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Abstract

In this thesis we aim to estimate the causal effect of multiple advertisements on the tune-in
of a TV program. We contribute to the current literature by applying propensity score
methods in a generalized problem setting and relatively new domain. Furthermore, we
introduce a combination of average and treated dose-response functions, investigate esti-
mating treatment effects for a low dimensional multivariate (instead of bivariate) treatment
variable and introduce a smooth coefficient model for multivariate treatments. In particular,
we study the effect of multiple TV advertisements on the tune-in of the season premiere of
America’s Got Talent in 2016. Starting from the most commonly studied case in the litera-
ture, binary treatments, we extend the analysis to continuous and multivariate treatments.
We explore the use of many different methods and prefer CBPS as treatment assignment
model for binary treatments and Poisson regression for continuous/multivariate treatments
in our case. We find small treatment effects, depending on the treatment variable(s) used.
Additional exposures to advertising have a positive impact on the probability of tune-in.
Furthermore, the results suggest more recent advertisements have a higher impact and
advertisements on the same channel (NBC) are most effective.

Keywords: propensity score methods, continuous treatments, multivariate treatments,
promotion response, dose-response function, CBPS, smooth coefficient model.
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1 Introduction

Companies typically spend a substantial part of their total revenue on marketing. Measur-
ing and evaluating the effectiveness of marketing campaigns is an important part of the
marketing process, that is expected to gain even more attention coming years (Nielsen,
2018). Marketing agencies want to get insight in the return on money spend and aim to
find the optimal marketing strategy tailored to their campaign objective. It is thus of
high importance to make good quality estimates of the effect of different media channels.
Specifically, we want to isolate the effect that is due to the used marketing resources. In
other words, the difference with what happened had the campaign not taken place. Hence,
we are interested in the causal effect of advertising.

Causality is the relationship between two variables, connecting a cause and effect. It is
generally understood that correlation does not imply causation, but what does is less clear.
Whereas correlation is easy to find, causation is much harder to establish. The fundamental
problem of causal inference is that we can observe at most one outcome for each person
(Holland, 1986). Hence, causal inference studies the prediction of counterfactuals (i.e.
the outcome(s) for the treatment(s) each person did not receive). The ‘gold standard’ to
estimate causal effects is the randomized controlled trial (RCT), as the randomization
involved minimizes the selection bias allowing for a direct comparison between the treated
and non-treated group. However, RCTs are often costly or might not be allowed due to
ethical concerns. In the marketing domain, we are also often limited to observational data,
as will be the case in this thesis.

The research in this thesis is conducted on behalf of Pointlogic, a Nielsen Division. It is
interested to measure the effect of media campaigns for customers. A typical problem
set up is that multiple marketing channels are used simultaneously during a campaign
period and individuals have different levels of exposure for each of the marketing chan-
nels because of differences in media consumption. In this thesis we focus on studying
the effect of TV advertisements on the tune-in of a TV program. Here, the different
marketing channels are the type of TV channels the show can be promoted on and the mo-
ment in time the advertisements take place. We define treatment as exposure to advertising.

Typically, researchers employ a simple, often inappropriate, regression-based approach to
evaluate the effect size of marketing interventions (Rubin & Waterman, 2006). In this
thesis, we examine the use of propensity score methods (PSM), introduced by Rosenbaum
and Rubin (1983). PSMs are a widely applied set of techniques to study the effect of
treatments based on the Neyman-Rubin causal model1. The Neyman-Rubin causal model
defines causal effects as comparisons of potential outcomes. The potential outcomes are the
possible values the outcome variable Y can take, the causal effect is defined as the difference
between the potential outcomes. For example, let Y1i be the outcome for individual i in
case of treatment (Ti = 1) and Y0i the outcome in the absence of treatment (Ti = 0, control
group). Ideally, one would compare the difference E[Y1i|Ti = 1]− E[Y0i|Ti = 0] for each
individual i. However, we can never observe both for any individual i. Furthermore, a
direct comparison across individuals between the treatment and control group is likely
to be biased in a non-experimental setting. PSMs aim to correct this bias by comparing
outcomes between individuals who are as similar as possible. For binary treatments, the
propensity score is defined as the probability of receiving treatment given observed covari-

1Also known as the potential outcome framework.
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ates (Rosenbaum & Rubin, 1983). Individuals with the same propensity score will have
a similar distribution of observed covariates (Austin, 2011). The key idea of PSMs is to
use the propensity score as a balancing score to reduce the bias due to lack of randomization.

Similar to conventional regression-based approaches, PSMs only reduce the non-random
differences in treatment related to measured confounders2. However, PSMs have several
advantages compared to the former (Austin, 2011). As we focus on modelling the treatment
instead of the outcome variable, (1) it is simpler to do model checks and (2) we are
not influenced by the impact of model changes on the effect we try to estimate. Using
propensity scores, we can carefully check if the covariate distributions between different
treatment levels are similar without using the outcome variable. This makes PSMs (3)
much easier to analyse and interpret. Nevertheless, PSMs are not well studied to estimate
the effect of marketing interventions (Rubin & Waterman, 2006). Moreover, the number of
PSM studies analysing generalized treatments is still limited. That is, studies investigating
the causal effect of categorical, ordinal, continuous or multivariate treatment variables.

Therefore, this thesis investigates the following main question:

How can reliable estimates of the causal effect of multiple TV advertisements
on the tune-in of a popular TV program be obtained using PSMs?

In particular, we look at the following subquestions:

• How can the treatment effect in the case of binary and continuous univariate treatment
variables be identified and estimated using PSMs? How can this be extended to
multivariate treatment variables?

• What is the bias introduced in the estimated treatment effect by not taking the
non-random treatment assignment into account correctly (as often in practice)?

• What is our recommendation for causal inference under these circumstances?

Most causal inference literature studies the effect of treatment versus non-treatment, which
is an example of the binary treatment case. Therefore, we start this thesis by exploring
binary treatments, indicating whether an individual was exposed to (a certain level of)
advertising or not. Ultimately, we are not interested in the effect of binary treatments.
Instead, we want to estimate the effect of multiple treatments that can each differ in dose.
Therefore, we extend the analysis to allow for different doses or intensities of advertising,
which we call continuous treatments. Finally, we model the case where individuals can
be exposed to multiple treatments simultaneously (multivariate treatments). This means
they can be exposed to different types of advertising, each with a certain intensity. We
contribute to the current literature by applying PSMs methods in a generalized problem
setting and relatively new domain. This is relevant for future applications.

The remainder of this thesis is structured as follows. Section 2 provides some background
on causal inference for the interested reader. In Section 3, we discuss applications of PSMs
in the literature related to this research. Section 4 contains a description of the data set.
Next, Section 5 describes the used methodology for binary, continuous and multivariate
treatments respectively. The results are summarized in Section 6. Finally, Section 7
discusses the findings, limitations and angles for future research.

2Variables influencing both the outcome and treatment variable are called confounders.
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2 Background

This section gives a short introduction to the domain of causal inference. First, Section 2.1
distinguishes causal inference from standard statistical analysis. Next, the conventional
regression-based approach is put in perspective in Section 2.2. Finally, Section 2.3 discusses
three common approaches to causal inference.

2.1 What is causal inference?

Causal inference aims to make cause-effect statements and studies the effect of arbitrary,
hypothetical interventions. Standard statistical analysis (i.a. regression analysis) is con-
cerned with estimating the parameters of a distribution from a sample of the distribution.
This can be used to make claims about how certain events are regularly associated among
each other under similar conditions (Pearl et al., 2009). The aim to predict the belief
of events under changing instead of static conditions distinguishes causal inference from
standard statistical analysis. To achieve this it is necessary to make causal assumptions
and state these explicitly so that it is clear under which assumptions a certain results
holds. Causal assumptions are basic beliefs on the relationship of variables, based on the
knowledge of the researcher, that remain valid when external conditions change. These
assumptions can in principle not be tested in observational data. For a more elaborate
discussion on the concept of causal inference in relation to standard statistical analysis we
refer to Holland (1986) and Pearl et al. (2009).

2.2 Conventional regression analysis

In regression analysis, the estimated effect of a variable represents the change in response
associated with that variable, holding a given set of control variables constant. We can
simply assume these estimates are causal. In fact, if we observe all relevant variables that
could affect an outcome and compare units with the same value for all variables other than
the treatment variable, we know the effect is indeed causal if the outcome changes. However,
this is rarely the case and regression analysis would be redundant under these circum-
stances as we could compare individuals directly. In practice, we are almost always missing
variables. As long as we observe enough variables, we can still assume treatment is as good
as randomly assigned given these observed variables. The problem, however, is that we
might not be able to hold all other variables constant while changing the variable of interest.

Standard covariate adjustment is often insufficient when the number of covariates is
large and the covariate distribution varies substantially with treatment (Imbens, 2000).
Furthermore, it is unknown which set of variables should be controlled for. In practice,
researchers often try to correct for as many variables as possible (Pearl & Mackenzie, 2018).
However, because not all variables are observed, this is not necessarily the best strategy as
illustrated by Pearl’s M-bias example in Figure 2.
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Figure 2: Pearl’s M-bias example

We are interested in the effect of X on Y. In the above diagram, one can see X and Y are
unconfounded (i.e. there is no common factor influencing both). However, if we control for B this
becomes a confounder of X and Y. This is exactly what happened in a study as part of a tobacco
litigation, because they found that B was correlated with both X and Y. If one would also control
for A or C this is not a problem, however this is not possible as these variables are not observed.
This is a real life example that shows controlling for all variables can result in undesired outcomes.

As the propensity score is a balancing score, we can use diagnostics for PSMs to check
whether covariate balance is achieved. In conventional regression analysis, it is more
difficult to determine whether the model is correctly specified (Austin, 2011). Moreover, it
can be that there is a clear distinction in covariates between different treatment levels. In
the regression based-approach this might not be noticed as results are extrapolated over
groups with different treatment levels. PSMs allow the researcher to explicitly examine
the underlying distribution of covariates between groups (Austin, 2011). Finally, we do
not need to make linearity assumptions between the treatment and response variable in
PSMs as we construct a separate model for the treatment variable.

Studies comparing treatment effects estimated by PSMs and conventional regression analysis
find small differences, with PSMs resulting in slightly weaker associations (Shah, Laupacis,
Hux, & Austin, 2005; Stürmer et al., 2006). However, using simulation Martens, Pestman,
de Boer, Belitser, and Klungel (2008) show differences can be substantial and the size
depends on several factors such as the number of influential variables, the magnitude of
the treatment effect and the incidence proportion. Furthermore, they find PSMs tend to
be closer to the true marginal effect.

2.3 Different causal frameworks

The fundamental question of causality arises in many fields. From these disciplines, dif-
ferent approaches have developed over time. Three common frameworks to formulate
causal models are: the Neyman-Rubin causal model, structural equation models and
the structural causal model. These frameworks enable the researcher to describe the
cause-effect relationship using formal notation and make underlying assumptions explicit.
The crucial distinction between the above frameworks is that structural equation models
and the structural causal model do not require the assumption that selection takes place
on observable variables only. However, this comes at the cost of other assumptions (e.g.
distribution of the error terms).
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The first framework, and the approach used in this thesis, is the Neyman-Rubin causal
model (Rosenbaum & Rubin, 1983). The Neyman-Rubin causal model is the approach
to causal analysis based on the potential outcome framework first introduced by Neyman
(1923). Developed by statisticians, it defines causal effects as comparisons of potential
outcomes (see Section 1). The problem is that we can never observe more than one outcome
for each individual. The Neyman-Rubin causal model views causal inference essentially as
a missing data problem (Rubin, 2005).

Next, structural equation models are the traditional econometric approach to causal analy-
sis is. Contrary to the Neyman-Rubin causal model, structural equation models explicitly
model the relationships between variables. Two main components are distinguished: the
structural model and the measurement model. The first models the dependencies between
the (possibly endogenous) explanatory variables and the outcome variable, the second the
underlying latent structure of the endogenous variable(s). Together, they can model the
selection bias resulting from a non-random observation of the dependent variable. An early
application of this approach was discussed by Roy (1951), who studied workers choosing
a hunting or fishing job based on their productivity. More formally, Heckman (1976)
discussed the problem of selection bias and suggested a two-step method to solve the above
problem. Models of self-selection fall into a broader class of switching-regression models
(Maddala, 1983). The difference with endogenous switching regression models is that in
these models both regimes are observed partially, whereas in Heckman’s selection model
only one observed regime is observed and of interest. The typical approach when modelling
selection bias is based on assumptions about the error distribution. In the most standard
case one assumes a normal model, but some more general distribution assumptions have
been investigated. Nevertheless, this approach is criticised for its reliance on distributional
assumptions and lack of robustness to departures from normality (Heckman, Tobias, &
Vytlacil, 2000). An outline of this approach is presented in Appendix 9.4 as an angle for
future research, but we focus on PSMs instead.

Finally, the structural causal model combines the potential outcome framework, graphical
models and structural equation models. This approach originates from computer science.
Although the representation differs, structural equation models and the structural causal
models are basically two sides of the same coin. Instead of the equations, the structural
causal model uses directed acyclic graphs (DAG). Causal graphs originate from path analysis
introduced by Wright (1920) and express the conditional dependence structure by using a set
of nodes and arcs. Nodes represent random variables and the (absence of) arcs conditional
independence assumptions. Once the graphical model is developed, do-calculus can be
used to express interventions (Pearl, 1995). In a graph, do(.) removes in-going edges into
the target of intervention, while keeping out-going edges. This notation allows researchers
to make a difference between observing (P (Y |X,Z)) and doing (P (Y |do(X), Z)), where
the difference between the two is the result of hidden common causes (i.e. unmeasured
confounding). For more details on this approach, we refer the interested reader to Pearl
et al. (2009) as this thesis will not further investigate the use of this approach.
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3 Literature review

This section provides an overview of the relevant applications of PSMs in the literature.
First, we discuss PSMs applications related to marketing in Section 3.1. Next, Section 3.2
gives an overview of applications that focus on generalized treatments.

3.1 Propensity score methods in marketing

Since the introduction of PSMs by Rosenbaum and Rubin (1983), the number of new
publications has increased substantially each year (Stürmer et al., 2006; Thoemmes &
Kim, 2011). Although PSMs have been applied in many areas, the majority of research
applications studies medical or epidemiological interventions (Rubin & Waterman, 2006).
The popularity of PSMs in this field can be explained due to the fact that RCTs raise
ethical questions in these situations and might take too long (e.g. for chronic diseases).
Within social sciences, most PSMs studies were published in the field of education or public
health (Thoemmes & Kim, 2011).

There are hardly any articles available studying promotion response as done in this the-
sis. Closely related, however, is the field of program evaluation. Although this focuses
on questions about the response to policies and projects, one can argue a campaign or
promotion is a specific type of program aimed to change the behaviour of individuals by
sending a message. In the literature on program evaluation, there are various studies
evaluating labour market and health promotion programs, of which some employ PSMs. For
example, Lechner (2002) evaluates different active labour market policies in Zurich. They
use propensity score matching to adjust for individual heterogeneity and use a multiple
treatment approach to model a range of heterogeneous sub-programs (e.g. training, public
employment programs or job counselling). Kluve, Schneider, Uhlendorff, and Zhao (2012)
use the generalized propensity score to assess differences in treatment effects due to the
duration of training in labour market programmes. Furthermore, Mills, Kessler, Cooper,
and Sullivan (2007) look at the impact of health promotion programs in the workplace on
health risks and work productivity. Nyman, Abraham, Jeffery, and Barleen (2012) evaluate
the impact of another health promotion program, to analyse if the objective to lower the
health care expenditures and reduce absenteeism is achieved. These studies evaluate the
program over a longer time and use PSMs to ensure comparability between treatment and
control groups.

Furthermore, some (marketing) campaigns in the public domain have been evaluated using
PSMs. For example, the effects of the National Youth Anti-Drug Media Campaign in the
U.S. are well-studied. Lu, Zanutto, Hornik, and Rosenbaum (2001) use it to illustrate
multivariate matching with doses of treatment. They model ordinal treatments using
McCullagh’s ordinal logit model. Zanutto, Lu, and Hornik (2005) use a similar methodology
but propose subclassification instead of matching. Yanovitzky, Zanutto, and Hornik (2005)
investigate the case of both binary and ordinal treatments. The three studies all found
little or no indication of a treatment effect. Moreover, Fong, Hazlett, Imai, et al. (2018)
study the effect of political advertisements on campaign contributions using a continuous
treatment. Remarkably, despite the parallels between the discussed problem settings and
promotion response in marketing, there are no studies we know of that use the PSMs
methodology for the latter purpose.
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3.2 Applications of generalized treatments

Moreover, the number of studies applying generalized propensity scores is still limited.
We focus on the applications related to marketing here. First, we consider studies of the
discrete case with a limited number of treatment options. Lechner (2002) models categorical
treatments representing labour market policies as a series of pairwise binary treatments.
McCaffrey et al. (2013) investigate the effect of different outpatient treatment approaches,
which is also categorical. Instead of pairwise comparisons, they use a multinomial logistic
regression model with weighting estimators. The studies investigating the effect of the Na-
tional Youth Anti-Drug Campaign all consider ordinal treatments (Lu et al., 2001; Zanutto
et al., 2005; Yanovitzky et al., 2005). Categorical and ordinal treatments are sometimes
referred to as multiple treatments in the literature. This is different from multivariate
treatments, studied in this thesis. For a complete review of PSMs for categorical and
ordinal treatments we refer to Lopez, Gutman, et al. (2017).

Now, the continuous case allows to express the intensity of treatment more precisely. It
has a large number of applications in the medical domain (Hirano & Imbens, 2001). Kluve
et al. (2012) use this to model the duration of training in labour market programs. Fong
et al. (2018) consider political advertisements as continuous treatment variable. Imai and
Van Dyk (2004) investigate the effect of smoking using a bivariate treatment variable,
where both duration and smoking are continuous. We are not aware of any other bivariate
or multivariate treatment applications. For a discussion of generalized treatment regimes,
we refer to Imai and Van Dyk (2004).

11



4 Data

We investigate the tune-in on the season premiere of America’s Got Talent (AGT) in
2016. It was aired on NBC on Tuesday May 31st at 08:00 PM EST. In particular, we are
interested in the influence of the exposure to advertising for this show on the probability
an individual watches this show. The data comes from the Nielsen Company TV panel
and contains detailed information on who is watching what and when. In particular we use
data from the Nielsen People Meter (NPM), which measures TV viewing on a respondent
level. The campaign period investigated is May 11th - 31st. During this period, AGT has
been marketed across different types of TV channels: on channel, off channel and a few
smaller channels (cross channel, Dish, DirecTV, Local Cable). Here, on channel is defined
as NBC, cross channel are different channels owned by NBC (USA Network, E!) and off
channel are all other channels (i.a. TLC, Lifetime Television).

For an overview of the spread of the Gross Rating Points (GRP)3 over time and across
marketing channels, see Figure 3. In total the number of GRPs was 77.38, which is quite
quite low and means that the reach of this campaign was not very high. Furthermore, the
big majority (96%) of the GRPs were delivered on NBC (on channel) and off channel.

Figure 3: Overview GRPs over time and across different marketing channels.

The analysis in this thesis is focused on the audience ‘Adults aged between 18-49’, as this
was the target audience of the marketing campaign. The raw data contains information on
individual characteristics, general TV viewing behaviour, exposure to TV advertisements
and tune-in of AGT. We remove 283 individuals from the dataset for who we do not have
the tune-in of AGT (response variable). The resulting dataset contains information on
N = 25339 individuals. Because the panel is not fully representative of the total U.S.
population, we use sample weights ri to correct for this. These weights are determined
by Nielsen and indicate how many people in the U.S. a certain individual i represents,
such that the resulting sample reflects the total population well in terms of sociodemo-
graphics such as age and gender. In the literature of PSMs very little is written on how

3A common measure to calculate marketing impact defined as the percentage of the target audience
reached multiplied by the average exposure frequency.
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to incorporate sample weights. Some researchers argue in favour of a certain approach,
but recommendations are conflicting and lack experimental evidence. We follow the robust
approach proposed by Ridgeway, Kovalchik, Griffin, and Kabeto (2015), who test various
alternatives using simulation and real life data. They propose using sampling weights in
all stages of the PSM: as weights in the model to estimate the propensity score and in the
final output by multiplying the obtained weight with the sample weight ri.

The response variable Y is a binary vector of length N indicating whether an individual i
has seen at least 1 minute of the season premiere. The decision to model tune-in as binary
response variable is motivated by the belief that advertisements influence the decision of
an individual to start watching a program, but not the duration of watching. The number
of minutes an individual is watching a program is influenced by other factors.

Next, we include a set of variables describing the sociodemographics and general viewing
behaviour of individual i. We denote this set of variables by the N x C matrix X. So-
ciodemographics include age, gender, region, race and income. We measure the viewing
behaviour in the two weeks prior to the season premiere (May 17th - 30th). This includes
for example the total time watching TV, the time division across channels and the viewing
behaviour during different times of the day and week. To capture non-linearities in the
relation between explanatory variables and the response variable, we transform continuous
variables into categorical variables4. We do this by making a separate group for zero values
and split the remaining in three groups based on the quantiles. Categorical variables enter
the model as dummy variables, where the number of included variables is equal to the
number of categories minus one.

Finally, we discuss the definition of the treatment variables T . For the binary treatment
case we consider two different definitions of the treatment variable: any exposure to
advertising and a total number of exposures larger than a certain threshold. This second
definition can be interesting to consider if one believes advertising only has influence after
a few exposures. Based on plots displaying the number of exposures versus the level of
tune-in, we decide to investigate a threshold of at least three exposures. Although the case
of binary treatments is merely a starting point in this thesis for further generalizations,
one can also see this as an alternative way of modelling ordinal/continuous treatments
(Lopez, Gutman, et al., 2017). For the continuous treatment case we define the treatment
variable as the number of exposures.

For the definition of multivariate treatment variables, it is important to note that there
are only two major marketing channels (on and off channel). This makes it impossible
to analyse the effect of all individual marketing channels separately. But, the effect of
recency of advertisements is also interesting to analyse. Hence, we can alternatively create
treatment variables based on the time until the season premiere (i.e. prior to last week,
last week and premiere day5). To sum up, we consider two sets of multivariate treatment
variables: one based on the time of advertisements and one based on the channel the
advertisement was broadcast on. For the definition of the variable(s) of interest for the
case of binary, continuous and multivariate treatments we refer to Table 1.

4By including different levels of a continuous explanatory variable separately, we make a simple
approximation for different types of non-linear effects.

5We join the category premier hour with premier day, because the separate groups are too small.
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Table 1: Definition treatment parameters for binary, continuous and multivariate treat-
ments.

Binary treatments Continuous treatments Multivariate treatments

Dimensions
Vector of length N ,
Ti ∈ {0, 1}.

Vector of length N ,
Ti ∈ [0, Ti,max].

Matrix of size N x M ,
Tmi ∈ [0, Tmi,max].

Definition

(a) Indicator if
there has been
any exposure to
the media campaign
(number of
exposures > 0).

(b) Indicator if
the total number
of exposures to
the media campaign
exceeds a
certain threshold
(number of
exposures is > 2).

Count variable
equal to the total
number of
exposures to the
media campaign.

Count variables
equal to the
number of
exposures to the
media campaign.

(a) Based on time:
prior to last
week, last
week and on
premier day
(M = 3).

(b) Based on channel:
on channel,
other channels
(M = 2).

A table with a complete overview and description of the variables can be found in Appendix
9.1. In that table, it is also indicated which variables influence the outcome and treatment
variables respectively. The choice of variables, as well as the type of variables included, is
based on domain knowledge. As variable selection is not the focus of this thesis, the set of
variables presented there will be the final set of variables used for the response model and
the initial set of variables used for the treatment assignment model. However, we do check
for multicollinearity using the variance inflation factor (VIF) and exclude four dummy
variables that have a too high correlation (> 0.7) with other variables in the model.

In the obtained dataset, 6.5% of all individuals watched (part of) the show. However, of
all individuals in the dataset there are many individuals who never watched TV (8.8%) or
NBC (54.1%) during the two week period investigated. Among frequent NBC viewers AGT
is more popular, with 27.2% watching (part of) the show. We define frequent NBC viewers
here as the top two terciles constructed using the viewing minutes of NBC primetime from
May 2nd - 16th6. To get insight in the relation between the various treatment variables
and the level of tune-in, we made some exploratory data analysis plots (see Appendix
9.2). We indeed find increasing levels of tune-in for higher numbers of exposures. Further
analysis using PSMs will verify the strength of the causal relation between these two.

6The terciles are constructed as follows: 1) multiply the viewing minutes and sample weights ri, 2) sort
the individuals i based on their viewing minutes, 3) split the dataset in three equal groups based on the
cumulative sum of step 1.
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5 Methodology

PSMs, proposed by Rosenbaum and Rubin (1983), aim to reduce bias introduced by
confounders due to lack of randomization in observational data. An overview of the
steps taken when doing causal inference with PSMs is shown in Figure 47. These steps
are the same for binary, continuous and multivariate treatments although the details
of each step may differ. We first discuss the steps for binary treatments in Section 5.1,
then continuous treatments in Section 5.2 and finally multivariate treatments in Section 5.3.

Figure 4: Flow of PSMs.

5.1 Binary treatments

5.1.1 Notation

First assume we have a binary treatment variable Ti ∈ {0, 1}, where Ti = 1 if an individual
i has been exposed to any form of advertising or the number of exposures exceed a certain
threshold. Each individual i has two potential outcomes:

Y ∗0i = Xiβ0 + ε0i, for Ti = 0, (1)

Y ∗1i = Xiβ1 + ε1i, for Ti = 1, (2)

where Xi is a 1 x C vector containing personal characteristics and TV viewing behaviour, βt
is a C x 1 vector of unknown parameters and εti is the unexplained difference for individual
i in t ∈ {0, 1}. These equations describe the relationship between the variables of interest
in the possible states treatment and non-treatment separately.

Furthermore, we define the treatment variable Ti as follows:

Ti =

{
1, if T ∗i > 0,

0, if T ∗i ≤ 0.
(3)

where T ∗i is the selection equation that describes the assignment of treatment. This is
also dependent on personal characteristics and TV viewing behaviour Zi, but this set is

7The relevant subsections for each step are indicated in parentheses.
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possibly different from Xi:

T ∗i = Ziθ + εT i.

The observed outcome Yi is typically defined as follows:

Yi =

{
Y ∗0i, if Ti = 0,

Y ∗1i, if Ti = 1.
(4)

This model can be thought of as Rubin’s potential outcome model or the switching regression
model. Note, Y0 and Y1 are both partially observed, T ∗ is latent and T is known. However,
in a marketing setting we often encounter limited-dependent variables. In this thesis we
have a binary outcome variable Y , hence the observed outcome defined in Equation (4) is
replaced by8:

Yi =


Y0i = 1, if Y ∗0i > 0,

Y1i = 1, if Y ∗1i > 0,

Y0i = 0, if Y ∗0i ≤ 0,

Y1i = 0, if Y ∗1i ≤ 0.

(5)

We assume the observed data (Yi, Xi, Zi Ti) for i = 1, ..., N is an i.i.d. sample from the
target population of interest. We assume there is a random selection of individuals, that is
representative given the sample weights ri. However, we do not expect a random allocation
of treatments to individuals.

5.1.2 Causal quantities of interest

Intuitively, the treatment effect is the difference for each individual i between the outcome
under treatment (T = 1) and non-treatment (T = 0). Hence, the individual gain from
treatment is Y1i − Y0i. However, we cannot observe both Y0i and Y1i. Therefore, the
individual treatment effect is not identified. As an alternative, we look at different
treatment parameters. Two of the most common treatment parameters are the average
treatment effect (ATE):

τATE = E[Y1 − Y0] = E[Y1]− E[Y0],

and the average treatment effect on the treated (ATT):

τATT = E[Y1 − Y0|T = 1] = E[Y1|T = 1]− E[Y0|T = 1].

It is interesting to look at both, because a simple comparison of individuals with and
without treatment (as measured in ATE) might give a misleading estimate of the treatment
effect. The ATT computes the effect on individuals who are exposed to treatment, whereas
the ATE estimates the effect of exposure on a randomly selected individual. In practice,
we can only observe the observed average treatment effect (OTE):

τOTE = E[Y |T = 1]− E[Y |T = 0] = E[Y1|T = 1]− E[Y0|T = 0].

The sample analogues of the ATE and ATT respectively are:

τATE =
1

N

[ N1∑
i=1

(Y1i − Y0i|Ti = 1) +

N0∑
i=1

(Y1i − Y0i|Ti = 0)

]
,

τATT =
1

N1

N1∑
i=1

(Y1i − Y0i|Ti = 1),

8Note we either observe Y ∗
0i (for Ti = 0) or Y ∗

0i (for Ti = 1), but never both.
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where N1 and N0 are the number of individuals with T = 1 and T = 0 respectively
(N = N1 +N0). As the counterfactuals Y0|T = 1 and Y1|T = 0 cannot be observed, the
treatment parameters are not identified without further assumptions. We know that:

• τATE = τOTE if E[Y1|T = 1] = E[Y1|T = 0] and E[Y0|T = 0] = E[Y0|T = 1],

• τATT = τOTE if E[Y0|T = 0] = E[Y0|T = 1].

Hence, for the ATT to be identified we only need to assume there is no difference in the
average outcome between treatment and non-treatment group if they are not treated. For
the ATE we need the extra assumption that there is also no difference in the average
outcome between treatment and non-treatment group if they are treated. However, these
assumptions are unlikely to hold for observational studies due to a lack of randomization that
is usually present in experimental settings. Hence, we need to estimate the counterfactuals
given certain identifying assumptions we are willing to make. We know the ATT is equal
to the ATE if there is no selection bias.

5.1.3 Identification

PSMs estimate the counterfactuals and correct the bias in treatment effects by comparing
outcomes between individuals who are as similar as possible. To establish this we use
the propensity score πi, defined as the probability of receiving treatment given observed
covariates:

πi = Pr(Ti = 1|Zi) = E[Ti|Zi]. (6)

Hereby, we make the following assumptions:

1. Conditional independence (unconfoundedness): ((Y0i, Y1i)) ⊥ Ti|Zi. In words, the
potential outcomes are independent of treatment assignment conditional on the ob-
served covariates. This states there is no hidden bias due to unmeasured confounders.
If this assumption holds, then also ((Y0i, Y1i)) ⊥ Ti|πi. Furthermore, exposure to
treatment is random for a given propensity score Ti ⊥ Zi|πi.

2. Common support (overlap): 0 < Pr(Ti = 1|Zi) < 1. In words, this assumption states
there should be a positive probability of treatment and non-treatment given the
observed covariates for each individual.

3. Stable unit treatment value assumption (SUTVA): we assume an individual is not
affected by the treatment other individuals receive and that treatments do not differ
between individuals.

Rosenbaum and Rubin (1983) show that if these assumptions hold (i.e. treatment assign-
ment is ignorable), one can obtain unbiased estimates of the treatment parameters. PSMs
can only reduce selection bias due to observed confounding variables. It corrects unbal-
ance in covariates and bias due to lack of overlap between treatment and non-treatment
group (Heckman, Ichimura, Smith, & Todd, 1998). In practice, propensity scores are
often unknown and must be estimated. However, it turns out using estimates of the
propensity score can reduce the introduced efficiency loss (Rosenbaum, 1987; Rubin &
Thomas, 1996; Hirano, Imbens, & Ridder, 2003). An intuitive explanation for this is that
the true propensity score only adjusts for the systematic differences, whereas the estimated
propensity score can correct for random sample differences too.
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Given unconfoundedness, ATE and ATT are identified as this implies E[Yt|Z] = E[Yt|T =
t, Z] = E[Y |T = t, Z] for t ∈ {0, 1}. Although the assumption of unconfoundedness is
strong, this assumption also underlies conventional regression analysis (i.e. exogeneity).
Using PSMs, however, has the advantage that treatment effects can be estimated with
smaller models (less parameters) and linearity assumptions do not need to be made.

5.1.4 Treatment assignment model

To estimate the propensity score πi, we model the observed treatment Ti given the covari-
ates Zi. When doing this, we have to make two important choices: (1) which variables to
include in the model and (2) which model is used for estimation.

Regarding variable selection there are three things to keep in mind (Caliendo & Kopeinig,
2008). First, the selected variables should make it credible that the assumption of uncon-
foundedness holds. Second, only variables influencing both the treatment assignment and
the outcome should be included. Third, variables should be measured before treatment
assignment. In practice, there are many possible sets of variables that can be included
in the propensity score model. One can use economic theory, previous empirical findings
or formal (statistical) tests to make the decision. We base the initial choice of variables
on domain knowledge. As initial set of variables we use the outcome regressors that were
measured before treatment assignment. However, in practice searching for an appropriate
treatment assignment model specification is a repeated process of checking covariate balance
(for definition, see Section 5.1.6) and adjusting the model. To improve the model, we
consider adding/removing variables and including higher order covariates or interactions
for covariates that are out of balance (Zanutto et al., 2005).

There is also a lot of choice in models to use for estimation. We investigate the following
models to estimate the binary propensity score and compare their results9:

1. Logistic regression
The most common way to estimate propensity scores in the binary setting is using a
logistic regression. Hence, this is the first estimation method examined in this thesis:

logit(πi) = ln(
πi

1− πi
) = ln(

Pr(Ti = 1|Zi)
1− Pr(Ti = 1|Zi)

) = Ziθ.

Logistic regression is part of a larger family of generalized linear models. We use
the svyglm package in R, which is especially designed for sampling weights and
obtain θ̂ by iteratively re-weighted least squares (Lumley, 2019). We then use this
result to compute:

π̂i = Pr(Ti = 1|Zi) =
exp(Ziθ̂)

1 + exp(Ziθ̂)
=

1

1 + exp(Ziθ̂)−1
.

2. Boosting
In practice, any standard probability model can be used to estimate propensity scores.
Other popular alternatives in the literature are non-parametric methods such as
generalized boosted models (GBM) (McCaffrey, Ridgeway, & Morral, 2004). A big
advantage of these methods is that there is no need to specify possible interactions
or polynomial terms among covariates as for parametric methods. This is often

9We include the sample weights ri as weights in each of the treatment assignment models.
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problematic as no standard procedures exist to do this. Instead, nonlinearities are
automatically captured by GBM as they rely on many simple regression trees. More-
over, this method can work well with a large number of predictors. The performance
of machine learning techniques to estimate propensity scores has been investigated
by B. K. Lee, Lessler, and Stuart (2010). They find that boosted CART is most
promising in comparison to other methods.

We implement this using the gbm package in R (Greenwell, Boehmke, & Cunning-
ham, 2019). More specifically, we follow the recommendations of McCaffrey et al.
(2004) for the tuning parameters. They suggest a maximum tree complexity of 4
(interaction.depth), a small shrinkage parameter or learning rate (0.0005) to ensure a
smooth fit and subsampling 50% of the data in each iteration (bag.fraction). We use
a binomial distribution. Furthermore, we choose a sufficient initial number of trees
(n.trees = 3000) and optimize over the resulting GBM to find the number of trees for
which the total covariate imbalance is lowest. We define total covariate imbalance
as the average absolute standardized mean difference of all covariates (see Section
5.1.6).

3. CBPS
Finally, several improved methods have been suggested to automate the repeated
process of trying different models and checking for covariate balance (Imai & Ratkovic,
2014; Hainmueller, 2012; Graham, de Xavier Pinto, & Egel, 2012; Tan, 2010). We
investigate the covariate balancing propensity score (CBPS) of Imai and Ratkovic
(2014) as it also extended to continuous treatments by Fong et al. (2018). This
method directly optimizes the resulting balance in covariates instead of focusing on
the accuracy of predicting treatment assignment. Thereby, it increases the robustness
to misspecification of the propensity score model (Fong et al., 2018). It does so using
generalized method of moments (GMM) estimation with moment conditions based
on the covariate balance from maximum likelihood.

We follow the over-identified case presented by Imai and Ratkovic (2014), combining
the covariate balancing conditions with score conditions. The covariate balancing
conditions are operationalized using inverse propensity score weighting. These
moment conditions, for ATE and ATT respectively, are:

E

[
TiZ̃i
πi
− (1− Ti)Z̃i

1− πi

]
= 0,

E

[
TiZ̃i −

πi(1− Ti)Z̃i
1− πi

]
= 0,

where Z̃i = f(Zi) is a function specified by the researcher. Furthermore, the score
condition (obtained from maximum likelihood of the logistic regression model10) is:

E

[
Tiπ
′
i

πi
− (1− Ti)π′i

1− πi

]
= 0.

So we use f(Zi) = π′i = ∂πi
∂θ , thereby placing greater emphasis on observations with

more predictive power (Imai & Ratkovic, 2014). Possible alternative specifications

10θ̂ = arg maxθ
∑N
i=1 Ti log(πi) + (1− Ti) log(1− πi), where πi = exp(Ziθ)

1+exp(Ziθ)
.
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of f(Zi) are proposed by Fan, Imai, Liu, Ning, and Yang (2016), but will not be
investigated in this thesis.

The sample mean of the moment conditions is thus:

g(T,Z) =
1

N

N∑
i=1

g(Ti, Zi),where g(Ti, Zi) =

(
s(Ti, Zi)
w(Ti, Zi)

)
,

s(Ti, Zi) =
Tiπ
′
i

πi
− (1− Ti)π′i

1− πi
,

w(Ti, Zi) =
TiZ̃i
πi
− (1− Ti)Z̃i

1− πi
for ATE and

w(Ti, Zi) =
N

N1

(
TiZ̃i −

πi(1− Ti)Z̃i
1− πi

)
for ATT.

Hence, we can estimate θ̂ as follows:

θ̂ = min g(T,Z)TΣ(T,Z)−1g(T,Z),

where g(T,Z) is as defined above and Σ(T,Z)−1 is computed using two step feasible
GMM. We implement this using the CBPS package in R and compute π̂ as (Fong,
Ratkovic, Imai, & Hazlett, 2019):

π̂i =
1

1 + exp(Ziθ̂)−1
.

5.1.5 Response model

There are also many methods available to model the response given the treatment. The
most common techniques are: matching (Rosenbaum & Rubin, 1985), subclassification
or stratification (Rosenbaum & Rubin, 1984), weighting (Rosenbaum, 1987; Hirano et al.,
2003), regression or combinations of these. We focus on weighting methods for binary
treatments. Firstly, because weighting includes all individuals in the analysis, which is not
the case for matching. Secondly, it has the advantage that it can be combined with any
statistical technique that accepts weights. The idea is to give weights to individuals in the
observed sample in such a way that the groups become similar. We investigate inverse
probability of treatment weighting methods, originally proposed by Horvitz and Thompson
(1952). We now discuss (1) how to define the weights, (2) which outcome model is used for
estimation and (3) which variables to include in the model.

The inverse probability of treatment weight is defined as follows for ATE and ATT:

wATE,i =
Ti
π̂i

+
1− Ti
1− π̂i

=
Ti − π̂i
π̂i(1− π̂i)

, (7)

wATT,i = Ti + (1− Ti)
π̂i

1− π̂i
=
Ti − π̂i
1− π̂i

. (8)

In words, we assign the weight 1
π̂i

for those who receive treatment and 1
1−π̂i for those who

do not receive treatment for ATE. Similarly, we assign the weights 1 and π̂i
1−π̂i for ATT.

Hence, individuals who are in the treatment group and are very likely to receive treatment
get less weight than individuals who have a lower probability of receiving treatment. This
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way the propensity score corrects for over- and under-sampled individuals in the treatment
and control group.

Next, we multiply the obtained weight with the sample weight ri to ensure representativeness
of the sample (Ridgeway et al., 2015). Finally, we normalize wATE,i and wATT,i so that
the average weight in the treatment and control group equals one (Hirano & Imbens, 2001).
This is comparable to the situation without using balancing weights and results in the
following weights:

wTE,i = Ti
ri · wTE,i ·N1∑N
i,Ti=1 ri · wTE,i

+ (1− Ti)
ri · wTE,i ·N0∑N
i,Ti=0 ri · wTE,i

for TE ∈ {ATE,ATT}, (9)

where N1 and N0 are the number of individuals with T = 1 and T = 0 respectively
(N = N1 +N0).

An appropriate outcome model should be selected based on the nature of the dependent
variable (Austin, 2018). As we have a binary dependent variable Y , we use a logit model
to model the response in this thesis:

Yi = Λ(Xiβ + Tiγ), (10)

where Λ(.) is the logistic distribution function, Yi is the observed outcome, Xi is a 1 x C
vector containing personal characteristics and TV viewing behaviour, β is a C x 1 vector
of unknown parameters, γ is the effect of interest, εi is the unexplained difference for
individual i. However, we also explore two estimation methods with a more general model
specification (see IPW and AIPW in Section 5.1.7). Furthermore, we base the decision of
which variables to include in the response model on domain knowledge (see Section 4). We
include all variables in a linear form.

5.1.6 Diagnostics

Now we describe various model diagnostics to assess the performance of the treatment
assignment model. This can be used to determine the quality of the final treatment
assignment model and to determine if the model needs to be improved.

Propensity scores
First of all, we check the size of the propensity scores. Very small or large values of the
propensity score lead to very large or small weights. Larger weights can lead to a larger
standard error as one individual in the sample can affect the parameter estimates a lot.
Propensity score values close to zero or one can cause problems for weighting methods.
These values are often trimmed or truncated based on (low) quantiles of the distribution of
the propensity scores (Austin & Stuart, 2015). We investigate the histogram of propensity
scores and truncate these extreme values to reduce the variance of the estimates. As a
threshold we choose to use the 2.5% and 97.5% percentiles of the propensity score.

Covariate balance
Next, we check if the treatment assignment model is adequately specified. There are
two common ways to assess if the propensity score model performs well: evaluating the
prediction of treatment assignment (e.g hit or miss, leave-one-out cross-validation) or
assessing the covariate balance between the control and treatment group. As the ultimate
goal of the treatment assignment model is to balance the covariates, we will focus on the
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latter.

Comparing the similarity of the control and treatment group starts with a comparison
of the means. The standardized mean difference (SMD) is a good measure to assess the
balance in the marginal distributions of covariates (Caliendo & Kopeinig, 2008). For
continuous variables this is defined as (Rosenbaum & Rubin, 1985):

SMDj =
X̄1j − X̄0j√

s21j+s
2
0j

2

,

where X̄1j and X̄0j are the weighted sample mean and s1j and s0j the weighted sample
variance of continuous covariate j in the treatment (T = 1) and control (T = 0) group
respectively.

Similarly, for binary variables (Austin, 2011):

SMDj =
X̄1j − X̄0j√

X̄1j(1−X̄1j)+X̄0j(1−X̄0j)
2

,

where X̄1j and X̄0j are the weighted sample mean (or prevalance) of covariate j in the
treatment (T = 1) and control (T = 0) group respectively. Categorical variables can be
transformed to a set of binary variables to calculate the SMD.

We weigh the observations using the weights as defined in Equation (9) (Austin & Stuart,
2015). Hence, we present separate balance diagnostics for ATE and ATT. We compare this
with the initial imbalance, which we obtain by using only the sample weight ri. As the
SMD is standardized, we can compare variables of different scales. Differences of less than
0.1 are considered negligible (Austin, 2011), hence covariate j is balanced if |SMDj | < 0.1.

Furthermore, we define total covariate imbalance as 1
C

∑C
j=1 |SMDj |.

Common support
A final step before estimating the treatment parameters is to check the region of common
support. We do so by investigating the density distribution of the control and treatment
group and by comparing the range (i.e. minima, maxima) of propensity scores for both
groups (Caliendo & Kopeinig, 2008). If there is no overlap in distributions, there is no
common support. If there are relatively few individuals in a certain part of the interval,
this is called thin common support. Propensity score values close to zero or one are
near violations of the common support assumption. There are several ways to deal with
common support problems. The simplest would be to exclude observations that fall outside
the common interval, however this can lead to a large data reduction. Furthermore, the
estimated effect is not valid anymore for the entire population, but only for the remaining
sub-sample. For other possible solutions we refer to the overview given by Lechner and
Strittmatter (2014). In this thesis, we investigate the degree to which common support
problems are present and take this into account when interpreting the results.

5.1.7 Treatment effects

As for the treatment assignment model, there are also many different methods to estimate
the treatment effects. To estimate the effects of interest, ATE and ATT, we choose to
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examine inverse propensity weighting (IPW), weighted least squares (WLS) and the aug-
mented IPW (AIPW). Each of these methods will now be discussed in more detail.

Inverse propensity weighting
First, consider a well-known estimator that simply reweights the observations to make
them representative of the population of interest. This gives an unbiased estimate of the
treatment effect as:

E

[
TY

π̂

]
= E

[
E

[
TY

π̂

∣∣∣∣Z]] = E

[
E

[
TY1

π̂

∣∣∣∣Z]] (using Y = TY1 + (1− T )Y0)

= E

[
E[T |Z]E[Y1|Z]

π̂

]
(by unconfoundedness)

= E[E[Y1|Z]] = E[Y1].

Similarly, E[ (1−T )Y
1−π̂ ] = E[Y0].

Hirano and Imbens (2001) propose to normalize the inverse probability weights of Horvitz
and Thompson (1952) and use this to estimate the treatment effect directly. Incorporating
the sample weights ri, we obtain the following expressions to estimate ATE and ATT:

τ̂ATE,IPW =
N∑
i=1

riTiYi
π̂i

( N∑
i=1

riTi
π̂i

)−1

−
N∑
i=1

ri(1− Ti)Yi
1− π̂i

( N∑
i=1

ri(1− Ti)
1− π̂i

)−1

,

τ̂ATT,IPW =
N∑
i=1

riTiYi

( N∑
i=1

riTi

)−1

−
N∑
i=1

ri(1− Ti)Yi
π̂i

1− π̂i

( N∑
i=1

ri(1− Ti)π̂i
1− π̂i

)−1

.

Using the weights wATE,i and wATT,i derived in Section 5.1.5, we can alternatively write
these estimators as:

τ̂ATE,IPW =
1

N1

N∑
i=1

wATE,iTiYi −
1

N0

N∑
i=1

wATE,i(1− Ti)Yi,

τ̂ATT,IPW =
1

N1

N∑
i=1

wATT,iTiYi −
1

N0

N∑
i=1

wATT,i(1− Ti)Yi.

Weighted least squares
Here, we combine weighting and regression adjustment by weighted coefficients. The idea
is to use weights to put more importance on certain observations based on the propensity
scores. If we only include T as covariate in a (linear) weighted regression (regressing Y on
T ), this is the same as the IPW estimator. However, WLS gives the possibility to include
additional covariates in the model to adjust for.

We thus specify a model for Y . As a result, this approach gives consistent estimates if either
the treatment assignment model or the response model is correctly specified (Kang, Schafer,
et al., 2007). In the literature, this is commonly referred to as double robustness. We
add the propensity score and outcome variables that are out-of-balance after applying the
treatment assignment model as covariates to the response model. We estimate a logit model
using weights ŵTE for τ̂TE,WLS to find parameter estimates β̂TE , γ̂TE for TE ∈ {ATE,ATT}.
We then estimate the marginal effects as follows:

τ̂TE,WLS =
∂Y

∂T
= γ̂TE · λ(Xβ̂TE + T γ̂TE) ≈ γ̂TE ·

1

N

N∑
i=1

λ(Xiβ̂TE + Tiγ̂TE),
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where λ(.) is the probability density function for the logistic distribution.

Augmented inverse propensity weighting
Another robust estimator is AIPW (Robins, Rotnitzky, & Zhao, 1994). Here, the original
IPW estimator is augmented using two regression estimators. The AIPW estimator is
also double robust (Scharfstein, Rotnitzky, & Robins, 1999). However, contrary to WLS,
the outcome regression model is only used for prediction. This allows for more flexible
modelling. The original AIPW estimator is defined as:

τ̂ATE,AIPW =
1

N

N∑
i=1

TiYi
π̂i
− Ti − π̂i

π̂i
µ̂(1, Xi)−

1

N

N∑
i=1

(1− Ti)Yi
1− π̂i

+
Ti − π̂i
1− π̂i

µ̂(0, Xi) =

1

N

N∑
i=1

µ̂(1, Xi) +
Ti(Yi − µ̂(1, Xi))

π̂i
− 1

N

N∑
i=1

µ̂(0, Xi) +
(1− Ti)(Yi − µ̂(0, Xi))

1− π̂i
.

We adjust this to incorporate the sample weights ri and estimate:

τ̂TE,AIPW =
1

N

N∑
i=1

µ̂(1, Xi) + TiwTE,i(Yi − µ̂(1, Xi))−

1

N

N∑
i=1

µ̂(0, Xi) + (1− Ti)wTE,i(Yi − µ̂(0, Xi)),

where µ̂(t,Xi) = E[Yi|Ti = t,Xi] = Xiβ̂ is the regression of the outcome on the covariates
in group t ∈ {0, 1} for TE ∈ {ATE,ATT}. The two response models are again estimated using
a logit model. We do not explore more flexible modelling in this thesis, but refer to Glynn
and Quinn (2010) for an application using generalized additive models (GAM).

5.1.8 Standard errors

As we need to incorporate the uncertainty resulting from the estimated propensity scores,
naive standard errors are not valid. A common and general way to deal with this problem is
to use bootstrapping to estimate the distribution of the treatment parameter (Caliendo &
Kopeinig, 2008; Austin, 2016). However, for some cases we can also derive robust approxi-
mate sampling variances. As these analytical expressions do not include sample weights, we
use a bootstrap variance estimator here. We verify the accuracy of the bootstrap variance
estimator for the case without sample weights using the empirical sandwich estimator.

Bootstrap variance estimator
To incorporate uncertainty over the choice of weights, one can estimate the standard errors
using bootstrapping where the results are re-estimated B times. The B obtained treatment
effect parameters approximate the sampling distribution and can be used to approximate
the standard error. In particular, we repeat the following procedure B times:

1. Resample the original data with replacement to obtain a bootstrap sample b of size
N .

2. For each bootstrap sample b estimate the treatment effects τ̂ATE and τ̂ATT as outlined
in Section 5.1.4-5.1.7.
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Next, compute the standard errors as follows:

SE(τ̂) =

√√√√ 1

B − 1

B∑
b=1

(τ̂b − τ̄)2,

where τ̄ = 1
B

∑B
b=1 τ̂b. We use B = 25 iterations for computational feasibility, but advice

to use more iterations for better accuracy.

Empirical sandwich estimator
Assuming πi is correctly specified, the approximate sampling variances for the above
treatment estimators can also be approximated via the empirical sandwich method. We
compute the robust standard errors for the ATE using IPW and AIPW with logistic
regression as treatment assignment model. For this, we look at the weighted estimators as
a set of estimating equations and apply the theory of M-estimation (Lunceford & Davidian,
2004). Lunceford and Davidian (2004) present the following approximate sampling variances
for propensity score models of the form πi = Pr(Ti = 1|Zi) = (1 + exp(Ziθ)

−1)−1:

V (τ̂ATE,IPW ) =
1

N2

N∑
i=1

Î2
IPW,i,

ÎIPW,i =
Ti(Yi − µ̂1,IPW )

π̂i
−

(1− Ti)(Yi − µ̂0,IPW )

1− π̂i
− (Ti − π̂i)ĤT

θ Ê
−1
θ,θZ

T
i ,

Ĥθ =
1

N

N∑
i=1

(
Ti(Yi − µ̂1,IPW )(1− π̂i)

π̂i
−

(1− Ti)(Yi − µ̂0,IPW )π̂i
1− π̂i

)
ZTi ,

Êθ,θ =
1

N

N∑
i=1

π̂i(1− π̂i)ZTi Zi,

µ̂1,IPW =
N∑
i=1

TiYi
π̂i

( N∑
i=1

Ti
π̂i

)−1

and µ̂0,IPW =
N∑
i=1

(1− Ti)Yi
1− π̂i

( N∑
i=1

1− Ti
1− π̂i

)−1

.

V (τ̂ATE,AIPW ) =
1

N2

N∑
i=1

Î2
AIPW,i,

ÎAIPW,i =
TiYi
π̂i
− Ti − π̂i

π̂i
µ̂(1, Xi)−

(1− Ti)Yi
1− π̂i

+
Ti − π̂i
1− π̂i

µ̂(0, Xi)− τ̂ATE,AIPW .

Here, µ̂(t,Xi) = E[Yi|Ti = t,Xi] = Xiβ̂ is the regression of the outcome on the covariates
in group t ∈ {0, 1}.

5.1.9 Sensitivity analysis

Finally, we want to assess the assumption of unconfoundedness (no unmeasured con-
founders). As hidden bias cannot be estimated, Rosenbaum (2002) recommends testing this
by measuring the sensitivity of the results to potential unmeasured confounders. Hidden
bias is present if individuals with the same baseline covariates have different odds of
treatment. Although Rosenbaum’s approach is developed for matching, it can be used to
give an indication of the presence of hidden bias in our analysis.
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In short, the idea is to assume there is an unobserved covariate ui and analyse if we obtain
the same results when the odds increase. We assume a logit model πi = Λ(Ziθ + uiη)
(where Λ(.) is the logistic distribution function) and evaluate the results for different values
of η. Rosenbaum (2002) proved this gives the following bounds on the odds ratio:

1

Γ
≤ πj/(1− πj)
πk/(1− πk)

≤ Γ,

where Γ = exp(η), π is the probability of treatment and π/(1− π) the odds of receiving
treatment for individuals j and k (j 6= k).

Now, suppose we know the results obtained remain unchanged for Γ∗. Then, we can
interpret Γ∗ as the factor by which an unobserved confounder should change the odds
before it impacts the estimated results. Thus the higher Γ∗, the more resistant is the
treatment effect to hidden bias. In social sciences, Γ∗ is usually around 1.2. We examine Γ
with an upper bound of 6 and increments of 0.1. We construct a simple matching and use
the rbounds package in R for the sensitivity analysis (Keele, 2015).

5.2 Continuous treatments

5.2.1 Notation

Now we assume we have a continuous treatment variable Ti ∈ ζ, where ζ = [0, Ti,max] as
treatment exposures are non-negative. Strictly speaking Ti is the number of exposures
to any form of advertising, but we interpret it as the intensity of exposure (or dose) and
assume the variable can take on the full continuum of values. We revise the notation and
definitions introduced for binary treatments in Section 5.1.1. Instead of Equations (1)-(2)
each individual i now has infinitely many potential outcomes:

Y ∗di = Xiβd + εdi, for d ∈ ζ. (11)

Furthermore, we replace Equation (3) and define the treatment variable Ti as:

Ti = Ziθ + εTi. (12)

The observed outcome Yi becomes (instead of Equation (5)):

Yi =

{
Ydi = 1, if Y ∗di > 0,

Ydi = 0, if Y ∗di ≤ 0.
(13)

As for binary treatments, we assume the observed data (Yi, Xi, Zi, Ti) for i = 1, ..., N is
an i.i.d. sample from the target population of interest. However, we do not expect that
the treatment intensity (or dose) is randomly assigned.

5.2.2 Causal quantities of interest

Ideally, one would like to know the response of an individual i to each specific treatment
dose d, resulting in the function Yi(d). However, we only observe the outcome Ydi for
one randomly chosen treatment dose Ti = d. Hence, an individual dose-response function
is not identified. As an alternative, we estimate the ATE τATE and look at the average
dose-response function (ADRF):

µ(d) = E[Yi(d)] for d ∈ ζ.
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This function gives the mean response for the population for a certain treatment dose d.
This is not the same as µ(d) = E[Yi(d)|Ti = d], which is done by conventional regression
analysis. Once we have the ADRF µ(d), we can measure the total response in the pop-
ulation for a certain treatment dose. Moreover, one can examine the effect of a change
in treatment dose, for example the difference between µ(d1) for Ti = d1 to µ(d2) for Ti = d2.

In addition to the ADRF, we investigate its counterpart, the treated dose-response function
(TDRF). This function, indicated by τ(d), gives the mean response for individuals that
received a certain treatment dose d. This is comparable to ATE versus ATT in the binary
case. We define both dose-response functions as the conditional expectation of treatment
dose d minus the base level of receiving no treatment. This is done to enable an easy
interpretation.

5.2.3 Identification

In the literature for multi-valued treatments, the traditional definition of the propensity
score no longer holds. Different generalizations of the binary propensity score are possible.
In the early literature on generalized treatments, Imbens (2000) suggests computing a
propensity score for each level of a categorical treatment variable, which results in different
propensity scores for each dose level. Joffe and Rosenbaum (1999) consider propensity
scores with doses of treatment and compute a single scalar propensity score instead. This
subtle difference leads to two methods that generalize propensity scores:

• First, the propensity function (PF) is defined as the conditional density11 of treatment
given covariates (Imai & Van Dyk, 2004). We assume there exists a unique finite
dimensional parameter πi(Zi) such that e(Ti|Zi) only depends on Zi through πi(Zi),
so e(Ti|Zi) equals e(Ti|πi).

• Second, the generalized propensity score (GPS) is equal to the treatment assignment
model density function evaluated at the observed treatment variable and covariate
for a particular individual (Hirano & Imbens, 2004). Hence, the GPS is defined as
the probability to receive a certain dose of treatment d given observed covariates:

πi(d, Zi) = r(d, Zi) = Pr(Ti = d|Zi) = fT |Z(d|Zi).

Both methods are analogues to the propensity score in the binary case. A downside of
the GPS is that propensity scores for different doses are different functions of covariates.
Therefore, interpretation when comparing individuals with similar propensity scores but
different doses is lacking. This makes the choice of response models more restricted for
this method (e.g. subclassification is not possible). However, an advantage is that GPS is
transformed to a probability scale (bounded between 0 and 1). Therefore, interpretation
is more similar to the binary case and it can be used in combination with weighting methods.

We now revise two assumptions from Section 5.1.3:

1. Conditional independence (unconfoundedness): Yi ⊥ Ti|Zi given Ti = d for all d ∈ ζ.
In words, the potential outcomes are independent of treatment assignment conditional
on the observed covariates given treatment dose d. This states there is no hidden
bias due to unmeasured confounders. If this assumption holds, then also Yi ⊥ Ti|πi.
Furthermore, exposure to treatment is random for a given propensity score Ti ⊥ Zi|πi.

11This is not a real probability, as the propensity function is not necessarily bounded between 0 and 1.
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2. Positivity (common support): Pr(Ti = d|Zi) > 0 for all d ∈ ζ. In words, this
assumption states that each individual i has a non-zero probability of receiving each
treatment dose d given the observed covariates.

Assumption [3.] Stable unit treatment value assumption remains the same.

5.2.4 Treatment assignment model

As in the case of binary treatments, we begin by modelling the observed treatment Ti
given the covariates Zi. Variable selection is similar as the binary case, but we use different
models for estimation. We investigate the following models to estimate the continuous
propensity score and compare their results12:

1. Linear regression
For continuous treatments, a common way to estimate the propensity score is by
modelling the distribution of the treatment given covariates as normal density function
(Imai & Van Dyk, 2004). We can then simply estimate the parameters θ̂ of a linear
regression propensity score model using OLS:

Ti = Ziθ + εT i.

Although this might not be the most suitable model for our data as the treatment
variable Ti is far from normal, we include it as a comparison and investigate its
performance as propensity score model.

2. Poisson regression
However, as treatment is defined as the number of exposures here, we strictly speaking
have count data. Count data are typically modelled using a Poisson linear regression.
Therefore, we suggest using a Poisson regression as treatment assignment model:

log(Ti) = Ziθ + εTi.

We implement this using the svyglm package in R (Lumley, 2019).

3. Boosting
Alternatively, we can also use a non-parametric method such as gradient boosting in
the continuous case (Zhu, Coffman, & Ghosh, 2015). Similarly to the binary case, we
implement gradient boosting using the gbm package in R and optimize over the
resulting GBM to find the number or trees for which the total covariate imbalance is
lowest (Greenwell et al., 2019). We define total covariate imbalance as the average
absolute standardized mean difference of all covariates over the different strata (see
Section 5.2.6). We use a Poisson distribution with the same tuning parameters as
before.

4. CBGPS
Similarly, we use the CBGPS as in binary treatment case. This method has been
generalized to continuous treatments by Fong et al. (2018) (CBGPS). CBGPS
minimizes the correlation between the treatment variable T and covariates Z. It does
so using generalized method of moments (GMM) estimation with moment conditions.
Fong et al. (2018) developed a parametric and non-parametric method, where the
latter does not require a correct model specification. Although advantageous, we use

12We include the sample weights ri as weights in each of the treatment assignment models.
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the parametric method due to the large computational cost of the non-parametric
method. However, this method might suffer from numerical instability. We implement
this using the CBPS package in R (Fong et al., 2019).

The fitted treatment model gives us the uniquely defined PF π̂i(Zi) for each of the above
methods. To compute the GPS π̂i(Ti, Zi) we need the probability density function of
the treatment variable. For the methods assuming the treatment variable Ti is normally
distributed, we can use the normal density function to do this:

π̂i(Ti, Zi) =
1√

2πσ̂2
exp

(
− ε̂i

2σ̂2

)
,

where ε̂i = Ti − Ziθ̂ and σ̂2 are estimated by a propensity score model. This is used to
compute the GPS for the Linear regression and CBGPS method. Assuming the treatment
variable Ti is Poisson distributed, as for the Poisson regression and Boosting method, we
get:

π̂i(Ti, Zi) =
e−ψ̂ψ̂Ti

Ti!
,

where ψ̂ = eZiθ̂.

5.2.5 Response model

Details for the response model are similar to the binary case in terms of the variable selection
and the outcome model used (see Section 5.1.5). However, the weights are computed
slightly different for ATE. We use the approach of Robins, Hernan, and Brumback (2000)
who propose to use stabilized weights:

wATE,i =
Pr(Ti = d)

πi(d, Zi)
=

f(Ti)

f(Ti|Zi)
.

Here, the numerator Pr(Ti = d), the marginal density function of Ti, is included as
stabilizing factor. This is necessary when Ti is continuous to avoid that some individuals
get extremely large weights. A reasonable choice is often (Austin, 2018):

f(Ti) =
1√

2πσ2
exp

(
− 1

2σ2
(Ti − µ)

)
,

where µ and σ are the mean and variance of the treatment variable in the overall sample.
However, if the normal assumption does not hold we should use another (possibly non-
parametric) method to estimate f(Ti) (Zhu et al., 2015). Hence, we use Kernel density
estimation to estimate f(Ti). We choose the bandwidth using Silverman’s rule of thumb,
Gaussian smoothing kernels and restrict the estimation such that there is no density below
zero (treatment exposures are strictly positive).

We again multiply the obtained weight with the sample weight ri to ensure representative-
ness of the sample (Ridgeway et al., 2015). We then normalize the obtained weights as in
the binary case, but now make the average weight one over the full sample:

wATE,i =
ri · wATE,i ·N∑N
i=1 ri · wATE,i

.
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5.2.6 Diagnostics

We also use similar model diagnostics to assess the performance of the treatment assignment
model as in the binary treatment case, but adapt these slightly to the continuous setting.

Propensity scores
As before, create histograms of the propensity scores to check the size of the values and
truncate extreme values to reduce the variance of the estimates. As a threshold we again use
the 2.5% and 97.5% percentiles of the propensity score. We do this for both the PF and GPS.

Covariate balance
For binary treatment variables one can compare the balance of covariates in the treatment
and control group before and after weighting. For continuous treatment variables this is
more difficult. We assess the balance following the approach of Austin (2018). In short,
the idea is to make groups and check the balance by comparing the SMD in a group with
the other groups. To assess the covariate balance for the GPS, we take the following steps:

1. Split the treatment variable T in K strata S1, ... SK and compute the median of the
treatment variable in each stratum t1, ... tK . We use the median as the treatment
variable is a count variable.

Now, for each stratum k ∈ 1, ...,K:

2. Evaluate the GPS at the median tk for the entire sample and use this to construct
five quantiles.

3. Now define an indicator quantifying if the treatment variable Ti of individual i is in
stratum k.

4. Compute the SMD as defined in Section 5.1.6 between individuals i in stratum k
versus not in stratum k using the indicator for each of the five quantiles. This results
in SMDk

1 , ..., SMDk
5 .

5. Take the average of the absolute values of SMDk
1 , ...,SMDk

5 to get SMDk.

Compare this with the initial imbalance, which we obtain by comparing the SMD between
individuals i in stratum k versus not in stratum k without incorporating GPS. We do not
have to perform balance checks for PF and GPS separately as they both use the same
propensity score models (Zhao, van Dyk, & Imai, 2018). Furthermore, we define total
covariate imbalance as 1

C
1
K

∑C
j=1

∑K
k=1 |SMDk

j |.

Common support
Kluve et al. (2012) propose to use a similar tactic to assess the common support assumption
as the covariate balance. Hence, we follow steps [1.]-[3.] as before and use the split between
individuals i in stratum k versus not in stratum k to compare the overlap in distributions
in a similar way as for binary treatments.

5.2.7 Treatment effects

Again there are many different methods to estimate the treatment effects. To estimate
the effects of interest, ATE, ADRF and TDRF, we choose to use weighted least squares
(WLS), subclassification (SC) and the smooth coefficient model (SCM). We use a weighting
method for consistency with the binary treatment case. However, we also investigate
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subclassification as it can be used to model multivariate treatments. The smooth coefficient
model is an extension of subclassification. We compare the double robust version of these
methods, including the outcome variables, to the case excluding additional covariates. Each
of these methods will now be discussed in more detail.

Weighted least squares
Once we obtained the stabilized weights ŵATE , we can estimate the causal effect using
weighted least squares (Robins et al., 2000; Austin, 2018). As in the binary case, WLS
gives the possibility to include additional covariates in the model, thereby specifying a
model for Y . We add the GPS π̂i(d, Zi) and outcome variables that are out-of-balance
after applying the treatment assignment model as covariates to the response model (the
latter only in double robust case). We estimate the marginal effects as follows:

τ̂ATE,WLS =
∂Y

∂T
= γ̂ · λ(Xβ̂ + T γ̂) ≈ γ̂ · 1

N

N∑
i=1

λ(Xiβ̂ + Tiγ̂),

where λ(.) is the probability density function for the logistic distribution and β̂, γ̂ are
estimated using ŵATE in the logit model. We estimate the ADRF µ̂WLS(d) by averaging
the response over all individuals conditional on the (recalculated) GPS for each treatment
level d. For the TDRF τ̂WLS(d) we average the response over all individuals that received
treatment level d.

Subclassification
We can approximate the causal effect by making subclasses based on the propensity score
π̂i(Zi) (Imai & Van Dyk, 2004). The goal of making forming classes is that the baseline
covariates in the treatment and control group are similar within each class, hence we use
the PF instead of the GPS (not uniquely parameterized). Within each subclass, where
individuals have similar propensity scores, we can then adequately estimate the effect of T
on Y using the desired outcome model.

We subsequently compute the τ̂ATE,SC by a weighted sum of marginal effects with the
relative proportion of observations that fall within each subclass. Additionally, we can
include available covariates in the within-subclass model. We estimate a logit model and
include the sample weights ri as weights in the model (see Equation (10)). We use five
equally sized subclasses, as this is suggested as a good strategy removing most of the
initial imbalance by Zanutto et al. (2005). To compute the ADRF µ̂SC(d) we average the
response of all individuals over all subclasses. For the TDRF τ̂SC(d) we do the same, but
restrict to individuals that received treatment level d.

Smooth coeffficient model
Although estimating the effect of T on Y separately in each subclass is robust, it can be
sensitive to the method of subclassification. Instead of making subclasses, we can allow
this effect to vary as a function of π̂i(Zi) resulting in a SCM (Imai & Van Dyk, 2004). We
fit this model using splines, flexible piece-wise functions constructed from polynomials.
More specifically:

E[Yi|Ti, π̂i(Zi)] = f(π̂i(Zi)) + g(π̂i(Zi))Ti,

where we use penalized cubic regression splines with dimension five for f(.) and g(.) like
Zhao et al. (2018). We obtain the ATE by averaging over the obtained individual treatment
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effects, τ̂ATE,SCM =
∑N

i=1 ĝ(π̂i(Zi)).

For the ADRF µ̂SCM (d), we use the robust estimation method proposed by Zhao et al.
(2018):

E[Y (d)] = E[E[Y (d)|π̂i(Zi)]] = E[E[Y (T )|π̂i(Zi), T = d],

where we estimate:

E[Y (T )|π̂i(Zi), T = d] = h(π̂i(Zi), T ),

where h(.) is a smooth function of π̂i(Zi) and T . We construct h(.) using a tensor product
and again use penalized cubic regression splines with dimension five. Then, we compute:

µ̂SCM (d) =
1

N

N∑
i=1

ĥ(π̂i(Zi), d)− ĥ(π̂i(Zi), 0).

For the TDRF τ̂SC(d) we do the same, but restrict to individuals that received treatment
level d. We model both using bam of the mgcv package in R (Wood, 2019). This
function can fit GAMs to large datasets. We use the alternative fitting approach, because
of the increased computation speed due to parallelization (discrete = TRUE).

5.2.8 Standard errors

As for binary treatments, we need to incorporate the uncertainty resulting from estimating
the propensity scores in the first stage. Therefore, the standard errors arising from the
second stage estimation are not valid. We again use a bootstrap variance estimator as
explained in Section 5.1.8 to compute the standard errors for the ATE, ADRF and TDRF.

5.3 Multivariate treatments

5.3.1 Notation

Now we assume we have multiple treatments Ti = {T1i, T2i, ..., TMi}. A case often
considered in the literature is the case of choosing among a set of different treatments. This
can be considered the categorical treatment case, where one receives one of the respective
treatments. In this thesis, we allow individual i to receive multiple treatments, each with
a certain intensity of exposure (or dose). This is called multivariate treatments. All
treatment exposures are non-negative, ζm = [0, Tmi,max]. We extend the notation and
definitions introduced for continuous treatments in Section 5.2.1. Instead of Equation (11)
each individual i now has infinitely many potential outcomes for each treatment m:

Y ∗d1,...,dM i
= Xiβd1,...,dM + εd1,...,dM i, for d1 ∈ ζ1, ..., dM ∈ ζM . (14)

Furthermore, we replace Equation (12) and define the treatment variable Tmi for m =
1, ...,M as:

Tmi = Ziθm + εTmi. (15)

The observed outcome Yi becomes (instead of Equation (13)):

Yi =

{
Yd1,...,dM i = 1, if Y ∗d1,...,dM i

> 0,

Yd1,...,dM i = 0, if Y ∗d1,...,dM i
≤ 0.

(16)

As for binary and continuous treatments, we assume the observed data (Yi, Xi, Zi, Ti) for
i = 1, ..., N is an i.i.d. sample from the target population of interest. However, we do not
expect that the treatment intensity (or dose) across the treatments is randomly assigned.
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5.3.2 Univariate to multivariate

Now we extend the methodology from the case of univariate treatments to multivariate
treatments. We do not discuss all separate subsections presented for binary and continu-
ous treatments, but only the differences with continuous treatments (see Section 5.2.2-5.2.6).

Although PSMs are generalized to incorporate categorical, ordinal and continuous treat-
ments, the analysis of multivariate treatments is uncommon in the literature. There is one
exception, Imai and Van Dyk (2004) present a method to estimate the ATE for bivariate
treatments based on subclassification. We are interested to estimate the causal effects
for a low dimensional multivariate treatment variable, possibly larger than M = 2. We
follow a similar approach, but extend it to compute the ADRF and TDRF. Furthermore,
we investigate the use of a smooth coefficient model instead of only subclassification. We
investigate additive treatment effects here. A combination of different treatments can
potentially lead to smaller or larger treatment effects than the summed stand-alone effects,
but we do not consider (possible) interaction effects in this thesis.

To model the observed treatment Tmi for m = 1, ...,M given the covariates Zi, we use
the treatment assignment models for the continuous propensity score presented in Section
5.2.4. Hence, for each treatment m we obtain a propensity score model π̂mi, which results
in M independent models. Although different estimation methods can be used for each of
the M treatment assignment models, we restrict to the case where we use the same model
for all treatments here.

Following the flow of PSMs, we subsequently check diagnostics. As we obtained a treatment
assignment model for each treatment m, we can directly use the diagnostics described in
Section 5.2.6. Hence, we assess the size of propensity scores, covariate balance and common
support for each treatment separately. Details for the response model are again similar as
for the binary and continuous case (see Section 5.1.5).

5.3.3 Treatment effects

To estimate the effects of interest, ATE, ADRF and TDRF, we again choose to use sub-
classification (SC) and the smooth coefficient model (SCM). We propose the SCM for
multivariate treatments for similar reasons as in the continuous treatment case. Due to
the increased computation time for double robust methods, we limit ourselves to the case
excluding additional covariates for multivariate treatments. We now discuss both methods
for multivariate treatments.

Subclassification
As for continuous treatments, we make subclasses based on the propensity score π̂i(Zi).
However, instead of subclassifying on a one-dimensional variable, we use a low-dimensional
variable. To avoid that subclasses become to small, we split the propensity score of each
treatment in three equally sized subclasses. For M = 2 this results in 3-by-3 grid of
treatment assignment models. In addition, we check if the size of each individual subclass
is at least 100 invididuals. If this is not the case, we combine the subclass with the smallest
subclass that is closest to the subclass (i.e. horizontal or vertical neighbouring subclass
in grid). If there is still no variation in Y after these changes for a specific subclass, we
assume the treatment effect for those individuals equals zero. This may happen for the
lowest propensity score segments. We compute the ADRF µ̂SC,m(d) and TDRF τ̂SC,m(d)
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per treatment m as in the continuous case (see Section 5.2.7).

Smooth coefficient model
Again, we can allow this effect to vary as a function of π̂mi(Zi) resulting in a SCM (Imai
& Van Dyk, 2004). Hence, we propose to fit the following model using splines, flexible
piece-wise functions constructed from polynomials. More specifically:

E[Yi|Ti, π̂i(Zi)] = f(π̂1i(Zi), ..., π̂Mi(Zi)) +
M∑
m=1

gm(π̂1i(Zi), ..., π̂Mi(Zi))Tmi,

where we choose to use a slightly less flexible function and opt for splines of dimension
three for f(.) and gm(.). Then we define τ̂ATE,SCM,m =

∑N
i=1 ĝm(π̂1i(Zi), ..., π̂Mi(Zi)).

For the ADRF µ̂SCM,m(d), we extend the robust estimation method proposed by Zhao
et al. (2018) to multivariate treatments:

E[Y (d)] = E[E[Y (d)|π̂1i(Zi), ..., π̂Mi(Zi)]] =

E[E[Y (T )|π̂1i(Zi), ..., π̂Mi(Zi), T1i = d1, ..., TMi = dM ],

Hence, we estimate:

E[Y (T )|π̂i(Zi), T = d] =

M∑
m=1

hm(π̂1i(Zi), ..., π̂Mi(Zi), Tm),

where hm(.) is a smooth function of π̂i(Zi) for m = 1, ...,M and Tm. Then, we compute:

µ̂SCM,m(d) =
1

N

N∑
i=1

ĥm(π̂1i(Zi), ..., π̂Mi(Zi), d)− ĥm(π̂1i(Zi), ..., π̂Mi(Zi), 0).

Again, we choose to use splines of dimension three. For the TDRF τ̂SCM,m(d) we do the
same, but restrict to individuals that received treatment level d. We again model using the
mgcv package in R (Wood, 2019).

5.3.4 Standard errors

We again use a bootstrap variance estimator as explained in Section 5.1.8 to compute the
standard errors for the ATE, ADRF and TDRF.
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6 Results

6.1 Binary treatments

6.1.1 Diagnostics

In this section we examine the performance of the different treatment assignment models
for binary treatments (Logistic regression, Boosting and CBPS ). In particular, we examine
1) the size of the propensity scores, 2) the covariate balance and 3) the common support
assumption.

Propensity scores
First, we analyse the size of the propensity scores. We observe some very small and large
values of the propensity score for all treatment assignment models, which is undesirable as
weighting methods are sensitive to these extreme values. Therefore, we chose to truncate
these values. The histograms of the propensity scores before and after truncation are
included in Appendix 9.5.1. Here, we summarize the results in Table 2.

Table 2: Descriptive statistics propensity scores binary treatment variables.

Any exposure Exposures > 2

Min Max Mean Min Max Mean

Logistic regression (GLM) 0.0178 0.9718 0.2774 0.0020 0.7559 0.0936
Boosting (GBM) 0.0138 0.9158 0.2765 0.0042 0.7045 0.0929

CBPS
0.0344/
0.0297

0.9547/
0.9360

0.2891/
0.2763

0.0047/
0.0025

0.7265/
0.6997

0.1004/
0.0919

The minimum, maximum and mean of the propensity scores after truncation are re-
ported. For CBPS the propensity scores for ATE/ATT are reported respectively.

We predict many values close to zero. This is clear from the histograms, but also because
the minimum value of the propensity scores after truncation is still small (especially for
Exposures > 2 ). Boosting has especially many values close to zero, as can be seen from the
high peak in the histograms. This can be due to the relatively good prediction performance
of this method. However, we do not want a treatment assignment model that perfectly
predicts treatment as this results in an unequal spread of propensity scores. The resulting
probabilities preferably cover the entire range from zero to one. If this is the case, the
sample contains a diverse set of individuals. Logistic regression and CBPS result in
probabilities with a more equal spread over the interval, especially in the lower part of
the interval (0 - 0.2). This spread is better for Any exposure than Exposures > 2, as the
proportion of individuals receiving treatment versus non-treatment is more balanced for
this treatment variable.

Moreover, it is good to notice the relatively low maximum propensity score for Exposures > 2 .
This is the direct result of the choice of truncation level combined with the fact that there
are relatively few individuals in the treatment group for this treatment variable (N = 2379).
These individuals, who have higher probabilities (on average), are relatively few compared
to the trimming level. This leads to a relatively large decrease.
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Covariate balance
The goal of the treatment assignment model is to balance the covariates important for the
response model. In Figures 5 and 6, we present the covariate balance for the two binary
treatment variables Any exposure and Exposures > 2. The figures show the SMD (on the
y-axis) for each of the covariates included in the outcome model (on the x-axis) for ATE and
ATT respectively. The different lines belong to the different treatment assignment models.
We first examine the initial imbalance, without applying a balancing propensity score.
This is shown by the red line. We notice the SMD of general viewing behaviour variables
is usually larger in absolute terms than that of sociodemographics, which means baseline
viewing behaviour differs more between the treatment and non-treatment group than other
variables. Furthermore, we know variables with a negative SMD are overrepresented in the
non-treatment group. This is for example the case for the zero groups of Genre, Primetime
on channel, Cross/Off channel and Same time TV, which is as expected a priori. Similarly,
we see a large positive SMD for the high quantile group of these variables, implying we
observe larger values for these variables in the treatment group.

Balance ATE. Balance ATT.

Figure 5: Covariate balance for binary treatment variable (a) Any exposure measured by
SMD. The dotted line indicates |SMD| = 0.1.

Using the initially proposed variable selection for the treatment assignment model, we
find that the total covariate balance improved for all methods. All variables that were
initially out-of-balance are more in balance and many variables have negligible differences
(|SMD| < 0.1) between the treatment and non-treatment group. However, the extend to
which the balance improved differs for the two binary treatment variables (a, b) and causal
effects of interest (ATE, ATT). To summarize the covariate balance, we present the total
covariate imbalance metric in Table 3.
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Balance ATE. Balance ATT.

Figure 6: Covariate balance for binary treatment variable (b) Exposure > 2 measured by
SMD. The dotted line indicates |SMD| = 0.1.

Table 3: Total covariate imbalance binary treatment variables.

Any exposure Exposures > 2

ATE ATT ATE ATT

Logistic regression (GLM) 0.0954 0.0855 0.2200 0.0294
Boosting (GBM) 0.1421 0.0516 0.2332 0.0360
CBPS 0.1508 0.0487 0.2425 0.0365

The initial imbalances are 0.3694 and 0.3995.

We see the balance is generally better for ATT than for ATE after weighting. This is the
case for all examined treatment assignment models and both binary treatment variables.
Furthermore, the balance of ATE is much better for Any exposure than for Exposures > 2 .
However, this is not true for ATT. A possible reason for this is that the proportion of
treated versus non-treated individuals is more problematic for ATE and the fact that the
methods perform worse if the balance of treated versus non-treated deteriorates. Although
the methods still perform reasonably, the results for Exposures > 2 suggest balancing for a
treatment variable that much less than 10% of the sample is exposed to is difficult.

Several attempts to further improve the balance of out-of-balance covariates did not lead
to noticeable improvements. Given the selection of variables for the response model, we
aim to find an appropriate treatment assignment model to balance these covariates. We
first opted to include only the most influential outcome regressors that were measured
before treatment assignment. We determined this by a simple OLS regression using signifi-
cance level < 0.1. Next, we tried adding interaction terms (e.g. between Total TV and
On/Cross/Off channel), but this mainly resulted in more multicollinearity problems. This
approach is probably more lucrative if the model does not solely contain binary esplanatory
variables. Furthermore, to avoid that the result would be influenced by variables that
did not matter, we also tried to include only variables that where out-of-balance initially
(|SMD| > 0.25). As these changes in the treatment assignment model did not significantly
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improve the balance, we decided to stick to the (simple) initial variable selection.

Finally, we compare the achieved covariate balance of the different treatment assignment
models. The differences for this set of treatment and outcome variables are not very
large and all methods perform quite well. However, from experimenting with other sets
of variables, we have seen the performance is sensitive to the variables included in the
model. We find Logistic regression performs significantly worse when adding/removing
variables, while the performance of Boosting and CBPS remains unchanged. Also, if there
are continuous explanatory variables included in the model, Boosting or CBPS usually
performs best in terms of covariate balance. Because CBPS has a better spread of values
than Boosting (as earlier concluded), we prefer to rely on CBPS as treatment assignment
model for binary treatments here.

Common support
Finally, to estimate a population treatment effect it is important that there is sufficient
overlap (common support) between the treatment and non-treatment group. Histograms of
the propensity scores of individuals in the treatment and non-treatment group are included
in Appendix 9.5.1. We find that the minima and maxima of the propensity scores are
similar for both groups. However, the propensity scores are on average (much) lower for
the non-treatment group than for the treatment group. This is especially the case for
the non-treatment group of Exposures > 2. Moreover, the estimated treatment effect
for Exposures > 2 is limited to the region 0-0.7. Based on the graphs, we conclude the
common support assumption is sufficiently satisfied as similar individuals are observed in
the treatment and non-treatment group. However, we do note the support is relatively
thin.

6.1.2 Treatment effects

In this section we present and discuss the estimated treatment effects using inverse propen-
sity weighting (IPW), weighted least squares (WLS) and the augmented IPW (AIPW).
We first discuss the results for Any exposure and then Exposures > 2. After, we discuss
the performance of the bootstrap variance estimator and investigate the robustness of the
results to the assumption of unconfoundedness.

In Table 4 we present the estimated causal effects of Any exposure. The range of estimates
for ATE and ATT are 0.005 - 0.038 and 0.006 - 0.024 respectively. This is quite a wide range
of estimates, but all methods estimate a positive treatment effect. The estimated effects
are, however, not significant for the majority of methods. IPW gives higher treatment
effect estimates than WLS and AIPW. This suggest the treatment assignment model might
not be correctly specified and correcting for additional covariates in the response model
is necessary (as done by WLS or AIPW). However, we also know AIPW is very sensitive
to weights, in particular it can underestimate the results if the support is thin (Glynn &
Quinn, 2010). In the previous section we already concluded this is the case and we indeed
find small treatment effects in comparison to the other methods. Therefore, we consider
the results obtained using WLS most trustworthy here. Taking into account we considered
CBPS the best treatment assignment model, we thus find an estimate of 0.7% and 0.5% for
ATE and ATT respectively. In general, we find that the estimates for ATE are larger than
(or equal) to ATT, but the difference is not significant. The estimated standard errors are
similar in size for the methods, but somewhat larger for ATT than for ATE.

38



Table 4: Causal effects of binary treatment variable (a) Any exposure on tune-in AGT.

IPW WLS AIPW

ATE ATT ATE ATT ATE ATT

Logistic regression (GLM)
0.023∗

(0.008)
0.012
(0.016)

0.009∗

(0.003)
0.009∗

(0.004)
0.008
(0.006)

0.012
(0.009)

Boosting (GBM)
0.030∗

(0.006)
0.023∗

(0.011)
0.003
(0.004)

0.003
(0.004)

0.005
(0.006)

0.006
(0.007)

CBPS
0.038∗

(0.007)
0.024∗

(0.011)
0.007
(0.004)

0.005
(0.004)

0.008
(0.006)

0.009
(0.007)

Standard errors are given in parentheses, computed using bootstrap variance estima-
tor. Effects significant at 5% significance level are marked with (∗).

In Table 5 we present the estimated causal effects of Exposures > 2. The range of estimates
for ATE and ATT are 0.004 - 0.072 and 0.001 - 0.059 respectively. Hence, we have slightly
higher and wider estimates than for Any exposure, which is in line with our expectations.
Furthermore, the majority of methods now find significant positive coefficients (both for
ATE and ATT). Using the same reasoning as before, we choose to rely on the estimates
with CBPS as treatment assignment model and WLS as response model here. Hence, we
find a positive significant estimate of 1.0% and 1.2% for ATE and ATT respectively.

Table 5: Causal effects of binary treatment variable (b) Exposures > 2 on tune-in AGT.

IPW WLS AIPW

ATE ATT ATE ATT ATE ATT

Logistic regression (GLM)
0.056∗

(0.007)
0.056∗

(0.015)
0.010∗

(0.003)
0.014∗

(0.003)
0.005
(0.004)

0.002
(0.007)

Boosting (GBM)
0.050∗

(0.009)
0.057∗

(0.014)
0.005
(0.003)

0.009∗

(0.004)
0.004
(0.004)

0.001
(0.007)

CBPS
0.072∗

(0.007)
0.059
(0.014)

0.010∗

0.003)
0.012∗

(0.003)
0.005
(0.004)

0.001
(0.006)

Standard errors are given in parentheses, computed using bootstrap variance estima-
tor. Effects significant at 5% significance level are marked with (∗).

To conclude, we find a significant positive ATE and ATT when an individual is exposed to
advertisements at least three times (Exposures > 2 ). However, we do not find an effect
different from zero when we define treatment as being exposed at least once (Any exposure).
The methods give a wide range of estimates, but consistently positive. The size of the
effect can be a topic of debate, but we conclude that the advertising campaign as a whole
has had a small positive impact on the probability of tune-in of AGT.

Now, we compare the standard errors obtained using bootstrapping with the empirical
sandwich estimator. The results are shown in Table 6. The relative size of the standard
errors is the same for both estimation approaches. Furthermore, despite the relatively
small number of bootstrap replications (B = 25), the errors obtained using the bootstrap
sandwich error are very similar to the empirical sandwich estimator. We expect this to
converge even further for a higher number of iterations B. This provides confidence in the
accurateness of the bootstrap errors presented in this thesis and we argue bootstrap errors
are a good alternative to the empirical sandwich estimator.
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Table 6: Comparison standard errors using bootstrap and empirical sandwich
estimator.

Bootstrap standard error Sandwich standard error

Any exposure IPW 6.659 x 10−3 6.155 x 10−3

AIPW 4.807 x 10−3 5.841 x 10−3

Exposures > 2 IPW 1.174 x 10−2 6.771 x 10−3

AIPW 5.693 x 10−3 6.073 x 10−3

Bootstrap standard errors are computed without sample weights ri for compa-
rability to sandwich standard errors.

Finally, we investigate how sensitive the results are to unmeasured confounders. Although
the described sensitivity analysis is developed for matching and cannot be used to prove
unmeasured confounders are not a problem in weighting methods, we argue we can use
it as an indicator of how large the problem of unobserved confounding is, as it is not a
property of the chosen methods but rather of the problem at hand.

In Table 7, we see the minimum value obtained is 1.4. This means the unobserved
confounders need to increase the odds at least 1.4 times for the results to change. All other
Γ∗ values are higher, meaning unobserved confounders need to bring across even more
change to influence the results. This suggests the assumption of unobserved confounding
is reasonable to make. Furthermore, we observe Any exposure is more robust to the
assumption of unmeasured confounders than Exposures > 2. We recommend further
research to investigate sensitivity analysis for weighting methods to give stronger evidence
for the correctness of this assumption.

Table 7: Robustness to unconfoundedness assumption.

Any exposure Exposures > 2

Logistic regression (GLM) 2.0 1.4
Boosting (GBM) 2.0 1.5
CBPS 2.0 1.4

This table contains the Γ∗ values for which the treatment
effect becomes insignificant (significance level 0.05).

6.2 Continuous treatments

6.2.1 Diagnostics

Next, we examine the performance of the different treatment assignment models for continu-
ous treatments (Linear regression, Poisson regression, Boosting and CBGPS ). In particular,
we examine 1) the size of the propensity scores, 2) the covariate balance and 3) the common
support assumption.

Propensity scores
We again investigate the propensity scores before and after truncation. The histograms
are included in Appendix 9.5.2 and the summarized results are presented in Table 8. We
note there is much more difference between treatment assignment models for continuous
treatments. The range of the propensity scores, as well as the mean, differ substantially
between methods. The range of estimated GPS is really small for the two methods based
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on the normal distribution (Linear regression and CBGPS ). This makes sense, as our
treatment variable is far from normally distributed. The Poisson regression and Boosting
are thus more appropriate to model the treatment variable. Hence, despite the popularity
of the Linear regression we see it is important to look at the distribution of the treatment
variable at hand. Finally, we see the distribution of the Poisson regression is much less
skewed than the distribution obtained by Boosting. The propensity scores obtained by the
Poisson regression span the entire range from zero to one.

Table 8: Descriptive statistics GPS continuous treatment
variable.

Number of exposures

Min Max Mean

Linear regression (Normal) 0.0162 0.2599 0.2234
Poisson regression (Poisson) 0.0084 0.9534 0.6211
Boosting 0.0039 0.7792 0.5744
CBGPS 0.1211 0.1631 0.1588

The minimum, maximum and mean of the GPS after
truncation are reported.

Covariate balance
Now, we examine the covariate balance for continuous treatments. The lowest stratum
(k = 1) contains individuals with zero exposures, the middle stratum (k = 2) contains
individuals with one exposure and the high stratum (k = 3) contains individuals with more
than one exposure. The comparison group are all remaining individuals not in stratum k.
We show the covariate balance for the continuous treatment variable in each of the strata in
Figure 7. First, we look at the initial imbalance and note it is lowest in the middle stratum.
We observe similar patterns in the initially imbalanced variables compared to the binary
case. In particular we find initial imbalance in the zero groups of Genre, Primetime on chan-
nel, Off channel and Same time TV, but also in the high group of On channel and Total TV.

The total covariate balance improved for all methods in the low/high stratum, except for
CBGPS. We find that CBGPS generally performs poorly and that it sometimes suffers
from numerical instability. This is related to, but not due to, the chosen variable selection
as this is also the case for other variable selections. CBGPS is thus very sensitive to model
specification. For this reason, we do not recommend using this as treatment assignment
model here despite its promising appearance. The non-parametric version of CBGPS
might be worth investigating to overcome this problem. However, we do not investigate
this further as the method is too computationally expensive. Furthermore, we observe
Boosting is the only method that can improve the relatively good initial balance in the
middle stratum. To further compare the methods, we look at the total covariate imbalance
metric per stratum in Table 9.
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Balance stratum low (k = 1). Balance stratum middle (k = 2).

Balance stratum high (k = 3).

Figure 7: Covariate balance for continuous treatment variable Number of exposures mea-
sured by SMD. The dotted line indicates SMD = 0.1.
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Table 9: Total covariate imbalance continuous treatment
variable.

k = 1 k = 2 k = 3

Linear regression (Normal) 0.2117 0.2349 0.2387
Poisson regression (Poisson) 0.1561 0.2235 0.2243
Boosting 0.1453 0.1275 0.1796
CBGPS 0.3297 0.2507 0.3816

The initial imbalances are 0.3694, 0.2254 and 0.3767.

As in the binary treatment case, we tried to improve the balance of out-of-balance covariates
by using different sets of regressors. Although this was not beneficial for most methods,
the results presented for CBGPS in this section are obtained by adding only the most
influential outcome regressors that were measured before treatment assignment. For the
remaining methods we stick to the (simple) initial variable selection.

We conclude Boosting is the best method to achieve covariate balance for continuous
treatments in our dataset. This method achieves the lowest covariate imbalance for all
strata. It is followed in performance by the Poisson regression. This method mainly beats
the other methods in the low stratum, but still performs relatively well.

Common support
Finally, we examine the common support assumption. Histograms of the propensity scores
of individuals in a certain stratum versus not are included in Appendix 9.5.2. Note that
the interpretation of the propensity scores is different here than for the binary treatment
case. Loosely speaking, the GPS measures how likely an individual was to receive the
observed treatment dose. The common support assumption is more problematic here
than for binary treatments. It highly depends on the method, but also for the two best
covariate balancing methods (Poisson regression and Boosting) there is a quite a difference
in propensity scores in and out of stratum k. This should be taken into account when
interpreting the estimated treatment effects as it can bias the results. Common support
is even worse for Boosting than Poisson regression. Hence, we prefer to rely on Poisson
regression as treatment assignment model for continuous treatments here.

6.2.2 Treatment effects

In this section we present and discuss the estimated treatment effects using weighted
least squares (WLS), subclassification (SC) and the smooth coefficient model (SCM). We
compare the double robust version of these methods (DR) to the case excluding additional
covariates (not DR). We first discuss the results for ATE. After, we present the ADRF and
TDRF using the Poisson regression as treatment assignment model.

In Table 10 we present the estimated causal effects of Number of exposures. The range of
estimates for ATE is -0.003 - 0.009. These effect sizes are fairly small, but one should keep
in mind this is the estimated change in probability per treatment unit and an individual
can receive more than one unit. Hence, it cannot be compared to the estimates of the
binary treatment case. The majority of the effects obtained using non-double robust
estimation methods have significant positive coefficients. There is one exception, the
Poisson regression gives a significant negative coefficient for WLS. However, we see that
depending on the treatment assignment model, WLS results in both positive and negative
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treatment effects for Number of exposures. These contradictory estimates might be the
result of a too restrictive model that badly describes the underlying dynamics. In constrast
to the other methods, WLS only estimates a single coefficient for the treatment variable.
SC and the SCM are more flexible and allow this (and other coefficients) to be different
for different levels of propensity scores. We observe the estimated effects for SC and SCM
are smaller in general, but more conclusive (all positive).

The effects obtained using double robust estimation are somewhat smaller. As these
added covariates influence the estimated treatment effect and using our knowledge that
the covariates are not perfectly balanced after the treatment assignment model, we believe
the double robust results are more thrustworthy. Moreover, based on the diagnostics
discussed in the previous section, we prefer the Poisson regression as treatment assignment
model. Taking into account that the SCM is a generalization of SC and this method can
be sensitive to the number of subclasses, we choose to rely on the results of the former.
This suggests a positive significant ATE of 0.1% for Number of exposures.

Table 10: Causal effects of continuous treatment variable Number of exposures on tune-in
AGT.

Not double robust Double robust

WLS SC SCM WLS SC SCM

Linear regression (Normal)
0.002∗

(0.001)
0.003∗

(0.000)
0.002∗

(0.000)
0.002∗

(0.001)
0.001
(0.001)

0.001
(0.001)

Poisson regression (Poisson)
-0.003∗

(0.001)
0.003∗

(0.000)
0.001∗

(0.000)
-0.001
(0.002)

0.001
(0.001)

0.001∗

(0.000)

Boosting
-0.001
(0.000)

0.002
(0.001)

0.001∗

(0.000)
-0.003
(0.002)

0.000
(0.006)

0.001
(0.000)

CBGPS
0.009∗

(0.002)
0.003∗

(0.000)
0.003∗

(0.000)
0.005∗

(0.001)
0.001
(0.001)

0.001
(0.000)

The values represent the estimated ATE. Standard errors are given in parentheses,
computed using bootstrap variance estimator. Effects significant at 5% significance
level are marked with (∗).

Next, we look at the dose-response functions depicted in Figure 8. The curves can directly
be interpreted as the change in the probability of tune-in (on the y-axis) due to treatment
dose d (on the x-axis) compared to receiving no treatment. The obtained dose-response
functions differ quite a lot between the methods. The ADRF is higher than the TDRF
for WLS and SC. This is also the case for the SCM for low treatment values (where we
have most observations). This means the that additional exposures to advertising are
less influential for individuals who are exposed to treatment than for a random selected
individual in the population. Furthermore, we see a small increase in the ADRF followed
by a stagnation or (weak) decrease. Hence, the effectiveness of additional treatment units
decreases at some point (or even has negative impact). Both WLS and SCM show small
significant increases in the ADRF for low treatment values. SC shows large significant
increases for high treatment values. The results for the TDRF are inconclusive between
the methods (both decreasing and increasing trends visible). This is also clear from the
estimates for ATE. Like for the ATE, the effect sizes are smaller for the double robust
curves. The curves for Boosting are presented in Appendix 9.5.2, but are very similar to
the Poisson regression.
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WLS (not DR). SC (not DR). SCM (not DR).

WLS (DR). SC (DR). SCM (DR).

Figure 8: Dose-response functions for continuous treatment variable Number of exposures
on tune-in AGT using Poisson regression. The error bars represent the 95% confidence
interval of the curves. The error bars are cut off if the endings fall outside the figure.

To conclude, we find a positive significant ATE when an individual is exposed to an
additional treatment unit. The dose-response functions show additional exposures to
advertising are most beneficial for randomly selected individuals in the population. This
provides the insight that the effectiveness of the marketing campaign can be increased
by targeting a slightly different group of people, as advertising is more effective for them.
Furthermore, we can learn until when additional exposures are beneficial from the shape of
the curves. Together with the current number of exposures for individuals, we then know if
we should focus more on the reach (more individuals with some exposures) or the frequency
(more exposures per individual). The ADRF curve shows the added value lies mainly in the
first number of exposures. This provides the insight that we should focus on increasing the
reach of the marketing campaign to increase the effectiveness of the marketing campaign.

6.3 Multivariate treatments

6.3.1 Diagnostics

Here, we examine the performance of the different treatment assignment models for mul-
tivariate treatments (Linear regression, Poisson regression, Boosting and CBGPS ). For
each of the separate treatment variables, we find that the findings for 1) the size of the
propensity scores, 2) the covariate balance and 3) the common support assumption are
similar to the continuous treatment case. Therefore, we present only the main findings for
multivariate treatments here.

First, we note that the propensity scores of all methods for the separate treatment variables
are quite unequally spread over the interval from zero to one. As in the continuous
treatment case, we find the propensity scores obtained by Poisson regression have the
most equal spread and least skewed distribution. Next, we summarize the total covariate
imbalance metric for multivariate treatment variables (a, b) in Table 11 and 12. The
covariate balance plots are included in Appendix 9.5.3. Based on the covariate balance,
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Boosting is the preferred method for all treatment variables followed by Poisson regression.
The difference in performance between the methods differs per treatment variable, but
Boosting always has a (slightly) lower covariate imbalance. Finally, we again find that the
common support assumption is problematic (little overlap). As before, it is slightly better
for Poisson regression than for Boosting. Hence, as for continuous treatments, we choose
to rely on Poisson regression as treatment assignment model for multivariate treatments
here.

Table 11: Total covariate imbalance multivariate treatment variable (a) based
on time.

Prior to last week Last week Premier day

Linear regression (Normal) 0.2417 0.2403 0.2320
Poisson regression (Poisson) 0.1895 0.1979 0.2150
Boosting 0.1550 0.1741 0.2034
CBGPS 0.3069 0.2835 0.3402

The initial imbalances are 0.3332, 0.3212 and 0.3278. The values in the table
are the average of the total covariate imbalance in the different strata (K =
3).

Table 12: Total covariate imbalance multivariate treatment
variable (b) based on channel.

On channel Other channels

Linear regression (Normal) 0.2751 0.2925
Poisson regression (Poisson) 0.2317 0.2542
Boosting 0.1517 0.2180
CBGPS 0.3512 0.3262

The initial imbalances are 0.3475 and 0.3238. The values in
the table are the average of the total covariate imbalance in
the different strata (K = 2).

6.3.2 Treatment effects

In this section we present and discuss the estimated treatment effects using subclassification
(SC) and the smooth coefficient model (SCM). We show the results of the non-double
robust version of these methods here due to the increased computation time of the methods
when adding additional covariates in a multivariate treatment setting. We first discuss the
results for ATE. After, we present the ADRF and TDRF using the Poisson regression as
treatment assignment model.

First, we investigate the influence of the recency of advertisements by considering advertising
at different points in time as multiple treatments. In Table 13 we present the estimated
causal effects of Prior to last week, Last week and Premier day. The ATE estimated using
the SCM is (close to) zero for all treatment variables. Using SC we find that the ATE of
Premier day is highest with 0.6%, followed by 0.2% for Last week and Prior to last week.
However, none of these estimated effects is significantly different from zero.
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Table 13: Causal effects of multivariate treatment variable (a) based on time on tune-in
AGT.

Prior to last week Last week Premier day

SC SCM SC SCM SC SCM

Poisson regression (Poisson)
0.002
(0.003)

0.000
(0.000)

0.002
(0.001)

0.000
(0.000)

0.006
(0.011)

0.000
(0.000)

Boosting
0.004
(0.002)

0.001
(0.000)

0.001
(0.001)

0.001
(0.000)

0.000
(0.008)

0.000
(0.001)

Standard errors are given in parentheses, computed using bootstrap variance estimator.
Effects significant at 5% significance level are marked with (∗).

The dose-response functions using SC and SCM for the different recencies are presented in
Figure 9. The figure shows the ADRF and TDRF for Prior to last week, Last week and
Premier day combined. We focus on this representation as it allows for a direct comparison
between treatments and present the curves per method including error bars in Appendix
9.5.3 (same as for continuous treatments). The dose-response functions for SC and SCM
differ just like the estimated ATE. The curves using the SC show an extremely large impact
for Premier day. The SCM, on the other hand, shows a negative impact for two exposures
of Premier day. Both findings are unrealistic and this is probably due to the fact that we
have very few individuals with this number of exposures in our dataset. Furthermore, SC
generally shows a higher potential (i.e. maximum change in probability of tune-in) than
SCM. For the low range of treatment values, with many observations, the SC and SCM do
give similar results.

If we use SC for multivariate treatments, we experience the problem of no variation in
treatment within subclasses. Hence, these individuals cannot be taken into account con-
structing the curves. This is not a problem in SCM. Hence, we consider the curves obtained
using SC less trustworthy than the curves obtained using SCM. We therefore choose to
focus on the results of the latter.

For low treatment exposures, we see that exposures on Premier day are most impactful,
followed by Last week and Prior to last week. For each of the treatment variables, the
TDRF is larger than the ADRF in this range. This is also the case for the curves estimated
using Boosting (included in Appendix 9.5.3). For high treatment exposures Prior to last
week results in the biggest increase in the probability of tune-in. Furthermore, we then
find the ADRF is larger than TDRF for Prior to last week and Last week.

47



SC (Poisson). SCM (Poisson).

Figure 9: Dose-response functions for multivariate treatment variable (a) Prior to last week,
Last week and Premier day on tune-in AGT. Note these figures have a different y-scale.

Now, we dive into the influence of the channel choice on the effectiveness of advertising.
In Table 14 we present the estimated causal effects of On channel and Other channels.
The estimated ATE are somewhat larger for Other channels than for On channel, but also
more uncertain. We find a positive significant ATE of 0.4% for On channel using SC. The
ATE of Other channels is 0.9% (not significant). The ATE estimated using the SCM are
0.1% and 0.0% for On channel and Other channels.

Table 14: Causal effects of multivariate treatment variable (b) based
on channel on tune-in AGT.

On channel Other channel

SC SCM SC SCM

Poisson regression (Poisson)
0.004∗

(0.002)
0.001
(0.000)

0.009
(0.024)

0.000
(0.000)

Boosting
0.004
(0.002)

0.002∗

(0.000)
0.011
(0.026)

0.000
(0.000)

Standard errors are given in parentheses, computed using bootstrap
variance estimator. Effects significant at 5% significance level are
marked with (∗).

The dose-response functions using SC and SCM for the different channel choices are
presented in Figure 10. We again focus on the curves obtained using SCM. We see Other
channels has mainly potential for low treatment intensities. For higher treatment values,
On channel has more impact on the probability of tune-in. Furthermore, the TDRF is
higher than ADRF for low treatment exposures of On channel, but lower for exposures
larger than four. The TDRF is always larger than ADRF for Other channels. The curves
estimated using Boosting are again included in Appendix 9.5.3. The SCM curves using
Boosting clearly show On channel has more effect than Other channels.
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SC (Poisson). SCM (Poisson).

Figure 10: Dose-response functions for multivariate treatment variable (b) On channel and
Other channels on tune-in AGT. Note these figures have a different y-scale.

To conclude, we find a positive significant ATE when an individual is exposed to an
additional treatment unit On channel. The remaining ATE were not significantly different
from zero. We find that the estimated curves differ, but predominantly in the range of
treatment values with relatively few observations. Regarding the influence of the recency
of advertisements, the estimates and curves suggest the exposures on Premier day are
most impactful, followed by Last week and Prior to last week for low treatment exposures.
Furthermore, the TDRF is higher than the ADRF for these treatment variables in this
range, which means the advertisements are especially effective for the targeted audience.
However, the order of ADRF and TDRF reverses for high treatment values. For the channel
choice, we find some exposures of Other channels can be effective, but On channel has a
much higher potential for higher number of exposures. The TDRF is again higher than
the ADRF for low treatment values, but ADRF is higher than TDRF for high exposures
of On channel.
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7 Discussion

This thesis examines the use of propensity score methods (PSM) to estimate causal ef-
fects for generalized treatments in a marketing context. When studying other practical
applications, we find researchers sometimes leave out crucial parts of information (e.g.
how variables are chosen, the form of the variables included, if trimming/truncation is
applied). We hope to contribute to future applications by giving a transparant application
of all relevant steps. Furthermore, we explore the boundaries of PSMs for generalized
treatments. In particular, we introduce a combination of dose-response functions (ADRF
and TDRF), investigate estimating treatment effects for a low dimensional multivariate
(instead of bivariate) treatment variable and extend the SCM to multivariate treatments.

In particular, we investigated the effect of different types of exposure to advertising on
tune-in for the season premiere of AGT. We find small treatment effects, depending on
the treatment variable(s) used. Additional exposures to advertising have a positive impact
on the probability of tune-in. Furthermore, the results suggest more recent advertise-
ments have a higher impact and advertisements on the same channel (NBC) are most
effective. Moreover, compared to the conventional regression-based approach we find
slightly smaller, but not substantially different estimated effects13. We argue, however,
that the PSMs presented in this thesis allow for a more transparent and open discussion
about the performance of the methods and consequently, the correctness of the causal claim.

We explore the use of many different methods and highlight their advantages and dis-
advantages. Taking into account the size of propensity scores, covariate balance and
common support, we conclude CBPS is preferred as treatment assignment model for binary
treatments and Poisson regression for continuous/multivariate treatments. Furthermore,
we find the treatment assignment model removed some, but not all, initial imbalance in
the sample. However, we emphasise we cannot draw any general conclusions based on
the performance of the treatment assignment models here. This will be dependent on the
particular problem instance. We subsequently use different response models to estimate
the desired causal effects. Hereby, using double robust methods is advisable, but it is still
no guarantee that the estimates will be correct. The investigated methods often result in
different findings. Although the results are conflicting on some aspects, the main findings
are similar and in line with expectations.

Furthermore, we find that some of the methods are very dependent on model specification.
Both the variable selection and the type of variables included have a large influence on the
estimation results in all steps of PSMs. Standard statistical variable selection algorithms
for treatment assignment models fail, because the objective of these methods is not to
optimize the covariate balance. To estimate causal effects, excellent domain knowledge is
therefore required. We need to know which factors influence the treatment and outcome
variables. This will allow the researcher to specify a better treatment assignment model,
resulting in estimates closer to the true treatment effects.

There are two important data limitations in this study when using PSMs. First of all, we
observe a low proportion of treated individuals in comparison to non-treated individuals.
This is typical for this problem setting, where we measure the exposures of individuals for

13The estimated results using conventional regression analysis and a short comparison to the results
obtained using PSMs can be found in Appendix 9.3.
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different types of advertising. Hence, this is a general problem related to applying these
methods to study promotion response. The large number of zeros makes treatment effect
estimation more difficult and the presented dose-response curves less reliable on higher
parts of the interval. For the methods to give reliable results, the proportion of treated
versus non-treated should not be too unbalanced and we need enough variation in the
non-zero exposures. Second, as mentioned earlier, variables included in the treatment as-
signment model should be measured before treatment assignment. However, in the current
dataset, the variables measuring general viewing behaviour are measured simultaneously
with treatment. Although these variables influence treatment assignment, it would be
better to use information from the period before. Now people who seldom watch TV are
never exposed to advertisements, whereas in fact one would like there to be a small chance.
This is something that should be taken into account when collecting the data and could
not be changed anymore for this study. However, this should be taken into account for
future applications.

Furthermore, there are some restrictions to the methods employed in this thesis. First,
PSMs only correct for selection bias based on observed confounders. Hence, it is important
that we believe the assumption of unconfoundedness holds. We use a very commonly used
method of sensitivity analysis to check this assumption, but this is not tailored to weighting
methods. Furthermore, it can only be used in the binary treatment case. Extending this
sensitivity analysis to make it more complete can add to the trustworthiness of the results.
Second, we only focus on marginal covariate balance and not on the balance of higher order
covariates. Ideally, one also considers joint distributions of variables as the entire covariate
distribution should be the same across treatment and non-treatment groups. The distribu-
tion of continuous covariates can for example be checked using quantile-quantile plots or
side-by-side empirical density plots. Third, we do not investigate the number of subclasses
for SC or the choice of dimension for the SCM. We do find that SCM is sensitive to the
choice of dimension, just like SC is sensitive to the number of subclasses. Examining the op-
timal number of subclasses and dimensions in this context is a topic for further investigation.

Finally, we have some recommendations for further research. First, we would like to en-
courage researchers to develop new methods and improve existing methods for generalized
treatments. More promising methods that are available for binary treatments, such as
entropy balancing of Hainmueller (2012), should be extended to continuous treatments.
Moreover, methods available for continuous treatments should be adapted to non-normal
distributions (e.g. CBGPS with Poisson distribution) and non-parametric methods should
be improved. Second, it should be investigated how treatment effects for high dimensional
multivariate treatment variables can be estimated using PSMs. The analysis presented in
this thesis only works for low dimensional multivariate treatment variables as there is a
limit to the number of subclasses (or dimensions) one can create. However, in practice
there is a large number of marketing channels and such a high dimensional strategy is
necessary. Third, as it is difficult to assess the validity of the causal claim, it is interesting
to investigate how simulation studies can help practical applications. If one can closely
resemble the real problem setting in a simulation (e.g. by generating the outcome variable
using the real explanatory variables and an artificial data generating process), this can
potentially be used as guidance to find out which estimates are closest to the true treatment
effects.
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To conclude, we encourage researchers in the marketing domain to use PSMs as a tool
to evaluate the effectiveness of marketing campaigns. Although methods for generalized
treatments still need to be developed further to be applicable to all problem settings, the
big advantage of PSMs is that the model checks are independent of the outcome variable.
Moreover, these checks are easy to interpret, which enables a more transparent and open
discussion of the results. For trustworthy estimates, we emphasise problem understanding
and the quality of the data is key.
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9 Appendix

9.1 Variable overview

Variable name Definition Type Influencing
outcome?

Influencing
treatment?

Dependent variable Tune-in Indicator if the number of minutes watched is at least
1 minute.

Binary - -

Sociodemographics Age groups Age in years for respondent: [18-27), [27-35), [35-43),
[43-49].

Categorical Yes Yes

Male Indicator if the respondent is male. Binary Yes Yes
Region Different regions in the U.S.: East Central, Northeast,

Pacific, Southeast, Southwest, West Central.
Categorical Yes Yes

Household size The size of the household of the respondent: 1-2
persons, 3-4 persons, 5 or more persons.

Categorical Yes Yes

Household income Income in dollars (x 1000). Categorical Yes Yes
High school Indicator if the education level of the respondent is

high school or less.
Binary Yes Yes

Race Ethnic group of respondent: black, white or other. Categorical Yes Yes
Spanish Indicator if respondent speaks some or more Spanish. Binary Yes Yes

General viewing behaviour Primetime on channel The proportion of time watching NBC during prime-
time.

Continuous Yes Yes

Primetime TV∗ The proportion of time watching TV during prime-
time.

Continuous Yes Yes

Weekdays TV∗ The proportion of time watching TV during week-
days.

Continuous Yes Yes

Genre The proportion of time watching the same genre as
AGT (participation variety).

Continuous

Inheritance TV Indicator if respondent watched TV during the 15
min before the show started.

Binary Yes No

On channel∗ The proportion of total time watching NBC. Continuous Yes Yes
Cross channel The proportion of total time watching cross channel. Continuous Yes Yes
Off channel The proportion of total time watching off channel. Continuous Yes Yes
Total TV∗ The proportion of total time watching TV. Continuous Yes Yes
Same time TV The proportion of total time watching TV at week-

days during primetime.
Continuous Yes Yes
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Treatment variables Any exposure Indicator if there has been any exposure to the media
campaign.

Binary Yes -

Exposures > 2 Indicator if the total number of exposures to the
media campaign exceeds a certain threshold.

Binary Yes -

Total number of exposures Count variable equal to the total number of exposures
to the media campaign.

Continuous Yes -

Number of exposures -
prior to last week

Count variable equal to the number of exposures to
the media campaign prior to last week.

Continuous Yes -

Number of exposures -
last week

Count variable equal to the number of exposures to
the media campaign last week.

Continuous Yes -

Number of exposures -
premiere day

Count variable equal to the number of exposures to
the media campaign on premier day.

Continuous Yes -

Number of exposures -
on channel

Count variable equal to the number of exposures to
the media campaign on channel.

Continuous Yes -

Number of exposures -
other channels

Count variable equal to the number of exposures to
the media campaign off channel, cross channel and
other channels.

Continuous Yes -

Note: continuous variables are modelled as categorical variable constructed by quantiles (use three groups and create a separate group for zero). Furthermore, only one (set of)

treatment variable(s) is included at the same time, see Section 4 for more details. We exclude the zero group of some variables to avoid multicollinearity issues (marked with ∗).
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9.2 Exploratory data analysis

(a) Number of exposures > 0. (b) Number of exposures > 2.

Figure 11: Level of tune-in for binary treatment variables (a) and (b).

Figure 12: Level of tune-in for continuous treatment variable.
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Figure 13: Level of tune-in for multiple treatment variables (a) based on time.

Figure 14: Level of tune-in for multiple treatment variables (b) based on channel.
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9.3 Conventional regression analysis

To compare the results of causal inference with standard statistical analysis, we present
the estimated effects by two commonly used binary choice models here. The outcome of
these models is typically very similar, but not identical. Here, we introduce the notation
necessary and discuss the results obtained using standard statistical analysis.

First, we define the logistic regression or logit model:

logit(Yi) = Λ−1(Yi) = Xiβ + Tiγ,

Yi = Λ(Xiβ + Tiγ) =
exp(Xiβ + Tiγ)

1 + exp(Xiβ + Tiγ)
,

where Λ(.) is the logistic distribution function. We approximate the marginal effect of Xj

by the average of sample marginal effects:

∂Y

∂T
= γ̂ · λ(Xβ̂ + T γ̂) ≈ γ̂ · 1

N

N∑
i=1

λ(Xiβ̂ + Tiγ̂).

where λ(.) is the probability density function for the logistic distribution.

Second, we define the probit model:

Yi = Φ(Xiβ + Tiγ),

where Φ(.) is the normal distribution function. We approximate the marginal effect of Xj

by the average of sample marginal effects:

∂Y

∂T
= γ̂ · φ(Xβ̂ + T γ̂) ≈ γ̂ · 1

N

N∑
i=1

φ(Xiβ̂ + Tiγ̂).

where φ(.) is the probability density function for the normal distribution.

We use the same selection of variables as for the response model of the PSMs. The results
are shown below in Table 15. We see (almost) all estimated coefficients are positive using
standard statistical analysis. Not all effects are significantly different from zero, but the
estimates for Exposures > 2, Number of exposures, Prior to last week and On channel
suggest a positive impact on the tune-in of AGT.

These findings are overall quite similar to the results obtained using the PSMs presented
in this thesis. However, the estimated effects using the standard statistical methods are
somewhat larger than for the PSMs. An exception to this are the estimated effects for the
binary treatment variable Any exposure, where the reverse is true. The effects are also
more often found to be significant. This is especially the case for the estimated effects
of both multivariate treatment variables (a, b). The relative performance of the different
treatments also slightly differs between the two approaches for the multivariate treatment
case.
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Table 15: Estimated effects of treatment variables on tune-in AGT.

UM LPM Logit Probit

Binary - any exposure
0.113∗

(0.004)
0.001
(0.007)

0.001
(0.005)

0.000
(0.005)

Binary - exposures > 2
0.175∗

(0.007)
0.052∗

(0.011)
0.016∗

(0.005)
0.011∗

(0.003)

Continuous - number of exposures -
0.009∗

(0.002)
0.002∗

(0.001)
0.002∗

(0.001)

Multiple - prior to last week -
0.015∗

(0.003)
0.004∗

(0.001)
0.003∗

(0.001)

Multiple - last week -
0.005
(0.003)

0.001
(0.001)

0.001
(0.001)

Multiple - premier day -
0.005
(0.014)

0.003
(0.005)

0.002
(0.004)

Multiple - on channel -
0.014∗

(0.003)
0.003∗

(0.001)
0.002∗

(0.001)

Multiple - other channels -
-0.001
(0.003)

0.000
(0.002)

0.000
(0.001)

Standard errors are given in parentheses, computed using bootstrap vari-
ance estimator. Effects significant at 5% significance level are marked
with (∗).
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9.4 Endogenous switching regression

As an alternative to PSMs, one can use an endogenous switching regression model. This
technique does not require the assumption that selection takes place on observable variables
only. Hence, it also corrects for hidden bias due to unmeasured confounders. However, this
comes at the cost of strong distributional assumptions of the error terms and parameter
identification can be problematic (Heckman et al., 2000). As we focus on generalized
treatments in PSMs, this is outside the scope of this thesis. Here, we give an outline of
this method for binary treatments in a similar way as we did for PSMs, as a starting point
for further research.

9.4.1 Identification

Heckman corrections correct selection bias by modelling the endogeneity. It models the
dependencies in the error term and corrects for the resulting bias explicitly. We make the
following assumptions14:

• εti ∼ N(0, σ2
t ) for t ∈ {0, 1},

• εT i ∼ N(0, σ2
T ),

• σ2
T = 1 (we normalize the variance parameter to unity for identification).

This results in the following error distribution:ε0iε1i
εT i

 ∼ N(0,Σ), where Σ =

 σ2
0 σ01 σ0T

σ01 σ2
1 σ1T

σ0T σ1T 1

 .
We call this an endogenous switching model as we know εT is possibly correlated with
εti for t ∈ {0, 1}. Hence, σ0T 6= 0 and σ1T 6= 0 (equal would be exogenous switching model).
We now discuss two methods to estimate β̂0, β̂1, θ̂, σ̂2

0, σ̂2
1, σ̂0T and σ̂1T . Note: σ01 is not

estimatable.

Formally, the model is identified by the above stated normality assumptions. However,
identification can be weak if there are only a limited number of observations in the tails
where we expect substantial non-linearity in the inverse Mills ratio. Hence, for better
identification an exclusion restriction is often used. This means that at least one explanatory
variable should be included in the selection equation with a non-zero coefficient that does
not appear in the outcome equations. This variable is usually selected guided by economic
theory.

9.4.2 Two-step method

Continuous outcome
Most easy and common way to estimate this framework is using the two-stage method
initially proposed by Heckman (1976). However, this method has shortcomings for the
case of binary observed outcome variables like we have (similar to using a linear prob-
ability model instead of a binary choice model). First, the estimated probabilities are

14Heckman et al. (2000) show the normal results can be extended to more general, strictly increasing,
continuous distribution functions. L.-F. Lee (1982, 1983) allow the error terms to be jointly distributed
according to the Student-t distribution with varying degrees of freedom v, which is especially attractive for
fat-tailed data.
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not explicitly bounded, which may give probabilities smaller than zero or larger than one.
Second, the error terms are not normally distributed. Nevertheless, it could be used to com-
pute final estimates or to produce initial values for an iterative maximum likelihood solution.

To derive the bias we need to obtain the expected values of the residuals in Equation (1)
and (2). For t ∈ {0, 1}, let ηti = εti − σtT εT i. Rewriting gives εti = ηti + σtT εT i. Then we
have E[ηtiεT i] = E[(εti − σtT εT i)εT i] = E[εtiεTi − σtT ε2T i] = σtT − σtT = 0. Next,

E[Xiβ1 + ε1i|Ti = 1] = Xiβ1 + E[ε1i|εT i > −Ziθ]
= Xiβ1 + E[η1i + σ1T εTi|εT i > −Ziθ]
= Xiβ1 + σ1TE[εT i|εT i > −Ziθ]

= Xiβ1 + σ1T
φ(Ziθ)

Φ(Ziθ)
.

Here, φ(.) and Φ(.) are the standard normal density and cumulative distribution function
respectively as we assume the error terms are independent and normally distributed.
Correlation εt, εT = ρt = σtT

σtσT
. Similarly we can find15:

E[Xiβ0 + ε0i|Ti = 0] = Xiβ0 − σ0T
φ(Ziθ)

1− Φ(Ziθ)
.

Now estimation goes as follows:

1. In the first step we estimate the bias correction terms.
Fit a probit model using all N observations to estimate θ̂:

Pr(Ti = 1|Xi) = Pr(T ∗i > 0|Xi) = Pr(Ziθ + εT i > 0|Xi)

= Pr(εT i > −Ziθ|Xi) = 1− F (−Ziθ) = F (Ziθ),

where F(.) is the normal cumulative distribution function Φ(.) if we assume the error
terms are independent and normally distributed.

Then we can compute the selection-correction terms evaluated at θ̂ for each individual

i: φ(Ziθ̂)

Φ(Ziθ̂)
and φ(Ziθ̂)

1−Φ(Ziθ̂)
.

2. Perform regression (OLS) for the subsamples created by treatments separately
including the selection-correction terms as additional regressor to estimate β̂0, β̂1,
σ̂0T and σ̂1T :

Y0i = Xiβ0 − σ0T
φ(Ziθ̂)

1− Φ(Ziθ̂)
+ η0i, for Ti = 0,

Y1i = Xiβ1 + σ1T
φ(Ziθ̂)

Φ(Ziθ̂)
+ η1i, for Ti = 1.

9.4.3 Maximum likelihood estimation

Continuous outcome
The two-step method was initially useful because computers were not very powerfull. How-
ever, we know an iterative approach will always be more efficient if the error assumptions

15E[Xiβ1 + ε1i|Ti = 0] = Xiβ1 − σ1T
φ(Ziθ)

1−Φ(Ziθ)
and E[Xiβ0 + ε0i|Ti = 1] = Xiβ0 + σ0T

φ(Ziθ)
Φ(Ziθ)

.
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we made are met. Furthermore, we can adapt it to the case of binary observed outcome
variables. Therefore, we propose to use this as final estimation method (with the outcome
of the two-step method as initial values).

First for continuous observed outcome variables. We know Yi is a mixed distribution of Y0i

and Y1i, depending on the treatment parameter Ti. Hence, the complete data likelihood
function is defined as:

L =
N∏
i=1

{f(Y1i|Ti = 1) Prob(Ti = 1)}Ti {f(Y0i|Ti = 0) Prob(Ti = 0)}1−Ti ,

=
N∏
i=1

{f(Y1i) Prob(Ti = 1|Y1i)}Ti {f(Y0i) Prob(Ti = 0|Y0i)}1−Ti .

From the above assumptions we know f(Y0i) = 1
σ0
φ(Y0i−Xiβ0

σ0
) and f(Y1i) = 1

σ1
φ(Y1i−Xiβ1

σ1
),

where φ(.) is the standard normal density function. Furthermore, from the properties of
the multivariate normal distribution we know:

εT i|Y1i ∼ N(
ρ1

σ1
(Y1i −Xiβ1), 1− ρ2

1),

where ρ1 = σ1T
σ1

. Hence, the following:

Pr[Ti = 1|Y1i] = Pr[εT i > −Ziθ|Y1i]

= Pr[
εT i − ρ1

σ1
(Y1i −Xiβ1)√
1− ρ2

1

>
−Ziθ − ρ1

σ1
(Y1i −Xiβ1)√

1− ρ2
1

]

= 1− Φ(
−Ziθ − ρ1

σ1
(Y1i −Xiβ1)√

1− ρ2
1

)

= Φ(
Ziθ + ρ1

σ1
(Y1i −Xiβ1)√
1− ρ2

1

).

Similarly, we know:

εT i|Y0i ∼ N(
ρ0

σ0
(Y0i −Xiβ0), 1− ρ2

0),

where ρ0 = σ0T
σ0

. And:

Pr[Ti = 0|Y0i] = Pr[εT i ≤ −Ziθ|Y0i]

= Pr[
εT i − ρ0

σ0
(Y0i −Xiβ0)√
1− ρ2

0

≤
−Ziθ − ρ0

σ0
(Y0i −Xiβ0)√

1− ρ2
0

]

= Φ(
−Ziθ − ρ0

σ0
(Y0i −Xiβ0)√

1− ρ2
0

)

= 1− Φ(
Ziθ + ρ0

σ0
(Y0i −Xiβ0)√
1− ρ2

0

).

This results in the following log likelihood function:

log L = −N
2

log 2π +
N∑
i=1

Ti{−
1

2
(
Y1i −Xiβ1

σ1
)2 − log(σ1) + log(Φ(

Ziθ + ρ1

σ1
(Y1i −Xiβ1)√
1− ρ2

1

))}+

(1− Ti){−
1

2
(
Y0i −Xiβ0

σ0
)2 − log(σ0) + log(1− Φ(

Ziθ + ρ0

σ0
(Y0i −Xiβ0)√
1− ρ2

0

))}.
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To find the maximum likelihood estimates we optimize the log likelihood function. There
are many optimization algorithms available, but not all can handle constraints. We suggest
to use the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm for constrained
optimization problems (L-BFGS-B).

Initial values of the parameters are needed to start the algorithm. For this we can use
the estimates obtained by a two-step estimation method. In the first step, we fit a probit
model to the selection equation and in the second step we perform OLS regression for the
two regime equations separately including an additional selection-correction term. For
more details see Section 9.4.2. Then we maximize the function log L to get new parameter
estimates θ̂, β̂0, β̂1, σ̂0T , σ̂1T , σ̂2

0, σ̂2
1.

Binary outcome
In this case, two-step estimation is no longer suitable. Instead, we opt we estimate the
parameters using Maximum Likelihood estimation. We know Yi is a mixed distribution of
Y0i and Y1i, depending on the treatment parameter Ti. Hence, the likelihood function is
defined as:

L =
N∏
i=1

{f(Y1i = 1, Ti = 1)}TiYi {f(Y1i = 0, Ti = 1)}Ti(1−Yi)

{f(Y1i = 1, Ti = 0)}(1−Ti)Yi {f(Y1i = 0, Ti = 0)}(1−Ti)(1−Yi).

where,

f(Y1i = 0, Ti = 1) = Pr(Y ∗1i < 0, T ∗i > 0) =

Pr(ε1i < −Xiβ1, εTi > −Ziθ) =

Pr(ε1i < −Xiβ1, εT i < Ziθ) =

Φ2(−Xiβ1, Ziθ,−ρ1).

here Φ2(.) is the cumulative bivariate normal normal distribution.

This results in the following log likelihood function:

log L =

N∑
i=1

TiYilog(Φ2(Xiβ1, Ziθ, ρ1)) + Ti(1− Yi)log(Φ2(−Xiβ1, Ziθ,−ρ1))+

(1− Ti)Yilog(Φ2(Xiβ0,−Ziθ,−ρ0)) + (1− Ti)(1− Yi)log((Φ2(−Xiβ0,−Ziθ, ρ0)).

9.4.4 Treatment effects

Continuous outcome
For continuous outcome variables, we can estimate ATE and ATT as follows using the
estimated parameters (Heckman et al., 2000):

τ̂ATE =
1

N

N∑
i=1

Xiβ̂1 −
1

N

N∑
i=1

Xiβ̂0,

τ̂ATT =
1

N

N∑
i=1

Xiβ̂1 −
1

N

N∑
i=1

Xiβ̂0 +
1

N

N∑
i=1

(σ̂1T − σ̂0T )
φ(Ziθ̂)

Φ(Ziθ̂)
.
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We know that ATT is bigger than ATE if Cov(ε1 − ε0, εT ) = Cov(ε1, εT ) − Cov(ε0, εT )
= σ̂1T − σ̂0T > 0. In this case treatment will produce greater benefit under self-selection
than under random assignment.

Binary outcome
For binary outcome variables, we can estimate ATE and ATT as follows (Aakvik, Heckman,
& Vytlacil, 2005):

τ̂ATE =
1

N

N∑
i=1

{Pr(Y1i = 1|Xi)− Pr(Y0i = 1|Xi)}

=
1

N

N∑
i=1

{Fε1i(Xiβ1)− Fε0i(Xiβ0)},

τ̂ATT =
1

N

N∑
i=1

{ 1

FεTi(Ziθ)
[FεT i,ε1i(Ziθ,Xiβ1)− FεT i,ε0i(Ziθ,Xiβ0)]}.
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9.5 Output diagnostics

9.5.1 Binary treatments

Propensity scores

(a) Before truncation. (b) After truncation.

Figure 15: Propensity scores for binary treatment variable (a) Any exposure using Logistic
regression.

(a) Before truncation. (b) After truncation.

Figure 16: Propensity scores for binary treatment variable (b) Exposures > 2 using Logistic
regression.
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(a) Before truncation. (b) After truncation.

Figure 17: Propensity scores for binary treatment variable (a) Any exposure using Boosting.

(a) Before truncation. (b) After truncation.

Figure 18: Propensity scores for binary treatment variable (b) Exposures > 2 using
Boosting.
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(a) Before truncation. (b) After truncation.

Figure 19: Propensity scores for binary treatment variable (a) Any exposure using CBPS.

(a) Before truncation. (b) After truncation.

Figure 20: Propensity scores for binary treatment variable (b) Exposures > 2 using CBPS.
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Common support

(a) Ti = 0. (a) Ti = 1. (b) Ti = 0. (b) Ti = 0.

Figure 21: Common support for binary treatment variable (a) Any exposure and b) Exposure
> 2 using Logistic regression.

(a) Ti = 0. (a) Ti = 1. (b) Ti = 0. (b) Ti = 0.

Figure 22: Common support for binary treatment variable (a) Any exposure and b) Exposure
> 2 using Boosting.

(a) Ti = 0. (a) Ti = 1. (b) Ti = 0. (b) Ti = 0.

Figure 23: Common support for binary treatment variable (a) Any exposure and b) Exposure
> 2 using CBPS.
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9.5.2 Continuous treatments

Propensity scores

Before truncation. After truncation.

Figure 24: Propensity scores (GPS) for continuous treatment variable Number of exposures
using Linear regression.

Before truncation. After truncation.

Figure 25: Propensity scores (PF) for continuous treatment variable Number of exposures
using Linear regression.
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Before truncation. After truncation.

Figure 26: Propensity scores (GPS) for continuous treatment variable Number of exposures
using Poisson regression.

Before truncation. After truncation.

Figure 27: Propensity scores (PF) for continuous treatment variable Number of exposures
using Poisson regression.
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Before truncation. After truncation.

Figure 28: Propensity scores (GPS) for continuous treatment variable Number of exposures
using Boosting.

Before truncation. After truncation.

Figure 29: Propensity scores (PF) for continuous treatment variable Number of exposures
using Boosting.
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Before truncation. After truncation.

Figure 30: Propensity scores (GPS) for continuous treatment variable Number of exposures
using CBGPS.

Before truncation. After truncation.

Figure 31: Propensity scores (PF) for continuous treatment variable Number of exposures
using CBGPS.
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Common support

Normal - in k. Normal - not in k. Poisson - in k. Poisson - not in k.

Boosting - in k. Boosting - not in k. CBGPS - in k. CBGPS - not in k.

Figure 32: Common support k = 1 for continuous treatment variable Number of exposures.

Normal - in k. Normal - not in k. Poisson - in k. Poisson - not in k.

Boosting - in k. Boosting - not in k. CBGPS - in k. CBGPS - not in k.

Figure 33: Common support k = 2 for continuous treatment variable Number of exposures.
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Normal - in k. Normal - not in k. Poisson - in k. Poisson - not in k.

Boosting - in k. Boosting - not in k. CBGPS - in k. CBGPS - not in k.

Figure 34: Common support k = 3 for continuous treatment variable Number of exposures.

Treatment effects

WLS (not DR). SC (not DR). SCM (not DR).

WLS (DR). SC (DR). SCM (DR)

Figure 35: Dose-response functions for continuous treatment variable Number of exposures
on tune-in AGT using Boosting. The error bars represent the 95% confidence interval of
the curves. The error bars are cut off if the endings fall outside the figure.
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9.5.3 Multivariate treatments

Covariate balance

Balance k = 1. Balance k = 2. Balance k = 3.

Balance k = 1. Balance k = 2. Balance k = 3.

Balance k = 1. Balance k = 2.

Figure 36: Covariate balance for multivariate treatment variable (a) Prior to last week,
Last week, Premier day measured by SMD (from top to bottom). The dotted line indicates
SMD = 0.1.
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Balance k = 1. Balance k = 2. Balance k = 3.

Balance k = 1. Balance k = 2. Balance k = 3.

Figure 37: Covariate balance for multivariate treatment variable (b) On channel and Other
channel measured by SMD (top versus bottom). The dotted line indicates SMD = 0.1.

79



Treatment effects

(a) SC (Boosting). (b) SCM (Boosting).

Figure 38: Dose-response functions for multivariate treatment variable (a) Prior to last
week, Last week and Premier day on tune-in AGT.

(a) SC (Boosting). (b) SCM (Boosting).

Figure 39: Dose-response functions for multivariate treatment variable (b) On channel and
Other channels on tune-in AGT.
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SC (Poisson).

SCM (Poisson).

SC (Boosting).

SCM (Boosting).

Figure 40: Dose-response functions for multivariate treatment variable (a) Prior to last
week, Last week and Premier day on tune-in AGT (from left to right). The error bars
represent the 95% confidence interval of the curves. The error bars are cut off if the endings
fall outside the figure.
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SC (Poisson).

SCM (Poisson).

SC (Boosting).

SCM (Boosting).

Figure 41: Dose-response functions for multivariate treatment variable (b) On channel
and Other channel on tune-in AGT (left versus right). The error bars represent the 95%
confidence interval of the curves. The error bars are cut off if the endings fall outside the
figure.
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