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Abstract

In this paper, I study a three-step linear regression model to forecast U.S. Treasury bond yields

as well as corporate bond yields. Previous studies applied this model to government bonds

which have virtually no risk of default, and found that they could predict yields very accurately.

However, no study has applied the model to corporate bonds. I find that five pricing factors ob-

tained using principal component analysis, provide the best forecast for Treasury and corporate

bonds. The predicted yields from the model show significant bias for Treasury bonds with higher

time-to-maturities, but after correcting this bias, the predicted yields have an almost perfect fit

to the actual yields. For the corporate bonds, the model performs reasonably in periods where

the economy is stable, but cannot be used for forecasting. In periods with high credit risk,

the model does not predict or follow the yields correctly since the model predicts that yields

go down instead of up. For larger time-to-maturities the model is accurate when reflecting the

yields about the x-axis.

1The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam.
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1 Introduction

Traditionally, bond prices are calculated by discounting the cash flows of the bond. The correct

discount rate is not a simple rate and has been studied widely and intensively. Inflation, liquidity,

and risk of default are some critical aspects for the calculation this discount rate. If an investor

has the choice between a bond that matures in one year and a bond that matures in five years, he

may want to receive a higher yield for the bond with a time-to-maturity of five years compared

to the bond with a shorter maturity. The investor could expect that the company defaults on

the loan after two years, and wants to be compensated for taking on that risk. We could also

think of these yields as a group, and draw a line through all the yields at that point in time.

This line is the yield curve or the term structure of yields. Usually, the curve is upward sloping,

but it can also be inverted, or have some bumps. Haubrich and Dombrosky (1996) found that an

inverted yield curve could be a sign of an oncoming recession. This is one of the many reasons

why forecasting the term structure is essential for investors and governments.

Bonds are assets, like stocks, whose returns do not follow a normal distribution (De Pooter,

Ravazzolo, & Van Dijk, 2010; Sheikh & Qiao, 2010). What sets bonds apart from stocks is not

only the obligation of the issuer to pay off the loan but also the fact that bonds are traded

with different maturities. Changes in the short-term yields lead to changes in the long-term

yields. These cross-equation restrictions make it hard to forecast the yields using standard

vector autoregressive models. The manipulation of short-term interest rates by the Federal

Reserve makes forecasting even more complicated. Affine term structure models can capture

these properties. These models require three assumptions: the errors of the state variables are

conditionally normal, the pricing kernel is exponentially affine, and the prices of risk are affine.

Maximum likelihood is primarily used to estimate the coefficients of the model, see Pearson

and Sun (1994) and Ang and Piazzesi (2003). However, maximum likelihood estimation is

computationally very expensive and could lead to bias in small samples. Improvements have been

made by Hamilton and Wu (2012) to replace maximum likelihood, and by Bauer, Rudebusch,

and Wu (2012) to correct for the bias. Joslin, Singleton, and Zhu (2011) show that a vector

autoregressive model (VAR) with one lagged term instead of maximum likelihood leads to similar

if not identical parameter estimations. However, in the next step, where the price evolution

parameters are used to obtain parameters of risk factors, they go back to numerical optimization.

Adrian, Crump, and Moench (2013) introduce a different model, which does not use max-

imum likelihood at all. Instead, the model uses linear regressions, which is much faster than

maximum likelihood. The model can also be used for coupon-bearing bonds, which is another

advantage of the use of linear regressions. Furthermore, pricing factors do not have to be a linear

combination of yields, but can also be observable factors such as inflation or unemployment rate.

The authors show that their model, combined with five pricing factors, fits exceptionally well

to the observed yields. The model starts by quantifying the relation between the pricing factors

and the lagged pricing factors. Next, the model estimates the influence of shocks and lagged

pricing factors on excess returns. The last step involves estimating the price of risk parameters

from the previous regression. Using the estimated parameters of these linear regressions, Adrian

et al. (2013) reconstruct the yield curve with recursive linear restrictions.

In this paper, I replicate the findings of Adrian et al. (2013) by finding the correct factor
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specification and by applying the three linear regressions to estimate the yield curve of U.S.

Treasury yields. Furthermore, I extend their research by applying the model to credit risk of

companies. First, I create corporate bond portfolios, and second, I apply the model introduced

by Adrian et al. (2013). It turns out that the estimated yields do not fit the actual yields

accurately. Whereas the corporate bond yields go up in the financial crisis, the predicted yields

go down. On the other hand, the U.S. Treasury bond yields fit the model very accurately.

Corporate bonds are different from Treasury bonds, for plenty of reasons. The most im-

portant reason is that corporate bonds have a risk of default. The issuing company could go

bankrupt, and may not be able to pay back the full amount of money owed. The U.S. Treasury

has virtually no risk of default since it can print more money to pay off the loan. However, the

Treasury has a debt ceiling, so it could potentially run out of money. This has never happened

because the United States Congress raises the debt limit when deemed necessary. Because of the

risk of default, investors want a higher yield than the government bonds. Rating agencies such

as Standard & Poor’s assess the creditworthiness of the issuing company. Usually, the lower

the credit rating, the higher the bond yield. Assuming that investors want a higher yield from

bonds, while not adding too much risk, they might be interested in adding corporate bonds to

their portfolio.

The term structure models can also be extended to find risk premia, like the inflation risk

premium and the credit risk premium. I apply the model of Adrian et al. (2013) to a portfolio of

corporate bonds with different time-to-maturities, and estimate the yield curve for the portfolios.

By creating portfolios, I minimize the idiosyncratic risk of the corporate bonds, which results in

a more accurate panel of data. Chen, Liu, and Cheng (2010) are able to estimate the inflation

and inflation risk premium using a quadratic term structure model but is reliant on maximum

likelihood. Follow-up research by Abrahams, Adrian, Crump, Moench, and Yu (2016) extended

the model of Adrian et al. (2013) by allowing it to decompose the real and nominal yields using

linear regressions. From the difference between the two, they are able to generate an estimate

for the inflation risk premium. On the other hand, credit risk premia are much more difficult

to obtain. It involves regime switching models, assumptions about credit ratings, assumptions

about how much debt can be repaid, and it can get much more complicated by including ‘jumping

to default’ (see Jarrow, Lando, and Turnbull (1996) and Zhou (2001)). However, this is far

outside the scope of this thesis.

The rest of this paper is organized as follows: I will start by presenting the three-step model,

and how to reconstruct the yields from the resulting parameters in section 2. Next, I describe

the data I used, and how I transformed it to use it for the research in section 3. In section 4,

I present the results of my research and the interpretation of these results. Finally, section 5

concludes by giving a summary and a discussion.

2 Methodology

The model that Adrian et al. (2013) introduce, which I will refer to as the ACM model, requires

a specification of pricing factors. In this section, I present how I obtain these pricing factors,

and I give the framework of the ACM model where the factors are used. Next, I show the tests

I use to choose the correct number of pricing factors, and finally, I show how I reconstruct the
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yields using the parameters obtained from the ACM model.

2.1 Pricing factors

In order to obtain pricing factors from the data, I use principal component analysis (PCA). I

construct the correlation matrix of a cross-section of yields of N = 40 time-to-maturities for the

government bonds, and N = 39 for the corporate bonds. Next, I apply PCA to this correlation

matrix, which results in the eigenvector matrix E. Given E and the yields, I construct the pricing

factors by constructing the principal components,

Pt = E′Rt, (2.1)

where R is the matrix with yields. This equation boils down to

Pit = ei1R1t + ei2R2t + · · ·+ eiNRNt, (2.2)

where e1i is the first value of the i-th eigenvector. Pt is an N × 1 vector, and by choosing the

first K components, I have created the pricing vectors for every t = 1, . . . , T .

Litterman and Scheinkman (1991) showed that one could capture enough of the variation

over time and over multiple maturities with three factors. These factors are level, slope and

curvature, which corresponds to the parameters of the Nelson-Siegel yield curve (Nelson & Siegel,

1987). Later research of Cochrane and Piazzesi (2005) and Joslin, Priebsch, and Singleton (2014)

showed that additional factors, such as the “bond-return forecasting factor” and inflation are

also crucial. Cochrane and Piazzesi (2009) obtain pricing factors by selecting the first three

principal components and then add the return forecasting factor. This factor should predict the

one-month excess return better than the fourth and the fifth principal component. Adrian et al.

(2013) calculate this forecasting factor by regressing the excess returns on a vector of ten one

month lagged one-year forward rates (Ft),

rx t+1 = γ0 + ΓFt + ηt+1. (2.3)

After this, they apply PCA to Γ̂Ft and take the first principal component as the return fore-

casting factor. The forecasting factor is then added to the three principal components of the

original yields, such that

Pt = [xt PC1t PC2t PC3t]
′ , (2.4)

where xt is the forecasting factor, and PC stands for principal component. I will refer to this

pricing factor specification as the CP model. Since I do not have forward rates for the corporate

bonds, I am not able to estimate the CP model for these types of bonds.

2.2 The model

In order to price the term structure, I use the framework presented by Adrian et al. (2013),

and the model described in this section follows their work closely. I present the three steps of

the ACM model and the assumptions it is based on. In this section, I assume that the correct
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number of pricing factors is K.

2.2.1 The first linear regression

I start by estimating a standard vector autoregressive (VAR(1)) model to capture the pricing

factor evolution,

Pt+1 = µ+ ΦPt + εt+1, (2.5)

where µ is the K × 1 level parameter, Pt is the K × 1 vector of the pricing factors, Φ is the

K ×K coefficient matrix, and εt the K × 1 shock or innovation. I assume that the shocks are

conditionally normally distributed,

εt+1|It ∼ N(0,Σ), (2.6)

where It denotes all historical information of Pt before time t. After performing the regression, I

stack the innovations ε̂′t+1 into the matrix V̂ and construct the (co)variance matrix Σ̂ = V̂ ′V̂ /T ,

where T is the number of observations.

2.2.2 The second linear regression

The next regression involves regressing excess returns on a constant, lagged pricing factors, and

the pricing factor innovations. I assume that no arbitrage is possible and that a pricing kernel

Mt exists, which implies

Y
(τ)
t = Et

[
Mt+1Y

(τ−1)
t+1

]
. (2.7)

I also assume that this pricing kernel is exponentially affine, such that

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tΣ−1/2εt+1

)
. (2.8)

In this equation, rt = lnY
(1)
t , which corresponds to the price of the continuously compounded

risk-free rate. I further assume that market prices of risk are essentially affine,

λt = Σ−1/2 (λ0 + λ1Pt) , (2.9)

following Duffee (2002). The excess returns are calculated as

rx
(τ−1)
t+1 = lnY

(τ−1)
t+1 − lnY

(τ)
t − rt, (2.10)

where rx
(τ−1)
t is the log excess holding return during time t of a bond maturing in τ months,

lnY
(τ)
t is the zero-coupon log bond price at time t with time-to-maturity τ . The zero-coupon

log bond price can be easily computed with

lnY
(τ)
t = − τ

12
y
(τ)
t . (2.11)

I use the same method of calculating excess returns for the Treasury bonds and corporate

bonds, because the yield-to-maturity has the capital gains of the coupons from the corporate
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bonds already calculated into it. From the yield-to-maturity, I can create a zero-coupon bond,

which has a lower price but does not pay out the coupon.

Next, I stack the excess holding returns for all time-to-maturities and over time, and create

the M × (T −1) matrix rx , where M is the number of maturities for which I calculate the excess

returns. For the corporate bonds, I take the same risk-free rate as for the Treasury yields,

because I assume that an investor can invest in risk-free Treasury bonds.

Furthermore, I assume that the excess returns rx and innovations of equation (2.5) are

jointly normally distributed and that the return errors et+1 are independently and identically

distributed (iid) with variance σ2. I use these assumptions to derive the return generating

process:

rx
(τ−1)
t+1 = β(τ−1)′(λ0 + λ1Pt)−

1

2
(β(τ−1)′Σβ(τ−1) + σ2) + β(τ−1)′εt+1 + e

(τ−1)
t+1 . (2.12)

Here, β(τ−1) can be seen as a factor loading, and risk prices are λ0 and λ1. I exclude the full

derivation since it is not the focus of this paper; the derivation can be found in Adrian et al.

(2013). Equation (2.12) can be stacked for the maturities and over time as

rx = β′
(
λ0ι
′
T + λ1P−

)
− 1

2

(
B? vec(Σ) + σ2ιN

)
ι′T + β′V̂ + E, (2.13)

and summarised as

rx = aι′T−1 + β′V̂ + cP− + E, (2.14)

where ιT−1 is a (T − 1) × 1 vector of ones, P− = [P0 P1 . . . PT−2] is a K × (T − 1) matrix of

lagged pricing factors, and E an M × (T − 1) matrix of residuals. I collect the regressors in the

(2K + 1)× (T − 1) matrix

Z̃ =
[
ιT−1 V̂

′ P ′−

]′
, (2.15)

and the coefficients are collected in the M × (2K + 1) matrix

[â β̂′ ĉ] = rx Z̃ ′
(
Z̃Z̃ ′

)−1
. (2.16)

I can now estimate σ2 following

σ̂2 =
tr
(
ÊÊ′

)
N(T − 1)

, (2.17)

and B? as

B̂? = [vec(β̂(1)β̂(1)′) . . . vec(β̂(M)β̂(M)′)]′, (2.18)

where β̂(i) is the i-th column of β̂.

2.2.3 The third linear regression

The final regression involves estimating the risk parameters λ0 and λ1. From equation (2.13)

and equation (2.14), I derive that a = β′λ0 − 1
2

(
B? vec(Σ) + σ2ιN

)
and c = β′λ1. I use these
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expressions to derive the following estimators of λ0 and λ1 using a cross-sectional regression:

λ̂0 = (β̂β̂′)−1β̂

(
â +

1

2

(
B̂? vec(Σ̂) + σ̂2ιM

))
, (2.19)

and

λ̂1 =
(
β̂β̂′

)−1
β̂ĉ. (2.20)

Adrian et al. (2013) go on to show that the variance of β is

Vβ = σ2
(
IM ⊗ Σ−1

)
, (2.21)

where ⊗ is the Kronecker product.

2.3 Model specification test

To analyze the correct number of pricing factors, I perform two model specification tests. Adrian

et al. (2013) argue that the matrix of factor loadings β should be of full column rank to identify

λ0 and λ1. Therefore, the first test is the Anderson (1951) canonical correlations test, which

tests whether the rank of a matrix is r or that it is not greater than a specified value p. Under

the null that rank(β) ≤ r < K, the Anderson statistic is

rk r = −(T − 1)

K∑
i=r+1

ln
(
1− ρ2i

) a∼ χ2((K − r)(M − r)), (2.22)

where ρi is de sample partial canonical correlation of V on rx conditional on X−. For a K-factor

model, I test whether r = K − 1, such that the equation collapses to

rk r = −(T − 1) ln
(
1− ρ2K

) a∼ χ2((M −K + 1)). (2.23)

The second test is a test for useless factors by testing whether certain columns of β are equal

to zero using the Wald test. Under the null that βi = 0M×1, the statistic is

Wβi = β̂′iV̂−1βi β̂i ∼ χ
2(M), (2.24)

where βi is the i-th column of β′ and Vβi is the variance of βi. In a K-factor model, I test

whether the K-th column of β′ is zero. The significance level for both tests is set at α = 0.05.

I perform these tests on four different models: three ACM models with pricing factors equal to

three, four or five, and the CP model. For clarity, I should note that I test whether the third

principal component in the CP model is zero. As I indicated before, I do not construct the CP

model for the corporate bonds, so I only perform the tests on the ACM models.
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2.4 Constructing the curve

I am able to generate a zero-coupon yield curve with the parameters {Φ,Σ,β, σ, λ0, λ1} from

section 2.2. Using the assumptions, the bond prices can be shown as

lnY
(τ)
t = Aτ +B′τPt + u

(τ)
t . (2.25)

Substituting equation (2.25) into equation (2.10) and setting it equal to equation (2.12), I get

Aτ−1 +B′τ−1(µ+ ΦPt + vt+1) + u
(τ−1)
t+1 −Aτ −B′τPt − u

(τ)
t +A1 +B′1Pt + u

(1)
t

= β(n−1)′(λ0 + λ1Pt + vt+1)−
1

2
(β(τ−1)

′
Σβ(τ−1) + σ2) + e

(τ−1)
t+1 . (2.26)

This equation has to hold for all t = 1, . . . , T . If I set A1 = −δ0 and B1 = −δ1, the following

set of recursive restrictions for the parameters A and B has to hold:

Aτ = Aτ−1 +B′τ−1(µ− λ0) + 1
2(B′τ−1ΣBτ−1 + σ2)− δ0,

B′τ = B′τ−1(Φ− λ1)− δ′1,

A0 = 0, B′0 = 0,

β(τ) = B′τ

(2.27)

The parameters δ0 and δ1 can be estimated by regressing the price of the one-month bonds on

the pricing factors, since the equation is

lnY 1
t = A1 +B′1Pt + u1t . (2.28)

After obtaining the full vector A, and matrix B, I reconstruct all log bond prices. Following the

reconstruction, I convert the prices back into continuously compounded zero-coupon yields by

ŷ
(τ)
t = − ln Ŷ

(τ)
t

τ/12
. (2.29)

The estimated excess returns are shown as

r̂x t+1 = B̂′τ−1

(
λ̂0 + λ̂1Pt

)
− 1

2

(
B̂′τ−1Σ̂B̂τ−1 + σ̂2

)
+ B̂′τ−1ε̂t+1, (2.30)

which corresponds to the return generating process of equation (2.12), where the time-to-

maturities are stacked into the vector rx t+1.

3 Data

In this section, I present the data I use to obtain results from the model in the previous section.

I start by showing the government bond data, in particular I show how to construct the cross-

section of data using the Nelson-Siegel-Svensson model, introduced by Nelson and Siegel (1987)

and extended by Svensson (1994). Next, I present the data for the corporate bonds, and how I

cleaned it to make maturity sorted portfolios.
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3.1 Treasury yield data

I estimate the K-factor specification for the ACM model using the dataset of daily zero-coupon

yields which is based on fitted Nelson-Siegel-Svensson curves. Gürkaynak, Sack, and Wright

(2007) have constructed these daily yields for United States Treasury Notes, Bills, and Bonds

with time-to-maturities (τ) of 1, 2,..., 30 years. Gürkaynak et al. (2007) also included the

parameters of the Nelson-Siegel-Svensson curves which I use to make a cross section of yields

for τ = 3, 6,..., 120 months.

Six parameters influence the Nelson-Siegel-Svensson curves: {β0, β1, β2, β3, τ1, τ2}. When

these parameters are given, the zero-coupon yield curve at time t is easily calculated using

yt(τ) = β0 + β1
1− exp

(
− τ
τ1

)
τ
τ1

+ β2

1− exp
(
− τ
τ1

)
τ
τ1

− exp

(
− τ
τ1

)+

β3

1− exp
(
− τ
τ2

)
τ
τ2

− exp

(
− τ
τ2

) , (3.1)

where τ is the time-to-maturity, and each of the Nelson-Siegel-Svensson parameters should

have index t, but I omit them since this would make it harder to read. To calculate the return

forecasting factor of the CP model, which is discussed in section 2.1, I construct one-year forward

rates with the Nelson-Siegel-Svensson parameters. I do this with the following equation:

ft(τ, 0) = β0 + β1 exp (−τ/τ1) + β2 (τ/τ1) exp (−τ/τ1) + β3 (τ/τ2) exp (−τ/τ2) . (3.2)

In section 2.2.2, I defined the price of the continuously compounded risk-free rate as rt = lnY
(1)
t ,

and I calculate this price using equation (2.11). The zero-coupon yield of this risk-free bond is

also calculated using the Nelson-Siegel-Svensson model. I set τ = 1 in equation (3.1), such that

the risk-free rate is based on the one month yield.

The data on the parameters spans from November 25, 1985, to April 26, 2019. The dataset

contains information of the parameters before November 25, 1985, but not all bonds with a longer

maturity were available before then. Therefore, Gürkaynak et al. (2007) highly recommend

focusing only on securities that were available during that time. Since the model of Adrian et

al. (2013) is based on monthly observations, I take end-of-month values for the parameters.

3.2 Corporate bond data

I extend the research of Adrian et al. (2013) by applying their model to corporate bond data.

The data I collect is from the WRDS Bond Returns dataset2. It contains all United States

monthly corporate bond transactions from July 2002, to March 2018. The data is collected by

WRDS from the Trade Reporting and Compliance Engine (TRACE) of the Financial Industry

Regulatory Authority (FINRA), and the Mergent Fixed Income Securities Database (FISD).

The data is essentially pre-cleaned by WRDS since they already removed about 28% of the raw

data from TRACE and FISD. The cleaned dataset contains information of the issuer, the credit

2Available at https://wrds-www.wharton.upenn.edu/pages/grid-items/wrds-bond-returns/
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rating, the type of bond, when a coupon was not paid, and various other criteria.

From the WRDS Bond Returns dataset, I select six variables: the date, the company’s

ticker, the Standard & Poor’s credit rating, its numerical credit rating, the yield-to-maturity,

and the time-to-maturity. With these variables, I construct a cross-section of portfolios, sorted

by maturity and time. Before I start constructing the portfolios, I remove all non-investment

grade bonds. That is, all bonds with a credit rating of BB+ and worse are deleted to remove

the most substantial chunk of the risky bonds. Next, I remove all bonds with a negative yield-

to-maturity, because the portfolios are fictive, and therefore it does not have to be very liquid,

which is a reason to hold bonds with a negative yield. Another reason to hold bonds with

negative yields is that foreign investors might expect the domestic currency to rise, but this is

beyond the scope of this paper; thus, the negative yield bonds are ignored.

After cleaning the data, I create N = 39 portfolios with τ = 6, 9, ..., 120 months at

each point in time. To do this, I take all the bonds with time-to-maturity between (τ − 6, τ + 6)

months, and calculate the average yield-to-maturity, price, and coupon. Figure 1 shows the yield-

to-maturity of all portfolios over time. The financial crisis of 2008-2009 is very well captured.

We can see that short-term bonds have a very high yield, indicating an increase in credit risk

and liquidity risk.

Whereas the Treasury yields are zero-coupon yields, the yields of these portfolios are coupon-

bearing bond portfolios. However, this should not be a problem since Adrian et al. (2013) argue

that only two inputs for their model are necessary: a set of excess returns and pricing factors.

Figure 1: Yields of corporate bonds over all time-to-maturities and time. The yields are calculated by
averaging all U.S. corporate bond yields with a maturity within six months of the desired time-to-maturity
τ , as described in section 3.2.

4 Results

In this section, I present the results of the ACM model with the data I collected. I start with

the results of the Treasury bonds, and finish with the corporate bonds. I show the results of the
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principal component analysis, the outcome of the model specification tests, and the fit of the

chosen factor specification.

4.1 Treasury bonds

For the U.S. Treasury bonds, I use zero-coupon yields as described in section 3.1. I have a

cross-section of N = 40 time-to-maturities over T = 402 months. The first three principal

components extracted from this panel, correspond to the level, slope, and curvature factors; the

fourth corresponds to the relation between the short and medium maturities, and the fifth to

the relation between the short, short-to-medium and long maturities. The ACM model with

K = 5 factors fits the yields the best, according to the specification tests. The model does have

some bias, but after correcting this, the largest yield fitting error is 0.095%.

4.1.1 Principal components and pricing factors

After performing principal component analysis on the correlation matrix of the yields, I selected

the first five principal components, which can be seen in figure 2. In figure 2a, the expected three

factors of level, slope, and curvature can be found. The first principal component corresponds

to the level as it stays relatively constant for all maturities. The second principal component

corresponds to the slope, and the third component is the curvature factor. The fourth and fifth

principal component can be seen in figure 2b. The fourth component highlights the relation

between short and medium-term bonds, and the fifth component can be interpreted as the

relation between short, short-to-medium, and long term bonds. The fourth and fifth component

only explain 0.014% of the cross-sectional variation.
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(a) First three principal components
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Figure 2: Eigenvector loadings for first five principal components of Treasury yields. These plots show
the eigenvectors resulting from principal component analysis on the correlation matrix of the panel of
zero-coupon yields. The yields are constructed using Nelson-Siegel-Svensson curves, and they span a
period of 402 months.

4.1.2 Model specification tests

After obtaining the parameters from the ACM and the CP model, I perform two model speci-

fication tests to test the number of pricing factors. The two tests are the Anderson canonical
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correlations test and the Wald test. Table 1 shows the results of the tests. The ACM model

with K = 5 pricing factors is selected when I use the Anderson test, while the CP model is

selected when I use the Wald test. However, the CP model is the worst in the Anderson test.

Therefore, I select the ACM model with K = 5 pricing factors as the correct specification.

Table 1: Identification tests for number of pricing factors for Treasury yields.
This table reports the model specification tests that are described in section 2.3. I test the ACM with
three, four, and five pricing factors, and the CP model. The first test is the Anderson canonical correla-
tions test, where the statistic rkK−1 tests whether the rank of β is smaller or equal to K−1 in a K factor
model. The statistic follows a χ2(M −K + 1) distribution, where M is the size of the cross-section of
excess returns. The second test is the Wald test, where the statistic Wβ tests whether the K-th column
of β′ is equal to 0M×1. The statistic follows a χ2(M) distribution with significance level at 5%. The
p-values of each test is shown in parentheses.

Model rkK−1 Wβ

ACM, K = 3 542.06 523.34
(0.000) (0.000)

ACM, K = 4 562.77 595.35
(0.000) (0.000)

ACM, K = 5 654.60 1047.35
(0.000) (0.000)

CP (K = 4) 518.39 3245.74
(0.000) (0.000)

From table 1, we can conclude that all models are correctly specified since all p-values are

0.000. We can also see that the ACM model becomes better specified when adding pricing

factors. The test statistics consistently increase as K increases, especially from the K = 4 to

the K = 5 model where the Wald statistic nearly doubles. Finally, the CP model performs very

well when using the Wald test. This means that the last column of β′ is significantly different

from zero. However, the model performs the worst in the Anderson test. This result means

that there is a column in β that is spanned by the other columns. Upon further inspection, I

find that the return forecasting factor and the second principal component are able to capture

a part of the movement of the first principal component. Figure 3 shows this result. Thus, we

can conclude that the CP model is not optimally specified.

4.1.3 Fitting the model

Given the five-factor specification for the pricing factors, I construct the forecasts recursively

following section 2.4. In figure 4a, the fitted yields with τ = 6 months follow the actual yields

very closely, but in figure 4b the fitted yields with τ = 120 months are consistently lower. It

turns out that the difference is constant over time, which indicates a presence of bias. This

bias might be due to a faulty or incomplete model. Since the bias increases as I increase the

time-to-maturity, the fault lies in the recursion of Aτ and Bτ . One of the parameters needed for

the recursion is most likely not correct.

I correct this bias by taking the expected yields for the actual and fitted yields and taking
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Figure 3: First PC and a linear combination of the return forecasting factor and the second PC.
This figure shows that in the CP model, the first principal component of the zero-coupon yields is largely
captured by a linear combination of the CP return forecasting factor and the second principal component.
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Figure 4: Fitted yields for the K = 5 factor model for different time-to-maturities. This figure provides
an overview of the fitted yields obtained from the five factor ACM model. The solid blue line corresponds
to the observed yield, the dashed green line in the left figure and the solid green line in the right figure
correspond to the fitted yield.
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the difference between the two. This can be formalized as

b(τ) = E
[
y(τ)

]
− E

[
ŷ(τ)

]
. (4.1)

I do the same bias correction for the excess returns since there is a bias for the higher maturities,

as I mentioned before. Figure 10 in appendix A shows the increasing bias of the yields and excess

returns as the time-to-maturity increases.

For each τ for which I forecast the yields, I correct the bias following

ỹ
(τ)
t = ŷ

(τ)
t + b(τ), ∀t = 1, . . . , T. (4.2)

After this correction, the fitted yields follow the actual yields much closer as figure 5a and

figure 5b present. The biggest error of the yield is only 9.5 basis points or 0.095%. This error

occurs in December 1994, for the bonds with a time-to-maturity of 6 months. The largest error of

the other time-to-maturities is only two basis points. We can conclude that this model predicts

the yields extremely accurately after the bias correction. Figure 5c and figure 5d show the

fitted excess returns, and they follow the actual excess returns very closely as well. The largest

excess return error is 0.30% across all the time-to-maturities, which highlights the accuracy of

the model.
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(b) Fitted yields with τ = 120 months
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(c) Fitted excess returns with τ = 6 months
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(d) Fitted excess returns with τ = 120 months

Figure 5: Bias-corrected fitted Treasury yields and excess returns for the K = 5 factor model for
different time-to-maturities. This figure presents plots of fitted yields and excess returns of the five-factor
ACM model after a bias correction. The solid blue line is the observed yield and excess return, the dashed
green line is the fitted yield and excess return.
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Table 2 shows the properties of the forecasting error. The yield errors û and excess returns

errors ê are calculated by subtracting the fitted value from the actual value. From this table,

we can conclude that the five-factor model fits the actual yields very closely. The standard

deviation is tiny; it does not exceed 0.01 for all zero-coupon bonds with a maturity longer than

12 months and is only slightly more than one basis point for τ = 6 months. Finally, consistent

with the theory and results of Adrian et al. (2013), I find that the yield errors have a high

autocorrelation. We can also conclude that the average return error and standard deviation is

very small. In general, the return errors do not show significant autocorrelation, which is in

accordance with the results of Adrian et al. (2013).

Table 2: Yield and excess return fitting error properties for different time-to-maturities of Treasury
yields.
This table provides a summary of the fitted yield and excess return errors obtained from the five-factor
ACM model. The upper panel summarizes the yield errors and the bottom panel the excess return errors.
The sample period is December 1985, to April, 2019. The statistics considered are the mean, standard
deviation, skewness, kurtosis, and the first and sixth order autocorrelations, ρ(1) and ρ(6) respectively.
τ corresponds to the time-to-maturity in months.

Summary statistic τ = 6 τ = 24 τ = 36 τ = 48 τ = 60 τ = 120

Yield errors (û)
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 0.012 0.005 0.004 0.005 0.004 0.007
Skewness 0.978 0.439 0.066 -0.031 0.203 -0.077
Kurtosis 14.308 3.364 2.686 2.832 2.661 3.104
ρ(1) 0.565 0.746 0.815 0.842 0.933 0.835
ρ(6) 0.301 0.390 0.695 0.595 0.714 0.499

Excess return errors (ê)
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 0.024 0.029 0.029 0.028 0.024 0.045
Skewness 1.228 -0.150 0.211 0.342 0.218 0.214
Kurtosis 14.437 3.565 4.291 5.703 4.819 9.827
ρ(1) 0.052 0.124 0.021 -0.094 -0.032 -0.167
ρ(6) 0.082 -0.048 -0.043 -0.024 -0.034 -0.022

In general, the kurtosis of the return errors is higher than the kurtosis of the yield errors. This

result indicates that the return errors are more heavily tailed. Table 2 shows another interesting

result: the kurtosis of the errors with τ = 6 months is significantly higher in comparison to the

other time-to-maturities. This result shows that the ACM model produces very small errors,

but for the smallest time-to-maturity, large errors tend to be even larger errors compared to

other time-to-maturities.

4.2 Corporate bonds

For the corporate bonds, I use the yield-to-maturity of all U.S. corporate bonds, as described in

section 3.2. I have a cross-section of N = 39 time-to-maturities over T = 188 months. The first

three principal components are very similar to the first three of the Treasury yields; the fourth

and fifth component corresponds to the relation between short and medium-term bonds. The

ACM model with K = 3 or K = 5 factors fits the yields the best, according to the specification
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tests. The ACM model produces yields with significant bias. Furthermore, the yields tend to

move in the opposite direction as the observed yield for longer maturities. For shorter maturities,

the predicted yields follow the observed yields only in periods of economic certainty. The model

is not able to predict excess returns as the fitted returns are between 8 to 50 times less volatile

compared to the observed returns.

4.2.1 Principal components and pricing factors

Figure 6 shows the eigenvectors that resulted from principal component analysis on the correla-

tion matrix of the corporate bond yields. In figure 6a, we can see the three factors of level, slope,

and curvature, albeit more roughly than in figure 2a. The first principal component stays rela-

tively constant at 0.15, thus indicating it is a level factor. The second principal component has

a downward slope but is much rougher than the second principal component of the zero-coupon

yields. The third principal component corresponds to the curvature factor since it goes down at

first and turns upwards at τ = 30. The fourth component highlights the relation between short

term bonds and short-to-medium term bonds, and the fifth component can be interpreted as

the relation between short and medium-to-long term bonds.
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Figure 6: Eigenvector loadings for first five principal components of corporate bond yields. These figures
provide an overview of the eigenvectors obtained from principal component analysis on the correlation
matrix of the cross-section of corporate bond yield. The yields are constructed following section 3.2 and
span 188 months.

4.2.2 Model specification tests

Table 3 shows the results of the model specification tests for the corporate bonds. The results

do not point out that one model works the best. The K = 5 model performs the worst in the

Anderson test, but the best in the Wald test for useless factors. On the other hand, the K = 3

model performs the best in the Anderson test, but second in the Wald test. The K = 4 model

is the worst in the Wald test and only slightly better than the K = 5 model in the Anderson

test. Therefore, I select both the K = 3 and K = 5 factor model as the correct specification for

the ACM model, and I keep comparing the two for advantages of one over the other.

Table 3 indicates that only the K = 4 factor model is incorrectly specified in the Wald test.

However, this model is correctly specified when looking at the Anderson canonical correlation
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Table 3: Identification tests for number of pricing factors for corporate bonds.
This table reports the model specification tests that are described in section 2.3. I test the ACM with
three, four, and five pricing factors. The first test is the Anderson canonical correlations test, where
the statistic rkK−1 tests whether the rank of β is smaller or equal to K − 1 in a K factor model. The
statistic follows a χ2(M −K + 1) distribution, where M is the size of the cross-section of excess returns.
The second test is the Wald test, where the statistic Wβ tests whether the K-th column of β′ is equal to
0M×1. The statistic follows a χ2(M) distribution. The p-values of each test is shown in parentheses.

Model rkK−1 Wβ

ACM, K = 3 205.467 23.793
(0.000) (0.022)

ACM, K = 4 139.888 12.782
(0.000) (0.385)

ACM, K = 5 134.191 26.706
(0.000) (0.009)

test. This means that, although β′ is full rank, the last column is not significantly different from

zero for the four-factor model. Furthermore, the Anderson test shows that the model is better

specified when removing pricing factors, which is in contrast with the tests of the Treasury yields.

This increase of the statistic when removing pricing factors is especially evident when going from

four to three factors. This provides further evidence that the four-factor model performs the

worst. In general, the test statistics of the corporate bond yields are lower than the statistics of

the Treasury yields. We can conclude that the ACM model works better with Treasury yields

than with corporate bond yields.

4.2.3 Fitting the model

It turns out that the ACM model with K = 5 factors cannot accurately predict the yields

for corporate bonds. The yields show a large amount of bias, as figure 7 shows. Figure 11

in appendix B shows the predicted yields of the three-factor model. This model also has a

significant bias.
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Figure 7: Fitted corporate bond yields for the K = 5 factor model for different time-to-maturities. The
plots in this figure show the fitted yields of corporate bonds obtained from the five factor ACM model.
The solid blue line is the observed yield, the solid green line is the fitted yield.
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I continue by correcting the bias in the same fashion as in section 4.1.3. Figure 8 shows the

results of the bias correction for the five-factor model, and figure 12 in appendix B shows the

results for the three-factor model. From figure 8a, we can conclude that the model still does

not accurately predict the corporate bond yields with a short time-to-maturity. Whereas yields

go up in the financial crisis around 2009, the predicted yields go down. However, from 2014

onward, the predicted yields follow the actual yields better, although they are at a higher level.

Figure 8b shows the predicted yields with a time-to-maturity of 120 months. At first sight, we

can conclude that the model does not fit the model at all. In fact, it seems to move in the exact

opposite direction. The model with τ = 120 months is also where we can see the difference

between the three and five-factor ACM model. The K = 5 factor model predicts yields go down

in 2009, while the K = 3 factor model correctly predicts it goes up. However, outside the period

of the financial crisis, the yields still seem to move in the opposite direction. In figure 8c and

figure 8d, the fitted excess returns are plotted against the observed excess returns. The fitted

values are less volatile than the observed excess returns, and do not have any predictive power.

For τ = 6 months, the predicted excess returns are fifty times less volatile, and for τ = 120

months, they are eight times less volatile.
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Figure 8: Bias corrected fitted corporate bond yields and excess returns for the K = 5 factor model for
different time-to-maturities. This figure presents plots of fitted yields and excess returns of the five-factor
ACM model for corporate bonds after a bias correction. The solid blue line is the observed yield and
excess return, the solid green line is the fitted yield and excess return.

Table 4 shows the properties of the forecasting errors. The average yield error is 0.000 by
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construction, but the standard deviation is extremely high. The errors are also heavily skewed

to the right, indicating a lot of positive errors. Most errors are positive because the larger

errors in 2008-2010 are negative, and due to the bias correction, the other yields are shifted

above the actual yields. The errors show very significant autocorrelation, which is consistent

with the results of Adrian et al. (2013) and the results of the Treasury yields. The standard

deviation of the excess return errors are relatively small for the bonds with a smaller time-to-

maturity compared to the extremely high standard deviation for the longer time-to-maturities.

The skewness of the return errors is different from maturity to maturity; in four of the six cases,

the skewness is negative. The kurtosis of the errors is extremely high for all maturities, which

means that there are large outliers. Finally, in contrast to Adrian et al. (2013), the return errors

show significant serial correlation for the first autocorrelation. For τ = 6 and τ = 36 months,

the sixth order autocorrelation is also significantly different from zero.

Table 4: Yield and return fitting error properties for different time-to-maturities of corporate bonds.
This table provides a summary of the fitted yield and excess return errors obtained from the five-factor
ACM model. The upper panel summarizes the yield errors and the bottom panel the excess return
errors. The sample period is July 2002, to March, 2018. The statistics considered are the mean, standard
deviation, skewness, kurtosis, and the first and sixth order autocorrelations, ρ(1) and ρ(6) respectively.
τ corresponds to the time-to-maturity in months.

Summary statistic τ = 6 τ = 24 τ = 36 τ = 48 τ = 60 τ = 120

Yield errors (û)
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 4.129 2.669 3.054 3.546 3.843 2.747
Skewness 2.045 1.892 2.145 1.971 1.700 0.519
Kurtosis 6.778 6.520 8.618 7.811 6.815 2.687
ρ(1) 0.965 0.971 0.970 0.974 0.976 0.972
ρ(6) 0.774 0.752 0.707 0.733 0.744 0.812

Excess return errors (ê)
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 7.330 11.977 15.690 17.449 18.634 31.900
Skewness 1.724 -0.830 -0.612 0.583 -1.002 -0.802
Kurtosis 12.981 13.577 12.658 13.024 9.731 9.299
ρ(1) 0.197 0.162 0.244 0.121 0.300 0.268
ρ(6) 0.201 -0.042 -0.119 -0.062 0.013 -0.028

In general, the fitting errors for corporate bonds are higher and more extreme. The return

errors show autocorrelation for corporate bonds, but not for Treasury bonds. The errors of

τ = 120 months show less variance, skewness, and kurtosis than the other maturities. This is a

surprising result since figure 8b shows that the yields seem to move in the opposite direction.

Because the fitted yields in figure 8b move in the opposite direction of the observed yields, I

proceed by changing the way I price the bonds in equation (2.25). This change has no economic

interpretation, but this results in a good comparison of the fitted and actual yields. I change

equation (2.25) into

lnY
(τ)
t = Aτ −B′τPt + u

(τ)
t . (4.3)

This transformation causes the yields to be reflected about the x-axis, and should thus provide
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a better fit to the actual yields. Figure 9 shows this transformation. We can see that the fitted

yields follow the observed yields quite well. Although the transformation is not justified by

any economic factors and only provides better fits for bond yields with a maturity larger than

36 months, it seems that the model is able to predict the observed yields to some extent. For

τ = 120 months, the largest error is 0.97%. When decreasing the time-to-maturity, the largest

error keeps increasing. It should be noted that all the transformations are done ex-post, and

the reflection of yields is purely based on observations.
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Figure 9: Fitted corporate bond yields for the K = 5 factor model reflected about the x-axis. This
figure shows the fitted corporate bond yields of the K = 5 factor ACM model after it is reflected about
the x-axis. The blue line corresponds to the observed yield, the green line corresponds to the fitted yield.

Table 5 shows the yield fitting errors of the reflected yields. We can see that the standard

deviation is considerably lower for all maturities except τ = 6 months. The skewness and kurtosis

are also reduced for all maturities, except for τ = 60 months. The first order autocorrelation

is not affected much, but the sixth order is lower for the bonds with a maturity longer than 48

months. In general, the reflection about the x-axis is more effective as the time-to-maturity is

increased, except for τ = 60, where the errors have a large negative skewness and high kurtosis.

Table 5: Reflected yield fitting error properties for different time-to-maturities of corporate bonds.
This table provides a summary of the fitted yield errors obtained from the five-factor ACM model with
yields reflected about the x-axis. The sample period is July 2002, to March, 2018. The statistics consid-
ered are the mean, standard deviation, skewness, kurtosis, and the first and sixth order autocorrelations,
ρ(1) and ρ(6) respectively. τ corresponds to the time-to-maturity in months.

Summary statistic τ = 6 τ = 24 τ = 36 τ = 48 τ = 60 τ = 120

Yield errors (û)
Mean 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 4.582 2.213 1.527 1.373 1.551 0.472
Skewness 1.388 0.652 0.159 -1.101 -2.303 -0.450
Kurtosis 4.819 2.765 1.946 5.045 10.122 2.706
ρ(1) 0.970 0.967 0.947 0.925 0.926 0.919
ρ(6) 0.841 0.787 0.752 0.503 0.499 0.614
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5 Conclusion

The goal of this paper was to replicate the findings of Adrian et al. (2013) and to extend their

research by applying the model to corporate bonds. I start by obtaining pricing factors of U.S.

Treasury zero-coupon yields, constructed using Nelson-Siegel-Svensson curves. Furthermore, I

construct portfolios of U.S. corporate bonds by removing all non-investment grade bonds and

bonds with a negative yield-to-maturity. After the data cleaning, I sort the bonds by maturity,

and created maturity sorted portfolios at each point in time. This is done by taking the average

of all yield-to-maturities of bonds maturing within six months of the specified time-to-maturity.

Next, I apply the three linear regressions of the ACM model to the Treasury and corporate

bond yields and test the correct amount of pricing factors. This model provides parameters

to reconstruct the yield curve recursively. The model is significantly faster than traditional

estimation methods, which rely on maximum likelihood procedures. The ACM model with

five pricing factors is the correct specification for Treasury, and for corporate bond yields, the

model with three or five factors gives a correct specification. Moreover, for Treasury yields,

the predicted yields provide a very tight fit to the observed yields. The largest yield error is

only 0.095%. The model also produces very accurate forecasts for the excess returns, where the

largest error is only 0.30%. On the other hand, the ACM model does not predict corporate bond

yields accurately. For shorter maturities, the predicted yields follow the actual yields during a

stable economy, but whereas yields rise sharply in the financial crisis, the model predicts that

yields go down. For longer maturities, the predicted yields move in the opposite direction as

the observed yields. When reflecting the fitted yields about the x-axis, they follow the observed

yields very well. For bonds with a time-to-maturity of 10 years, the largest error is only 0.97%.

The yield and excess return errors of the standard model are heavily skewed, have a high kurtosis

and standard deviation, which are all signs of a bad fit.

The ACM model produces biased yields for both the Treasury and corporate bond yields.

For shorter time-to-maturities of Treasury yields, the bias is relatively small. However, due to

the recursive method of obtaining pricing parameters Aτ and Bτ , the yields of larger time-to-

maturities are too low. The fitted corporate bond excess holding returns are also much less

volatile compared to the observed excess returns. The ACM model needs to be adapted to

correct for this bias. For further research, it might be worth extending the ACM model by

including a risk parameter that captures credit risk. Since most advanced credit risk models

heavily rely on maximum likelihood, they could greatly benefit from the computationally faster

model introduced by Adrian et al. (2013).
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Figure 10: Bias of fitted Treasury yields and excess returns. This figure shows how the bias of the fitted
Treasury yields and excess returns increases. The yields and excess returns are fitted using the ACM
model with K = 5 factors.

B Corporate bond yield fitting with three pricing factors
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Figure 11: Fitted corporate yields for the K = 3 factor model for different time-to-maturities. The
plots in this figure show the fitted yields of corporate bonds obtained from the three factor ACM model.
The solid blue line is the observed yield, the solid green line is the fitted yield.
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(c) Fitted excess returns with τ = 6 months

2004 2006 2008 2010 2012 2014 2016 2018

Date

-150

-100

-50

0

50

100

150

E
x
c
e
s
s
 r

e
tu

rn
 (

in
 d

e
c
im

a
l 
p
o
in

ts
)

Actual excess return

Fitted excess return

(d) Fitted excess returns with τ = 120 months

Figure 12: Bias corrected fitted corporate bond yields and excess returns for the K = 3 factor model
for different time-to-maturities. This figure presents plots of fitted yields and excess returns of the three-
factor ACM model for corporate bonds after a bias correction. The solid blue line is the observed yield
and excess return, the solid green line is the fitted yield and excess return.
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C Code for Treasury yields

1 % Import the NSS parameters from the GSW file or load startACM.mat

2 load(’startACM.mat’)

3

4 % Calculate yields and excess returns

5 Yt = yields(GSW);

6 rx = exReturns(GSW);

7

8 % Calculate the ACM model with the wanted amount of pricing factors

9 K = 5;

10 [m, P, S, b, s, l0, l1, pf , aPF , VARV] = ACM(Yt, rx, K);

11

12 % Or calculate the CP model

13 % fYt = forwardRate(GSW);

14 % [m, P, S, b, s, l0, l1, pf, aPF , VARV] = CP(Yt , rx, fYt , rx(1:10, :));

15

16 % Perform specification tests

17 [anderson , pValAnderson] = canonTest(VARV , rx);

18 [wald , pValWald] = betaWald(b, S, s);

19

20 % Recursively calculate the predicted yields

21 [eYt , B] = recursivePricing(m, S, P, s, l0, l1, GSW , pf);

22

23 % Calculate the excess returns

24 erx = exReturnsFit(B, l0 , l1 , aPF , S, s, VARV);

25

26 % Select the twelve yields and correct the bias for the yields and returns

27 sYt = crossYields(Yt);

28 bYt = biasCorr(sYt , eYt);

29 brx = biasCorr(rx , erx);

30

31 % Calculate errors

32 errorYt = sYt - bYt;

33 errorRX = rx - brx;

D Code for corporate bond yields

1 % Import the bond data from the WRDS file or load startExt.mat , calculate yields and

2 % excess returns. The risk -free rate price is from the Treasury yield model

3 % fullYt = createYields(bondpf);

4 load(’startExt.mat’);

5 rx = exReturnsExt(fullYt , riskfreeRatePrice);

6

7 % Select the cross -section of 40 and 12 yields

8 Yt = selectYields(fullYt);

9 sYt = crossYieldsExt(Yt);

10

11 % Calculate the ACM model with the wanted amount of pricing factors

12 K = 5;

13 [m, P, S, b, s, l0, l1, pf , aPF , VARV] = ACM(Yt, rx, K);

14

15 % Perform specification tests

16 [anderson , pValAnderson] = canonTest(VARV , rx);

17 [wald , pValWald] = betaWald(b, S, s);

18

iv



19 % Recursively calculate the predicted yields

20 [eYt , B] = recursivePricingExt(m, S, P, s, l0 , l1, pf, riskfreeRatePrice);

21

22 % Calculate the excess returns

23 erx = exReturnsFit(B, l0 , l1 , aPF , S, s, VARV);

24

25 % Correct the bias for the yields and returns

26 bYt = biasCorr(sYt , eYt);

27 brx = biasCorr(rx , erx);

28

29 % Obtain yields recursively and calculate log price by subtracting instead

30 % of summing

31 [cYt , Bc] = recursivePricingExtChanged(m, S, P, s, l0, l1 , pf , riskfreeRatePrice);

32

33 % Calculate the excess returns

34 crx = exReturnsFit(Bc , l0 , l1, aPF , S, s, VARV);

35

36 % Correct the bias for the yields and returns

37 cbYt = biasCorr(sYt , cYt);

38 cbrx = biasCorr(rx , crx);

39

40 % Calculate errors

41 errorYt = sYt - bYt;

42 errorRX = rx - brx;

43

44 errorcYt = sYt - cbYt;

45 errorcRX = rx - cbrx;
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