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Abstract

In this paper, we research the linkage of domestic and international financial assets by

analyzing the spillovers between short-term interest rates, bond yields and stock returns from

American and European asset markets. We do this using two methods. The first is based on

estimating the significance of the structural parameters of a vector autoregressive model that

measure the contemporaneous relation between these assets. The second relies on computing

forecast error variance decompositions to create spillover indices with which the relations of

interest can be quantified. Our results show that in general transmission within individual

asset types is the strongest and that US assets tend to influence European assets more than

vice versa. Furthermore, spillovers between asset classes increase during financial crises and

recessions compared to tranquil periods.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.
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1 Introduction

Since the advent of globalization international financial markets have grown increasingly inter-

twined. A prime example of this is the 2008 financial crisis, when subprime lending in the American

mortgage market lead to a crash, resulting in subsequent crises in both domestic and international

asset markets. Consequently, considerable research has been devoted to analyzing the complexities

and interdependence of financial markets within and between countries.

Early papers regarding transmission across assets focused on investigating relations between

domestic assets. For example, Shiller and Beltratti (1992) and Barsky (1989) have shown generally

positive linkages between US equity and bond markets using low-frequency data. Interestingly,

Rigobon and Sack (2003) discovered that the direction of the transmission process might be time-

variant. Meaning that the results of Barsky (1989) and Shiller and Beltratti (1992) might not be

applicable when either stock prices or bond rates are dominant during a certain period. Indeed,

more recently Baele et al. (2007) have shown negative correlation between stock and bond returns.

Pertaining to the research of international transmission, papers that initially focused on this topic

did so by analyzing a single asset in isolation. To name a few, Hamao et al. (1990) and Lin

et al. (1994) used reduced-form GARCH models to conclude that there are spillovers from the

US equity market to those of the UK and Japan. Regarding foreign exchange markets, Andersen

and Bollerslev (1998) and Engle et al. (1990) detect significant spillovers among said markets.

Two similar papers that both take into account multiple asset classes and international markets

are those of Andersen and Bollerslev (1998) and Ehrmann et al. (2011). Both papers research

contemporaneous linkage across international markets. However, Andersen and Bollerslev (1998)

use higher frequency data compared to Ehrmann et al. (2011) limiting the availability. In addition,

their sample size is much smaller and they estimate subsystems separately rather than the entire

model as a whole. Therefore, Ehrmann et al. (2011) in general is more advanced and consequently

is of particular interest to us. The main objective of their paper was to provide a framework

with which transmission across multiple international markets can be quantified. They did so by

using a structural vector autoregressive model (SVAR) to estimate the magnitude and significance

of the cross-market parameters. They applied this framework to American and European short-
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term interest rate, equity, and bond markets and concluded that indeed a considerable amount of

European market movement can be explained through American and vice versa. Their methodology

requires certain assumptions however, that may not hold.

As an alternative to using parameter estimates to measure the level of financial spillovers,

Diebold and Yilmaz (2009) introduced a spillover index for VAR models that utilizes variance

decompositions and illustrated its usefulness by computing the spillovers between international

equity markets. In their subsequent paper Diebold and Yilmaz (2012), they improved upon their

existing spillovers by allowing for more detailed analysis and resolving some of the issues the

previous index suffered from. However, rather than using international data, this time they applied

their index by using only domestic American assets. While there have been earlier papers pertaining

to volatility spillovers such as those of Edwards and Susmel (2001) and M. King et al. (1994), theirs

is more tractable and allows for the production of continuous time-varying indices.

In this paper, we further research transmission among domestic and international markets by

first attempting to reaffirm the results of Ehrmann et al. (2011) through replicating parts of their

methodology. Then we contribute to the existing strand of literature by approaching the analysis of

international transmission differently than what has been done by Ehrmann et al. (2011) and other

existing papers. We do so by analyzing the domestic and international linkage between multiple

financial assets using the spillover index proposed in Diebold and Yilmaz (2012), which has not yet

been used for this purpose. We apply this method to the reduced-form VAR model of Ehrmann

et al. (2011) and their respective variables.

Our results show significant spillovers across markets and for bonds and stocks that transmission

occurs mostly within the same asset class, while short-term interest rates are more affected by

domestic bond yields. Furthermore, they show that the transmission effect from the US to the EU

is stronger than the other way around and finally that spillovers increase during times of economic

downturn. Our research underscores the importance of the dependence of international markets

and advises investors to take these relations into account.

The remainder of the paper is structured as follows. In section 2 we go into the details of the

methodology as in Ehrmann et al. (2011). In section 3 we describe the spillover index of Diebold

and Yilmaz (2012) and explain how we apply this to the VAR model of Ehrmann et al. (2011).

In section 4 we present the data we use and the source. In section 5 we showcase the results and

in section 6 we draw conclusions and discuss the limitations of our paper and suggest avenues for

future research.
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2 Ehrmann et al. (2011) framework

2.1 The model

Firstly, to analyze the contemporaneous effect of assets across financial markets we revisit the paper

of Ehrmann et al. (2011). In their paper, they construct a SVAR model containing seven European

and American assets. Namely, from each of these two economies, they include the short-term

interest rate rt, the long-term interest or bond yields bt and the stock returns st. Arranging these

in a vector yt = (rUS
t , bUS

t , sUS
t , rEU

t , bEU
t , sEU

t , et) gives the following VAR model in its structural

form.

Ayt = ζ + Π(L)yt−1 + Φ(L)zt + µt (1)

Where zt is a vector of exogenous variables that controls for common shocks. The parameter ma-

trices Π(L) captures the lagged effects of the endogenous variables and Φ(L) captures both the

contemporaneous and lagged effects of the exogenous variables. Here (L) indicates the lag polyno-

mial. The parameters of chief interest are those that measure the contemporaneous transmission

and are contained in the 7x7 matrix A, which is given as follows.

A =



1 α12 α13 β14 β15 β16 γ17

α21 1 α23 β24 β25 β26 γ27

α31 α32 1 β34 β35 β36 γ37

β41 β42 β43 1 α45 α46 γ47

β51 β52 β53 α54 1 α56 γ57

β61 β62 β63 α64 α65 1 γ67

γ71 γ72 γ73 γ74 γ75 γ76 1


(2)

As A is multiplied on the left-hand side of equation (1), the parameters α represent the domestic

spillovers, the parameters β equal the international transmission and the γ parameters the trans-

mission to and from the euro-dollar exchange rate. The elements of the matrix are represented in

basis points, meaning that element ij is equal to the percentage increase in variable i as a result

of a 1% increase of variable j. Clearly then the diagonal elements are 1. Since this matrix is not

diagonal the parameters are simultaneously determined and therefore endogenous. Consequently,

the true values of these parameters cannot be estimated accurately through standard techniques,

meaning they are unidentified. The first step towards identification is to rewrite the structural
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VAR in equation (1) in its reduced-form, which results in the following.

yt = A−1ζ +A−1Π(L)yt−1 +A−1Φ(L)zt +A−1µt (3)

yt = C0 +B0(L)yt−1 +B1(L)zt + εt (4)

Although the parameters of the reduced-form VAR can be estimated through OLS, they bear no

economic interpretation and therefore it is still necessary to recover the structural parameters.

2.2 Identification through heteroskedasticity

Comparing equation (2) to (3) and (4) we can see that the structural residuals are related to the

reduced-form residuals through A−1 and therefore it holds that A−1µt = εt. From this, it follows

that we can obtain the parameters of A through solving the equation A′ΣA = Ω, where Ω is

the covariance matrix of the reduced-form residuals and Σ the covariance matrix of the structural

shocks. However, because in general, the covariance matrix of the reduced-form provides fewer

equations than the number of unknown parameters, the system is undetermined. Possible solutions

to the problem are sign restrictions as discussed in Fry and Pagan (2010) or exclusion restrictions as

used in Kilian (2009). Neither of these can always be justified however, according to Rigobon (2003).

For example in our case sign restrictions would result in a parameter space that is too large and

regarding exclusion restrictions, there are no variables that clearly should be excluded. Therefore

instead Ehrmann et al. (2011) use Identification through Heteroksedasticity (IH) developed by

Rigobon (2003) to address the problem. The involved technicalities of this method are given in

appendix A. Here to shortly summarize, IH relies on heteroskedasticity in financial variables to

solve the problem at hand. Because under the assumptions of stable structural parameters and

zero correlation between the shocks, each new heteroskedastic regime adds more equations than

unknowns. In fact, two different regimes are sufficient to identify our model.

However, usually there are more heteroskedastic regimes present than necessary, which results

in overidentifcation. To limit the possible parameter space Ehrmann et al. (2011) impose a number

of overidentification restrictions based on the economic interpretation of the equations. Namely,

they assume that the short-term interest rate can be regarded as the markets expectation of the

short to medium term development of monetary policy, the long-term interest rate or bond rate

represents the expectation of the inflation rate, the stock returns can be understood as a proxy

for domestic demand and the changes in exchange rate can be seen as changes in demand between

the two regions. Relying on these interpretations Ehrmann et al. (2011) first impose the following
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restrictions on domestic transmissions. Note that since we multiplied A on the left-hand side of

equation (1) the sign of the restrictions are the opposite of what we expect.

1. α12, α45 < 0, because we expect an inflationary shock to result in a tightening of monetary

policies and therefore an increase in short-term rates.

2. α31, α64 > 0, since a rise in the discount price is caused by an increase in short-term interest

rates, which in turn decreases the demand for goods and consequently should result in lower

equity prices.

3. α32, α65 > 0, similarly long-term rates should have the same effect and ergo also cause a

decline in equity prices.

Before we continue with the restrictions on international transmission, Ehrmann et al. (2011) posit

that A solely captures the direct effects, while A−1 includes both direct and indirect spillovers.

Indirect spillovers are defined as effects from one asset to another that occur through a third party

asset. For example, variable 1 positively affects variable 2, which positively affects variable 3. An

increase in variable 1 would consequently result in an increase in variable 3 through the second

variable. Because they assume that these arguments for the first 3 sets of restrictions should hold

for both direct and overall effects they restrict A−1 equivalently. Continuing with international

transmission and effects of exchange rates, the parameters are restricted in the following way.

1. β14, β41, β25, β52 < 0, because domestic and international money and bond markets should

be positively correlated.

2. As a result of all variables being expressed in basis points, they assume that a domestic shock

should not have an augmented effect on markets abroad. Therefore, 0 <| β14 |, | β41 |, | β25 |

, | β52 |, | β36 |, | β63 |< 1

3. γ72 > 0,γ75 < 0, because they assume that an increase of the long rates of a certain area

results in a shift towards the assets of that region. Causing an appreciation of the exchange

rate relative towards the other currency.

These assumptions can be considered reasonable as they are supported by significant empirical

evidence. Finally, since the structural matrix A is only supposed to capture the effects of direct

spillovers, they impose zero restrictions on the international transmission from an asset to that of

another type. The full of set of restrictions written into matrix form is given in appendix C.
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2.3 Estimation

As what has been done in Ehrmann et al. (2011) we first estimate the VAR in equation (3) using

OLS by including 6 lags of both the endogenous and exogenous variables. Using the residuals of

this regression we compute the variances using a rolling window of 20 2-day observations. An asset

is considered to be in the elevated state when the variance of its residuals exceeds its mean by

more than a single standard deviation. Otherwise, it is said to be in the tranquil state. A regime is

defined as when a single asset is in its elevated state for more than 16 consecutive observations while

all the other assets are in their tranquil state. Using this we define 8 heteroskedastic regimes. One

for each individual asset and a final one where all assets are in their tranquil state. Recall from

section 2.2 that we cannot recover the structural parameters by solving the unidentified system

of equations A′ΣA = Ω, where Ω is known. However, because we now have defined 8 distinct

heteroskedastic regimes we can instead solve for A′ΣiA = Ωi. Where Σi is the covariance matrix

of the structural innovations for each regime and Ωi is the covariance matrix of the reduced-form

residuals for each regime. Because we have defined more regimes than necessary, we needed 2, the

system is overidentified and we cannot solve it exactly. Instead we minimize the following distance.

min g′g with g = vec(A′ΣiA− Ωi)

s.t. Σi is diagonal

A restrictions

(5)

This boils down to minimizing the squared difference between each element of A′ΣiA and the

corresponding element in Ωi.

The last step is to bootstrap the significance of the parameters. We do this by using the

estimated structural parameters and covariance matrices to generate new artificial data by sampling

the error variances with replacement from the covariance matrices of the structural shocks from

the different regimes. In each bootstrap replication we estimate the model using the newly created

data. The significance is computed as the percentage of estimates that have the opposite sign of

the point estimate.

3 Spillover index

To identify the structural parameters Ehrmann et al. (2011) have imposed overidentifying restric-

tions based on several assumptions regarding the economic interpretation of the equations. As-

sumptions that, while supported by empirical evidence, may not hold. Diebold and Yilmaz (2009)
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first introduced an index for measuring volatility spillovers. Their method differs from that of

Ehrmann et al. (2011) in that it relies on measuring forecast error variance decomposition rather

than the analysis of the parameter estimates. This approach does not require the retrieval of the

structural parameters and ergo the assumptions Ehrmann et al. (2011) made are not necessary.

This index has as another advantage that it allows for the analysis of among others trends and

cycles of financial transmission, while the framework of Ehrmann et al. (2011) only results in a

single estimate for the entire sample. However, because Diebold and Yilmaz (2009) use Cholesky

decompositions to orthogonalize the error terms before computing the variance decompositions the

decompositions depend on the order of the variables. Consequently, they improve on this by in-

troducing a new spillover index in their ensuing paper Diebold and Yilmaz (2012) that does not

suffer from the same problem. While in both papers they used this index exclusively to measure

volatility spillover it can be applied to a variety of variables including asset returns, which we do.

3.1 Forecast Error Variance Decomposition

Suppose that we have the following covariance-stationary vector autoregressive model.

yt =

p∑
i=i

Φiyt−i + εt (6)

Where yt is a vector of m simultaneously determined variables, Φi are the related autoregressive

parameter matrices and εt are i.i.d. innovations. Under the assumption that the yt are covariance-

stationary then equation (6) can be rewritten into the infinite moving average (MA) representation

given as follow.

yt =

∞∑
i=0

Aiεt−i (7)

Where εt is the same as in equation (6) and the m×m matrices Ai are related through the recursion:

Ai = ζ1Ai−1 + ζiAi−2+, ....,+ζpAi−p (8)

Variance decompositions indicate the proportion of the forecast error variance of a variable that is

explained through shocks to other variables. To obtain variance decompositions from the moving

average form it is necessary for the innovations to be orthogonal, which is generally not the case. As

mentioned before, the innovations can be orthogonalized through Cholesky decomposition however

these are order-dependent. Therefore, in Diebold and Yilmaz (2012) they utilize the variance

decompositions as in Koop et al. (1996) and Pesaran and Shin (1998), which are indifferent to
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ordering. Define θg(H) as the matrix of variance decompositions. Then as in Pesaran and Shin

(1998) the share of H-step forecast error variance of yi that is a result of a shock in yj is given by

the following equation.

θgij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣej)

(9)

Here Σ is the covariance matrix of the innovations in equation (6), Ah is the Hth moving average

parameter matrix in equation (7), σjj is the standard deviation of the innovation of the jth equation

in the VAR model and ei is a zero vector of which the ith element is 1, such that it selects the

element of which we want to compute the variance decomposition. We compute these variance

decompositions for the reduced-form model in equation (3) and (4) using the same assets. However,

we omit the exogenous variables, because as stated in Ehrmann et al. (2011), they are included

solely for the purpose of orthogonalizing the error terms as this is a requirement for identification

through heteroskedasticity. However, since the decomposition by construction already achieves

orthogonality the inclusion of exogenous variables is no longer necessary. In addition, the matrix of

exogenous variables is near-singular for smaller samples, which will prove troublesome when later

in this paper we analyze the development of the spillovers over the years through rolling window

estimates of the VAR model.

3.2 Spillover index

Using the method in the previous subsection, although the errors are indeed orthogonalized they

do not sum up to 1, meaning
∑m

j=1 θ
g
ij(H) 6= 1 . In order to interpret them as percentages Diebold

and Yilmaz (2012) normalize them by dividing each element of the matrix θg(H) by the sum of the

entire row it is in. Written as a formula we have:

θ̃gij(H) =
θgij(H)∑m
j=1 θ

g
ij(H)

(10)

Obviously doing this results in
∑N

j=1 θ̃
g
ij(H) being equal to 1. These normalized variance decom-

positions are the first and basis of the spillovers that are proposed in Diebold and Yilmaz (2012).

3.3 Total spillover index

Utilizing the spillovers from 3.2, Diebold and Yilmaz (2012) compute the total spillovers by summing

all the off diagonal elements of the normalized variance decomposition or spillover matrix θ̃gij(H)
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and divide it by the sum of all decompositions. This results in the following.

SG(H) =

∑m
i,j=1;i 6=j θ̃

g
ij(H)∑m

i,j=1 θ̃
g
ij(H)

· 100 =

∑m
i,j=1;i 6=j θ̃

g
ij(H)

m
· 100 (11)

The second equality holds because the sum of all elements of θ̃gij(H) by construction is equal to

the number of variables m. The total spillovers can be interpreted as the total variance that is

explained through other variables across all variables.

3.4 Directional spillovers

In contrast to the initial spillover measure in Diebold and Yilmaz (2009), the current one, in

addition, allows for the computation of the directional spillovers variable i received from all other

variables j 6= i, which is given as follows.

SG
i. (H) =

∑m
j=1;i 6=j θ̃

g
ij(H)∑m

i,j=1 θ̃
g
ij(H)

· 100 =

∑m
j=1;i 6=j θ̃

g
ij(H)

m
· 100 (12)

Similarly, we can compute the total directional spillovers from variable i transferred to all other

variables j 6= i, which written as formula is equal to:

SG
.i (H) =

∑m
j=1;i 6=j θ̃

g
ji(H)∑m

i,j=1 θ̃
g
ji(H)

· 100 =

∑m
j=1;i 6=j θ̃

g
ji(H)

m
· 100 (13)

3.5 Net spillovers

Additionally, it is possible for us to measure the net spillover from one variable to another. This is

equivalent to the difference between what market i has transmitted to all other markets and what

it has received from the others. This is given by:

Sg
i (H) = Sg

·i(H)− Sg
i·(H) (14)

In addition to analyzing the net spillovers for a single market relative to all other markets, we can

also analyze the net spillover between two markets. This net pairwise spillover is given as follows.

SG
ij (H) =

(
θ̃gji(H)∑m

i,k=1 θ̃
g
ik(H)

−
θ̃gij(H)∑m

i,k=1 θ̃
g
jk(H)

)
· 100 =

(
θ̃gji(H)− θ̃gij(H)

m

)
· 100 (15)

This is simply the difference between the spillovers emitted and received from market i and j.
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3.6 Development of spillovers

Aside from computing the average of the spillovers over our entire sample, it is interesting to

investigate the development of the spillovers throughout the years. Due to a myriad of events,

such as the increased movement of labor and capital, the faster travel of news due to the internet

and the introduction of the Euro it can be expected that international linkage has increased. To

illustrate this development similarly to as in Diebold and Yilmaz (2012) we use a moving window

of 200 observations to estimate the parameters of our VAR and use these to compute the variance

decomposition and to plot the spillovers over the sample.

4 Data

The aim of the first part of this paper is to replicate the methodology and the results of Ehrmann

et al. (2011) and therefore we use the same data set. The source for the time series they have used

is Datastream, but the entire collection is provided by the authors and can be found in the Journal

of Applied Econometrics. In our research, the purpose is also to highlight the interdependencies

of the same group of assets. Consequently, we use the same set of data to compute the spillover

indices, however, we exclude the exogenous series for the reasons mentioned in the methodology.

The sample ranges from 1989 to 2008. To serve as the short-term interest rates, bond rate, and

the stock returns in the US they have used, the 3-month Treasury bill, the 10-year Treasury bond

rate, and the S&P 500 stock market index respectively. Similarly, to represent the European bond

and equity markets they have used the 10-year German government bonds and S&P Euro index

respectively. However, due to the introduction of the Euro in 1999 for the short-term interest rate

they have used 2 separate series. Namely, for rates before 1999 they have used the FIBOR rate and

for data after they have used the EURIBOR rate. While the short-term interest and bond rates

are already given in returns, the stock indices and exchange rates are not. To transform these we

take the first difference of the natural logarithm and multiply these by 100.

An issue that arises from using data on assets is that of different trading hours. As a result of the

time difference European markets trade earlier than their American counterparts. Consequently,

innovations in European assets are transmitted to American markets on the same day, while the

opposite obviously does not hold true. Instead, innovations in the American markets do not exert

influence on European assets until the day after when their markets open again. To diminish this

problem Ehrmann et al. (2011) have opted to use 2-day returns for all series.
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Recall that a crucial assumption for IH is zero correlation between the structural shocks. This

condition might be violated if the shocks in the time series are the result of common shocks.

Consequently, to manage these common shocks, Ehrmann et al. (2011) first include an array of

macroeconomic news in the Euro area and the US to function as exogenous variables. This news

consists of ’unexpected’ news and is determined as the discrepancy between the actual announce-

ment and the previously held expectations. The expectations are based on a survey composed by

the Money Marketing Service. Furthermore, because based on empirical data, European markets

show insufficient reaction to news announcements, it could be possible that these variables alone do

not completely capture the common shocks. Therefore, Ehrmann et al. (2011) in addition include

fluctuations in oil prices.

5 Results

This section presents the empirical results from the two different approaches to measuring trans-

mission across assets. First, in section 5.1, we present the estimation results from applying the

Ehrmann et al. (2011) framework. The remainder of section 5 showcases the results from the

second method, in which we applied the spillover index of Diebold and Yilmaz (2012).

5.1 Ehrmann et al. (2011)

In this subsection, we primarily compare the results of Ehrmann et al. (2011) and the results

of our replication shown in Table 1. For the sake of brevity, we will not go into the details of

the economic interpretation of these results, since these can be found in great detail in Ehrmann

et al. (2011). For direct domestic and international transmission, the signs of the parameters are

generally the same with varying magnitudes. Notable exceptions are β63 and β36. These measure

the transmission between European and American equity markets and for both it holds that the

sign is the opposite of that in Ehrmann et al. (2011). The effects of exchange rate seem to not

closely match that of the comparison paper. These changes can be attributed to a number of

reasons. First, a heteroskedastic regime was defined when a single asset was in the elevated state

for at least 16 consecutive days, while all others remained in the tranquil state. Ωi in equation

(5) was computed as the covariance of the observations in a period for which the requirements of

a regime were satisfied. However, there were various periods for which these requirements were

fulfilled and it could be possible that different periods were chosen as regimes. Furthermore, in

their paper Ehrmann et al. (2011) they did not provide starting values nor the algorithm used
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Table 1: Structural parameter estimates illustrating the direct effects and bootstrap results

Point estimate Bootstrap

Mean SD p-value

Domestic transmission

USA

α12 -0.1242 -0.2747 0.2979 0.0000

α13 0.2851 -1.0393 3.0624 0.7067

α21 -0.2653 0.1200 0.8518 0.5067

α23 -0.9227 -1.8140 3.2134 0.2133

α31 0.0158 0.0403 0.0407 0.0000

α32 0.0235 0.0346 0.0341 0.0000

Euro area

α45 -0.1292 -0.5110 0.43538 0.0000

α46 -0.3249 -1.9670 2.7302 0.2533

α54 -0.2371 -0.1072 0.5060 0.3200

α64 0.0105 0.0208 0.0245 0.0000

α65 0.0027 0.0229 0.0244 0.0000

International transmission

USA to Euro area

β41 -0.1269 -0.3131 0.2797 0.0000

β52 -0.1855 -0.1418 0.1841 0.0000

β63 0.3065 0.0969 0.3399 0.4667

Euro area to USA

β14 -0.0712 -0.1471 0.1383 0.0000

β25 -0.1808 -0.1940 0.2201 0.0000

β36 0.2881 0.4936 0.5102 0.2133

Exchange rate effects

γ17 -0.9772 0.0834 1.5655 0.4133

γ27 -3.4273 0.0350 2.0012 0.5733

γ37 0.0434 -0.0337 0.1942 0.4667

γ47 1.3346 0.0254 1.8960 0.4800

γ57 -0.1427 -0.0331 2.2521 0.5467

γ67 -0.1626 0.0405 0.2103 0.5733

γ71 0.0658 -0.0563 0.2479 0.5200

γ72 0.1127 0.1466 0.1415 0.0000

γ73 -0.9058 0.0720 2.62200 0.4933

γ74 -0.0180 0.0155 0.1624 0.5733

γ75 -0.0676 -0.889 0.0880 0.0000

γ76 0.7686 0.7607 2.2051 0.6800

for the minimization. Both of these are provided in our code, for which instructions are provided

in appendix F. Pertaining to the bootstrapped significance. To ease computational time we have

only used 75 replications, which is a small number. Consequently, the standard deviations of our

estimated parameters are considerably greater than that of Ehrmann et al. (2011) and therefore

our p-values are also generally larger. The overall effects are obtained by simply inverting A, the
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matrix of structural parameters. The results of these are provided in appendix B. It seems that

for some reduced-form parameters, through possibly poorly estimated values in the structural form

or errors in the bootstrap, even greater deviations occur in the reduced-form. Resulting in an

extremely high standard-deviation.

5.2 Full sample spillovers

The spillover results are presented in Table 2. the ijth entry represents the spillover of variable

i received from variable j, while the final column shows the total amount of spillovers received

from other markets and the last row showcases the total spillovers transmitted to other markets.

All results in this section use a forecast horizon of 10 observations. Firstly, from the table we can

Table 2: Spillover table in percentages, entry i, j shows the spillover of asset i received by asset j

rus bus sus reu beu seu e Directional received

rus 83.52 11.24 2.27 0.09 1.11 1.2 0.58 16.48

bus 7.34 81.67 0.02 0.06 9.15 0.18 1.59 18.33

sus 0.85 0.24 81.72 0.14 0.47 15.82 0.75 18.28

reu 0.95 1.44 0.05 90.61 6.76 0.18 0.03 9.38

beu 1.35 29.26 0.98 1.14 67.79 0.10 0.26 32.21

seu 0.62 0.21 29.89 0.32 0.07 63.02 5.87 36.98

e 0.54 1.81 0.63 0.15 0.61 11.22 85.04 14.96

Directional transmitted 11.65 44.20 32.96 1.89 18.16 28.70 9.05 total spillover = 26.06

see that the spillovers between American and European short-term interests are very low. With

shocks in European short-term interest rates only amounting to 0.09% of the error variance of US

short-term interest rates. It seems that short-term interests rates are more related to domestic

bond yields as the spillovers are considerably larger. Goode and Birnbaum (1959) show that

indeed domestic short and long-term interest rates or bond yields are closely connected and state

that long-term interest rates are a reflection of future short-term interests. The parameter that

measures the direct effect between European and American short-term interest in Ehrmann et al.

(2011) is also not significant, while the parameter for the relation between American bonds and

short-term interest is. However, both these parameters that measure the total effect are significant.

In contrast to the transmission of international short-term interest rates, for both bond yields

and stock returns, there were appreciable amounts of spillovers between European and American

markets. For example, 29.89% of the variance in European stocks were due to shocks in American

stock returns. Another noteworthy result is that there were significantly more spillovers from the US

bond and stock markets to European than vice versa, as we can see from the directional spillovers
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1. For example, American bonds contributed 29.26% to European bonds, while the opposite effect

is only 9.15%. Furthermore, the exchange rate seems to both contribute and receive little spillovers

from other assets, except for from European stocks. There appears to be no clear reason for this

remarkable result. Although, Ehrmann et al. (2011) have shown that European equity receives

significantly more spillovers from the exchange rate than American, which is also shown in our

results, the opposite does not hold true based on their results. Finally, the total spillovers of 26.06

% indicate the average spillovers over our entire sample and across all assets and the exchange

rate. This number states that of all the variation in asset returns on average 26.06% were caused

by other assets. These results, in general, are in alignment with what we would have expected

based on the results in Ehrmann et al. (2011). Importantly, we reaffirm the result that spillovers

primarily occur from within one asset type and that American markets affect European more than

vice versa. However, our results show minor spillovers from short-term interest rates to other assets.

One important result of Ehrmann et al. (2011) that our spillover table does not support is that of

significant international cross-market spillovers. The greatest of these spillovers in Table 2 is from

American bonds to European short-term interest rate, which is only 1.44%.

5.3 Development of total spillovers

Figure 1 shows the level of total spillovers throughout the years of our sample. We can see that

in the decade leading up to the 21st century the spillovers varied between approximately 30% and

50% with a positive spike in 1991. Diebold and Yilmaz (2012) posited that spillovers increase

during times of crisis. Therefore this period of high spillovers may be attributed to the recession

that was widespread among western countries in the early 90s. Continuing with our spillovers, at

the inception of the 2000s the total spillovers surged, reaching almost 60%. The reason for this

is the burst of the dot-com bubble on March 11th of 2000 that lasted till late 2002. The ensuing

years are marked by relatively low spillovers again until 2007, when due to subprime lending in the

US the spillovers increased again up until the collapse of the Lehman brothers in 2008, when the

spillovers peaked at over 55% at the end of our sample. The main conclusion we can draw from this

plot is that total international spillovers come in cycles. Namely, spillovers increase substantially

during crises and then return to lower levels until the next crisis, which is in line with the results

1In Table 2, the spillover table, of Diebold and Yilmaz (2012) the directional spillovers were not divided by the

number of variables, despite this being specified in the formula, while for the remainder of the paper they did adhere

to the formula. No particular reason was given for this nevertheless we do the same, as dividing by this constant

does not change the interpretation of the results in a meaningful way.
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Figure 1: Development of SG(H), the total spillovers of the 7 assets in percentage, through time.

of Diebold and Yilmaz (2012), who have shown this for domestic assets.

5.4 Development of directional spillovers

Figure 2 showcases how the directional spillovers from market i to all other markets j 6= i differs

over time. We are mostly interested in the effects between asset markets and therefore the results

of the exchange rates will be presented in appendix D.

For both European and American assets, the level of spillovers varies greatly for different periods,

going as low as 1.5% to as high as approximately 17%. Similar to what we have observed earlier from

the full-sample variance decompositions presented in Table 2, it appears that individual American

assets transmit more spillovers to other markets than European. A possible explanation for this

result is the common view of the US economy as the primary driver behind the global economy. This

notion is further elaborated on in Dées et al. (2009). Despite this being a compelling explanation

this result in itself is not sufficient evidence to conclude that European markets are more affected by

the US than the other way around. It could be that American domestic markets are more integrated

amongst themselves than European and therefore emit more spillovers. Pertaining to the effects of

crises on spillovers. Although the effects of the dot-com bubble still result in a considerable increase

in directional spillovers, albeit varying for different markets, European markets do not express as

much of an increase in directional spillovers as we would have expected during the great recession
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(a) American short-term interest rate (b) European short-term interest rate

(c) American bonds yield (d) European bonds yield

(e) American equity (f) European equity

Figure 2: The development of SG
.i (H), the directional spillovers from market i transmitted to all markets

j 6= i in percentage, through time.

of 2007-2008, based on the total spillovers. However, this could possibly be explained by the fact

that the crisis originated in the US. As a result, its gravest effects were not felt in Europe until late

2008 or early 2009, where our sample ends. Regarding the directional spillovers market i received

from all other markets j 6= i, similar patterns can be observed and the same conclusions can be
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drawn. These figures have been included in appendix E.

(a) American short-term interest rate (b) European short-term interest rate

(c) American bonds yield (d) European bonds yield

(e) American equity (f) European equity

Figure 3: Development of Sg
i (H), the net spillovers in percentage of market i, through time.

5.5 Development of net spillovers

Our earlier results already hinted that American markets have more influence on European markets

than vice versa. This phenomenon becomes more apparent when we graph the net spillovers. As
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shown in figure 3 it holds for almost the entire sample for American bonds and stocks that the

net spillovers are positive, contrasting their European counterparts which are mostly negative.

On the contrary, short-term interest rates in both regions appear to oscillate and do not show a

clear pattern. At the inception of the second millennia European equity and bond net spillovers

experience a sudden large positive surge. This coincides with the burst of the dot-com bubble,

however, this does not seems to be a logical reason for the sudden increase. Another possible

explanation could be the introduction of the Euro which was gradually implemented by its member

countries starting in 1999. Cappiello et al. (2006) have shown that since the introduction of the

Euro, cross-Atlantic markets did indeed become more integrated. In its initials years, this may

have caused positive net spillovers that we observe coming from the Euro side.

(a) American-European short-term interest (b) American-European bonds yield

(c) American-European equity

Figure 4: Development of SG
ij(H), the net pairwise spillovers between market i and j in percentage, through

time.
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5.6 Development of net pairwise spillovers

The net pairwise spillovers between American short-term interest rate, bond rates, stock returns,

and their European counterparts are presented in Figure 4. For the sake of brevity, we have not

included the others, because there are simply too many combinations of pairwise spillovers to

include in this paper. The net-spillovers between the European and American short-term interest

rates fluctuate throughout time and does not favor a certain direction. The net pairwise spillovers

confirm that in general there are more spillovers from the US to the EU than vice versa. In the

late 20th century and early 2000’s, it does seem that this difference is somewhat tempered, but

increases again later into the century. Again this may be a result of the introduction of the euro.

6 Conclusion

In this paper, we have researched the linkage of domestic and international financial markets.

We have done this by approaching the topic of interest using two methods. First, we estimated

the parameters of the SVAR model in Ehrmann et al. (2011) containing 6 American and European

assets and the Euro-Dollar exchange rate to analyze the significance and magnitude of cross-market

transmission. As an alternative to tackle the same question we have used the reduced-form VAR

of Ehrmann et al. (2011) without the exogenous variables to measure spillovers using the index

designed by Diebold and Yilmaz (2012). Although we have not managed to identically replicate

the results of Ehrmann et al. (2011), the results of our computed spillovers generally match those

of Ehrmann et al. (2011) in economic interpretation. Most importantly, we have reaffirmed that

for equity and bond yields spillovers occur mostly within the same type of asset and that American

markets exert more influence over European markets than vice versa. We, however, did not find

significant cross-market spillovers between assets of the two regions. Finally, we have shown that

international spillovers tend to increase during recessions and crises. This is in line with the

conclusion of Diebold and Yilmaz (2012) who have shown this for domestic spillovers.

Notwithstanding the results, comparing the approaches of Ehrmann et al. (2011) and Diebold

and Yilmaz (2012) towards measuring international cross-market transmission between assets, the

methodology of Ehrmann et al. (2011) has as merit that it allows for both the measurement of

direct and overall effects that assets have on each other. However, it requires several assumptions

to be made to identify the structural parameters. The index of Diebold and Yilmaz (2012) on

the other hand, allows for the computation of time-varying spillovers and therefore the scrutiny of
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trends and other patterns.

Our research is not without limitations. Because we have used the same data as Ehrmann et al.

(2011), we have only included time series from the two major western economies. Two economies

that historically have been perceived as having strong ties politically and culturally. Regions

that are not so connected to each other in these ways may show different results for financial

transmission. Furthermore, our model also ignores possible effects from excluded markets on the

relation between European and American assets. Given the rise of China and India in prominence

to economic superpowers, including assets from these countries would provide interesting future

research. Finally, we have given possible explanations to some of the phenomena we have observed.

For example, we attributed the increase in net spillovers from the euro area to the US during the

early 21st century to the introduction of the euro. These explanations are not clear-clut. Therefore,

we also suggest future investigation into events or other factors that engender changes in spillovers.
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A Identification through heteroskedasticity

In this appendix we will go into further detail regarding IH. This method was devised by Rigobon

(2003) and the complete theoretical proof is provided there. Let X be a set of k endogenous variables

and suppose that the corresponding structural VAR is given as follows.

AX = c+ ε

Here A is the matrix of parameters, where the diagonal elements are taken be equal to 1, c is

a vector of constants and ε are the structural shocks, which are assumed to be uncorrelated. In

other words the covariance matrix of the shocks is diagonal. Rewriting the structural form into the

reduced-form results in the following

X = A−1c+A−1ε

As mentioned in section 2, despite not being able the estimate the structural parameters, we can

estimate the reduced-form parameters and the covariance matrix of its residuals. These happen to

be the only statistics we can retrieve. However, because we are not interested in the parameters of

the reduced-form we still need to recover the structural parameters from these. Generally speaking

this is not possible, because with k endogenous variables, we have k(k − 1) unknown parameters

of interest. In addition we need to obtain the k structural shocks, meaning there are k2 unknown

variables, while the covariance matrix of the reduced-form residuals only supplies k(k+ 1)/2 equa-

tions. Consequently, k(k − 1)/2 parameters remain unidentified. In summary, usually there are

fewer equations than unknowns.

IH relies on conditional heteroskedasticity in the data to inflate the number of equations such

that the system can be solved. For simplicity, assume that based on the volatility of the observations

we can split the sample into two sub-samples, which we will call heteroskedastic regimes, for which
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the following properties hold.

AXs1 = c+ εs1

AXs2 = c+ εs2

var(εs1) = Σs1

var(εs2) = Σs2

Σs1 6= Σs2

This new model in addition to the previous assumptions, assumes that the covariance matrices

of the residuals between the 2 regimes differ, while c and A remain the same or in other words

they are stable across regimes. Combining these two assumptions results in each regime providing

k(k + 1)/2 new equations and only k new unknowns. This leads to k(k + 1)/2 − k = k(k − 1)/2

new free parameters, meaning one extra regime is sufficient for identification.

B Reduced-form parameter estimates
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Table 3: Reduced-form parameter estimates illustrating the overall effects and bootstrap results

Point estimate Bootstrap

Mean SD p-value

Domestic transmission

USA

α11 0.9616 0.9605 2.2646 0.0533

α21 0.0395 -0.1691 2.1960 0.6133

α31 -0.0107 -0.0278 0.0742 0.2267

α12 0.0291 0.2371 1.3428 0.2267

α22 0.7523 0.9208 1.7866 0.0933

α32 -0.0116 -0.04596 0.0529 0.1867

α13 0.6757 1.4384 36.1696 0.3200

α23 3.2310 1.5120 34.2869 0.1867

α33 0.9400 -0.9181 0.9324 0.0800

Euro area

α44 1.0230 1.0362 0.5861 0.0400

α54 0.2708 0.0604 0.8297 0.5067

α64 -0.0076 -0.0225 0.0278 0.2400

α45 0.1140 0.4818 1.0413 0.1876

α55 1.0667 1.0021 1.0514 0.0133

α65 0.0031 -0.0348 0.0318 0.9200

α46 0.8518 2.8581 42.1381 0.2677

α56 -1.2024 -2.2710 36.9155 0.7876

α66 0.9497 0.8865 1.1415 0.0133

International transmission

USA to euro area

β41 0.2100 0.2847 2.9736 0.3067

β51 0.0555 -0.0045 2.6435 0.6000

β61 -0.0093 -0.0060 0.07457 0.2400

β42 0.1211 0.1569 1.2343 0.4800

β52 0.12998 0.1485 1.1377 0.4000

β62 -0.0107 0.0021 0.0298 0.4933

β43 -0.7146 0.3141 47.7229 0.5467

β53 0.5358 0.0493 42.0596 0.4933

β63 -0.1833 -0.0856 1.2257 0.4133

Euro area to USA

β14 0.1073 0.1568 0.5441 0.3067

β24 0.1338 -0.0011 0.9368 0.6000

β34 -0.00345 0.0030 0.0242 0.5200

β15 0.0718 0.1246 1.0245 0.3467

β25 0.2899 0.1873 0.9598 0.2400

β35 -0.0099 0.0050 0.0309 0.5733

β16 -0.8060 -0.0756 31.4485 0.5333

β26 -2.6530 -0.2151 33.3388 0.4400

β36 -0.1726 -0.3494 0.8122 0.2800
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Table 3 continued

Point estimate Bootstrap

Mean SD p-value

Exchange rate effects

γ71 -0.06282 0.07144 0.8975 0.5733

γ72 -0.0780 -0.1060 0.6470 0.3867

γ73 0.6072 -0.2724 14.2943 0.6133

γ74 0.0173 -0.0191 0.2831 0.5067

γ75 0.0254 0.0343 0.4147 0.4133

γ76 -0.6001 0.8842 13.0765 0.6667

γ17 0.7463 -0.0367 7.6311 0.4667

γ27 1.9155 0.0477 7.4944 0.3733

γ37 -0.11628 0.0491 0.1962 0.5067

γ47 -0.55800 -0.1445 11.0083 0.4933

γ57 0.0728 -0.0636 9.3987 0.4933

γ67 -0.1269 -0.0390 0.2718 0.6000

γ77 0.5271 0.9544 2.9552 0.0933

C Restriction matrix

A =



1 α12 < 0 α13 −1 < β14 < 0 0 0 γ17

α21 1 α23 0 −1 < β25 < 0 0 γ27

α31 > 0 α32 > 0 1 0 0 −1 < β36<1 γ37

−1 < β41 < 0 0 0 1 α45 < 0 α46 γ47

0 −1 < β52 < 0 0 α54 1 α56 γ57

0 0 −1 < β63 < 1 α64 > 0 α65 > 0 1 γ67

γ71 γ72 > 0 γ73 γ74 γ75 < 0 γ76 1



D Various spillovers for the exchange rate

26



(a) The development of SG
.i (H), the direc-

tional spillovers from market i transmitted

to all markets j 6= i in percentage, through

time.

(b) The development of SG
i. (H), the direc-

tional spillovers from market i transmitted

to all markets j 6= i in percentage, through

time.

(c) Development of Sg
i (H), the net

spillovers in percentage of the exchange

rate, through time.

E Development of received directional spillovers
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(a) American short-term interest rate (b) European short-term interest rate

(c) American bonds yield (d) European bonds yield

(e) American equity (f) European equity

Figure 6: Development of SG
i. (H), the directional spillovers market i received from all markets j 6= i in

percentage, through time.

F Instructions for programming code

For this paper we have written 6 separate programs all coded entirely in Matlab. The first 4 of

these were used to obtain our results. For the extensions make sure to run the code in Matlab

28



2019a, because the function fevd is not included in older versions.

• var2.m contains the code for the point estimation of the parameters of Ehrmann et al. (2011).

The structural parameters are given in the variable Amatrix and the reduced-form parameters

can be found in Ainv. The function fmincon with the interior-point algorithm was used to

minimize the distance. The starting values are the array startval.

• bootstrapping.m is the program that runs the bootstrap. It is required to run var2.m first,

because it requires the parameter estimated from that code. The mean and standard deviation

of the estimates are contained in bmeanmat and varbootmat respectively. And the p-values

in pvaluestruct and pvaluered.

• extension1.m computes the spillovers presented in table 2. decompn consists out of 7 10× 7

matrices. The 10th row of each matrix contains the spillovers presented in the spillover table.

• extension.m calculates the moving-window spillovers such that the time-varying spillovers can

be plotted.

To be able to run the codes for var2.m and bootstrapping.m first the csv file ECBdata has to be

imported. To plot the spillovers against time import the last column of the excel file dates.

To verify the correctness of our code in extension.m and extention1.m we have also included

replication code for Diebold and Yilmaz (2012). The programs are nearly identical, except for a

few changes to accommodate the different VAR’s and data.

• diebold1.m is the parallel of extension1.m. The results can also be found in decompn.

• diebold.m is the Diebold and Yilmaz (2012) counterpart of extension.m

Before executing the program, import the csv file dy2012. This file was obtained from the personal

website of David Gabauer 2

2URL: https://sites.google.com/view/davidgabauer/econometric-code

29

https://sites.google.com/view/davidgabauer/econometric-code

	Introduction
	Ehrmann framework
	The model
	Identification through heteroskedasticity
	Estimation

	Spillover index
	Forecast Error Variance Decomposition
	Spillover index
	Total spillover index
	Directional spillovers
	Net spillovers
	Development of spillovers

	Data
	Results
	Ehrmann
	Full sample spillovers
	Development of total spillovers
	Development of directional spillovers
	Development of net spillovers
	Development of net pairwise spillovers

	Conclusion
	Identification through heteroskedasticity
	Reduced-form parameter estimates
	Restriction matrix
	Various spillovers for the exchange rate
	Development of received directional spillovers
	Instructions for programming code

