooling equilibrium. One apparent advantage of such an equilibrium is the 

fact that 𝑃 acquires more information in comparison to the most informative equilibrium. In this section I 

will assume that 𝑐 = 0 so that 𝑃 can acquire any amount of information for free. It will further be assumed 

that, given this free information acquisition, 𝑃 will acquire all the information she can, meaning that 𝑠 →

∞. This allows a direct comparison of the model of this paper with the model of 𝐶𝑆. Setting 𝑠 → ∞ means 

that 𝑃 has full information regarding the value of 𝑟, which is identical to 𝐶𝑆, where the sender has full 

information regarding the variable on which he wants to communicate as well. 

When 𝑃 decides to set 𝑠 → ∞, the payoffs that both players receive depends on the number of messages 

that are used in equilibrium, which in turn depends on 𝑏. The number of messages that the players will 

want to use, denoted by 𝑁∗, can be found using a method similar to the method used in 𝐶𝑆. The formal 

proof is shown in Appendix 4.  

𝐴’s decision strategy has not changed, meaning that he will implement the project only if 𝑒 < 𝐸[𝑟|𝑚𝑃 , 𝑠] +

𝑏. Concerning the communication, if the value of 𝑏 is not too large, the interval [0,1] will be split up into 

different partitions, where all the types that fall into a certain partition [𝑡𝑛−1, 𝑡𝑛] send message 𝑚𝑛
𝑃.7 Types 

that are exactly on the boundary between two signals, hereinafter called boundary types, should then be 

indifferent between sending the two adjacent messages. For example, a type 𝑡𝑛 should be indifferent 

between sending  𝑚𝑛
𝑃 and  𝑚𝑛+1

𝑃 . Just as in Section 4.1, any type of 𝑃 would like 𝐴’s expectations of the 

project’s revenues to be somewhat lower than is actually the case. This gives 𝑃 an incentive to downplay 

her type, where the ideal belief of 𝐴 from 𝑃’s perspective would be 𝑏 lower than the actual revenues of 

the project. For example, when 𝑃 has type 𝑡𝑛, the belief of 𝐴 that would be optimal for 𝑃 is: 𝐸[𝑟|𝑚𝑃] =

𝑡𝑛 − 𝑏. In order for a boundary type to be indifferent between the two messages, 𝐴’s belief following these 

messages should be equally far from this optimal belief. This means that the lower of the two messages 

must correspond to a bigger partition than the higher message, in order for the lower message to be a 

 
7 Note that, since 𝑠 → ∞, 𝑃 will essentially observe 𝑟. However, for the sake of consistency, 𝑡 is used to denote 𝑃’s 
type, and 𝑡𝑛 to denote boundary types. 
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greater deviation from the truth. This offsets the fact that 𝑃 is already inclined to slightly downplay the 

expected revenues. The notion that 𝐴′𝑠 beliefs should be equally far from the optimal belief for either 

message yields: 

𝑡𝑛 − 𝑏 −
𝑡𝑛−1 + 𝑡𝑛

2
=

𝑡𝑛 + 𝑡𝑛+1

2
− (𝑡𝑛 − 𝑏) 

𝑡𝑛+1 − 𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1 − 4𝑏 

It follows that that the lower message is sent by types that fall into an interval which is 4𝑏 larger than the 

interval belonging to the higher message. This means that the number of intervals that fit on the interval 

[0,1] increases as 𝑏 gets smaller. The maximum number of intervals, denoted by 𝑁̅, equals: 

𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

Interestingly, this result is the same as in 𝐶𝑆. The partial pooling equilibrium of my model thus allows the 

same number of messages to be credibly used when 𝑠 → ∞. The difference is that in 𝐶𝑆 the first partition 

is the smallest and each subsequent interval is 4𝑏 larger, whilst in this model the last partition is the 

smallest and every partition before that is 4𝑏 larger. This is because in the model of this paper, the sender 

has an incentive to understate her type, rather than to overexaggerate. 

In order to determine whether 𝑁 = 𝑁̅ is actually optimal for both players, the payoffs of both players are 

needed. A player’s ex ante expected payoff, denoted by 𝑈𝑃𝑃𝐸
𝑖 (𝑁), is the average payoff over all possible 

types as a function of the number of messages used. These payoffs are: 

 𝑈𝑃𝑃𝐸
𝑃 (𝑁)  =

1

24
(4 −

1

𝑁2) −
1

3
𝑏2 −

1

6
𝑁2𝑏2 (9) 

 𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2) +
1

2
𝑏 +

2

3
𝑏2 −

1

6
𝑁2𝑏2 (10) 

Maximizing (9) and (10) yields the optimal number of messages for 𝑃 and 𝐴 respectively, denoted by 

𝑁𝑜𝑝𝑡, if they were totally free to set any number of messages. This yields 𝑁𝑜𝑝𝑡 = √
1

4𝑏2

4
 for both players, 

which is somewhat lower than 𝑁̅, but the difference is always less than 1. For example, when 𝑏 =
1

12
, 𝑁̅ =

3 but 𝑁𝑜𝑝𝑡 ≈ 2,45. However, since 𝑁 needs to be an integer, the players have to choose between 𝑁 = 𝑁̅ 

or 𝑁 = 𝑁̅ − 1. It turns out that the players are indifferent between using 𝑁̅ or 𝑁̅ − 1 when 𝑏 has the exact 

value that allows for the use of an extra message. As 𝑏 decreases from this exact value, the players will 
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strictly prefer to use the higher number of messages 𝑁̅. Thus, setting 𝑁 = 𝑁̅ weakly dominates 𝑁 = 𝑁̅ −

1, essentially meaning that: 

𝑁∗ = 𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

This concludes the analysis of the partial pooling equilibrium in the delegation scenario. Section 5.2 will 

compare the most informative equilibria with the partial pooling equilibria. In the next section I proceed 

with the analysis of the most informative equilibrium and the partial pooling equilibria of the nondelegation 

scenario. 

4.3 Most informative equilibrium under nondelegation 

The nondelegation scenario is analyzed in this section for the case where 𝑃 can set 𝑠 ∈ ℕ+. In this scenario, 

𝑃 makes the implementation decision herself, after receiving a message from 𝐴 regarding the value of 𝑒. 

First, the focus will be on the most informative equilibrium under nondelegation, after which the partial 

pooling equilibrium with 𝑐 = 0 and 𝑠 → ∞ will be discussed in Section 4.4.  

4.3.1 𝑃’s decision strategy 

𝑃’s decision strategy remains unchanged from the situation where 𝑠 ∈ {1,2}. She will implement the 

project if the expected revenues exceed the costs she expects after observing 𝐴’s message, and reject the 

project otherwise. More formally:  

𝑑𝑃 = 1    if 𝐸[𝑒|𝑚𝐴] < 𝑟𝑡  

𝑑𝐴 = 0    otherwise 

4.3.2 Communication from 𝐴 to P 

As before, a relatively informal and intuitive analysis follows here. A more formal analysis is shown in 

Appendix 5. 

In the most informative equilibrium of this scenario, the messages sent by 𝐴 are adapted to the information 

that 𝑃 possesses. In doing so, 𝑃 will be informed by 𝐴 whether the average costs are larger or smaller than 

the expected revenues for all 𝑡 ∈ 𝑇. Consequently, the first message, 𝑚1
𝐴, means that 𝑒 falls into the lowest 

category, which in turn means that all types of 𝑃 will implement the project. The second message, 𝑚2
𝐴, 

means that all types of 𝑃 will implement the project, except for 𝑡 = 1, and so forth. In general, for every 

possible type there is a message stating that the expected costs are small enough for that type to 
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implement the project, but not for one type lower. Since there is no point in having two messages that each 

communicate a different value of 𝑒, but for which all types of 𝑃 react exactly the same, there is exactly one 

message for each type. Additionally, there is one message stating that the costs are too high for any type 

to implement the project. The number of messages that is necessary to achieve this is 𝑁 = 𝑠 + 1, where 

sending a message 𝑚𝑛
𝐴 means that only 𝑃 with type 𝑡 ≥ 𝑛 will implement the project. 

Each message 𝑚𝑛
𝐴 is sent by all 𝐴 that observe 𝑒 to be in between certain boundaries, denoted by [𝑒𝑛−1, 𝑒𝑛], 

where 𝑒0 = 0 and 𝑒𝑁 = 1. These boundaries are determined by 𝐴 in such a way that 𝑃 is only able to 

distinguish whether the costs of the project are smaller or larger than 𝑟𝑡 + 𝑏 for all 𝑡 ∈ 𝑇, meaning that 

𝑒𝑛 =
2𝑛−1

2𝑠
+ 𝑏. For a sufficiently small value of 𝑏, the expected value of the costs, given 𝑡 = 𝑛, will be lower 

than the expected revenues. Hence, when 𝑃 receives 𝑚𝑛
𝐴, she will implement the project when 𝑡 = 𝑛 

because on average the costs are lower than the expected revenues, given that message. However, in doing 

so, she will inadvertently implement the project for the cases where 𝑟𝑡 < 𝑒 < 𝑟𝑡 + 𝑏. This is what makes 

this messaging strategy attractive for 𝐴. 

As covered above, it should indeed be the case that all 𝑃 with type 𝑡 ≥ 𝑛 will implement the project when 

receiving message 𝑚𝑛
𝐴. This means that the expected costs of the project, given 𝑚𝑛

𝐴, need to be smaller 

than the expected revenues when 𝑡 = 𝑛. Since the boundaries of the messages are skewed relative to the 

expected revenues with the value of 𝑏, a higher bias means that the messages become more skewed. If the 

partitions belonging to the messages are too fine, the expected costs of the project will be higher than the 

expected revenues for 𝑡 = 𝑛. By making the partitions sufficiently coarse, the relative impact of 𝑏 on the 

expected costs associated with a given message is decreased, ensuring that the average costs of the project 

are smaller than the expected revenues for 𝑡 = 𝑛. In other words, a lower bias allows for finer messages. 

In turn, this means that the most informative equilibrium can support a higher number of subintervals for 

a lower bias. Just as before, the value of 𝑏 for which the most informative equilibrium is feasible is 𝑏 <
1

2𝑠
. 

Thus, again letting 𝑠̅ denote the maximum number of subintervals that can be set by 𝑃 which will support 

the most informative equilibrium, it follows that:  

𝑠̅ = ⌊
1

2𝑏
⌋ 

In short, as long as 𝑠 ≤ 𝑠̅, upon observing 𝑒𝑛−1 < 𝑒 < 𝑒𝑛, where 𝑒𝑛 =
2𝑛−1

2𝑠
+ 𝑏, 𝐴 will send message 𝑚𝑛

𝐴 

to 𝑃, after which 𝑃 will decide that 𝑑𝑃 = 1 if 𝑡 ≥ 𝑛 and 𝑑𝑃 = 0 otherwise. The maximum number of 
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subintervals is the same as in the most informative equilibrium under the delegation scenario, meaning 

that in both scenarios the maximum amount of information that is observed by 𝑃 is the same.  

4.3.3 Information acquisition by 𝑃 

Just as in the delegation scenario, the most informative equilibrium is possible as long as 𝑃 sets 𝑠 ≤ 𝑠̅ =

⌊
1

2𝑏
⌋. Again, let a player’s ex ante expected payoff in the most informative equilibrium be denoted by 

𝑈𝑀𝐼
𝑖 (𝑠). These payoffs are:  

𝑈𝑀𝐼
𝑃 (𝑠) =

1

24
(4 −

1

𝑠2
) −

1

2
𝑏2 − (𝑠 − 1)𝑐 

 𝑈𝑀𝐼
𝐴 (𝑠) =

1

24
(4 −

1

𝑠2) +
1

2
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐 

These are the exact same payoffs as the ones resulting from the most informative equilibrium in the 

delegation scenario. Additionally, since 𝑠̅ is also the same for the two scenarios, this means that all the 

results are identical. Thus, letting 𝑠∗ denote the optimal value for 𝑠 in the most informative equilibrium, 

this yields: 

𝑠∗ = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3

 ⌉ , ⌊
1

2𝑏
⌋) 

Thus, the results obtained here are equal to the most informative equilibrium in the delegation scenario. A 

further comparison will follow in Section 5.1. In conclusion, the most informative equilibrium under the 

nondelegation scenario with 𝑠 ∈ ℕ+ is: 

• 𝑃’s decision on the amount of information acquisition: 

- 𝜎 = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3
 ⌉ , ⌊

1

2𝑏
⌋) 

 

• 𝐴’s messaging strategy: 

- 𝜇𝐴(𝑒, 𝑠) = 𝑚𝑛
𝐴 if 𝑒 ∈ [𝑒𝑛−1, 𝑒𝑛], where 𝑒𝑛 =

2𝑛−1

2𝑠
+ 𝑏 

 

• 𝑃’s decision strategy: 

- 𝛿𝑃(𝑡, 𝑠, 𝑚𝑛
𝐴) = 1  if 𝑡 ≥ 𝑛 

- 𝛿𝑃(𝑡, 𝑠, 𝑚𝑛
𝐴) = 0  otherwise 
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4.4 Partial pooling equilibrium under nondelegation 

In Section 4.2 the partial pooling equilibrium was analyzed for the delegation scenario. This section will do 

the same for the nondelegation scenario. It is again assumed that 𝑐 = 0 and 𝑠 → ∞, meaning that P will 

perfectly observe the value of 𝑟. The formal proof of this equilibrium is shown in Appendix 6. 

𝑃’s decision strategy will be the same as under Section 4.3, meaning that she will implement the project 

only if 𝐸[𝑒|𝑚𝐴] < 𝑟𝑡. Turning towards the communication, the interval [0,1] on which 𝑒 is distributed will 

again be divided into different partitions, where a message 𝑚𝑛
𝐴 will be sent by all 𝐴 that observe 𝑒 to fall 

into partition [𝑒𝑛−1, 𝑒𝑛]. Thus, 𝑒𝑛 is the boundary type between sending 𝑚𝑛
𝐴 and 𝑚𝑛+1

𝐴 . Such a boundary 

type should be indifferent between sending 𝑚𝑛
𝐴 and 𝑚𝑛+1

𝐴 . In general, 𝐴 will want to understate the value 

of the costs to 𝑃, since he is more eager to implement the project due to his bias. A perceived lower value 

of the costs will make 𝑃 implement the project in more cases, even if the actual costs slightly exceed the 

revenues. Optimally, he wants 𝑃 to believe that 𝑒 is 𝑏 lower than it actually is, because 𝑃 will then 

implement the project whenever 𝑒 − 𝑏 ≤ 𝑟, which is optimal for 𝐴. In order to make 𝐴 with type 𝑒𝑛 

indifferent between sending 𝑚𝑛
𝐴 and 𝑚𝑛+1

𝐴 , 𝑃’s belief upon receiving either of these messages should be 

equally far from this optimal belief for both messages. Similar to the partial pooling equilibrium in the 

delegation scenario, this yields:  

𝑒𝑛+1 − 𝑒𝑛 = 𝑒𝑛 − 𝑒𝑛−1 − 4𝑏 

Thus, the lower partition is always 4𝑏 larger than the higher partition. The maximum number of messages 

that can be used in this equilibrium is therefore equal to the maximum number in the partial pooling 

equilibrium of the delegation scenario: 

𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

which is again identical to the number of messages in 𝐶𝑆. The payoffs of the players are not identical to the 

partial pooling equilibrium in the delegation scenario, however. This is due to 𝑃 having different 

preferences than 𝐴, whilst having the same amount of information at the moment of making the 

implementation decision. More on this in Section 5.3. The resulting payoffs are: 
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𝑈𝑃𝑃𝐸
𝑃 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

6
𝑏2 −

1

6
𝑁2𝑏2 

𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

2
𝑏 +

1

6
𝑏2 −

1

6
𝑁2𝑏2 

Maximizing these two payoffs with regard to 𝑁 yields 𝑁𝑜𝑝𝑡 = √
1

4𝑏2

4
 for both players. This means that both 

𝑁𝑜𝑝𝑡 and 𝑁̅ are the same as in the partial pooling equilibrium in the delegation scenario. Thus, given that 

𝑁 ≤ 𝑁̅ and that 𝑁 is by definition an integer, the optimal number of messages that can be achieved in a 

partial pooling equilibrium is the same in the delegation scenario, which is: 

𝑁∗ = 𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

This concludes the analysis of the partial pooling equilibrium in the nondelegation case. In the next 

section, I will compare the outcomes of the different equilibria discussed in Section 4. 
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5 Comparative statics 

The previous sections have described a multitude of equilibria in the two scenarios of the model of this 

paper. I will refrain from touching upon the problem of equilibrium selection. However, even though there 

are numerous more equilibria in my model, there are some interesting insights to be gained from 

comparing the equilibria described thus far. In this section, these equilibria will be compared in terms of 

mechanisms and payoffs. The first three subsections will compare the different equilibria with each other. 

The last subsection will compare the outcomes of my paper to the paper of Crawford & Sobel (1982). 

5.1 Most informative equilibria: delegation versus nondelegation  

When comparing the most informative equilibrium of both scenarios, the results show that there is no 

difference in payoff for either player. In both scenarios, the players’ payoffs are: 

𝑈𝑀𝐼
𝑃 (𝑠) =

1

24
(4 −

1

𝑠2
) −

1

2
𝑏2 − (𝑠 − 1)𝑐 

𝑈𝑀𝐼
𝐴 =

1

24
(4 −

1

𝑠2
) +

1

2
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐 

The optimal number of subintervals for which the most informative equilibrium is still possible is equal 

between the two scenarios as well, being: 

𝑠∗ = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3

 ⌉ , ⌊
1

2𝑏
⌋) 

It is assumed that the principal is able to determine who holds decision-making authority and who sends 

the communication. Since there is no difference in 𝑃’s payoff between the scenarios, she will be indifferent 

between these equilibria in the two scenarios. Additionally, 𝐴 is indifferent between the two scenarios as 

well. The reason for the equivalence in payoffs can be found in the information acquisition. In the most 

informative equilibrium, the information acquired by the principal is deliberately left relatively coarse. In 

the delegation scenario, this allows 𝑃 to honestly reveal her type to 𝐴, which is all the information that 𝑃 

possesses. Therefore, 𝐴 has obtained all the available information regarding the value of the project before 

making the implementation decision. He is therefore able to make the best possible decision for himself, 

given the amount of information acquired. In the nondelegation scenario, 𝐴 does not communicate all the 

information he possesses to 𝑃, meaning that 𝑃 remains unknowledgeable regarding the exact value of the 

costs. Instead, he constructs the messages in such a way that P is informed on whether the costs are small 
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enough on average for the different possible types of 𝑃 to implement the project. By doing so, 𝐴 ensures 

that P also implements the project for those cases where this is profitable for 𝐴, but detrimental to 𝑃. This 

is the case when the expected revenues plus 𝐴’s bias exceed the costs of the project, while the expected 

revenues alone are smaller than the costs. However, due to the coarseness of her information, 𝑃 is not able 

to remedy this. Thus, the outcome of the most informative equilibrium is ideal for A in both scenarios, given 

the acquired information. 

5.2 Partial pooling equilibrium: delegation versus nondelegation 

The payoffs of player 𝑃 and 𝐴 respectively, resulting from the partial pooling equilibrium in the delegation 

scenario, are given by:   

𝑈𝑃𝑃𝐸
𝑃 (𝑁)  =

1

24
(4 −

1

𝑁2
) −

1

3
𝑏2 −

1

6
𝑁2𝑏2 

𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

2
𝑏 +

2

3
𝑏2 −

1

6
𝑁2𝑏2 

whereas in the nondelegation scenario, the payoffs in the partial pooling equilibrium are:  

𝑈𝑃𝑃𝐸
𝑃 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

6
𝑏2 −

1

6
𝑁2𝑏2 

𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

2
𝑏 +

1

6
𝑏2 −

1

6
𝑁2𝑏2 

In both scenarios, the same number of messages can be communicated by the sender, being: 

𝑁∗ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

P’s payoff is larger in the partial pooling equilibrium when she retains her decision-making authority. The 

opposite is true for A.  From these results it follows that it is advantageous for a player to be able to make 

the final implementation decision rather than to be the sender of the communication. It is noteworthy that 

the total payoff of the two players combined is the same in both scenarios. This is due to the fact that the 

player that makes the implementation decision is equally informed between the two scenarios. In the 

delegation scenario, 𝐴 perfectly observes the value of 𝑒 and receives 𝑁∗ messages regarding the value of 

𝑟. Similarly, in the nondelegation scenario, 𝑃 perfectly observes 𝑟 and receives 𝑁∗ messages regarding the 

value of 𝑒. Additionally, these 𝑁∗messages will have an equal distribution. Since 𝑟 and 𝑒 have an equal 
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weight in determining the project’s profitability, the efficacy of the implementation decision will be the 

same between the two scenarios, resulting in an equal total payoff. The difference in payoff per player 

between the two scenarios is thus the result of rent seeking. Given that 𝐴 under delegation and 𝑃 under 

nondelegation have equal information at the time of making the implementation decision, having the right 

to make the implementation decision means that that player is simply able to make a decision that is more 

favorable to him-/herself.  

5.3 Most informative equilibrium versus partial pooling equilibrium 

In the derivation of the partial pooling equilibrium, it was assumed that 𝑐 = 0. In order to provide a fair 

comparison between the partial pooling equilibria and the most informative equilibria, the payoffs of both 

players in the most informative equilibria are needed for 𝑐 = 0, which yields: 

𝑈𝑀𝐼
𝑃 (𝑠) =

1

24
(4 −

1

𝑠2
) −

1

2
𝑏2 

𝑈𝑀𝐼
𝐴 (𝑠) =

1

24
(4 −

1

𝑠2
) +

1

2
𝑏2 +

1

2
𝑏 

Additionally, from Sections 4.1.3 and 4.3.3 it follows that 𝑃’s optimal number of subintervals in the most 

informative equilibria is 𝑠∗ = 𝑚𝑖𝑛 (⌊√
1

12𝑐

3
 ⌉ , ⌊

1

2𝑏
⌋). When 𝑐 = 0, it follows that √

1

12𝑐

3
→ ∞, meaning that 

𝑠∗ = ⌊
1

2𝑏
⌋. These results will be compared with the results of the partial pooling equilibria.  

First, regarding the number of messages in each equilibrium, it turns out that the number of possible 

messages is (much) larger in the most informative equilibria. Looking at the delegation scenario, this result 

means that, even though 𝑃 is better informed in the partial pooling equilibrium, the amount of information 

she can convey is considerably less than in the most informative equilibrium. This paradox is caused by the 

fact that in the most informative equilibrium, 𝑃 has no way of committing herself to telling the truth. 

Suppose that the players would try to communicate in similar fashion to the most informative equilibrium, 

but after 𝑃 has set 𝑠 = ∞. In other words, they would try to set an amount of equal-sized messages which 

is equal to 𝑁 = ⌊
1

2𝑏
⌋. Since 𝑠 = ∞, 𝑃 has exact information on the value of the revenues of the project, 

which is different from the most informative equilibrium. This makes it possible that 𝑃 observes a value of 

𝑟 that is very close to the lower boundary of the partition belonging to a message. When this is the case, 

she will have an incentive to deviate to the lower message, which is why this cannot be an equilibrium. In 

order to be able to credibly send some information to 𝐴 in a partial pooling equilibrium, the message 

intervals need to be coarser and each lower message needs to increase in size, resulting in less possible 
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messages. On the contrary, in the most informative equilibrium where 𝑠 = 𝑁 = ⌊
1

2𝑏
⌋, 𝑃 never knows exactly 

where in the subinterval the revenues fall, meaning that she will not have the same incentive to deviate. 

A similar line of reasoning applies when the partial pooling equilibrium and the most informative 

equilibrium of the nondelegation scenario are compared. In the most informative equilibrium, the 

messages of 𝐴 are adapted to the information that 𝑃 has acquired. Suppose that in the most informative 

equilibrium, 𝐴 observes a value of 𝑒 which falls on the border of the intervals of 𝑚𝑛
𝐴 and 𝑚𝑛−1

𝐴 , meaning 

that 𝐴 is indifferent between sending these messages. When 𝐴 decides to send 𝑚𝑛−1
𝐴 , all 𝑃 with type 𝑡 ≥

𝑛 − 1 will implement the project. In the case where 𝑡 = 𝑛 − 1, 𝑃 will inadvertently implement the project 

for the lower values of 𝑟 that still fall in the subinterval of type 𝑡 = 𝑛 − 1. If 𝑃 had been able to observe 

the exact value of 𝑟, these values of 𝑟 towards the lower end of the type boundary would not have led to 

implementation of the project. In the partial pooling equilibrium, this is exactly what happens. 𝑃 perfectly 

observes the value of 𝑟, meaning that, given message 𝑚𝑛−1
𝐴 , a smaller and (on average) higher range of 𝑟 

leads to implementation. In turn, this causes 𝐴 to strictly prefer 𝑚𝑛−1
𝐴  over 𝑚𝑛

𝐴. Thus, similar to the 

delegation scenario, player 𝐴 has no way of committing himself to a finer distribution of messages in the 

partial pooling equilibrium. This is remedied by a coarser distribution of messages with uneven intervals, 

where a given message interval is 4𝑏 larger than the interval of the message that is one higher.  

Even if the number of messages in both types of equilibria would be the same, the payoffs for both 𝑃 and 

𝐴 would still be larger in the most informative equilibria. In these equilibria it can be seen that 𝑏 has a 

negative effect on 𝑃’s payoff due to the inferior decision making by A (delegation scenario) or the biased 

communication (nondelegation scenario). Also, if 𝑠̅ < 𝑠𝑜𝑝𝑡, 𝑏 causes less than optimal information 

acquisition. In a partial pooling equilibrium, 𝑏 has an additional effect on the payoffs. In Appendices 4 and 

6, it is shown in equation (𝐴5) for the delegation scenario and (𝐴12) for the nondelegation scenario, that 

𝑏 has a negative relationship with 𝑑, which is the size of the smallest message interval. This means that, as 

𝑏 increases, the messages become less balanced in size. As described in Section 3.1.3, the use of the 

messages is more efficient if the partitions belonging to these messages are more balanced. The effect of 

𝐴’s bias in the partial pooling equilibrium is therefore threefold, as it disturbs the decision making in the 

delegation scenario, decreases the number of informational messages that can be used and skews the 

partitions of these messages. 
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5.4 Comparison with Crawford & Sobel (1982) 

5.4.1 Most informative equilibria 

Lastly, both the most informative equilibria and the partial pooling equilibria will be compared to the results 

of 𝐶𝑆. When comparing the most informative equilibria to the model of 𝐶𝑆, the results obtained in the 

model of this paper are rather surprising. In 𝐶𝑆, the sender has full information, whereas the receiver has 

no information at all. Consequently, if the sender would be able to make the final decision himself, the 

payoffs would be higher for both players for any value of 𝑏 for which informative communication could 

have taken place. This means that, due to the information he possesses, the sender would be able to make 

a decision that is so much better than the receiver’s decision that it compensates for the difference in 

preferences. For higher values of 𝑏, at which point no communication is possible, the totally uninformed 

receiver would be better off taking the final decision, since the sender’s decisions would be distorted too 

much. One could expect that this concept, where the ex ante most well-informed player makes the best 

decision for both players, should apply to the model of this paper as well. However, it turns out that in the 

most informative equilibria, there is no difference between delegation and nondelegation in terms of 

payoff for either player, even though ex ante 𝑃 always has less information than 𝐴 when 𝑏 > 0.  

Interestingly, even when 𝑠 = 1, such that 𝑃 obtains no information, there is no difference in outcome 

between the two scenarios. In the delegation scenario, when 𝑏 <
1

2
 and 𝑠 = 1, 𝐴 receives no information 

from 𝑃 and will simply implement the project if 𝑒 <
1

2
+ 𝑏. In the nondelegation scenario, when 𝑏 <

1

2
 and 

𝑠 = 1, 𝐴 is still able to send two messages in order to inform 𝑃 whether the expected costs are lower or 

higher than the ex ante expected value of 𝑟, which is 
1

2
. Both cases lead to identical payoffs for both players. 

When 𝑏 >
1

2
, 𝐴 is not able to credibly communicate any information in the delegation scenario. 𝑃 will then 

have to make the implementation decision without any information whatsoever, meaning that the 

expected project value and therewith 𝑃’s payoff is 0. In the nondelegation scenario with 𝑏 >
1

2
, 𝐴 will 

always implement the project, since 𝑒 is always smaller than 
1

2
+ 𝑏. This means that the ex ante expected 

project value is again equal to 0.  

The reason there is no difference in the players’ payoffs between the most informative equilibria of the 

two scenarios has been discussed in Section 5.1. In my model, the only relevant information for the decision 

maker is whether the project is profitable to him or her. To determine this, the decision maker needs to be 

able to compare the costs of the project with the revenues of the project. By limiting the information on 

the revenues of the project, the value of the information on the costs of the project is limited as well. This 
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is different in 𝐶𝑆. In 𝐶𝑆, the final decision is a continuous one, where the goal of the receiver is to match 

his action to the state of the world, which is observed by the sender. Consequently, the receiver will be 

able to adjust his decision making to even the most accurate information received from the sender. This 

means that the accuracy of the information is of higher importance, since the receiver will not be able to 

make an optimal decision unless he knows the exact value of the state of the world. Of course, the sender 

is not able to credibly communicate information with this level of accuracy due to his bias and therefore, 

both players are better off when the sender would be able to make the final decision himself, given the 

fact that he knows the exact state of the world.  

5.4.2 Partial pooling equilibrium 

Turning towards the partial pooling equilibria in comparison to 𝐶𝑆, the first thing to note is that the same 

number of messages, with a similar distribution, can be used by the sender in both models. In 𝐶𝑆 however, 

the sender is prone to overstating the value of the variable on which he is trying to communicate 

information, whereas in my model the sender is prone to understating this value. This causes the first 

message in 𝐶𝑆 to have the smallest interval, and every next message interval to be 4𝑏 larger than the last. 

Conversely, in my model, the last message interval is the smallest and every prior interval is 4𝑏 larger than 

the higher interval.  

In 𝐶𝑆, the receiver has no information prior to any communication. On the contrary, in the partial pooling 

equilibria of my model, prior to any communication, the decision maker has an equal amount of 

information as the sender, since both players perfectly observe one of the two variables that determine 

the project value. In both the partial pooling equilibria and 𝐶𝑆, the receiver of the communication will be 

able to adjust his decision making to even the most accurate information received from the other player.8 

Much in the same way as described in Section 5.3, this leads to equally limited information transmission in 

CS and the partial pooling equilibria.  

Even though the communication is very similar between the partial pooling equilibria and 𝐶𝑆, the outcomes 

are rather different. In 𝐶𝑆, The receiver observes no information ex ante and receives limited information 

from the sender. Therefore, both players would be better off if the sender would simply make the final 

decision, thereby forgoing all communication. From the receiver’s perspective, even though the sender will 

make suboptimal decisions due to his bias, it is still better if the sender makes the final decision, since the 

 
8 This is in contrast to, for example, the most informative equilibrium of the nondelegation scenario, where P (the 
receiver) is only able to adjust his decision making to information up until a certain accuracy; any communication 
that is more accurate is redundant. This is discussed earlier in Section 5.3 
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receiver has a lot less information. In the partial pooling equilibria of my model, both players are ex ante 

equally informed. The decision maker will therefore always be better informed than the sender at the time 

of the implementation decision. Thus, contrary to 𝐶𝑆, the decision maker is never better off when the 

sender would make the implementation decision. Additionally, for either scenario, the sender is only better 

off if he/she could make the implementation decision for large values of 𝑏, namely 𝑏 > √
1

32
≈ 0.18, for 

which 𝑁∗ = 2. Any lower value of 𝑏, whether or not combined with additional messages, results in higher 

payoffs for both players when the implementation decision is made by the receiver of the communication. 
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6. Concluding remarks 

While a principal, responsible for the potential implementation of a project, will often be able to obtain 

some insight in the project’s profitability, she might simultaneously be dependent on an agent to provide 

her with more specific information. The aim of this paper was to research the optimal decision-making 

procedure in such a setting, in the presence of incongruent preferences between the principal and the 

agent. In order to do so, it was assumed that the principal is able to acquire costly information regarding 

the revenues of the project, whilst the costs of the project are simply observed by the agent. The results 

show that, whenever the players arrive at the most informative equilibrium, the principal will be indifferent 

between making the implementation decision herself and delegating the decision authority to the agent. 

In the case of delegation, the principal communicates all the information she acquired to the agent. This is 

not possible in the nondelegation case. Instead, the agent communicates to the principal in such a way that 

the principal will always make the optimal decision for the agent. The bias of the agent in the delegation 

case is exactly enough to offset the lack of information in the nondelegation case, leading to equal payoffs.  

These most informative equilibria are only possible for a relatively limited amount of information 

acquisition by the principal. This allows for greater information transmission between the players and 

subsequently, for better decision making, as compared to the equilibria where the principle has acquired 

the maximum amount of information. This result even holds in the case where the cost of information 

acquisition is zero, which is in line with Bijkerk et al. (2018). Additionally, in this case where the principal 

has acquired the maximum amount of information, such that the agent and the principle are ex ante equally 

informed, it is advantageous for either player be the one to make the implementation decision.  

The results of this paper suggest a slight departure from the results of Crawford & Sobel (1982) and Dessein 

(2002). In these models, only one player observes information prior to communication. In both papers, it 

would be advantageous for both players if the player with the information would be able to make the final 

decision, even though his preferences are biased. My model shows there is no difference in terms of 

outcome between the scenario where the better-informed player makes the implementation decision and 

the scenario where the less-informed player does, even if the less-informed player observes no 

information. The key assumption for this result is the design of the information acquisition. Because of this, 

the principal is able to keep her information relatively coarse, which allows the communication that is 

needed for the decision maker to compare the expected revenues of the project to its expected costs, 

irrelevant of which of the two players makes this decision. 
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My model thus provides a potential explanation for the centralization of decision authority in organizations 

whilst still assuming that lower level employees are potentially better informed. My results suggest that, in 

the case of the potential implementation of a project, the decision made by a manager will at least be as 

good as the decision of a subordinate would be. In cases where the manager is equally informed as the 

subordinate, the manager’s decision would even be better than the subordinate’s decision. Additionally, 

centralization would be even more effective if a manager is to verify the information of the subordinate to 

some extent, as is often the case in reality. This is in line with the practice in large, hierarchical companies, 

such as law firms, where the partners decide which cases to pursue, usually after the advice of one or more 

associates. In this light, a natural extension of my model is to analyze a similar framework with multiple 

senders, where each sender observes independent information on the value of the project at hand. In such 

a setting the principal can either make the implementation decision herself after receiving information 

from the agents or delegate the decision to one of the agents. Additionally, in the case of delegation, the 

question arises whether the principal should ask the agents to communicate to each other or whether the 

communication should flow through her. 

Finally, the results of my model are based on two strong assumptions, being that the agent’s bias is common 

knowledge and that the agent’s information is exogenous. The results show that delegation is not profitable 

in the presence of endogenous information acquisition by the principal. This raises the question whether 

this result will hold when the agent’s information acquisition is endogenized as well. Additionally, if it is 

assumed that the principal is able to observe the amount of information acquisition by the agent, another 

possible extension is to drop the assumption that the agent’s bias is common knowledge. Apart from its 

intrinsic value, information acquisition by the agent will then also serve as a signal regarding the agent’s 

bias. 
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Appendices 

Appendix 1: Delegation in the limited model 

Consider the delegation scenario where 𝑠 = 2 and 𝑃 truthfully reveals her type by sending message 𝑚𝑡
𝑃 to 

𝐴. For 𝐴, this results in the following expectations and decision strategy: 

𝐸[𝑟|𝑚1
𝑃, 𝑠] =

1

4
  

𝑑𝐴(𝑚1
𝑃) = 1   if 𝑒 <

1

4
+ 𝑏  

𝑑𝐴(𝑚1
𝑃) = 0   otherwise, and 

𝐸[𝑟|𝑚2
𝑃, 𝑠] =

3

4
  

𝑑𝐴(𝑚2
𝑃) = 1   if 𝑒 <

3

4
+ 𝑏   

𝑑𝐴(𝑚2
𝑃) = 0   otherwise. 

Given the expected value of 𝑟, the decision strategy of 𝐴 and the resulting expected value of 𝑒, 𝑃′𝑠 expected 

payoff, when revealing her type truthfully, is: 

𝐸[𝑈𝑃|𝑡 = 1, 𝑚1
𝑃, 𝑠] = (

1

4
−

1

8
−

1

2
𝑏) (

1

4
+ 𝑏) − 𝑐 

𝐸[𝑈𝑃|𝑡 = 2, 𝑚2
𝑃, 𝑠] = (

3

4
−

3

8
−

1

2
𝑏) (

3

4
+ 𝑏) − 𝑐 

For 𝑃 to be willing to reveal her type it is necessary that for each of the types, sending the corresponding 

message will yield the highest payoff. If that is not the case, one of the two types of P will have an incentive 

to deviate by sending the different message, resulting in an equilibrium where no information is conveyed. 

Therefore, the separating equilibrium will hold if: 

𝐸[𝑈𝑃|𝑡 = 1, 𝑚1
𝑃 , 𝑠] − 𝐸[𝑈𝑃|𝑡 = 1, 𝑚2

𝑃 , 𝑠] ≥ 0 

𝐸[𝑈𝑃|𝑡 = 2, 𝑚2
𝑃 , 𝑠] − 𝐸[𝑈𝑃|𝑡 = 2, 𝑚1

𝑃 , 𝑠] ≥ 0 

Starting with the first constraint, a type  𝑡 = 1 sending message 𝑚2
𝑃 yields: 

𝐸[𝑈𝑃|𝑡 = 1, 𝑚2
𝑃, 𝑠] = (

1

4
−

3

8
−

1

2
𝑏) (

3

4
+ 𝑏) − 𝑐 
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which means that: 

𝐸[𝑈𝑃|𝑡 = 1, 𝑚1
𝑃 , 𝑠] − 𝐸[𝑈𝑃|𝑡 = 1, 𝑚2

𝑃 , 𝑠] =
1

8
+

1

2
𝑏 

1

8
+

1

2
𝑏 ≥ 0 is true for every value of 𝑏. Therefore, 𝑃 never has an incentive to lie about her type when 𝑡 =

1. Concerning the second constraint, a type  𝑡 = 2 sending message 𝑚1
𝑃 yields: 

𝐸[𝑈𝑃|𝑡 = 2, 𝑚1
𝑃, 𝑠] = (

3

4
−

1

8
−

1

2
𝑏) (

1

4
+ 𝑏) − 𝑐 

which means that: 

𝐸[𝑈𝑃|𝑡 = 2, 𝑚2
𝑃 , 𝑠] − 𝐸[𝑈𝑃|𝑡 = 2, 𝑚1

𝑃 , 𝑠] =
1

8
−

1

2
𝑏 

1

8
−

1

2
𝑏 ≥ 0 yields 𝑏 ≤

1

4
, meaning that honest communication from 𝑃 regarding her type is only feasible 

for 𝑏 ≤
1

4
, completing the equilibrium with regard to the communication. 

The payoffs for both players in this equilibrium, given 𝑠 = 2 will amount to: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃 , 𝑠 = 2] =

1

2
𝐸[𝑈𝑃|𝑡 = 1, 𝑚1

𝑃 , 𝑠 = 2] +
1

2
𝐸[𝑈𝑃|𝑡 = 2, 𝑚2

𝑃 , 𝑠 = 2] =
5

32
−

1

2
𝑏2 − 𝑐 

𝐸[𝑈𝐴|𝑡, 𝑚𝑡
𝑃 , 𝑠 = 2] =  

1

2
[𝑈𝐴|𝑡 = 1, 𝑚1

𝑃 , 𝑠 = 2] +
1

2
𝐸[𝑈𝐴|𝑡 = 2, 𝑚2

𝑃 , 𝑠 = 2] =
5

32
+

1

2
𝑏 +

1

2
𝑏2 − 𝑐 

 

Appendix 2: Nondelegation in the limited model 

Consider the communication in the nondelegation scenario where 𝑠 = 2. The messages sent by 𝐴 can 

prompt one of the following reactions by 𝑃: 

1. 𝑑𝑃 = 1 for 𝑡 ∈ {1,2}; 

2. 𝑑𝑃 = 1 for 𝑡 = 2 and 𝐷𝑃 = 0 for 𝑡 = 1; 

3. 𝑑𝑃 = 0 for 𝑡 ∈ {1,2}. 

Let the messages that prompt reaction 1, 2 and 3 be denoted by 𝑚1
𝐴, 𝑚2

𝐴 and 𝑚3
𝐴 respectively. These three 

messages will result in the following expected payoffs for 𝐴: 

1. 𝐸[𝑈𝐴|𝑚1
𝐴, 𝑠 = 2] =

1

2
(

1

4
+ 𝑏 − 𝑒) +

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

2. 𝐸[𝑈𝐴|𝑚2
𝐴, 𝑠 = 2] =

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

3. 𝐸[𝑈𝐴|𝑚3
𝐴, 𝑠 = 2] = −𝑐 
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For 𝐴 to send a certain message it is necessary that his payoff is higher than or equal to his payoff when 

sending either of the other two messages. Let 𝑚1
𝐴 be sent by all 𝐴 with types 𝑒 ∈ [0, 𝑒1], 𝑚`2

𝐴  when 𝑒 ∈

[𝑒1, 𝑒2] and 𝑚`3
𝐴  when 𝑒 ∈ [𝑒2, 1]. When 𝑒 is equal to the boundary between two intervals, 𝐴 should be 

indifferent between sending the two adjacent messages. For 𝑒 = 𝑒1, this means that  

𝐸[𝑈𝐴|𝑚`1
𝐴 , 𝑒1, 𝑠 = 2] = 𝐸[𝑈𝐴|𝑚`2

𝐴 , 𝑒1, 𝑠 = 2], yielding 𝑒1 = 𝑏 +
1

4
. Similarly, when 𝑒 = 𝑒2, it should hold 

that 𝐸[𝑈𝐴|𝑚`2
𝐴 , 𝑒2, 𝑠 = 2] = 𝐸[𝑈𝐴|𝑚`3

𝐴 , 𝑒2, 𝑠 = 2], yielding 𝑒2 = 𝑏 +
3

4
.  

Upon observing 𝑚`1
𝐴  or 𝑚`2

𝐴 , 𝑃’s expected value of 𝑒 will be 𝐸[𝑒|𝑚`1
𝐴 ] =

1

2
𝑏 +

1

8
  and 𝐸[𝑒|𝑚`2

𝐴 ] = 𝑏 +
1

2
 

respectively. For 𝑃 to implement the project upon receiving 𝑚`1
𝐴  when her type is 𝑡 = 1, it should be the 

case that 
1

2
𝑏 +

1

8
≤

1

4
, meaning that 𝑏 ≤

1

4
. The same is true – mutatis mutandis – for 𝑡 = 2  receiving 𝑚`2

𝐴 . 

Thus, the equilibrium where 𝑠 = 2 and 𝐴 sends the three messages as described above is only feasible for 

𝑏 ≤
1

4
. 

In the case where 𝑏 ≤
1

4
 and 𝑠 = 2, the following payoffs will be realized for 𝑃 and 𝐴 respectively: 

𝐸[𝑈𝑃|𝑡, 𝑚𝐴, 𝑠 = 2] = 

1

2
𝐸[𝑈𝑃|𝑡 = 1, 𝑚1

𝐴, 𝑠 = 2] +
1

2
(𝐸[𝑈𝑃|𝑡 = 2, 𝑚1

𝐴, 𝑠 = 2] + 𝐸[𝑈𝑃|𝑡 = 2, 𝑚2
𝐴, 𝑠 = 2]) =

5

32
−

1

2
𝑏2 − 𝑐 

 

𝐸[𝑈𝐴|𝑡, 𝑚𝐴, 𝑠 = 2] = 

1

2
[𝑈𝐴|𝑡 = 1, 𝑚1

𝐴, 𝑠 = 2] +
1

2
(𝐸[𝑈𝐴|𝑡 = 2, 𝑚1

𝐴, 𝑠 = 2] + 𝐸[𝑈𝐴|𝑡 = 2, 𝑚2
𝐴, 𝑠 = 2]) =

5

32
+

1

2
𝑏 +

1

2
𝑏2 − 𝑐 

I will now analyze possible alternative equilibria for 𝑠 = 2 where only two messages are sent by 𝐴. First, I 

assume that 𝑃’s reaction to messages 𝑚1
𝐴 and 𝑚2

𝐴 are the following: 

1. 𝑑𝑃 = 1 for 𝑡 ∈ {1,2}; 

2. 𝑑𝑃 = 0 for 𝑡 ∈ {1,2}. 

This results in the following payoffs for 𝐴: 

1. 𝐸[𝑈𝐴|𝑚1
𝐴, 𝑠 = 2] =

1

2
(

1

4
+ 𝑏 − 𝑒) +

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

2. 𝐸[𝑈𝐴|𝑚2
𝐴, 𝑠 = 2] = −𝑐 

 

Let 𝑚1
𝐴 be sent by all 𝐴 with types 𝑒 ∈ [0, 𝑒1] and 𝑚`2

𝐴  with types 𝑒 ∈ [𝑒1, 1]. When 𝑒 = 𝑒1, 𝐴 should then 

be indifferent between sending 𝑚1
𝐴 and 𝑚2

𝐴. 𝐸[𝑈𝐴|𝑚`1
𝐴 , 𝑒1] = 𝐸[𝑈𝐴|𝑚`2

𝐴 , 𝑒1] yields 𝑒1 = 𝑏 +
1

2
. However, 
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this will mean that a type 𝑡 = 1 will not implement the project for 𝑚1
𝐴, since 𝑟𝑡 =

1

4
< 𝐸[𝑒|𝑚1

𝐴] =
1

2
𝑏 +

1

4
. 

Therefore, this is not an equilibrium. 

Secondly, the reactions to 𝑚1
𝐴 and 𝑚2

𝐴 are assumed to be the following: 

1. 𝑑𝑃 = 1 for 𝑡 ∈ {1,2}; 

2. 𝑑𝑃 = 1 for 𝑡 = 2 and 𝑑𝑃 = 0 for 𝑡 = 1. 

 

Resulting in the following payoffs for A: 

1. 𝐸[𝑈𝐴|𝑚1
𝐴, 𝑠 = 2] =

1

2
(

1

4
+ 𝑏 − 𝑒) +

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

2. 𝐸[𝑈𝐴|𝑚2
𝐴, 𝑠 = 2] =

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

Again, let 𝑒1 be the border value between the two messages, meaning that 𝑒1 = 𝑏 +
1

4
. 𝑃 with type 𝑡 = 1 

will only implement the project upon receiving 𝑚1
𝐴 if 

1

4
≥

1

2
𝑏 +

1

8
, yielding 𝑏 ≤

1

4
, just as in the equilibrium 

with three messages. 

Lastly, the reactions to 𝑚1
𝐴 and 𝑚2

𝐴 are assumed to be the following: 

1. 𝑑𝑃 = 1 for 𝑡 = 2 and 𝑑𝑃 = 0 for 𝑡 = 1; 

2. 𝑑𝑃 = 0 for 𝑡 ∈ {1,2}. 

resulting in the following payoffs for A: 

1. 𝐸[𝑈𝐴|𝑚1
𝐴, 𝑠 = 2] =

1

2
(

3

4
+ 𝑏 − 𝑒) − 𝑐 

2. 𝐸[𝑈𝐴|𝑚2
𝐴, 𝑠 = 2] = −𝑐 

The analysis here is similar to the previous equilibrium. For this equilibrium to be feasible it needs to hold 

that 𝑏 ≤
1

4
 .  

 

Appendix 3: Most informative equilibrium under delegation in the full model 

Consider the delegation scenario with 𝑠 ∈ ℕ+ where 𝑃 honestly reveals her type. It follows from (3) that 

𝐴 will implement the project if 𝑒 < 𝐸[𝑟|𝑚𝑃] + 𝑏 = 𝑟𝑡 + 𝑏. When a type 𝑡 sends message 𝑚𝑡
𝑃, it follows 

that 𝐸[𝑒|𝑑𝐴 = 1, 𝑚𝑡
𝑃] =

1

2
(

2𝑡−1

2𝑠
+ 𝑏) and 𝑃(𝑑𝐴 = 1|𝑚𝑡

𝑃) =
2𝑡−1

2𝑠
+ 𝑏. For 𝑃, this means that revealing her 

type yields: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃 , 𝑠] = (

2𝑡 − 1

2𝑠
−

2𝑡 − 1

4𝑠
−

1

2
𝑏) (

2𝑡 − 1

2𝑠
+ 𝑏) − (𝑠 − 1)𝑐 
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whilst deviating to 𝑚𝑡−1
𝑃  will yield 𝑃: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑡−1
𝑃 , 𝑠] = (

2𝑡 − 1

2𝑠
−

2𝑡 − 3

4𝑠
−

1

2
𝑏) (

2𝑡 − 3

2𝑠
+ 𝑏) − (𝑠 − 1)𝑐 

Thus, for 𝑃 to honestly reveal her type it must hold that 𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃] − 𝐸[𝑈𝑃|𝑡, 𝑚𝑡−1

𝑃 ] ≥ 0. Substracting 

the two payoffs yields: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃 , 𝑠] − 𝐸[𝑈𝑃|𝑡, 𝑚𝑡−1

𝑃 , 𝑠] =
1 − 2𝑠𝑏

2𝑠2
 

1−2𝑠𝑏

2𝑠2 ≥ 0 yields 𝑏 ≤
1

2𝑠
, meaning that 𝑏 should be smaller than (or equal to) 

1

2𝑠
 for a separating equilibrium 

to be feasible. In other words, the maximum number of subintervals 𝑠̅ that supports the most informative 

equilibrium is given by: 

 𝑠̅ = ⌊
1

2𝑏
⌋  

After 𝑃 has observed her type and has sent a message to 𝐴, the payoffs of both players resulting from 𝑃 

revealing her type are given by:  

𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃, 𝑠] = (𝑟𝑡 −

1

2
𝑟𝑡 −

1

2
𝑏) (𝑟𝑡 + 𝑏) − (𝑠 − 1)𝑐 =

1

2
𝑟𝑡

2 −
1

2
𝑏2 − (𝑠 − 1)𝑐 

𝐸[𝑈𝐴|𝑡, 𝑚𝑡
𝑃 , 𝑠] = (𝑟𝑡 + 𝑏 −

1

2
𝑟𝑡 −

1

2
𝑏) (𝑟𝑡 + 𝑏) − (𝑠 − 1)𝑐 =

1

2
𝑟𝑡

2 + 𝑟𝑡𝑏 +
1

2
𝑏2 − (𝑠 − 1)𝑐 

Substituting for (1) yields: 

 𝐸[𝑈𝑃|𝑡, 𝑚𝑡
𝑃 , 𝑠] =

(2𝑡−1)2

8𝑠2 −
1

2
𝑏2 − (𝑠 − 1)𝑐 (𝐴1) 

 𝐸[𝑈𝐴|𝑡, 𝑚𝑡
𝑃 , 𝑠] =

(2𝑡−1)2

8𝑠2 +
2𝑡−1

2𝑠
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐 (𝐴2) 

Let the ex-ante payoff of both players in the most informative equilibrium be denoted by 𝑈𝑀𝐼
𝑖 (𝑠). This is 

the expected utility of the players as a function of 𝑠, before 𝑃’s type is revealed. In order to derive 𝑈𝑀𝐼
𝑖 (𝑠), 

the average of the expected payoffs given in (𝐴1) and (𝐴2) is taken over all types 𝑡, yielding: 

 𝑈𝑀𝐼
𝑃 (𝑠) =

1

𝑠
∑ (

(2𝑡−1)2

8𝑠2 −
1

2
𝑏2) − (𝑠 − 1)𝑐𝑠

𝑡=1 =
1

24
(4 −

1

𝑠2) −
1

2
𝑏2 − (𝑠 − 1)𝑐 (𝐴3) 
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𝑈𝑀𝐼
𝐴 (𝑠) =

1

𝑠
∑ (

(2𝑡 − 1)2

8𝑠2
+

2𝑡 − 1

2𝑠
𝑏 +

1

2
𝑏2)

𝑠

𝑡=1

− (𝑠 − 1)𝑐 

 =
1

24
(4 −

1

𝑠2) +
1

2
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐  (𝐴4) 

Let 𝑠𝑜𝑝𝑡 denote the number of subintervals that 𝑃 would set in the hypothetical case where 𝑠̅ does not play 

a role. 𝑠𝑜𝑝𝑡can be found by maximizing (𝐴3) and rounding off to the nearest integer, yielding, 𝑠𝑜𝑝𝑡 =

⌊√
1

12𝑐

3
 ⌉. Let 𝑠∗ denote the optimal number of subintervals that can still support the most informative 

equilibrium. Accordingly, 𝑠∗ will be equal to the lowest value of 𝑠𝑜𝑝𝑡 or 𝑠̅, yielding: 

𝑠∗ = 𝑚𝑖𝑛(⌊√
1

12𝑐

3

 ⌉ , ⌊
1

2𝑏
⌋) 

 

Appendix 4: Partial pooling equilibrium under delegation in the full model 

Consider a partial pooling equilibrium in the delegation scenario with 𝑐 = 0 and 𝑠 → ∞. Let a message 𝑚𝑛
𝑃 

be sent by all types in the interval [𝑡𝑛−1, 𝑡𝑛], where 𝑡0 = 0 and 𝑡𝑁 = 1.  These so-called boundary types 𝑡𝑛 

should be indifferent between sending  𝑚𝑛
𝑃 and  𝑚𝑛+1

𝑃 . The expected payoff of type 𝑡𝑛 when sending 𝑚𝑛
𝑃 

amounts to: 

𝐸[𝑈𝑃|𝑡𝑛, 𝑚𝑛
𝑃] = (𝑡𝑛 −

𝑡𝑛−1 + 𝑡𝑛

4
−

1

2
𝑏) (

𝑡𝑛−1 + 𝑡𝑛

2
+ 𝑏) 

whilst the expected payoff of type 𝑡𝑛 when sending 𝑚𝑛+1
𝑃  yields: 

𝐸[𝑈𝑃|𝑡𝑛, 𝑚𝑛+1
𝑃 ] = (𝑡𝑛 −

𝑡𝑛 + 𝑡𝑛+1

4
−

1

2
𝑏) (

𝑡𝑛 + 𝑡𝑛+1

2
+ 𝑏) 

Indifference between sending these two signals is achieved when a boundary type receives equal payoffs 

when sending either of the two messages. 𝐸[𝑈𝑃|𝑡𝑛, 𝑀𝑛
𝑃] = 𝐸[𝑈𝑃|𝑡𝑛, 𝑀𝑛+1

𝑃 ] yields: 

𝑡𝑛+1 − 𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1 − 4𝑏 

Let the last, and thus smallest, partition on the total interval be of length d. The total interval [0,1] can then 

be summed up as follows: 

(𝑑 + (𝑁 − 1)4𝑏) + ⋯ + (𝑑 + 4𝑏) + 𝑑 = 1 
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 𝑁𝑑 + 𝑁(𝑁 − 1)2𝑏 = 1 (𝐴5) 

Let the maximum number of messages that can be used in this equilibrium be denoted by 𝑁̅. Since 𝑁𝑑 

must be positive, but can be infinitely small, the maximum number of informative messages is the value of 

𝑁 that solves N(𝑁 − 1)2𝑏 < 1, meaning that: 

 𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ (𝐴6) 

From (𝐴5) it can be seen that the size of the last partition, with types that send message 𝑚𝑁
𝑃 ,  is equal to 

𝑑 = 𝑡𝑁 − 𝑡𝑁−1 =
1

𝑁
+ (2 − 2𝑁)𝑏. The partition before that, with types that send 𝑚𝑁−1

𝑃 , is 4𝑏 bigger, 

yielding 𝑡𝑁−1 − 𝑡𝑁−2 =
1

𝑁
+ (6 − 2𝑁)𝑏. The partition before that will again be 4𝑏 bigger, etc. In general, 

the size of interval 𝑛𝜖{1, … , 𝑁} is equal to  
1

𝑁
+ (2𝑁 − 4𝑛 + 2)𝑏 = 𝑡𝑛 − 𝑡𝑛−1. This means that the first 

partition is of length 𝑡1 − 𝑡0 =
1

𝑁
+ (2𝑁 − 2)𝑏. Since 𝑡0 = 0, the first boundary type is 𝑡1 =

1

𝑁
+

(2𝑁 − 2)𝑏. As 𝑡2 − 𝑡1= 
1

𝑁
+ (2𝑁 − 6)𝑏, this means that 𝑡2 =

2

𝑁
+ (4𝑁 − 8)𝑏. In general, a boundary type 

𝑡𝑛 in an equilibrium with 𝑁 messages is equal to: 

 𝑡𝑛 =
𝑛

𝑁
+ (2𝑛𝑁 − 2𝑛2)𝑏 (𝐴7) 

When 𝑃 sends a message 𝑚𝑛
𝑃 after observing 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛], her expected payoff is: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑛
𝑃] = (

𝑡𝑛−1 + 𝑡𝑛

2
−

1

2
(

𝑡𝑛−1 + 𝑡𝑛

2
+ 𝑏)) (

𝑡𝑛−1 + 𝑡𝑛

2
+ 𝑏) 

Let a player’s ex ante expected payoff, meaning before 𝑃 has observed her type and before 𝐴 has received 

any message, in the partial pooling equilibrium be denoted by 𝑈𝑃𝑃𝐸
𝑖 (𝑁). 𝑈𝑃𝑃𝐸

𝑖 (𝑁) is the average payoff 

over sending all messages 𝑚𝑛
𝑃, where 𝑛 = {1, … , 𝑁}. In order to arrive at this average, the payoff of sending 

each message is multiplied with the probability that 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛 which is 𝑡𝑛 − 𝑡𝑛−1, yielding: 

 𝑈𝑃𝑃𝐸
𝑃 (𝑁)  = ∑ (𝑡𝑛 − 𝑡𝑛−1) (

𝑡𝑛−1+𝑡𝑛

2
−

1

2
(

𝑡𝑛−1+𝑡𝑛

2
+ 𝑏)) (

𝑡𝑛−1+𝑡𝑛

2
+ 𝑏)𝑁

𝑛=1  (𝐴8) 

Substituting (𝐴7) into (𝐴8) yields: 

 𝑈𝑃𝑃𝐸
𝑃 (𝑁)  =

1

24
(4 −

1

𝑁2) −
1

3
𝑏2 −

1

6
𝑁2𝑏2 (𝐴9) 

𝐴’s payoff is retrieved in a similar fashion, yielding: 
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 𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2) +
1

2
𝑏 +

2

3
𝑏2 −

1

6
𝑁2𝑏2 (𝐴10) 

Maximizing (𝐴9) and (𝐴10) yields the optimal number of messages for 𝑃 and 𝐴 respectively, denoted by 

𝑁𝑜𝑝𝑡, if they were totally free to set any number of messages. For both players, maximizing their payoffs 

with regards to 𝑁 yields 𝑁𝑜𝑝𝑡 = √
1

4𝑏2

4
. However, two restrictions apply to this. Firstly, 𝑁 cannot be bigger 

than 𝑁̅ and secondly, 𝑁 needs to be an integer. Regarding the first restriction, it turns out that for 𝑏 ∈

[0,1], 𝑁𝑜𝑝𝑡 < 𝑁̅, meaning the players are not hindered by 𝑁̅ in this sense. Considering the second 

restriction, when 𝑏 has the exact value that allows for an extra message to be used, both players would 

optimally like to use a number of messages that is somewhat lower than the maximum number possible, 

as is evidenced by 𝑁𝑜𝑝𝑡 < 𝑁̅. This difference between 𝑁𝑜𝑝𝑡 and 𝑁̅ is always smaller than 1. Thus, the 

players have to choose between 𝑁 = 𝑁̅ or 𝑁 = 𝑁̅ − 1. Firstly, it follows from (𝐴6) that the value of 𝑏 

corresponding to a certain maximum number of messages 𝑁̅ is equal to 𝑏 =
1

2𝑁̅(𝑁̅−1)
. For 𝑁̅ = {1,2, … , ∞}, 

this value of 𝑏 represents the threshold for allowing the use of an extra message in equilibrium. Secondly, 

the value of 𝑏 for which both players are indifferent between 𝑁 = 𝑁̅ or 𝑁 = 𝑁̅ − 1 follows from 

𝑈𝑃𝑃𝐸
𝑖 (𝑁̅) = 𝑈𝑃𝑃𝐸

𝑖 (𝑁̅ − 1), also yielding 𝑏 =
1

2𝑁̅(𝑁̅−1)
. This means that, at the exact value of 𝑏 for which the 

maximum number of messages increases by one, the players are indifferent between using this maximum 

number of messages 𝑁̅ and using 𝑁̅ − 1. As 𝑏 gets any lower than 
1

2𝑁̅(𝑁̅−1)
, they will strictly prefer 𝑁̅, which 

essentially means that: 

𝑁∗ = 𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

 

Appendix 5 Most informative equilibrium under nondelegation in the full model: 

Consider the nondelegation scenario with 𝑠 ∈ ℕ+. It follows from (2) that 𝑃 will implement the project if 

𝑟𝑡 > 𝐸[𝑒|𝑚𝐴]. Let a message 𝑚𝑛
𝐴 be sent by all 𝐴 that observe 𝑒 ∈ [𝑒𝑛−1, 𝑒𝑛], where 𝑒0 = 0 and 𝑒𝑁 = 1, 

such that all 𝑃 with 𝑡 ≥ 𝑛 will implement the project upon receiving 𝑚𝑛
𝐴. For this to hold, 𝐴 should be 

indifferent between sending 𝑚𝑛
𝐴 and 𝑚𝑛+1

𝐴  when 𝑒 = 𝑒𝑛. When sending 𝑚𝑛
𝐴 all 𝑃 with type 𝑡 ≥ 𝑛 will 

implement the project. When 𝑒 = 𝑒𝑛, this yields the following payoff for 𝐴:  

𝐸[𝑈𝐴|𝑚𝑛
𝐴, 𝑒𝑛 ] = ∑

1

𝑠
(

2𝑡 − 1

2𝑠
+ 𝑏 − 𝑒𝑛) − (𝑠 − 1)𝑐

𝑠

𝑡=𝑛
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whilst sending 𝑚𝑛+1
𝐴  when 𝑒 = 𝑒𝑛 will yield: 

𝐸[𝑈𝐴|𝑚𝑛+1
𝐴 , 𝑒𝑛] = ∑

1

𝑠
(

2𝑡 − 1

2𝑠
+ 𝑏 − 𝑒𝑛) − (𝑠 − 1)𝑐

𝑠

𝑡=𝑛+1
 

For indifference, the difference between these payoffs needs to be equal to 0. 
1

𝑠
(

2𝑛−1

2𝑠
+ 𝑏 − 𝑒𝑛) = 0 

yields: 

 𝑒𝑛 =
2𝑛−1

2𝑠
+ 𝑏 (𝐴11) 

In order for this to be an equilibrium, it should indeed be the case that all 𝑃 with 𝑡 ≥ 𝑛 will implement the 

project when receiving message 𝑚𝑛
𝐴. Given 𝑃’s decision strategy, this is true when 𝐸[𝑒|𝑚𝑛

𝐴] < 𝑟𝑡 for 𝑛 = 𝑡. 

It follows from (𝐴11) that: 

𝐸[𝑒|𝑚𝑛
𝐴] =

𝑒𝑡 + 𝑒𝑛−1

2
=

𝑛 − 1

𝑠
+ 𝑏 

𝑟𝑡 ≥ 𝐸[𝑒|𝑚𝑛
𝐴] for 𝑛 = 𝑡 yields 𝑠 ≤

1

2𝑏
. Letting 𝑠̅ denote the maximum number of subintervals that can 

support a most informative equilibrium in the nondelegation scenario, this means that  

𝑠̅ = ⌊
1

2𝑏
⌋ 

After 𝑃 observes both her type 𝑡 and the message 𝑚𝑛
𝐴, she will only implement the project if 𝑛 ≤ 𝑡. The 

largest value of 𝑒 for which 𝐴 will send a message 𝑛 ≤ 𝑡 is the upper boundary of the partition belonging 

to the message 𝑛 = 𝑡, which is 𝑒𝑡. It then follows from (𝐴11) that, before 𝑃 has observed 𝑚𝐴, the 

probability that she will implement the project is 𝑃(𝑑𝑃 = 1) = 𝑃(𝑒 ≤ 𝑒𝑡) =
2𝑡−1

2𝑠
+ 𝑏. Since 𝑒 ≤ 𝑒𝑡 when 

𝐴 approves the project, the expected value of 𝑒 is 𝐸[𝑒|𝑑𝑃 = 1] =
2𝑡−1

4𝑠
+

1

2
𝑏. This yields the following 

payoff for 𝑃 and 𝐴, when 𝑃’s type is a given: 

𝐸[𝑈𝑃|𝑡, 𝑚𝑛
𝐴] = (

2𝑡 − 1

2𝑠
−

2𝑡 − 1

4𝑠
−

1

2
𝑏) (

2𝑡 − 1

2𝑠
+ 𝑏) − (𝑠 − 1)𝑐 =

(2𝑡 − 1)2

8𝑠2
−

1

2
𝑏2 − (𝑠 − 1)𝑐 

𝐸[𝑈𝐴|𝑡, 𝑚𝑛
𝐴] = (

2𝑡 − 1

2𝑠
+ 𝑏 −

2𝑡 − 1

4𝑠
−

1

2
𝑏) (

2𝑡 − 1

2𝑠
+ 𝑏) − (𝑠 − 1)𝑐

=
(2𝑡 − 1)2

8𝑠2
+

2𝑡 − 1

2𝑠
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐 
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These payoffs and the maximum number of subintervals that can support the most informative equilibrium 

are equal to the results of the delegation scenario. The rest of the analysis is therefore identical to Appendix 

3, resulting in: 

𝑈𝑀𝐼
𝑃 (𝑠) =

1

𝑠
∑ (

(2𝑡 − 1)2

8𝑠2
−

1

2
𝑏2) − (𝑠 − 1)𝑐

𝑠

𝑡=1

=
1

24
(4 −

1

𝑠2
) −

1

2
𝑏2 − (𝑠 − 1)𝑐 

 𝑈𝑀𝐼
𝐴 (𝑠) =

1

𝑠
∑ (

(2𝑡−1)2

8𝑠2 +
2𝑡−1

2𝑠
𝑏 +

1

2
𝑏2)𝑠

𝑡=1 − (𝑠 − 1)𝑐 

 =
1

24
(4 −

1

𝑠2) +
1

2
𝑏 +

1

2
𝑏2 − (𝑠 − 1)𝑐   

𝑠∗ = 𝑚𝑖𝑛(⌊√
1

12𝑐

3

 ⌉ , ⌊
1

2𝑏
⌋) 

Appendix 6: Partial pooling equilibrium under nondelegation in the full model 

Consider a partial pooling equilibrium in the nondelegation scenario with 𝑐 = 0 and 𝑠 → ∞. Let a message 

𝑚𝑛
𝐴 be sent by all types that observe 𝑒 to be in the interval [𝑒𝑛−1, 𝑒𝑛], where 𝑒0 = 0 and 𝑒𝑁 = 1. 𝑒𝑛 is the 

boundary type between 𝑚𝑛
𝐴 and 𝑚𝑛+1

𝐴  and should therefore be indifferent between sending either of these 

two messages. When sending 𝑚𝑛
𝐴, 𝑃 will decide 𝑑𝑃 = 1 if 𝑟 > 𝐸[𝑒|𝑚𝑛

𝐴] =
𝑒𝑛−1+𝑒𝑛 

2
 and 𝑑𝑃 = 0 otherwise. 

This means that 𝑃(𝑑𝑃 = 1) = 1 −
𝑒𝑛−1+𝑒𝑛

2
 and 𝐸[𝑟|𝑑𝑃 = 1] =

1

2
(

𝑒𝑛−1+𝑒𝑛

2
+ 1). Thus, sending 𝑚𝑛

𝐴 when 

𝑒 = 𝑒𝑛 yields the following payoff for 𝐴: 

𝐸[𝑈𝐴|𝑒 = 𝑒𝑛, 𝑚𝑛
𝐴] = (

𝑒𝑛−1 + 𝑒𝑛 + 2

4
+ 𝑏 − 𝑒𝑛) (1 −

𝑒𝑛−1+𝑒𝑛

2
) 

Similarly, sending 𝑚𝑛+1
𝐴  when 𝑒 = 𝑒𝑛 yields 𝐴: 

𝐸[𝑈𝐴|𝑒 = 𝑒𝑛, 𝑚𝑛+1
𝐴 ] = (

𝑒𝑛 + 𝑒𝑛+1 + 2

4
+ 𝑏 − 𝑒𝑛) (1 −

𝑒𝑛+𝑒𝑛+1

2
) 

The expected payoff for 𝐴 of sending either of the two messages should be equal to each other in order for 

boundary types to be indifferent between sending the two adjacent messages. 𝐸[𝑈𝐴|𝑒 = 𝑒𝑛, 𝑚𝑛
𝐴] =

𝐸[𝑈𝐵|𝑒 = 𝑒𝑛, 𝑚𝑛+1
𝐴 ] yields: 

𝑒𝑛+1 − 𝑒𝑛 = 𝑒𝑛 − 𝑒𝑛−1 − 4𝑏 
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Just as in the partial pooling equilibrium in delegation scenario, each next interval of types that send one 

message is 4𝑏 smaller. In order to find how many messages can be used, let the last, and thus smallest, 

interval be of length 𝑑. The total interval [0,1] can then be summed up as: 

(𝑑 + (𝑁 − 1)4𝑏) + ⋯ + (𝑑 + 4𝑏) + 𝑑 = 1 

 𝑁𝑑 + 𝑁(𝑁 − 1)2𝑏 = 1 (𝐴12) 

Similar to the partial pooling equilibrium in the delegation scenario, this means the maximum number of 

messages that can be used in this equilibrium, denoted by 𝑁̅, is equal to:  

𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 

Since the division of the total interval given in (𝐴12) is the same as under the partial pooling equilibrium 

in the delegation scenario, the values of the boundary types for 𝐴 in the nondelegation scenario will be 

equal to the values of the boundary types for 𝑃 in the delegation scenario. This means that: 

 𝑒𝑛 =
𝑛

𝑁
+ (2𝑛𝑁 − 2𝑛2)𝑏 (𝐴13) 

When 𝐴 sends a message 𝑚𝑛
𝐴 after observing that 𝑒 ∈ [𝑒𝑛−1, 𝑒𝑛] it follows that 𝑃(𝑑𝑃 = 1) = 1 −

𝑒𝑛−1+𝑒𝑛

2
 

and 𝐸[𝑟|𝑑𝑃 = 1] =
1

2
(

𝑒𝑛−1+𝑒𝑛

2
+ 1). This means that his expected payoff, after sending 𝑚𝑛

𝐴, becomes: 

𝐸[𝑈𝐴|𝑒, 𝑚𝑛
𝐴] = (

1

2
(

𝑒𝑛−1 + 𝑒𝑛

2
+ 1) + 𝑏 − (

𝑒𝑛−1 + 𝑒𝑛

2
)) (1 −

𝑒𝑛−1 + 𝑒𝑛

2
) 

Let 𝑈𝑃𝑃𝐸
𝑖 (𝑁) denote a player’s payoff before any information is acquired and any communication has taken 

place. 𝑈𝑃𝑃𝐸
𝑖 (𝑁) is the weighted average payoff over all possible messages, which is the sum of the payoff 

resulting from each message multiplied with the probability that 𝑒 falls into the subinterval belonging to 

that message. This yields the following ex ante payoff for 𝐴: 

𝑈𝑃𝑃𝐸
𝐴 (𝑁)  = ∑ (𝑒𝑛 − 𝑒𝑛−1)

𝑁

𝑛=1
(

1

2
(

𝑒𝑛−1 + 𝑒𝑛

2
+ 1) + 𝑏 − (

𝑒𝑛−1 + 𝑒𝑛

2
)) (1 −

𝑒𝑛−1 + 𝑒𝑛

2
) 

Substituting for (𝐴13) yields: 

𝑈𝑃𝑃𝐸
𝐴 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

2
𝑏 +

1

6
𝑏2 −

1

6
𝑁2𝑏2 
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𝑃’s payoff can be derived similarly, yielding: 

𝑈𝑃𝑃𝐸
𝑃 (𝑁) =

1

24
(4 −

1

𝑁2
) +

1

6
𝑏2 −

1

6
𝑁2𝑏2 

Maximizing these two payoffs with regard to 𝑁 yields 𝑁𝑜𝑝𝑡 = √
1

4𝑏2

4
. This means that both 𝑁𝑜𝑝𝑡 and 𝑁̅ are 

the same as in the partial pooling equilibrium in the delegation scenario. Thus, given that 𝑁 ≤ 𝑁̅ and that 

𝑁 needs to be an integer, the optimal number of messages in this partial pooling equilibrium is the same 

as in the delegation scenario which is: 

𝑁∗ = 𝑁̅ = ⌊
1

2
(1 + √1 +

2

𝑏
)⌋ 


