
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Differentially Private Convex Optimization with Piecewise Affine Objectives

Using Projections and Average Subgradients

Name student: Niels Ota

Student ID number: 425442

Supervisor: prof. dr. S.I. Birbil

Second assessor: prof. C.U. Cakmak

July 8, 2019

Abstract

Han et al. introduced an iterative, differentially private method for solving convex con-

strained optimization problems with piecewise affine objectives: the differentially private

subgradient method. In this paper, we propose extensions to this method to guarantee

solutions stay within the feasible region and introduce a hyperparameter (γ) to allow the

optimization algorithm to take an average subgradient (the differentially private average

subgradient method). We find evidence that tuning γ and using projections can increase

performance.

Contents

1 Introduction 4

2 Literature Review 5

3 Problem Statement 6

3.1 Reference Paper Problem Statement . 7

3.2 Problem Statement Extension . 8

4 Useful differential privacy tools 8

4.1 Laplace Mechanism . 8

4.2 Exponential mechanism . 9

4.3 Useful Theorems . 10

5 Methodology 10

5.1 Optimization without privacy . 11

5.1.1 Subgradient method . 11

5.1.2 Solving as Linear Program . 11

5.2 Laplace solution . 11

5.2.1 Laplace mechanism acting on the problem data 11

5.2.2 Laplace mechanism acting on the problem solution 12

5.3 Exponential Mechanism . 12

5.4 Differentially private subgradient method . 12

5.5 Limitations differentially private subgradient method 14

6 Extensions 14

6.1 Alternative feasible regions . 14

6.2 Private projected gradient descent . 15

6.3 Private average subgradient . 16

7 Results 17

7.1 Results Replication . 17

7.2 Results Extensions . 20

7.2.1 Alternative feasible regions . 20

7.2.2 Private projected gradient descent . 21

7.2.3 Differentially private average subgradient method 22

2

8 Conclusion 23

A Program Descriptions 24

3

1 Introduction

Data is a hot topic. Data allows individuals, companies and countries to effectively manage their

assets. Census bureaus over the whole world collect information about the population they are

tasked with observing and disclose aggregate information through statistics. Companies conduct

surveys to gain insights into the type of person that buys their product or uses their service.

Individuals conducting empirical studies often require people to participate in their research to

validate hypotheses. In short, data is a crucial part of decision making.

However, data requires information about individuals. Individuals might be reluctant to

share information in fear of other parties using their data to deduce information about them they

did not intend to share. For example, take a household using advanced metering infrastructures;

meaning that the utility company can collect near real-time power consumption. If this single

household drives an electric vehicle, zero demand from a power station could indicate that the

home owner is away from home, which is interesting information for thieves. In short, individuals

are exposed to the risk that potential eavesdroppers are attempting to learn information they

want to hide.

An intuitive - yet naive - solution to protecting the privacy of individual users is anonymizing

the dataset. Unfortunately, this is no guarantee for privacy due to the fact that side informa-

tion is available [1]. The lack of privacy guarantees through anonymization was demonstrated

through the identification of Netflix subscribers in the anonymized Netflix prize dataset through

linkage with the Internet Movie Database [1]. This demonstrated the need for a rigorous method

for preserving the privacy of individuals.

In 2006, Dwork and her collaborators introduced differential privacy as a manner of guar-

anteeing privacy [2]. Differential privacy translates the privacy of an individual to the effect

that individual has on any random mechanisms working on that dataset. Roughly speaking,

differential privacy ensures that the removal or addition of a single user (a row in the database)

does not effect the outcome of an analysis on that dataset beyond a specified threshold.

In its original setting [2], differential privacy assumes a trustworthy curator gathers informa-

tion from individuals (respondents) and uses this information to release aggregate information

to the public. External queries are made to the curator by outside parties (possible adversaries).

The curator is tasked with answering these queries in a way that protects respondents from ad-

versaries trying to learn information about individual respondents. The curator does this by

ensuring differential privacy.

An interesting point of research is how useful the results of queries are. In systems operation,

4

user data is leveraged to make decisions that optimize the performance of the system. Hence,

the query is the solution to an optimization problem. In this setting, user data corresponds

to the parameters of the objective function or its constraints. Han et al. [3] introduced and

analyzed the differentially private subgradient method (DPSM); a differentialy private version

of the regular subgradient method. They applied this method to a piecewise affine objective

with a hypercube feasible region. In this setting, Han et al. found that the DPSM performed

better than other differentially private methods; like the Laplace- and exponential mechanism.

Although these results were promising, they were attained under restrictive assumptions. The

goal of this paper was to replicate their findings, and relax a number of their assumption about

the shape of the feasible region and investigate whether their findings continue to hold. Also,

we add projections to the DPSM, ensuring feasible solutions. Additionally, we introduce the

differentially private average subgradient method (DPASM), which uses an average subgradient

whist preserving differential privacy.

The mayor result of this paper is that the DPSM continues to perform better than the

differentially private Laplace mechanism and the exponential mechanism for feasible regions

in a variety of shapes. We altered the DPSM presented in [3] to guarantee feasible solutions,

and motivated this modification. Furthermore, we found that the differentially private average

subgradient method yielded results with lower suboptimality when the dimensionality of the

problem increased and γ was large.

The next section discusses the position of the reference paper [3] and this paper in the field

of differential privacy.

2 Literature Review

Dwork and her collaborators introduced the term differential privacy in 2006 [2]. It provided

a mathematically rigorous guarantee for privacy, and consequently received a lot of attention.

Dwork proposed the Laplace mechanism to guarantee differential privacy. The Laplace mecha-

nism perturbs the query by adding noise. A problem with the Laplace mechanism is that the

range of the output has to be the real numbers (if the possible outcomes are dog or cat, you can

not add noise). Consequently, the need for a differentialy private method that allowed non-real

ranges arose.

In 2007, McSherry and Talwar introduced the exponential mechanism to solve the above

mentioned problem [4]. Rather than adding noise, this method assigns a score to every possible

outcome of a query. The closer this outcome is to the true outcome, the higher the score is. An

outcome is then chosen such that the probability of selecting it is proportional to its score. The

5

range therefore no longer has to be real numbers. All that the exponential mechanism requires

is a function that maps every outcome to a score. The exponential mechanism widened the

array of differential privacy ensuring tools, which led to a wider array of differentially private

applications.

An example of such an application was the use of differential privacy to optimization prob-

lems. Nozari et al. [5], amongst others, studied multi-agent differentially private distributed

constrained optimization where the objective function of each agent is kept private and the

agents aim to minimize the sum of their objective functions. Kusher et al. [6] applied differen-

tial privacy to Bayesian optimization - a powerful tool in machine learning - to ensure that no

personal information can be inferred from Bayesian optimization output.

Han et al. [3] studied the class of convex optimization problems whose objective function

is piecewise affine, with linear constraints. This problem surfaces in norm optimization and

resource allocation problems [3]. They proposed an iterative method called the differentially

private subgradient method (DPSM) to privately solve this class of problems. Their main

finding was that by selecting a subgradient in a differentially private manner, the subgradient

method becomes differentially private. Han et al. [3] reported increased performance compared

to methods mentioned above. However, these findings were done under restrictive assumptions

about the feasible region. Additionally, their findings relied on the generation of function

parameters by a normal distribution, whose mean and standard deviation were left undisclosed.

This makes replicating their findings impossible. Furthermore, the DPSM had no guarantees

of providing a solution that lied within the feasible region.

In this paper we replicated and critically evaluated the finding made in [3] and tested the

applicability of the DPSM to a larger variety feasible regions; Including spheres, linear equality

constraints and linear convex polytopes. In doing so, other parties know when it is appropriate

to use the DPSM and when it is not. Additionally, we present an algorithm guaranteeing a

feasible solution, which has obvious benefits for any party using the DPSM. Finally, we introduce

the differentially private average subgradient method (DPASM). The next section elaborates

on the mathematical definition of differential privacy and introduces the problem statements.

3 Problem Statement

Before introducing the problem, we will now give a brief introduction to differential privacy.

Differential privacy concerns itself with masking changes in the database caused by a single user.

Changes in the database should be attributable to things other than a user joining or leaving

the database, hence giving the user plausible deniability. Thus, the idea behind differential

6

privacy is to equate ones privacy to changes caused by joining or leaving a database.

Consider the universe of all possible databases as D. The points of interest are queries that

take a database as input and map this database to a target domain Q. Denote this mapping

as q : D → Q. If q(D) is readily available, adversaries might infer properties about individuals

in D that should remain private. A mechanism M(D) is needed in order to preserve privacy in

the sense that no single user can influence the outcome of M(D) beyond a quantifiable limit.

In order to define this limit, the definition of an adjacent database is needed. Adjacent

databases are databases that differ on a single user being present or not present in that database;

databases that differ in terms of one row. With this tool, differential privacy is defined.

Definition 1. A randomized mechanism M : D → Q preserves ε-differential privacy if for all

R ⊆ Q and all pairs of adjacent databases D ∈ D and D′ ∈ D:

P (M((D) ∈ R) ≤ eεP (M(D) ∈ R). (1)

Relation (1) guarantees that the probability of an outcome of the random mechanism differs

by at most a factor eε ≈ 1 + ε for adjacent databases. Hence, lower value of ε mean greater

levels of privacy.

Having established a formal representation of differential privacy, we will present the class

of minimization problems studied in [3] and this paper.

3.1 Reference Paper Problem Statement

In this paper and [3], the following class of functions was minimized:

f(x) = max
i=1,2,...,m

{aᵀi x+ bi} (2)

The function above is convex and piecewise affine and maps from Rd to R (f : Rd → R). The

optimal value for the objective was constrained to lay within a convex hypercube [3], so the

optimization problem is defined as follows:

min
x
f(x) s.t. − c ≤ xi ≤ c ∀i (3)

As in [3], {bi}mi=1 was the set of user information that remained private. Both {ai}mi=1 and

P were public information. Thus, the database was: D = {bi}mi=1. In this setting databases are

defined as adjacent if the following holds:

max
i∈{1,2,...,m}

|bi − b′i| ≤ bmax (4)

With the above equations, the first research problem is formulated as follows:

7

Problem 1. For problems of the form (3), find a mechanism M that outputs a approximate

optimal solution that preserves ε-differential privacy under the adjacency relation (4).

Han et al. [3] used the DPSM to find a solution to Problem 1, and compared this to a number

of other differentially private methods. They found that the DPSM substantially outperforms

these methods. However, we saw no reason to assume that results found on a hypercube would

generalize to feasible regions of any shape. Hence we investigated whether there is evidence

that this generalisation indeed holds. The following section introduces this research question.

3.2 Problem Statement Extension

To test whether the DPSM outperforms other differentially private methods when the feasible

region is another shapes, also considered the following formulations.

Problems where the feasible region is a sphere:

min
x
f(x) s.t. ‖x‖2 ≤ c (5)

Problems with a set of equality constraints:

min
x
f(x) s.t. Cx = d (6)

And finally problems with a set of inequality constraints:

min
x
f(x) s.t. Cx ≤ d (7)

Problem 2. For problems of the form (5), (6) and (7), does the differentially private subgradient

method continue to outperform other differentially private optimization methods?

4 Useful differential privacy tools

This section reviews several necessary tools in differential privacy. These tools include the

Laplace mechanism, the exponential mechanism, the post-processing rule, and the composition

of private mechanisms.

4.1 Laplace Mechanism

The Laplace mechanism [2] adds calibrated noise to components of a query. It adds as little

noise as possible whilst guaranteeing ε-differential privacy. If queries on adjacent databases

8

yield distant results (high sensitivity), more noise is added to mask these changes. Vice versa,

the same holds.

The sensitivity measures the maximum change in the outcome of queries for adjacent

databases. Suppose the sensitivity of query q is defines as

∆ = max
D,D′

∥∥q(D)− q(D′)
∥∥
∞ (8)

and is bounded. Dwork and her collaborators found that adding i.i.d. Laplace noise

Lap(d∆/ε) to every component of q yields ε-differential privacy [2].

Han et al. [3] present a similar mechanism which requires less noise by noting that the l2

sensitivity of ∆2 is

∆2 = max
D,D′

∥∥q(D)− q(D′)
∥∥

2
≤
√
d∆ (9)

and hence bounded.

Theorem 1. ([3][2]) For a given query q, let ∆2 = maxD,D′ ‖q(D)− q(D′)‖2 be the l2 sensitivity

of q. Then the mechanism M(D) = q(D) + w, where w is a random vector whose probability

distribution is proportional to exp(ε ‖w‖2 /∆2), preserves ε differential privacy.

Where Dwork in [2] adds i.i.d. noise to each component of q, Han et al. [3] add an entire

vector of noise in one step. They call it the vector-Laplace mechanism due to its close resem-

blance to Laplace mechanism. Unfortunately, both mechanisms share the same shortcoming:

the pair can only be used when the range of the query is R. The next section will discuss a

mechanism that allows the range of q to be any type of set.

4.2 Exponential mechanism

The exponential mechanism preserves differential privacy and allows the range of the query

to be any set [4]. This mechanism scores all possible candidate queries for a given database

D. The score of a database paired with a candidate query is measured by a utility function

u : Q × D → R, where Q is the range of a query on database D. If a query R is preferred to

R′, then u(D,R) > u(D,R′). The exponential mechanism selects any candidate query with a

probability proportional to its score. The mechanism ME(D;u) is hence defined as follows:

Definition 2. For any function u : Q×D → R with R ⊆ Q and D ∈ D

ME(D;u) := Select candidate query R with probability

proportional to exp(
εu(R,D)

2∆u
)

(10)

9

Here for any scoring function u, ∆u describes sensitivity of the scoring function.

∆u := max
R

max
D,D′ : Adj(D,D′)

|u(R,D)− u(R,D′)| (11)

There are three terms in the exponent of (10). If ε is infinite, in (10) the query R with the

largest score will be selected with certainty. Hence, there is no privacy. If ε is zero (complete

privacy), all queries R could be chosen with equal probability.

Theorem 2. (McSherry and Talwar [4]) The exponential mechanism ME(D;u) guarantees

ε-differential privacy.

In short, the exponential mechanism allows the selection of any query based on the score of

those queries. Therefore the range of the query Q no longer has to be R.

4.3 Useful Theorems

The following two theorems are useful tools in differential privacy. They facilitate the construc-

tion of new differentially private algorithms based on existing ones. They are presented without

proofs in this paper. We recommend readers interested in the proofs to study [2] and [7].

Theorem 3. Post-processing. [2] If a mechanism M : D → Q preserves ε-differential privacy.

Then for any function f , the functional composition f ◦M also preserves ε-differential privacy.

Theorem 4. Sequential composition [7]. Suppose a mechanism M1 : D → Q preserves

ε1-differential privacy, and another mechanism M2 : D → Q preserves ε2-differential privacy.

The mechanism M(D) = (M1(D),M2(D)) preserves (ε1 + ε2)-differential privacy.

The Laplace mechanism, the exponential mechanism, the post-processing theorem, and the

sequential composition theorem form the theoretical foundation of the differentially private

optimization algorithms that we will discuss in the next sections.

5 Methodology

This section presents the various (differentially private) approaches to optimizing the class

of minimization problems discussed in the chapter 3. First we discuss several non-private

minimization algorithms. Then we review the four mechanisms that obtain a differentially

private solution discussed in [3]. Finally, we discuss their shortcomings and suggest several

improvements in the subsequent section.

10

5.1 Optimization without privacy

5.1.1 Subgradient method

Disregarding privacy, problems of the form (3) can be solved using the subgradient method.

This method converges if the best solution is stored whilst running the method. This is key

since the subgradient is not necessarily a descent direction. Formally, g is a subgradient of f at

x0 if the following relationship holds for all x in the domain of f :

f(x) ≥ f(x0) + gᵀ(x− x0) (12)

Let k ∈ {i =, 1, 2, ...,m} be the index of the active affine function, such that:

aᵀkx0 + bk = max
i=1,2,...,m

{aᵀi x0 + bi} (13)

Clearly, ak is the subgradient of f at x0. However (13) shows that computing the subgradient

requires access to private information: {bi}mi=1. A later section will discuss how to privately

compute a subgradient.

5.1.2 Solving as Linear Program

Before moving on to private optimization, notice that (3) can be solved exactly as a linear

program using the following formation:

minimize z

s.t. z ≥ aᵀi x0 + bi ∀i

− c ≤ xi ≤ c ∀i

Solving the above problem gives an exact solution, and consequently provides insight into

the performance of the other minimization algorithms.

5.2 Laplace solution

The Laplace mechanism can be used to perturb a query with noise. This query can either be

the data, or the solution itself. Both will be discussed, starting with the pertubation of the

data.

5.2.1 Laplace mechanism acting on the problem data

Adding Laplace noise to the data (b) and solving (3) guarantees differential privacy. This means

adding a vector of noise to the database D = {bi}mi=1 using the vector Laplace mechanism

11

described in Theorem 1. Solving the problem once the problem has been privatized is post-

processing, hence the obtained solution is private due to Theorem 3.

Theorem 5. The mechanism that outputs MP (b) = b + wP , where wP is drawn from the

probability density function proportional to exp(−ε ‖wP ‖2 /
√
mbmax), is ε-differentially private.

5.2.2 Laplace mechanism acting on the problem solution

The second way of preserving ε-differential privacy is to first solve (3), and then apply a vector

of Laplace noise to the solution xopt : MS(D) = xopt(D) + wS . Where wS is drawn from

a distribution proportional to exp(−ε ‖wP ‖2 /
√
d∆). Here ∆ is the sensitivity of the optimal

solution. It is generally difficult to analyze how the optimal solution responds to changes in the

database [3]. However, for certain shapes (cubes) the diameter of the feasible region provides

an upper bound on ∆. This fact can be used to add Laplace noise to xopt. For other feasible

regions, the upper bound on ∆ can be computed by finding the minimum-volume (Löwner-

John) ellipsoid inscribing the feasible region P, and subsequently using its longest axis as the

upper bound.

5.3 Exponential Mechanism

The third private optimization algorithm is the exponential mechanism. In [3], Han et al.

showed that if the negative function (−f) is used as a scoring function (u), the sensitivity with

respect to u (∆u) is equal to bmax. We refer to [3] for the proof. This leads to the following:

Theorem 6. The mechanism ME that outputs x̄opt, according to the probability density func-

tion
exp(

εu(x̄opt,D)
2bmax

)∫
x∈P exp(

εu(x̄opt,D)
2bmax

)dx

is ε-differentially private.

5.4 Differentially private subgradient method

The fourth private optimization algorithm is the differentially private subgradient method

(DPSM) and is the main result in [3]. In essence, it is identical to the regular subgradient

method. However, in order to preserve privacy, the gradient is computed privately.

At any given point x0 the gradient is the magnitude of the slope of the affine function that

is active in f(x) = max
i=1,...,m

{aᵀi x0 +bi}. The set of all possible gradients therefore is {ai}mi=1. Han

et al. suggested choosing a gradient by selecting the index i using the exponential mechanism.

The exponential mechanism requires a scoring function u. It it desirable to assign a higher

12

score to indices i that attain relatively higher values in aᵀi x0 + bi. Making it more likely to

select the index corresponding to the true gradient at x0. As such the proposed in [3] was

usub(i;x0, D) = aᵀi x0 + bi. Readers should note that this is a function of i. The sensitivity is

then

∆u = max
i=1,...,m

max
Adj(D,D′)

|u(i;x0, D)− u(i;x0, D
′)|

= bmax

(14)

We refer to [3] for a proof. Algorithm 1 shows how to privately compute a subgradient.

Algorithm 1: ε-differentially private subgradient.

1 Choose the scoring function u : {1, 2, ...,m} → R as

usub(i;x0, D) = aᵀi x0 + bi

2 Select the index i∗ using the exponential mechanism:

P (i∗ = i) ∝ exp(
εusub(i;x0, D)

2bmax
)

3 Output a∗i as the private approximate subgradient at x0

The DPSM in [3] is constructed by replacing the subgradient in the regular subgradient

method by a differentially private subgradient using Algorithm 1. The result is Algorithm 2.

Algorithm 2: ε-differentially private subgradient method.

1 Choose the number of iterations k, step sizes {αi}ki=1 and x(1) ∈ P

2 For i = 1, ..., k repeat the following steps

1. Obtain an (ε/k)-private subgradient g(i) using Algorithm 1;

2. Update x(i+1) ← x(i) − αig(i)

3 Output x(k+1) as the solution

If the subgradient used in Algorithm 2 is computed using Algorithm 1, Algorithm 1 (the

modified subgradient method) is differentially private. This can be shown using the sequential

composition theorem; if each iteration of Algorithm 1 preserves (ε/k)-differential privacy and

the total number of iterations is k, Algorithm 2 preserves (ε)-differential privacy.

13

5.5 Limitations differentially private subgradient method

Although Han et al. [3] presented evidence that the DPSM outperforms other well-known differ-

entially private optimization techniques, their findings were done under idealized circumstances.

The limitations with their findings are:

1. In step 2 of Algorithm 2, x is updated using the subgradient method update rule. However,

there is no guarantee that x will remain in the feasible region P once this step has been

taken. As an extension to[3], we expanded the DPSM so it guarantees feasible solutions.

2. Han et al. [3] did not test the DPSM of feasible regions other than a hypercube. To

validate the effectiveness of the DPSM, we included an extension that tests the DPSM on

other feasible regions.

3. Han et al. [3] compared the performance of the DPSM to the regular subgradient method

for (3). However, as shown in section 5.1.2, there is an exact solution to problems of

this form. Therefore, comparing the DPSM to the exact solution offers a better basis

for comparison. In this paper, we included the exact solution alongside the subgradient

method solution.

The next chapter will discuss extensions aimed at overcoming the aforementioned shortcom-

ings of the finding made in [3].

6 Extensions

This chapter presents extensions to [3]. A number of critical remarks made in previous chapters

warrant questions regarding generalization, relevance and feasibility of the differentially private

subgradient method. The extensions are aimed at testing the DPSM with regards to these

critical remarks.

6.1 Alternative feasible regions

A problematic assumption made by Han et al. [3] was the assumption that results found using

a hypercube centered at the origin as the feasible region would generalize to convex feasible

regions of any shape. In other words, assuming that the DPSM will work for any problem,

given that it works on a simple problem. In section 3.2 we presented a number of other feasible

regions to test the DPSM on. The results of these findings are discussed in the next chapter.

14

6.2 Private projected gradient descent

Although Han et al. [3] use a hypercube as the feasible region, there is no guarantee that x

remains in the hypercube after each iteration of the DPSM without a projection back onto

P. The figure below illustrates this. It shows the contour lines of a sphere, with a square

(2 dimensional cube) constraint. The arrows correspond to iterations of the gradient descent

algorithm (f is a sphere, hence there is no subgradient). In the last step, the gradient descent

algorithm steps towards the minimum, which lies beyond the boundaries of the constraint.
80.0

60.0

6
0
.0

40.0

4
0
.0

20.0

2
0
.0

20
.0

x(0)

x(1)

x(2)x(3)

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

(x1 + 3)2 + (x2 + 1)2

The figure above shows that Algorithm 2 does not guarantee that optimal solutions lie within

the feasible region. To guarantee the DPSM is applicable to a wider range of objective functions

and constraint sets, this guarantee should be added to the optimization algorithm. Doing so

yields Algorithm 3.

Algorithm 3: ε-differentially private projected subgradient method.

1 Choose the number of iterations k, step sizes {αi}ki=1 and x(1) ∈ P

2 For i = 1, ..., k repeat the following steps

1. Obtain an (ε/k)-private subgradient g(i)

2. Update y(i+1) ← x(i) − αig(i)

3. x(i+1) ← projection y(i+1) onto P

3 Output x(k+1) as the solution

Combining Algorithm 2 and Algorithm 3 yields the DPSM used in the remainder or this

paper, and guarantees that solutions are feasible. Algorithm 3 requires a projection back onto

15

the feasible region P. The method to accomplish this projection depends on the formulation of

P. For instance, if P is box shaped, then the projection can be accomplished in a single step

(decreasing the magnitude of xi to the limit of the box ∀i). However, if P = {x | Cx ≤ d} then

a minimization problem surfaces at every iteration of the DPSM.

6.3 Private average subgradient

This section presents the differentially private average subgradient (DPASM) method as a po-

tential improvement on the DPSM. It privately samples γ subgradients, and uses its average as

the subgradient. The hypothesized result is that the average of multiple (γ) private subgradi-

ents will be closer to the true subgradient than a single private subgradient. This would allow

the DPASM to outperform the DPSM.

To calculate the required level of privacy for each sampled subgradient consider drawing

not one, but two subgradients using Algorithm 1 (a∗i1 and a∗i2), and taking the average as the

outputted subgradient: a∗i = 1
2(a∗i1 + a∗i2). If a∗i1 and a∗i2 are drawn with a privacy level equal

to ε/2k, then according to the sequential composition theorem, their average will maintain

(ε/2k+ε/2k = ε/k)-differential privacy. After k iterations of the DPSM, the net level of privacy

will be ε. For generality, define the hyperparameter γ as the number of private subgradients

drawn at each DPSM iteration i. Then the set of subgradients is S = {a∗ij}
γ
j=1. In order to

maintain (ε/k)-differential privacy when calculating the mean of S, each a∗ij ∈ S should attain

(ε/γk)-differential privacy.

Algorithm 4: ε-differentially private subgradient.

1 Choose the scoring function u : {1, 2, ...,m} → R as

usub(i;x0, D) = aᵀi x+ bi

2 For j = 1, ..., γ select the index i∗ using the exponential mechanism:

1. P (i∗ = i) ∝ exp(εusub(i;x0,D)
2γbmax

)

2. Save a∗ij

3 Output a∗i = 1
γ

∑γ
j=1 a

∗
ij as the private approximate subgradient at x0

If the computation of the subgradient required in Algorithm 3 is executed by Algorithm 4,

and every subgradient in Algorithm 4 preserves (ε/γk)-differential privacy, Algorithm 3 will be

ε-differentially private. This can be shown using the sequential composition theorem.

Algorithm 4 makes γ a trainable hyperparameter. This potentially makes Algorithm 4

16

more robust to changes in the objective function, or more complex feasible regions. We tested

the DPASM on piecewise affine objectives for different amounts of variables in the objective

function. The results are discussed in the next section.

7 Results

In the following section, the results from the simulations are presented. The section consists of

two parts: the first part replicates and tests the findings done in the reference paper [3]. The

second part discusses the results from the extensions presented in the previous section.

7.1 Results Replication

We attempted to use the same hyperparameters used in [3]. This meant using ε = 0.1 (privacy

level), attaining the expected objective value from different privacy-preserving algorithms using

1000 runs, and using a d-dimensional hypercube as the constraint set (with diam(P) = 2
√
dc).

However, this is as much information Han et al. gave about the context in which their finding

were done. This is one of the main critiques we have on [3], considering research has to be

replicable to establish its validity. In this paper the problem data {(ai, bi)}mi=1 were generated

from i.i.d standard standard Gaussian distributions. Here m is the number of affine functions

in the objectives. Unless explicitly mentioned, m is set equal to 20 and d is set equal to 5

(m = 20, d = 5). The random seed for all simulations was 4. The DPSM in this paper consists

of combining Algorithm 2 and Algorithm 3 (Algorithm 1 does not guarantee feasible solutions).

The different differentially private optimization algorithms require sampling from a number

of different distributions.

1. Laplace mechanism: Both algorithms involving Laplace noise require sampling from

exp(ε ‖w‖2 /∆2), where ∆2 differs depending on whether Laplace noise is being added to

the data (
√
mbmax) or to the solution (2

√
dc). To efficiently draw w from a distribution

proportional to exp(ε ‖w‖2 /∆2), its direction e and magnitude ŵ were drawn separately.

Here ŵ follows a Gamma distribution Γ(λ, d) and can be sampled from by drawing d i.i.d

samples w1, w2, ..., wd and adding the result to make ŵ =
∑d

i=1wi. Then ê was sampled

from a d-dimensional multivariate Gaussian, after which it was normalized, and multiplied

by the magnitude ŵ to make w.

2. Exponential mechanism: The exponential mechanism required drawing samples pro-

portional to a non-negative distribution (6). Markov chain Monte Carlo (MCMC) methods

are usually used in order to draw from a multidimensional target distribution [8]. MCMC

17

draws samples from a multivariate distribution whose stationary distribution is the target

distribution. In [3], a multivariate Gaussian is used as the proposal distribution. Due to

the fact that the constraint set is a d-dimensional hypercube, the covariance matrix Σ is

set to be isotropic, with its magnitude proportional to the size of the constraint set, so

Σ = ηcIdxd [3]. Where Idxd is a d-dimensional identity matrix and η = 0.1. Each sample is

generated by running 5000 MCMC steps, and then using the next sample that is accepted

by the Markov chain (after 5000 steps the Markov chain is considered to have reached its

stationary distribution). We used this same sampling method.

3. DPSM iterations: Han et al. [3] provide a theorem that shows there is a theoretical

optimal number of iterations for a given level of privacy ε. However, this suboptimality

bound is loose, and optimizing the number of iterations on the bound does not provide

enough guidance for choosing a number of iterations. Figure 1 shows that after 1000

iterations, the regular subgradient method has nearly approached the exact solution. The

DPSM (with projections onto the hypercube) also appears to have reached close to its

minimum after 1000 iterations. Han et al. find slightly different results from the one

shown in Figure 1. This could be due to the fact that different step-sizes were used, or

the sampling of the hyperparameters was different. In this paper, we used step-sizes of

1/k0.51, with k the current iteration. In [3], Han et al. claim the objective value is robust

to the number of iterations after 100 iterations. we found results that contradict this.

Although the subgradient method is close to the exact solution after 100 iterations, the

inclusion of the exact solution shows that the subgradient method continues to decrease.

However, since after 100 iterations the regular subgradient is sufficiently close to the exact

solution, and to directly compare our findings to those done in [3], we used 100 iterations

in the remainder of the numerical experiments unless mentioned otherwise. After 1000

iterations, the subgradient method has nearly reached the exact lower bound and the

DPSM is no longer improving.

The following two figures compare the performance of the DPSM to other privacy-preserving

optimization algorithms as a function of the size of the hypercube (c) and the number of affine

function in the objective (m).

The image shows that both Laplace algorithms are the worst performing differentially private

algorithms. In this paper, x values were projected back onto the box (this was never explicitly

mentioned in the reference paper [3]). The noise generated for both Laplace algorithms was

larger than the diameter of the constraint set. Therefore, the solution always had to be projected

back onto the constraint set. This caused the x value to always lay on the box, meaning how

18

101 102 103

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ob
je

ct
iv

e
Va

lu
e

Feasible Region: Cube (c=1)
DP Subgradient Objective: 1.516363
Subgradient Objective: 0.932188
Exact solution: 0.921018

Figure 1: Expected objective value as function of k

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Size of constraint set c

2

4

6

8

10

12

14

16

18

Ob
je

ct
iv

e
Va

lu
e

Average Objective Values
DP Subgradient
Subgradient
Exact solution
Exponential mechanism
Laplace data
Laplace solution

(a) Including Laplace mechanisms

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Size of constraint set c

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ob
je

ct
iv

e
Va

lu
e

Average Objective Values
DP Subgradient
Subgradient
Exact solution
Exponential mechanism

(b) Excluding Laplace mechanisms

Figure 2: Expected objective value as function of c

larger the box was, how further away the x value could be from the optimal solution, thus

causing the Laplace mechanism to perform badly.

Figure 2 shows the DPSM performs better than the exponential mechanism. However, the

inclusion of the exact solution shows that the suboptimality remains above 50%. Furthermore,

the DPSM is less sensitive to the magnitude of c, whereas the suboptimality of solutions gener-

ated by the exponential mechanism show an almost linear increase with the size of the constraint

set (although there is some marginal decrease with increases in c).

The result of increasing the number of affine function in the objective (m) yielded similar

results as in [3]. Our results in Figure 2 differ on a few points. First of all, all the expected

objective values increase monotonically when m increases. Given that all the affine functions

contained in the objective for a given value of m are also contained in the objective when m

increases, monotonic increase is in line with expectations. Furthermore, the distance between

the different privacy preserving algorithms is larger compared to the results in [3]. This could be

19

20 40 60 80 100 120 140 160 180 200
Number of affine functions m

1

2

3

4

5

6

7

Ob
je

ct
iv

e
Va

lu
e

Average Objective Values
DP Subgradient
Subgradient
Exact solution
Exponential mechanism
Laplace data
Laplace solution

Figure 3: Expected objective value as function of m

attributable to the fact that different hyperparameters, or different ways of sampling {(ai, bi)}mi=1

were used.

7.2 Results Extensions

7.2.1 Alternative feasible regions

Figure 4 shows the attained average objective of the DPSM on feasible regions of different

convex shapes as a function of the number of iterations. The matrices and vectors C and k

contain 2 rows, and hence contain 2 constraints. The constraint parameters were generated

from i.i.d standard Gaussian distributions.

Table 1: Objectives for different feasible regions after 1000 iterations

Shape: Cube: c = 1 Sphere: r = 1 Cx = k Cx ≤ k

Subgradient method 0.93 0.98 1.20 1.20

DPSM 1.51 1.30 1.75 1.80

Difference (%) 62.4 32.7 45.8 50.0

Table 1 shows that the DPSM reached lower levels of suboptimality on different feasible

regions after 1000 iterations. More specifically, whereas in [3] the performance of the DPSM

was only compared to the regular subgradient method when the feasible region was a hypercube,

Table 1 suggests that the DPSM will also work for more general convex constraint sets.

20

101 102 103

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Ob

je
ct

iv
e

Va
lu

e
Feasible Region: Spere

DP Subgradient Objective: 1.299712
Subgradient Objective: 0.981686

(a) Feasible region: Sphere radius 1

101 102 103

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ob
je

ct
iv

e
Va

lu
e

Feasible Region: Cx = k
DP Subgradient Objective: 1.752081
Subgradient Objective: 1.198596

(b) Feasible region: Cx = k (2 constraints)

101 102 103

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ob
je

ct
iv

e
Va

lu
e

Feasible Region: Cx <= k
DP Subgradient Objective: 1.791257
Subgradient Objective: 1.198582

(c) Feasible region: Cx ≤ k (2 constraints)

Figure 4: Expected objective value for different feasible regions

7.2.2 Private projected gradient descent

The table below shows the different objective values attained by the projected DPSM on different

convex feasible regions after 1000 iterations.

Table 2: Average objective values for different feasible regions

Shape: Cube: c = 1 Sphere: r = 1 Cx = k Cx ≤ k Rd

Subgradient method 0.93 0.98 1.20 1.20 0.90

DPSM 1.51 1.30 1.75 1.80 1.81

Table 2 shows that the objective values for different feasible regions were not the same when

21

solutions were projected back onto the feasible region, which they would have been without

projection. This provides support of our hypothesis that a projection step is required to ensure

feasible solutions when minimizing piecewise affine objective functions. When P = Rd, the

subgradient method is the best performing non-private algorithm, which is in line with expec-

tations. However, the DPSM is actually the worst performing algorithm when P = Rd. This

indicates that the projection step is needed not only to ensure feasible solutions, but also to

keep the DPSM from stepping to far away from the minimum. This is supported by the fact

that the DPSM attains lower objectives on more restrictive constraints.

7.2.3 Differentially private average subgradient method

The following figure compares the performance of the differentially private average subgradient

method for different values of d.

5 10 15 20 25 30
Number of variables in x: d

1.3

1.4

1.5

1.6

1.7

1.8

Ob
je

ct
iv

e
Va

lu
e

Feasible Region: Cube (c=1)

DPSM: 1.518966
Gamma = 5: 1.581000
Gamma = 10: 1.571034
Gamma = 20: 1.469728
Gamma = 50: 1.394595

Figure 5: Expected objective value as function of d

The results indicate that for some larger problems (larger values of d), the DPSAM yields

lower objectives than the DPSM for larger values of γ. However, using low values of gamma

yields strictly higher objective values. The reasons behind this are points of potential further

research. The evidence indicates that parties interested in using the DPSM should in fact use

the DPSAM and treat γ as a trainable hyperparameter. Results show that one can not be worse

of by doing this, since when γ = 1, the DPSM and the DPSAM are identical. However, for

example when the problem and γ are large, the DPSAM could outperform the DPSM.

22

8 Conclusion

In this paper, we studied the class of constrained optimization problems where a piecewise affine

objective function is minimized. We critically evaluated the DPSM proposed by Han et al. in

[3] to solve this class of problems, and extended their findings to more general convex feasible

regions. Additionaly, we introduced the DPASM.

Increasing the level of privacy increases the level of suboptimality. However, the DPSM

offers lower levels of suboptimality than several other privacy preserving algorithms, including

the Laplace mechanism and the exponential mechanism, for a given level of privacy. Also, we

found that the DPSM performs comparably on different convex feasible regions. Then, we found

evidence that a projection step should be included in the DPSM to guarantee feasible solutions

and can also prevent the DPSM from stepping too far away from the minimum. Finally, the

results of testing the DPASM indicated that tuning the value of γ could yield lower values

compared to the DPSM, which is relevant for parties interested in implementing the DPSM.

An interesting point of research would be to test if and how the DPSM and DPASM work on

different objective functions. We leave this investigation to further research.

23

References

[1] A. Narayanan and V. Shmatikov, “How to break anonymity of the netflix prize dataset,”

CoRR, vol. abs/cs/0610105, 2006.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in pri-

vate data analysis,” in Theory of Cryptography (S. Halevi and T. Rabin, eds.), (Berlin,

Heidelberg), pp. 265–284, Springer Berlin Heidelberg, 2006.

[3] G. J. P. Shuo Han, Ufuk Topcu, “Differentially private convex optimization with piecewise

affine objectives,” arXiv:1403.6135, 2014.

[4] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Proceedings

of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07,

(Washington, DC, USA), pp. 94–103, IEEE Computer Society, 2007.

[5] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private distributed convex opti-

mization via functional perturbation,” IEEE Transactions on Control of Network Systems,

vol. 5, no. 1, pp. 395–408, 2016.

[6] M. Kusner, J. Gardner, R. Garnett, and K. Weinberger, “Differentially private bayesian

optimization,” in International Conference on Machine Learning, pp. 918–927, 2015.

[7] F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving

data analysis,” in Proceedings of the 2009 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’09, (New York, NY, USA), pp. 19–30, ACM, 2009.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

3rd Edition: The Art of Scientific Computing. New York, NY, USA: Cambridge University

Press, 3 ed., 2007.

Appendix A Program Descriptions

Return the subgradient for a given point x

def subgrad piecewise affine (a, b, x):

Evaluates a piecewise affine objective at x

def eval piecewise affine (a, b, x):

24

This function privately calculates a subgradient using the exponential mechanism

def private subgrad piecewise affine (a, b, x, eps,m):

Calculates stepsizes where steplength k is 1/kˆ0.51

def stepsizes (iterations) :

Samples parameters from a standard Gaussian

def param sampler(m,d):

Samples Laplacian noise

def laplace noise (b,dim,eps):

Target distribution for the MCMC needed for the exponential mechanism

def target function(x, a, b, bmax, eps):

The following method performs k iterations of the subgradient method

def subgradient method(iterations, a ,b , x0):

The following method performs k iterations of the subgradient method and projects

solutions back onto a box

def subgradient method cube(iterations, a ,b , x0, upper, lower):

The following method performs k iterations of the subgradient method and projects

solutions back onto a sphere

def subgradient method sphere(iterations, a ,b , x0, centre , radius) :

The following method performs k iterations of the subgradient method and projects

solutions back s.t . Cx=k

def subgradient method projection(iterations, a ,b , x0, C, k):

DPSM without projection

def private subgradient method(iterations, a ,b , x0, eps,m, gamma):

DPSM with projection onto box: (lower <= x <= upper)

def private subgradient method cube(iterations, a ,b , x0, eps,m,upper, lower, gamma):

25

DPSM with projection onto a sphere

def private subgradient method sphere(iterations, a ,b , x0, eps, m, centre, radius,

gamma):

DPSM with projection onto Cx=k

def private subgradient method projection(iterations , a ,b , x0, eps, m, C, k, gamma):

DPSM with projection s.t. Cx<=k

def private subgradient method ineq projection(iterations , a ,b , x0, eps, m, C, k, gamma)

:

Solve problem with box constraint exactly using an LP formulation

def lp solver (ITERATIONS, A, B, EPS, M, D, UPPER, LOWER):

Solve problem with Cx=k exactly using an LP formulation

def lp solver Ck(ITERATIONS, A, B, EPS, M, D, C, K):

The following method performs ’niter’ MCMC steps to reach the target distribution,

samples a value, and return the

objecting belonging to the value

def MCMC(a, b, d, eps, niter, x opt, upper):

Adds laplace noise to the data and solves the problem using LP (defined above)

def laplace data(iterations , a ,b , x0, upper, lower, eps, m):

Adds laplace noise to the solution and solves the problem using LP (defined above)

def laplace solution (iterations , a ,b , x, upper, lower, eps, m):

This method returns objectives of subgradient v. DPSM v. LP

def main method(ITERATIONS, runs, UPPER, LOWER, M):

This method returns objectives of DPSM v. LaPlace v. Exp v. Subgrad v. LP

def main method2(ITERATIONS, runs, UPPER, LOWER, M):

Figure 1 Training: runs main method for various numbers of iterations

Runs = 1000

26

M = 20

X 10 = main method(10, Runs, 1, −1, M)

X 32 = main method(32, Runs, 1, −1, M)

X 100 = main method(100, Runs, 1, −1, M)

X 312 = main method(312, Runs, 1, −1, M)

X 1000 = main method(1000, Runs , 1, −1, M)

meanX 10 = mean(X 10, axis=0)

meanX 32 = mean(X 32, axis=0)

meanX 100 = mean(X 100, axis=0)

meanX 312 = mean(X 312, axis=0)

meanX 1000 = mean(X 1000, axis=0)

X = array([meanX 10, meanX 32, meanX 100, meanX 312, meanX 1000])

its = array([10, 32, 100, 312, 1000])

plt .plot(its ,X [:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient Objective: {:.6f}”.

format(min(X[:,1])))

plt .plot(its ,X [:,0], linewidth=0.75, marker=’o’,label= ”Subgradient Objective: {:.6f}”.

format(min(X[:,0])))

plt .plot(its ,X [:,2], linewidth=0.75, marker=’o’,label=”Exact solution: {:.6f}”.format(min

(X[:,2])))

plt . xscale(’ log ’)

plt .grid(True)

plt .legend(loc=”best”, fontsize=9)

plt . title (”Feasible Region: Cube (c=1)”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’ Iterations ’)

plt . axis ([10, 1000, 0.7 , 2])

plt . savefig (’ replicate−iterations−1.png’, bbox inches=’tight’)

plt . savefig (’ replicate−iterations−1.pdf’, bbox inches=’tight’)

plt .show()

Figure 2 training, Comparison of methods for different values of c

27

Runs = 1000

M = 20

Iterations = 100

d = 5

Y 05 = main method2(Iterations, Runs, 0.5, −0.5, M)

Y 10 = main method2(Iterations, Runs , 1, −1, M)

Y 15 = main method2(Iterations, Runs, 1.5, −1.5, M)

Y 20 = main method2(Iterations, Runs, 2, −2, M)

Y 25 = main method2(Iterations, Runs , 2.5, −2.5, M)

Y 30 = main method2(Iterations, Runs , 3.0, −3.0, M)

Y 35 = main method2(Iterations, Runs , 3.5, −3.5, M)

Y 40 = main method2(Iterations, Runs , 4.0, −4.0, M)

meanY 05 = mean(Y 05, axis=0)

meanY 10 = mean(Y 10, axis=0)

meanY 15 = mean(Y 15, axis=0)

meanY 20 = mean(Y 20, axis=0)

meanY 25 = mean(Y 25, axis=0)

meanY 30 = mean(Y 30, axis=0)

meanY 35 = mean(Y 35, axis=0)

meanY 40 = mean(Y 40, axis=0)

Y = array([meanY 05, meanY 10, meanY 15, meanY 20, meanY 25, meanY 30, meanY 35,

meanY 40])

c = array([0.5, 1, 1.5, 2, 2.5, 3.0, 3.5, 4.0])

plt .plot(c,Y [:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient”)

plt .plot(c,Y [:,0], linewidth=0.75, marker=’o’,label= ”Subgradient ”)

plt .plot(c,Y [:,2], linewidth=0.75, marker=’o’,label=”Exact solution”)

plt .plot(c,Y [:,3], linewidth=0.75, marker=’o’,label=”Exponential mechanism”)

plt .plot(c,Y [:,4], linewidth=0.75, marker=’o’,label=”Laplace data”)

plt .plot(c,Y [:,5], linewidth=0.75, marker=’o’,label=”Laplace solution”)

plt . xscale(’ linear ’)

plt .grid(True)

28

plt .legend(loc=”best”, fontsize=9)

plt . title (”Average Objective Values”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’Size of constraint set c’)

plt . axis ([0.5, 4.0, 0.7 , 18])

plt . savefig (’ replicate−c−lp.png’, bbox inches=’tight’)

plt . savefig (’ replicate−c−lp.pdf’, bbox inches=’tight’)

plt .show()

Sensitivity to m, Comparison of methods for different values of m

Runs = 1000

M 20 = main method2(100, Runs, 1, −1, 20)

M 50 = main method2(100, Runs , 1, −1, 50)

M 100 = main method2(100, Runs, 1, −1, 100)

M 150 = main method2(100, Runs, 1, −1, 150)

M 200 = main method2(100, Runs , 1, −1, 200)

meanM 20 = mean(M 20, axis=0)

meanM 50 = mean(M 50, axis=0)

meanM 100 = mean(M 100, axis=0)

meanM 150 = mean(M 150, axis=0)

meanM 200 = mean(M 200, axis=0)

M = array([meanM 20, meanM 50, meanM 100, meanM 150, meanM 200])

m = array([20, 50, 100, 150, 200])

plt .plot(m,M[:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient”)

plt .plot(m,M[:,0], linewidth=0.75, marker=’o’,label= ”Subgradient ”)

plt .plot(m,M[:,2], linewidth=0.75, marker=’o’,label=”Exact solution”)

plt .plot(m,M[:,3], linewidth=0.75, marker=’o’,label=”Exponential mechanism”)

plt .plot(m,M[:,4], linewidth=0.75, marker=’o’,label=”Laplace data”)

plt .plot(m,M[:,5], linewidth=0.75, marker=’o’,label=”Laplace solution”)

29

plt . xscale(’ linear ’)

plt .grid(True)

plt .legend(loc=2, fontsize=9)

plt . title (”Average Objective Values”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’Number of affine functions m’)

plt . axis ([20, 200, 0.7 , 7])

plt . savefig (’ replicate−m.png’, bbox inches=’tight’)

plt . savefig (’ replicate−m.pdf’, bbox inches=’tight’)

plt .show()

Method that compares DPSM to subgradient method, both with sphere projections.

Returns array with objective

per iteration .

def extension method(ITERATIONS, runs, CENTRE, RADIUS, M):

Figure 1 Training: runs main method for sphere projections for various numbers of

iterations

Runs = 1000

d = 5

centre = zeros((d,))

radius = 1

M = 20

X 10 = extension method(10, Runs, centre, radius, M)

X 32 = extension method(32, Runs, centre, radius, M)

X 100 = extension method(100, Runs, centre, radius, M)

X 312 = extension method(312, Runs, centre, radius, M)

X 1000 = extension method(1000, Runs , centre, radius, M)

meanX 10 = mean(X 10, axis=0)

meanX 32 = mean(X 32, axis=0)

meanX 100 = mean(X 100, axis=0)

meanX 312 = mean(X 312, axis=0)

meanX 1000 = mean(X 1000, axis=0)

30

X sphere = array([meanX 10, meanX 32, meanX 100, meanX 312, meanX 1000])

its = array([10, 32, 100, 312, 1000])

plt .plot(its ,X sphere [:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient Objective:

{:.6f}”.format(min(X sphere[:,1])))

plt .plot(its ,X sphere [:,0], linewidth=0.75, marker=’o’,label= ”Subgradient Objective: {:.6f

}”.format(min(X sphere[:,0])))

plt . xscale(’ log ’)

plt .grid(True)

plt .legend(loc=”best”, fontsize=9)

plt . title (”Feasible Region: Spere”, fontsize =10)

plt . ylabel(’Objective Value’)

plt . xlabel(’ Iterations ’)

plt . axis ([10, 1000, 0.7 , 2])

plt . savefig (’sphere−objective.png’, bbox inches=’tight’)

plt . savefig (’sphere−objective.pdf’, bbox inches=’tight’)

plt .show()

Method that compares DPSM to subgradient method, both with projections s.t. Cx=k.

Returns array with objective

per iteration .

def projection method(ITERATIONS, runs, D, Contraint matrix, Constraint vector, M):

Figure 1 Training: runs main method for projections onto Cx=k for various numbers of

iterations

Runs = 1000

l = 2

d = 5

C,k = param sampler(l,d)

m = 20

X 10 = projection method(10, Runs, d, C, k, m)

X 32 = projection method(32, Runs, d, C, k, m)

X 100 = projection method(100, Runs, d, C, k, m)

X 312 = projection method(312, Runs, d, C, k, m)

31

X 1000 = projection method(1000, Runs, d, C, k, m)

meanX 10 = mean(X 10, axis=0)

meanX 32 = mean(X 32, axis=0)

meanX 100 = mean(X 100, axis=0)

meanX 312 = mean(X 312, axis=0)

meanX 1000 = mean(X 1000, axis=0)

X ck = array([meanX 10, meanX 32, meanX 100, meanX 312, meanX 1000])

its = array([10, 32, 100, 312, 1000])

plt .plot(its ,X ck [:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient Objective: {:.6f}

”.format(min(X ck[:,1])))

plt .plot(its ,X ck [:,0], linewidth=0.75, marker=’o’,label= ”Subgradient Objective: {:.6f}”.

format(min(X ck[:,0])))

#plt.plot(its ,X ck [:,2], linewidth=0.75, marker=’o’,label= ”Exact solution: {:.6 f}”.format(

min(X[:,2])))

plt . xscale(’ log ’)

plt .grid(True)

plt .legend(loc=”best”, fontsize=9)

plt . title (”Feasible Region: Cx = k”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’ Iterations ’)

plt . axis ([10, 1000, 0 , 3])

plt . savefig (’cxd−objective.png’, bbox inches=’tight’)

plt . savefig (’cxd−objective.pdf’, bbox inches=’tight’)

plt .show()

Method that compares DPSM to subgradient method, both with projections s.t. Cx<=k.

Returns array with objective

per iteration .

def ineq projection method(ITERATIONS, runs, D, Contraint matrix, Constraint vector, M

):

Figure 1 Training: runs main method for projections s.t . Cx<k for various numbers of

32

iterations

Runs = 1000

l = 2

d = 5

C,k = param sampler(l,d)

m = 20

X 10 = ineq projection method(10, Runs, d, C, k, m)

X 32 = ineq projection method(32, Runs, d, C, k, m)

X 100 = ineq projection method(100, Runs, d, C, k, m)

X 312 = ineq projection method(312, Runs, d, C, k, m)

X 1000 = ineq projection method(1000, Runs, d, C, k, m)

meanX 10 = mean(X 10, axis=0)

meanX 32 = mean(X 32, axis=0)

meanX 100 = mean(X 100, axis=0)

meanX 312 = mean(X 312, axis=0)

meanX 1000 = mean(X 1000, axis=0)

X ineq = array([meanX 10, meanX 32, meanX 100, meanX 312, meanX 1000])

its = array([10, 32, 100, 312, 1000])

plt .plot(its ,X ineq [:,1], linewidth=0.75, marker=’o’,label=”DP Subgradient Objective: {:.6

f}”.format(min(X ineq[:,1])))

plt .plot(its ,X ineq [:,0], linewidth=0.75, marker=’o’,label= ”Subgradient Objective: {:.6f}”

.format(min(X ineq[:,0])))

#plt.plot(its ,X [:,2], linewidth=0.75, marker=’o’,label= ”Exact solution: {:.6 f}”.format(

min(X[:,2])))

plt . xscale(’ log ’)

plt .grid(True)

plt .legend(loc=”best”, fontsize=9)

plt . title (”Feasible Region: Cx <= k”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’ Iterations ’)

33

plt . axis ([10, 1000, 0 , 3])

plt . savefig (’cx<d−objective.png’, bbox inches=’tight’)

plt . savefig (’cx<d−objective.pdf’, bbox inches=’tight’)

plt .show()

This method returns objectives of subgradient v. DPSM v. LP

def main method no proj(ITERATIONS, runs, UPPER, LOWER, M):

Find average objective without projections

Runs = 1000

M = 20

X no proj = main method no proj(1000, Runs , Inf, −Inf, M)

meanX no proj = mean(X no proj, axis=0)

print(meanX no proj)

This method returns DPSM opjectives for various values of gamma

def main method gamma(ITERATIONS, runs, UPPER, LOWER, M, D):

Figure averages Training for various values of gamma

Runs = 1000

M = 20

X 1 = main method gamma(100, Runs, 1, −1, M, 1)

X 5 = main method gamma(100, Runs, 1, −1, M,5)

X 10 = main method gamma(100, Runs, 1, −1, M,10)

X 15 = main method gamma(100, Runs, 1, −1, M,15)

X 20 = main method gamma(100, Runs , 1, −1, M,20)

X 25 = main method gamma(100, Runs , 1, −1, M,25)

X 30 = main method gamma(100, Runs , 1, −1, M,30)

meanX 1 = mean(X 1, axis=0)

meanX 5 = mean(X 5, axis=0)

meanX 10 = mean(X 10, axis=0)

meanX 15 = mean(X 15, axis=0)

meanX 20 = mean(X 20, axis=0)

34

meanX 25 = mean(X 15, axis=0)

meanX 30 = mean(X 20, axis=0)

X gamma = array([meanX 1, meanX 5, meanX 10, meanX 15, meanX 20, meanX 25,

meanX 30])

d = array([1, 5, 10, 15, 20,25,30])

plt .plot(d,X gamma[:,0], linewidth=0.75, marker=’o’,label= ”DPSM: {:.6f}”.format(min(

X gamma[:,0])))

plt .plot(d,X gamma[:,1], linewidth=0.75, marker=’o’,label=”Gamma = 5: {:.6f}”.format(

min(X gamma[:,1])))

plt .plot(d,X gamma[:,2], linewidth=0.75, marker=’o’,label=”Gamma = 10: {:.6f}”.format(

min(X gamma[:,2])))

plt .plot(d,X gamma[:,3], linewidth=0.75, marker=’o’,label=”Gamma = 20: {:.6f}”.format(

min(X gamma[:,3])))

plt .plot(d,X gamma[:,4], linewidth=0.75, marker=’o’,label=”Gamma = 50: {:.6f}”.format(

min(X gamma[:,4])))

#plt.plot(d,X gamma[:,5], linewidth=0.75, marker=’o’,label=”Gamma = 100: {:.6f}”.format(

min(X gamma[:,5])))

plt . xscale(’ linear ’)

plt .grid(True)

plt .legend(loc=”best”, fontsize=9)

plt . title (”Feasible Region: Cube (c=1)”, fontsize=10)

plt . ylabel(’Objective Value’)

plt . xlabel(’Number of variables in x: d’)

plt . axis ([1, 30, 1.3 , 1.8])

plt . savefig (’gamma−objective.png’, bbox inches=’tight’)

plt . savefig (’gamma−objective.pdf’, bbox inches=’tight’)

plt .show()

35

	Introduction
	Literature Review
	Problem Statement
	Reference Paper Problem Statement
	Problem Statement Extension

	Useful differential privacy tools
	Laplace Mechanism
	Exponential mechanism
	Useful Theorems

	Methodology
	Optimization without privacy
	Subgradient method
	Solving as Linear Program

	Laplace solution
	Laplace mechanism acting on the problem data
	Laplace mechanism acting on the problem solution

	Exponential Mechanism
	Differentially private subgradient method
	Limitations differentially private subgradient method

	Extensions
	Alternative feasible regions
	Private projected gradient descent
	Private average subgradient

	Results
	Results Replication
	Results Extensions
	Alternative feasible regions
	Private projected gradient descent
	Differentially private average subgradient method

	Conclusion
	Program Descriptions

