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Abstract

Despite their drawbacks at higher dimensions, SCAR models are currently being used at
large and they perform quite well as compared to their competitors. This paper investigates
possible extensions on SCAR models and aims to ultimately find a extension which outper-
forms the original specification. We empirically apply SCAR to real-world data using daily
returns from two popular indices, the Dow Jones Industrial Average and NASDAQ. First, we
relax the assumption of Gaussian marginal distributions errors. The Student’s t-distribution
better describes the stylized facts of asset returns such as the leptokurtosis and we find out
that the performance of SCAR significantly increases in this scenario. Another extension
we consider is to combine the best-performing copulas into a mixed copula model which
captures the dynamics of stock returns better. The mixed copula SCAR only outperformed
the original specification during times of significant market occurrences where the combined
copula takes into account greater dependence for losses. This research provides the current
literature with two extensions of the SCAR model which predominantly outperforms the
original model.
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1 Introduction

Modeling volatility and dependencies is of crucial importance in portfolio management, asset al-
location, derivative pricing and many other areas of finance. Correctly estimating the correlation
structure that exists between different stocks would help investors to allocate high-performing
portfolios through hedging and diversification. Moreover, the pricing of derivatives is based on
the price dynamics of their underlying assets, which in turn are largely affected by their volatility
and these common dependencies. Volatility plays a crucial role in explaining the uncertainty
that underlies the returns of financial assets, therefore research on the modeling and forecasting
of volatility has been extensive for many years now. Ever since the introduction of the autore-
gressive conditional heteroskedastic (ARCH) model by Engle (1982) and the generalised ARCH
(GARCH) model by Bollersev (1986), there has been a plethora of research and extensions on
these volatility models. The literature on multivariate GARCH models (Bauwens, Laurent and
Rombouts, 2006) made the transition from univariate models which allowed for no correlation
between variables, to a multivariate setting of codependence.

The more recent multivariate stochastic volatility (SV) models proposed by Harvey, Ruiz
and Shephard (1994) have become very popular in finance. Even though GARCH-type models
continue to appeal because of their computational simplicity, SV models have shown a higher
flexibility and goodness-of-fit. Yu and Meyer (2006) introduce stochastic correlations to SV
models by using a Gaussian AR(1) process to model correlation. Although highly flexible, a
major drawback of these specifications is that they only describe linear dependencies between
variables by assuming a multivariate normal distribution. In practice, non-elliptical distributions
and asymmetries in the tail dependencies are quite common, especially in equity returns. The
joint distribution of returns is non-elliptical because of asymmetries in the tail dependence. The
lower tail dependence is usually higher than the upper tail dependence. One way to account for
these nonlinear dependencies is through copulas.

Copulas capture the dependence among groups of random variables by decoupling it from the
marginal distributions. An important issue that arose in the early implementation of copulas in
finance was the unrealistic assumption of constant dependence parameters. Copula models were
criticized severely during the financial crisis of 2008, mostly for not being able to adequately
capture the risk in portfolios of credit default swaps and mortgages (Creal and Tsay, 2015).
Joe (1997) gives a good introduction to copulas, dependence measures, the different parametric
copula families, their estimation and inference. A remarkable extension of copula theory has
been made by Patton (2006) who introduced time-varying parameters to copula models. Manner
and Reznikova (2011) give a review of bivariate time-varying copula models. For an application
of copulas in econometrics see Patton (2009) and for their use in the field of risk management
see McNeil, Frey and Embrechts (2005). Ever since, a bundle of stochastic copula models
have emerged, from Markov-switching models (Pelletier, 2006) to observation-driven (Creal,
Koopman and Lucas, 2013) and parameter-driven models (Hafner and Manner, 2012).

SV models are the most common parametric-type specification. In such models, parameters
are stochastic processes on their own and as such they are not perfectly observable or pre-
dictable given past information. Their parameter estimation is also not as trivial as compared
to observation-driven models, such as GARCH-type specifications. In most cases, numerical
or analytical approaches for estimation are impossible or highly inefficient. Instead, simulation
techniques such as the efficient importance sampling (EIS) by Liesenfeld and Richard (2003) and
Markov chain Monte Carlo (MCMC) are necessary. What makes parametric-models appealing
is the high flexibility and goodness-of-fit. Harvey, Ruiz and Shephard (1994) were the first to
introduce SV models in a multivariate setting, while Yu and Mayer (2006) were the first to intro-
duce a stochastic correlation model following a Gaussian AR(1) specification. Asai and Mcleer
(2009) have introduced a DCC model with stochastic correlations driven by a VAR(1) process.
By assuming a multivariate normal distribution, these specifications can only describe linear
dependencies between variables and thus fail to accurately capture the dependence structure.
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Accounting for both time-varying dependence and non-elliptical distributions, Hafner and
Manner (2012) propose the stochastic copula autoregressive (SCAR) model. The SCAR model
is a dynamic copula model in which the dependence parameters follow a latent Gaussian AR(1)
process. First, it fits the marginal distribution of the variables using a Gaussian AR(1) Stochastic
Volatility (SV) model. Hafner and Manner (2012) compare the marginal SV model with a
GARCH(1,1) model, and they find that the SV model provides a better fit and higher flexibility.
This is mainly because the SV specification depends on two error processes instead of one,
unlike GARCH. Second, they introduce copulas to decouple the dependence structure from
the marginal distributions. The SCAR model can be seen as a generalized SV model which
introduces a dynamic copula model to model the dependencies between variables. Copulas model
the multivariate distribution and the dependence between two or more variables, regardless of
the underlying univariate distributions. Introducing copulas to capture the dependence among
groups of random variables regardless of the underlying marginal distributions, simplifies the
estimation of the parameters into two steps. First we estimate the parameters of the marginal
distributions (which are by definition independent of the dependence parameters), and then the
parameter estimates of the copula model. Combining dynamic copulas with the SV model is
what makes the SCAR model extremely valuable.

SCAR is found to capture the correlation dynamics quite well under a variety of deterministic
and stochastic data-generating processes. Hafner and Manner (2012) compare SCAR with the
DCC-GARCH(1,1) model of Engle (2002) and the conditional copula model of Patton (2006),
and find that it largely outperforms both models even under misspecified data-generating pro-
cesses, which one would expect to favour the other (observation-driven) models instead. Ever
since it was introduced, the SCAR model has gained popularity in the current literature. On
the other hand, there are drawbacks to this model. Multivariate SV models are estimated using
techniques such as the efficient importance sampling (EIS) of Liesenfeld and Richard (2003)
and Richard and Zhang (2007) or Markov chain Monte Carlo (MCMC) simulations and these
require the evaluation of a high-dimensional integral. Hence, extending the SCAR model to
larger dimensions other than bivariate would be extremely challenging and inefficient. This is
the main reason why the literature on GARCH is more extensive and why GARCH-type models
are preferred empirically. Computational complexity aside, SCAR is found to outperforms most
of its competitors. Hence, we focus our research in modeling the dependence structure for the
bivariate case only. Therefore, we decide to restrict our analysis to the bivariate SCAR model
and encourage future research to look further on the matter.

As previously mentioned, the SCAR specification adequately models the multivariate dis-
tribution and the dependence structure of different variables. Thereby, it is worthwhile to look
into potential extensions that can be associated with SCAR. Our goal is to ultimately find a
modified SCAR specification that performs better than the original model. This research focuses
on two main fronts. First, the SCAR model assumes Gaussian marginal distributions, which in
practice is an unrealistic assumption to make. Typically, financial asset returns show significant
evidence of serial correlation, leptokurtosis and volatility clustering. Volatility spillover effects
and asymmetries on the conditional variance are also found to be present. Hence, choosing a
heavy-tailed distribution instead of a normal one seems more than appropriate for the modeling
the marginal distribution of financial data. Second, Hafner and Manner (2012) conclude that
the Gaussian copula outperforms its non-elliptical competitors. This result is surprising as we
expect returns to have a higher lower-tail dependence. As the Gaussian copula does not account
for the tail dependence, it should underestimate potential losses during an adverse economic
climate. Hence, non-elliptical distributions should empirically be a better fit in uncertain times
of high-volatility. Gaussian copulas, on the other hand, are known to perform better during
“tranquil” market periods. One possibility is to combine the best-fitting copulas into a single
mixed copula model which potentially captures the dynamics of stock returns better.

This study contributes to the previous literature in several fronts. In the first part of our
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analysis, we look into the SCAR model and empirically apply it to real-world data. Similarly
to Hafner and Manner (2012), we use daily returns from two popular indices, the Dow Jones
Industrial Average and NASDAQ. As the sample from Hafner and Manner (2012) is limited to
the period from 1990 until 2000, including recent data tests the consistency of SCAR and whether
the conclusions from the paper are still valid nowadays. However, we obtain the same results.
The Gaussian copula outperforms all its competitor copulas, regardless of time. Secondly, we
relax the assumption of normal (univariate) marginal distributions errors, which can better
describe the stylized facts of asset returns such as the heavy tailed distribution. Instead of
assuming the same distribution for all returns, we determine the degrees of freedom which
result in the best-fitting t-distribution for each specific dataset. We find out that the normal
distribution is a very poor approximation of univariate return data and the t-distribution has
a greater goodness-of-fit for equity return data. Another extension we consider is to combine
the best-performing copulas into a single mixed copula model which captures the dynamics of
stock returns better. Generally, the mixed copula SCAR model outperforms the original SCAR
only for high-volatile periods where the mixed copula takes into account greater dependence for
losses.

The paper is structured as follows. As copulas are essential in understanding the methodology
behind the SCAR model, Section 2 begins with an introduction to copulas, their dependence
measures and a brief survey of some of the most popular copula models. Section 3 describes the
specification, estimation and the distributions of margins for the SCAR model, as introduced
by Hafner and Manner (2012). In Section 4, we provide the methodology behind the extensions
for the SCAR model that we propose. In the first extension, we relax the normality assumption
by assuming a Student’s t distribution for returns. In the second extension, we introduce mixed
copula models to SCAR, to better distinguish between low and highly-volatile market periods.
Once the methodology is established, we want to empirically apply these models to real-world
data. A detailed description of the data that we use and how we make use of them can be found
in Section 5. Our aim is to find an extension that performs better than the original SCAR.
Section 6 starts with an overview of SCAR and the the main results by Hafner and Manner
(2012). Later on, we obtain the main results for our own extensions and we compare with
the original model. Suggestions for further research and some limitations we encountered are
presented in Section 7. Finally, we conclude this paper with our closing remarks in Section 8.

2 Copulas

Copulas have been quite popular in quantitative finance, in particular within risk management,
portfolio optimization and derivative pricing. They are widely used to model and manage
downside risk and perform stress-tests to determine the value of potential losses one could occur
during times of uncertainty. Before delving into the dynamic stochastic copula model, a detailed
description of copulas is needed to better understand the latter methodology. Hence, we dedicate
the next section to copulas, the most common copula families and their dependence measures.

2.1 Definition

Let x and y be two random variables with continuous marginal distributions F and G. Using
the probability integral transform, any random variable with a continuous distribution can be
converted to a random variable with a standard uniform distribution, U(0,1). Hence, we can
define u = F (x) and v = G(y), such that u, v ∼ U(0, 1).

A copula is a multivariate cumulative distribution function with uniform marginals which
captures the dependence structure between variables irrespective of their marginal distribution.
Assuming H(x, y) is the joint distribution function of x and y, Sklar (1959)’s theorem states
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that there exists a unique copula C such that

H(x, y) = C(F (x), G(y)) = C(u, v) (2.1)

where C : [0, 1]2 → [0, 1]. In statistical terms, a copula of (x, y) is defined as the joint cumulative
density function (CDF) of (u, v). Hence,

C(u, v) = P [U ≤ u, V ≤ v]

= P [X ≤ F−1(u), Y ≤ F−1(v)].
(2.2)

Sklar (1959) introduces an important property of copulas in which they decouple the depen-
dence between variables from their marginal distributions. Hence,

h(x, y) = f(x) · g(y) · c(F (x), G(y)) (2.3)

where f and g are the marginal density functions of x and y respectively, while c is the density
function of the copula. Note that this can also be generalized for the multivariate case with more
than two variables, but our research only focuses on the bivariate case. A remarkable extension
of copula theory has been made by Patton (2006) who introduced time-varying parameters to
copula models. A time-varying bivariate copula model is defined as follows

(ut, vt) ∼ C(u, v|θt) (2.4)

where θt ∈ Θ ⊂ R is a stochastic random parameter which captures the dependence between
variables. Suppose there is an underlying process λt, such that θt = Ψ(λt), where Ψ : R → Θ
is a functional form dependent on the copula. This transformation restricts θt to remain in the
appropriate domain, Θ.

2.2 Families of Copulas

In this section, we discuss some popular copula models which have a single parameter. Gaussian
copulas construct a multivariate normal distribution from marginal univariate normal distribu-
tions. Archimedean copulas are an associative class of copulas that can model the dependence
in high-dimensions with very few parameters. A copula C is Archimedean if it has the following
form

C(u, v; θ) = ψ[−1](ψ(u; θ) + ψ(v; θ)) (2.5)

where ψ : [0, 1]×Θ→ [0,∞) and ψ(1; θ) = 0. The function ψ[−1] is its pseudo-inverse specified
as

ψ[−1](t; θ) =

{
ψ−1(t; θ) if 0 ≤ t ≤ ψ(0; θ)

0 if ψ(0; θ) ≤ t ≤ ∞.
(2.6)

Some Archimedean copulas used in this paper are the Frank, Clayton and Gumbel cop-
ulas. These models will be further explained in the sections below. Figure 1 gives a visual
representation of the probability density functions (PDFs) of the different copulas.

2.2.1 Gaussian Copula

Let x = Φ−1(u) and y = Φ−1(v) be two random variables where Φ(·) denotes the standard
normal cumulative density function. The Gaussian copula is defined as

CGauss(u, v; θ) = Φ(Φ−1(u),Φ−1(v); θ) (2.7)

with density function

cGauss(u, v; θ) =
1√

1− θ2
exp

(
2θxy − x2 − y2

2(1− θ2)
+
x2 + y2

2

)
(2.8)

where θ ∈ (−1, 1) is the copula parameter. The appropriate transformation function for Gaus-
sian copulas is θt = Ψ(λt) = (exp(2x)− 1)/(exp(2x) + 1).
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Figure 1: Probability density functions (PDFs) of copulas

2.2.2 Frank Copula

The density function of the Frank copula is

cFrank(u, v; θ) =
exp((1 + u+ v)θ)(exp(θ)− 1)θ

{exp(θ) + exp((u+ v)θ)− exp(θ + uθ)− exp(θ + vθ)}2
(2.9)

where θ ∈ R \ {0}. The transformation function for Frank copulas is then θt = Ψ(λt) = λt.

2.2.3 Clayton Copula

The density function of the Clayton copula is

cClayton(u, v; θ) = u(−1−θ)v(−1−θ)(u−θ + v−θ − 1)(−2−1/θ)(1 + θ) (2.10)

where θ ∈ (0,∞). For the copula parameter to remain in its appropriate domain, the transfor-
mation function for the Clayton copula is θt = Ψ(λt) = exp(λt).

2.2.4 Gumbel Copula

The density function of the Gumbel copula is

cGumbel(u, v; θ) =
{log(u)log(v)}(θ−1){[(−log(u))θ + (−log(v))θ]1/θ + θ − 1}

[(−log(u))θ + (−log(v))θ](2−1/θ)uv
×

exp{[(−log(u))θ + (−log(v))θ]1/θ}
(2.11)

where θ ∈ [1,∞). The transformation function for Gumbel copulas is θt = Ψ(λt) = exp(λt) + 1.

2.3 Dependence Measures: Kendall’s τ and Tail Dependence

Comparing copula parameters with each other is not straightforward because they are usually
scaled differently for every type of copula. Instead, there exist some copula-based coefficients,
which do not depend on the scale or the marginal distributions, and measure the dependence be-
tween variables. A well-known rank correlation coefficient that measures the overall dependence
is the Kendall’s τ , defined as

τ = 4E(C(U, V ))− 1 (2.12)

where τ ∈ [−1, 1]. Other important copula-based coefficients measure the tail dependence, i.e.
in the extremes of the distribution. The lower and upper tail dependence are measured as

λL = lim
u→0

p[U < u|V < v] = lim
u→0

C(u, u)

u
(2.13)
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λU = lim
u→1

p[U > u|V > v] = lim
u→1

1− 2u+ C(u, u)

1− u
(2.14)

Both dependence measures can often be expressed in terms of the copula parameters. See
Table 1 for a summary of these relationships between the dependence measures and parameters,
as well as the transformation equations for each type of copula and the corresponding domain.
Figure 2 shows contour plots for distribution functions using the copulas mentioned previously
with a Gaussian marginal distribution and a Kendall’s τ of 0.5. Both the Gaussian and the
Frank copula are symmetric along the 45◦ line, but the Frank copula weights heavier along the
tails. Financial returns usually depend more on the left tail than on the right, hence symmetry
is not a desirable property. The Gumbel and Clayton copula, on the other hand, should be
better suited for financial returns as they are asymmetric. The Clayton copula has only lower
tail dependence, while the Gumbel copula has only upper tail dependence. As financial returns
typically have a higher lower tail dependence, the Gumbel copula is used in its reversed version
instead, also known as the survival Gumbel copula.

Table 1: The dependence, transformation process and domain of different copula

Overall Dependence Tail Dependence Transformation Domain

Copula Kendall’s τ Lower λL Upper λU Ψ(λt) θt

Gaussian τ = 2
π arcsin (θ) - - Ψ(λt) = exp(2λt)−1

exp(2λt)+1 θt ∈ (−1, 1)

Frank τ = 1 + 4(D1(θ)−1)
θ - - Ψ(λt) = λt θt ∈ R \ {0}

Clayton τ = θ
θ+2 λL = 2−1/θ λU = 0 Ψ(λt) = exp(λt) θt ∈ (0,∞)

Gumbel τ = 1− 1
θ λL = 0 λU = 2− 21/θ Ψ(λt) = exp(λt) + 1 θt ∈ [1,∞)

For the Frank copula Dk(x) denotes the Debye function defined as Dk(x) = k
xk

∫ x
0

tk

et−1
dt. Note that the Gaussian and

Frank copula do not exhibit any tail dependence.

Figure 2: Contour plots of the copulas and their multivariate distributions, assuming standard
normal marginal distributions and Kendall’s τ = 0.5.
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3 The Stochastic Copula Autoregressive (SCAR) Model

The Stochastic Copula Autoregressive (SCAR) model was introduced by Hafner and Manner
(2012) as a generalized multivariate stochastic volatility (SV) model which introduces a dynamic
copula model with an underlying dependence parameter that follows a Gaussian autoregressive
process. The benefit of using a copula model is that it decouples the marginals from the de-
pendence parameters, which makes the estimation of SV models computationally easier. The
estimation of SCAR models can be done in two steps, first estimating the parameters of the
marginals, then those of the copula model. In this section, we describe in detail each component
that makes up the SCAR model, as well as the estimation procedure used for its underlying
processes.

3.1 Marginals

Given that we are dealing with financial data, it is crucial to find appropriate marginal dis-
tribution models to accurately represent the data. In particular, stock market returns exhibit
certain properties such as time-varying volatility and leptokurtosis that must be captured by
the underlying model. An adequate candidate for this is the stochastic volatility (SV) model
introduced by Clark (1973) and Taylor (1986). The returns for the ith stock and t = 1, . . . , T ,
are then modeled as

rit = exp (hit/2)εit

hit = δi + γihit−1 + σiηit
(3.1)

where εit and ηit are assumed to be two independently and identically distributed standard
normal random variables. Given the SV model and that the innovations εit = exp(−hit/2)rit
are normally distributed with zero mean and unit variance, according to Sklar’s theorem, the
observation equation becomes

(rit, rjt) | λt, hit, hjt ∼ C(Φ(εit),Φ(εjt)) (3.2)

where Φ(·) denotes the CDF of the standard normal distribution and λt the dependence pa-
rameter, which is decoupled from the marginal distributions by the copula C and needs to be
specified. Using the probability integral transform, the data is converted into U(0,1) random
variables and it is ready to be used for estimating the stochastic copula model.

3.2 Stochastic Copula Model

Consider again the bivariate stochastic copula model in (2.4),

(ut, vt) ∼ C(u, v|θt)

where θt captures the dependence between variables. Assume that θt is driven by an underlying
process λt through a transformation function Ψ, such that θt = Ψ(λt). This stochastic process is
unobserved, hence it is of crucial importance to choose an appropriate specification to model it.
In the dynamic copula model presented by Hafner & Manner (2012), the underlying dependence
parameter λt is assumed to follow an autoregressive process of order one, AR(1),

λt = α+ βλt−1 + νεt (3.3)

where ε ∼ N(0, 1). Furthermore, |β| < 1 is set as a stationary condition. Let X = {xt}Tt=1 and
Y = {yt}Tt=1 denote two processes with marginal distributions F (X; δX) and G(Y ; δY ) where δX
and δY denote the parameter vectors for the respective marginals of X and Y . Given ω is the
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parameter vector for the copula model, the joint log-likelihood function becomes a sum of the
marginal log-likelihood functions and the copula log-likelihood function.

L(δX , δY , ω;X,Y ) = LX(δX ;X) + LY (δY ;Y ) + LC(ω;F (X; δX), G(Y ; δY )) (3.4)

Then, a two-step estimation procedure can be used to estimate the parameters to reduce the
computational complexity. First, we estimate the parameters of the marginals, δX and δY , then
the parameters of the copula model, ω. This procedure is known as the inference function for
the margins (IFM) estimator, see Joe (1997).

3.3 Estimation

Let ω = (α, β, ν) be the parameter vector of the transition equation. As the latent parameter
λt is assumed to be unobserved, we want to estimate its underlying dependence process as
described in Equation (3.3). Define the observable variables U = {ut}Tt=1, V = {vt}Tt=1 and the
latent process Λ = {λt}Tt=1. If f(U, V,Λ;ω) denotes the joint probability density function (PDF)
of (U, V ) and Λ, then the parameter vector ω has the following likelihood function:

L(ω;U, V ) =

∫
f(U, V,Λ;ω)dΛ. (3.5)

By expressing the joint density function of (U, V ) and Λ as a factorization of the conditional
densities and defining Ut = {uτ}tτ=1 (analogously for Vt and Λt), we obtain

L(ω;U, V ) =

∫ T∏
t=1

f(ut, vt, λt|Ut−1, Vt−1,Λt−1, ω)dΛ (3.6)

The high-dimensional nature of this integral requires quite the computational effort and as such
it is very inefficient to be evaluated numerically or analytically. Liesenfield and Richard (2003)
and Richard and Zhang (2007) propose a simulation technique to avoid this problem, known
as the Efficient Importance Sampling (EIS). This method constructs an importance sampler
m(λt|Λt−1, at) that exploits information on Λ contained in U and V through some auxiliary
parameter at. Using the importance sampler, the likelihood function becomes

L(ω;U, V ) =

∫ T∏
t=1

[
f(ut, vt, λt|Ut−1, Vt−1,Λt−1, ω)

m(λt|Λt−1, at)

] T∏
t=1

m(λt|Λt−1, at)dΛ. (3.7)

Using Monte Carlo simulation and drawing N trajectories {λ̃(i)
t (at)}Tt=1 from the importance

sampler m, we can evaluate the likelihood function as

L̃N (ω;U, V ) =
1

N

N∑
i=1

(
T∏
t=1

[
f(ut, vt, λ̃

(i)
t (at)|Ut−1, Vt−1,Λt−1, ω)

m(λ̃
(i)
t (at)|Λ̃(i)

t−1(at−1), at)

])
(3.8)

Of crucial importance are the specification of the importance sampler m(λt|Λt−1, at) and the
estimation of the auxiliary parameters at, where at = (a1,t, a2,t) in the bivariate case. To reduce
the simulation variance of the likelihood function, Liesenfeld and Richard (2003) make use of a
functional approximation k(Λt; at) for f such that

m(λt|Λt−1, at) =
k(Λt; at)

χ(Λt−1; at)
(3.9)

where χ(Λt−1; at) =
∫
k(Λt; at)dλt. Furthermore, they introduce the following decomposition

k(Λt; at) = p(λt|λt−1, ω)ζ(λt, at) (3.10)
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where ζ(λt, at) is a Gaussian kernel. The SV model assumes that the conditional density of λt
given it’s past values follows a Gaussian distribution. Hence,

p(λt|λt−1, ω) ∝ exp

{
− 1

2ν2
(λt − γ − δλt−1)2

}
. (3.11)

For each period t = T, . . . , 1, given ω and χ(ΛT ; aT+1) ≡ 1, we solve the following minimization
problem

ât = arg min
at

N∑
i=1

( log[f(ut, vt, λ̃
(i)
t (ω)|Ut−1, Vt−1, Λ̃

(i)
t−1(ω), ω) · χ(Λ̃

(i)
t (ω); ât+1)]

− ct − log k(Λ̃
(i)
t (ω); at))

2

(3.12)

If we choose a Gaussian kernel equal to ζ(λt, at) = exp(a1,tλt + a2,tλ
2
t ), then k(Λ; at) has the

following exponential functional form

k(Λt; at) ∝ exp

{
− 1

2

[(
γ + δλt−1

ν

)2

− 2

(
γ + δλt−1

ν2
+ a1,t

)
λt +

(
1

ν2
− 2a2,t

)
λ2
t

]}
(3.13)

The conditional mean and variance of the importance sampler m(λt|Λt−1, at) then become

µt = σ2
t

(
γ + δt−1

ν2
+ a1,t

)
, σ2

t =
ν2

1− 2ν2a2,t
. (3.14)

Furthermore, integrating k(Λt; at) with respect to λt and omitting multiplicative factors for
simplicity results in

χ(λt−1, at) ∝ exp

{
µ2
t

2σ2
t

− (γ + δt−1)2

2ν2

}
(3.15)

Ultimately, the minimization problem becomes the linear least squares problem in Equation
(3.16) below. This facilitates estimation and greatly reduces the computational complexity of
the optimization problem. Unfortunately, this is not the case for non-Gaussian latent processes.

log c(ut, vt|θt(ω)) + logχ(λ̃
(i)
t (ω); ât+1) = ct + a1,tλ̃

(i)
t (ω) + a2,t[λ̃

(i)
t (ω)]2 + η

(i)
t (3.16)

This linear problem can be solved by Ordinary Least Squares (OLS) with ct the regression

constant and η
(i)
t the error term. The EIS procedure then works as follows:

1. Draw N trajectories {λ̃(i)
t (ω)}Tt=1 from the natural sampler p(λt|λt−1, ω).

2. Estimate the auxiliary parameters ât = (â1,t, â2,t) recursively for t = T, . . . , 1 by using
OLS on (3.16). Recall that χ(ΛT ; aT=1) ≡ 1.

3. Draw N trajectories {λ̃(i)
t (ω)}Tt=1 from the importance sampler m(λt|Λt−1, at) and re-

estimate the auxiliary parameters {ât}Tt=1, similarly as in Step 2. Iterate until convergence
is reached.

4. Draw N trajectories {λ̃(i)
t (ω)}Tt=1 from the importance sampler m(λt|Λt−1, at) and estimate

the likelihood function in (3.8).

5. Obtain the parameter vector ω̂ = (α̂, β̂, ν̂) of the transition equation in (3.3) by maximizing
the likelihood function computed in Step 4.

Note that at each iteration, generating the same random numbers is required in order to ensure
the convergence of {ât}Tt=1 and hence the smoothness of the likelihood function. The majority
of times, convergence is reached at 5 iterations or less for a sample of around 2500 observations.
Furthermore, we decide to use N = 200 trajectories because at this number the simulation
variation is negligible, while the computational time remains reasonable.
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4 Extensions to SCAR Models

Hafner and Manner (2012) find that SCAR outperforms popular competitors such as the DCC
model of Engle (2002) with GARCH(1,1) marginals as well as the model of Patton (2006). In
particular, SV models are currently being used at large by academics and, despite their draw-
backs at higher dimensions, they perform quite well in the bivariate case. Hence, in the next
section we look into some extensions for the SCAR model that might improve its overall perfor-
mance even more. First, we relax the assumption of normality that the marginal distributions
assume in SCAR. Second, we look into mixed stochastic copula models by combining some of the
highest performing (single) copula models. Last, the SCAR model assumes a Gaussian AR(1)
process for its underlying dependence parameter. We extend the AR(1) model by including
exogenous variables to the specification. Possible exogenous variables are trends, dummies and
variables that might explain dependencies between stock returns.

4.1 Relaxing the Normality Assumption

Consider again the SV model for the marginals in Equation (3.1)

rit = exp (hit/2)εit

hit = δi + γihit−1 + σiηit.

In their paper, Hafner and Manner (2012) make the assumption of conditional normality of the
marginal distributions of the returns. Ultimately, this means that the innovations terms εit have
a standard normal distribution with zero mean and unit variance. Hence, rit|hit is normally
distributed because rit = exp(hit/2)εit from the SV model and εit ∼ N(0, 1). However, financial
returns are found to exhibit properties such as leptokurtosis (i.e. fat-tailed distributions) and
assuming that returns are normally distributed might not be realistic. Student’s t distribution
is symmetric and bell-shaped like the normal distribution, but has heavier tails which account
for more values in the extremes. Heavy-tailed distributions have a greater goodness-of-fit rep-
resenting equity return data.

Therefore, as a first extension, we relax the assumption of normality that SCAR makes and
instead assume that the returns are Student’s t-distributed. Hence, εit ∼ t(df) where df are the
degrees of freedom. Note that the degrees of freedom are to be estimated for every sample. In
other words, we determine the degrees of freedom which result in the best-fitting t-distribution
for that specific dataset. Compared to the normal case, we expect this distribution to represent
the data quite for two main reasons. First, the t-distribution is known to represent financial
returns better than the normal distribution and second, because it is data-specific through
estimating the degrees of freedom, the t-distribution should provide with a better fit. Thereby,
it is also expected to see an increase in the performance of SCAR. Given the SV model and that
the innovations are t-distributed, the observation equation becomes

(rit, rjt) | λt, hit, hjt ∼ C(F (εit), F (εjt)) (4.1)

according to Sklar’s theorem, where F (·) denotes the CDF of the Student’s t distribution and
λt the dependence parameter, which is decoupled from the marginal distributions by the copula
C, and is modeled as a Gaussian AR(1) process in the original SCAR as in Equation (3.3). We
then use the probability integral transform to convert the data into U(0,1) random variables
and estimate the stochastic copula model.

The stochastic copula C models the multivariate distribution of the returns given the marginal
univariate distributions and the transition equation for the dependence parameter λt. Relax-
ing the assumption of normality of the marginals will result in different copula structures for
the multivariate distributions. Figure 3 provides contour plots of the different selected copulas
assuming a marginal Student’s t-distribution. In comparison to the normally distributed case,
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once again we observe that the t-distribution accounts for heavier tails (compare to Figure 2).
Dealing with stock returns, we expect the SCAR model using the t-distributed marginals to
capture better the leptokurtosis and outperform the SCAR model under the normality assump-
tion. Another interesting point of analysis would be whether the Gaussian copula continues to
outperform the other non-elliptical copulas in the case of t-distributed returns.

Figure 3: Contour plots of the copulas and their multivariate distributions, assuming marginal
standard t-distributions with ν = 3 degrees of freedom and Kendall’s τ = 0.5.

Once the SV model and the stochastic copula model have been established, we use the two-
step procedure to estimate the SCAR model by performing EIS to each of the models separately.
The EIS estimation procedure for this extension remains the same as the original SCAR under
the normality condition. A detailed description of the EIS estimation procedure is given in
Section 3.3.

4.2 Mixed Stochastic Copula Model

Another main result of Hafner and Manner (2012) is that the SCAR model using a Gaussian
copula outperforms the other copula models that assume non-elliptical multivariate distribu-
tions. Gaussian copulas perform well, especially in times of “tranquility”, where the markets
are not excessively volatile and there are not many extreme values of returns. However, if we
incorporate these models using return data during periods that include highly volatile market
events or financial crises, Gaussian copulas might not capture the excessive extreme returns
accurately. Instead, the rotated Gumbel, Frank and Clayton copula with their heavy-tailed
distributions might perform better. Non-elliptical copulas are also found to better capture the
dependencies between assets during bad times. In particular, stock prices have a tendency to
fall together in bad times and they exhibit higher dependencies during such periods.

As our second extension, we look into mixed stochastic copula models by combining some of
the highest performing (single) copula models. Consider the following specification

cmix(u, v; θ1, θ2, κt) = κtc1(u, v; θ1) + (1− κt)c2(u, v; θ2) (4.2)

where κt is the mixing parameter defined as κt = Ψ(λt) = 1/(1 + exp(λt)) so that κt ∈ (0, 1).
As an illustration, let’s suppose the mixed copula model combines a Gaussian copula together
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Figure 4: Contour plots of the mixed copulas and their multivariate distributions, assuming
marginal normal distribution with a mixing parameter κ = 0.7 and Kendall’s τ = 0.5.

with the Frank copula. The two copulas have different transformation equations. The Gaussian
copula has ΨGauss(λt) = (exp(2λt)−1)/(exp(2λt)+1), while the Frank copula has ΨFrank(λt) =
λt as transformation equation. Hence, we compute the mixed copula model as a sum of the two
individual copulas by using θ1 = ΨGauss(λt) and θ2 = ΨFrank(λt), respectively. Given the
stochastic mixed copula model, we use the two-step procedure to estimate the SCAR model
by performing EIS to each of the models separately. The EIS estimation procedure for this
extension remains the same as the original SCAR, with the minor adjustment that now we
incorporate a combined copula model made up of two single ones.

Figuere 4 gives the contour plots of the mixed copulas and their multivariate distributions,
assuming marginal normal distribution with a mixing parameter κ = 0.7 and Kendall’s τ = 0.5.
It is interesting to see how different combinations result in very different contour plots combining
characteristics from both individual copulas. As the Gaussian copula is found to perform best
in Hafner and Manner (2012), we will always consider it as the first copula. In our analysis, we
will consider the following mixed copulas: Gaussian + rotated Gumbel, Gaussian + Gumbel,
Gaussian + Frank and Gaussian + Clayton.
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5 Data

Now that the methodology and the estimation procedure for the SCAR model and its extensions
have been established, we want to empirically apply these models to real-world data. Daily
returns of two well-known indices are considered: Dow Jones Industrial Average (DJ) and the
NASDAQ Composite (NQ). The data used by Hafner and Manner (2012) ranges within the
timeframe between March 26th, 1990 and March 23rd, 2000. The same dataset is retrieved from
the Journal of Applied Econometrics Data Archive. To incorporate recent data and observe
whether the conclusions from Hafner and Manner (2012) are still consistent, we expand our
dataset from March 26th, 1990 until March 25th, 2019, including a total of 7363 observations
from 29 years of data. The remaining data was collected from the Datastream database of
historical prices for both the Dow Jones Industrial index and the NASDAQ Composite index.
Note that returns are calculated by taking the first difference of the natural logarithm and
multiplying by 100.

Table 2: Descriptive Statistics Dow Jones and NASDAQ

Full Sample: 1990 - 2019

Mean St. Dev. Minimum Maximum Skewness Kurtosis JB Test p-Value Obs.

DJ 0.0308 1.0566 -8.20 10.51 -0.18 11.21 20,735 0.000 7,363

NQ 0.0392 1.4393 -10.17 13.25 -0.11 9.40 12,590 0.000 7,363

Table 2 summarizes the descriptive statistics for both the DJ and NQ returns. The Jarque Bera (JB) test is a goodness-of-fit
test of whether the data is normally distributed. The JB test statistics and the corresponding p-values are given above.

The descriptive statistics for these returns can be found in Table 2. The average return for
both indexes is around 0.03 for this particular sample, however NQ returns are somewhat more
volatile as their standard deviation is higher than the DJ returns. Both index returns have a
negative skewness indicative of a heavy-tailed distribution from the left, very typical of return
data. Furthermore, they exhibit excess kurtosis, also known as leptokurtosis, which shows that
these returns have highly-peaked distributions. When the distribution exhibits skewness and
a high kurtosis (larger than 3), it means that the data does not follow a normal distribution.
Another way to test if the returns are normally distributed is to make use of the Jarque-Bera
(JB) test, which also depends on the skewness and kurtosis. The JB test statistics are indeed
found to be quite high and the p-values are very small, close to zero, thus rejecting the hypothesis
of normally distributed returns at a 10%, 5% and 1% significance level. These statistics are in
line with the stylized properties of returns.

Figure 5: Normal against Student’s t-distribution fit for NQ returns

Figure 5 plots a histogram of the DJ and NQ daily returns, as well as its normal and
Student’s t-distribution fits. Visually, the t-distribution seems to better represent the data as
compared to the normal distribution. The estimated location and scale parameters for both the
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normal and t-distribution fits are provided in Table 3. In the normal case, the location and
scale parameters correspond to the mean and standard deviation. This is a special case and
as such it is not generally true for other distributions. For the t-distribution, there is another
parameter to be estimated, the degrees of freedom (df). The DJ index returns seem to fit best to
a t-distribution with 2.99 degrees of freedom, while the NQ returns are represented best by using
df of 2.65. Furthermore, we perform a Kolmogorov-Smirnov (KS) test to empirically compare
the two distribution fits. From the KS statistics, we find out that the normal distribution is a
very poor representation for the returns. The KS test rejects the normality assumption at the
10%, 5% and 1% significance level for both indexes. For the t-distribution, on the other hand,
we see that the KS test cannot reject the null hypothesis of t-distributed returns for DJ, while
for NQ it rejects it at a 5% significance level, but not at 1%. Hence, the KS test confirms our
initial expectations. The Student’s t-distribution is a better fit for return data than the normal
distribution.

Table 3: Distribution Fit Parameters and Test

Full Sample: 1990 - 2019

Normal Distribution Student’s t Distribution

Parameters Parameters

Location Scale KS Test p-Value Location Scale df KS Test p-Value

DJ 0.0308 1.0566 0.0817 0.000 0.0576 0.6614 2.99 0.0128 0.175

NQ 0.0392 1.4393 0.0561 0.000 0.1018 0.8565 2.65 0.0227 0.001

For both the DJ and NQ returns, the location and scale parameters for two different distribution fits are given above. The df
denotes the degrees of freedom for the Student’s t-distribution. The Kolmogorov–Smirnov (KS) test is a non-parametric test
that can be used to compare a sample with a reference probability distribution, such as the normal and the t-distribution.
The KS Test statistics and the coresponding p-values are given in the table above.

One issue to be addressed is that by estimating the SCAR model for the entire period from
1990 until 2019, the possibility that structural breaks exist is quite high. Hence, we divide the
data into three subperiods, taking as breakpoints two financial crises which resulted from the
internet bubble in the early 2000s and the housing bubble of 2008. The subperiods we consider
are 1990-2000, 2000-2010 and 2010-2019 and they are split up in such a way to make sure we have
intervals of similar length, hence approximately 10 years of data each. Table 4 gives a summary
of the descriptive statistics and JB tests in Panel A, as well as the distribution fit parameters
and KS tests in Panel B, for each subsample. What is important to notice here is that the
general properties discussed for the whole sample are consistent through all the subsamples.
Negative skewness, leptokurtosis, the JB test rejecting the normality assumption and the KS
test confirming that the t-distribution is a good fit for the returns, are properties that are once
again evident, regardless of the chosen time period. Another thing to note is regarding the
degrees of freedom for the t-distribution fit. In general, a t(3) distribution is a very good fit for
all subsamples, with the only exception in 1990-2000, where the data resembles more a t(4).
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Table 4: Parameter Estimates of the SCAR Model for Dow Jones and NASDAQ
for the period from 1990 until 2019

Subsample 1: 1990 - 2000

Panel A: Descriptive Statistics

Mean St. Dev. Minimum Maximum Skewness Kurtosis JB Test p-Value Obs.

DJ 0.0567 0.8934 -7.45 4.86 -0.41 8.28 2942 0.000 2471

NQ 0.0884 1.1267 -8.95 5.85 -0.58 7.78 2497 0.000 2471

Panel B: Distribution Fit Parameters and Test

Normal Distribution Student’s t Distribution

Parameters Parameters

Location Scale KS Test p-Value Location Scale df KS Test p-Value

DJ 0.0567 0.8934 0.0969 0.000 0.0688 0.6513 4.15 0.0125 0.828

NQ 0.0884 1.1267 0.0811 0.000 0.1340 0.7794 3.58 0.0234 0.133

Subsample 2: 2000 - 2010

Panel A: Descriptive Statistics

Mean St. Dev. Minimum Maximum Skewness Kurtosis JB Test p-Value Obs.

DJ 0.0021 1.2902 -8.20 10.51 -0.01 10.52 6524 0.000 2766

NQ -0.0134 1.8726 -10.17 13.25 -0.10 7.31 2143 0.000 2766

Panel B: Distribution Fit Parameters and Test

Normal Distribution Student’s t Distribution

Parameters Parameters

Location Scale KS Test p-Value Location Scale df KS Test p-Value

DJ 0.0021 1.2902 0.0405 0.000 0.0288 0.7915 2.88 0.0190 0.267

NQ -0.0134 1.8726 0.1043 0.000 0.0359 1.2133 3.04 0.0256 0.053

Subsample 3: 2010 - 2019

Panel A: Descriptive Statistics

Mean St. Dev. Minimum Maximum Skewness Kurtosis JB Test p-Value Obs.

DJ 0.0379 0.8785 -5.71 4.86 -0.50 7.34 1760 0.000 2126

NQ 0.0503 1.0639 -7.15 5.67 -0.47 6.72 1302 0.000 2126

Panel B: Distribution Fit Parameters and Test

Normal Distribution Student’s t Distribution

Parameters Parameters

Location Scale KS Test p-Value Location Scale df KS Test p-Value

DJ 0.0379 0.8785 0.1255 0.000 0.0718 0.5620 2.97 0.0199 0.365

NQ 0.0503 1.0639 0.0946 0.000 0.1024 0.7068 3.18 0.0211 0.295

6 Results

The Results section will be structured as follows. In Section 6.1, we replicate the results from
Hafner and Manner (2012) using the same timeframe that they use in their paper, from 1990
until 2000. The first thing we want to check is if their conclusions are consistent through time,
hence we consider extending this dataset and incorporating data until 2019. To avoid issues such
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as structural breakpoints within this large sample, we divide the dataset into three subperiods
1990-2000, 2000-2010 and 2010-2019. More information on how we divide these subperiods is
given in Section 5. We run the SCAR model for each of these subperiods and we compare the
results we get with the ones from Hafner and Manner (2012). In the later sections, we switch
from the traditional SCAR model towards several extensions that we expect to outperform
the original framework. In Section 6.2, we relax the normality assumption that the SV model
of SCAR makes for the marginal distributions. In general, return data are found to exhibit
leptokurtosis and we take this into account by introducing a heavy-tailed distribution, instead
of the normality assumption that Hafner and Manner (2012) make. In Section 6.3, we consider a
mixed copula model which combines two copula models into one. It might be the case that one
copula better represents the dependence dynamics between returns for a particular subperiod,
while another fits best for the rest of the sample.

6.1 The Original SCAR Model

The SCAR model is estimated using the two-step inference function for margins (IFM) estimator
introduced by Joe (1997). As a first step, the marginal distributions of returns for both DJ and
NQ are fitted using the SV model in Equation (3.1). The EIS procedure used to estimate the SV
parameters is described in Section 3.3. Note that we use demeaned returns for the SV model. To
compare results with Hafner and Manner (2012), we will first focus on their sample period from
1990 until 2000. The parameter estimates and the negative log-likelihood function values are
given in Table 5. We should observe a high level of persistence in volatility, as the γ coefficient
of around 0.98 indicates that it depends a lot on its past values. The resulting volatility paths
are plotted in Figure 6. The volatility estimates of DJ and NQ stock indices move in a similar
fashion through time, hence we expect there to be a high dependence relation between the two.
We will see if this is indeed the case in the second step of the estimation, where introducing
copulas decouples the dependence structure from the marginal distribution of returns.

Table 5: Estimates of SV Model
for Dow Jones and NASDAQ

SV Model

Parameters DJ NQ

δ -0.0112 -0.0054
(0.0051) (0.0042)

γ 0.9785 0.9731
(0.0077) (0.0079)

σ 0.1574 0.2078
(0.0256) (0.0268)

Log-Likelihood -3137.5 -3638.2

Parameter estimates for the SV model of the
marginals are given above with the corresponding
standard errors in parenthesis. The data consists
of 2608 observations from March 26th, 1990 until
March 23rd, 2000. Figure 6: Volatility Estimates: DJ and NQ

Using the probability integral transform, we convert the return data into U(0,1) random
variables. Note that Hafner and Manner (2012) assume that returns are normally distributed.
We will later relax this assumption. In the second estimation step, we estimate the stochastic
copula model using the EIS procedure once again. Several copula models are considered such
as the Gaussian, Gumbel, Clayton and Frank. In addition, two survival or rotated copulas for
Gumbel and Clayton are also selected. Refer to Section 2.2 for a detailed description of these
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copulas and their dependence measures. Assuming the normality of the returns, the parameter
estimates of the SCAR model are given in Table 6. We obtain similar results as Hafner and
Manner (2012). Note that in order to compare between different types of models and to select the
best-fitting specifications, we can use the values of the log-likelihood function. The model with
the largest log-likelihood value is the best-performing model. Typically, information criteria,
such as AIC and BIC, are suitable to compare the fit of the models, but since we are comparing
each specification for the time-variation and the same number of parameters is being used, it is
equivalent to use the log-likelihood value (Manner and Reznikova, 2010).

Table 6: Parameter Estimates of the SCAR Model for Dow Jones and NASDAQ
(assuming standard normal distributed error terms)

Copula Model

Parameters Gaussian Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0330 0.0174 0.0150 0.1505 0.0482 0.0438
(0.0103) (0.0067) (0.0062) (0.0521) (0.0164) (0.0164)

β 0.9789 0.9818 0.9844 0.9871 0.9661 0.9691
(0.0066) (0.0070) (0.0065) (0.0045) (0.0114) (0.0115)

ν 0.0487 0.0589 0.0557 0.4055 0.0879 0.0925
(0.0087) (0.0125) (0.0124) (0.0793) (0.0181) (0.0203)

Log-Likelihood 1570.9 1525.1 1519.3 1466.7 1351.6 1337.1

The SCAR model is estimated using the two-step inference function for margins (IFM) estimator by Joe (1997). First, we
estimate the parameters of the marginal distributions, then the parameters of the copula model.

(1) The marginal distribution of the returns rit is specified as a Stochastic Volatility (SV) model
rit = exp(hit/2)εit
hit = δi + γihit−1 + σiηit

where i = 1, 2 for the bivariate case. The innovations εit and ηit are assumed to follow a standard normal distribution.
Using the probability integral transform, the data is converted into U(0,1) random variables and the observation equation
becomes

(rit, rjt) | λt, hit, hjt ∼ C(Φ(εit),Φ(εjt)) for i, j = 1, 2 and i 6= j

in which Φ(·) denotes the CDF of the standard normal distribution and λt the dependence parameter, which is decoupled
from the marginal distributions by the copula C.

(2) Using the efficient importance sampling (EIS) algorithm of Liesenfeld and Richard (2003), we estimate the stochastic
copula model, and obtain a sequence of the dependence variable λt with a Gaussian AR(1) underlying process

λt = α+ βλt−1 + νεt
where εt is an i.i.d standard normal error term.

Looking at the log-likelihood values, the Gaussian copula model performs best, followed
by the rotated Gumbel, Frank and finally Clayton. This result is surprising, as we did not
expect the Gaussian copula to outperform the other non-elliptical copula models. In general,
returns have a higher lower-tail dependence. As the Gaussian copula does not account for the
tail dependence, it underestimates potential losses during an adverse economic climate. Hence,
non-elliptical distributions should empirically be a better fit. In contrast, this could be the case
for two main reasons. First, the sample period 1990-2000 does not include some of the most
adverse economic events, such as the internet bubble, the 9/11 terrorist attacks or the financial
crisis of 2008. Extending the dataset to include these important market events, could significant
change the results. Considering the fact that the paper was published in 2012, it comes as a
surprise that this is not the case. Second, these results could be a consequence of assuming a
normal distribution fit for the marginal returns. Hence, relaxing the assumption of normally
distributed returns could lead to very interesting results.

Figure 7 gives the dependence time paths estimated by SCAR using the different copula
models. Note that the Gumbel and rotated Clayton were quite similar to the rotated Gumbel and
Clayton respectively, so their dependence paths are not shown because of redundancy and space
constraints. Although scaled differently, the different copula models give resembling results.
Notice that the Frank copula gives the smoothest dependence path, while Clayton results in the
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noisiest. It is interesting to see how these dependence paths differ when we relax the assumption
of normality.

Figure 7: The dependence path between Dow Jones and NASDAQ estimated by SCAR using
different copula models

Hafner and Manner (2012) evaluate the performance of the SCAR model relative to several
other specifications. They compare the marginal SV model with a GARCH(1,1) model, and they
find that the SV model provides a better fit and higher flexibility than GARCH. Furthermore,
SCAR is found to outperform other well-known time-varying dependence specifications such as
the DCC model and the model of Patton (2006). Hence, the SCAR model performs quite well as
compared to its competitors. Although it has some disadvantages in higher dimensions, for the
bivariate case it is quite a worthy contender. For this reason, we look into possible extensions of
the original SCAR and hope to find a better representation of the dependence structure between
variables by delving into the assumptions and specification of the SCAR model itself.

Figure 8: Volatility Estimates for 1990 - 2019: DJ and NQ

The first thing we want to check is if the conclusions from Hafner and Manner (2012) are
consistent through time, hence we extend their dataset and incorporate data until March 25th,
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2019. This new dataset has 29 years of data which includes a total of 7363 observations. A
summary of the descriptive statistics can be found in Table 2. Fitting the marginal distribution of
returns using the SV model, we obtain the volatility estimates for the full period from 1990 until
2019 in Figure 8. The volatility dynamics for both indices are somewhat similar, however they
differ substantially during the internet bubble of the early 2000s. As the NASDAQ Composite
contains mostly companies that are technology and internet-related, the dot-com bubble affected
this index more than the Dow Jones Industrial Average. As for the financial crisis of 2008, there
are slight differences indeed, however we observe an overall coherence in both volatility dynamics.

Figure 9: The dependence path between Dow Jones and NASDAQ estimated by SCAR using
different copula models for 1990-2019

As our dataset is quite large, we want to avoid issues such as structural breakpoints within
the full sample. For this reason, we divide the dataset into three subperiods 1990-2000, 2000-
2010 and 2010-2019, as previously discussed in Section 5. The parameter estimates as well as the
corresponding standard deviations and log-likelihood values of SCAR for the full sample and the
subsamples we consider according to the two breakpoints in 2000 and 2010, across the different
copula models, can be found in Table 7. The first thing to observe is that, according to the log-
likelihood value, the following results from Hafner and Manner (2012) still hold. The Gaussian
copula performs best, followed by the rotated Gumbel, Frank and Clayton. This is surprising
as equity returns usually fit best to non-elliptical distributions because of the asymmetry in the
tails. One would expect that this would be the case at least for the period from 2000-2009 which
includes the financial crisis, but this is not the case. Hence, the Gaussian copula outperforms
the other copulas regardless of time of market volatility.

Page 20



Extensions to SCAR Models: Modeling the Dependence Structure in Equity Returns

Table 7: Parameter Estimates of the SCAR Model for Dow Jones and NASDAQ
for the period from 1990 until 2019

Full Sample: 1990 - 2019

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0849 0.0101 0.0316 0.0362 0.0710 0.0714
(0.0145) (0.0032) (0.0124) (0.0467) (0.0139) (0.0216)

β 0.9482 0.9849 0.9757 0.9973 0.9560 0.9588
(0.0092) (0.0055) (0.0052) (0.0031) (0.0050) (0.0109)

ν 0.1231 0.1596 0.1769 0.4312 0.1436 0.1509
(0.0163) (0.0179) (0.0189) (0.0972) (0.0083) (0.0124)

Log-Likelihood 4811.78 4655.17 4604.21 4951.36 4108.54 4054.00

Subsample 1: 1990 - 1999

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0502 0.0222 0.0245 0.2453 0.0631 0.0648
(0.0159) (0.0094) (0.0097) (0.0850) (0.0246) (0.0233)

β 0.9685 0.9780 0.9753 0.9795 0.9571 0.9553
(0.0099) (0.0093) (0.0097) (0.0071) (0.0165) (0.0159)

ν 0.0592 0.0607 0.0656 0.5161 0.1025 0.1013
(0.0115) (0.0152) (0.0153) (0.1096) (0.0249) (0.0226)

Log-Likelihood 1431.69 1394.29 1390.01 1339.59 1238.90 1232.19

Subsample 2: 2000 - 2009

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.1063 0.0798 0.0801 0.1442 0.0710 0.0713
(0.0320) (0.0267) (0.0234) (0.0887) (0.0351) (0.0324)

β 0.9496 0.9346 0.9345 0.9853 0.9194 0.9194
(0.0127) (0.0123) (0.0127) (0.0099) (0.0193) (0.0185)

ν 0.1189 0.1137 0.1138 0.9321 0.1091 0.1090
(0.0107) (0.0103) (0.0099) (0.0863) (0.0243) (0.0259)

Log-Likelihood 2313.44 2190.54 2164.88 2193.36 1565.55 1511.22

Subsample 3: 2010 - 2019

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0915 0.0405 0.0309 0.3811 0.0904 0.0541
(0.0256) (0.0133) (0.0107) (0.0935) (0.0267) (0.0179)

β 0.9550 0.9736 0.9803 0.9813 0.9541 0.9734
(0.0125) (0.0085) (0.0068) (0.0047) (0.0134) (0.0087)

ν 0.0919 0.0745 0.0579 1.0000 0.1101 0.0681
(0.0143) (0.0134) (0.0108) (0.0000) (0.0191) (0.0132)

Log-Likelihood 2263.83 2225.35 2236.33 2188.49 2054.54 2059.35

Figure 9 gives the estimated dependence paths for the entire period from 1990 until 2019.
The Frank copula appears to result in the smoothest dependence dynamics among all other
copula models, while the rotated Gumbel and Clayton result in extremely volatile dependence
structures. The Gaussian copula is somewhat in between, which is what probably makes it a
better fit than its competitors.
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6.2 Relaxing the Normality Assumption

In their paper, Hafner and Manner (2012) make the assumption of conditional normality of
the marginal distributions. As financial returns often posses properties such as leptokurtosis
(i.e. fat-tailed distributions), this assumption might not be a realistic one to make. Hence,
relaxing this assumption might be an interesting extension to the original SCAR model. One
possibility is to assume that the marginal distribution errors follow a Student’s t-distribution.
Compared to the normal case, we expect this distribution to represent the data quite for two
main reasons. First, the t-distribution is known to represent financial returns better than the
normal distribution and second, because it is data-specific through estimating the degrees of
freedom, the t-distribution should provide with a better fit. Thereby, it is also expected to see
an increase in the performance of SCAR.

In other words, we determine the degrees of freedom which result in the best-fitting t-
distribution for that specific dataset. In Section 5, we compared the normal distribution against
the t-distribution fit for the index returns. The t-distribution provided a better representation
of the data and this was confirmed by both the histograms of returns and the KS tests. For
the estimated location, scale and the degrees of freedom for the t-distribution fit on the whole
sample, refer again to Table 3. Of importance here are the degrees of freedom. Recall that the
DJ returns best fitted into a t-distribution with 2.99 degrees of freedom, while the NQ returns
were best represented by using 2.65 degrees of freedom. The same procedure is applied to each
of the subsamples as well.

The parameter estimates for the SCAR model assuming Student’s t-distributed error terms
of the marginal SV model, are given in Table 8. The first thing to notice is that the log-likelihood
values are much higher than the normal distribution case, which asserts our initial hypothesis
that the t-distribution better captures the heavy tails of stock returns. Refer back to Table
7 for the overview of the parameter estimates and the log-likelihood values of SCAR under
the assumption of normality. Second, the Gaussian copula continues to outperform the other
copula models, again followed by the rotated Gumbel, Frank and then the Clayton copula. We
certainly did not expect this to change, as the copula models estimate the dependence structure
irrespective of the marginal distribution. Hence, relaxing the assumption of normality should not
make a significant impact in the performance of the copula models. Third, we observe that the
dependence parameter depends even more on its past value as there is an overall increase in the
value of β around 0.99. Another important coefficient to notice is that of the error term for the
transition equation, ν, which has decreased significantly compared to the normal distribution.
This coefficient can be interpreted as the standard deviation of the dependence parameter λt.
Hence, Student’s t-distribution fit for the marginals results in more accurate estimates of the
dependence process.

The estimated time paths of the dependence parameters resulting from the Student’s t condi-
tional distribution are given in Figure 10. An interesting thing to observe is how the dependence
path fluctuates around the financial crisis of 2008. In all the copula models, we notice a spike
around that particular year indicative that the dynamics of the DJ and NQ index were extremely
dependent on each other’s movements. This phenomenon, typically referred to as “together in
bad times”, is commonly observed during highly-volatile times in equity returns. In a more gen-
eral note, we see that the paths are smoother compared to the normal distribution case, which
is also confirmed by the smaller standard deviations (compare to Figure 9 for the dependence
paths under the normality assumption). The Frank copula again appears to be the smoothest,
while the Clayton is the most volatile.
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Table 8: Parameter Estimates of the SCAR Model for Dow Jones and NASDAQ
(assuming Student’s t-distributed error terms)

Full Sample: 1990 - 2019

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0242 0.0109 0.0097 0.1031 0.0214 0.0212
(0.0076) (0.0056) (0.0056) (0.0399) (0.0074) (0.0082)

β 0.9868 0.9918 0.9928 0.9931 0.9882 0.9883
(0.0041) (0.0043) (0.0042) (0.0027) (0.0041) (0.0045)

ν 0.0334 0.0321 0.0319 0.3316 0.0353 0.0406
(0.0058) (0.0077) (0.0080) (0.0661) (0.0068) (0.0084)

Log-Likelihood 6304.5 6170.9 6141.1 5927.9 5592.7 5550.1

Subsample 1: 1990 - 2000

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0215 0.0096 0.0083 0.0964 0.0219 0.0250
(0.0074) (0.0054) (0.0056) (0.0379) (0.0086) (0.0113)

β 0.9871 0.9914 0.9927 0.9925 0.9861 0.9841
(0.0045) (0.0050) (0.0052) (0.0031) (0.0055) (0.0072)

ν 0.0343 0.0354 0.0352 0.3137 0.0422 0.0552
(0.0064) (0.0092) (0.0102) (0.0637) (0.0093) (0.0137)

Log-Likelihood 2761.8 2720.8 2711.4 2635.5 2554.7 2528.6

Subsample 2: 2000 - 2010

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0207 0.0091 0.0004 0.0941 0.0229 0.0305
(0.0075) (0.0052) (0.0000) (0.0373) (0.0095) (0.0148)

β 0.9870 0.9911 0.9997 0.9922 0.9845 0.9792
(0.0047) (0.0053) (0.0000) (0.0032) (0.0065) (0.0102)

ν 0.0351 0.0373 0.0225 0.3091 0.0470 0.0691
(0.0067) (0.0099) (0.0062) (0.0635) (0.0111) (0.0191)

Log-Likelihood 3363.2 3290.1 3279.6 3214.4 3119.3 2993.5

Subsample 3: 2010 - 2019

Parameters Normal Rot. Gumbel Gumbel Frank Clayton Rot. Clayton

α 0.0203 0.0087 0.0073 0.0923 0.0252 0.0467
(0.0076) (0.0050) (0.0054) (0.0369) (0.0111) (0.0244)

β 0.9868 0.9907 0.9923 0.9919 0.9818 0.9657
(0.0050) (0.0055) (0.0060) (0.0033) (0.0080) (0.0177)

ν 0.0362 0.0394 0.0391 0.3065 0.0542 0.0998
(0.0071) (0.0106) (0.0125) (0.0635) (0.0140) (0.0309)

Log-Likelihood 2.5253 2.4805 2.4684 2.4182 2.3056 1.2805

The SCAR model is estimated using the two-step inference function for margins (IFM) estimator by Joe (1997). First, we
estimate the parameters of the marginal distributions, then the parameters of the copula model.

(1) The marginal distribution of the returns rit is specified as a Stochastic Volatility (SV) model
rit = exp(hit/2)εit
hit = δi + γihit−1 + σiηit

where i = 1, 2 for the bivariate case. The innovations εit and ηit are assumed to follow a Student’s t distribution. Using
the probability integral transform, the data is converted into U(0,1) random variables and the observation equation becomes

(rit, rjt) | λt, hit, hjt ∼ C(F (εit), F (εjt))

in which F (·) denotes the CDF of the Student’s t-distribution and λt the dependence parameter, which is decoupled from
the marginal distributions by the copula C.

(2) Using the efficient importance sampling (EIS) algorithm of Liesenfeld and Richard (2003), we estimate the stochastic
copula model, and obtain a sequence of the dependence variable λt with a Gaussian AR(1) underlying process

λt = α+ βλt−1 + νεt
where εt is an i.i.d standard normal error term.
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Figure 10: The dependence path between Dow Jones and NASDAQ estimated by SCAR assum-
ing marginal Student t-distributed errors

6.3 Mixed Stochastic Copula Models

Hafner and Manner (2012) use the timeframe 1990-2000 for their return data, excluding impor-
tant market events such as the internet bubble of the early 2000s and the housing bubble of
2008. By extending the dataset and using a mixed copula model, we can model highly volatile
periods using a non-elliptical copula and non volatile periods using a Gaussian copula.

As the Gaussian and the rotated Gumbel were the best performing copula models, a pos-
sibility would be to mix these two copulas together. Such a specification could model periods
of tranquility using the Gaussian copula and highly volatile periods, during crises for example,
with the rotated Gumbel copula where we take into account a greater dependence for losses.
The mixed copula combinations we consider are Gaussian and Gumbel, Gaussian and Frank
as well as Gumbel and Frank. Table 9 gives the estimates, the standard deviations and the
log-likelihood values of SCAR models with a mixed copula during different time periods. We
can compare these values to the ones of Table 7 and 8.

Overall, we observe that the log-likelihood values using mixed copulas are not as high as
the values when using the Gaussian or Gumbel copula alone. Only for the subperiod ranging
from 2000-2010 the log-likelihood values in the mixed copula case is higher than the individual
copula model. This might be due to the fact that the other subperiods are characterized as
decades of tranquility, hence there are no large fluctuations in volatility. The subperiod 2000-
2010 includes the financial crisis of 2008, which makes it extremely volatile as compared to
other timeframes. This indicates that the mixed copula SCAR model outperforms the original
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SCAR for high-volatile periods where the mixed copula takes into account greater dependence
for losses.

Table 9: Parameter Estimates of the SCAR Model for Dow Jones and NASDAQ
(assuming Student’s t-distributed error terms)

Full Sample: 1990 - 2019

Parameters Gaussian + rot. Gumbel Gaussian + Gumbel Gaussian + Frank Gaussian + Clayton

α 0.0379 0.0218 0.1002 0.0298
(0.0124) (0.0122) (0.0321) (0.0113)

β 0.9548 0.9558 0.9891 0.9234
(0.0083) (0.0077) (0.0009) (0.0072)

ν 0.0634 0.0721 0.0814 0.0807
(0.0069) (0.0885) (0.0230) (0.0209)

Log-Likelihood 4753.6 4365.2 4247.2 4025.9

Subsample 1: 1990 - 2000

Parameters Gaussian + rot. Gumbel Gaussian + Gumbel Gaussian + Frank Gaussian + Clayton

α 0.0215 0.0227 0.3703 0.0381
(0.0084) (0.0086) (0.0196) (0.0135)

β 0.9823 0.9811 0.9184 0.9748
(0.0070) (0.0072) (0.0011) (0.0089)

ν 0.0403 0.0421 0.0010 0.0622
(0.0093) (0.0095) (0.0001) (0.0132)

Log-Likelihood 1352.5 1349.0 798.24 1344.0

Subsample 2: 2000 - 2010

Parameters Gaussian + rot. Gumbel Gaussian + Gumbel Gaussian + Frank Gaussian + Clayton

α 0.0879 0.0878 0.1737 0.0698
(0.0053) (0.052) (0.0134) (0.0129)

β 0.9506 0.9499 0.9861 0.9196
(0.0034) (0.0059) (0.066) (0.0127)

ν 0.1105 0.1112 0.1245 0.1098
(0.0084) (0.0090) (0.0022) (0.0087)

Log-Likelihood 2548.4 2561.0 2247.4 1725.7

Subsample 3: 2010 - 2019

Parameters Gaussian + rot. Gumbel Gaussian + Gumbel Gaussian + Frank Gaussian + Clayton

α 0.0327 0.0432 0.2194 0.0471
(0.0047) (0.0069) (0.0256) (0.0319)

β 0.9854 0.9832 0.9199 0.9716
(0.0092) (0.0060) (0.0032) (0.0082)

ν 0.0566 0.0444 0.0022 0.0832
(0.0139) (0.0152) (0.0032) (0.0097)

Log-Likelihood 1732.9 1721.7 998.42 1544.1

Across mixed copulas, on the other hand, we observe that the Gaussian + rotated Gumbel
mixed copula performs best. This results as both individual copulas perform quite well on their
own, with the Gaussian copula performing the best out of all individual copulas. We see that
this is the case for the full period as well as for each subperiod individually.
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7 Further Extensions and Research

One of the main contributions of this paper is to introduce some potential extensions to the orig-
inal SCAR model presented by Hafner and Manner (2012). Future researchers are encouraged
to search for additional extensions as SCAR models are found to perform quite well compared to
their competitors. Incorporating copulas to SV models facilitates largely the complexity of their
estimation, which makes the SCAR model even more appealing. One possibility for extension
could be to introduce exogenous variables in the SCAR framework.

The SCAR model is based on the assumption that the underlying process for the dependence
variable λt follows a Gaussian AR(1) specification. Although computationally convenient, an
AR(1) process might be too simplistic to accurately fit the actual data. Hence, we consider
adding other exogenous variables which may explain part of the correlation and perform better
than the AR(1) model. Equation (3.3) then becomes

λt = α+ βλt−1 + ρxt + νεt (7.1)

where xt denotes the exogenous variable and εt ∼ N(0, 1). Some potential choices could be to
add a trend, a dummy or a proxy for the effect of volatility on correlation such as the trading
volume.

On the other hand, SCAR models are not flawless either. One major drawback that SCAR
models have is when they are applied to higher dimensions. Like Hafner and Manner (2012),
our paper only considers the bivariate SCAR model, in which only two stocks or indices are
considered. A solution to this dimensionality problem remains unsolved by the current literature
and requires further research and analysis.

8 Conclusion

Despite their drawbacks at higher dimensions, SCAR models are currently being used at large
and they perform quite well as compared to their competitors. This paper investigates possible
extensions on SCAR models. In the first part of our analysis, we look into the SCAR model and
empirically apply it to real-world data. Similarly to Hafner and Manner (2012), we use daily
returns from two popular indices, the Dow Jones Industrial Average and NASDAQ. As the
sample from Hafner and Manner (2012) is limited to the period from 1990 until 2000, including
recent data tests whether the conclusions from the paper are consistent through time. We find
that the Gaussian copula continues to outperform all other copula models, regardless of time.
This is surprising as equity returns usually have asymmetric tail distributions, hence a non-
elliptical copula such as the rotated Gumbel was expected to have a better goodness-of-fit as
compared to the Gaussian one.

Secondly, we relax the assumption of normal (univariate) marginal distributions errors, which
can better describe the stylized facts of asset returns such as the heavy tailed distribution.
Instead of assuming the same distribution for all returns, we determine the degrees of free-
dom which result in the best-fitting t-distribution for each specific dataset. In general, the
t-distribution fits for the index returns across different subsamples required approximately 3
degrees of freedom. Hence, one might imply that t(3) is a very good representation of equity
return data in general. Moreover, the JB test, the histograms of returns, the KS test as well
as the significant increase in the log-likelihood value of the SCAR model under the Student’s
t-distributed marginals, all confirmed the same thing. The normal distribution is a very poor ap-
proximation of univariate return data and the t-distribution greatly outperforms it. Ultimately,
this implies that relaxing the assumption of normality creates a dominating extension of SCAR
as compared to the original.

Another extension we consider is to combine the best-performing copulas into a mixed copula
model which captures the dynamics of stock returns better. Generally, the mixed copulas did
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not outperform the Student’s t-distributed SCAR model, nor the Gaussian SCAR. However, it
was noted that the log-likelihood values in the mixed copula case for 2000-2010 were slightly
higher than the individual copula model under the Gaussian SCAR. As the other subperiods are
considered as periods of market “tranquility”, this might indicate that the mixed copula SCAR
model outperforms the original SCAR only for high-volatile periods where the mixed copula
takes into account greater dependence for losses.

Our goal was to ultimately find a extension which outperforms the original SCAR and does
so in multiple aspects. The mixed copula SCAR only outperformed the original specification
during times of significant market occurrences. On the other hand, the t-distributed marginals
highly increased the goodness-of-fit of SCAR models regardless of time or market volatility.
Hence, we can conclude that we provide the current literature with an extension of the SCAR
model which predominantly outperforms the SCAR model of Hafner and Manner (2012).
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9 Appendix

9.1 Dependence Paths for the Subperiods

Figure 11: The dependence path for Dow Jones and NASDAQ for the period 2000 - 2009

Figure 12: The dependence path for Dow Jones and NASDAQ for the period 2010 - 2019
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9.2 Dependence Paths for Mixed Copulas 2000-2009

Figure 13: The dependence path for Mixed Copulas for the period 2000 - 2009

9.3 MATLAB Codes and Files

The methodology of the SCAR model and its extensions is based on the paper by Hafner and
Manner (2012), published by the Journal of Applied Econometrics. The codes they use to esti-
mate their SCAR model are available online at the Journal of Applied Econometrics website.1

We extend these codes and adapt them for our own extensions accordingly, without claiming
rights for any duplicate of the original work by Hafner and Manner (2012). A list and a descrip-
tion of the codes that have been used to obtain the results of this thesis can be found below.
The codes themselves will be attached in a Zip file.

main.m Displays the results, figures and tables for SCAR.
main Student.m Displays the results, figures and tables for the t-distributed SCAR.
main Mixed.m Displays the results, figures and tables for the mixed copula SCAR.

Stochastic Copula MLE.m Estimates bivariate SCAR and the dependence structure of variables.
SV MLE EIS.m Estimates the SV model by efficient importance sampling (EIS).

LL SV EIS.m Computes the negative log-likelihood of a Gaussian AR(1) SV model.
LL SV STUDENT EIS.m Computes the negative log-likelihood of a Student’s t AR(1) SV model.
LL Normal EIS.m Computes the log-likelihood of a stochastic Gaussian copula.
LL Gumbel EIS.m Computes the log-likelihood of a stochastic Gumbel copula.
LL Frank EIS.m Computes the log-likelihood of a stochastic Frank copula.
LL Clayton EIS.m Computes the log-likelihood of a stochastic Clayton copula.
LL Mixed EIS.m Computes the log-likelihood of a mixed copula.

PdfNormal.m Returns the PDF of the Normal copula.
PdfGumbel.m Returns the PDF of the Gumbel copula.
PdfFrank.m Returns the PDF of the Frank copula.
PdfClayton.m Returns the PDF of the Clayton copula.

1The codes of Hafner and Manner (2012) are provided in the Journal of Econometrics website through the
following link: http://qed.econ.queensu.ca/jae/2012-v27.2/hafner-manner/
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