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1 Introduction

Epidemics of infectious diseases are one of the most destructive and costly, globally occurring, haz-

ardous phenomena. The current response to the spread of epidemics is mainly reaction focused.

This approach has proven to be not only slow but also expensive and outdated. Taking the spread

of the Ebola virus in Western Africa as a lesson, the World Health Organization learned that bet-

ter preparation and the putting in place of sensitive epidemic surveillance is the first step towards

better control of outbreaks of infectious diseases in the less developed parts of the world (Kekulé,

2015). Organizations such as the Netherlands Red Cross have begun investing in an Epidemic Risk

Assessment project (ERA) in order to increase prevention and preparedness (The Netherlands Red

Cross, 2018). Models that fit the specific and sensitive nature of the data of affected locations

have become a necessity. Working with humanitarian data sets, however, poses new challenges for

statistical analysis.

Presently the study into epidemic risk has run into insufficient availability of data due to time

constraints or simply missing values for the desired granularity. Therefore, calculating weights for

epidemic risk parameters has proven to be an intricate complication. The currently available re-

search on infectious diseases, more specifically into environmental risk factors of epidemics, has the

major disadvantage that it lacks interpretability. For example, during a study on Dengue incidence

in the Philippines missing data on provinces affected the normalization step where using less regions

led to an erroneous distribution of risk (Hierink, 2018).

This paper proposes a study into these issues. The objective is to model epidemic risk by in-

troducing methods of handling missing data patterns. By addressing each particular missingness

mosaic with an isolated procedure for imputation such a goal is achieved. Previous epidemiological

studies choose Complete Case Analysis (CCA) to work around such problems (Liu and De, 2015) or

opted for one imputation method throughout the entire course of the study: k-Nearest-Neighbours

(kNN) in Hierink (2018) or Model Based Imputation in Harel et al. (2017). This paper introduces

a new method, namely one that handles each pattern of missingness accordingly. Furthermore, it

compares the new Pattern Based Imputation with the method used primarily by The Netherlands

Red Cross ERA: full kNN Imputation. This study will prove the superiority of the mosaic-based

imputation over the full kNN. In order to do so, the types of variables must first be defined.
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The European Commission developed a composite indicator of risk, INFORM, which serves as

a measure of the global distribution of risk of crises and disasters (De Groeve et al., 2016). This

indicator is built out of three dimensions: Hazard & Exposure, Vulnerability and Lack of Coping

Capacity. Each one of these levels contains a number of categories which encompass predefined

types of variables. Present research found three main structures amongst the INFORM compo-

nents: Independent Missing Variables (IMV), Consequential Missing Variables (CMV) and Regular

Missing Variables (RMV). IMV’s include naturally occurring variables such as weather, tsunamis,

floods, cyclones etc. all found within the Hazard & Exposure dimension. CMV’s represent variables

which come as a direct consequence of IMV’s: development deprivation, aid dependency etc. These

types can be found under the Vulnerability dimension. Lastly, RMV’s represent directly human in-

fluenced variables found within the Lack of Coping Capacity dimension. Examples of such variables

include governance, communication, infrastructure and access to health care system.

The present research plans on using Red Cross provided data sets on monthly new Dengue fever

cases and influential factors in the Philippines. Furthermore it tries to improve the reliability of

the study results which contain the difficult variables. The before mentioned ERA framework has

categorized a wide range of risk factors as well as done preliminary research into their influence.

It is believed that issues such as underreporting could be one of the causes of the missing data

points, hence one can categorize the unavailable observations as Missing Not At Random (MNAR).

This type of missingness describes the absence of data points which depend on some unobserved

predictor, in the present case underreporting. Dealing with this type of unavailability is particularly

tricky as imputation introduces bias in inference models (Gelman and Hill, 2006).

Therefore the main aim of the research present in this paper is developing expert based weights

for all indicators of infectious diseases in difficult data sets. Obstacles that have been overcome

include: high percentages of missing data, overdispersion and multicollinearity. This study first

determines what is the optimal way to find and handle missing values in each of the three types of

variables. Important considerations such as how the patterns can be identified, which imputation

method best fits each mosaic and whether the statistical properties are preserved will be examined

and appropriate advice will be provided. Furthermore, three modelling techniques are put forward:

a Selection Model which uses Elastic Net regularization, a newly developed Explanatory Model for
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the selected variables taking into account over-dispersion, namely the Quasi-Poisson Regression on

Elastic Net Selected Variables and a Predictive Model via Bayesian Neural Networks. The high

uncertainty in the data due to the imputation as well as the multicollinearity issues that arise from

the types of variables in epidemic studies lead to the fact that the usual statistical techniques fail

to select, explain and predict accordingly. The new Explanatory technique will prove to outper-

form the Selection Model in terms of model fit and the Predictive Model in terms of forecasting.

What this study adds to current literature is first the introduction of a new approach to variable

imputation. Second, never before attempted analysis is performed using model selection via Elastic

Net regularization and a subsequent Quasi-Poisson regression on the selected variables. Thus, vi-

able coefficients as well as correct standard errors are obtained. Last but not least, this study will

introduce the first Bayesian Neural Network analysis within the field of epidemic studies.

This paper is structured as follows: first a Data section dives into a description of the data set

as well as the difficulties it brings, then a Literature review will present what is the background

of the current research and what is being added to it through this study. How the data will be

handled can be found in the Methodology section and, lastly, a Conclusion will be summing up the

main findings and give suggestions for further research.
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2 Data

The data set consists of monthly data on 40 continuous variables resulting in a total of 960 obser-

vations describing 80 regions of the Philippines. These variables were recorded per region. Having

as dependent variable the amount of new cases of Dengue fever, the independent variables describe

features such as population number according to the respective gender, weather, farm animals, type

of water sewer tank, indicator for open/closed pit, water source and population density. The data

is recorded in the year 2015. Figure 1 displays the dependent variable per province. A detailed

description of each variable can be found in the Appendix Table 4.

Figure 1: Total Dengue cases per province in 2015.

All features are categorized within the Epidemic Risk Assessment (ERA). They represent drivers

for Infectious Hazards & Exposure, Vulnerability and Lack of Coping Capacity within the INFORM

index (De Groeve et al., 2016). Variables within the data set are particularly challenging as much

information is missing. The first step in understanding the missing values within the data set con-

tains determining the amount of non-available observation points present. Table 4 in the Appendix
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showcases the percentage of missing values per variable. It can be seen that groups of variables

seem to have very close percentage of missingness. This could indicate an underlying pattern in

the mechanism of missing values within the data set. There seem to be weather variables with an

average of 45% missing value, soil related features with an average of 63% missingness, farm animals

with 2.5% non-available information, toilet & water availability traits with 12.5% missing values

and the population density measure with 2.5% NA values. In order to gain better insight into what

causes these percentages to be classifiable into categories based on the percentage of missingness,

visualization techniques are necessary. Templ et al. (2012) put forward a plot which showcases all

combinations of (non-)missing values in the data set. This is called an ’aggregation plot’ and is

graphed in Figure 2. When two variables contain unavailable information for the same observation,

their combination is signalled out through a different colour, in the present case dark grey.

Figure 2: Aggregation plot of all variables.

Following the suspicions from the Appendix Table 4, one can observe very similar patterns of

missingness within the weather and soil variables. Furthermore, animal farm and toilet & water

availability traits have identical patterns in terms of non-available information. Keeping in mind that

this study is done under the assumption that all variables are Missing Not at Random (MNAR), the
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results observed earlier on in this section led to the following categorization of the data set features

within INFORM (De Groeve et al., 2016):

• weather related variables can be categorized as Independent Missing Variables (since they are

part of the natural phenomena and are out of human control) and can be found under the

Infectious Hazards & Exposure dimension,

• the soil features can be a consequence of weather hence they will be considered as Consequential

Missing Variables and are part of the Vulnerability dimension,

• the other features: animal farm, toilet & water availability and population density are under

human influence hence they will be classified as Regular Missing Variables and should be

linked to the dimensions of Lack of Coping Capacity and Infectious Hazards & Exposure

(human subcategory).

For the remainder of this paper they will be referred to as IMV, CMV and RMV respectively.

A further complication of the data is the presence of multicollinearity. In order to see the mag-

nitude of the problem, the Variance Inflation Factor (VIF) is analyzed. This is a method where

each predictor variable is regressed on the remaining predictors. The resulting R2
j of the regression

of variable xj on all others x−j is used in the computation of the VIF of said variable (VIFj) the

following way (Marquardt, 1970):

V IFj =
1

1−R2
j

. (1)

It has been proven that a problematic variable will lead to a VIF value larger than 10 (Curto and

Pinto, 2011). Upon a check of the current data set, the VIF-test points towards possible mul-

ticollinearity due to the following regressors: pop.nr.male, pop.nr.female, wind.spe.kph, air.tem.,

air.tem.max, air.tem.min,relative.hum, relative.hum.max and relative.hum.min. Full results of the

VIF-test can be found in the Appendix Table 5.

The model predictive power or reliability is not reduced by multicollinearity. Calculations of individ-

ual predictors, however, are heavily affected. For example, in multicollinear data sets multivariate

regressions cannot give valid results regarding which predictors are redundant as opposed to the

others (Gujarati and Porter, 2003). Another phenomenon that occurs in multicollinear data sets is

the fact that a small change in input information leads to a high change in model estimates (Belsley,
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1991). Possible solutions include implementing Ridge Regressions because imposing size constraints

alleviates the problem caused by multicollinearity. Positive large coefficients on a variable will be

cancelled out through a negative large coefficient in its correlated counterpart (Hastie et al., 2005).

Considering that one of the most common tasks in econometrics is the choice of a parametric

model which is able to fit some observations, it is necessary to assess the fit of any chosen model.

Usually, one can choose the parameters of the model such that the sample mean is approximately

the same as the theoretical population mean. In some cases, if one considers higher moments, it can

be seen that observed variances fail to match the theoretical ones. Thus, when the observed variance

is higher than the one of the theoretical framework, a circumstance known as over-dispersion has

occurred. Authors such as Burnham and Anderson (2002) and Hilbe (2007) define over-dispersion

as a phenomenon which occurs when the variation in the model outcome is greater than that which

is integrated in the distribution. Simply put, the variance of the distribution used for modelling is in

fact higher than expected. Over-dispersion may arise due to missing covariates, partial dependence

or parameter heterogeneity.

Testing for over-dispersion can be done by checking the theoretical distribution variance against

the actual. For example, in Poisson models, under the null hypothesis of equi-dispersion H0 :

var(µ) = µ, the alternative states that HA : var(µ) = φµ. The over-dispersion coefficient is esti-

mated through an ordinary least squares regression with no intercept of the form: var(µ) = φµ.

Since under the null, the coefficient is standard normally distributed, a t-test on φ determines its

significance. Having performed this test on the full current data set, a p− value < 2.2e− 16 with

z = 10.716 has proven that the null hypothesis of equi-dispersion is rejected. The estimated value

for the over-dispersion coefficient is φ = 177.1467. This proof of the presence of non-equi-dispersion

complicates model selection techniques. It will be shown in further sections that regular model

selection techniques such as those based on the AIC cannot be performed on overly-dispersed data

sets. As a result, Elastic Net Model Selection will be performed.

8



3 Literature

Current literature dives both into epidemic risk modelling as well as into imputation methods in

epidemiological studies. This section will provide information on previous work on how missing

data has been handled before by other authors vs. how it is handled now, as well as an overview of

previous epidemic risk modelling as opposed to what econometric knowledge is used to investigate

the current data set.

3.1 Imputation Methods

Previous studies opt for using one missing data handling method throughout, may this be Complete

Case Analysis (CCA) (Liu and De, 2015), simple full kNN Imputation (Hierink, 2018) or Multiple

Imputation via Model Based Imputation techniques (Harel et al., 2017). There have been some

attempts at a Fully Conditional Specification, but as Liu and De (2015) state, these are rarely used.

However, data sets with a proportion of missing values per variable of around 50% such as the one

investigated here pose an interesting dilemma. There are simply too many parameters with missing

values for a full Model Based Imputation (Kim et al., 2015), while the full kNN seems to naively

overlook the intricate relationships between variables (Beretta and Santaniello, 2016).

This study proposes that a combination of imputation techniques should lead to less bias in the re-

sults. The question then becomes: which variables should be treated in which way. The framework

of the INFORM index (De Groeve et al., 2016) is used as a guideline for this decision. INFORM

defines what the European Commission selected as factors which contribute to risk for humanitar-

ian crises and disasters. Figure 3 showcases the three dimensions with their respective categories

and sub-components. The inherent nature of these dimensions (which contributed to them being

separated the way the European Commission saw fit to do) is the basis for the separation of data

sets into types of variables with their respective imputation treatment.
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Figure 3: Risk for humanitarian crises and disasters index.

Starting with the first dimension, Hazard & Exposure variables, specifically the natural category,

can be regarded as variables with independent effect. Furthermore, such variables are highly cor-

related with geographical aspects since ”near things are more related than distant things” (Tobler,

1979). This leads to the best imputation method being k-Nearest-Neighbours (kNN) Imputation,

a powerful donor-based imputation method (Altman, 1992). kNN’s properties such as the lack of

assumption on the distributions as well as its robustness provide the perfect environment for im-

puting naturally occurring types of variables with missingness. This type of imputation however is

not suitable for multiple imputations exactly because it does not draw the imputed variables from

a distribution. The present paper contributes to the usual kNN Imputation by separating the data

set per geographical regions.

For the second dimension, Vulnerability can be seen as a consequence of other variables, thus vari-

ables with missing values within this dimension can be regarded as consequential therefore they can

be modelled. Model Based Imputation techniques have been developed exactly for these purposes.

Yohai et al. (1987) worked in creating estimations for linear regressions, Cantoni and Ronchetti

(2001) developed robust techniques for estimating Logistic and Poisson regressors and Templ et al.

(2011) tackled estimation in the presence of outliers. Through use of statistical models to estimate

missing values and making a conditional model for each variable with missingess, the algorithms

use repeated passes until convergence is achieved.

Variables which describe Lack of Coping Capacity seem to be directly influenced by human ac-

tivity, much like the human category within the Hazard & Exposure dimension. As such, they
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represent intricate causation patterns, hence a broader robust method is required. For this reason

Fully Conditional Specification Imputation techniques have been developed. Buuren et al. (2006)

used them for the first time as a general class of methods whose purpose is to specify imputations

models as conditional distributions in multivariate data. They do not assume normality or linearity.

They also handle continuity and categorical values, so the assumptions required for most imputation

models can be relaxed for this case, leading to a broader spectrum of variables on which it can be

applied (Liu and De, 2015). The current data set contains high levels of multicollinearity. Fully

Conditional Specifications with Regression Trees are able to handle this limitation (Parker, 2010).

This combination is a never before used imputation technique in epidemic studies.

Imputed data sets contain limitations when it comes to modelling and model selection. In order

to reduce bias, multiple imputations are required. Sterne et al. (2009) discuss this mathematical

fact in the field of medical research. Issues such as the optimal number of imputations required for

asymptotic efficiency are discussed by Rubin (1987) and Buuren and Groothuis-Oudshoorn (2010).

Furthermore, following the imputations, diagnostic methods must be used to asses the validity of

the complete data set(s). Stuart et al. (2009) and Kolmogorov (1933) put forward both graphical

and numerical diagnostics.

3.2 Modelling

Having a correctly fully imputed data set, the modelling work may begin. Keeping in mind the

problems that arise when dealing with epidemiological studies: underreporting, multicollinearity

and measurement errors, a model selection method which imposes penalties is required. Such mod-

els are part of the greater family of Generalized Linear Models. Publications such as Dobson and

Barnett (1990) and Venables and Ripley (2002) are in support of these types of estimations of re-

lationships between dependent and independent variables. Friedman et al. (2010) puts forward an

algorithm for estimating Generalized Linear Models with the addition to the objective function of

convex penalties. This can either mean one type of penalty such as Lasso or Ridge or a combination

of both types which is identified in the literature as Elastic Net. These penalties’ main objectives

are either variable selection or coefficient shrinkage.

The need for this type of selection is that when dealing with over-dispersed data sets, regular
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model selection criteria such as AIC cannot be estimated (Kullback, 1997). As AIC compares the

differences between the model and the fitted candidate, it depends on the properties of maximum

likelihood estimators (Kim et al., 2013). In the case of over-dispersion, AIC fails to select the best

fitting model, opting for the over-fitted case instead (Anderson et al., 1994). Thus, model selection

based on Elastic Net regularization seems to be a good alternative, because the variable selection

is done via the penalty.

Other types of currently available variable selection criteria include, but are not limited to, Quasi-

AIC (Kim et al., 2013), Quasi-AICc (Lebreton et al., 1992), KIC and Quasi-KIC (Kullback, 1997).

These however rely on quasi-likelihood estimations. Wedderburn (1974) describes these as likeli-

hood functions which do not correspond to any probability distribution. In turn, a relationship

between the variance and the mean is created where the variance itself is a function of mean. This

means that consistent estimates depend on the mean condition being correctly specified (Baltagi,

2015). To work around this limitation, present research uses an Elastic Net as a model selection

technique.

The two types of regularizations found within an Elastic Net are the Lasso (Tibshirani, 1996)

and Ridge (Tikhonov, 1963). Lasso is a regression analysis methodology which, as its name states,

imposes a ”least absolute shrinkage and selection operator”. Using as penalty the absolute term, it

has the power to shrink coefficients all the way to zero, thus deselecting variables. The goal is an

easy interpretable sparse solution. On the other hand, Ridge regression has a different aim. Since

the penalty is made up of a square of the magnitude of coefficients, the Ridge method keeps in the

model all regressors leading to variable shrinkage, but not selection. The true power of Elastic Nets

comes from the combination of the two types of regularizations. The combined penalty is a convex

function and the end results often outperforms just Lasso regularization when used on real-world

data (Zou and Hastie, 2005). An Elastic Net combines strongly correlated predictors and then

proceeds to either include the entire group or not in the model.

Possible downsides of the penalized regression are described by Kyung et al. (2010). The au-

thors warn about the dominance of the Ridge penalty over the Lasso in data sets which contain

high levels of multicollinearity. As the preliminary analysis into the current data set has shown,

there is clear evidence of multicollinearity. Furthermore, Kyung et al. (2010) mention the lack of
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consensus as to how correct standard errors should be computed in a penalized regression setting.

The best solution found thus far is by computing standard errors via Generalized Lasso estima-

tors (Kyung et al., 2010), but since the literature offers no conclusive unanimity on this topic, the

current research will not display standard errors for the estimates of the Elastic Net Regression.

What it aims to do instead, is use the selected variables from the Elastic Net algorithm and include

them into a Quasi-Poisson Regression. This new model will contain correctly selected variables

with reliable coefficients and standard errors. Quasi-Poisson Regression is something that has been

attempted before. Authors such as Berk and MacDonald (2008) discuss how in a Poisson setting

observed variance being higher than the mean is related to over-dispersion, while Ver Hoef and

Boveng (2007) discuss which model best fits count data: Quasi-Poisson or Negative Binomial.

In order to attempt to improve predictive power, a separate Bayesian Neural Network model is

implemented. Such a construct is capable of integrating uncertainty. It is also robust to issues

such as being useful in small data sets and over-fitting (Wu et al., 2018). Using a two layer neural

network as per Foresee and Hagan (1997) with initial weight assignment according to the algorithm

by Nguyen and Widrow (1990) and a Gauss-Newton optimization algorithm, the Bayesian opti-

mization of the regularization parameters is performed. For these purposes the R brnn package is

used as per Pérez-Rodŕıguez et al. (2013).
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4 Methodology

This section provides information on the methodology of the current research. Since the main

objective is developing expert based weights for all indicators for different infectious diseases in

data sets with much missing values, one must first consider a statistically sound approach to filling

in the non-available information. This is followed by appropriate modelling techniques as well as

an implementation of a known better performing prediction framework. All codes used for the

purposes of this research can be found at https://github.com/mufinel/master thesis.

4.1 Pattern Based Imputation

As previously mentioned, the data will be separated into three categories as per INFORM (De Groeve

et al., 2016). This leads to a sub-objective: recommending types of variable imputation given the

category that the given set of variables find themselves in. The technique of assigning each missing-

ness pattern to a type of variable within the INFORM index and then using a fitting imputation per

category of variables represents one of the contributions this research brings to current literature:

a Pattern Based Imputation method.

4.1.1 Independent Missing Variables

Thus, this paper begins with IMV type variables: the weather features. Their independence from

human activity in combination with their geographical factor makes them good candidates for donor

based imputation methods. Since natural phenomena occur inherently and tend to be more similar

the closer the regions are to each other (Tobler, 1979), it seems to make sense that imputation

via k-Nearest-Neighbours (kNN) should be the first candidate. However, including a geographical

component in the imputation step leads to lower bias. The Philippines is split into three main island

groups: Luzon, Mindanao and Visayas. By forcing the kNN Imputation to occur solely within these

regions, a better filling in of the missing information is obtained.

4.1.2 Consequential Missing Variables

The second type of variables is the CMV. These are represented by the soil variables. Soil moisture,

humidity and temperature is dictated in big part by the weather. Thus, one would expect that
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soil variables are a function of the weather component. This consequential relationship led to the

assumption that Model Based Imputation would fit this type of interconnected relationship best.

For each variable within the soil type of features, a statistical model will be constructed. The

algorithm is as follows (Alfons, 2019):

Algorithm 1 Model Based Imputation Algorithm

Initialize missing values via a single imputation method - kNN

For each variable xj with j = 1, .., p

• Estimation of xj as response variable

• For each observation xi where i = 1, .., n

– If xij is missing, set xij as the prediction from estimation model

Repeat until convergence

Return imputed data

To reduce bias multiple imputations are required. For this purpose Algorithm 1 will be repeated 5

times in order to obtain an asymptotic efficiency of 91% (Rubin, 1987). The final output will be

constructed as the pooled result of all imputations.

4.1.3 Regular Missing Variables

The final set of variables contains unknown underlying relationships between the human component

and what the missing values could be. The assumption of the data being MNAR (Missing Not at

Random) leads to only two possible approaches: disregarding the observations with missing values

altogether or finding a robust method to impute them. In the data set present in the study both

approaches are used. Since missing observations within animal farm animals and population den-

sity variables represent a total of 5% of the data set, this number can be considered small enough

for them to be excluded from the analysis. The toilet & water availability traits however pose an

interesting difficulty. Their effect on the world is not independent of human interaction, they are

not a consequence of a naturally occurring event and they hold 12.5% of the missingness of the total

observations in the data set. This rules out excluding them altogether. It can be seen from Figure

4 that they are made up of continuous variables which do not display a normal distribution.
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Figure 4: Histogram of RMV variables.

All of these lead to the conclusion that the most statistically sound method is multiple imputation

by Fully Conditional Specification (FCS). This method is rarely ever used in epidemiologic studies.

A reason for this is provided by Liu and De (2015) who state that little practical guidance as well

as lack in availability of easy implementation and evaluation via this method could be the reasons

why scientists in the epidemics field have held off from using it. However, due to its inclusion of

continuous variables it is the best method for the problem at hand.

Multivariate FCS is an imputation technique which handles the data on a variable-by-variable

basis. It uses a separate conditional density for each incomplete variable. Let Z be the partially

observed complete sample (thus including the dependent variable) of p features with multivariate

distribution P (Z|θ) completely specified by θ, a vector consisting of unknown parameters divided

into p blocks. The posterior distribution of this vector is obtained by sampling iteratively from

conditional distributions formed the following way:

P (Z1|Z2, Z3, ..., Zp; θ1)

...

P (Zp|Z1, Z2, ..., Zp−1; θp)

(2)
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The parameters are not necessarily the product of some factorization of P (Z|θ), the true joint

distribution. Furthermore they are treated as specific to their conditional densities. Having set

starting values for θ(0) and setting t = 0, the Gibbs sampler has the following form at the t = T -th

iteration:

θ
∗(T )
1 ∼ P (θ1|zobs1 , z

(T−1)
2 , ..., z(T−1)p )

z
∗(T )
1 ∼ P (zmiss1 |zobs1 , z

(T−1)
2 , ..., z(T−1)p ; θ

∗(T )
1 )

...

θ∗(T )p ∼ P (θp|zobsp , z
(T−1)
1 , ..., z

(T−1)
p−1 )

z∗(T )p ∼ P (zmissp |zobsp , z
(T−1)
1 , ..., z

(T−1)
p−1 ; θ∗(T )p ),

(3)

where z
(T )
j = (zobsj , z

∗(T )
j ) is the result of the imputation of variable j at iteration T . The cycle is

repeated until convergence, after which the draws are considered as the first set of imputed values.

For multiple imputation to be obtained, multiple such number of imputations must be achieved

hence the cycle repeats itself a predefined r number of times. Typically r = [5, 10] ’complete’ data

sets are used (Buuren et al., 2006). The present research opts for 5 for ease of computation time.

As stated previously in the Data section, multicollinearity seems to plague the current data set.

This is somewhat expected as the variables sometimes describe the same types of features. General

Fully Conditional Specification techniques (such as predictive mean matching) do not work in such

cases as the algorithm fails to converge (Huque et al., 2018). For this reason, the current paper

uses Regression Trees instead of probability functions as it solves the interaction problem (Doove

et al., 2014). For this purpose the R mice package with cart method was implemented (Buuren and

Groothuis-Oudshoorn, 2010).

4.2 Diagnostics

The main assumption is that the data is MNAR (Missing Not At Random). Imputation methods

can handle this type of data, but bias is regrettably introduced no matter what method is used

(Gelman and Hill, 2006). To asses the accuracy of the imputations, diagnostics must be imple-

mented. Stuart et al. (2009) tackle this issue for multiple imputation methods. They present both

graphic and numeric diagnostics. The main obstacle when attempting this type of analysis is that

the differences between observed and imputed observations does not necessarily imply a problem.

In some cases, especially when the data is not missing at random, these differences could be exactly
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what the imputation is trying to address. If, for example, the data set does not contain information

in provinces with high poverty, the variables such as availability of toilet & water sources could be

influenced by the factor of missingness leading to different distributions between the observed vs.

the non-observed values. Field knowledge is the key to determining whether the imputations are

reasonable or not.

Graphic diagnostics consist of a series of comparisons between the observed vs. non-observed distri-

butions through histograms, quantile-quantile plots and density plots (Stuart et al., 2009) . Here,

differences between distributions should be regarded with a critical eye. When assessing larger

numbers of variables, however, graphical diagnostics may become difficult. Numeric diagnostics

step in as a possible solution. Using specific measures, variables with large differences between the

observed and imputed values will be selected. Such measures include, but are not limited to:

1. z-test : a difference in absolute terms of means of the imputed vs. observed values larger than

two standard deviations away (Stuart et al., 2009),

2. variance ratio test : a ratio of variance smaller than 0.5 or larger than 2 in observed vs.

non-observed values (Stuart et al., 2009),

3. Kolmogorov-Smirnov test : a non-parametric test done by comparing the equality of one-

dimensional distributions of imputed and observed values (Kolmogorov, 1933), (Smirnov,

1948).

In general epidemic studies, authors use only one type of imputation for the entire data set, may it

be multiple imputation via Model Based Imputation or simple kNN Imputation ((Harel et al., 2017)

(Hierink, 2018)). The Red Cross have opted for a full kNN Imputation (from now on referred to as

Naive kNN) on the entire data set in their studies (Hierink, 2018). For this reason a comparison

between the current Pattern Based Imputation versus the Naive kNN Imputation is performed. In

the Results section this paper will prove the superiority of the Pattern Based Imputation versus

the Naive in all three types of variables. A simple comparison between the two methods is done via

Kolmogorov-Smirnov testing as well as through graphical displays of the density plots (Kolmogorov,

1933). A comparison between the Pattern Based Imputation and Model Based Imputation has been

attempted, but due to the high number of parameters and observations, the algorithm of the Model

Based Imputation could not converge. Too many weights had to be estimated and furthermore

rank-deficient fits seemed to overpower the predictions. A comparison of the sort may be of further
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interest in future studies.

4.3 Modelling

In order to begin the modelling work, scaling must be imposed on the explanatory variables. This

reduces the risk of bias in estimators. The current research opted for the following scaling technique:

every variable with a mean higher than 100 is scaled down such that its mean is smaller or equal

to 10.

Heavily imputed data sets introduce a delicate situation. Complications in both model building

as well as model selection are part of the limitations of the multiple imputation technique. The

bias introduced by imputing MNAR type variables is also of concern. This study proposes three

methods for modelling new monthly cases of Dengue: one designed to select which regressors in-

fluence the dependent variable, one to explain how they affect presence of the disease and another

for predictions. In order to compare forecasting power, the data set was split into a training and

testing set via the 80%− 20% ruling (80% of total data set as training resulting in 786 observations

while the remaining 126 represent the other 20% and is set as testing). Model fits were compared

via R2 values while predictions were compared to the actual values via the Mean Arctangent Abso-

lute Percentage Error (MAAPE). Traditional methods such as the Mean Absolute Percentage Error

(MAPE) cannot be applied in the present case because of its inability to handle actual values of

zero (Hyndman and Koehler, 2006).

The MAAPE was selected as a measure of forecasting accuracy because of its ability to handle

variables with different units, much like the traditional MAPE. What is more, this measure is able

to handle cases where the dependent variable is zero, a complication of percentage error measures

which are infinite or undefined in such situations. While regular MAPE calculates the slope as a

ratio, this new technique introduced by Kim and Kim (2016) uses the slope as an angle:

MAAPE =
1

J

J∑
j=1

arctan

(∣∣∣∣Aj − FjAj

∣∣∣∣
)
. (4)

This transformation switches the problem from the slope being a ratio of |A−FA |, which ranges on

[0,∞], to a slope as an angle θ = arctan |A−FA |. Due to the properties of the arctangent function,

θ can only vary on the interval [0, π2 ] , therefore no longer having the shortcoming of MAPE of
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being unbounded for actual values close to zero. Furthermore, the MAAPE preserves the advan-

tages of MAPE: scale-independence, easy interpretation and simple calculation. However, Kim and

Kim (2016) do not recommend using this measure in cases where large errors may have business

implications. This is due to the fact that MAAPE is much more robust to outliers than MAPE.

4.3.1 Elastic Net Poisson Regression - Selection Model

The first approach includes the Selection Model. For this, a traditional statistical method combined

with a regularization technique is used. Due to high over-dispersion, model selection based on the

regular selection criteria such as AIC has proven to be impossible. This lead to model selection

based on Lasso and Ridge penalty (also known as Elastic Net) being the better model selection

method.

Elastic Net variable selection methods were introduced by Zou and Hastie (2005). The idea is

that one can use together Lasso (Tibshirani, 1996) as well as Ridge (Hoerl and Kennard, 1988)

regularization for model selection. In data sets with high inter-variable correlation, such as the

present case, this method has high performance rates (Tibshirani, 1996).

Although both regularizations affect the coefficients, they do so in different ways. Lasso works

by minimizing the residual sum of squares by penalizing the sum of the absolute value of all coef-

ficients. This leads to the possibility that a coefficient βj could end up being equal to zero. The

general Lasso model is:

arg min
β∈Rp

N∑
i=1

(
yi −

∑
j

βjxij
)2

subject to
∑
j

|βj | ≤ v,
(5)

where β represent the coefficients, {y, x} are the data and v is a tuning parameter. Adding the

penalty to an ordinary least squares (OLS) leads to the following loss function:

LLasso(β) =

N∑
i=1

(yi − x′iβ)2 + λ
∑
j

|βj |. (6)
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Ridge regression on the other hand works as coefficient shrinkage, not removal. It does so because

the penalty is convex with loss function:

LRidge(β) =
N∑
i=1

(yi − x′iβ)2 + λ
∑
j

β2j . (7)

In both cases λ is a tuning parameter. Furthermore, for all j, when λ ↑ ∞, βj ↓.

The power of using both regularization techniques comes from the simple reason that each method

has its drawbacks which are then mitigated by the other. For example, in highly dimensional and

inter-correlated data sets, Lasso begins to randomly select variables without concern of which vari-

able fits best. In cases like this, Ridge outperforms Lasso (Tibshirani, 1996). This leads to the

combined loss function:

min
β∈Rp

Lelastic−net(β̂) = min
β∈Rp

[
1

2N

N∑
i=1

(yi − x′iβ)2 + λ
∑
j

[(1− α)
1

2
β2j + α|βj |)]

]
, (8)

where the α parameter decides the mix of Lasso vs. Ridge penalty.

The present research has as dependent variable a non-negative count as can be seen in Figure

5, hence a Poisson regression model seems appropriate.

Figure 5: Histogram of the dependent variable: new Dengue cases.

As Friedman et al. (2010) state, the Poisson model is an exponential model where its positive mean

is modelled on the log scale: logµ(x) = β0 + β′ix hence {xi, yi} have the log-likelihood function:

l(β|X,Y ) =
N∑
i=1

(
yi(β0 + β′ixi)− eβ0+β′

ixi
)
. (9)
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In order to obtain a model selection, a penalized log-likelihood is implemented. This uses coordinate

descent in order to optimize the variable selection. The regularization path is computed at a grid of

values for λ. The Elastic Net penalty α controls the gap between the Ridge (α = 0, responsible for

the shrinkage of correlated predictors towards each other) and Lasso (α = 1, in charge of picking one

predictor and discarding the others) while the λ parameter is in control of the overall strength of the

penalty. The α parameter is set to 0.5 such that equal weights are given to the two regularizations.

In order to find the optimal λ value, k-fold cross validation is implemented (with the default k = 10

folds). This method works by dividing the given data set into k random groups of equal size. The

procedure fits the model onto k−1 ’folds’ and uses the remaining one as a validation set. Repeating

this procedure for every separate group results in the mean cross-validated error (CVM):

CVM =
1

k

k∑
i=1

MSEi, (10)

where MSEi is the Mean Squared Error for validation set i (James et al., 2013). The cv.glmnet

function within the glmnet package was used. This function returns two options for the optimal

lambda: λ1SE and λmin. The first represents the biggest λ value such that the mean cross-validated

error is one standard error away from the minimum CVM, while the second results in the minimum

CVM error. The choice of which λ should be used was done according to the principle of parsimony

(Breiman et al., 1984). It will be shown that the ’one-standard-error’ λ model is not only parsi-

monious, but it also outperforms the ’minimum’ λ one in terms of model R2. The minimization is

thus as follows:

min
β
− 1

N
l(β|X,Y ) + λ

(
(1− α)

N∑
i=1

β2i
2

+ α
N∑
i=1

|βi|
)
. (11)

4.3.2 Quasi-Poisson Elastic Net Selected Model - Explanatory Model

This subsection presents the methodology used for the second modelling approach: the Explana-

tory Model. As stated before, in Elastic Net Regressions on highly correlated covariates the Ridge

overpowers the Lasso leading to more coefficient shrinkage than necessary (Kyung et al., 2010).

Furthermore, there is a lack of agreed upon reliable standard error estimation technique for Elas-

tic Net coefficients (Kyung et al., 2010). In order to obtain consistent estimates both in terms of

regressor weights as well as in terms of their significance, this research proposes a new technique:

if one extracts the selected covariates from the Elastic Net Regression and feeds them to a model

which can provide accurate estimations, consistent coefficients and variances are obtained.
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The Poisson Regression is preferred as the dependent variable is a count of monthly new Dengue

fever cases. Using the framework of Generalized Linear Models (GLM), the probabilistic Poisson

model is as follows:

p(y|x, β) =
eyβ

′xe−e
β′x

y!
, (12)

where y is the dependent variable, x are the dependent variables and β represents the coefficients.

This framework however contains a rather important limitation. In Poisson modelling it is as-

sumed that the variance is equal to the mean. When the data set contains over-dispersion, this

assumption is limiting and leads to biased estimations of standard errors because, as mentioned

before, the theoretical variance no longer matches the sample variance. One obtains correct vari-

ance estimations by using the Quasi-Poisson model which scales the variance by an over-dispersion

parameter φ:

var(µ) = φµ. (13)

This leads to quasi-likelihood estimation methods put forward by Wedderburn (1974). The main

effect on the estimation is when one calculates the standard errors. Under Poisson quasi-modelling,

the regular Poisson standard errors are multiplied by

√
φ̂ =

√
X2

N−P where N is the number of

individuals in the data set and P is the total number of parameters. This correction accounts for

over-dispersion.

Having already selected the optimal model regressors via the Elastic Net Poisson Regression, a

Quasi-Poisson model on the selected covariates should provide reliable parameter calculations. The

coefficients will no longer be highly shrunk towards zero (there no longer is any dominance of the

Ridge penalty over the Lasso) and the variance estimation will be not only no longer limited (as

Quasi-Poisson regressions does take into account over-dispersion), but also correctly estimated (as

there is no need to correct for the Elastic Net penalty while evaluating variation).

This Quasi-Poisson Elastic Net Selected Model represents the contribution that paper offers to

the current literature: a way to correctly estimate the standard errors as well as the coefficients in

over-dispersed, highly imputed data sets after Elastic Net variable selection.
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4.3.3 Bayesian Neural Network - Predictive Model

The third approach implies a combination of Bayesian Statistics and Neural Networks in order to

obtain better predictive power. To understand what makes this approach such a powerful predictor,

one must first grasp what Neural Networks are and how they operate. They can be thought

of as a collection of interconnected nodes (often referred to as neurons) aggregated into layers

where each connection sends a signal from one node to the other. Much like the synapses in the

brain, information is thus propagated through the structure (McCulloch and Pitts, 1988). Figure 6

showcases the input layer, hidden layers and output layer. Each connection is given an initial weight

while each neuron contains an activation function (usually an S-shaped function such as the sigmoid

or tangent such that non-linearity is introduced in the model). The activation function determines

a neuron’s output according to the incoming information. Each node output is then propagated

through the layers with further weights and activation function calculations (within the hidden

layers) until the output layer is reached. The network learns via a process called backpropagation

where the output is compared to the actual output from the training data. The weights are adjusted

via retracing the steps back through the network and by taking into account an error minimization

between the actual value and the neural network return.

Figure 6: Neural Network

As stated above, conventional neural networks are trained via a process of minimizing the error
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function which in itself may be derived via an underlying principle, for example the maximum like-

lihood. This approach contains limitations in the sense that finding the optimal model complexity

which gives a good balance between dimension of the network and over-fitting is difficult. Bayesian

Statistics aids the neural network optimization because it relaxes the algorithm. Furthermore,

methods such as the error function minimization can be regarded as approximations of a Bayesian

treatment (Bishop, 1997).

Dealing with uncertainty in a Bayesian setting is done via conditional probabilities: P (x, y) =

P (y|x)P (x) where P (x) is the so called prior probability. This leads to what is known as Bayes’

theorem:

P (x|y) =
P (y|x)P (x)

P (y)
. (14)

One can apply this to situations where a comparison between models is performed. Assuming

models: M1,M2,M3 with priors P (M1), P (M2), P (M3) (in case no known prior information is

known then they are given equal prior probabilities) and data set D, the following holds for model

Mi:

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
. (15)

The denominator P (D) does not depend on Mi hence the comparison between models can be done

via P (D|Mi) which MacKay (1991) have named the evidence for model Mi. In Regression problems

one must estimate a parameter vector w of weights and biases. Within the data set D there are N

input vectors. Finding the distribution p(w|D) is done similarly to how the conditional distribution

of model Mi has been achieved:

P (w|D) =
P (D|w)P (w)

P (D)
. (16)

The conventional way to find w is by maximizing a likelihood function. In the Bayesian setting how-

ever this is done differently. An initial prior p(w) is set such that it is a smooth and unconstraining

function, usually the zero-mean Gaussian function:

p(w) =
1

Zw(α)
e−

α
2
||w||2 , (17)

where Zw(α) = (2πα )
w
2 . The conditional data distribution P (D|w) can be seen as a likelihood

function in terms of w. The point where the posterior distribution reaches its maximum contains

the vector wmp which is regarded as the most probable weight. Since the goal is the prediction of

output values y from new input values x, one needs a way to predict such values via a process of
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integration over the weights:

p(y|x,D) =

∫
p(y|x,w)p(w|D)dw. (18)

Ideally, one would use wmp in Equation 18. To determine such a vector one would need to seek the

maximum of the posterior probability. It is easier however to find the minimum of the negative of

the logarithm function (also referred to as the error function): E(w). This depends on prior and

likelihood and a weight decay term (Bishop, 1997). This error function can be approximated via a

Taylor expansion at wmp:

E(w) = E(wmp) +
1

2
(w − wmp)TH(w − wmp), (19)

where H is the Hessian matrix.

The current research uses Foresee and Hagan (1997)’s algorithm for a Bayesian Neural Network

optimization. Their research relies on MacKay (1991)’s framework for backpropagating networks.

Given that a set of weight values w is assigned to the node connections in the network, a mapping

y(x|w,M) is defined where M is the architecture of the neural network (number of hidden layers,

number of nodes per layer, activation functions etc.). The goal of any neural network algorithm

is the minimization of some error function. In the present case this is the distance between the

training set and the mapping. It is defined as follows on the data set D of size N :

ED(D|w,M) =
N∑
i=1

(yi(xi|w,M)− ŷi(xi|w,M))2, (20)

where yi(xi|w,M) is the model and ŷi(xi|w,M) is the neural network response. Foresee and Hagan

(1997) define the model for N individuals, J variables and K neurons as:

yi(xi|w,M) = g(xi) + ei =
K∑
k=1

wkgk

(
bk +

J∑
j=1

xijβ
(k)
j

)
+ ei, (21)

where at neuron k: wk is the weight, bk the bias, gk(x) = (e2x−1)/(e2x+1) the activation function,

β
(k)
j the estimated parameter of the j−th variable in the network and ei the error term.

For better performance, an extra regularization term EW (w) is added to the objective function.

This penalizes large weights such that smoother mappings can be created (MacKay, 1991). Is has

been named weight energy and defined for the total number of weights and biases B as:

EW (w|M) =
B∑
i=1

1

2
w2
i . (22)
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Thus an objective function with parameters α and β is constructed the following way (Foresee and

Hagan, 1997):

F = β ∗ ED(D|w,M) + α ∗ EW (w|M). (23)

Foresee and Hagan (1997) state that the parameters α and β should be initialized to 0 while

the weights should be initially set according to the weight initialization algorithm by Nguyen and

Widrow (1990).

As shown previously in this section, a Bayesian analysis requires a likelihood, a prior and a reg-

ularization parameter which guarantees that the total probability sums up to 1. In the present

case these are denoted as P (D|w, β,M), P (w|α,M) and P (D|α, β,M) respectively. This way, the

conditional density function for weights given the data set is defined as:

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
. (24)

Assuming the noise is normally distributed and the prior distribution is also of a normal type, the

probability densities are as follows:

P (D|w, β,M) =
1

ZD(β)
e−βED(D|w,M), (25)

where ZD(β) =
(
π
β

)N/2
and

P (w|α,M) =
1

ZW (α)
e−αEW (w|M), (26)

where ZW (α) =
(
π
α

)B/2
.

By substituting Equations 25 and 26 in Equation 24 one obtains:

P (w|D,α, β,M) =

1
ZD(β)

1
ZW (α)e

−(βED(D|w,M)+αEW (w|M))

P (D|α, β,M)
∝ 1

ZF (α, β)
e−F , (27)

where ZF (α, β) = ZD(β)ZW (α).

If one wishes to maximize the posterior probability for the weights in Equation 27 in order to

obtain the before mentioned wmp, one must minimize F , the objective function. This brings the

algorithm to the parameter optimization stage.
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The density function of parameters α and β given the data and the architecture is according to

Bayes’s rule as follows:

P (α, β|D,M) =
P (D|α, β,M)P (α, β|M)

P (D|M)
. (28)

Assuming uniformly distributed prior P (α, β|M), maximization of Equation 28 is done by maximiz-

ing the likelihood P (D|α, β,M). It is easy to see that this is the so called regularization parameter

in Equation 24. Solving for it leads to the following:

P (D|α, β,M) =
P (D|w, β,M)P (w|α,M)

P (w|D,α, β,M)
, (29)

which is equal to:

P (D|α, β,M) =
ZF (α, β)

ZD(β)ZW (α)
, (30)

where the only unknown is ZF (α, β). As mentioned before in this section, this can be estimated via

a Taylor Series expansion of F around the minimum point wmp. Solving for ZF yields:

ZF = (2π)B/2|H−1mp|1/2e−F (wmp), (31)

where H = ∇2F (wmp) ≈ 2βJTmpJmp + 2αIB is the objective function approximated hessian matrix

(where Jmp represents the training set error Jacobian matrix at minimum point wmp) (Demuth

et al., 2014). Solving for the values of the parameters by deriving with respect to α and β in the

logarithm of Equation 30 leads to the following estimates:

α =
γ

2 ∗ EW (wmp)
and β =

n− γ
2 ∗ ED(wmp)

, (32)

where γ = B−2αmp tr(Hmp)
−1 represents the number of parameters to be used.(Foresee and Hagan,

1997)

By continuous iterations between taking steps in the direction of the objective function minimiza-

tion F (wmp) in Equation 23, calculation of the effective number of parameters γ and re-estimation

of α and β according to Equation 32 until convergence one obtains a Bayesian optimization of

the regularization parameters. This type of optimization is referred to in the literature as the

Levenberg-Marquardt algorithm (Foresee and Hagan, 1997).
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5 Results

This section contains the main results of the research. It is structured as follows: the first subsection

compares the Pattern Based Imputation with the Naive kNN Imputation, the second and third

subsections display the results of the Selection and Explanatory Models and the final subsection

contains the results of the Predictive Model.

5.1 Imputation Comparison

In order to compare the imputation results, one variable from each of the three types is selected.

From IMV, the comparison is done for relative.hum.max (maximum relative humidity), for CMV this

study uses the soil.moi.vwc (soil moisture % VWC) and lastly for the RMV the own.fauc.com.wat.sys

(own faucet and water system) variables are compared.

Figures 7, 8 and 9 display the results of Naive kNN Imputation and Pattern Based Imputation

vs. the original density. The idea of this graphical diagnosis is to compare the original density of

the variable (the blue dotted line) with the density after imputation (the red full line). If the two

densities are very alike each other, than the imputation performed well. On the other hand, if the

two shapes differ, then the imputation may be biased.

(a) Naive kNN Imputed vs Original. (b) Pattern Imputed vs Original.

Figure 7: Density plots own faucet and water system before vs. after imputation.
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It is clear the Pattern Based Imputation is superior to the Naive kNN. For example, in RMV type

variables the two densities in Subfigure 7b are much closer than those of Subfigure 7a. Thus the

density offered by the Pattern Based Imputation technique contains less bias.

(a) Naive kNN Imputed vs Original. (b) Pattern Imputed vs Original.

Figure 8: Density plots soil moisture before vs. after imputation.

The story repeats itself in the case of CMV variables as well. It can be seen that Subfigure 8b

paints a closer resemblance between the Pattern Imputed data and the original as opposed to the

situation in Subfigure 8a. It appears that Naive kNN Imputation favours x = 0 and x = 10 for

imputation values. The Pattern Imputation follows the original distribution much closely, with no

clear spikes for specific values of x.

(a) Naive kNN Imputed vs Original. (b) Pattern Imputed vs Original.

Figure 9: Density plots relative humidity maximum before vs. after imputation.
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A somewhat less striking difference can be found in the IMV variables. Figure 9 displays the dif-

ferences in density between the Naive kNN and Pattern Imputation. The Pattern however still

slightly matches the original more than that of the Naive. The reason why these two seem to be

more similar however is that these weather variables were imputed using geographical kNN in the

Pattern Based Imputation. The two methods are similar hence the results are alike. Geographical

kNN however still slightly outperforms its Naive counterpart as Subfigure 9b does not contain the

same high jump at x value of around 75.

Furthermore, it can be seen from the Appendix Table 6 that the Naive kNN offers more vari-

ables whose Kolmogorov-Smirnov test is significant. This means that the sets of densities (the

original and the post imputation) are sufficiently distinct for more variables than when one opts for

the Pattern Based Imputation.

In order to diagnose the accuracy of the Pattern Based Imputation itself, three numeric methods

were applied such that unusual variables can be flagged and further researched. In the Appendix

Table 6 one can find the variables with significant Kolmogorov-Smirnov test. This means, according

to the test, the original density and the density after imputation are significantly not equal for the

following covariates: rain.val.mm (0.012), wind.spe.kph (0.005), relative.hum.min (0.016), Num-

ber.of.Households (0.025), wind.spe.max (0.000), soil.tem.mean (0.001) and soil.moi.cm (0.001). 1

Furthermore, to these variables a z-test on the absolute difference in means was applied. If the

z-value is greater than the critical value at significance of 0.05 (zcritical = 1.96), then the null hy-

pothesis is rejected, thus the two means are significantly different. Appendix Table 6 shows that

according to this test, none of the variables display odd behaviour, the means of the imputed and

the non-imputed being not significantly different.

A last test is that of the variance ratio. If the first ratio (original/imputed) or the second ratio

(imputed/original) in the Appendix Table 6 are less than 0.5 or greater than 2, then the imputed

and the original variable are considered different enough. This test flagged the wind.spe.kph (wind

speed in kmph) variable as the variance ratios were: 0.49 and 2.01 respectively.

1p− value in brackets
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Having flagged the unusual variables with numeric tests, a graphical test on the densities of the

imputed flagged variables may begin. Figure 10 showcases these densities as opposed to the original

densities of the variables.

(a) Number of households. (b) Rain value per mm.

(c) Soil moisture. (d) Maximum wind speed.
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(e) Wind speed in kmph. (f) Mean soil temperature.

(g) Minimum relative humidity

Figure 10: Density plots flagged variables Pattern Imputed vs Original.

It is easy to see that even though the distributions are not identical, they match each other quite

well. The imputed density and the original generally follow similar patterns as can be seen from

the Figure 10. Subfigures 10d and 10f represent the variables with the most striking differences in

outlines. The variable wind.spe.kph poses a jump at x ≈ 125 and this could be the reason why

this particular variable has been flagged by more numerical tests than the other regressors. The

imputation of the variable soil.tem.mean from Subfigure 10f appears to underestimate the amount

of times that a temperature of around 30 degrees is possible. However, the current study finds no

reason to be alarmed by these small changes in the shapes of densities because the overall imputed

and original outlines seem to be a close match for one another.
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5.2 Elastic Net Poisson Regression - Selection Model

As previously mentioned, the data is plagued by problems such as multicollinearity and bias. The

final impediment in model building is over-dispersion. The test shows a factor φ = 177.1467 with

p-value = 2.2e− 16 hence there is evidence of over-dispersion. This means that the Poisson model

selection cannot be performed via AIC selection. For this purpose the Elastic Net is used for vari-

able selection.

The variables selected into the model are the following: pop.nr.male, pop.nr.female, rain.val.mm,

air.tem.max, cattle, own.fauc.com.wat.sys, own.tub.pip.dep.well, unprotec.spring, lake.riv.rain, bot-

tled.wat, and pop.dens.km2. The Appendix Table 7 displays this selection as well as the coefficients

for each variable. These results are done with a λ = λ1SE = 50.08325 since this led to the highest

R2
λ1SE

= 0.1240878 as opposed to the one via the minimum value for λ = λmin = 11.30389 whose

R2
λmin

= 0.1055164.

5.3 Quasi-Poisson Elastic Net Selected Model - Explanatory Model

Having selected the variables which best fit the data distribution, this study uses a Quasi-Poisson

Regression Model on the Elastic Net Selected variables (QPENselect) in order to obtain consistent

coefficients and standard errors.

Table 1 showcases the results of the regression. The Transformed Estimate column is added for

ease of interpretation. It changes the explanation of a variable effect from the expected log count

of y for a one-unit increase in x to percentage of change in the y for every unit increase of x. This

is achieved by taking the exponent of all estimates (Long and Freese, 2006).

It appears that variables such as pop.nr.male, rain.val.mm, air.temp.max, cattle and pop.dens.km2

positively influence the new cases of Dengue per month. On the other hand, pop.nr.female, un-

protec.spring, own.tub.pip.dep.well, own.fauc.com.wat.sys, bottled.wat and lake.riv.rain negatively

affect the monthly new cases of the disease. These results fall in line with what is known about

Dengue fever. The disease bringing mosquito goes by the name of Aedes aegypti and require still

waters in high temperatures in order to lay eggs (Ponnusamy et al., 2008). Hence an increase of

one unit in maximum temperature and rain value per millimeter leads to an uptake in Dengue of
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5.87% and 0.11% respectively. Furthermore, the higher the population density, the more risk of the

disease being contracted. Hence an increase in one unit of pop.dens.km2 leads to an increase of

0.06% in new cases of Dengue 2.

Differences in Dengue prevalence could be caused by gender-related distinct exposures such as

time spent outside (Anker and Arima, 2011). Some previous studies have proven the tendency of

greater Dengue incidence rate amongst men (Ooi, 2001). In the current study, this is suggested by

the high coefficient carried by this variable. One extra unit of male population leads to an increase

in Dengue risk of 273.68%. Furthermore, an additional unit of female population reduces the risk

by 70.82%.

From the results it is also apparent that cattle has a positive influence on Dengue incidents. An

extra unit of this animal type leads to an increase of 2.57% in the risk of contraction of the disease.

Hasyim et al. (2018) have done research into how animal livestock influences the risk of malaria.

They concluded that keeping such animals inside the house contributes to higher risk. This may be

the case for the results found in the current study as well.

Estimate Transformed Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.5074∗∗∗ 12.2731∗∗∗ 0.6205 4.0409 0.0001

pop.nr.male 1.3182∗∗∗ 3.7368∗∗∗ 0.3685 3.5774 0.0004

pop.nr.female -1.2317∗∗∗ 0.2918∗∗∗ 0.3752 -3.2828 0.0011

rain.val.mm 0.0011∗∗∗ 1.0011∗∗∗ 0.0002 6.8927 0.0000

air.tem.max 0.0570 1.0587 0.0183 3.1095 0.0019

cattle 0.0254∗ 1.0257∗ 0.0152 1.6732 0.0947

own.fauc.com.wat.sys -0.0001 0.9999 0.0001 -1.2969 0.1950

own.tub.pip.dep.well -0.0921 0.9120 0.0644 -1.4309 0.1528

unprotec.spring -0.0876 0.9161 0.0593 -1.4775 0.1399

lake.riv.rain -0.0001 0.9999 0.0001 -1.3641 0.1729

bottled.wat -0.0232 0.9770 0.0583 -0.3986 0.6903

pop.dens.km2 0.0006∗∗∗ 1.0006∗∗∗ 0.0001 3.9697 0.0001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Quasi-Poisson after Elastic Net Selected Model Results.

2All results are displayed ceteris paribus.
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On the other hand, using sheltered water sources and water supply affects the breeding process of

the disease carriers (Ponnusamy et al., 2008), hence owning such toilet and water facilities of one’s

own negatively affects the spread of the disease. One extra unit of an own faucet water system leads

to a decrease in risk of 0.01% while an additional own tub and well reduces it by 8.80%. Having an

extra bottled water measure also leads to a decline of 2.30% in risk.

Curiously, having one added unprotected spring unit leads to 8.39% less chance of contracting

the disease. The reason why this happens is linked to the effect of the lake.riv.rain variable. For

the latter, an extra unit of either lake, river or rain reduces the risk of Dengue by 0.01%. Mc-

Naughton et al. (2018) have studied the effect of water types on Aedes aegypti ’s breeding grounds.

The authors found that the mosquito does not breed in either of the following: creeks, lagoons,

puddles, rivers or swamps. They also tend to only lay eggs in areas populated by humans. Springs,

may they be protected or unprotected, as well as lakes and rivers represent remote areas where little

to no humans have settled down.

The R2 of the Quasi-Poisson with Elastic Net Selection is R2
QPENselect = 0.4738175. This is much

higher than just the Elastic Net Poisson Regression model whose R2 was R2
λ1SE

= 0.1240878. This

proves the superiority of the new model in terms of fit.

5.4 Bayesian Neural Network - Predictive Model

The Bayesian Neural Network optimization provided the following parameters: γ = 66.0618,

α = 0.2352 and β = 41.93. It was constructed on two neurons with optimal scaling factor of

0.7006176. Table 2 showcases the coefficients of the variables selected by the Elastic Net in previous

sections. The Appendix Table 8 contains the full results of the Bayesian Neural Network Analysis

coefficients.

It can be seen that when looking at the coefficients of both neurons, most variables maintain

their influence on the dependent variable: pop.nr.male, rain.val.mm, air.tem.max, pop.dens.km2

lead to an increase in Dengue cases whereas an uptake in own.fauc.com.wat.sys, lake.riv.rain, bot-

tled.wat decrease the risk. The difference in interpretation lies within the pop.nr.female, cattle and

own.tub.pip.dep.well variables. Their coefficient from the first neuron still matches the results from
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the previous sections, but the second neuron’s effect leads to the opposite conclusion: cattle de-

creases the risk of Dengue and an extra unit of pop.nr.female and own.tub.pop.dep.well means an

increase in chance of contracting the disease. Since the neurons have different conclusions regarding

these variables, this study considers the differences in interpretations as opposed to the previous

sections to be of no concern. Changing the architecture of the Neural Network may lead to more

conclusive results in the case of the indecisive variables.

Variables Neuron 1 Neuron 2

weight 3.090311 2.709838

bias 0.780622 -0.23502

pop.nr.male 0.519813 0.083543

pop.nr.female -0.46333 0.052662

rain.val.mm 0.04555 3.915465

air.tem.max 0.037388 2.526867

cattle 0.043424 -4.09695

own.fauc.com.wat.sys -0.00378 -0.13511

own.tub.pip.dep.well -0.02127 1.221236

unprotec.spring 0.021065 -1.6285

lake.riv.rain -0.01229 -0.76821

bottled.wat 0.014114 -0.73865

pop.dens.km2 0.018748 1.130989

Table 2: Coefficients Bayesian Neural Network of Elastic Net Selected Variables.

Table 3 displays the MAAPE of all three models considered in this study. The predictions were

done after a 80% − 20% split of the data which resulted in 126 observations in the testing set.

Interpreting MAAPE results is easily done: the smaller the value of the mean arctangent absolute

percentage error, the better the accuracy of the forecast. The Bayesian Neural Network outperforms

the Selection Model in terms of forecasting, but fails to overcome the predictive power of the

Quasi-Poisson Regression after Elastic Net Selected Model (QPENselect) whose mean arctangent

percentage error rate is 70.48%.
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Model Name MAAPE

Quasi-Poisson Regression

Elastic Net Selected Model
0.7048382

Bayesian Neural Network 0.9017431

Elastic Net Poisson Regression 1.047515

Table 3: MAAPE comparison amongst all models.

This proves the superiority of the QPENselect in terms of forecasting power. The previous section

proved its power in terms of fit. This study thus concludes the new modelling technique provides

the best results given the common limitations found in epidemic studies: multicollinearity, bias

from imputation and over-dispersion.
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6 Conclusion

This study has not only tackled the problem of missing values, but it also gives a guideline of how

such issues can be overcome by separating the variables into categories and tackling each group

individually (IMV, CMV, RMV). It adds to the present literature not only this guideline, but also

methods for geographical and conditional imputation. Furthermore, this study introduces a way of

dealing with multicollinear unknown interconnected variables by using a Fully Conditional Specifi-

cation Imputation method which relies on Regression Trees. It has been shown that this Pattern

Based Imputation outperforms the Naive kNN Imputation (a method widely used in Epidemic stud-

ies, especially within institutions such as the Red Cross). Diagnostic testing has resulted in the

validation of the Pattern Based Imputation. The imputed data sets matched the original ones in

density as well as in variance and mean.

In order to maintain reliability, fitting modelling techniques for data sets with highly imputed val-

ues have been presented. The Selection Model (Elastic Net Poisson Regression) and the Predictive

Model (Bayesian Neural Network) were compared to a new Explanatory technique: Quasi-Poisson

Regression after Elastic Net Selection Model. This new approach outperformed both the selection

as well as the Predictive Model according to model fit and forecasting power. This study suggests

that when dealing with highly imputed data sets where there is unexplained residual variance as

well as multicollinearity, Generalized Linear Models on penalized regression selected variables is

the best approach. Due to the penalized model selection step, one is certain that this is the best

fitting model based on the data set. Furthermore, it provides a stable coefficient and standard error

estimation which simple Elastic Net Regression algorithms fail to do.

Further research into how Pattern Based Imputation Techniques perform as opposed to other impu-

tation techniques should be investigated. Computation time as well as how the methods affect bias

introduction represent possible research questions for the future. Additionally, better structured

Bayesian Neural Networks with more intricate priors could lead to better predictions, thus out-

performing the Quasi-Poisson Elastic Net Selected Model. Different variable selection techniques

prior to the quasi-likelihood estimation could lead to higher performance. This study however has

proven that given the difficult data set, the new modelling technique exceeded the simple Elastic

Net Poisson Regression as well as the straightforward Bayesian Neural Network both in terms of

model fit and forecasting power.
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7 Appendix

Percentage NA value Variable name Variable description

0 cases new monthly cases of Dengue fever

0 pop.nr.male total male population

0 pop.nr.female total female population

0 pop.nr.tot total population

0.340625 rain.val.mm rain value (mm)

0.340625 rain.int.mm.hr rain intensity (mm/hr)

0.435416 wind.spe.kph wind speed (kph)

0.435416 wind.spe.max maximum wind speed (kph)

0.455208 air.tem. air temperature (°C)

0.455208 air.tem.max maximum air temperature (°C)

0.455208 air.tem.min minimum air temperature (°C)

0.442708 air.pre air pressure (hPa)

0.44375 dew.poi dew point (°C)

0.444791 relative.hum relative humidity (%)

0.444791 relative.hum.max maximum relative humidity (%)

0.444791 relative.hum.min minimum relative humidity (%)

0.341666 sunshine.dur.hour sunshine duration hour(s)

0.442708 solar.rad.w.m2 solar radiation (m2)

0.654166 soil.moi.vwc soil moisture (% VWC)

0.618756 soil.moi.cm soil moisture(30cm) (% VWC)

0.65 soil.tem.mean soil temperature mean

0.6260416 soil.tem.mean2 soil temperature mean squared

0.025 carabao carabao

0.025 cattle cattle

0.025 Goat goat

0.025 Hog hog

0.125 Number.of.Households number of households

0.125 own.fauc.com.wat.sys own use faucet community water system

0.125 shar.fauc.com.wat.sys shared use faucet community water system

0.125 own.tub.pip.dep.well own use tubed/piped deep well

0.125 shar.tub.pip.dep.well shared use tubed/piped deep well

0.125 tub.pip.shal.well tubed/piped shallow well

0.125 dug.well dug well

0.125 protec.spring protected spring

0.125 unprotec.spring unprotected spring

0.125 lake.riv.rain lake, river, rain

0.125 peddler peddler

0.125 bottled.wat bottled water

0.125 others others

0.025 pop.dens.km2 population density (per km2)

Table 4: Percentage of missing values, variables and variable description.
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VIF Detection

pop.nr.male 3742.199 1

pop.nr.female 3810.398 1

rain.val.mm 1.46592 0

rain.int.mm.hr 1.470992 0

wind.spe.kph 11.28316 1

wind.spe.max 6.174881 0

air.tem. 83.58987 1

air.tem.max 26.6226 1

air.tem.min 31.39782 1

air.pre 1.532903 0

dew.poi 1.465146 0

relative.hum 37.25954 1

relative.hum.max 13.47417 1

relative.hum.min 39.90851 1

sunshine.dur.hour 1.528944 0

solar.rad.w.m2 2.960523 0

soil.moi.vwc 1.948302 0

soil.moi.cm 1.959306 0

soil.tem.mean 1.383714 0

soil.tem.mean2 1.506878 0

carabao 2.902461 0

cattle 5.43727 0

Goat 6.15039 0

Hog 5.17202 0

Number.of.Households 9.056002 0

own.fauc.com.wat.sys 3.368912 0

shar.fauc.com.wat.sys 2.429458 0

own.tub.pip.dep.well 5.568337 0

shar.tub.pip.dep.well 3.107625 0

tub.pip.shal.well 5.512502 0

dug.well 5.717588 0

protec.spring 8.348004 0

unprotec.spring 4.793932 0

lake.riv.rain 2.61835 0

peddler 3.333385 0

bottled.wat 4.461705 0

others 4.555849 0

pop.dens.km2 7.159102 0

Table 5: VIF results.
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Imputation type Variable p-value z-test Variance ratio orig/imp Variance ratio imp/orig

Pattern based rain.val.mm 0.01271 0.960782 1.15945 0.862478

wind.spe.kph 0.005578 0.847005 0.4967985 2.012888

relative.hum.min 0.01661 0.211372 1.007598 0.992459

Number.of.Households 0.02594 0.976566 1.100964 0.908295

wind.spe.max 2.33E-06 0.423054 0.8668213 1.15364

soil.tem.mean 0.001864 0.127458 1.177273 0.84942

soil.moi.cm 0.01434 0.00364 1.174891 0.851143

kNN based rain.val.mm 0.02294 - - -

rain.int.mm.hr 0.008781 - - -

wind.spe.kph 0.000838 - - -

wind.spe.max 3.05E-14 - - -

air.pre 0.03496 - - -

relative.hum.min 0.03386 - - -

sunshine.dur.hour 0.01631 - - -

soil.moi.vwc 2.25E-07 - - -

Number.of.Households 2.38E-05 - - -

own.fauc.com.wat.sys 3.66E-06 - - -

shar.fauc.com.wat.sys 2.47E-06 - - -

own.tub.pip.dep.well 3.66E-06 - - -

shar.tub.pip.dep.well 2.47E-06 - - -

tub.pip.shal.well 2.47E-06 - - -

dug.well 2.38E-05 - - -

protec.spring 2.47E-06 - - -

unprotec.spring 7.87E-06 - - -

lake.riv.rain 2.47E-06 - - -

peddler 2.47E-06 - - -

bottled.wat 2.47E-06 - - -

others 1.65E-05 - - -

Table 6: Results of tests on Pattern Based vs. Naive kNN Imputation.
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Variable Name Coefficient Transformed Coefficient

Intercept 3.9268 50.7450

pop.nr.male 0.0450 1.0460

pop.nr.female 0.0446 1.0456

rain.val.mm 0.0007 1.0007

rain.int.mm.hr . .

wind.spe.kph . .

wind.spe.max . .

air.tem. . .

air.tem.max 0.0207 1.0209

air.tem.min . .

air.pre . .

dew.poi . .

relative.hum . .

relative.hum.max . .

relative.hum.min . .

sunshine.dur.hour . .

solar.rad.w.m2 . .

soil.moi.vwc . .

soil.moi.cm . .

soil.tem.mean . .

soil.tem.mean2 . .

Carabao . .

cattle 0.0118 1.0119

Goat . .

Hog . .

Number.of.Households.y . .

own.fauc.com.wat.sys.y 0.0000 1.0000

shar.fauc.com.wat.sys.y . .

own.tub.pip.dep.well.y -0.0240 0.9763

shar.tub.pip.dep.well.y . .

tub.pip.shal.well.y . .

dug.well.y . .

protec.spring.y . .

unprotec.spring.y -0.0327 0.9679

lake.riv.rain.y 0.0000 1.0000

peddler.y . .

bottled.wat.y -0.0158 0.9843

others.y . .

pop.dens.km2 0.0003 1.0003

Table 7: Coefficients Elastic Net Poisson Regression with λ = λ1SE .

49



Variables Neuron 1 Neuron 2

weight 3.090311 2.709838

bias 0.780622 -0.23502

pop.nr.male 0.519813 0.083543

pop.nr.female -0.46333 0.052662

rain.val.mm 0.04555 3.915465

rain.int.mm.hr -0.01621 2.843544

wind.spe.kph 0.084411 -1.3005

wind.spe.max -0.02869 -0.12245

air.tem. -0.03311 0.135358

air.tem.max 0.037388 2.526867

air.tem.min 0.060432 0.336202

air.pre -0.02916 1.508606

dew.poi -0.01533 -0.33436

relative.hum -0.00738 2.12003

relative.hum.max 0.011397 -1.41103

relative.hum.min 0.006269 -0.75145

sunshine.dur.hour 0.008773 -0.94164

solar.rad.w.m2 -0.02311 0.908761

soil.moi.vwc -0.01418 -0.57902

soil.moi.cm 0.023234 -1.54118

soil.tem.mean -0.00189 1.665815

soil.tem.mean2 -5.86E-05 -0.81049

carabao -0.00933 1.433683

cattle 0.043424 -4.09695

Goat -0.00731 5.079513

Hog -0.01182 -0.1356

Number.of.Households 0.00071 0.238961

own.fauc.com.wat.sys -0.00378 -0.13511

shar.fauc.com.wat.sys 0.019145 -0.64881

own.tub.pip.dep.well -0.02127 1.221236

shar.tub.pip.dep.well 0.011098 -0.42015

tub.pip.shal.well -0.00166 0.733523

dug.well 0.004039 -0.80716

protec.spring -0.03715 -2.44097

unprotec.spring 0.021065 -1.6285

lake.riv.rain -0.01229 -0.76821

peddler -0.00337 2.770905

bottled.wat 0.014114 -0.73865

others -0.01311 2.455004

pop.dens.km2 0.018748 1.130989

Table 8: Coefficients Bayesian Neural Network.
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