
Erasmus University Rotterdam, Erasmus School of Economics

Econometrics and Operations Research

The information content of implied volatilities and MF volatility expectations: Evidence from

options written on individual stocks

Kocak, K.

434504

Supervisor: Gong, M.

July 7, 2019

Abstract

We investigate different models for estimating the volatility of stock options for

US firms and the S&P100 index: historical stock returns, MF volatility expectations

and the ATM implied volatilities. If we look at the one-day-ahead forecasts, we

observe that the ATM implied volatility performs the best more often, followed by

the historical forecasts. For both sample periods are the option based forecasts

better than historical volatility. Looking at the option based forecasts we see that

the ATM implied volatility is better than the MF volatility expectations.
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1 Introduction

Measurements for index volatility have been important research topics for quite some time

in financial literature. Most of the research shows, for the comparisons of the volatility

forecasts that we get from historical stocks prices with forecasts obtained from option

prices, that the accuracy of the volatility forecasts obtained from option prices is higher

than the accuracy of volatility forecasts obtained from historical stock prices. This is, for

example, shown in Christensen and Prabhala (1998) and Ederington and Guan (2002).

From Andersen et al. (2001) we can see that option-based forecasts are frequently pre-

ferred over forecasts gained from the high-frequency realized volatility. The results for

US stock indices are also shown in Jiang and Tian (2005), Blair et al. (2010) and Giot

and Laurent (2007).

However, analogy of volatility forecasts for stock prices for individual firms are limited.

Our contribution is an analogy of predictors based on historical stock prices and option-

based forecasts for a large sample of US firms. Beside this, we will have a look at

the analogy of model-free (MF) and at-the-money (ATM) predictors. The model-free

forecasts cover the theoretical results of Demeterfi et al. (1999) and Britten-Jones and

Neuberger (2000), these models apply combinations of option prices that do not rely on

pricing formula. There is a shortcoming of application of the models on empirical data

in many existing literature. The comparison of advantages and disadvantage of different

models are rare.

This paper investigates how these different volatility measures, namely ATM implied

volatility, historical daily returns and the MF volatility expectation, perform relative to

each other. The performance we’re going to compare will be estimating the volatility of

stock returns. While doing so, we will reevaluate the information content of US index

stock option prices, which the ATM implied volatility and the MF volatility expectation

will use, relative to the historical daily returns. We will use two sample periods with

a specific data selection criteria to apply these models to, one before the 2008 financial

crisis and one after. This way we will investigate whether the financial crisis had any

impact on the estimation of volatility of stock returns and at the same time test the

robustness of the volatility measures.
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After selecting our data in the aforementioned periods, we will explain the existing the-

oretical volatility measurements methodically. We will investigate these volatility mea-

surements applied to selected data from two different sample periods, which will be our

main contribution. This way we can reassess the earlier findings, particularly the consen-

sus from studies that stock option prices are more informative than historical stock prices

for index volatility measures. Our methodology concerning the sample periods will also

allow us to investigate the significance of the influence made by the 2008 financial crisis

when it comes to measuring index volatility, while also diversifying the conditions under

which these models have to measure volatility. This way we will obtain more results to

check and compare the relative performance of the aforementioned models.

We apply a selection criteria on our two data samples to improve data quality for applying

the models to, which we will explain in detail in section 2. We choose for the period from

January 2004 until December 2007 and January 2010 until December 2013. These sample

periods are quite similar given the summary statistics in section 2. We have chosen these

periods to investigate any differences of behaviour of the volatility measurements before

and after the financial crisis.

The rest of the paper is organized as follows: section 2 lays down our selection criteria for

the sample periods and illustrates the summary statistics. Section 3 covers the methodol-

ogy we have used in our paper. We will discuss the three models for volatility measuring

in this section. In this section we also introduce the regression methods for analyzing the

information of various volatility estimates. Section 4 shows the results of our research:

representing both the measurement models, comparisons between them and comparisons

between the sample periods. We will conclude the work of this paper in section 5.

2 Data

We explain and summarize our selection procedure for our data set and describe the

resulting data set using summary statistics.
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We retrieved data from the OptionMetrics section of the Wharton Research Data Ser-

vices institute. The sample period Taylor et al. (2010) uses is from January 1996 until

December 1999. Our research is to investigate the sample period of January 2004 until

December 2007, for futher investigation we will also look at the period of January 2010

until December 2013. We use, like in many other studies, the implied volatility that we

obtain from the IvyDB database straight in our research. These implied volatilities are

calculated based on the midpoint of the bid and ask prices in the order book. We account

for non synchronous asset and option pricing by taking the average whenever a matching

call and put implied volatility arise. We are not interested in options with less than a

week to maturity for the sake of our analysis, because these option are close to leaving

the market.

We use linear interpolation of the two closest zero-coupon LIBOR rates to obtain an in-

terest rate corresponding to each option’s expiration. The forward stock price FO,T with

the same expiry date T as the options is then calculated from the difference of the future

value of the current spot rate and the present value of all dividends until time T .

Firm selection undergoes a set of selection criteria. For starters, we’re only interested in

firms of whom options are traded throughout the whole sample period. Furthermore, the

firm must have enough activity for us to be able to construct implied volatility curves for

at least 98% of our sample data. To be able to estimate quadratic curves, at least three

implied volatilities with three strike prices are required. Options who are the closest

to their maturity are chosen, but if they do not meet the required amount of implied

volatilities for quadratic curves we opt to chose the second closest option to its maturity

date. When both the closest and the second closest option to its maturity date do not

provide enough implied volatility data, we see that day as having missing data.

Table 1 presents summary statistics for 1-month estimates of the MF volatility expec-

tation, ATM implied volatility, historical forecasts and the realized volatility. We first

obtain the mean and standard deviation for the firms. Then the cross-sectional minimum,

median and maximum values are calculated and displayed across the firms. We can see

5



that the MF volatility expectation are higher on average compared to the ATM implied

volatility.

2004-2007 2010-2013

Firms S&P100 Firms S&P100

Min Median Max Min Median Max

Panel A: σMF Panel E: σMF

mean 0,24 0,48 0,81 0,23 mean 0,21 0,47 0,83 0,22

stdev 0,09 0,12 0,12 0,05 stdev 0,08 0,14 0,14 0,06

skewness 0,37 0,79 1,15 1,07 skewness 0,33 0,82 1,09 1,12

kurtosis 3,72 3,51 5,09 4,88 kurtosis 3,67 3,50 4,96 4,92

max 0,41 0,81 1,12 0,36 max 0,43 0,86 1,12 0,38

min 0,11 0,36 0,57 0,15 min 0,12 0,38 0,62 0,12

Panel B: σATM Panel F: σATM

mean 0,19 0,49 0,77 0,2 mean 0,22 0,53 0,82 0,17

stdev 0,06 0,09 0,11 0,04 stdev 0,05 0,11 0,14 0,05

skewness 0,29 0,71 1,15 0,75 skewness 0,28 0,62 1,06 0,68

kurtosis 3,46 3,31 4,68 3,62 kurtosis 3,41 3,13 4,49 3,43

max 0,41 0,71 1,09 0,34 max 0,49 0,73 1,21 0,36

min 0,12 0,34 0,52 0,12 min 0,11 0,32 0,56 0,14

Panel C: σHis Panel G: σHis

mean 0,16 0,52 0,72 0,15 mean 0,19 0,56 0,77 0,17

stdev 0,06 0,08 0,12 0,04 stdev 0,05 0,09 0,16 0,04

skewness 0,72 1,28 2,15 1,59 skewness 0,78 1,39 2,32 1,69

kurtosis 3,09 5,71 9,12 6,2 kurtosis 3,12 6,14 10.05 6,71

max 0,31 0,73 1,15 0,32 max 0,38 0,82 1,29 0,38

min 0,09 0,34 0,58 0,09 min 0,08 0,35 0,64 0,10

Panel D: σRE Panel H: σRE

mean 0,18 0,42 0,68 0,15 mean 0,23 0,48 0,72 0,19

stdev 0,08 0,11 0,15 0,05 stdev 0,10 0,15 0.17 0,03

skewness 0,52 1,03 1,68 1,95 skewness 0,65 1,22 1,76 1,82

kurtosis 2,98 4,21 6,62 8,09 kurtosis 2,42 3,89 6,42 7.98

max 0,34 0,86 1,18 0,36 max 0,39 0,92 1,32 0,42

min 0,10 0,22 0,39 0,09 min 0,13 0,29 0,46 0,13

Table 1: Summary statistics for volatility measures for January 2004 to December 2007 and January 2010

to December 2013 .These statistics are obtained from monthly observations of annualized volatility measures from the

period 2004M01 to 2007M12 and 2010M01 to 2013M12. The denotations are as follows: estimates for the MF volatility

expectation by σMF , the estimates for the ATM implied volatility by σATM , the estimates from historical forecasts from

the GARCH model by σHis and the realized volatility calculated from daily high and low prices by σRE .
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3 Methodology

3.1 Types of volatility forecasting

ARCH models are used for historical volatility forecasts, these models obtain the needed

information from It. It is an information set that contains information of asset prices until

time t. We have seen some examples of Blair et al. (2010). The conditional variance in

the upcoming time period t+ 1, denoted as ht = var(rt+1|It), is a forecast of the squared

return in the next time period. Using this model has it advantages and disadvantages.

Unfortunately, these forecasts rely on information of the past and not forward-looking.

However, for estimating the parameters of the model we can use the maximum likelihood

method. This method can also be used for the specification of ht.

For deriving the risk-neutral expectation of the market are option based volatility essen-

tial. These volatilities contain also historical information. For the price of an underlying

asset St follows: dS = (r − q)Sdt + σSdW , with risk-free rate r, dividend yield q, the

stochastic volatility σt and a time depending Wiener process Wt. The integrated squared

volatility of the underlying asset from time 0 until the forecast horizon T is defined as

V0,T =
∫ T

0
σ2
t dt. This is equal to the quadratic var of the logarithm of the price process,

because we assume here that there are no price jumps.

The theory of the MF volatility expectation is developed in several papers, like we men-

tioned in the introduction. At time 0 a set of European option prices is assumed to

exist for an expiry time T.Britten-Jones and Neuberger (2000) show that the risk-neutral

expectation of the integrated squared volatility is given by the following function:

EQ [V0,T ] = 2erT

[∫ F0,T

0

p(K,T )

K2
dK +

∫ ∞
F0,T

c(K,T )

K2
dK

]
, (1)

with forward price F0,T at time 0 for a future transaction at time T , the expiry day.

c(K,T ) and p(K,T ) are respectively the call and put prices at time T for a strike price

K. The relation of equation above is as follows: right-hand side is equal to MF variance

expectation, its square root is equivalent to the MF volatility expectation. To get the

annualized values of these expressions we divide by T or
√
T . A continuous process is a

major assumption for the MF volatility derivation given above.
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The MF volatility expectations have some great advantages in comparison with Black-

Scholes implied volatility. E.g. the MF volatility does not lean on any option pricing

formula, which means that they do not need any assumptions of the dynamics of volatil-

ity. They also dodge leaning on a single strike price, this is not desirable due to the fact

that implied volatilities differ a lot across strikes.

3.2 Specification of the models

The usage of the ARCH models brings many advantages. E.g. it gives an opportunity

for acceptance of more observations and availability of maximum likelihood estimates to

capture the parameters of the model.

However, despite some advantages we have to deal some disadvantages as well. If we look

at the resting time to maturity, this is short compared with the time between multiple

price observations. In order to maximize the unbiased of the volatility estimates obtained

from the option prices, we look at both the one-day ahead forecast horizon and the time

to maturity of the options horizon, like mentioned before. So in this paper two ARCH

specifications will be evaluated. We evaluate our main ARCH specification for daily re-

turns as follows:

rt = µ+ εt, (2)

εt =
√
htzt, zt ∼ i.i.d.(0, 1), (3)

ht =
ω + α1ε

2
t−1 + α2St−1ε

2
t−1

1− βL
+
γσ2

MF,t−1

1− βγL
+
δσ2

ATM,t−1

1− βδL
(4)

Here ht is the conditional variance of the returns in period t, L is the lag operator, st−1

equals 1 if the error term of period t − 1 is negative and equals zero otherwise. For the

estimates of the MF volatility we use the term σMF ; in the same way we use the term

σATM for the ATM implied volatility. These terms are obtained at time t−1 and divided
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by
√

252 for the annualized values.

We inspect different volatility models using different information sets. We first look

at GJR-GARCH model, investigated in Glosten et al. (1993). This model only applies

historical returns, hence we get γ = βγ = δ = βδ = 0. Secondly we look at the model

obtained by information extracted from MF volatility expectations, hence α1 = α2 =

β = δ = βδ = 0. Finally, the model that is obtained by information presented by ATM

implied volatility, hence α1 = α2 = β = γ = βγ = 0. Characterized by assuming that:

zt ∼ N(µ, σ).

We maximize the quasi-log-likelihood function to obtain the parameters. We also add

some constraints on the parameters to make sure the conditional variance of the models

remain positive:

ω > 0;

α1 ≥ 0, α1 + α2 ≥ 0;

β ≥ 0, βγ ≥ 0, βdelta ≥ 0

The performance of the three models mentioned above depends on the value of their log-

likelihood values. The conditional distributions of daily stock returns are better described

by information with a higher log-likelihood value. When we rate specifications which have

the same conditional mean, a higher rank indicates a more explanatory specification of

the conditional variance and thus better performing forecasts of the realized variance.

We have seen in Blair et al. (2010) and Day and Lewis (1992) that comparable models

with implied volatility are estimated into ARCH models for the S&P 100 index, as well as

for individual stocks by Lamoureux and Lastrapes (1993). Previous studies presented for

the individual US firms some asymmetric volatility effects, that is the reason for adopt-

ing the GJR model. We found this in studies of Cheung and Ng (1992) and Duffee (1995).

In a similar fashion to Canina and Figlewski (1993), Christensen and Prabhala (1998),

Ederington and Guan (2002) and Jiang and Tian (2005) an encompassing and univariate
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regression for the realized volatility will be estimated for each individual firm. The first

regression focuses on the relative effect of competing volatility estimates, while the lat-

ter can determine the explanatory content of each individual volatility estimation method.

The dependent variable in our analysis may turn out to be variance, volatility or, as shown

in Jiang and Tian (2005), the logarithm of the latter. For the purpose of our research,

each of these possible outcomes provide the same ranks for the forecasting instruments.

Our preferences goes out to the logarithm of volatility, which is advantageous because of

its approximate normal distribution characteristics which guarantee more reliable inter-

pretations, as shown in Andersen et al. (2001).

For the regression we will use the following equation:

log(100σRE,t,T ) = β0+βHislog(100σHis,t,T )+βMF log(100σMF,t,T )+βATM log(100σATM,t,T )+εt,T

(5)

σRE,t,T , defined by equation (6), is the realized volatility from time t to time T , it stands

for the forecast quantity. The forecast of the historical volatility is obtained from the

GJR-GARCH model and uses the information set up to time t, denoted by σHist,t,T . For

the MF volatility and ATM implied volatility we use respectively the terms σMF,t,T and

σATM,t,T , of which the measures are non-overlapping. We use OLS estimates and take

into account any existence of heteroscedasticity in the residual terms εt,T : standard errors

of White et al. (1980).

3.3 Forecasting tools

For the estimation of the ARCH models we use daily values, for both the MF volatility

expectation and the ATM implied volatility. The ATM implied volatility equals to the

strike prices that is available and nearest to the forward price. For calculating the MF

volatility expectation, we extract a large amount of out-of-the-money option prices.

We use the formula of Parkinson (1980) to obtain the annualized realized volatility from

day t until the option’s maturity date T, for daily low and high stock prices such that:
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√√√√252

H

H∑
j=2

log(ht+i)− log(lt+i)2

4log(2)
(6)

here ht is the highest stock price at day t, lt is the lowest stock price at day t and

the number of days until expiry is denoted by H. Squaring the daily prices contributes

to more precise measures of volatility than squared returns; consequently squared daily

prices describe more fitting target quantities for comparisons of forecasts. Information

set It at day t present the conditional variance ht+1 for day t + 1, with a forecast of the

variance until the day of expiry given by:

ht+1 +
H∑
j=2

E[ht+j|It], (7)

with forecast horizon H.

4 Results

Table 2 presents the correlations between one-month volatility forecasts: the MF forecast,

the ATM forecast, the historical forecast of the volatility during the remaining lifetime

of a set of option strikes and the realized volatility. The two volatility estimates, MF and

ATM, are highly correlated as shown in Table 2. This correlation is less in the period

from January 2010 to December 2013, however the two volatility estimates are still rel-

ative high. Across all the firms in the period from 2004 to 2007 the average correlation

between the realized volatility and the MF expectation, the ATM implied volatility and

the historical forecast, respectively, equals 0.523, 0.612 and 0.352. For the sample period

from 2010 to 2013 the correlations decreased, namely 0.462, 0.423 and 0.296. The highest

correlations are between the ATM and the MF volatilities, and their average value across

the two periods equal 0.886.

Table 3 and 4 present the summary statistics of the sets of estimates and the S&P 100

index, from the ARCH specifications defined by (2-4). All the ARCH parameters are es-

timated using daily returns. Panel A summarizes estimates for the GJR-GARCH model;

α1 and α2 are both measurements of the shocks εt. Here, α2 only focuses on the negative
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2004-2007

σMF σATM

Firms S&P100 Firms S&P100

Min Median Max Mean Min Median Max Mean

σATM 0.921 0.919 0.932 0.941 0.976

σHis 0.535 0.512 0.523 0.568 0.899 0.572 0.562 0.559 0.579 0.893

σRE 0.512 0.492 0.503 0.523 0.656 0.476 0.452 0.460 0.612

σHis

σRE 0.356 0.348 0.375 0.352 0.466

2010-2013

σMF σATM

Firms S&P100 Firms S&P100

Min Median Max Mean Min Median Max Mean

σATM 0.811 0.789 0.712 0.831 0.952

σHis 0.475 0.467 0.470 0.498 0.845 0.498 0.506 0.486 0.512 0.872

σRE 0.462 0.482 0.459 0.462 0.601 0.401 0.412 0.386 0.423 0.586

σHis

σRE 0.301 0.318 0.305 0.296 0.396

Table 2: The correlations are between monthly observations of annualized measures of volatility. σHis, σMF , σATM and

σRE are, respectively, the values of the historical, the MF volatility expectation and the ATM implied volatility from a

GARCH model. All these volatility measures are for the remaining lifetimes of option contracts, which are approximately 1

month. The cross-sectional minimum, median, maximum and mean of each set of correlation statistics is calculated across

the firms. The last column reports the correlations between monthly volatility observations from the index and another

time series.
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2004-2007 Mean Std. dev. Min Median Max 5% S&P100

Panel A: GJR-GARCH model:

µ x 103 0.96 0.91 0.24 0.87 1.66 11.4 0.91*

ω x 105 19.09 29.96 0.86 7.03 19.76 63.8 0.59*

α1 0.04 0.09 0.00 0.04 0.09 20.1 0.00

α2 0.10 0.21 0.02 0.09 0.16 43.0 0.21*

β 0.82 0.25 0.52 0.92 1.05 93.3 0.87*

LHis 2206 361 1896 2121 2476 3213

Panel B: MF expectations:

µ x 103 0.78 0.93 0.28 0.75 1.46 11.4 0.76*

ω x 105 11.12 28.93 0.00 1.56 13.05 2.8 0.00*

γ 0.69 0.29 0.31 0.75 0.98 47.2 0.61

βγ 0.24 0.23 0.00 0.06 0.45 9.3 0.00*

γ/(1− βγ) 0.87 0.33 0.29 0.78 1.76 0.66

LMF 2224 365 1882 2098 2438 3181

Panel C: ATM implied vol:

µ x 103 0.82 0.96 0.40 0.76 1.42 13.6 0.92*

ω x 105 11.65 28.93 0.00 0.00 4.65 0.8 0.00*

δ 0.96 0.22 0.52 0.91 1.25 37.8 0.73

βδ 0.16 0.23 0.00 0.10 0.25 8.1 0.00*

δ/(1− βδ) 1.10 0.18 0.49 0.98 1.64 0.75

LATM 2228 362 1865 2210 2485 3168

Table 3: Daily stock returns σt by the ARCH specification: rt = µ + εt, εt =
√
htzt, zt ∼ i.i.d.(0, 1), ht =

ω+α1ε
2
t−1+α2St−1ε

2
t−1

1−βL +
γσ2
MF,t−1

1−βγL
+
δσ2
ATM,t−1

1−βδL
.σMF and σATM are respectively the MF volatility expectation and the

ATM implied volatility. The parameters are obtained by maximizing the log-likelihood function. Panel A, B and C presents

respectively the GJR-GARCH model, MF expectation and the ATM implied volatility.

shocks, with st equals 1 if εt is negative and zero otherwise. Panel B provides results for

the model which only uses the information contained in the time series of MF volatility.

We see that in both periods the βγ are close to zero or have a relatively small value. For

γ we have values between 0.31 and 0.98 in the first period and for the second period this

is between 0.28 and 0.86. Panel C summarizes estimates for the model which uses only

the information contained in the ATM implied volatility series. The δ is relatively higher

when compared to the γ of the MF volatility. However, the βδ is also close to zero.

A higher log-likelihood value means a more accurate characterization of the distribution

of the returns. We denote the maximum log-likelihoods of the models as follows: LHis,

LMF and LATM . All the values of the maximum log-likelihood are about similar. How-

ever, in both periods the maximum log-likelihood value for the ATM implied volatility

has the highest value , followed by the MF expectation. The results and comparisons of
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2010-2013 Mean Std. dev. Min Median Max 5% S&P100

Panel A: GJR-GARCH model:

µ x 103 0.93 0.90 0.22 0.91 1.52 9.8 0.86

ω x 105 18.02 31.96 1.52 9.46 19.76 59.4 0.53

α1 0.05 0.09 0.00 0.04 0.09 18.6 0.00

α2 0.09 0.21 0.00 0.08 0.14 41.6 0.19

β 0.87 0.27 0.55 0.98 1.10 91.2 0.84

LHis 1982 302 1612 1919 2166 2976

Panel B: MF expectations:

µ x 103 0.83 0.96 0.43 0.84 1.62 10.2 0.69

ω x 105 10.33 25.31 0.05 1.69 14.95 2.18 0.00

γ 0.62 0.26 0.28 0.69 0.86 41.6 0.56

βγ 0.24 0.23 0.00 0.06 0.45 9.13 0.00

γ/(1− βγ) 0.87 0.33 0.29 0.78 1.76 0.66

LMF 1986 322 1702 1823 2213 2890

Panel C: ATM implied vol:

µ x 103 0.79 0.89 0.28 0.83 1.54 11.08 0.89*

ω x 105 13.51 26.32 0.00 0.00 14.65 0.96 0.00*

δ 0.79 0.19 0.45 0.86 1.04 42.1 0.68

βδ 0.16 0.23 0.00 0.10 0.25 8.1 0.00*

δ/(1− βδ) 1.10 0.18 0.49 0.98 1.64 0.75

LATM 2031 298 1724 1960 2126 2905

Table 4: Daily stock returns σt by the ARCH specification: rt = µ + εt, εt =
√
htzt, zt ∼ i.i.d.(0, 1), ht =

ω+α1ε
2
t−1+α2St−1ε

2
t−1

1−βL +
γσ2
MF,t−1

1−βγL
+
δσ2
ATM,t−1

1−βδL
.σMF and σATM are respectively the MF volatility expectation and the

ATM implied volatility. The parameters are obtained by maximizing the log-likelihood function. Panel A, B and C presents

respectively the GJR-GARCH model, MF expectation and the ATM implied volatility.
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One-day-ahead forecasts Options’ life forecasts

2004-2007 2010-2013 2004-2007 2010-2013

Historical best 37.2% 36.1% 15.6% 17.3%

MF better than ATM 15.2% 14.2% 7.9% 10.1%

ATM better than MF 22.0% 21.9% 7.7% 7.2%

MF best 23.9% 26.4% 35.7% 37.4%

Historical better than ATM 19.1% 30.3% 32.4% 34.0%

ATM better than historical 4.8% 5.4% 3.3% 3.4%

ATM best 38.9% 37.5% 48.7% 45.3%

MF better than historical 32.2% 33.1% 42.2% 39.2%

Historical better than MF 6.7% 4.4% 6.5% 6.1%

Table 5: The percentages present how many of the firms satisfy the order of the best descriptions. We use the ARCH

specifications for the one-day-ahead forecasts. The values given in the columns of the options’ life forecasts are obtained

from the univariate regressions.

the two periods are given in Table 5. For both periods is the ATM more often the best,

for both one-day-ahead forecasts and option lifetime forecasts. Historical forecasts are

slightly less than the ATM for one-day-ahead forecasts. However, for the option lifetime

forecasts are the historical forecasts a lot worse.

Tables 6 and 7 presents the results of the regressions, given by equation 5, to analyze

the realized volatility. It present the minimum, median, maximum and the S&P100, like

before in this paper. Further, the table shows the R2 and the sum of squared residuals.

In both sample periods the ATM implied volatility has the highest R2 value, followed by

the MF volatility expectation. Seemingly the estimates from the option prices are better

descriptive than historical stock returns.
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2004-2007 β0 βHis βMF βATM R2 SSE

Panel A: His

Mean 1.215 0.587 0.185 0.061

Min 0.191 0.327 0.049 0.047

Median 1.549 0.596 0.149 0.046

Max 2.609 0.929 0.258 0.065

S&P100 1.297 0.488 0.218 0.062

Panel B: MF

Mean 0.891 0.617 0.237 0.056

Min 0.129 0.374 0.093 0.039

Median 0.693 0.614 0.219 0.049

Max 1.448 0.909 0.387 0.071

S&P100 0.120 0.749 0.498 0.051

Panel C: ATM

Mean 0.761 0.714 0.228 0.061

Min 0.079 0.559 0.108 0.039

Median 0.704 0.761 0.205 0.049

Max 1.221 0.894 0.363 0.071

S&P100 0.203 0.914 0.536 0.070

Table 6: The most general estimated regression model for the logarithm of realized volatility is: ln(100σRE,t,T = β0 +

βHis + ln(100σHis,t,T + βMF ln(100σMF,t,T ) + βATM ln(100σATM,t,T ) + εt,T . With σHis, σMF , σATM and σRE ,

respectively, refer to the the historical forecast, the MF volatility expectation, the ATM option implied volatility and the

realized volatility. The regressions are estimated by OLS for each firm. The minimum, median, maximum and mean are

calculated for the different models.

2010-2013 β0 βHis βMF βATM R2 SSE

Panel A: His

Mean 1.231 0.601 0.194 0.062

Min 0.191 0.327 0.056 0.048

Median 1.566 0.609 0.151 0.057

Max 2.616 0.934 0.266 0.071

S&P100 1.315 0.496 0.225 0.071

Panel B: MF

Mean 0.901 0.624 0.247 0.059

Min 0.138 0.381 0.092 0.049

Median 0.701 0.621 0.231 0.059

Max 1.457 0.918 0.413 0.071

S&P100 0.125 0.757 0.512 0.051

Panel C: ATM

Mean 0.771 0.729 0.238 0.065

Min 0.091 0.571 0.121 0.051

Median 0.721 0.771 0.223 0.061

Max 1.221 0.895 0.371 0.076

S&P100 0.221 0.931 0.523 0.071

Table 7: The most general estimated regression model for the logarithm of realized volatility is: ln(100σRE,t,T = β0 +

βHis + ln(100σHis,t,T + βMF ln(100σMF,t,T ) + βATM ln(100σATM,t,T ) + εt,T . With σHis, σMF , σATM and σRE ,

respectively, refer to the the historical forecast, the MF volatility expectation, the ATM option implied volatility and the

realized volatility. The regressions are estimated by OLS for each firm. The minimum, median, maximum and mean are

calculated for the different models.
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5 Conclusion

In this paper we researched the information content of three volatility measures for two

large sets of US firms. The ATM implied volatility and the, relatively new, MF volatility

expectation make use of US index stock option prices, while the historical daily returns

makes only use of the US stock index. Literature until now generally agrees that stock

option prices are significantly more informational for measuring volatility of stock returns.

While the results of our research show various advantages and disadvantages of both ap-

proaches, our main findings in the one-day-ahead forecasts contradict this statement.

If we look at the one-day-ahead forecasts, we observe that the historical forecasts performs

comparably to the ATM implied volatility in both periods. When we extend the horizon

to the maturity of the option however, both the MF volatility expectations and the ATM

implied volatilties outperform the historical forecasts significantly. Looking within the

option based forecasts, we see that the ATM implied volatility performs slightly better

than the MF volatility expectations in both periods and for both horizons. Our paper

shows that MF volatility expectation, a model which does not rely on any pricing for-

mula, does not realize its theoretical potential.

By selecting our data with specific criteria, mainly concerning the high level of trade

activity for an option, we established a high quality data set for the models using the

stock option prices. In our results we found that stock options which had high trading

activity enabled the models using stock option prices to more often outperform the his-

torical forecasts. When the options had a relatively low trading activity however, the

usage of historical returns yielded in better forecasts.

For the comparison of the two sample periods we look at the log-likelihood of the esti-

mation, in general we see a lower value for the log-likelihood, this indicates a worse fit

of the models than for the period before. The correlation of the volatility forecasts are

decreased when we investigate the two sample periods. This may be attributable to the

financial crisis, which made stock volatility less predictable. For more clear conclusions

about the effect of the financial crisis, further research is required.
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