
Erasmus University Rotterdam
Erasmus School of Economics

Bayesian Optimization for
Parameter Tuning of

Recommendation Systems

MSc Econometrics and Management Sciences: Business Analytics
and Quantitative Marketing

Author:
William Steenbergen

Academic Supervisor:
Dr. Michel van der Velden

Prof. Dr. Ilker Birbil

Practical Supervisors:
Dennie van den Biggelaar

Renée Lenders

August 6, 2019

Abstract

This research explores parameter optimization algorithms for recom-
mender systems at retailers. Since evaluating the performance of a recom-
mender is often expensive both in time and financial aspect, it is required
that the optimization algorithm uses as little tests as possible. We tested
several methods all in the field of Bayesian optimization: a Gaussian Pro-
cess approach with a Matern and squared exponential covariance prior
and a Tree Parzen Estimator approach with both a normal and uniform
prior. The methods use an acquisition function, which determines the
next parameter setting that will be evaluated. This research tested a new
acquisition function (dynamic expected improvement) that is an adapta-
tion to the popular expected improvement function. It was found that the
TPE algorithm consistently finds better optimal values than the Gaussian
Process approach. Moreover, the high impact of the prior selection is un-
derlined by the results. It was also found that the dynamic expected
improvement acquisition function performs worse than the regular ex-
pected improvement acquisition function, but could still have potential
for applications with smooth objective functions.

1

Contents

1 Introduction 3

2 Current situation 4
2.1 Building Blocks . 5
2.2 Current recommender . 5
2.3 Case study . 9

3 Literature overview 9
3.1 Evaluation of recommendation systems 10
3.2 Parameter tuning of recommendation systems 11

4 Data 12
4.1 Descriptive statistics . 12

4.1.1 All customers . 13
4.1.2 Customers used for evaluating 13

4.2 Data preparation . 13
4.2.1 Data generation . 14

5 Methods 14
5.1 Creating the test and train set 15
5.2 Measuring recommender performance 16
5.3 Optimization methods . 18

5.3.1 Bayesian optimization and the acquisition function 18
5.3.2 Gaussian process prior . 20
5.3.3 Gaussian process prior with adaptation 21
5.3.4 Tree parzen estimator prior 22

5.4 Validation and generalization to online case 24

6 Results 25
6.1 TPE and uniform distribution prior 26
6.2 TPE and log-normal distribution prior 27
6.3 Gaussian process prior and Matern kernel 28
6.4 Gaussian process prior with Matern kernel and DEI acquisition

function . 29
6.5 Gaussian process prior with squared exponential kernel 30

7 Discussion 31

8 Conclusion 33

A Measuring recommender performance 36

B Brute force results 37

2

1 Introduction

Large e-commerce web shops offer millions of products. For a customer, choos-
ing from those products can be a challenging task. To aid customers in this
task and in an attempt to cross-sell products, many companies developed rec-
ommender systems. These recommender systems aim to show products that fit
the customers’ needs and thereby increase the number of products sold.

There are many techniques for recommending products (see Ricci et al.
(2011) for an overview), and it remains a challenge for companies to select the
recommender that best fits their needs. Most recommender systems are based
on the assumption that the ’best’ products to recommend are products that
are similar to products customers have already bought, or products that similar
customers bought (Resnick and Varian, 1997). There is no widely accepted eval-
uation method that tests this assumption. Neither is there an accepted method
that measures the performance of a recommender (Gunawardana and Shani,
2009), which makes it impossible to compare different recommenders. There
are two reasons that make it hard to define a evaluation method:

First of all, it is not always clear what defines the ’best’ recommender. Rec-
ommenders can have different purposes, and how well a recommendater per-
forms depends on the purpose of the recommender. For example, a news web-
site might have the function to keep the customer on the website for as long as
possible. For an online retailer, a maximal conversion rate of the shown rec-
ommendations might be the primary objective. It is not uncommon that the
creator of the recommendation system does not exactly know what the pur-
pose of a recommender is, since the relationship of the recommender with the
overall main goal of the company (usually to maximize profits) is not always
straightforward.

Secondly, it is expensive to gather data about the performance of a recom-
mender. It takes time to implement a recommender, and there is uncertainty
about the performance of the recommender before testing. Testing a bad recom-
mender has a negative impact on the customer relationship with the customers
that are used for testing. Offline testing, using historical interactions of cus-
tomers with a recommender, might be used to solve this problem. However,
since historical data contains customer interactions with an old recommender,
the data is inherently biased towards the old recommender in case customers
positively interact with the old recommender.

Online testing, by channeling subsets of the customers to different recom-
menders, prevents this bias but also introduces a third problem: it is difficult
and costly to build a pipeline that uses different recommenders for different
subsets of the complete set of customers. Moreover, one needs a large number
of data points to test a recommender, and since there is a finite number of
customers interacting with the recommender, we cannot test a large number of
different recommenders.

To mitigate these challenges, we need an algorithm that can determine the
best recommender by testing as little different recommenders as possible. More-
over, this optimization algorithm should work for different objective functions,

3

such that it still works if the objective function is changed by the company due
to a changing purpose of the recommender.

This aim of this research study is therefore to

find an optimization algorithm that finds the best recommender
with a low number of testcases, where best can be user-defined.

As an approach to this goal, we need to solve multiple issues. First, we
have to determine how to evaluate the performance of an algorithm, and how
one can construct training and test sets in order to test the performance of a
recommender. It is crucial that the algorithm can deal with a flexible objective
function, and it should still work if the administrator of the website would
change the objective function.

Next, it is important to find an optimization algorithm that uses few test-
cases to find the optimal recommender. Moreover, we do not want to test very
bad recommenders, since that would hurt customer relationships. So not only
do we want to test as little recommenders as possible, we also want to minimize
the number of bad recommenders we test.

Since it is relatively cheap to test a recommender on an offline data set, we
can test the optimization algorithm in an offline setting. This raises the desire
to validate that the performance of the optimization algorithm on the offline
test set is generalizable to the online case, which forms another issue of this
research.

This research tries to a achieve the main research goal and sub-goals by
means of a case study in collaboration with a data science company named
Building Blocks, who provided a case for an international online clothes retailer.
Building Blocks already has a recommender in place for the retailer, and also
has data available on historical interactions with this recommender. It is of
interest for them to optimally tune the parameters of this recommender, which
is essentially our main goal.

The rest of this paper is structured as follows. Firstly, the case is introduced
by explaining the current recommender and setting of the case study. Next, an
overview is given on relevant literature on this subject. The paper continues by
describing the available data, and gives some insights by presenting descriptive
statistics. Next, the used methods are discussed. We test four existing methods,
and propose one new method that is an adapted version of one of the four
methods. We continue with presenting the results, and end with a discussion
and conclusion.

2 Current situation

This research was done in corporation with Building Blocks, who provided a case
at an international online clothing retailer. This section introduces Building
Blocks, explains what recommender they are currently using, and elaborates on
the case from which the data is generated.

4

2.1 Building Blocks

Building Blocks is a data science company founded in 2013 in Tilburg, the
Netherlands. Currently, Building Blocks has offices in Amsterdam and Tilburg.
The team consists of approximately 40 data scientists and econometricians and
is steadily growing. Building Blocks meets the growing demand of companies
to understand their customer behavior by performing diagnostive, predictive
and prescriptive analysis, and giving advise on how to act appropriately given
this behavior. To do this, Building Blocks develops so-called ’blocks’, which are
flexible algorithms that can be applied to similar problems that different com-
panies face. Some examples of developed ’blocks’ are an algorithm that predicts
whether customers churn and why they do so, an algorithm that predicts the
probability of a customer buying a certain offer, or an algorithm that predicts
the demand for a certain product. Building Blocks focuses mostly on the retail
and insurance market.

2.2 Current recommender

Building Blocks currently has a recommender in place that has different param-
eters. To achieve the main research goal, we will test algorithms that evaluate
this recommender with varying parameters. The recommender recommends
products by using three methods, dependent on the customer it recommends
for. See Figure 2 for a schematic overview of how the recommender works.

Method 1) is used for known customers, and it uses the purchase and click
history of a customer to show similar products (content-based recommendation
technique). Method 2) is used for unknown customers that are on a product
page that more than X other customers clicked on. It uses the purchase and
click history of customers that were on the same page and recommends com-
monly purchased products of those customers (collaborative filtering). Method
3) is used for unknown customers that are on a product page that less than
X customers clicked on, and simply shows the most popular products. In this
research, we focus only on known customers, so the first method.

Whether a customer is known is defined by asking the question: did a cus-
tomer click on more than N products in between today and today − M days.
M and N are defined by the parameters of the recommender.

5

Figure 2: A schematic overview of how a recommendation is generated for a
customer

6

Once a day, the recommender finds all known customers starting at a cer-
tain date and generates 25 products/recommendations for all these customers.
The recommender does this as following. First, the recommender constructs a
product-product matrix, which links a similarity score to all product-product
pairs. This score is calculated as following:

Score(product1, product2) =

α UserScore(product1, product2) + β SessionScore(product1, product2)
(1)

α and β are parameters that can be set to define the importance of the
scores. The UserScore is calculated by looking at what the same user buys
over history. If a user buys a t-shirt in the summer and a winter jacket in the
winter, the similarity of those two items increases with 1. The UserScore is
calculated by adding the contributions of all users that happened after a specific
date in history. The specific date is one of the parameters of the recommender.
The SessionScore is determined by what items are commonly bought within
one session. A session consists of all consecutive clicks and events that a user
makes without leaving the retailer’s website. In the example of a winter and
summer jacket, these products do not get a higher similarity score if not bought
in the same session. The recommender also has a parameter that determines
how far back we take data into account to calculate SessionScore.

For known customers we know what a customer previously bought/clicked,
so we can use the similarity matrix to find the top N products that are most
similar to already bought/clicked products and use those for N recommenda-
tions. All products that have been previously bought and clicked by a customer
generate a ranked list of recommendations and their similarity scores, such that
a customer with multiple clicks has multiple ranked lists of products and simi-
larity scores. These ranked lists are aggregated by adding the similarity scores
multiplied by a weight. The weights are introduced to make a distinction be-
tween product lists with similarity scores with respect to a purchased products
and product lists with similarity scores with respect to clicked products. The
weight ratio is a parameter of the recommender, and usually purchased products
get a higher weight than from clicked products. The weighted average is then
used to generate a final recommendation ranking that is used to recommend
products.

Recommender 2) counts products that are bought by other customers that
were on the same page, and weights purchases in the same manner higher as
clicks. It then recommends the products with the highest weighted count. Rec-
ommender 3) simply uses the most popular products by counting all clicked
and bought products and weighting them similarly as in recommender 1) and
2). Again, we only focus on the first method for known customers in this re-
search, since this is the only method that allows offline testing.

The recommender system is defined as the combined mechanism of recom-
mender 1), 2) and 3) and the parameters are defined in Table 1.

7

Parameter Possible Settings Current setting
1 α and β [-∞,∞] α = 1, β = 0

2
How many days are taken into
account to determine UserScore

January 2018 - Now (Now - 100 days) - Now

3
How many days are taken into
account to determine SessionScore

January 2018 - Now (Now - 30 days) - Now

4
How much historical data is taken into
account to determine user-item recommendations

January 2018 - Now (Now - 90 days) - Now

5
How much historical data is taken into
account to determine which recommender is used

January 2018 - Now (Now - 1 year) - Now

6 Weight purchase : click [-∞,∞] : [−∞,∞] 4:1

7
Minimum number of clicks by user to activate
recommender 1)

[-∞,∞] 30

8 Allow cross category recommendations No/Yes No

9
Allow recommendations that have already been
viewed by the customer

No/Yes No

Table 1: An overview of the switches in the recommender system and the set-
tings that the data is based on.

The first parameter determines how we set up the product-product similarity
matrix. We currently only use the UserScore. Parameter 2 determines how
many days we take into account when calculating the UserScore. It sets how far
we want to track users back to see what individual users commonly buy together.
The third parameter does the same, but now for calculating the SessionScore.
We currently look 30 days back in sessions to see what products are commonly
bought together in sessions. Parameter 4 determines how many days back we
want to take into account to construct the ranked lists of recommendations per
customer. The fifth parameter selects how far we go back to determine whether
a customer is known.

Parameter 6 selects how important a purchase is in comparison with a click
when aggregating the ranked lists of recommendations. The seventh parameter
determines the minimum number of clicks that defines a customer as known and
decides (in combination with parameter 5) whether we use recommender 1), 2)
or 3). Parameter 8 selects whether we allow to recommend a product that is in
a different category as the product a customer is currently looking at. Finally,
parameter 9 sets whether we allow recommendations that have already been
viewed by a customer.

The basic assumption behind recommender 1) is that similarities on what
customers already bought are highly correlated with the probability of a recom-
mendation converting to a sell. Recommender 2) assumes that the similarity of
products purchased by other customers has a high correlation with the prob-
ability of a recommendation converting to a sell. Recommender 3) assumes
that the popularity of certain products is highly correlated with the probability
of this recommendation converting to a sell. Even though these assumptions
sound plausible, recommending in this manner does not necessarily maximize
the expected profit from the recommendations, since it does not consider ei-
ther a conversion rate or profit margins of the recommendation. It just shows
products that customers might be interested in based on similarities.

Moreover, the parameters are now chosen arbitrarily, and it is not clear what

8

the effect of the parameters is on the performance of the recommender system.
The goal of this research is to tune the parameters such that it optimizes certain
evaluation criteria. These evaluation criteria can change for different web pages
and clients, so it is important to make the parameter tuner flexible such that it
can be used to optimize different evaluation criteria. If the algorithm is flexible
enough, Building Blocks is able to scale the algorithm to different clients with
little effort.

2.3 Case study

This research aims to develop such an optimization algorithm by means of a case
study for an international online clothing retailer. The retailer mainly operates
through their website, and it is therefore of crucial importance that customers
view products they are interested in buying.

The core of the website consists of two different webpages: the product listing
and the item page. The product listing shows a large list of products, and gives
the customer the opportunity to view all products that the retailer offers. Even
though the page shows all products, the ranking of the products can be regarded
as a recommendation. Since this is often the first page a customer arrives at, the
goal of this page is not only to make customers buy the recommended products,
but also to strike the interest of the customer and convince him/her that the
retailer suits their interests. Next to this, it is interesting to show a wide range of
products such that we can learn more about the customers’ preferences. When
a customer clicks on a product in this product listing, he/she arrives at the item
page.

The item page shows a product and its characteristics like its price, available
colors, and size options. When the customer scrolls down on this page, he/she
views a box with three recommendations. The customer can choose to view
three new recommendations by clicking on an arrow. When a customer clicks
on the recommendation a box pops up that displays the characteristics of a
product and gives the user the option to put it in their basket.

As can be inferred from the previous paragraphs, the recommenders on the
different web pages on the website have different functions. On the product
listing page, the recommender has the function of showing products that strike
the interest of the customer, but also products that allow for exploration of the
customers’ preferences. The recommender on the item page has the sole purpose
of increasing revenue or profits. This means that the optimization algorithm
should work with optimizing different criteria, depending on the purpose of the
recommender that is optimized. The next section explains the current state of
research on recommendation systems and its parameter tuning.

3 Literature overview

There is a long-lasting history of research on recommendation systems. Ricci
et al. (2011) give an overview of recommendation techniques, and point out

9

that the most common recommendation methods can be divided in 6 types
of algorithms: content-based, collaborative filtering, demographic, knowledge-
based, community-based and hybrid recommender systems. The recommender
used by Building Blocks is a hybrid between the content-based and collaborative
filtering method. Since this research mainly focuses on parameter optimization
of recommenders, this section does not focus on the recommendation method
itself but instead on the evaluation and parameter tuning of the recommendation
system.

3.1 Evaluation of recommendation systems

Since the evaluation criteria depend on the function of the recommendation
system, there is no universally accepted method to evaluate recommendation
systems (Gunawardana and Shani, 2009). However, there has been some re-
search that focuses on developing a testing mechanism (e.g. Herlocker et al.
(2004) and Gunawardana and Shani (2011)). Most researchers argue that on-
line testing is the only method that gives truly unbiased results, but since it is
so costly they all focus on a method that avoids this.

Gunawardana and Shani (2011) mention that it is of crucial importance that
the test setting mimics online testing. They propose several methods of offline
testing, which are all based on creating a train and test set from the available
offline data set. The idea is that the test set closely resembles an online test,
such that if the algorithm performs well on the test set, it is also likely to perform
well in an online test setting.

Suppose one has a historical dataset that contains sessions from many cus-
tomers, recommendations they viewed in this session, and whether they clicked
or bought these recommendations. Gunawardana and Shani (2011) then pro-
pose 4 different methods to split this set in a test and train set. All methods
hide choices from customers, and the hidden choices will form the test set.

Firstly, the ideal option would be to randomly sample test users, randomly
sample a time just prior to a user action, hide all choices of all customers after
this time, and then recommend something to this user. One would change the
set of given information every time this is done, which becomes computationally
expensive. Therefore, it might be better to sample a set of test users, then
sample a single test time, and then hide all items after the sampled test time
for all test users. This means that the sampled test time is not always right
before a user takes action, and the recommender would not take into account
new data generated in between the users’ action and the sampled test time. A
third option would be to sample a test time for every user that is just before
an action, such that the test times are not the same. This would assume that
the choice of a customer is not dependent on the absolute time of the decision,
which would be a reasonable assumption in the situation of an online retailer.
Finally, one can select N choices, and then hide N choices for all customers.
This assumes that temporal aspects of user selections are unimportant.

Li et al. (2011) take a different approach, and describe the problem as an
’off-policy policy evaluation problem’, which draws on the fact that we have a

10

data set where a certain policy (the old recommendation system) was used, and
we want to find out the effect of a new policy. A simple solution to this problem
could be to simulate data and test the new policy in this simulation. However,
it is difficult to make the simulation unbiased, since using the data from the
old policy to simulate would induce bias. Therefore, Li et al. (2011) propose a
replay method to evaluate a new policy.

The replay method works on the assumptions that there is some random
distribution D from which interactions with recommendations are drawn inde-
pendently and identically distributed, and the old policy chose the recommen-
dations uniformly at random. The first assumption might not hold, since cus-
tomer’s choices probably depend on previous actions. The second assumption
presents an even bigger challenge. The recommender does not select recom-
mendations uniformly at random, but bases them on customer characteristics.
One could use rejection sampling to modify the data such that it becomes more
random, but only if there is enough data available to allow this. In our case
a recommender often recommends the same products, and some products are
never recommended. If a recommender that we are interested in testing then
would recommend a product that has never been recommended before, this cre-
ates a problem. Since there are many products in the store, the probability of
this happening is far from zero. In this research we also explore the possibilities
of rejection sampling to satisfy the assumptions.

If both assumptions are satisfied, the replay method works as following.
First, it loops through all ’events’ (in our case these are time-points where rec-
ommendations are shown) and selects T ’events’ where the (resampled) data
gives the same recommendation as the recommendation algorithm we are inter-
ested in testing. Since the (resampled) data gives recommendations uniformly
at random, the probability of selection a recommendation is 1

K , independent
of everything else. One can then prove that evaluating the new recommender
system against T real-world events from D is exactly the same as evaluating it
against T selected ’events’ by using the replay method, such that this method
gives the same results as online testing.

3.2 Parameter tuning of recommendation systems

Parameter tuning of recommendation systems is a difficult task, since it is expen-
sive to test multiple parameter sets. Moreover, the performance as a function of
the parameters is a black box in the sense that we do not know anything about
the function like the gradient or hessian. Therefore, we are limited in our choice
to algorithms that do not use any of this information.

Often, parameter tuning is done by expert/human experience, without much
quantitative reasoning (Snoek et al., 2012). Automatic methods are evolving,
especially in machine learning applications that are characterized by long and
costly train and test times. One method that seems to surpass other methods
and also surpasses human/expert parameter tuning is Bayesian Optimization
(Snoek et al. (2012), Brochu et al. (2010), Shahriari et al. (2016)). Bayesian
optimization builds a model of the evaluation function by choosing a prior and

11

combining it with the data by using Bayes’ rule to find a posterior function.
This posterior function is then optimized. It chooses new datapoints by using
an acquisition function, that uses information from the posterior function to
decide which point is most interesting to try out.

Other optimization methods such as genetic algorithms or simulated anneal-
ing are also an option, but they need more function evaluations since they do
not spent much computation time deciding what the next evaluated point will
be, which makes them expensive to use.

4 Data

The data in this research are data about customers of an online retailer. The
data contains sales, clicks and recommendation views (see Table 2 for all vari-
ables) from 16 months, from January 2018 to May 2019 and includes 1, 688, 218
distinct customers, of which 374, 863 viewed at least one recommendation. For
evaluating the recommender, we only used customers that viewed more than
5 recommendations, since there are not enough data to train and test on cus-
tomers with less activity. This leaves us with 26, 279 distinct customers to
evaluate on. We used all possible customers to create the product-product ma-
trix. We assume that an optimal parameter setting for this smaller set will also
be (close to) optimal for the larger set, since we do not expect customers that
see recommendations more often to act differently on the recommendations than
customers that do not see them often. Table 2 displays the variables that we
have information on.

Variable Description Range
i The ID of the customer -

t The date and time a session started 2019-01-01 to 2019-05-01

ID The ID of the product a customer is looking at -

H The click number in the session of the customer [1,∞]

Event Displays the event
View, Click, Add to cart,
Remove from cart, Purchase

P,C,AC,RC
A multiset of product ID’s a customer purchased
(P), clicked on (C), added to cart (AC) or removed
from cart (RC)

P,C,AC,RC ∈ set of all product ID’s

R
A set of product ID’s that were recommended in case
the event is a recommendation view

R ∈ set of all product ID’s

Table 2: The available variables in the data set

4.1 Descriptive statistics

First, we highlight some details about all customers in the data set and link
it to potential hypotheses or considerations. We follow with a section on the
customers that are used in this research (the 26, 279 customers) to evaluate the
performance of different recommenders.

12

4.1.1 All customers

On average, customers that never saw a recommendation bought 0.088 prod-
ucts and put 0.28 products in the cart. It seems that customers who at least
view one recommendation are more interesting for the company, since on aver-
age they bought 0.45 products and put 1.42 products in the cart per customer.
This gives an indication that recommendations influence the clicking and pur-
chasing behavior of customers, and underlines the importance of showing the
right recommendations. The activity of these customers is used for creating the
product-product matrix, but directly for evaluating different recommenders.

4.1.2 Customers used for evaluating

On average, customers that are directly used for evaluation of recommenders see
20.34 recommendations per session. After these recommendations, customers
on average buy 0.32 products, of which 0.024 are products recommended in the
same session. Customers on average click on 0.94 products after seeing a rec-
ommendation, of which 0.480 are recommended products. Finally, customers
add on average 0.90 products (of which 10.7% are from recommendations) and
remove 0.45 products to/from the cart. This shows that recommendations es-
pecially seem to influence the clicking behavior of customers. Since more than
50% of the products clicked after recommendations are recommended products,
we could conclude that customers engage with the recommendations. However,
considering the low percentage of products that were purchased after being
viewed as a recommendation (7.5%), customers consider the recommendations
not always good enough to also convert to a sell.

4.2 Data preparation

To measure a recommender’s performance (see Section 5.2), we want to look
at how recommendation views influence customer’s decisions. Therefore, we
want to score the recommendations based on the actions customers took after
a recommendation view. To do this, we prepared the data such that every row
displays a recommendation view and the impact of this view on a customer’s
behavior. This is displayed in Table 3.

i tsession Ri,t Pi,t HP
i,t Ci,t HC

i,t ACi,t HAC
i,t RCi,t HRC

i,t

Table 3: The prepared data set and a sample line. Note that most variables are
(multi)sets.

In words, every row contains a moment that customer i sees recommenda-
tions Ri,t at time t, in a session that started at tsession. This row also contains
the product ID’s that this customer bought after seeing these recommendations
(Pi,t), and the corresponding hitnumbers of these purchases (HP

i,t). The hit-
number is a variable that denotes the number of the click the event was for a

13

customer in one session. So the first click in a session has hitnumber 1, and
the 10th click, perhaps a product that was added to the cart or a purchase, has
hitnumber 10. Next to this, a row includes products that this customer clicked
on (Ci,t), added to cart (ACi,t) and removed from cart (RCi,t) after seeing the
recommendations and their corresponding hitnumbers respectively (HC

i,t,H
AC
i,t

and HRC
i,t). A (multi)set notation was chosen over matrix notation for easier

interpretation and notation (Section 5.2).
Note that only products are included in a row if they are bought/clicked/added

to cart after a recommendation has been seen (determined by their hitnumbers),
but only if this happens in the same session. Since a customer can view multiple
recommendations in a single session, there can be multiple rows with the same
tsession. It follows from this that it can happen that different rows contain the
same purchases. For example if someone sees a recommendation at hitnumber
3 and 5 and purchases a product as click 6, this product will be in the row
of the recommendations viewed as hitnumber 3 but also in the row of the rec-
ommendations viewed as hitnumber 5. Since all the performance of all rows
are measured independently from each other, this creates the problem that a
purchase is counted towards the performance measurement multiple times. We
deal with this potential problem in Section 5.2.

4.2.1 Data generation

For the case of online testing, it is interesting to know how much data are
generated per day/month such that we can roughly predict for how long we
should run the (expensive) online testing to generate enough data for us to
have significant results. The most important measure is the average number
of viewed recommendations per day. In the set of customers that are eligible
for use in our research, we have 2512 recommendation views on average per
day. This determines the number of observations we have and can evaluate a
recommender on.

5 Methods

To find out whether there is a flexible optimization algorithm that finds a good
hyper-parameter configuration with a low number of testcases, different methods
are tested to compare which one works best. The different optimization methods
that are tested all fall in the field of Bayesian optimization, but differ in the
way they specify the prior. This research will test a Gaussian Process prior
(GP) approach with a Matern kernel and an ARD kernel, and a Tree Parzen
Estimator (TPE) approach with a lognormal and uniform prior. See Section 5.3
for an explanation of all methods.

14

5.1 Creating the test and train set

As explained in Section 3, there are three different methods of dividing the data
into a train and test set, depending on three different assumptions. First, we
want to stress that the most important decision factor is that the train/test split
mimics the online testing case as much as possible. The first method chooses
one test time and then generates recommendations for all customers using the
information up to that time-point. This method assumes that information gen-
erated in between two recommendations is not important. This does not strictly
hold in our data set, since clicks and purchases between recommendation views
not only influence the product-product similarity matrix, but also the ranked
lists of recommendations.

The second method samples a test time for every user and then generates
a recommendation for that user using all the information up to that moment.
assumes that the way a customer reacts to a recommendation is not dependent
on the absolute time. The problem of this method is that we have to generate a
product-product matrix for every interaction for every test user, which becomes
computationally intensive. Moreover, it is not similar to the online testing case
since currently Building Blocks only generates a product-product matrix once
every day.

The third method hides N recommendations/interactions for all customers
and generates recommendations based on the non-hidden recommendations,
while choosing only one time point to generate the product-product matrix.
This method does not use the time sequence of the recommendations and is
more of a cross-sectional approach. It therefore assumes that temporal aspects
and sequence of recommendations have no influence on customers’ reactions on
recommendations, which is unlikely to hold, since we expect that customers’
reactions will depend on previously seen recommendations and clicked/bought
products, so the sequence is certainly important.

The method that seems most similar to the online testing case without being
computationally too expensive seems to be method 1), where we set one time-
point for all customers that divides all customers in a train and test set. We
choose the 1st of April 2019 as a time-point, and all interactions before this time-
point belong to the training set, and after this time-point will be in the test set.
We deviate from online testing since we generate the product-product matrix
only once (at the 1st of April), and do not take into account information between
this time-point and the time-point of the actual recommendation. For example if
a customer sees a recommendation the 5th of April, we do not take into account
any information between the first and 5th of April, while in the online case we
would. By only testing customers that see recommendations shortly after the
chosen time-point, we can minimize the difference and still come close to the
online setting. We therefore chose one specific time-point (1st April 2019) for
which we create the product-product matrix, and then only tested on customers
who viewed recommendations before April 10 2019. Of this set of customers,
we randomly chose 1000 customers due to computation time constraints. We
chose 1000 customers randomly instead of the first 1000 customers with respect

15

to time since it more accurately models the online application if we have more
computing power. The impact of this is discussed in Section 7.

In addition, the replay method, as was explained in Section 3, was consid-
ered. We should resample the data in such a way that the recommendations
are uniformly random. However, since the products that that the retailer offers
change often, and there is a huge number of different products sold (over 10, 000)
this would mean that we have to resample a very high number of times to create
a uniform distribution. Sampling such a large number of data points defeats its
purpose by inducing bias and is also unpractical in terms of computation time.

5.2 Measuring recommender performance

Once we have a train and test set, we need to decide how to evaluate a recom-
mender by defining the objective function. Part of the research goal states that
the user, the retailer in this case, should be able to define the objective function.
Therefore, the evaluation criteria should be defined in a flexible manner. We use
the same notation as in Section 4, but we will elaborate more on the notation
first.

We define an event as a moment where a customer sees recommendations
and thus has the choice to click on it, put it in the cart, buy it, or ignore
the recommendation. By definition, a customer views a recommendation if the
recommendation is visible on the computer screen for at least 3 seconds.

We chose to use a more unconventional notation by using mathematical
(multi)-sets instead of the more conventional matrices, because this is more
convenient for this application, and for implementation. Ri,t for i = 1, 2, ..., N
and t = 1, 2, ..., Ti is the set of recommendations which customer i views at
time index t. Note that Ti depends on person i, so not all individuals have
an equal number of events. To give an example of Ri,t, if the recommender
calculates that individual i = 2 at time t = 3 should be recommended products
{4, 6, 8, 10}, then R2,3 = {4, 6, 8, 10}.

We define Pi,τs,τe as the (multi)set of products that customer i has bought
in between τs and τe. It can be a multi -set since it is possible for a customer to
buy the same item twice or more. Ci,τs,τe is defined as the (multi)set of products
that customer i has clicked on between τs and τe. Index r indexes the product
in the multisets, in order to loop through the set. It is convenient to set τs to
the moment that the recommendation that is currently evaluated is viewed, so
in further discussion we set τs = t.

The evaluation function, and thus the objective function in the optimization
problem, is an additive function that is constructed of multiple elements denoted
by capital letters weighted by β′s that can be specified by the user:

y =βAA(φA) + βBB + βCC(φC) + βDD(φD) + βEE(φE)

+ βFF (φF) + βGG(φG) + βHH(φH) + βII(φI)
(2)

The first element (A(φA)) captures whether someone bought the recom-
mended products, weighted by the profit we make on this, and by how fast

16

he/she bought something after seeing the recommendation:

A(φA) =

N∑
i=1

Ti∑
t=1

|Pi,t,τe,r|∑
r=1

I[Pi,t,τe,r ∈ Ri,t]︸ ︷︷ ︸
Bought recommendation

πφAPi,t,τe,r︸ ︷︷ ︸
Profit

1√
HPi,t,τe,r −HRi,t︸ ︷︷ ︸
Timing relevancy

(3)
Where I[·] is the indicator function, πPi,t,τe,r is the profit of the recommended

and purchased product Pi,t,τe,r. φA is a weight that determines how important
the profit weights are.

The first part of the equation makes sure that we only score products that are
purchased after they are recommended. The company can set τend arbitrarily,
but it is recommended to set it to the end of the session (t + 1), such that we
only take into account products purchased in the same session as the viewed
recommendations.

The second part weighs the product by its profit (dependent on how we set
φA), such that products with a high profit are more important than product
with a low profit. Note that φA is raised to the power of πPi,t,τe,r , such that

πφAPi,t,τe,r becomes 1 if weight φA is 0.
The last part of the equation is there to take into account that products

that are bought right after viewing a recommendation are weighted more than
products that are purchased many clicks after a recommendation. HPi,t,τe,r is
the hitnumber that someone bought product Pi,t,τe,r, and HRi,t is the hitnum-
ber that someone viewed the recommendation Ri,t. We take the inverse of the
square root of the difference to give products that were bought earlier after the
recommendation more weight than products bought long after the recommen-
dation, also to account for the multi product problem as mentioned in Section
4.2.

The second element (B(φB)) captures products bought by a customer that
are not recommended, but are in the same category as one of the recommen-
dations. We include this element in order to capture the extent of how much a
recommendation inspires someone to buy something similar to the recommenda-
tion. If we define P ci,t,τe,r as the multiset of product categories of corresponding
products Pi,t,τe,r, and Rci,t as the categories of the recommendations Ri,t, then
we define (B(φB)) as:

B(φB) =

N∑
i=1

Ti∑
t=1

|P ci,t,τe,r|∑
r=1

(
I[P ci,t,τe,r ∈ R

c
i,t]π

φB
Pi,t,τe,r

1√
HPi,t,τe,r

−HRi,t

)
(4)

B(φB) works very similar to A(φA), but now comparing categories instead
of the product themselves.

Thirdly, we want to score to what extent recommendations inspired cus-
tomers to buy product in general. Therefore, C(φC) scores products that were

17

purchased but not recommended, and also in another category as the recom-
mendations:

C(φC) =

N∑
i=1

Ti∑
t=1

|P ci,t,τe,r|∑
r=1

(
I[P ci,t,τe,r /∈ R

c
i,t]π

φC
Pi,t,τe,r

1√
HPi,t,τe,r

−HRi,t

)
(5)

A, B and C score all purchased products. However, we would also like to
score clicked products and products that customers added to the cart. We do
this in exactly the same manner as we scored purchased products which gives
us D, E and F for clicked products and G, H and I for products added to
cart. See the appendix for the complete formulas of D to I. These scores are
essentially key performance indicators (KPI’s).

We want to combine the KPI’s in a single recommendation score (RS). Since
this is the objective function, we will notate this as y from now on. We do this
with an additive model that allows the company to define which KPI’s they find
most important:

y = RS =βAA(φA) + βBB + βCC(φC) + βDD(φD) + βEE(φE)

+ βFF (φF) + βGG(φG) + βHH(φH) + βII(φI)
(6)

Where the β’s are the weights the company can give to different KPI’s de-
pending on which they consider most important. Typically, a company would
set βA > βB > βC , to ensure that bought recommendations are more important
than products bought in the same category of recommendations and products
bought in a different category. The same holds for βD and βG for respectively
clicks and products added to cart.

It is important to note that the score should be used to compare algorithms
in relative sense. The absolute value of the score is not of interest since the
weights are determined arbitrarily by the company.

5.3 Optimization methods

The methods that are used can all be categorized or are very similar to the
field of Bayesian optimization, and the difference between them lies mainly
in the prior that was chosen. Four different methods were chosen: Bayesian
optimization with a Gaussian Process with two different priors and Bayesian
optimization with a Tree Parzen Estimator algorithm (TPE) with two different
priors. All methods are built in Python, or readily available in Python packages.
We will first give an high-level overview of Bayesian optimization and then go
into the different priors and algorithms that are used in this research.

5.3.1 Bayesian optimization and the acquisition function

Now the evaluation objective has been defined, it is clear what the objective
function is to maximize. We denote the objective function as y = f(x), where

18

Algorithm 1 The Bayesian optimization algorithm

Initialization
Choose prior P (x)
Choose acquisition function Aq(x)

for i = 1 to I do
Choose xi+1 = arg max

x
Aq(x)

Evaluate yi+1 = f(xi+1) and append to available data set Di

Update posterior function P (yi+1|xi+1, Di) by using Bayes’ rule
end for
Return x with either the highest sampled f(x) or the highest in the posterior
function f(y|x).

Algorithm 1: A simplified version of the Bayesian optimization algorithm. Di

contains all the sampled points (xa, ya) for a = 1, 2,, i.

x is the parameter settings, x = [Par2, Par4, Par6]. In this research we only
change parameters 2, 4 and 6 from Table 1 for simplicity. We compare several
optimization methods in terms of the number of function evaluations, the quality
of the optimal solution and the stability and riskiness of the results. Due to the
low number of needed function evaluations and its good performance in similar
situations, we chose to test several types of Bayesian optimization methods as
our proposal to achieve the main research goal.

Bayesian optimization works in an iterative manner (see Algorithm 1). To
initialize, a prior must be chosen that models the evaluation function without
any data (P (x)). Popular priors are a Gaussian Process (GP) (Brochu et al.,
2010), Tree Parzen Estimator (TPE) (Snoek et al., 2015) or a regression forest
(Hutter et al., 2011). The latter is not properly implemented yet so we will only
focus on the first two algorithms in this research.

After the prior is chosen, we need an acquisition function that determines
what the new recommender settings (x) are which we want to test. The acqui-
sition function is a function of the posterior function, which is a combination
of the prior and the available data according to Bayes’ rule. In literature the
most widely used acquisition function is expected improvement (EI) and we use
this too for this research. Expected improvement balances the uncertainty of
the posterior function with the need to exploit and find the best solution:

EIy∗(x) =

∫ ∞
−∞

max(y∗ − y, 0)pM (y|x)dy (7)

where y∗ is some value for the objective value which is used as relative
point from which we define improvement. M is the model that describes how
x impacts y: the posterior model under which the expected improvement is

19

measured.
In every iteration, we choose the point that shows the highest expected

improvement, and then update the posterior function by combining the new
data with the prior/old posterior. We then repeat by choosing the next point
determined by the acquisition function that uses the new posterior. This re-
search tests the performance of two different approaches to defining a prior, the
Guassian Process approach and the Tree Parzen Estimator approach. For both
approaches, two different priors are tested.

5.3.2 Gaussian process prior

The Gaussian process (GP) prior approach models p(y|x) directly, by using a
GP. A GP is like a usual function, but instead of returning a scalar it returns a
mean and variance of a normal distribution (see Figure 3 for an example).

Figure 3: An example of a Gaussian Process

A GP therefore needs a mean and covariance function as prior. We choose
a null function (function constant at 0) for the mean prior, since this seems to
work relatively well in similar situations (Martinez-Cantin et al., 2009). For the
covariance function, there are multiple options of which some include hyperpa-
rameters such as the Matern kernel (Matérn, 2013) and the squared exponential
kernel with automatic relevance determination (ARD) hyperparameters (Ras-
mussen, 2003). Both options are tested to find out which works better in this
situation.

The Matern kernel is defined as following:

k(x,x′) =
1

2ζ−1Γ(ζ)
(2
√
ζ||x− x′||)ζHζ(2

√
ζ||x− x′||) (8)

Where ζ is the hyperparameter that determines the smoothness of the func-
tion, Γ(·) is the Gamma function and Hζ(·) is the Besssel function of order ζ.

20

Matérn (2013) chooses ζ = 1.5, and it is common in literature to leave it at this
value, so we do too. The squared exponential kernel with ARD hyperparameters
is defined as:

k(x,x′) = exp

(
−1

2
(x− x′)T diag(θ)−2(x− x′)

)
(9)

Where diag(θ) is a diagonal matrix with d entries θ along the diagonal.
Intuitively, if a particular θs has a small value, the kernel becomes independent
of the s-th input.

The hyperparameters can be determined by trying the method on a few
random samples and maximizing the log-likelihood of the evidence given θ or ζ.
To aid this, one can set a hyperprior which is often a log normal prior, then get
some random samples, and then combine this into a posterior with Bayes’ rule.
We choose θ such that it maximizes the log likelihood of the posterior function
(ust as Rasmussen (2003)).

As acquisition function we choose the expected improvement which in the
case of a Gaussian process prior can be written as (Brochu et al. (2010), Jones
et al. (1998), Močkus (1975)):

EIy∗(x) =

{
(µ(x)− y∗)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(10)

where

Z =

{
µ(x)−y∗
σ(x) if σ(x) > 0

0 if σ(x) = 0
(11)

where µ(x) and σ(x) are the mean and the variance posterior function at x,
and Φ and φ are the CDF and PDF of a standard normal distribution respec-
tively.

Equation 10 shows that the expected improvement consists of two parts. The
first part ((µ(x)− y∗)Φ(Z)) represents the average improvement, and thus can
be seen as ’exploitation’. However, it is also important to explore the function
and decrease uncertainty. The second part (σ(x)φ(Z)) represents the variance
of the posterior, and therefore ensures the acquisition function also takes into
account exploration.

Since it is not time-intensive to evaluate EIy∗(x), we can optimize this rather
easily. We optimize the acquisition function using DIRECT (Jones et al., 1993),
a deterministic, derivative-free optimizer.

5.3.3 Gaussian process prior with adaptation

The current literature is mostly focused on improvements with respect to the
kernel that is chosen for the variance prior. This research takes another direction
by changing the acquisition function. We have such a low number function
evaluations at our disposition that exploring the posterior function might not
be as useful since we have little iterations to exploit the information gathered.

21

To solve this issue, we propose an adaptation to the expected improvement
acquisition function, which we will call the ’Dynamic Expected Improvement’
(DEI). In the the Gaussian prior setting, the DEI is defined as:

DEIy∗(x) =

{
(iI)(µ(x)− y∗)Φ(Z) + (1− i

I)σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(12)

where

Z =

{
µ(x)−y∗
σ(x) if σ(x) > 0

0 if σ(x) = 0
(13)

where I is the total number of iterations of the Bayesian optimization al-
gorithm, and i is the current iteration. The DEI is very similar to the EI,
but we now weigh the exploitation and exploration part of the function by the
iteration we are in, therefore being dynamic with respect to the iteration. We
will illustrate the idea by walking through the iterations. At the first iteration
of the Bayesian optimization algorithm, i = 1 and in this research I = 20. That
means that the (µ(x) − y∗)Φ(Z) part (exploitation) gets a weight of 1

20 , and
the σ(x)φ(Z) part (exploration) a weight of 19

20 . That means that at the start
the algorithm will be almost solely exploring. In the final iteration, i = 20 and
I = 20 which means the algorithm will solely focus on exploiting. In the middle,
i = 10 and I = 20 which means that exploration and explotiation have the same
weight, and the function returns effectively the same as EI.

This means that at the start the algorithm only chooses based on the variance
function, and not take into account the quality of solutions. This means that
the algorithm will search in the place we have the least information about and
might thus find very bad solutions. This brings along risk at the start of finding
very bad solutions, but this risk might be worth it if we can use the information
to exploit in the end. We test the performance of this adaptation with a GP
prior and Matern kernel, such that we can compare the performance with and
without adaptation.

5.3.4 Tree parzen estimator prior

The TPE method takes a different approach. It does not directly model p(y|x),
but it instead models p(x|y) and p(y) and uses Bayes’ rule to calculate p(y|x).
For modeling p(x|y) and p(y), it uses a ’tree parzen estimator’, which uses a tree
like method similar to decision trees. First, several points have to be sampled,
and then these points are divided in two by choosing a boundary level y∗ for
the y values of these points:

p(x|y) =

{
g(x) if f(x) > y∗

l(x) if f(x) ≤ y∗
(14)

l(x) and g(x) are modeled in the following way. First, the user chooses a
prior for the hyper-parameters, that describes the expectation of what values

22

for the hyperparameters will perform well. The options for hyperparameters
are theoretically unlimited, but in practise a uniform, Gaussian or log-uniform
distribution is usually chosen (Bergstra et al., 2011). Regardless of the prior
chosen, the TPE ’places’ Gaussians on all the points that are sampled and satisfy
f(x) < y∗ when modeling l(x) or satisfy f(x) ≥ y∗ when modeling g(x). The
width of the Gaussians are chosen by setting σ2 to the greatest of the distances
to the neighbor points. We then define l(x) or g(x) by taking an equally-
weighted mixture of the Gaussians and the chosen prior. A downside of the
TPE algorithm is that it does this for every hyperparameters, therefore losing
ability to describe interaction effects between the hyperparameters. Figure 4
visualizes this process.

Figure 4: Example of the TPE algorithm with dummy data. The first graph
shows the cutoff point y∗, the second shows the Gaussians ’placed’ on the sam-
pled points together with the prior and the third graph shows l(x) and g(x)

So instead of modeling the complete evaluation function, TPE iteratively
models two probability distributions of which one is used to find the maximum.

The acquisition function is again the expected improvement. Bergstra et al.
(2011) show that, using Bayes’ rule and some substitutions it can be writtenr
as:

EIy∗(x) ∝
(
γ +

l(x)

g(x)
(1− γ)

)−1

(15)

where γ = p(y < y∗), which is the quantile of the observed y function we
use to model l(x). This expected improvement function means that we want
to sample points that have a high probability under g(x) and a low probabil-
ity under l(x). This means that the TPE algorithm weighs exploitation more
importantly than exploration.

In this research we tested two priors, a uniform and a log-normal prior.
For the uniformative uniform prior, we choose Par3 ∼ Unif(10, 220), Par4 ∼
Unif(10, 190), and Par6 ∼ Unif(0, 9). For the normal prior, we used a
discrete log-normal distribution to use that fact that from a business exper-
tise it was expected to have lower values for the parameter (and non-zero),
since recommendations with these settings are more tailored to recent activities

23

from customers. For the priors, we chose for Par3 ∼ lognormal(2.6, 1.2), for
Par4 ∼ lognormal(2.6, 1.2), and for Par6 ∼ lognormal(2, 1).

5.4 Validation and generalization to online case

Finally, it is important to validate that good performance with offline testing
can be generalized to good performance with online testing. The most crucial
difference between the offline test set and the online set is that the offline set
contains reactions from customers on one specific (old) recommender, and so we
test the performance of a recommender of interest against behavior of people
that did not actually see the recommender that we want to test. This is not a
problem since we are only interested in the method and not the optimization
result itself, but we must pay an effort to verify that the method works on both
data sets.

We can never be certain that the algorithms work in the online case, since
we can not test online. There are two reasons why the online case is different
from the offline case: 1) in the offline case the customers have not seen the
tested recommendations, and only respond to the old recommender and 2) in
the offline case the train/test set is different than in the online case (see Section
5.1).

It would be interesting to examine whether the found optimal parameter
settings in the offline case resemble the settings of the recommender that the
test customers actually reacted to. This would indicate that customers change
their behavior positively (in terms of our evaluation function) to the recom-
mender, which is in line with our expectations. One method to examine the
generalizability of the offline performance to online performance would be to
model reactions of customers to a recommender, such that they ’react’ to the
recommender that is tested instead of the old one. This method would essen-
tially model the online case. The problem is that this model will be based on the
history of reactions, and is therefore still biased towards the old recommender.
In existing literature (e.g. Li et al. (2011)) multiple parameter settings are used
to develop the reaction model, making it possible to mitigate some of the bias.
Since we only have one parameter setting that customers actually reacted to,
it becomes extremely difficult to create a model. Therefore, this research did
not model the reactions of customers but just used the existing reactions on one
recommender.

To decrease the effect of the test and training set being different in off- and
online case, as mentioned we choose to only use customers for the test set that
have real reactions within 10 days of the chosen time-point. Choosing a smaller
time frame decreases the amount of data, so we can alter this time frame and
use the variance of the cross validation to determine whether the size of the
data set does not harm the stability of the results.

Next to the problem of generalizing the offline results to the online case, it
is important that the results in the offline case are stable, and are not subject
to randomness induced by for example choosing a random starting point for the
optimization algorithm.

24

To find out the degree to which the performance of a recommender is subject
to the chosen starting point, we run the optimization algorithm multiple times,
each time with a different starting point. We can use the variance in these
results to determine how stable the solutions are.

We can find (an approximation of) the optimal solution by using a brute
force method in the offline case. We can compare this optimal solution with
the solution our algorithm found to assess the performance when the size of the
data changes. For all results in this research, we chose to only optimize over
3 parameters: the amount of historical data taken into account to determine
sessionscore (3#), the amount of historical data taken into account to determine
user-item recommendations (4#) and the purchase versus click weight (#6) (see
Table 1). The other parameters are kept at the current settings.

6 Results

To put the Bayesian optimization results in perspective, we first ran a brute
force method that tried many parameter settings to find the optimal solution.
The brute force method tried parameter 3# from 10 to 210 with steps of 50,
parameter 4# from 10 to 190 with steps of 30, and parameter 6# with steps from
1 to 20 with steps of 3. It takes around 11 minutes to evaluate one recommender,
so therefore we had to choose big step sizes. We choose

β = [βA, βB , βC , βD, βE , βF , βG, βH , βI] = [10, 7, 0, 5, 3, 0, 0, 0, 0]

φ = [φA, φB , φC , φD, φE , φF , φG, φH , φI] = [1, 1, 1, 1, 1, 1, 1, 1, 1]

such that only recommendations that are bought or clicked on, or recommen-
dations that are in the same category as bought or clicked products contribute
to the score. β and φ will remain these settings for the rest of the testing.

The results show that the best solution for the brute force method has param-
eters x = [Par3, Par4, Par6] = [110, 10, 3], with a score of 14.35. Remember
from Section 5.2 that the higher the score the better. The results also show
that parameter sets that satisfy Par3 = 10 significantly outperform the other
parameters settings, except for when Par6 = 0. Furthermore, it seems that the
lower Par6 the better the score, except for when it becomes 0. These two in-
stances seem the only instances where there might be an interaction effect. We
do not expect any other significant interaction effects by inspecting the brute
force results. See the appendix for the top ten results.

From the results it also appears that a view weight of more than 9 the
recommender score remains exactly the same if all other parameters are the
same, which indicates that the recommendations do not change if you increase
the view weight to more than 9. Therefore, we choose to decrease the boundary
for this parameter to 9 for the optimization algorithms.

The following sections will describe the results from the different optimiza-
tion methods used in terms of optimal solution, convergence speed and the vari-
ability of the performance due to a different starting point. The graphs shown

25

show the results of the different algorithms, all in the same manner. Every line
represents a run with a different starting point. The dotted lines represent the
optimal solution found by the run in the corresponding color. One can see a
summary of all results in Table 4, and we will elaborate in the following sections.

Algorithm Best sol. Worst sol. Mean best sol. SD best sol. Mean all sol. SD all sol.
TPE + uniform 14.38 8.07 11.74 1.36 9.95 0.84
TPE + normal 18.57 7.86 17.59 0.59 12.39 2.85
GP + Matern 14.36 7.21 12.82 1.31 10.33 1.31
GP + sq. exp. 15.92 7.29 14.10 1.79 10.26 1.34
GP + Matern + DEI 13.34 6.53 11.79 0.80 9.96 1.02

Table 4: A summary of results on all algorithms tested

The best solution gives the best solution found in all iterations, and the
worst presents the lowest objective value found in all iterations. The ’mean
best sol.’ displays the mean of the best solutions found per run. The ’SD best
sol.’ displays the standard deviation of the best solutions found per run. The
mean and SD of all solutions provide these descriptives for all solution values
found for all iterations and runs.

6.1 TPE and uniform distribution prior

The results of the TPE algorithm with using a uniform prior are shown in
Figure 5. The results show that after 20 iterations the algorithm does not seem
to converge. For example the orange run has a low objective value in the 20th
iteration, which means that it is still exploring more than exploiting. The best
solution value found seems to be a ’lucky’ guess, and is clearly an outlier in the
results.

The best solution found using a uniform prior is 14.38, given by parame-
ters [160, 152, 8.04] which gives almost exactly the brute force optimal objective
value. The performance is relatively unstable, with the standard deviation of
the optimal solutions being 1.36. The solutions found also seem to be depen-
dent on the starting point. One of the runs even had its starting point already
yielding the optimal solution.

26

Figure 5: Results of the Bayesian optimization with the TPE algorithm and a
uniform prior. Every line represents a run with a different starting point, and
the dotted lines represent the optimal solution of the corresponding color.

Since it is costly to test bad performing recommenders, it is interesting to
look further than only the best solution per run. We are also interested in
finding out what the risk of the algorithm is. The average solution found was
9.95, which is a relatively bad solution value. The standard deviation of all
solutions is 0.84, which is relatively low. Given that the lowest solution found
is 8.07, this means that even though the solutions found on average might be
bad, the risk of testing an extremely bad recommender seems low.

6.2 TPE and log-normal distribution prior

The results for the TPE algorithm with using a normal distribution prior are
shown in Figure 6. The results show that, similar to the TPE results with a
uniform prior, the algorithm seems to not converge within the 20 iterations.
Many of the runs, even in the last iterations, show a low objective value, which
means that the algorithm is still exploring at the last iteration.

All runs seem to perform very well, all performing better than the brute
force method (!). The highest solution found was 18.57 with parameters [5, 1, 1],
which is a 29% improvement from the brute force method. Moreover, the high
performance seems to be relatively stable, with a standard deviation of 0.59 of
the optimal solutions. Moreover, starting points that are close to each other
(orange line and dark blue line), do not necessarily have a similar performance.
Where the orange run performs extremely well, the dark blue run performance
as second worst from all runs, even though they start very similar.

27

Figure 6: Results of the Bayesian optimization with the TPE algorithm and a
normal prior. Every line represents a run with a different starting point, and
the dotted lines represent the optimal solution of the corresponding color.

The mean solution of the algorithm is 12.39, which is relatively high. The
standard deviation of the runs is 2.85, which is also relatively high. We could
say that the TPE with normal prior performs well, but is also moderately risky
since it deviates more in its solutions found. The worst solution found is with
7.86 decent, so the risk of the high standard deviation might be dissolved by
the high average mean.

6.3 Gaussian process prior and Matern kernel

The results for the GP prior with a Matern kernel as prior for the covariance
function are shown in Figure 7. The results show that regarding the optimal
solutions, the optimization algorithm performs in between the TPE with uni-
form prior and TPE with normal prior. Three of the five runs find optimal
solutions higher than 13, and the best optimal solution found has a value of
14.36 corresponding to solution [73, 10, 0.75].

Similar to the other algorithms, the algorithm does not seem to converge.
The yellow run illustrates the functionality of the algorithm. The run picks a
risky point with a lot of uncertainty (’exploration’) and then finds a relatively
low objective value (the four downward peaks), it uses this information (’ex-
ploitation’) and finds slowly finds a better solution with the newly gathered
information. The GP algorithm seems to explore and exploit in a more extreme
manner (ranging in solutions from around 7.2 to 14.4) than the TPE algorithm,
making it more risky. Moreover the performance seems to be relatively instable,
with a standard deviation of the optimal solution of 1.31. Therefore it seems
that the starting point has an effect on the performance of the algorithm.

With respect to the risk of the algorithm, the mean of all solutions found is
10.33 and the standard deviation of the solutions is 1.31. The mean solution is
in between the previous two algorithms, and the variance is moderately high.
Even though the variance might not be extremely high, the algorithm does find

28

lower solutions than the other algorithms (going as down as 7.21), making it
rather risky.

Figure 7: Results of the Bayesian optimization with GP prior and Matern kernel
prior. Every line represents a run with a different starting point, and the dotted
lines represent the optimal solution of the corresponding color.

6.4 Gaussian process prior with Matern kernel and DEI
acquisition function

Figure 8 shows the results of the GP prior with Matern kernel with the Dynamic
Expected Improvement function as proposed by this research. It is natural to
compare this adapted version of the expected improvement function with the
GP prior and Matern kernel with normal EI. Table 4 and the figure show that
the adapted version performs worse in almost all aspects. The best solution
found is the lowest so far (13.34), and the lowest objective function value found
of all parameter settings tried is also lower than all the other algorithms (6.53),
meaning that the algorithm relatively risky. Section 7 goes into why the algo-
rithm seems to be performing so bad, and describes that there still might be
potential in the proposed method.

Unexpectedly, the algorithm does seem to be more consistent, since it has
a relatively low standard deviation of the best solutions found 0.80 and all
solutions found 1.02. It also does not seem to converge, but as expected most
best solutions are found at the end of the algorithm. Moreover, Figure 8 clearly
shows that at the start of the algorithm there is more risk and the solutions go
from very high to very low. At the end, most solutions seem to be more or less
constant, and the algorithm is less risky.

29

Figure 8: Results of the Bayesian optimization with GP prior and Matern kernel
prior, with the dynamic expected improvement function. Every line represents
a run with a different starting point, and the dotted lines represent the optimal
solution of the corresponding color.

6.5 Gaussian process prior with squared exponential ker-
nel

Figure 9 shows the results of the Gaussian prior with a squared exponential
kernel. The graph shows that the GP prior with exponential kernel performs
better with respect to the found optimal solutions than with a Matern kernel.
All optimal solution but one are higher than 15, and the highest found is 15.92
with a solution that corresponds to x = [68.51, 183.76, 1.56].

Given the other results, it was not unexpected that the algorithm also does
not seem to converge. All runs do not necessarily give better results at the end
of the algorithm, and seem to be exploring more than exploiting. Moreover,
most optimal solutions are found between iteration 3 and 10. The optimal
solutions found in almost all runs seem outliers, and it could be that all are
’lucky hits’ in the sense that by trying to explore the algorithm stumbled on a
good solution. This is all speculation though, and one could say the algorithm
performs relatively in-stable with a high mean of optimal solutions of 14.10 but
also a high standard deviation of 1.79.

To assess the complete risk picture, we find the mean and standard deviation
of all solutions found. Our mean solution found is 10.26 and the standard
deviation is 1.34. This seems to be very similar to the Matern kernel. Using a
squared exponential kernel in this research gave better optimal solutions than
the Matern kernel, while having the same risk situation.

30

Figure 9: Results of the Bayesian optimization with GP prior and squared
exponential kernel prior. Every line represents a run with a different starting
point, and the dotted lines represent the optimal solution of the corresponding
color.

7 Discussion

If one would just look at the graphs in the results section, he/she will conclude
that the TPE algorithm with a normal prior is far superior over the other
algorithms. However, this would be a too simple reasoning. The TPE algorithm
with a normal prior indeed outperforms the other algorithms, but this might be
due to the fact that it was given a stronger and more appropriate prior, that
worked just in this particular case.

From the results, we can conclude that changing or including a prior greatly
influences the performance of the algorithm. If the prior is an accurate represen-
tation of the ‘real’ objective function, it increases the performance greatly, and
decreases the risk. In the case of a strong (like log normal), but inappropriate
prior it might be that the algorithm is biased towards the prior in the extent
that it will only find bad solutions. In practise we would suggest to only use a
strong prior if one is certain that it is accurate to some extent.

One reason why the TPE algorithm seems to work better than the Gaussian
Process approach is that the TPE algorithm by construction puts more weight
on exploitation than exploration. Since we only have a low number of iterations,
spending more iterations on exploitation instead of exploration might make
sense, since we have less iterations to make use of the gathered information.
This is especially the case when the prior reflects the ’real’ objective function
closely, since we have less risk of exploiting the function incorrectly.

When analyzing the brute force results, it seems that there are little in-
teraction effects between the parameters: the marginal effect of changing one

31

parameter seems constant when we change the other parameters. This also con-
tributes to the fact that the TPE algorithm performs well. The TPE method
does not take into account interaction effects, and assumes a tree-like struc-
ture which seems to exactly correspond with the brute force results. The TPE
method might not work so well in case there are interaction effects, but more
research is needed to confirm this.

Even though the ultimate goal is to find a global optimum, with such a low
number of iterations the customer is already happy with a high local optimum.
All algorithms seem to not converge since they choose new points based on
the expected improvement. Apparently 20 iterations do not generate enough
certainty about the objective function so that the algorithms goes more into
exploiting.

To solve this issue, we proposed to use the DEI acquisition function instead
of the regular expected improvement. The results show that using this acqui-
sition function does not generate better results. However, the results do show
that there is potential. The main part where the algorithm performs very bad
is in the first couple iterations. A solution of 6.53 was found twice in the first
iteration. This is due to the fact that we put all weights on exploration instead
of exploitation. Interestingly, the two solutions of 6.53 are identical, and both
correspond to a parameter setting at the boundary of our solution space. After
the first three initialization runs, it is not surprising that the point with the
highest σ(x)φ(Z) is at the boundary of our solution space.

In the last iterations, most of the weight is on exploitation instead of explo-
ration. One would expect that we would only find solutions higher than were
already found in previous iterations. This is not the case, which might be due
to the fact that µ(x) and σ(x) do not perfectly represent the ’real’ objective
function. According to µ(x) and σ(x) a point xk might be a strong improve-
ment over the previously best found solution, but when we evaluate the ’real’
objective function at xk we might find that the solution was not so good after
all. It therefore becomes clear that using this acquisition function we did not
explore enough to be able to exploit in the end. The brute force results shows
that the application we tested the algorithms on is difficult in the sense that
the objective function is not a smooth function. Since it is not smooth, the
difference between our model and the ’real’ objective function can differ sig-
nificantly. If one then takes more risk by focusing on exploitation, we end up
getting worse results. There might be potential for the DEI acquisitions with
smooth objective functions, but this has to be researched more thoroughly.

It is important to look at the impact of decreasing the number of customers
evaluated. For this research, we chose 1000 random customers. However, the
data is sparse in the sense that most customers only click on one product with-
out buying anything or putting anything in the cart. Therefore, most customers
have a score of 0, while some customers buy a lot and generate a score of some-
times more than 1000. Therefore, it might be that a relatively small number of
customers have a big impact on the score, since all scores are equally weighted.
This might not be desirable since we want to recommend decent products for
all customers instead of recommending extremely good products for just a small

32

number of customers. It could be an improvement to adjust the score of cus-
tomers that buy or click above a certain threshold, to make sure these ‘outliers’
do not impact the score too much. We could also include a term in the score
that allocates points to the number of customers that have a score that is not
equal to 0, to create an incentive of recommending suitable products to as many
distinct customers as possible.

To test whether 1000 customers are enough for testing, we also calculated the
scores for 10, 000 customers and compared it with the score of 1000. Possibly
due to the outliers mentioned in the previous paragraph, the score was very
different. Since it is hard to determine whether the difference in score is due to
the outliers and therefore definition of the score, or due to the 1000 customers
not being a large enough sample to properly represent the complete sample, we
recommend using more than 10, 000 customers to make sure that the results are
representative for the full customer base. All algorithms in the results section
are tested on the exact same set of customers, and even though the scores are
different with different data sizes, the relative score of the algorithms remains
the same, so the results are still likely to hold, although this is a point for further
research.

Part of the research goal is that it should be possible for the user to define
the objective function. The user can do this by changing β or φ. We have
not explicitly tested whether the results change when the objective function is
changed. However, since the objective function’s uncertainty only comes from
the separate elements (the capital letters) and not from β or φ, we can always
calculate results with other β′s and φ′s back to the settings used in this research,
therefore making our results generalizable to all other β′s and φ′s.

Finally, it must be mentioned that the offline results are not necessarily rep-
resentative for the online case, due to the reasons mentioned in Section 5.4.
Interestingly enough, the optimal solutions the optimization algorithms found
are not similar to the settings that were used to generate the data. This fact
gives an indication that the recommender does not significantly impact the cus-
tomer’s behavior, and customers do not necessarily buy or click on products
because they are inspired by recommendations. From a generalization perspec-
tive of this research this is positive, since it means that the customers’ behavior
would not change too much if he/she had viewed other recommendations. How-
ever, it might be that other (and therefore possibly better) recommenders might
impact the behavior of customers much more, thereby distorting the generaliz-
ability of our results.

8 Conclusion

This research aimed to find an optimization algorithm that can optimize the hy-
perparameters of a recommendation system with the least amount of iterations
and with little risk in the sense that little recommenders are testing that perform
bad. It was found that the performance of the optimization algorithms highly
depend on the chosen prior. If the user is certain that a prior accurately reflects

33

reality, the Bayesian optimization with a TPE algorithm and a log normal prior
outperforms all the other tested algorithms. However, choosing a strong prior
(like the log normal) is risky since a less accurate prior is expected to perform
much worse.

The research also found that, in the case of a non-informative prior, the
Gaussian algorithm seems to perform better than the TPE algorithm. Even
though the TPE algorithm found one better solution, the Gaussian approach
more consistently finds more solutions. It has to be mentioned that the Gaus-
sian method is also more risky, so the user can choose between risk but a higher
probability of finding a reasonably good solution or less risk but a smaller prob-
ability of finding a good solution.

Finally, we found that adapting the acquisition function to be more dynamic
in this case performs worse than a regular acquisition function, mainly due not
enough exploration to be able to exploit in the end. There might be potential
in the DEI, but mainly for objective functions that are more simple in nature.

References

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for
hyper-parameter optimization. In Advances in neural information processing
systems, pages 2546–2554.

Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599.

Gunawardana, A. and Shani, G. (2009). A survey of accuracy evaluation
metrics of recommendation tasks. Journal of Machine Learning Research,
10(Dec):2935–2962.

Gunawardana, A. and Shani, G. (2011). Evaluating recommendation systems.
In Recommender systems handbook, pages 257–297. Springer.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Eval-
uating collaborative filtering recommender systems. ACM Transactions on
Information Systems (TOIS), 22(1):5–53.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based
optimization for general algorithm configuration. In International Conference
on Learning and Intelligent Optimization, pages 507–523. Springer.

Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian
optimization without the lipschitz constant. Journal of optimization Theory
and Applications, 79(1):157–181.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global opti-
mization of expensive black-box functions. Journal of Global optimization,
13(4):455–492.

34

Li, L., Chu, W., Langford, J., and Wang, X. (2011). Unbiased offline evalua-
tion of contextual-bandit-based news article recommendation algorithms. In
Proceedings of the fourth ACM international conference on Web search and
data mining, pages 297–306. ACM.

Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., and Doucet, A.
(2009). A bayesian exploration-exploitation approach for optimal online sens-
ing and planning with a visually guided mobile robot. Autonomous Robots,
27(2):93–103.

Matérn, B. (2013). Spatial variation, volume 36. Springer Science & Business
Media.

Močkus, J. (1975). On bayesian methods for seeking the extremum. In Opti-
mization Techniques IFIP Technical Conference, pages 400–404. Springer.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer
School on Machine Learning, pages 63–71. Springer.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications
of the ACM, 40(3):56–59.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2016).
Taking the human out of the loop: A review of bayesian optimization. Pro-
ceedings of the IEEE, 104(1):148–175.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951–2959.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M., Prabhat, M., and Adams, R. (2015). Scalable bayesian optimization using
deep neural networks. In International conference on machine learning, pages
2171–2180.

35

A Measuring recommender performance

We define D(φD), E(φE), F (φF), G(φG), H(φH) and I(φI) as:

D(φD) =

N∑
i=1

Ti∑
t=1

|Ci,t,τe,r|∑
r=1

(
I[Ci,t,τe,r ∈ Ri,t]π

φD
Ci,t,τe,r

1√
HCi,t,τe,r

−HRi,t

)
(16)

Where Ci,t,τe,r is product r that customer i bought in between time periods
t and τe. E(φE) is very similar to D(φD), but now comparing categories instead
of the product themselves.

E(φE) =

N∑
i=1

Ti∑
t=1

|Cci,t,τe,r|∑
r=1

(
I[Cci,t,τe,r ∈ R

c
i,t]π

φE
Ci,t,τe,r

1√
HCi,t,τe,r

−HRi,t

)
(17)

And F (φF) for products clicked in other categories than the recommended
categories.

F (φF) =

N∑
i=1

Ti∑
t=1

|Cci,t,τe,r|∑
r=1

(
I[Cci,t,τe,r /∈ R

c
i,t]π

φF
Ci,t,τe,r

1√
HCi,t,τe,r

−HRi,t

)
(18)

And we have the same concept for products added to cart, with the addition
that we remove products from the set that are removed from the cart by the
customer. So ICi,t,τe = ACi,t,τe /∈ RCi,t,τe where ACi,t,τe is the multiset of
products added to cart by customer i between time t and τe, and RCi,t,τe is the
multiset of products removed from the cart by customer i between time t and
τt. We can then define:

G(φG) =

N∑
i=1

Ti∑
t=1

|ICi,t,τe,r|∑
r=1

(
I[ICi,t,τe,r ∈ Ri,t]π

φG
ICi,t,τe,r

1√
HICi,t,τe,r

−HRi,t

)
(19)

Where ICi,t,τe,r is product r that customer i put in cart and did not remove
in between time periods t and τe. H(φH) is very similar to G(φG), but now
comparing categories instead of the product themselves.

H(φH) =

N∑
i=1

Ti∑
t=1

|ICci,t,τe,r|∑
r=1

(
I[ICci,t,τe,r ∈ R

c
i,t]π

φH
ICi,t,τe,r

1√
HICi,t,τe,r

−HRi,t

)
(20)

And I(φI) for products added to cart and not removed for other categories
than the recommended categories.

36

I(φI) =

N∑
i=1

Ti∑
t=1

|ICci,t,τe,r|∑
r=1

(
I[ICci,t,τe,r /∈ R

c
i,t]π

φI
ICi,t,τe,r

1√
HICi,t,τe,r

−HRi,t

)
(21)

B Brute force results

Daysitemitem DaysUserEngagements ViewWeight Score
110 10 3 14.35
110 10 9 13.61
110 10 12 13.61
110 10 15 13.61
110 10 18 13.61
210 10 6 13.14
210 10 9 13.14
210 10 12 13.14
210 10 15 13.14
10 10 3 13.04

Table 5: Top 10 results brute force method

37

