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Abstract

In this paper we propose two new private subgradient methods: the bootstrapped private subgradient

method and the private weighted average subgradient method. These are compared via a simulation study

with the Laplace mechanism, the exponential mechanism, the private subgradient method and random

uniform variables. We find that the exponential mechanism and the private weighted average subgradient

method perform best depending on the situation, as instances can be generated for both mechanisms in

which one performs better than the other and vice versa. However, the exponential mechanism seems to

outperform the private weighted subgradient method in most cases treated in this paper.
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University Rotterdam.
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1 Introduction

Data has become much more prevalent since the rise of Web 2.0, as the use of social media, online shopping,

streaming services, et cetera have increased (Acquisti et al., 2016). The use of these services all generate

data, which may be very personal. This added dimension of data is two-edged, as publication of private

data is undesirable from an ethical standpoint. However, for example in the context of systems operation,

the availability of user data may increase the optimality of the system performance (Han et al., 2014), which

leads to a tradeoff between privacy and optimality. Therefore, differential privacy may lead to a more optimal

solution in this tradeoff, as data can not be traced back to a single person if differential privacy is ensured.

Statistical disclosure control, being able to disclose statistics of a population, while ensuring the privacy of

the individuals within the population, has received interest from the cryptography and database communities

(Dwork et al., 2006). Within statistical disclosure there exist two main types of computational models, non-

interactive models in which the user can not receive any more information than is given and which allows

the owner of the database to delete the data, as no other operations will be performed on the dataset, and

interactive models in which the user may query the database, usually via a privacy mechanism.

Han et al. (2014) have applied differential privacy mechanisms in a relatively simple setting i.e. the affine

case within a hypercube. In this setting the authors found that the private subgradient mechanism is the least

suboptimal mechanism when comparing that mechanism to the exponential and Laplace mechanisms. In

this paper, we will replicate Han et al. (2014) and propose some extensions. Firstly, Section 2 will introduce

the treated problem formally, which will be followed by Section 3 which will treat the theoretical background

of this problem. Next, we discuss the methodology in Section 4 and the results in Section 5. Finally, we

conclude the paper in Section 6, which discusses the obtained results.

2 Problem Statement

Differential privacy in statistical databases ensures that adding or removing an item in the database will

not affect the outcome of the analysis (Dwork, 2011). Private user data is contained by a set D, which is

called a database and D contains all databases of interest. Suppose we would like to obtain information

from D ∈ D, that information is mapped by a query q : D →Q for some target domain Q. Making q(D)

public may be undesirable, as database D contains private information. Therefore, to preserve privacy we

need a mechanism M : D →Q that approximates q for any given query q. At its core, differential privacy

translates the privacy of an individual user into the difference that this user makes in the database. These

changes are defined by an adjacency relation, denoted by Adj(·, ·), and any two databases that satisfy the

adjacency relation are called adjacent databases. The level of differential privacy that a mechanism delivers

is quantified with ε-differential privacy.
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Definition 1. ε-differential privacy (Han et al., 2014). A mechanism M : D →Q preserves ε-differential

privacy if

P(M(D) ∈ R) ≤ eεP(M(D′) ∈ R) (1)

holds for all R ⊆ Q and all pairs of adjacent databases D and D′.

In this context, ε > 0 indicates the level of privacy, where a smaller ε means a higher level of privacy. Fur-

thermore, we see from this formula that it is necessary that the output of a differentially private mechanism

of two adjacent databases is not too different.

The first goal of the paper is to replicate the paper written by Han et al. (2014) after which we try to

extend on the paper. In Han et al. (2014), the authors study differentially private convex optimization with

piecewise affine objectives, with the goal to minimize f : Rd →R, where f is convex and piecewise affine i.e.

f(x) = max
i=1,2,...,m

aTi x+ bi, (2)

for some {ai ∈ Rd, bi ∈ R}mi=1, within convex polytope P thus leading to the optimization problem:

min
x

f(x) s.t. x ∈ P. (3)

We consider the case in which {bi}mi=1 contains user information, therefore D = {bi}mi=1. The other data,

{ai}mi=1 and polytope P are public and fixed. Two databases D = {bi}mi=1 and D′ = {b′i}mi=1 are adjacent

when Equation 4 holds.

Adj(D,D′) if and only if max
i∈{1,2,...,m}

| bi − b′i |≤ bmax (4)

The arising problem is to find a mechanism M which outputs a near optimal solution, while preserving

ε-differential privacy for adjacent databases D and D′ i.e. for mechanism M , Equation 1 must hold for all

R ∈ P and all adjacent databases D and D′.

3 Theoretical Background

3.1 Economic relevance

An economic interpretation can be found in the concept of minimax regret in market entry. Assume a

company wants to enter a market that contains some competitors. Then the company may apply minimax

regret to determine its entry and the level of attributes of the product (Lin and Ng, 2011). Assume a set of

attributes X1,X2,...,Xn with finite domains, defining a set of outcomes X = X1 ×X2 × ...×Xn. The utility

of a consumer is given by a function u : X→R. In this case we want to minimize the maximum regret. The
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regret function, the maximum regret function and the minimax regret functions are defined in equations 5,

6 and 7 respectively (Boutilier et al., 2003).

R(x, x′,U) = max
u∈U

u(x′)− u(x) (5)

MR(x,U) = max
x′

R(x, x′,U) (6)

MMR(U) = min
x
MR(x,U) = min

x
max
x′

max
u∈U

u(x′)− u(x) (7)

Now suppose a company wants to compete against a certain product with fixed characteristics x′ and that

the utility functions of its possible consumers are known. Furthermore, suppose the utility that consumers

receive from x′ is unknown due to hidden characteristics e.g. marketing and branding. Then in the case

that −u(x) is linear and x′ is fixed but unknown, we can translate this problem to Equation 2 where u(x′)

is equivalent to bi and −u(x) is equivalent to aTi x. However this can be more generalized as long as −u(x)

is convex. This could for example be a square root type function, as the negative square root function is

convex and diminishing marginal returns would hold.

3.2 Laplace mechanism

The Laplace mechanism is convenient when the range of query Q is R. This can be generalized to Rd (Han

et al., 2014): If the sensitivity of query q, as defined in Equation 8, is bounded, then ε-differential privacy

can be achieved by adding i.i.d. Laplace noise Lap(d∆/ε) to each element of q. Where ∆ is defined as in

Equation 8.

∆ := max
D,D′

∥∥q(D)− q(D′)
∥∥
∞ . (8)

The Laplace mechanism is very useful due to its ability to deliver all users as much utility as they would

have when a mechanism would be tailored for each user individually (Ghosh et al., 2012). Furthermore,

Koufogiannis et al. (2015) have studied differential privacy in metric spaces. The authors have proven that

the Laplace mechanism returns the lowest mean squared error when compared to other single-dimensional

mechanisms that add noise independent of the input.

3.3 Exponential mechanism

The exponential mechanism uses a scoring function u : Q×D →R. In the case of a minimization problem,

the negative objective function can be a candidate for the scoring function. McSherry and Talwar (2007)

have shown that the exponential mechanism ME(D;u) is ε-differential private if q is randomly reported

following the probability density function in Equation 9

exp(εu(q,D)/2∆u)∫
q′∈Q exp(εu(q′, D)/2∆u)dq′

, (9)
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where

∆u := max
x

max
D,D′:Adj(D,D′)

| u(x,D)− u(x,D′) | . (10)

Huang and Kannan (2012) have researched the application of the exponential mechanism in mechanism design

problems, which aim to maximize social welfare. The authors show that using the exponential mechanism

will return a truthful, differentially private solution, which they confirm by showing that the mechanism

can be applied to three problems: the combinatorial public project problem, the multi-item auction and the

procurement auction for a spanning tree.

3.4 Private subgradient method

Hsu et al. (2014b) have proposed a subgradient method in a differentially private context. A subgradient

taken at x0 in Equation 11 can be ak. However, to calculate the subgradient access to the private data

{bi}mi=1 is needed. Therefore, it is required to privatize the computation at each iteration and to limit the

number of iterations (Hsu et al., 2014b). The exponential mechanism is able to privatize the calculation of

subgradients using the objective function for u, as described in Section 3.3, which is referred to as usub in

the private subgradient method for clarity.

aTk x0 + bk = max
i=1,2,...,m

{aTi x0 + bi} (11)

We denote the sensitivity of usub at x0 as ∆usub
(x0), which is defined in Equation 12.

∆usub
(x0) := max

i∈{1,2,...,m}
max
D,D′

| usub(i;x0, D)− usub(i;x0, D′) |= bmax. (12)

Two algorithms are needed for the calculation of the private subgradient solution, Algorithm 1 calculates

the ε-differential private subgradient. Algorithm 2 shows that that the mechanism is ε-differential private.

(ε/k)-private subgradients are calculated for k iterations due to sequential composition, in this case that

implies that when k ε-private queries are performed, the whole mechanism will be kε-private (McSherry and

Talwar, 2007).

Algorithm 1 ε-differentially private subgradient (Han et al., 2014).

1: Choose scoring function u : {1, 2, ...,m}→R as usub(i;x0, D) = aTi x0 + bi.

2: Select the index i∗ using the exponential mechanism: P(i∗ = i) ∝ exp(εusub(i;x0)/2bmax

3: Output ai∗

3.5 Bootstrapped private subgradient method

We propose a method in which we adapt Algorithm 1 to return a bootstrapped private subgradient, which

is shown in Algorithm 3. This algorithm returns an lε-differentially private subgradient due to sequential
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Algorithm 2 ε-differentially private subgradient method (Han et al., 2014).

1: Set the number of iterations k, step sizes {αi}ki=1 and x(1) ∈ P.

2: for i = 1, 2, ..., k do

3: Obtain an (ε/k)-private subgradient g(i) using Algorithm 1

4: Update x(i+1) := x(i) − αig(i).

5: Output x(k+1) as the ε-differentially private solution.

composition, as the average of l subgradients is taken. Therefore, a slight adjustment in Algorithm 2

is needed, as an ε/(lk)-private subgradient will be required to return an ε-differentially private solution.

Moreover, the bootstrapped private subgradient method is equivalent to the private subgradient method

when l = 1.

Algorithm 3 Bootstrapped lε-differentially private subgradient (Han et al., 2014).

1: Choose scoring function u : {1, 2, ...,m}→R as usub(i;x0, D) = aTi x0 + bi.

2: for i = 1, 2, ..., l do

3: Select the index i∗ using the exponential mechanism: P(i∗ = i) ∝ exp(εusub(i;x0)/2bmax

4: Save ai∗ in a list containing all selected values of ai∗

5: Set abootstrap as the average vector from the list containing all ai∗

6: Output abootstrap

3.6 Private weighted average subgradient method

We propose a method in which we adapt Algorithm 1 to use more information for Algorithm 2 by returning

the weighted average of the subgradients at a point x. In this case, the weights are determined by the

exponential mechanism. This will lead to a less private subgradient algorithm, as information for every bi

is released. This implies a factor m which needs to be accounted for in Algorithm 2. Therefore, ε/(km)-

differentially private weighted average subgradients are required to be computed by Algorithm 4 to return

an ε-differentially private solution to the problem.

Algorithm 4 mε-differentially private weighted average subgradient.

1: Choose scoring function u : {1, 2, ...,m}→R as usub(i;x0, D) = aTi x0 + bi.

2: Give each index j a weight using the exponential mechanism: P(j = i) ∝ exp(εusub(i;x0)/2bmax

3: Define a :=
∑m
j=1 P(j = i)aj

4: Output a
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3.7 Selection of ε

Hsu et al. (2014a) look at the setting of ε from an economic perspective and model the conflicting objectives

of the data analyst, who wants the most accurate data for better inferences, versus the participant, who

may not necessarily want all their data included into the analysis. Furthermore, the ranges under which ε

is tested in algorithms seem to be rather wide in the literature, with values of ε ranging from 0.01 to 7 (Hsu

et al., 2014a).

In practice these values seem to vary more for example, Apple seems to apply higher levels of ε, with ε

ranging from 2 to 8, however as some data may be retrieved more often this will lead to higher levels of ε

due to sequential composition, as explained in Section 3.4, whereas Google applies an ε of 2 for uploaded

data with a maximum privacy budget of 8-9 over the user’s lifetime (Erlingsson et al., 2014). This is closer

to the aforementioned range under which ε is studied, however the privacy levels still differ relatively much

due to the exponential nature of ε.

4 Methodology

The paper will follow the methodology of the simulation study of Han et al. (2014), in which the authors

simulate the data and apply privacy mechanisms with ε = 0.1, after which they compare the levels of

suboptimality of these privacy mechanisms under varying levels of c and m. The privacy mechanisms which

are compared are the Laplace mechanism, the exponential mechanism and the private subgradient method.

We deviate from Han et al. (2014) by varying the levels of ε and adding the bootstrapped subgradient method,

the private weighted average subgradient method and uniform random drawn variables to the comparison.

Moreover, we will look at some special cases to gain more insight in the compared mechanisms.

4.1 Data generation

The data {ai}mi=1 and {bi}mi=1 are generated from i.i.d. Gaussian distributions with mean 0 and standard

deviation of 1, which are constrained within a d-dimensional hypercube, centered at the origin P = {x :

−c 4 x 4 c}. In our base case the values for c, m, ε, d are respectively 2, 10, 0.1, and 2, the effect of all

variables except for d will be looked at in Section 5. For these cases we run the mechanisms 1000 times

each for 100 sets of {ai}mi=1 and {bi}mi=1. For the special cases, the data {ai}mi=1 and {bi}mi=1 are manipulated

to gain some insights in a somewhat simpler setting. In the parallel case {ai}mi=1 is a vector of ones, while

{bi}mi=1 are generated as in the regular case. However the mechanisms will be run for 100 times each for 50

sets of{ai}mi=1 and {bi}mi=1. In the cases with one vector being perpendicular to the other parallel vectors

and with half the vectors being perpendicular we will follow the methodology of the parallel case, where first

the parallel vectors are generated and then appended with a vector of negative ones.
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4.2 Solving the problem without privacy constraints

The problem without the privacy constraints is solved using the SLSQP method in the minimize function of

SciPy.optimize (Jones et al., 2001) in Python, due to its ability to minimize functions with constraints.

4.3 Laplace mechanism

Laplace noise is implemented by generating {wi}di=1 from the exponential distribution, after which w =∑m
i=1 wi, followed by generating the direction ê from the normalization of a d-dimensional Gaussian drawing

with mean 0 and standard deviation of 1. The noise will be added to the solution and the data set respectively.

4.4 Exponential mechanism

The exponential mechanism is implemented by approximating the integral in Equation 9 using the Metropolis

algorithm with a multivariate Gaussian proposal distribution with mean 0 and covariance matrix Σ = ηcId×d,

where η = 0.1 and Id×d is a d × d identity matrix. In the Metropolis algorithm we assume that the Monte

Carlo Markov Chain will be stationary after 5000 iterations, after which the following values will be returned,

as this value should be distributed according to the distribution. The negative objective function will be

used as the scoring function u.

4.5 Private subgradient method

The private subgradient method will run for 100 iterations, following the methodology of Han et al. (2014).

αi is set at 1
i1.25 , which satisfies the step size rules (Boyd, 2003). The level of αi has been determined by

grid search, after selecting a few values and selecting the value which returned the lowest average objective

value, as can be seen in Appendix A from Table 1.

4.6 Bootstrapped private subgradient method

We will run the bootstrapped private subgradient for 100 iterations and set αi at 1
i1.25 , as the method is

similar to the private subgradient method. Furthermore, we will run the method for l set at 2, 4 and 10,

however only results for l = 10 will be shown in Section 5, as that number of bootstrapped values generally

outperforms the other two as can be seen from Appendix B.

4.7 Private weighted average subgradient method

The private weighted average subgradient method will run for 100 iterations, similar to the private subgra-

dient method. αi is set at 1
i1.4 , which satisfies the step size rules (Boyd, 2003). The level of αi has been
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determined by grid search, after selecting a few values and selecting the value which returned the lowest

average objective value, as can be seen in Appendix A from Table 2.

4.8 Uniform distributed random variable

To compare the performance of the privacy mechanisms we add the uniform distributed random variable to

the comparison, as these variables do not use any information from the database except for P. For each

dimension a random uniform number is drawn from [−c, c). The half-open interval is caused by the properties

of generating random uniform numbers with NumPy (Jones et al., 2001), however this should not have too

much of an effect on the results, as the probability of a random variable at a specific value is equal to 0 in

the case of continuous distributions.

5 Results

5.1 Varying levels of c

When c increases with fixed ε = 0.1, m = 10 and d = 2, we observe from Figure 1 that the optimal

value decreases, which makes sense, as the optimal value is more likely to be within the feasible region.

Furthermore, it can be noticed that the Laplace mechanism on both the solution and on the data increases

rather sharply. Moreover, the other methods increase in c at a somewhat similar rate, slower than both

applications of the Laplace mechanism. However, the private weighted average subgradient method seems

to perform best in this setting, as it is the least suboptimal method over the tested values of c, however it

is very closely followed by the bootstrapped private subgradient method.

Figure 1: The average objective value for different values of c
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5.2 Varying levels of m

We observe in Figure 2 that the average objective values increase for all mechanisms as m increases. This

result makes intuitive sense, as more affine functions are being added to the problem, which could increase

the objective values. We see that all mechanisms show similar increases, where the exponential mechanism

outperforms all other mechanisms once m exceeds the base case of m = 10. Furthermore, it can be seen

that the private weighted average subgradient method outperforms the other subgradient methods and that

the Laplace mechanisms perform worst. Moreover, it should be noticed that the private weighted average

subgradient method shows the best performance of the subgradient methods.

Figure 2: The average objective value for different values of m

5.3 Varying levels of ε

When a higher ε is set, then the average objective values of most mechanisms monotonically decrease in ε, as

can be seen from Figure 3, except for the exponential mechanism, which shows irregularities between values

of 0.001 and 0.1. The private subgradient method shows a slight decrease, while the Laplace mechanisms

seem to decrease fastest once epsilon exceeds values of 0.1. Furthermore, we see that the private weighted

average subgradient method and the bootstrapped private subgradient method are relatively invariant to

the change of epsilon in this range of values. Lastly, we see that the exponential mechanism is the least

suboptimal mechanism in most cases, except for the cases where ε = 0.001 and 0.1 in which the private

weighted average subgradient method outperforms the exponential mechanism.
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Figure 3: The average objective value for different values of ε

5.4 Parallel slope case

In the parallel case, we observe from Figures 4, 5 and 6 that the mechanisms perform in roughly the same

patterns. The uniform case generally performs worst, while the Laplace mechanism on the data performs

best. Please note that the lines for the Laplace mechanism coincide with the lines for the optimal value, as

noise is added to the intercepts, after which that problem will be optimized, leading to the optimal solution,

which is the corner solution due to all functions being parallel. Furthermore, the lines for the bootstrapped

private subgradient method and the private subgradient method coincide, due to these mechanisms having

the same step sizes and these algorithms picking the same subgradient, as the subgradients are all equal.

Figure 4: The average objective value for different values of ε with m=2
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Figure 5: The average objective value for different values of ε with m=10

Figure 6: The average objective value for different values of ε with m=100

5.5 Parallel slopes with 1 perpendicular slope case

In this case all ai except for one are set at 1, while the leftover ai is set at -1. We observe in this case

from Figures 7, 8 and 9 that the exponential mechanism is generally the best performing mechanism, while

the random uniform variable seems to perform rather well, as it is not consistently outperformed by other

mechanisms other than the exponential mechanism when m is not equal to 2. The subgradient methods

are performing relatively bad in this setting. This could be attributed to the amount of bi, which could

throw off the probabilities in the algorithms, possibly leading to inaccurate choices of subgradients. Also, the

subgradient mechanisms are relatively invariant to the change in ε, similar to the previous cases. Furthermore,

we observe again that the Laplace mechanisms show relatively much improvement as ε increases. Lastly, we

see that the exponential mechanism shows an irregularity between values of ε of 0.001 and 0.1.
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Figure 7: The average objective value for different values of ε with m=2

Figure 8: The average objective value for different values of ε with m=10

Figure 9: The average objective value for different values of ε with m=100
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5.6 Parallel slopes mixed with perpendicular slopes case

In this case half of the ai are set to 1 with the other half of the ai are set at -1. We observe from Figure

10, 11 and 12 that the exponential mechanism is the least suboptimal mechanism. The exceptions are

when ε is larger than 2 and m = 2 in which the Laplace mechanism on the data is less suboptimal and

in the case where m = 100 and ε = 0.001 in which both the uniform random variables and the private

subgradient weighted average method slightly outperform the exponential mechanism. Furthermore, the

private subgradient method performs worst of all subgradient methods, while the private weighted average

subgradient method performs best of these subgradient methods.

Figure 10: The average objective value for different values of ε with m=2

Figure 11: The average objective value for different values of ε with m=10
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Figure 12: The average objective value for different values of ε with m=100

6 Discussion

In this paper we propose two new subgradient methods and compare these with the methods in Han et al.

(2014) and uniform random variables by simulating data. We observe that the exponential mechanism

works least suboptimal in most cases. However, cases can be devised in which this mechanism performs

worse compared to the other mechanisms, for example in the case with parallel ai. Additionally, we see that

the private weighted average subgradient method and the Laplace mechanism on the data perform best in

some cases, however from the cases in this paper, we see that this depends on the setting.

Future research may look into generalizing the problem statement, for example by generalizing f(x) to

other convex functions or by changing the shape, size and position of P. Furthermore, other mechanisms

could be taken into account of this comparison or the mechanisms treated in this could be refined, i.e. an

optimization of the parameter l in the bootstrapped private subgradient method. Likewise, these mechanisms

could be tested in different instances of {ai}mi=1 and {bi}mi=1 to gain more insight in the performance of these

mechanisms. Moreover, the hyperparameters αi and k could possibly be more optimized, as we may have

reached a local minimum in our grid searches. Also, some type of cross validation could be applied to ensure

the generalizability of the methods. For example in the parallel case, the subgradient methods should be able

to reach the optimal solution, as there is effectively one subgradient, which leads to the optimal solution.

In addition, there could be more research on the behavior of the exponential mechanism with respect to ε,

as the irregularity seems to be caused by ε being on both sides of the division in Equation 9, however this

might require some formal analysis to see if this could be manipulated in a favourable manner.
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A Step size αi grid search

Table 1: Average objective values in a grid search over αi in the private subgradient method

αi Average objective value

0.51 3.216862

0.55 3.193634

1 2.843963

1.1 2.819991

1.15 2.814023

1.2 2.810908

1.225 2.810166

1.25 2.809884

1.275 2.809988

1.3 2.810431

Table 2: Average objective values in a grid search over αi in the private weighted average subgradient method

αi Average objective value

0.51 3.143295

1.2 2.632173

1.25 2.624945

1.3 2.620758

1.35 2.618912

1.4 2.61876

1.45 2.619904

1.5 2.622033
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B Selection of l in the bootstrapped private subgradient method

Table 3: Average objective values of the bootstrapped private subgradient method for different values of c

Average objective value

c l = 2 l = 4 l = 10

0.5 1.548087 1.549246313 1.546318958

1 1.90986 1.896081277 1.873503252

1.5 2.314152 2.279665948 2.244296388

2 2.739694 2.69421348 2.656434942

2.5 3.189795 3.141127662 3.104874732

3 3.663412 3.615561916 3.581757256

Table 4: Average objective values of the bootstrapped private subgradient method for different values of m

Average objective value

m l = 2 l = 4 l = 10

10 2.739694 2.694213 2.656435

50 4.329233 4.261848 4.216263

100 4.886827 4.799117 4.748728

150 5.161039 5.080252 5.01459

200 5.315335 5.234949 5.175692
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Table 5: Average objective values of the bootstrapped private subgradient method for different values of ε

Average objective value

ε l = 2 l = 4 l = 10

0.001 2.740295 2.69451 2.656573

0.01 2.740199 2.694461 2.65656

0.1 2.739694 2.694213 2.656435

1 2.734714 2.691475 2.655392

2 2.728875 2.688136 2.654064

4 2.716863 2.682028 2.651582

6 2.705177 2.675904 2.648963

8 2.693812 2.669973 2.646622

C Explanation of programming code

In these programs we simulate the problems that are discussed in the paper. In Complete Thesis code.ipynb

we run the ’regular’ case in which ai and bi are generated via standard Gaussian distributions. In Parallel

Complete Thesis code.ipynb we run the case where all ai carry the value 1. In 1 perpendicular Complete

Thesis code.ipynb we run the case where all ai except for one carry the value 1, while the last ai carries

the value -1. In Half perpendicular Complete Thesis code.ipynb we run the case where half of the ai carry

the value 1 while the other half carry the value -1. These programs have the same structure and therefore

are explained all at once. All parameters can be changed where they are defined. Changing the variable

dimensions takes somewhat more effort, as the amount of bound vectors in bnds needs to be equal to

the amount of dimensions. Furthermore, the variable alpha needs to be changed inside the definition of the

method. The average objective values that will be returned by the program are in the following order: Private

subgradient method, Exponential mechanism, Laplace mechanism (data), Laplace mechanism (solution),

Private weighted average subgradient method, Bootstrapped private subgradient method (l=2), Random

Uniform, Bootstrapped private subgradient method (l=4), Bootstrapped private subgradient method (l=10).

This is followed by the average optimal value. Furthermore, the average standard deviation will be returned

as well in the same order as the average objective values.
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