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ABSTRACT

We tackled the challenge of modelling dependence amongst high-dimensional time series. We first

studied a type of bivariate stochastic autoregresive copula and used pair-copula construction tech-

nique to build high-dimensional copula models which serve to capture time-varying dependence. We

showed that the maximum likelihood estimation of this high-dimensional model can be decomposed

into sequential estimations of bivariate models. We applied the dynamic copula models to study the

dependence amongst four major Western Stock market indices and showed the advantages of the

proposed model in-sample. We then used the estimated model to construct risk-managed portfolios

to showed the usefulness of this model in portfolio management based on density forecasting. Fi-

nally, we proposed a method to obtain probability integral transformation(PIT) of high-dimensional

copula models and showed that the high-dimensional time series can be studied block by block with

the use of this technique. To illustrate the use thereof, we applied it to the major stock market

indices of the Western and Eastern markets and studied the holistic dependence between the West

and the East.
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I. Introduction

Modelling multivariate distribution has been a crucial yet challenging task for risk management

and portfolio construction. The difficulty lies mainly in characterising the dependence between

variables, which often bears irregular patterns such as tail dependency. Previous attempts at multi-

variate dependency modelling, namely the multivariate GARCH(Bauwens, Laurent, and Rombouts

(2006)) and stochastic volatility(Harvey and Shephard (1996)), presumed (conditional) multivari-

ate normality. The resulting models are only able to capture elliptical(linear) dependence and as

a consequence, often prove insufficient in the presence of richer dependence patterns. Copulas,

on the other hand, offer a promising alternative. This class of models, after decades of develop-

ment, possesses a great extent of variety and is thereby agile in modelling different situations of

tail dependencies. Amongst the early literature on copula models, Patton (2009) and U. Cherubini

(2004) provided a summary on their applications in finance. In general, there are two shortcom-

ings of the early copula-based models. First of all, the fact that most researches revolved around

bivariate copulas imposes great limitations on the use of this class of model for high-dimensional

analysis. Secondly, as opposed to time-varying correlations amongst variables observed in reality,

early copula models made unrealistic assumption on the constant multivariate dependence.

In recent research, both two drawbacks have been tackled. In respect of high-dimensional mod-

elling with copulas, Okhrin, Okhrin, and Schmid (2013) and Savu and Trede (2010) developed the

idea of hierarchical Archimedean copulas. Oh and Patton (2017) brought forward a class of factor-

based copula models. Of other alternatives, modelling proposed in Bedford and Cooke (2002) and

later developed in Aas, Czado, Frigessi, and Bakken (2009) has gained great popularity thanks to its

flexible structure and ease in estimation. Their proposed models, also known as Vine copula, make

use of a so-called ”pair-copula construction” technique, allowing for constructing and estimating

a large number of copulas sequentially. Following the work of Aas et al. (2009), Loran, Andreas,

and Alfonso (2008) provided an extensive discussion on financial applications of the vine copulas.

Studies on bivariate time-varying copulas include break-point-based approaches(Giacomini, Hardle,

and Spokoiny (2009) and Dias (2002)), regime-switching models(Fink, Klimova, Czado, and Stober

(2017) and Stober and Czado (2014)). Beside these, we also notice approaches that model the

underlying process of parameter movement, to wit, Hafner and Manner (2012) and Almeida and

Czado (2012) treated the copula dependence parameters as driven by some autoregressive latent

process while Creal, Koopman, and Lucas (2013) by an observation-driven scaled score drives. An

overview and applications regarding (bivariate) time-varying copulas can be found in Manner and

Reznikova (2012).

The goal of our paper is to model the time-varying dependence of high-dimensional distribution.

This has previously been discussed in various studies with the use of differing approaches. Heinen

and Valdesogo Robles (2009) and So and Yeung (2014) suggest modelling the dependence using

Dynamic Conditional Correlation(DCC) proposed in Engle (2002). In the realm of factor copula

models, Creal and Tsay (2015) proposed a class of model with stochastic factor loadings; Oh and

Patton (2018), on the other hand, model the time-dependence by means of the general autoregres-
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sive score(GAS). Besides these, some extended the method of modelling the dependence parameter

as some underlying process to the high-dimensional case. This includes the non-parametric ap-

proach proposed in Acar, Czado, and Lysy (2019) as well as Almeida, Czado, and Manner (2016),

a follow-up study of the bivariate stochastic copula brought forward in Hafner and Manner (2012) as

mentioned earlier. In our paper, we propose a high-dimensional dynamic vine-copula that utilises

the same bivariate copula as in Almeida et al. (2016) but deviates from theirs in terms of the

copula structure. We show that the model proposed can be estimated using sequential estima-

tion. We also address how to obtain the probability integral transformation of the proposed model

using an importance-sampling-based simulation and accordingly propose a block-based method of

constructing vine-copula. Lastly, we make use of the proposed model to construct risk-managed

portfolios and study the performance thereof. The remainder of this paper is structured as follows.

II discusses the specification of canonical vine copula, stochastic autoregressive copula as well as

how they can be combined to create the dynamic C-vine copula models using pair-copula construc-

tion. III discusses the estimation of the proposed model and IV presents the empirical applications.

Finally, V outlines the findings and potential further research.

II. C-vine-based Dynamic Copula Models

Consider a g-dimensional time series {Xt}Tt=1 = {(X1t, . . . , Xgt)}Tt=1. Each individual series is

assumed to follow the Stochastic Volatility process proposed by Taylor (1986). This process1, in

its simplest form, reads as follow:

xit = exp(hit/2)εit (1)

hit = αi + βihit−1 + κiηit (2)

where the innovations εit
i.i.d∼ N(0, 1) and ηit

i.i.d∼ N(0, 1) are assumed to be mutually independent.

With the supposition of the above marginal process, we introduce a copula-based model to charac-

terise the joint (conditional) distribution of this high dimensional time series. Beginning with the

overall design of dependence structure, II.A introduces the Pair-copula Construction technique and

the C-vine copula model. Based on this, II.B extends this class model into a dynamic specification.

Putting everything together, II.C discusses a C-vine-based alternative to model high-dimensional

density through clustering the variables into several blocks.

A. Pair-Copula Construction of C-vine Copula

Consider a g-dimensional random vector X = (X1, . . . , Xg) with the joint density f(x1, . . . ,g ).

Following the Theorem of Conditional Probability, the density can be decomposed as follows:

f(X) = f(x1, . . . , xg) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2) . . . fd|1,...,d−1(xd|x1, . . . , xd−1). (3)

1The stationary conditions are assume to hold (i.e |βi| < 1).
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According to Aas et al. (2009), every high-dimensional joint distribution can essentially be

viewed as a composition of two components — the marginal behaviour of individual variables and

the dependence structure for the involved variables — and the role of Copulas is to enable explicit

modelling of the later component. It is a multivariate distribution(usually represented by C(·)) with

U(0,1) marginal distributions. According to Sklar’s Theorem(Sklar (1957)), the relation between

Copula distribution and the joint distribution reads as follows:

F (x1, . . . , xg) = C(F1(x1), . . . , Fg(xg)) (4)

where Fi is the marginal distribution of variable i. Now denote c1...g as the density function of

Copula C(·)(copula density hereafter). Applying the chain rule to this equation, we obtain that

f(x1, . . . , xg) = c1...g(F1(x1), . . . , Fg(xg))× f1(x1) . . . fg(xg). (5)

A.1. Pair-Copula Construction

A pair-copula density is defined as the copula density given by (5) in the bivariate case(Aas

et al. (2009)). Under this setting, (5) can be simplified to

f(x1, x2) = c12(F1(x1), F2(x2))f(x1)f(x2) (6)

where c(·, ·) denotes a bivariate copula — referred to as pair-copula throughout the paper. Following

(6), the conditional probability density between these two variables can be written as:

f2|1(x2|x1) = f(x2)c12(F1(x1), F2(x2)). (7)

Now consider the three-variate term in (3), it can likewise be written using some appropriate

pair-copula, for example2

f3|12(x3|x1, x2) = f3|1(x3|x1)c23|1(F2|1(x2|x1), F3|1(x3|x1))

= f3(x3)c13(F1(x1), F3(x3))c23|1(F2|1(x2|x1), F3|1(x3|x1)) (8)

Through the previous two examples, we notice that every term in (3) can be written as the

product of some pair-copula and a conditional marginal density. The formal expression of this idea

is derived in Aas et al. (2009). Denote the vector of conditioning variables as v and v−j := v\{vj},
then for any given pivot variable x, the formula for pair-copula construction reads as follows:

f(x|v) = f(x|v−j)cxvj (F (x|v−j), F (vj |v−j)), vj ∈ v (9)

Using this formula, we can perform iterative factorisation for (3) and break it down to the product

of some conditional densities and the corresponding pair-copulas. Since each pair-copula in (9)

2or alternatively f3|12(x3|x1, x2) = f3(x3)c23(F2(x2), F3(x3))c23|1(F2|1(x2|x1), F3|1(x3|x1))
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takes the conditional distribution F (x|v) as its input, Joe (1996) proposes that such a distribution

can be obtained as follows:

F (x|v) =
∂Cxvj |v(F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
(10)

where Cxvj |v is the CDF of the conditional bivariate copula. Given a univariate v, the author shows

that this formula can be simplified as:

F (x|v) =
∂Cxv(F (x), F (v))

∂F (v)
(11)

Further, let us denote ui := Fi(xi) and introduce the dependence parameter θij to the previous

pair copula (Cij(ui, uj) = C(ui, uj ; θij)), we then define the following function(Aas et al. (2009)):

h(xj |xi, θij) = F (xj |xi) =
∂Cij(ui, uj ; θ

ij)

∂uj
(12)

It will be seen in the later section that this function is particularly important for the sequential

maximum likelihood estimation regarding (3), as well as for sampling observations from C-vine.

A.2. C-vine

In the case of high-dimensional distribution, the number of possible pair-copula constructions

is undesirably large due to the flexibility in selecting the dependence structure. Bedford and Cooke

(2002) propose a graphical model, the regular(R-) vine, to organise and visualise the choice of

pair-copulas. However, this class of models is still very general and inherits the great flexibility in

modelling dependence structure. For example, as discussed in Aas et al. (2009), a five-dimensional

density can have as many as 240 different R-vine constructions.

In order to reduce the sheer amount of possibilities, Kurowicka and Cooke (2004) brought

forward two specific structures in decomposing the density function, namely the Canonical(C-)

Vine and D-vine model. For both models, the structure of dependence is determined by the order

of variables. This results in great reduction of the number of potential decompositions(e.g. 60

decompositions in total for the five-dimensional case). In this paper, we will mainly concentrate on

C-vine copula. This class of copulas implies the existence of some variable governing the dependence

and interaction in the dataset(Aas et al. (2009)). We deem this phenomenon is particularly common

in financial markets and as such, the C-vine setting is opted for our study. Mathematically, the C-

vine-based density decomposition, given a certain variable order, can be formulated as follows(Aas

et al. (2009)):

f(x1, . . . , xg) =

g∏
k=1

fk(xk)

g−1∏
j=1

g−j∏
i=1

cj,j+i|1,...,j−1 (13)

where cj,j+i|1,...,j−1 := cj,j+1|1,...,j−1(F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)). The underlying as-

sumption for the C-vine model is that there is no further dependence between variable xi and xi+1
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Figure 1. Tree representation of a C-vine with 4 variables, 3 trees and 6 edges. Each edge is associated
with a pair copula, connecting two nodes that are taken as its input. Each component forms a ’tree’.

except through the pair-copula ci,i+1|1,...,j−1 (see Aas et al. (2009)). Furthermore, for the simplicity

of notation, denote uj+i|1,...,j−1 := F (xj+i|x1, . . . , xj−1) such that uj+i|1,...,j−1 ∼ U(0, 1). And since

u·|· is the input for copulas, it is designated as copula data throughout the rest of our paper. As

an example, suppose we have a 4-dimensional vectors X = (X1, . . . , X4), with the joint density

f(x1, x2, x3, x4). With the use of C-vine, we assume the dependence structure presented in Figure

1. Each edge in the graph represents a pair-copula, connecting two nodes taken as its input. Each

component represents a tree. Also, for the sake of clearer notation, denote E as the set of all

edges(or equivalently, pair-copulas) involved in a C-vine copula. This designation will be used in

the remaining of this paper. Following the theorem of conditional probability and the dependence

structure given above, the joint density of the involved variables can be decomposed as such:

f(x1, x2, x3, x4) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

× c12 · c13 · c14 · c23|1 · c23|1 · c24|1 · c24|1 · c34|12 (14)

where ce(·), e ∈ E is a binary copula, E the edges in Figure 1.

B. Dynamic C-vine Copulas

The last section has shown that the C-vine copula can best be understood as a decomposition of

high-dimensional density into the products of some pair-copulas. In light of this, one can establish

dynamic C-vine copula through incorporating dynamic pair-copulas in the pair-copula construction.

Suppose we would like to model the time-varying dependence of time series {Xt}Tt=1 defined at the

beginning of this section. Based on the pre-defined marginal process given by (1)(2), we first

transform it into the copula data:

{ut}Ti=1 := {(u1t, . . . , ugt)}Tt=1 = {(F1(x1t), . . . , Fg(xgt)}Tt=1

In the remainder of this section, we table a class of pair-copulas with time-varying dependence

parameter and then integrate the dynamic pair-copulas into the C-vine model setting. The two

actions are discussed in the following two sections (II.B.1 and II.B.2) respectively.
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B.1. A Pair-Copula Setting with Dynamic Latent Process

Now consider the bivariate copula data ut = (ut, vt), whose joint distribution is given by a

time-dependent parametric copula C(·, ·; θt), or

(ut, vt) ∼ C(ut, vt; θt), θt ∈ Θ ⊂ Rk (15)

with k the number of parameters. In our paper, we will only consider k = 1 for the dynamic

copulas. Hafner and Manner (2012) propose that the dependent parameter vector θt be driven

by an unobserved stochastic process λt through the mapping θt = Φ(λt),Φ : R → Θ. Note that

the functional form of Φ is determined on the basis of the associated copula, for the domain of

dependent parameter varies across different copula settings. The latent process λt is modelled as a

Gaussian autoregressive process, which, in its simplest form, is given as follows:

λt = α+ βλt−1 + νεt (16)

where εt
i.i.d∼ N(0, 1). In the same paper, the authors argue that, despite the possibility of using

higher order AR processes, the one given by (16) suffices to capture the persistence and autocorre-

lation of the dependence parameter. For the sake of less computational burden, we will make use

of the simplest AR(1) process. Integrating the process into the copula dependence parameter, we

obtain a new class of dynamic pair-copula model(short SCAR hereafter). Besides the autocorrela-

tion effects on the dependence parameter, we are also interested in how certain economic variable

will affect its movement(as will be seen in Section IV.C). The resulting new ARX(1,1) process can

be formulated as follows:

λt = α+ βλt−1 + ρxt + νεt (17)

and accordingly we have another dynamic pair-copula, SCARX. It is important to note that both

AR processes are assumed to be strictly stationary, i.e. |γ| < 1. In addition to this, ν is restricted

to be positive for the identification reason(Hafner and Manner (2012)).

B.2. Towards Dynamic C-vine Copula Models

With the dynamic pair-copula clearly defined, we can now integrate the dynamic process into

the multivariate C-vine copula. To elaborate on this, we revisit (13). This density, after adopting

the time-varying dependence copula parameters, is given as follows:

f(x1t, . . . , xgt; Θt) =

g∏
k=1

fk(xkt)×
g−1∏
j=1

g−j∏
i=1

cj,j+i|1...j−1,t (18)

where cj,j+i|1...j−1,t := cj,j+i|1...j−1,t(uj|1...j−1,t, uj+i|1...j−1,t; θ
j,j+i
t ) and Θt := {θet |e ∈ E} denotes the

set of time-varying dependence parameters of all involved dynamic pair-copulas. For each e ∈ E,

the process is given by {θet }Tt=1 := {Φe(λ
e
t ), λ

e
t = αe + βeλet−1 + νeεet |t = 1, . . . , T}.
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C. Block-based Copula Construction

We now discuss the block-based construction of copula. In this context, a block designates

a (multivariate) copula joining the variables within one cluster3 and the block-based construction

means using a certain technique to establish relations between blocks. The reasons why such

a specification will useful are as follows.(i)Consider the construction of a certain g-dimensional

mixed C-vine copula, the total number of pair-copulas involved is g(g−1)
2 (Aas et al. (2009)). Thus,

this figure will grow quadratically as the number of involved variables increase, such that when

g is big, the actual implementation becomes greatly stymied due to the sheer amount of pair-

copulas to estimate.(ii)Sometimes the studied variables come in clusters by nature. For example,

the stock returns of major American stock indices should be classified as one cluster as opposed

to the other group that consists of the indices of European markets. In this case, the cross-

cluster dependence4 order is often-times vague. Although there exist algorithms that serve to

determine such an order(e.g. see Czado, Schepsmeier, and Min (2012)), its interpretability tends

to be equivocal. As a result, in place of explicitly specifying the cross-cluster dependence relations,

one may be more interested in studying the interactions amongst clusters as a whole.

Consider a set of random vectors (B1, . . . ,Bn), with Bi = (Xi1, . . . , Xigi) the vector of variables

from block i. For i = 1, . . . , n, suppose there exists a transformation Hi : Rgi → R such that

Hi(Bi) = UBi ∼ U(0, 1), (19)

Provided that the variables within each block are joined by the C-vine copula5, the transformation

is then the probability integral transformation(PIT) thereof. Following the Sklar’s Theorem(Sklar

(1957)), it is not hard to derive that the joint pdf of (B1, . . . ,Bn) can be written as follows:

f(b1, . . . ,bn) = c(uB1 , . . . , uBn) (20)

In order to delineate the dynamic feature of the dependence between blocks, c(·) needs to be

decomposed into pair-copulas that follow (15). Put formally, for any t = 1, . . . , T , we have

f(b1t, . . . ,bnt) = c(uB1t , . . . , uBnt ; Θt) (21)

where Θt is the set of dependence parameters for all involved pair-copulas. The remaining difficulty

in the actual implementation is how to obtain the transformed copula data UXi , or in other words,

how to estimate the cdf of a mixed C-vine copula given the dependence parameters. Sobering

enough, we notice there exists no analytical formula for such estimation due to the complexity of

C-vine copula specification. As a makeshift, we propose an IS-based Monte-Carlo simulation to

work around the issue. The details regarding this method will be discussed in III.B.

3For example, geographically, the stocks listed in the American markets form a cluster and those in the Chinese
markets another; conceptually, tech-company stocks form one cluster and financial-service companies another.

4For example, the dependence between one US stock and one European stock
5The choice of vine can of course be varied
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III. Model Estimation

A. Maximum Likelihood Estimation of Dynamic C-vine Copula

Model estimation of the dynamic C-vine copula consists of estimating the parameters of (1) the

(conditional) marginal distributions of the involved time series and (2) the dynamic copulas that

define the linkages between the variables. To further elaborate on this, consider the copula-based

joint density of time series (X1,t, . . . , Xg,t):

f(x1,t, . . . , xg,t) = c(F1(x1t), . . . , Fg(xgt); Θt)×
g∏
i=1

fi(xit) (22)

It is evident that the log-likelihood of the above density consists of two parts, the copula density

and the marginal density. In terms of estimation, a two-step method labelled as the inference

function for margins(Joe (2005)) is often used. The details are as follows. First, we maximise the

marginal log-likelihood functions. Then, given the estimated marginal functions, we transform Xt

into copula data using probability integral transformation(uit = Fi(xit)) and maximise the copula

log-likelihood function subsequently. In the same paper, it is shown that, under weak regularity

condition, the resulting estimator is consistent(although not fully efficient). Furthermore, it is worth

noting that the choice of marginal is crucial for good estimation of the copula data, as problems

may occur given misspecified marginal functions(Kim, Kim, Liao, and Jung (2013)).

The next task is to estimate the C-vine copula density given the transformed sample. By the

virue of the structure of the C-vine density(which is the product of an array of pair-copulas shown

in the previous section), we can break the estimation of copula parameters down to sequential

estimations of pair-copula parameters, instead of estimating the copula parameters all at once. In

effect, the latter is barely feasible in practice due to the computational complexity of this estimation.

Following the idea of sequential estimation, the remainder of this section will elaborate on how

to obtain parameter estimates for the dynamic pair-copula(III.A.1) and how to conduct sequential

estimations using the estimates from the pair-copula(III.A.2).

A.1. Estimation of Bivariate SCAR Models

For now, we consider the bivariate copula with one time-varying dependence parameter — the

specification thereof given by (15)(16). Define the time series of the latent process Λ = {λt}Tt=1

and the hyper-parameter vector(see (16)) to be optimised ω := (α, β, ν). Let f(U, V ; Λ, ω) be the

joint pdf of the observable copula variable U and V , then the likelihood function of the parameter

ω can be formulated as follows(Hafner and Manner (2012)):

L (ω;U, V ) =

∫
f(U, V,Λ;ω)dΛ (23)

10



As λt is dependent on λt−1, using conditional probability, the integrand in (23) can be decomposed

as such:

L (ω,U, V ) =

∫ T∏
t=1

f(ut, vt, λt|λt−1, ω)dΛ (24)

This T -dimensional integral in general does not bear analytical or numerical solutions(Hafner and

Manner (2012)). As a workaround, the authors resort to the Monte-Carlo(MC) integration in

conjunction with a sampling technique known as Efficient Importance Sampling — brought forward

by Richard and Zhang (2007). This is a variance-reduction technique with the use of an auxiliary

sample m(λt;λt−1,at) which exploits the information contained in the observed variable U and V

known by time t by means of optimising the choice of parameter at — as will be discussed later.

In the presence of the auxiliary sampler, the likelihood function is adjusted as:

L (ω,U, V ) =

∫ T∏
t=1

[
f(ut, vt, λt|λt−1, ω)

m(λt;λt−1,at)

]
T∏
t=1

m(λt;λt−1,at)dΛ (25)

DrawingN trajectories of Λ̂(i) from the importance samplerm(·), the MC estimator of the likelihood

function is calculated as such:

L̂(ω,U, V ) =
1

N

N∑
i=1

([ T∏
t=1

f(ut, vt, λt|λt−1, ω)

m(λt;λt−1,at)

]
T∏
t=1

m(λt;λt−1,at)

)
(26)

The remaining question is how to properly choose the importance sampler to minimise the variance

of the MC estimator. One possibility is proposed in Hafner and Manner (2012), which breaks the

importance sampler into the product of two densities:

m(λt;λt−1,at) =
k(λt, λt−1; at)

χ(λt−1; at)
, k = p(λt;λt−1, ω)ζ(λt,at) (27)

where p(λt;λt−1, ω) is the conditional density of λt and ζ(λt,at) = exp(a1tλt+a2tλ
2
t ) is a Gaussian

kernel and χ(λt−1; at) :=
∫
k(λt, λt−1; at)dλt is the normalising constant. Note that the choice

of kernel ζ(λt,at) can vary and for non-Gaussian latent process particularly, a different kernel is

entailed(Hafner and Manner (2012)). Richard and Zhang (2007) propound that, given the spec-

ifications of p(·) following (16) and m(·) parameterised by some at = (a1t, a2,t), the importance

sampler has a normal density with the following mean and variance:

µt = σ2
t

(
δ + γλt−1

ν2
+ a1t

)
, σ2

t =
ν2

1− 2ν2a2t
(28)

Note that for a ARX(1,1) latent process, we then have

µt = σ2
t

(
δ + γλt−1 + ρXt

ν2
+ a1t

)
. (29)
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In minimising the variance of (26), the optimal choice of EIS-specific parameter A = {at}Tt=1 can

be obtained. Richard and Zhang (2007) prove that, on the ground of the choice of density from

the exponential family, the optimisation problem is simplified down to solving an Ordinary Least

Squares(OLS) regression, which, for t = 1, . . . , T , is defined as follows:

log(c(ut, vt; θt(ω))) + logχ(λ̃
(i)
t−1(ω)) = ct + a1tλ̃

(i)
t (ω) + a2t[λ̃

(i)
t ]2 + η

(i)
t , λ

(i)
t ∈ Λ(i) (30)

where Λ(i), i = 1, . . . , N is a set of trajectories drawn from a certain sampler. Based on this, Hafner

and Manner (2012) provide an algorithm(see Algorithm 1) to obtain the optimal A and use the

resulting auxiliary sampler to perform Monte-Carlo Integration. Under the proposed scheme of

computing the MC estimator for the likelihood function, we can obtain the optimal ω through

maximum likelihood estimation. This will be implemented on MATLAB(MATLAB (2010)) with

the use of the package provided by Hafner and Manner (2012). As a spin-off of EIS maximum

likelihood estimation, the smoothed estimate of dependence parameter {θt}Tt=1 can be obtained by

θt = Φ(λ̂t|T ) =
1

N

N∑
i=1

Φ(λ̃
(i)
t (ât)), t = 1, . . . , T, (31)

Algorithm 1: Procedures for obtaining MC estimator of log-likelihood function using Efficient

Importance Sampling

1. Draw N trajectories of Λ(i) from the natural sampler p

2. For T = 1, . . . , T , solve the back-recursive OLS regression given by (30)

3. Draw N trajectories of Λ(i) from the estimated importance sampler and solve the problem

in step again.

4. Repeat steps 2 and 3 until Â converges.

5. Draw N trajectories of Λ(i) from the importance sample obtained in step 4 and evaluate

the MC estimator for the likelihood function given in (26)

A.2. Sequential Estimation of dynamic C-vine Models

The sequential estimation for C-vine copula is brought forward in Czado et al. (2012). In their

paper, the authors show that the sequential estimation for C-vine is close to the d-variate Maximum

Likelihood estimation. From (13) and the tree representation(Figure 1), it can be seen that for a

given tree level, the corresponding pair-copulas make use of the copulas in the precedent tree to

transform the inputs for its predecessor into copula data and subsequently use these copula data as

its pseudo observations. Specifically, this transformation is done through the h(·) function defined

in (10). Here, we accommodate this transformation scheme to the dynamic setting of our C-vine

model according to Almeida et al. (2016). Sighting along the first tree, for any t = 1, . . . , T , the h

function of the copula cij(uit, ujt; θ
ij
t ) reads as follows:

uj|i,t = h(uit|ujt, θijt ) (32)
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where θijt is the ’true’ dependence parameter of the given copula at time t. However, through

Maximum Likelihood estimation, one can only obtain the estimates for the hyper-parameters ω,

yet the latent copula parameter remains stochastic and unobservable. Consequently, (32) is not

directly applicable. To get around this issue, an approximated ûj|i,t — obtained on the basis of N

EIS-generated trajectories θ
(i)
t — will be used as the pseudo observations6:

ûj|i,t =
1

N

N∑
i=1

h(uit|ujt, θ̃(i)
t ) (33)

For higher tree orders, the corresponding pseudo observations can be obtained recursively using the

same scheme shown in (33). To help better understanding this approach, we consider an example

in which we estimate the parameter of copula c23|1. First, estimate the pair-copulas in the first

tree, namely c12, c13. Then, use (33) to obtain pseudo observations û2|1 and û3|1 for the next tree.

Based on these two inputs, the latent process of copula c23|1 can be estimated.

Furthermore, to implement the sequential estimation method, we first make use of the SCAR

model estimation package mentioned in III.A.1 to obtain estimation results of the dynamic pair-

copulas and then channel the estimation outcomes to R(R Core Team (2013)). With the use of

the CDVine package, we calculate ûj|i,t(see (33)) and then pass the results back to the MAT-

LAB(MATLAB (2010)) package to estimate the next pair-copula. We repeat this until all the

pair-copulas are estimated.

B. Three-step Estimation of Dynamic Block-based Copula Construction

As can be inferred from the title of this section, the estimation of a block-based copula consists

of three steps. First, we estimate the copula model for each block using the sequential estimation

approach detailed in III.A. With the dependence parameter estimates for each in-block copula,

we utilise an algorithm proposed in the same section that performs probability integral transfor-

mation(PIT)7 for a given C-vine copula. The resulting copula data associated to each block will

then be passed into the block-specific copula — defined in (20)(21). Since the block-specific cop-

ula is nothing more than a (dynamic) copula, the estimation of such an object has already been

thoroughly discussed in section III.A.

Next, we discuss the PIT for a C-vine copula. Due to the complexity of C-vine setting —

which takes the transformations(partial derivatives particularly) of results from the previous layer

as the input for the next layer — an analytical solution to the probability integration is all but

in-feasible. The repercussion is again the demand for the Monte-Carlo integration. To illustrate

this, we consider a C-vine copula for which we know the dependence structure and the dependence

parameters. Suppose this copula involves random variables X = (X1, . . . , Xg) that are presumed

H
6For the ease of notation, we omit the superscript ij
7or put differently, to transforms the regular input data into copula data
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to be i.i.d Normal. The joint density of these variables is f(x1, . . . , xg; Θ) and its cdf:

F (x1, . . . , xg) =

∫ x1

−∞
· · ·
∫ xg

−∞
f(x1, . . . , xg; Θ)dx (34)

A naive approach to obtaining the Monte-Carlo estimator for this integral makes use of the fact

that for standard normal density f(·), given a c that is small enough, f(c) ≈ 0. Therefore, (34)

can be decomposed as follows:

F (x1, . . . , xg) =

∫ c

−∞
· · ·
∫ c

−∞
f(x1, . . . , xg; Θ)dx︸ ︷︷ ︸
o(x)≈0

+

∫ x1

c
· · ·
∫ xg

c
f(x1, . . . , xg; Θ)dx (35)

Omitting the term o(x), the Naive MC estimator is therefore

F̂ (x) =
1

N

N∑
s=1

f(x(s)) (36)

where N is the number of replications and x
(s)
i is sampled element by element, with X

(s)
i ∼ U(c, xi)

for i = 1, . . . , g. While this method might be efficient for univariate Monte-Carlo integration, it has

two lethal shortcomings that render it highly inefficient in higher-dimensional sampling. First of

all, for each variable, the entire variable space is treated equally, ignoring the fact that the bulk of

standard normal density is distributed densely in a small area. Secondly, the method fails to take

into account the dependencies between variables. This results in an exponential increase of the

replication number N as the dimensionality increases, rendering this method remotely viable for

simulating higher-dimensional integrals. In the response to these issues, we propose a simulation

method with the use of importance sampling(Kahn and Harris (1957)). Denote w(X) as the

auxiliary sampler. Following (26), given this importance sampler, the Monte-Carlo estimator for

the integral can be calculated as such:

F̂ (x) =
1

N

N∑
i=1

f(x(i))

w(x(i))
(37)

with x(s) sampled from the importance sampler w. We would like to choose the auxiliary sampler

in such a way that it is easy to obtain and can largely reflect the feature of the joint distribution

of the variables. This invites the use of truncated multi-normal distribution, as it guarantees

that for each individual variable, the corresponding simulated values are sampled mostly from the

important area; meanwhile, it models the dependencies between variables, which, although not

precise, will greatly reduce the variance of the MC estimator. Moreover, estimating the density of

this sampler is as simple as estimating the correlation matrix for the involved variables since that

is the only parametric requirement for a truncated multivariate distribution. Given a truncated

multi-normal distribution with the upper-bound vector U(a vector that contains the upper-bounds
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of all variables) and the correlation matrix Σ, we can generate sample from w(X;U,Σ) with the

use of the method proposed in Kotecha and Djuric (1999). This method employs the so-called

GIBBS sampling(Casella and George (1992)), a Monte-Carlo Markov Chain(MCMC) algorithm for

sampling from some multivariate distribution. Now, with all the ingredients ready, we can finally

present the algorithm for the PIT of a dynamic C-vine copula:

Algorithm 2: Monte-Carlo Estimator for C-vine PIT

Estimate the correlation matrix of the involved variables, denoted as Σ̂;

for t = 1, . . . , T do

Generate Ut ← Xt;

Sample X
(1)
t , . . . , X

(N)
t from w(X; Σ̂, Ut) ;

Generate F̂t ← 1
N

∑N
s=1

f(X(s);Θt)

m(X(s);Σ̂,Ut)
;

The simulation is done on R(R Core Team (2013)) with the use of the ’tmvtnorm’ package to

generate truncated multivariate normal random numbers the ’CDVine’ package to calculate the pdf

of a given C-vine copula. We notice that for a three-dimensional C-vine copula, setting N = 2000

gives an estimator with decent variance(σMC ≈ 0.03).

IV. Application

A. Modelling Dependence Between Major American Stock indices with bi-

variate SCAR

This first application will be dedicated to illustrating the bivariate dynamic copula model —

discussed in II.B.2 — as this class of models is the cornerstone of our proposed C-vine based

dynamic copula models and the ensuing block-based copula. The dataset for this application is the

same as the one used in Hafner and Manner (2012), which consists of daily observations of the Dow

Jones Industrial Average(DJI) and Nasdaq Composite, ranging from 26 March 1990 until 23 March

2000. Based on this dataset, we reserve the last 250 observations for examining out-of-sample fit of

the model and use the rest for estimation and in-sample fit — the same train-test split as in Hafner

and Manner (2012). We expect the outcomes to be highly similar to the correspondings in their

paper, but foresee tiny discrepancies brought by simulation-related factors(e.g. the use of different

seeds of random number generator).

A.1. Estimation and In-Sample Fit

First, for each index, we fit the demeaned returns to the stochastic volatility(SV) model. The

estimation of such a model is conducted by means of EIS, using the Matlab(MATLAB (2010))

package provided by Hafner and Manner (2012). In this paper, the details of the SV model estima-

tion will not be discussed, but it can be found in Richard and Zhang (2007) if interested. Following

this model, the parameter estimate results are shown in Table IV in Appendix B, together with
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Figure 2. Smoothed time paths of dependence parameters corresponding to four different copulas. The
calculation is based on (31)

.

the estimated volatility (displayed in Figure 6b). Using the results from SV models, we obtain the

marginal distribution of each return series and can thereby transform them into U(0, 1) random

variables(shown in Figure 6a in Appendix B) — the copula data — with the use of PIT. The data

will then be fed into the dynamic SCAR model and the estimation of the underlying process of the

dynamic copula be done using the approach discussed in III.A.1. Following Hafner and Manner

(2012), we consider four different copulas, namely the Gaussian copula, rotated Gumbel copula,

Frank Copula and Clayton Copula and see which copula gives the best overall performance. Also

note that from Figure 6a, a certain extent of tail dependency can be observed amongst the copula

data. Given the use of the aforementioned copulas, the estimation results are presented in Table

VI in Appendix B. In comparison with the results in Hafner and Manner (2012), we observe only

minute differences which can be attributed to simulation-related disturbance. The underlying de-

pendence processes with all copulas show a strong persistence, echoing findings in earlier studies.

Of all the models, the Gaussian copula shows the best in-sample fit in terms of log-likelihood value.

Considering the potential presence of tail dependence, we can suggest that the time-varying setting

of dependence parameter enable the Gaussian copula to overcome its widely-acknowledged inability

of capturing such a feature. The smoothed time paths of dependence parameters of the involved

copula models are displayed in Figure 2. Despite differences in scale, the dependence parameter

paths for all copulas resemble each other. Noteworthy is the drastic drop in dependency in 2000.

The explanation regarding this abnormal observation can be found in Engle (2002).

A.2. Out-of-sample Comparison

The details regarding how to obtain the r-step ahead forecasts are discussed in Appendix E.

As mentioned before, the last 250 observations of the dataset will be used for the purpose of

out-of-sample comparison. We transform these observations into copula data using the SV model

obtained from IV.A.1 and re-estimate the four copula models in order to obtain the smoothed

time paths of dependence parameter for the test period. So in doing, we have the proxy for the

realised dependence parameter within the test period, with which we can compare the performance

of the r-step forecasts from different models. Also note that (i) with the use of this proxy, the first

realised observations, obtained from different estimated sample than the previous, will likely be far-
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Figure 3. Out-of-sample forecasts of the dependence parameter[Dow Jones and Nasdaq]. The dash lines
denote the out-of-sample θ̂T+r; the dotted lines the 95% confidence bands; the normal lines the ’true’ θ

off from the one-step forecasts; (ii)as the underlying is an AR(1) process by design, the r-step ahead

forecasts will tend to the unconditional mean of the associated process as the step size r increases.

The forecast results, along with the associated 95% confidence bands and the realised dependence

parameter are shown in Figure 3. From these graphs, we can see that the r-step ahead forecasts for

all copula models reflect closely the realisations. Next to this, the realisations for all copulas also

fall within the given confidence interval. These observations suggest that the forecasting results be

reasonably accurate, contextualising the difficulty of r-step ahead forecasting.

B. C-vine Models and Portfolio Management

In this section, we discuss the use of the C-vine copula models — both dynamic and static

— in depicting the dependencies between asset returns, constructing portfolios accordingly and

how portfolios from different models compare to each other in terms of performance. Besides the

C-vine models, a DCC GARCH model will also be treated in our analysis for comparison purposes.

Specifically, we emulate an interesting context in which investors minimise draw-down risks while

maintaining a certain level of portfolio returns and see which models best help achieve such a goal.

The data used for this section consists of daily returns of Dow Jones Industry Index, Nasdaq

Index, Cotation Assistée en Continu 40(CAC 40), Deutscher Aktienindex 30(DAX 30), ranging

from 1 January 2001 up to and including 31 December 2018. All returns are multiplied by 100.

The sample from 1 January 2016 to 31 December 2018 will be used for out-of-sample analysis.

B.1. Model Estimation and In-sample Fit

First, we convert the original data into copula data using the SV model. We then employ an

order-selection technique proposed in Czado et al. (2012) — an iterative process which maximises

the sum of the pair-wise Kendall’s τ w.r.t each tree sequentially — to determine the variable

order for C-vine copula models. The resulting order(obtained using ’CDVine’ package in R(R Core

Team (2013))) is {DAX 30, DJI, Nasdaq, CAC 40}. With the variable order, the next step is to
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Table I In-sample fit Comparison amongst C-vine models and DCC-GARCH

Model logl AIC BIC Number of Parameters
SCAR C-vine -17500.01 35056.02 35008.49 28
Static C-vine -19550.25 39136.51 39108.97 18
DCC-GARCH -19675.46 39399.04 39553.99 24

Note: In-sample fit comparisons in terms of log-likelihood, the Akaike Information Criteria and Bayesian Information
Criteria, with the bald font highlighting the best fitting model.

choose copulas for the involved pairs. With regard to the static C-vine model, the copulas are

selected according to sequential estimation of pair-copulas and their associated Akaike Information

Criteria(AIC) — a method proposed in Hans (2007). As for the dynamic C-vine model, two

decisions have to be made, namely the choice between dynamic and static copula and the choice of

copula family. Following the observations from the in-sample fit outcomes in Hafner and Manner

(2012) and in Section III.A.1, we decide to apply Gaussian Copula to all dynamic pairs on the

ground that the time-varying feature effectively equips the copula the agility to capture different

tail-dependencies. In terms of whether or not the dynamic feature should be enabled, we employ

the LR test against time-varying parameters(see Hafner and Manner (2012)). It turns out that,

except for the last copula-pair, all the copulas appear to be time-varying.

The results of model selection and estimation of the C-vine copula models are displayed in

Table VII in Appendix H. Furthermore, contour plots regarding all copulas selected for the static

C-vine can be found in Appendix F if interested. In regard to the DCC GARCH, a model without

specification on the mean process is chosen8. Table I shows the in-sample fit results of the three

models. As can be seen, the dynamic C-vine model, despite having the most parameters, shows

the best in-sample fit in terms of all criteria used. Following the dynamic C-vine model is its static

counterpart — the most parsimonious choice amongst the three yet manifests higher log-likelihood

relative to DCC model.

B.2. Out-of-Sample Portfolio Performance Analysis

Given the broad applications of copula models in the realm of risk management (thanks to

its ability to capture tail dependency), one natural usage of C-vine models is to construct risk-

managed portfolios with certain expected returns. Interested, we opt to build the portfolios in

such a way that the Conditional Value-at-Risk(C-VaR) is optimised. The reasons for choosing

such a risk metric instead of the more widely-used Value-at-Risk(VaR) can be found in Rockafellar

and Uryasev (2000), in which the authors argue that CVaR is a more coherent risk measure in

the context of portfolio positions. In the same paper, it is shown that optimising the C-VaR

portfolio is, in essence, a stochastic optimisation problem and can be approximated by a linear

programming problem, considering the use of Monte-Carlo Integration. Given a set of candidate

assets X = {xt}Tt=1, for any given point in time t, we sample N observations9 from some predicted

8Due to the size limit of our paper, we will not report the estimation results. But it is worth mentioning that the
results of estimation and prediction are obtained using ’mvgarch’ package in R(R Core Team (2013)).

9Sampling from C-vine copula is enabled by ’CDVine’ package in R(R Core Team (2013))
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distribution f(X; Θt) and solve the following linear programming10 proposed by Rockafellar and

Uryasev (2000) to minimise C-VaR given a return level R:

min
(wt,αt)

Fα(wt, αt) = αt +
1

N(1− β)

N∑
k=1

[−wTx
(k)
t − αt]+ (38)

s.t. µ(wt) ≤ −R (39)

wt
T1 = 1 (40)

where wt is the portfolio weight which we aim to optimise, αt is the Value-at-Risk, β is the

threshold probability — often set to be 0.90, 0.95 or 0.99 in practice — and x
(k)
t is the k-element

of the simulated returns. Since the distributions characterised by all the involved models are time-

varying11, one should, in theory, update the optimal portfolio weights every day. But this is not

the least viable in practice. As an alternative, weekly re-balancing is to be adopted. This amounts

to an exercise of h-step ahead forecasts of the distributional parameters. In practice, we estimate

the full sample in order to obtain the realisations in the test sample12. With regard to the C-vine

models, at the beginning of each week, we conduct out-of-sample forecasting of the dependence

parameters and the conditional volatility up to 5-step ahead and use the average of our forecasts

as the predicted results for the given week. Then we solve the linear programme problem thereof

to update the optimal portfolio weight. In respect of the DCC-GARCH, the predicted covariance

matrix of asset returns for the coming week is approximated by the one-step ahead forecasting

value13. For all the portfolios, the expected daily portfolio return R in (39) is set to be R = 0.04.

In addition, another dynamic C-vine-based portfolio, with the sole aim of controlling portfolio

risk, is also constructed. Such a portfolio is obtained by dispensing the minimal expected return

constraint and restrict the largest position(both long and short) on any asset i to |wi
t| = 2.

Figure 4 summarises the performance of cumulative returns, monthly returns, Conditional

VaR(shorthand Historic ES in the graphs) and draw-down risk of each portfolio involved, jux-

taposed with the market average 1/N portfolio14. We observe that the dynamic C-vine model

performs exceptionally well in terms of cumulative returns, almost double that of the second high-

est portfolio(the DCC-GARCH portfolio). This, however, comes at the expense of a much higher

volatility and draw-down risk relative to the DCC-GARCH portfolio and the 1/N portfolio. This

issue is also visible in the static C-vine portfolio, though the compensation for high risk is much

lower for this portfolio compared to the former. In stark contrast to the previous two C-vine port-

folios, the risk-controlled dynamic C-vine portfolio manifests a notably lower draw-down risk due

to the relaxation of return target. But a deep and long-lasting plummet occurred in late 2018,

rendering the previous profits all but non-existent. Interestingly, while the headwind of recession in

10The linear programming optimisation is done using ’lpsolveAPI’ package in R(R Core Team (2013))
11Even Static C-vine is no exception since the marginal processes are modelled by SV models, which assumes changing

conditional volatility
12In this sense, we perform pseudo out-of-sample study
13This is obtained with the use of ’rmgarch’ Package in R(R Core Team (2013))
14The results are obtained using the ’PerformanceAnalytics’ package in R(R Core Team (2013)).
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Figure 4. Summary of performance of cumulative returns, monthly returns, Conditional VaR(shorthand Historic ES
in the graphs) and draw-down risk of each portfolio involved, juxtaposed with the market average 1/N portfolio(red
lines). The involved assets(indices) are as follow: {DAX 30, DJI, Nasdaq, CAC 40}. All portfolios are re-balanced
on a weekly basis, according to the respective pseudo out-of-sample density predictions. Due to the page limit, we can
only put a condensed version here. For the graphs in full size, please see Appendix A.

Table II Risk-Adjusted Portfolio Performance

Risk Adjusted Metrics Methods
Sharpe Ratio Sortino Ratio Omega Ratio VaR(99%)

D. C-vine 0.195 0.375 0.732 0.206
D. C-vine RC 0.031 0.043 0.085 0.112
S. C-vine 0.131 0.201 0.393 0.169
DCC-GARCH 0.290 0.552 1.097 0.065
1/N 0.111 0.150 0.352 0.088

Note: Risk-adjusted performance comparison amongst all portfolios. The bald font highlights the best performing
model for the given risk metric.

this period blows the hunky-dory situations of all three C-vine-based portfolios, the DCC portfolio

sails through the market hiccup. In general, this portfolio shows no notable return dip and remains

profiting almost constantly. Thanks to this feature, despite having a much lower absolute return

than dynamic C-vine portfolio, it completely out-duels its competitors in terms of risk-adjusted

performance measures, as shown in table II. In effect, the large scale fluctuations of the C-vine

portfolios is due to the fact that the use of this type of model in characterising joint distribution

of candidate assets tend to yield radical weight choice. As a consequence of high leverage, even

a slight downturn of the market indices will likely cause a deep draw-down of portfolio return.

Unfortunately, appropriate account for this interesting phenomenon has not been discovered in this

study and hence, we will leave this to further research.

In sum, there is no overall best performing portfolio. Nonetheless, in the sense of balancing

portfolio downside risks and returns (which is the very goal of constructing C-VaR optimised

portfolio), DCC-GARCH clearly stands out amongst all competing models.

C. C-vine Block and Holistic Dependence

In the last application, we study the holistic dependence between the Western and Eastern

Stock markets with the use of Block-based Copula construction discussed in II.C. The Western
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Table III Parameter Estiamtes

α β φ ν log-likelihood
Gaussian SCAR 0.4627 0.1187 — 0.1757 823.918
Gaussian SCARX 0.4616 0.1185 0.0043 0.1750 824.074
Gaussian Copula 0.4647 — — — 817.260

Note: the log-likelihood denote the one corresponding to copula density function. For static Gaussian copula, α denotes
the correlation parameter thereof.

block consists of daily returns of stock market indices used in IV.B and the Eastern of the Shanghai

Composite Index(SSE) and the Nikkei Stock Average(Nikkei 225), both sampled from 1 January

2001 to 12 December 2018 and re-scaled by multiplying 100. In addition, we are also interested in

studying whether the sentiment of risk-aversion will influence the dependence between these two

markets. Such sentiment is reflected by a gold-price-based dummy variable D = {dt}Tt=1 obtained

recursively using a moving-window method(implemented on R(R Core Team (2013))):

dt = I{st≥2} with st =
h∑
i=1

[rt−h]+ (41)

where I{A} is the indicator function which equals to 1 if A is true and 0 otherwise; h is the size of

moving window — set to be 22 in practice — and rt is the daily return of some gold price index.

Specifically, we make use of the London Gold Fixing sampled from the same period as other data

used in this application.

In a step to studying the holistic dependence of the Western and Eastern market, we make

use of dynamic Copula models to characterise the distribution within each block. For the Western

block, the estimation results using the dynamic C-vine model has already been displayed in II.C.

For the Eastern block, we transformed the return data into copula data using the SV model and

then fit it to a bivariate Gaussian SCAR model. Next, using the IS-based PIT proposed in III.B, we

obtain the copula data for each block. The scatter plot regarding the results is presented in Figure

9 in Appendix G. With this data at hand, we are particularly interested in studying (i)whether

the dependence between these two blocks is time-varying; (ii)whether the risk-aversion sentiment

indicator has any explanatory power for the behaviour of the dependence parameter. As such, we

estimate three bivariate models, namely the bivariate Gaussian SCAR, the static Gaussian copula

and the Gaussian SCARX model(see (17)) using the risk-aversion sentiment indicator as external

explanatory variable for the latent process. Moreover, the estimated sample skips the observations

of the first months in order to obtain the first value of the risk-aversion sentiment indicator. The

estimation results for the chosen models are shown in Table III. Based on the obtained log-likelihood

of these three models, we then conduct two LR-tests to verify whether the parameter is indeed time-

varying and whether the risk-aversion indicator is significant. The p-value for the these tests is

p = 0.00 and p = 0.5767, respectively. Therefore, we conclude that the dependence parameter of

Gaussian Copula is indeed time-varying and, surprisingly, the risk-aversion sentiment — represented

by our indicator — has little influence on the dependence between the Western and Eastern market.

21



V. Conclusions and Further Research

In an attempt to address the great need of flexible time-varying multivariate distribution, we

developed the dynamic C-vine model that fuses the SCAR model into the C-vine copula. In

conjunction with EIS and the sequential estimation technique, we estimated the model using the

traditional approach, maximum likelihood. The in-sample study showed its superiority over the

competing multivariate models such as static C-vine and DCC-GARCH. Several limitations should

be noticed in this study. For one thing, only a relatively low number of variables were considered

in the modelling. This dodges the potential issues with higher-dimensional dynamic vine models,

particularly the decision between truncated and complete dynamic vine model — an exercise studied

extensively in Brechmann, Czado, and Aas (2012). Furthermore, we applied Gaussian copula to all

involved pair-copulas in the constructed dynamic C-vine models based on the study of in-sample

fit of SCAR. As an improvement therein, copula families fall beyond the list in our study can

also be experimented. Another potential problem lies in the choice of marginal processes of the

C-vine based models. Although, we suggested the SV model be the appropriate proxy for the ’true’

marginal distributions, evidence towards the validity of this decision is generally missing. This can

lead to certain problems associated with model mis-specification(Kim et al. (2013)). One notable

application with the dynamic C-vine model pertains portfolio management using density forecasting

thereof. To this end, we applied the proposed model and other competing models for constructing C-

VaR optimised portfolios. The performance comparisons between the resulting portfolios evinced its

usefulness in the realm of the risk-managed portfolios. Through this application, we notice several

interesting questions for further research. Firstly, the use of C-vine class models to construct C-VaR

portfolios always brings about high-leverage portfolio strategies. This can lead to less immunity

to the caprice of the financial market. Next, we notice for all C-vine-based portfolios, a great

recession in cumulative returns occurred in 2018, scuppering the once-extraordinary performance.

Accounts for this happening is also of great interest. Lastly, the asset pool for portfolio construction

only contains four assets. In the future, one should investigate inclusions of different numbers of

assets, whereby gaining insights into the efficacy of portfolio diversification using the (dynamic)

C-vine copula models. As another contribution of this paper, we proposed a simulation-based PIT

to obtain the cdf of a dynamic C-vine copula and subsequently employed the proposed method

to construct the block-based copulas. With the use of such, we studied the holistic dependence

between the Western stock market and Eastern stock market. However, shackled by the page

limit, we failed to deliver the research in its full depth. It generally lacks the due amplitude of the

risk-aversion sentiment indicators and the copula models choice. Owing to the same reason, the

discussion on this regard also came with great haste. As for the algorithm per se, problems occur

when the number of variables in a C-vine copula grows higher, as the resulting transformation will

then centre mostly in the vicinity of 0 due to the curse of dimensionality(Bellman, Corporation, and

Collection (1957)). The potential solution to this problem will again be left to future study. Lastly,

as a general remark regarding the sequential estimation, the absence of an appropriate approach

to obtaining the standard error for parameter estimates should be coped with in the future.
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Appendix A. C-VaR Portfolio Performance Summary

Figure 5. Magnified version of portfolio performance summary in IV.B.2.
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Appendix B. SV Estimation

Table IV SV model Estimates

DJ NQ

α -0.0111 -0.0054

(0.0050) (0.0042)

β 0.9787 0.9732

(0.0076) (0.0078)

ν 0.1566 0.2077

(0.0254) (0.0268)

logl -3137.48 -3638.17
Note: the figures in the parentheses report the corresponding standard deviations

(a) Scatter plot of Copula Data (b) Volatility of DJ and NQ

Figure 6. SV Estimation Results. (a) shows the scatter plot of the copula data respective to the return of Dow
Jone(DJ) and Nasdaq(NQ). (b) plots the SV-estimated volatility of these two indices.
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Appendix C. Copula Density Summary

Table V Copula Density Summary

Density θ δ Φ

Gaussian 1√
(1−θ2)

exp(2θxy−x2−y2
2(1−θ2)

+ x2+y2

2 ) θ ∈ [−1, 1] - Φ(x) = exp(2x)−1
exp(2x)+1

Gumbel (log(u)log(v)){(θ−1)[(−log(u))θ+(−log(v)θ]1/θ+θ−1}
[(−log(u))θ+(−log(v)θ]2−1/θuv

θ ∈ [1,∞] - Φ(x) = exp(x) + 1

×exp{[(−log(u))θ + (−log(v))θ]1/θ}
Clayton u(−1−θ)v(−1−θ)(u−θ + v−θ − 1)(−2−1/θ)(1 + θ) θ ∈ (0,−∞) - Φ(x) = exp(x)

Frank exp((1+u+v)θ)(exp(θ)−1)θ
{exp(θ)+exp((u+v)θ)−exp(θ+uθ)−exp(θ+vθ)}2 θ ∈ (−∞,∞) - Φ(x) = x

BB1 {1 + [(u−θ − 1)δ + (v−θ − 1)δ]1/δ}−1/θ θ ∈ (0,∞) δ ∈ [1,∞) -

BB8 1
δ (1− {1− θ}−θ){1− (1− θu}θ}{1− (1− θv}θ} θ ∈ [1,∞) δ ∈ [0, 1] -

t fδ,θ(t
−1
ν (u), t−1

ν (v))/fν(t−1
ν (u))fν(t−1

ν (v)) θ ∈ [−1, 1] δ ∈ (0,∞) -
Note: A summary of all the copulas used in this paper. The Gaussian Copula takes the inverse cdf of u and v as its input(i.e. x = F−1(u) and y = F−1(y)). For
those involved in the SCAR model, the number of dependence parameter is 1. BB1 and BB8 copulas are the joe-copulas given by Joe and Hu (1996). Both of them
are used for the static C-vine copula only, therefore, the transformation function is not needed. The t-copula density is derived in Demarta and McNeil (2005).
Notation-wise, θ is the off-diagonal element of the correlation matrix and δ is the degree of freedom; fδ,θ denotes the joint density of a bivariate t2(δ,0, θ)-distributed
random vector and fδ is the density of the univariate standard t-distribution.
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Appendix D. SCAR Estimation Results

Table VI SCAR parameter estimates

α β ν logl p-value(LR test)

Gaussian
0.0312

(0.0101)

0.9668

(0.0105)

0.0841

(0.0146)
901.2194 0.00

Rot. Gumbel
-0.0014

(0.0023)

0.9796

(0.0085)

0.1064

(0.0238)
865.7110 0.00

Frank
0.1564

(0.0589)

0.9742

(0.0094)

0.5512

(0.1181)
789.3049 0.00

Clayton
0.0146

(0.0071)

0.9594

(0.0166)

0.1576

(0.0389)
747.9096 0.00

Note: Parameter estimate results together with the log-likelihood of the copula model associated. p-value corresponds
to the LR-test for time-varying dependence parameter discussed in Hafner and Manner (2012). The rotate Gumbel
copula density is defined as crGumbel(u, v) = cGumbel(1 − u, 1 − v). The densities of the above copula are given in
Appendix C.

Appendix E. SCAR Out-of-Sample Forecasting In-depth

We provide the derivation of out-of-sample forecasting of SCAR models given by Hafner and

Manner (2012). The AR(1) specification of the latent process15 is typically conducive to forecasting.

Using the theory derived in Hamilton (1994), the r-step-ahead forecast given an estimate λ̂T can

be written as

λ̂T+r = µ+ βr(λ̂T − µ) (E1)

where µ = α/(1− β). The mean squared of the forecast error is

σ2
T+r = ν2(1− β2r)/(1− β2). (E2)

Note that eventually, we would like to obtain the forecasting of θ = Φ(λ). From table ?? we see

that only in the context of the Frank copula are the transformed parameter and λ are identical. In

the case of the Gumbel and Clayton copulas, we use the results given in Hafner and Manner (2012)

that for λt|It−1 N(µt, σt), the r-step-ahead forecast of θt = exp(λ)t) is as such:

θT+r = exp(λ̂T+r +
σ2
T+r

2
) (E3)

The confidence intervals for these forecasts are obtained using the associated quantiles of the log-

normal distribution logN(λ̂T+r, σ
2
T+r).

Hafner and Manner (2012) argue that due to the non-linearity of the inverse Fisher trans-

formation corresponding to the normal copula, a second-order Taylor expansion can be used to

15See (16)
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approximate the transformation results. Given a λt around µt, we have

Φ(λt) ≈ Φ(µt) + Φ
′
(µt)(λt − µt) +

1

2
Φ
′′
(µt)(λt − µt)2 (E4)

The conditional expectation thereof is then

E(Φ(λt)|It−1) ≈ E{Φ(µt) + Φ
′
(µt)(λt − µt) +

1

2
Φ
′′
(µt)(λt − µt)2|It−1}

= Φ(µt) + Φ
′
(µt)E(λt − µt|It−1) +

1

2
Φ
′′
(µt)E((λt − µt)2|It−1)

= Φ(µt) +
Φ
′′
(µt)

2
ν2 (E5)

The r-step-ahead forecast is therefore

θ̂T+r = Φ(λ̂T+r) +
−4(exp(2λ̂T+r)exp(2λ̂T+r))

(exp(2λ̂T+r + 1)3
σ2
T+r (E6)
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Appendix F. Contour Plot of Static C-vine Copula

Figure 7. Cotour Plot of Pair-Copulas involved in the Static C-vine. The involved variables are ordered as
follows: {DAX 30, DJ, NQ, CAC 30}
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Appendix G. Dynamic C-vine Parameter Time Paths

Figure 8. Smoothed time paths of dependence parameters of all dynamic pair-copulas. Each title of the
y-axis indicates the associated pair-copula
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Appendix H. C-Vine Models Estimation Results

Table VII Vine Copulas Estimation Results

Dynamic C-vine Static C-vine

Pair Type α β ν Copula θ1 θ2

12 Time-varying 0.2337 0.6965 0.2601 BB1 copula 0.3427 1.445

13 Time-varying 0.2653 0.6336 0.2956 t-copula 0.5689 5.515

14 Time-varying 0.1445 0.9135 0.1481 t-copula 0.9206 4.888

23‖1 Time-varying 0.0677 0.9448 0.1202 t-copula 0.7964 5.672

24‖1 Time-varying 0.0033 0.9752 0.0391 BB8 copula 1.8672 0.518

34‖12 Constant -0.0401 — — t-copula -0.0397 10.763

Note: Results of copula model selection and the corresponding parameter estimates. The involved indices are ordered
as follow: {DAX 30, DJI, Nasdaq, CAC 40}.The choice of copula family for Dynamic C-vine model is set to be Normal
copula. The standard errors for the dynamic C-vine parameter estimates cannot be obtained. The accounts for this
can be found in Almeida et al. (2016). As a result, we did not report the standard errors in the table. Also note that
the estimated α associated with the time-constant is equivalent to the estimated correlation parameter. Furthermore,
the copula families chosen for static C-vine copula all have two dependence parameters.

Appendix I. Scatter Plot of Block Copula Data

Figure 9. Copula Data of the Western and Eastern Block

34



Appendix J. Code Usage Description

In this section, we go down to the nitty-gritty about the code usage in this paper. As have been

hinted throughout the paper, we make use of two softwares, Matlab(MATLAB (2010)) and R(R

Core Team (2013)), for our analyses. On each platform, we were provided with code and packages

that would be greatly conducive for our study. Below, we make references to the external help in

this regard.

MATLAB(MATLAB (2010)) We make use of the code package provided by Hafner and Man-

ner (2012). This package is used for the estimation of the SV model and SCAR model specifically.

Key functions that we capitalised from this package is as follows.

• Stochastic Copula MLE.m: Main function used to estimate the SCAR model.

• SV MLE EIS.m: Main function used to estimate the SV model

• LL Normal EIS.m: log-likelihood function for the Normal Copula with EIS

• LL Gumbel EIS.m: log-likelihood function for the Gumbel Copula with EIS

• LL Frank EIS.m: log-likelihood function for the Frank Copula with EIS

• LL Clayton EIS.m: log-likelihood function for the Clayton Copula with EIS

• PdfGumbel.m: pdf of the Gumbel copula

• PdfNormal.m: pdf of the Normal copula

• PdfClayton.m: pdf of the Clayton copula

• PdfFrank.m: pdf of the Frank copula

R(R Core Team (2013)) We export different R packages for our study. This includes:

• PerformanceAnalytics: portfolio performance analysis

Source: https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html

• CDVine: all the analyses revolving around Vine copula and the h function.

Source: https://cran.r-project.org/web/packages/CDVine/index.html

• rmgarch: estimation and one-step-ahead forecasting for the DCC GARCH.

Source: https://cran.r-project.org/web/packages/rmgarch/index.html

• lpSolverAPI: solving linear programming problem associated with C-VaR portfolio con-

struction.

Source: https://cran.r-project.org/web/packages/lpSolveAPI/index.html

• tmvtnorm: sampling from the truncated multivariate normal using the GIBBS sampling(Kotecha

and Djuric (1999)).

Source: https://cran.r-project.org/web/packages/tmvtnorm/index.html

• xts: convert data into zoo-type time series.

Source: https://cran.r-project.org/web/packages/xts/index.html

• mvtnorm: fit the data into the multivariate normal distribution.

Source: https://cran.r-project.org/web/packages/mvtnorm/index.html
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• mvnmle: maximum-likelihood estimation in general.

Source: https://cran.r-project.org/web/packages/mvnmle/index.html

• stats: statistical computations(correlation, covariance, kendall’s τ) in general.

Source: https://cran.r-project.org/web/packages/mvnmle/index.html

In the last two sections, we list the code we have written that makes use of the above-mentioned

packages to achieve the goal of our study. Note that the ’LL Normal EIS X.m’ function, the ad-

justed version for the SCARX estimation, bases off of the original version ’LL Normal EIS.m’(Hafner

and Manner (2012)).

Appendix K. R Programming Code

Listing 1. DATA Preparation

1 ##DATA PREPARATION

2 ##Merge and clean the data

3 range <- "2001/2018"

4 setxts <-function(df){

5 d <- df$Date

6 f <- df$Close

7 c <- as.character(f)

8 p <- as.numeric(c)

9 x <- as.xts(p,d)

10 x <- rmna(x)

11 return(x[range ])

12 }

13

14 setxts_alt <- function(df){

15 d <- df$Date

16 p <- df$Price

17 x<-as.xts(p,d)

18 x<- rmna(x)

19 return(x[range ])

20 }

21

22 setxts_nik <- function(df){

23 d <- df$Date

24 f <- df$Price

25 c <- as.character(f)

26 p <- as.numeric(gsub(",", "", c))

27 x <- as.xts(p,d)

28 x <- rmna(x)

29 return(x)

30 }

31

32 setxts_gold <- function(df){

33 d<- df[,1]

34 c <- as.character(df[,2])

35 p <- as.numeric(c)

36 x <- as.xts(p,d)

37 x<- rmna(x)

38 return(x[range ])

39 }

40

41 rmna <- function(x){

42 xn <- subset(x,is.na(x)== FALSE)

43 return(xn)

44 }

45

46 p_cac <- setxts(df_cac)

47 p_dax <- setxts(df_dax)

48 p_dji <- setxts(df_dji)

49 p_nas <- setxts(df_nas)

50 p_sse <- setxts(df_sse)

51
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52 p_fx1 <- setxts_alt(df_fx1)

53 p_fx2 <- setxts_alt(df_fx2)

54 p_nik <- setxts_nik(df_nikkei)

55 p_gold <- setxts_gold(df_gold)

56

57 A <- merge(p_dax ,p_cac)

58 B <- merge(p_fx1 ,p_fx2 , p_gold)

59 C <- merge(p_dji ,p_nas)

60 D <- merge(p_sse , p_nik)

61

62 df_P <- merge(A,B)

63 df_P <- merge(df_P,C)

64 df_P <- merge(df_P,D)

65

66 df_P <- df_P["2001 -01 -02/2018"]

67 df_P <- na.locf(df_P,fromLast = FALSE)

68 df_P["2001/2001 -01 -04","p_nik"]<-df_P["2001 -01 -05","p_nik"]

69

70 matrix.P <- as.matrix(df_P)

71 n <- length(matrix.P[,1])

72 matrix.R <- log(matrix.P[2:n,]/matrix.P[1:n-1,]) * 100

73 df.R <- as.xts(matrix.R)

74

75

76 plot(df.R)

77 cor(df.R)

78

79 # l <- list()

80 # for (i in 2:9){

81 # vec <- as.matrix(b[,i])

82 # tree <- missForest(vec ,10 ,100)

83 # vec_update <- tree$ximp

84 # l[i]<- vec_update

85 # }

86

87 U.wes = U[,c(8,4,5,3,2)]

88 U.est = U[,c(9,6,7)]

Listing 2. Pipeline

1 ###-----------------------This file reads results from and export results to Matlab ----------------------------###

2

3

4 ##output: results obtained from bivariate SCARs for a given layer

5 ##path: theta generated from importance samplers

6 ##Calculating the mean of h and pass it to the next iteration

7

8 #obtain the hfunction!!!! powerhouse here lol

9 U.list <- list(marginal = U)

10 U.adhoc <- read.csv("U.csv",header = FALSE)

11 path.adhoc <- read.csv("paths.csv",header = FALSE)

12 getHList(U.adhoc ,path.adhoc)

13

14

15 ##read in files for estimating scarVineCDF

16 EPS <- read.csv("EPS.csv")

17 path_layer_1_est <- read.csv("paths_layer_1_est.csv")

18 path_layer_2_est <- read.csv("paths_layer_2_est.csv")

19 path_layer_1_wes <- read.csv("paths_layer_1_wes.csv")

20 path_layer_2_wes <- read.csv("paths_layer_2_wes.csv")

21 path_layer_3_wes <- read.csv("paths_layer_3_wes.csv")

22 path_layer_4_wes <- read.csv("paths_layer_4_wes.csv")

23

24 ##joining paths together

25 PATH_est <- data.frame(path_layer_1_est ,path_layer_2_est)

26 PATH_wes <- data.frame(path_layer_1_wes ,path_layer_2_wes ,path_layer_3_wes ,path_layer_4_wes)

27

28 ##partition the EPS datafrome into two , Asian and Western

29 EPS_est <- EPS[,c("r_fx2","r_sse","r_nik")]

30 EPS_wes <- EPS[, c("r_fx1","r_dji","r_nas","r_cac","r_dax")]

31

32

33 ##get the CDF of those two vine copulas!!!

34 F_wes <- scarVineCDF(EPS = EPS_wes ,PATHS = PATH_wes)

35 F_est <- scarVineCDF(EPS = EPS_est , PATHS = PATH_est)

37



36

37 F_est <- matrix(F_est , nrow = length(F_est), ncol = 1)

38 F_wes <- matrix(F_wes , nrow = length(F_wes), ncol = 1)

39 U_ew <- matrix(cbind(F_wes ,F_est),nrow = length(F_wes),ncol = 2)

40 U_ew <- as.data.frame(U_ew)

41 colnames(U_ew) <- c("c_wes","c_est")

42 write.csv(U_ew , "U_ew.csv")

43

44 #preparing data for

45 path_est <- read.csv("path_est.csv",header = FALSE)

46 cdf.est <- data.frame()

47 for (i in 1:4753){

48 path <- path_est[i,]

49 u1 <- U.est$V1[i]

50 u2 <- U.est$V2[i]

51 cdf <- BiCopCDF(u1 = u1 ,u2 = u2 ,family = 1,par = path)

52 cdf.est <- rbind(cdf.est ,cdf)

53 }

54 colnames(cdf.est)<- c("cop_sse_nik")

55

56 EPS_estSansFx <- EPS_est[,c(3,2)]

57 cdf.est.alt <- scarVineCDF(EPS = EPS_estSansFx ,PATHS = path_est ,N = 1000, corr = cor(EPS_estSansFx))

58

59 df.interagir <- cbind(cdf.est ,returns.cdf)

60 xts.df.interagir <- xts(df.interagir ,order.by = time(xts.r.gold))

61 riskAversMetric <- rollapply(xts.r.gold , 22, function(x){colMeans(x[x>0,])})

62 xts.df.interagir <- merge(riskAversMetric ,xts.df.interagir ,join = "right")

63 xts.df.interagir <- xts.df.interagir["2001 -02/2018"]

64

65 estBic <- BiCopEst(u1 = xts.df.interagir$cop_sse_nik ,u2 = xts.df.interagir$returns.cdf ,family = 4)

66 CDVineLogLik(merge(xts.df.interagir$cop_sse_nik ,xts.df.interagir$returns.cdf),family = 4,par = 1.57906 , type = 1)

67 write.csv(xts.df.interagir ,"df_interagir.csv")

Listing 3. Functions for C-VaR portfolio Construction

1 ##Function for predicting volatility(SV model)

2 getPredVol <- function(par ,sigma ,N = 22){

3 sigma <- as.data.frame(sigma)

4 nVar = length(par[1,])

5 alpha = par[1,]

6 beta = par[2,]

7 nu = par[3,]

8 mu = alpha/(1-beta)

9 h = log(sigma)

10 pred.h <- data.frame ()

11 pred.sig <- data.frame()

12 pred.vol <- data.frame()

13 for (i in 1:N){

14 pred.h <- rbind(pred.h, mu + (beta^i)*(h - mu))

15 pred.sig = rbind(pred.sig , sqrt((nu^2)*(1-beta ^(2*i))/(1 - beta ^2)));

16 }

17 pred.vol <- exp(pred.h + (pred.sig^2)/2)

18 return(colMeans(pred.vol))

19 }

20

21 #Function for conducting out -of-sample forecasting for the dependence parameter of Dynamic C-vine

22 getPredTheta <- function(par ,theta ,N = 22){

23 theta <- as.data.frame(theta)

24 lam <- 0.5*log ((1+ theta)/(1-theta))

25 alpha = par[1,]

26 beta = par[2,]

27 nu = par[3,]

28 mu = alpha/(1-beta)

29 pred.lam <- data.frame()

30 pred.sig <- data.frame()

31 pred.theta <- data.frame ()

32 for (i in 1:N){

33 pred.lam <- rbind(pred.lam , mu + (beta^i)*(lam - mu))

34 pred.sig = rbind(pred.sig , sqrt((nu^2)*(1-beta ^(2*i))/(1 - beta ^2)));

35 }

36 add1 = (exp(2*pred.lam) - 1)/(exp(2*pred.lam)+1);

37 den = -4*(exp(2*pred.lam) -1)*(exp(2*pred.lam))*(pred.sig ^2);

38 nom = (exp(2*pred.lam) + 1)^3;

39 add2 = den/nom;

40 pred.theta = add1 + add2;
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41 return (colMeans(pred.theta))

42 }

43

44

45 #Function for obtaining the porfolio weight(CVaR portfolio!!!!!)

46 getOptWeight <- function(parSV , parDCV = NULL , sigma , theta = NULL , family = NULL ,

47 N = 22, isDynamic = !is.null(parDCV), simNum = 10000, R = 0.003,

48 par2 = NULL ,shortLimit = rep(-Inf ,4),longLimit = rep(-Inf ,4)){

49 pred.vol <- getPredVol(parSV ,sigma ,N)

50 pred.theta <- NULL

51 if (isDynamic){

52 pred.theta <- getPredTheta(par = parDCV ,theta = theta , N = N)

53 family = rep(1,length(theta))

54 par2 <- rep(0,length(family))

55 }else{

56 pred.theta <- theta

57 if (is.null(par2)){

58 par2 <- rep(0,length(family))

59 }

60 }

61 simU <- CDVineSim(simNum ,par = pred.theta ,par2 = par2 ,family = family , type = 1)

62 simR <- simU

63 for (i in 1:4){

64 u <- simU[,i]

65 simR[,i] <- qnorm(u,0,pred.vol[i])

66 }

67 v <- solveCVaRPortfolio(simR = simR ,simNum = simNum ,shortLimit = shortLimit ,longLimit = longLimit , R = R)

68 res <- matrix(v,nrow = 1,dimnames = list(NULL ,c("VaR","w_dax","w_dji","w_nas","w_cac")))

69 thetaOutput <- matrix(pred.theta ,nrow = 1)

70 res <- cbind(res ,thetaOutput)

71 return(res)

72 }

73

74

75 ##-----------------BLOCK ------------------------------------##

76 #below are the function input for ’apply ’ function

77 #(used to conduct Portfolio Rebalancing)

78 #optimal weight Dynamic C-vine monthly rebalanced

79 optWDCV <- function(x){

80 df1 <- x[ ,1:6]

81 df2 <- x[ ,7:10]

82 res <- getOptWeight(parSV = Param.SV,parDCV = param_DCV ,sigma = df2 ,

83 theta = df1 ,simNum = 2000,R = 0.01)

84 return(res)

85 }

86 #Optimal weight Dynamic C-vine weekly rebalanced

87 optWDCV.weekly <- function(x){

88 df1 <- x[ ,1:6]

89 df2 <- x[ ,7:10]

90 res <- getOptWeight(parSV = Param.SV,parDCV = param_DCV ,sigma = df2 ,

91 theta = df1 ,simNum = 2000,R = 0.04, N = 5)

92 return(res)

93 }

94 #Optimal weight Static C-vine monthly rebalanced

95 optWSCV <-function(x){

96 res <- getOptWeight(parSV = Param.SV,parDCV = NULL ,sigma = x,simNum = 20000,

97 family = selectRes$family ,theta = selectRes$par ,

98 par2 = selectRes$par2 ,R = 0.01)

99 return(res)

100 }

101 #Optimal weight Static C-vine weekly rebalanced

102 optWSCV.weekly <-function(x){

103 res <- getOptWeight(parSV = Param.SV,parDCV = NULL ,sigma = x,simNum = 2000,

104 family = selectRes$family ,theta = selectRes$par ,

105 par2 = selectRes$par2 ,R = 0.04)

106 return(res)

107 }

108 #optimal weight Dynamic C-vine risk -controlled

109 optWDCV.weekly.shortLimited <- function(x){

110 limitS <- rep(-2,4)

111 limitL <- rep(2,4)

112 df1 <- x[ ,1:6]

113 df2 <- x[ ,7:10]

114 res <- getOptWeight(parSV = Param.SV,parDCV = param_DCV ,

115 sigma = df2 ,theta = df1 ,simNum = 1000,R = -1,

116 N = 5,shortLimit = limitS ,longLimit = limitL)
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117 return(res)

118 }

119 #optimal weight DCC -GARCH

120 optWDCC <- function(vector.covMat ,simNum = 2000, beta = 0.99, R = 0.04){

121 limitS <- rep(-2,4)

122 limitL <- rep(2,4)

123 covMat <- matrix(vector.covMat ,nrow = 4)

124 simR <- mvrnorm(n = simNum ,mu = rep(0,4),Sigma = covMat)

125 v <- solveCVaRPortfolio(simR = simR ,shortLimit = limitS ,longLimit = limitL)

126 res <- matrix(v,nrow = 1,dimnames =

127 list(NULL ,c("VaR","w_dax","w_dji","w_nas","w_cac")))

128 return(res)

129 }

130 ##-------------------------------------------------------------------------------------------------------##

131

132

133 #Get portfolio returns given portfolio weight

134 getPortfolioReturn <- function(weight , R = xts.returns[testRange],

135 f = "weeks", portfolioName = "V1"){

136 list.return <- split(R, f = f)

137 list.w <- split(weight , f=f)

138 N <- length(list.return)

139 xts.port <- data.frame()

140 for (i in 1:N){

141 w = matrix(list.w[[i]],nrow = 4)

142 subR <- as.matrix(list.return [[i]])

143 r <- subR %*% w

144 xts.port <- rbind(xts.port ,r)

145 }

146 xts.port <- xts(xts.port ,order.by = time)

147 colnames(xts.port) <- portfolioName

148 return(xts.port)

149 }

150

151

152 #Solve the linear programming problem associated with CVaR portfolio

153 solveCVaRPortfolio <- function(simR ,beta = 0.99, simNum = length(simR [,1]),

154 shortLimit = NULL , longLimit = NULL , R){

155 m =-colMeans(simR)

156 A = matrix(nrow = simNum + 2, ncol = simNum + 5)

157 A[1,] <- c(0,t(m),rep(0,simNum))

158 A[2,] <- c(0,rep(1,4),rep(0,simNum))

159 A[3:( simNum +2) ,1:5] <- cbind(rep.row(1,n = simNum),simR)

160 A[3:( simNum +2) ,6:( simNum +5)] = diag(simNum)

161

162 B = c(-R,1,rep(0,simNum))

163 constranints_direction = c(" <=","=",rep(">=",simNum))

164

165 C <- c(1,rep(0,4),rep ((1/(simNum*(1-beta))),simNum))

166

167 port.lp <- make.lp(0,simNum +5)

168 for (i in 1:( simNum +2)){

169 add.constraint(port.lp,xt = A[i,],type = constranints_direction[i],

170 rhs = B[i])

171 }

172 set.objfn(port.lp,C)

173 set.type(port.lp ,1,"real")

174 set.type(port.lp ,c(2,3,4,5),"real")

175 set.bounds(port.lp,lower = c(-Inf ,shortLimit ,rep(0,simNum)),

176 upper = c(Inf , longLimit ,rep(Inf ,simNum)))

177 solve(port.lp)

178 v <- get.variables(port.lp)

179 v <- v[1:5]

180 # res <- list(VaR = v[1], weights = matrix(v[2:5], nrow = 1,

181 # dimnames = list(NULL ,c("w_dax","w_dji","w_nas","w_cac"))))

182 return(v)

183 }

Listing 4. C-VaR Portfolio Construction

1 #Portfolio based on static C-vine

2 order <- c("r_dax","r_dji","r_nas","r_cac")

3

4 STD <- read.csv("STD.csv")

5 Mean.ordered <- Mean[,order]
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6 STD.ordered <- STD[,order]

7 CVinwRN <- CDVineSim(N = 1000, family = selectRes$family

8 ,par = selectRes$par ,par2 = selectRes$par2 ,type = 1)

9

10 PATHS_DCVP <-read.csv("PATHS_DCVP.csv",header = FALSE)

11 param_DCV <- read.csv("param_CV.csv")

12 dfR <- read.csv("dfR.csv",header = TRUE)

13 dfR$Date <- as.Date(dfR$Date)

14 Param.SV <- read.csv("PARAM_SV.csv",header = TRUE)

15 Param.SV <- Param.SV[,order]

16 param_DCV$Static <- c(PATHS_DCVP [1,6],0,0)

17 #train test split

18 xts.returns <- as.xts(dfR[,2:5],dfR$Date)

19 xts.paths <- as.xts(PATHS_DCVP ,dfR$Date)

20 xts.STD <- as.xts(STD ,dfR$Date)

21 xts.weight.DCV <- xts(rep(NaN ,4753) ,order.by = dfR$Date)

22 xts.weight.SCV <- xts(rep(NaN ,4753) ,order.by = dfR$Date)

23 xts.predVol.DCV <- xts(rep(NaN ,4753) ,order.by = dfR$Date)

24 xts.predVol.SCV <- xts(rep(NaN ,4753) ,order.by = dfR$Date)

25 xts.predTheta <- xts(rep(NaN ,4753) ,order.by = dfR$Date)

26 xts.paths.test <- xts.paths["2016/2018"]

27 xts.paths.train <- xts.paths["2001/2015"]

28

29 trainRange = "2001/2015"

30 testRange = "2016/2018"

31 #solve for the best weights for static C-vine Model

32 res.SCV <- selectRes

33

34 asset.name <- c("dax","dji","nas","cac")

35

36

37 #predict the volatility of next month

38

39 #----------------------rebalance monthly ------------------------------

40 xts.lag.path <- apply.monthly(xts.paths.test , last)

41 xts.lag.path["2016 -02/2018 -12"] <- xts.lag.path["2016 -01/2018 -11"]

42 xts.lag.path["2016 -01"] <- last(xts.paths["2015 -12"])

43

44 xts.lag.std <- apply.monthly ((xts.STD[testRange ]),last)

45 xts.lag.std["2016 -02/2018 -12"] <- xts.lag.std["2016 -01/2018 -11"]

46 xts.lag.std["2016 -01"] <- last(xts.STD["2015 -12"])

47 xts.lag.BIG = merge(xts.lag.path ,xts.lag.std)

48

49 xts.returns.dcvp = data.frame()

50 xts.returns.scvp = data.frame()

51

52 xts.w.dcvp <- apply.monthly(xts.lag.BIG ,optWDCV)

53 xts.w.scvp <- apply.monthly(xts.lag.std ,optWSCV)

54 xts.w.dcvp <- xts.w.dcvp [,2:5]

55 xts.predPaths.monthly <- xts.w.dcvp [ ,6:11]

56 xts.paths.big.monthly <- na.locf(merge(xts.paths.test ,xts.predPaths.monthly),na.rm = FALSE)

57 xts.w.scvp <- xts.w.scvp [,2:5]

58 list.R <- split(xts.returns[testRange],f="months")

59 list.w.dcvp <- split(xts.w.dcvp , f="months")

60 list.w.scvp <- split(xts.w.scvp , f="months")

61 N = length(list.R)

62 for (i in 1:N){

63 w.dcvp = matrix(list.w.dcvp[[i]],nrow = 4)

64 w.scvp = matrix(list.w.scvp[[i]],nrow = 4)

65 subR <- as.matrix(list.R[[i]])

66 r.dcvp <- subR %*% w.dcvp

67 r.scvp <- subR %*% w.scvp

68 xts.returns.dcvp <- rbind(xts.returns.dcvp ,r.dcvp)

69 xts.returns.scvp <- rbind(xts.returns.scvp ,r.scvp)

70 }

71

72 time = time(xts.returns[testRange ])

73 xts.returns.dcvp <- apply.monthly (0.01*xts(xts.returns.dcvp ,order.by = time(xts.returns[testRange ])),Return.cumulative)

74 xts.returns.scvp <- apply.monthly (0.01*xts(xts.returns.scvp ,order.by = time(xts.returns[testRange ])),Return.cumulative)

75 xts.returns.naive <- apply.monthly (0.01*xts(rowMeans(xts.returns[testRange ]),order.by = time(xts.returns[testRange ])),

Return.cumulative)

76 colnames(xts.returns.dcvp) <- c("dynamicC -vinePortfolio_MonthlyRebalanced")

77 colnames(xts.returns.scvp) <- c("staticC -vinePortfolio_MonthlyRebalanced")

78 colnames(xts.returns.naive) <- c("1/N_Portfolio")

79

80 #----------------------rebalance Weekly ------------------------------
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81 xts.lag.path.weekly = apply.weekly(xts.paths.test ,last)

82 xts.lag.path.weekly <- lag.xts(xts.lag.path.weekly)

83 xts.lag.path.weekly [1,] <- xts.lag.path.weekly [2,]

84 xts.lag.std.weekly <- lag.xts(apply.weekly(xts.STD[testRange],last))

85 xts.lag.std.weekly [1,] <- xts.lag.std.weekly [2,]

86 xts.lag.BIG.weekly = merge(xts.lag.path.weekly ,xts.lag.std.weekly)

87

88 xts.w.dcvp.weekly <- apply.weekly(xts.lag.BIG.weekly ,optWDCV.weekly)

89 xts.w.scvp.weekly <- apply.weekly(xts.lag.std.weekly ,optWSCV.weekly)

90 xts.w.dcvp.weekly.limited <- apply.weekly(xts.lag.BIG.weekly ,optWDCV.weekly.shortLimited)

91 xts.w.dcvp.weekly <- xts.w.dcvp.weekly [,2:5]

92 xts.w.scvp.weekly <- xts.w.scvp.weekly [,2:5]

93 xts.w.dcvp.weekly.limited <- xts.w.dcvp.weekly.limited [ ,2:5]

94 xts.predPaths.weekly <- xts.w.dcvp.weekly.limited [ ,6:11]

95 xts.paths.big.weekly <- na.locf(merge(xts.paths.test ,xts.predPaths.weekly),na.rm = FALSE)

96 list.R.weekly <- split(xts.returns[testRange],f="weeks")

97 list.w.dcvp.weekly <- split(xts.w.dcvp.weekly , f="weeks")

98 list.w.scvp.weekly <- split(xts.w.scvp.weekly , f="weeks")

99 list.w.dcvp.weekly.limited <- split(xts.w.dcvp.weekly.limited , f="weeks")

100

101 N.weekly = length(list.R.weekly)

102 xts.returns.dcvp.weekly = data.frame()

103 xts.returns.scvp.weekly = data.frame()

104

105 xts.returns.dcvp.weekly.limited = getPortfolioReturn(xts.w.dcvp.weekly.limited ,portfolioName = "dynamicC -vinePortfolio_

WeeklyRebalanced_riskControl")

106

107 # for (i in 1:N.weekly){

108 # w.dcvp.weekly = matrix(list.w.dcvp.weekly [[i]],nrow = 4)

109 # w.scvp.weekly = matrix(list.w.scvp.weekly [[i]],nrow = 4)

110 # subR.weekly <- as.matrix(list.R.weekly [[i]])

111 # r.dcvp.weekly <- subR.weekly %*% w.dcvp.weekly

112 # r.scvp.weekly <- subR.weekly %*% w.scvp.weekly

113 # xts.returns.dcvp.weekly <- rbind(xts.returns.dcvp.weekly ,r.dcvp.weekly)

114 # xts.returns.scvp.weekly <- rbind(xts.returns.scvp.weekly ,r.scvp.weekly)

115 # xts.returns.dcvp.weekly.limited <- rbind(xts.returns.dcvp.weekly.limited ,r.scvp.weekly)

116 # }

117

118 xts.returns.dcvp.weekly <- apply.monthly (0.01*xts(xts.returns.dcvp.weekly ,order.by = time(xts.returns[testRange ])),Return.

cumulative)

119 xts.returns.scvp.weekly <- apply.monthly (0.01*xts(xts.returns.scvp.weekly ,order.by = time(xts.returns[testRange ])),Return.

cumulative)

120 xts.returns.dcvp.weekly.limited <- apply.monthly (0.01*xts.returns.dcvp.weekly.limited ,Return.cumulative)

121 colnames(xts.returns.dcvp.weekly) <- c("dynamicC -vinePortfolio_WeeklyRebalanced")

122 colnames(xts.returns.scvp.weekly) <- c("staticC -vinePortfolio_WeeklyRebalanced")

123 charts.PerformanceSummary(xts.returns.dcvp.weekly)

124 charts.PerformanceSummary(xts.returns.scvp.weekly)

125

126 #---------Monthly returns of the originals -------------

127 xts.returns.test <- xts.returns[testRange]

128 xts.returns.test <- apply.monthly (0.01*xts.returns.test ,Return.cumulative)

129

130 #-------------------Benchmark DCC model ----------------------

131 uspec <- ugarchspec(mean.model = list(armaOrder = c(0,0),include.mean = TRUE))

132 mspec <- multispec(replicate (4,uspec))

133 spec <- dccspec(mspec ,model = "DCC",distribution = "mvnorm",VAR = FALSE)

134 mdcc <- dccfit(spec ,xts.returns ,out.sample = 841)

135 mdcc <- dccfit(spec ,xts.returns)

136 mdcc.forecast <- dccforecast(mdcc ,n.roll = 841)

137 mdcc.forecast.fit <- fitted(mdcc.forecast)

138 goodStuff <- mdcc.forecast@mforecast$H

139 # covMatDCC <- mdcc.forecast@mforecast$H

140 # list.covMatDCC <- list()

141 # for (i in 1:4753){

142 # cov = covMatDCC[,,i]

143 # list.covMatDCC [[i]]<-cov

144 # }

145 # list.covMatDCC.test <- list.covMatDCC [(4753 -841) : 4752]

146 df.vectorize.covMatDCC <- data.frame()

147 for (i in 1:841){

148 cov <- goodStuff [[i]]

149 df.vectorize.covMatDCC <- rbind(df.vectorize.covMatDCC ,matrix(cov ,nrow = 1))

150 }

151 xts.vectorise.covMat <- xts(df.vectorize.covMatDCC ,order.by = time)

152 #Montly rebalanced

153 xts.vectorise.predCov.monthly <- apply.monthly(xts.vectorise.covMat ,first)
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154 xts.w.DCC.monthly <- apply.monthly(xts.vectorise.predCov.monthly , optWDCC)

155 xts.w.DCC.monthly <-xts.w.DCC.monthly [,2:5]

156

157 #Weekly rebalanced

158 xts.vectorise.predCov.weekly <- apply.weekly(xts.vectorise.covMat ,first)

159 xts.w.DCC.weekly <- apply.weekly(xts.vectorise.predCov.weekly , optWDCC)

160 xts.w.DCC.weekly <- xts.w.DCC.weekly [ ,2:5]

161 xts.returns.DCC <- getPortfolioReturn(xts.w.DCC.weekly , portfolioName = c("DCCPortfolio_WeeklyRebalanced"))

162 xts.returns.DCC <- apply.monthly (0.01*xts.returns.DCC ,Return.cumulative)

163 chart.RelativePerformance(xts.returns.DCC ,xts.returns.dcvp.weekly)

164

165

166 xts.returns.dcvp.best <- apply.monthly (0.01*xts.returns.dcvp.best ,Return.cumulative)

167 ##performance analysis

168 charts.PerformanceSummary(merge(xts.returns.dcvp.weekly.limited ,xts.returns.naive))

169

170 attach(mtcars)

171 par(mfrow=c(1,1))

172 charts.PerformanceSummary(merge(xts.returns.DCC ,xts.returns.naive),methods = c("HistoricalES"))

173 charts.PerformanceSummary(merge(xts.returns.dcvp.weekly.limited ,xts.returns.naive))

174

175 colnames(xts.returns.dcvp.weekly) <- c("DynamicC -Vine")

176 colnames(xts.returns.dcvp.weekly.limited) <- c("DynamicC -Vine_RiskControlled")

177 colnames(xts.returns.DCC) <- c("DCC")

178 colnames(xts.returns.scvp.weekly) <- c("StaticC -Vine")

179 charts.PerformanceSummary(merge(xts.returns.dcvp.weekly ,xts.returns.naive),methods = c("HistoricalES"))

180 charts.PerformanceSummary(merge(xts.returns.dcvp.weekly.limited ,xts.returns.naive),methods = c("HistoricalES"))

181 charts.PerformanceSummary(merge(xts.returns.scvp.weekly ,xts.returns.naive),methods = c("HistoricalES"))

182 charts.PerformanceSummary(merge(xts.returns.DCC ,xts.returns.naive),methods = c("HistoricalES"))

183

184 SharpeRatio(xts.returns.dcvp.weekly , FUN = "StdDev")

185 SharpeRatio(xts.returns.dcvp.weekly.limited ,FUN = "StdDev")

186 SharpeRatio(xts.returns.scvp.weekly ,FUN = "StdDev")

187 SharpeRatio(xts.returns.DCC ,FUN = "StdDev")

188 SharpeRatio(xts.returns.naive ,FUN = "StdDev")

189

190 SharpeRatio(xts.returns.DCC ,FUN = "StdDev")

191 SortinoRatio(xts.returns.dcvp.weekly , FUN = "StdDev")

192 SortinoRatio(xts.returns.dcvp.weekly.limited ,FUN = "StdDev")

193 SortinoRatio(xts.returns.scvp.weekly ,FUN = "StdDev")

194 SortinoRatio(xts.returns.DCC ,FUN = "StdDev")

195 SortinoRatio(xts.returns.naive ,FUN = "StdDev")

196

197 OmegaSharpeRatio(xts.returns.dcvp.weekly , FUN = "StdDev")

198 OmegaSharpeRatio(xts.returns.dcvp.weekly.limited ,FUN = "StdDev")

199 OmegaSharpeRatio(xts.returns.scvp.weekly ,FUN = "StdDev")

200 OmegaSharpeRatio(xts.returns.DCC ,FUN = "StdDev")

201 OmegaSharpeRatio(xts.returns.naive ,FUN = "StdDev")

Listing 5. Static C-vine Order Selection

1 df.wes = U.wes[,c(’r_dji’,’r_nas’,’r_cac’,’r_dax’)]

2

3 #The method is based on Czado et al .(2012)

4 #estimate pair -wise Kendall ’s tau

5 mat.cor <- cor(df.wes ,method = "kendall")

6 S <- rowSums(mat.cor)

7 index_1 <- which(S == max(S))

8

9 pivot1 <- df.wes[,index_1]

10 df2 <- df.wes[,-index_1]

11 df2.cond <- df2

12 for (i in 1:3){

13 newcommer <- df2[,i]

14 par <- BiCopEst(pivot1 ,newcommer ,family = 1)$par

15 H1 <- BiCopHfunc(pivot1 ,newcommer ,family = 1,par = par)

16 df2.cond[,i] <- H1$hfunc1

17 }

18 mat.cor1 <- cor(df2.cond ,method = "kendall")

19 S1 <- rowSums(mat.cor1)

20 index_2 <- which(S1 == max(S1))

21

22 df3 <- df2.cond[,-index_2]

23 pivot2 <- df2.cond[,index_2]

24 df3.cond <-df3
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25 for (i in 1:2){

26 newcommer <- df3[,i]

27 par <- BiCopEst(pivot2 ,newcommer ,family = 1)$par

28 H2 <- BiCopHfunc(pivot2 ,newcommer ,family = 1,par = par)

29 df3.cond[,i] <- H2$hfunc1

30 }

31

32 rmdn <- colnames(df3)

33 order = cbind(names(index_1),names(index_2),rmdn[1],rmdn [2])

34 df.wes.ordered <- U.wes[,order]

35

36

37 #here we construct a static C-vine model which will later be used for conparison

38 selectRes <- CDVineCopSelect(df.wes.ordered ,type = 1)

39 BiCopMetaContour(u1 = df.wes.ordered [,1],u2 = df.wes.ordered[,2],family = 7,par = 0.3427 , par2 = 1.4453)

40 write.csv(df.wes.ordered ,"U_wes_ordered.csv")

Listing 6. Functions for C-Vine PIT

1 #Obtain cdf for dynamic SCAR

2 #Based on Algorithm 2

3 scarVineCDF <- function(EPS , PATHS , IS = TRUE , N = 100, is.fixed.path = FALSE , fix.val = NULL ,corr = NULL , lb = -10){

4 nVar = length(EPS[1,])

5 nr <- length(EPS[,1])

6 if (is.null(corr)){

7 fit <- mlest(EPS)

8 sigmahat <- fit$sigmahat

9 corr <- cov2cor(sigmahat)

10 }

11 CDF <- array(dim = nr)

12 for (i in 1:nr){

13 # print(i)

14 if (!is.fixed.path){

15 path <- as.vector(as.matrix(PATHS[i,]))

16 path.rep <- rep.row(path ,N)

17 }else{

18 path.rep <- rep.row(fix.val ,N)

19 }

20 eps <- as.vector(as.matrix(EPS[i,]))

21 if (IS){

22 rnd <- rtmvnorm(N,sigma = corr ,upper = eps ,algorithm = "gibbs")

23 d <- dtmvnorm(rnd ,sigma = corr ,upper = eps)

24 }else{

25 rnd <- draw.d.variate.uniform(no.row = N,d = nVar , cov.mat = corr)

26 rep.lb <- rep(lb,nVar)

27 f1 <- rep.row(eps - rep.lb,N)

28 rnd <- f1*rnd + rep.lb

29 d <- 1

30 }

31 f <- scarVinePDF(rnd ,path.rep)

32 cdf <- mean(f/d)

33 cdf <- min(cdf ,1)

34 CDF[i] <- cdf

35 # print(cdf)

36 }

37 return(CDF)

38 }

39

40

41 #obtain pdf of the dynamic C-vine density

42 #pdf is obtained through an iterative approach based on the h(‘) function

43 scarVinePDF <- function(EPS ,PATHS , family = 1, is.fixed.path = FALSE , fix.val = NULL){

44 nr <- length(EPS[,1])

45 nVar <- length(EPS[1,])

46 nLayer <- nVar - 1

47 tC <- (nVar +1)*nVar/2

48 MM <- matrix(nrow = 1,ncol = tC)

49 FF <- matrix(nrow = nr, ncol = 1)

50 if (is.fixed.path){

51 PATHS <- rep.row(fix.val ,nr)

52 }

53 for (i in 1:nr){

54 f<-1

55 eps = as.matrix(EPS[i,])

56 path <- PATHS[i,]
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57 u <- pnorm(eps)

58 MM[,1:nVar] <- as.matrix(u)

59 for (nn in 1: nVar){

60 f <- f*dnorm(EPS[i,nn])

61 }

62 count1 = 0

63 count2 = 0

64 for (j in 1: nLayer){

65 n1 <- nLayer - j + 2

66 n2 <- n1 -1

67 H <- matrix(MM[( count1 +1):( count1+n1)],nrow = 1,ncol = n1)

68 param <- matrix(path[( count2 +1) : (count2+n2)],nrow = 1,ncol = n2)

69 pairs <- getPairs(H)

70 nPairs <- length(pairs [1,])/2

71 H_new <- matrix(nrow = 1,ncol = nPairs)

72 for (k in 1: nPairs){

73 h1 <- pairs[,2*k-1]

74 h2 <- pairs[,2*k]

75 par <- param[,k]

76 h <- BiCopHfunc(h1,h2,family = family ,par = par)$hfunc1

77 f <- f * BiCopPDF(h1,h2,family = family , par = par)

78 H_new[,k] <- h

79 }

80 count1 = count1 + n1

81 count2 = count2 + n2

82 MM[,(count1 + 1) : (count1 + n2)] <- H_new

83 }

84 FF[i,] <- f

85 }

86 return(FF)

87 }

88

89 #Auxiliary functions

90 getPairs <- function(X){

91 nc <- length(X[1,])

92 nr <- length(X[,1])

93 pairs <- matrix(nrow = nr,ncol = 2*(nc -1))

94 for (i in 1:(nc -1)){

95 pairs[,(2*i -1):(2*i)] <- cbind(X[,1],X[,i+1])

96 }

97 return(pairs)

98 }

99 rep.row <-function(x,n){

100 matrix(rep(x,each=n),nrow=n)

101 }

102

103

104 #Study variance of the cdf estimator

105 #Long running time

106 EPS.ordered <- EPS[,order]

107 returns.cdf <- scarVineCDF(EPS = EPS.ordered ,N = 5000, PATHS = PATHS_DCVP ,corr = cor(xts.returns))

108 valL <- c(50,seq (100 ,1000 , by = 100) ,1500 ,2000 ,3000 ,5000 ,10000 ,20000 ,50000)

109 arr.std = array()

110 count = 0

111 for (i in valL){

112 count = count + 1

113 rep.N = 1000

114 vessel <- scarVineCDF(N = i,EPS = matrix(rep.row(c(0.1 ,0.1 ,0.1 ,0.1),rep.N),nrow = rep.N),PATHS = PATHS_DCVP ,corr = cor(

xts.returns))

115 arr.std[count] <- std(vessel)

116 }

Listing 7. h(·; θt) in action

1 ##Crucial Function for Sequential Estimation of Dynamic C-vine

2 ##Make use of CDVine package to perform h() function(see (33) in our paper)

3 ##Then save the results to a certain directory

4 ##They will then be fed to Matlab

5 getHList <- function(U, path , name = NULL){

6 N = 200

7 TT = length(U[,1])

8 ncol <- length(U[1,])

9 nPair = 0

10 H.list = matrix(nrow = TT , ncol = ncol/2)

11 for (pair in seq(1,ncol -1,2)){
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12 H = array(dim = TT)

13 nPair = nPair + 1

14 U.pair <- U[,pair:(pair +1)]

15 path.pair <- path [,(1+(nPair -1)*N):(N*nPair)]

16 # path.pair <- path[,pair:(pair +1)]

17 nPaths = length(path.pair [1,])

18 for (i in 1:TT){

19 p <- array(path.pair[i,])

20 u <- U.pair[i,1]

21 v <- U.pair[i,2]

22 h = 0

23 for (j in 1: nPaths){

24 par1 = p[[j]]

25 h = h + BiCopHfunc(u,v,family = 1,par = par1 ,par2 = 0)$hfunc1

26 }

27 H[i] <- h/nPaths

28 }

29 # H.list[paste("pair",nPair)] <- H

30 H.list[,nPair] <- H

31 }

32 if (is.null(name)){

33 write.csv(H.list ,"H.csv")

34 return(H.list)

35 }else{

36 colnames(H.list)<-name

37 write.csv(H.list ,"H.csv")

38 return(H.list)

39 }

40 }

Listing 8. C-vine In-sample Validation

1 ##In -sample Validation for C-vine models

2

3 U.ordered <- read.csv("Uordered.csv",header = TRUE)

4

5 ll.scv <-CDVineLogLik(U.ordered ,family = selectRes$family ,par = selectRes$par ,par2 = selectRes$par2 ,type = 1)

6 bic.scv <- CDVineBIC(U.ordered ,family = selectRes$family ,par = selectRes$par ,par2 = selectRes$par2 ,type = 1)

7 aic.scv <- CDVineAIC(U.ordered ,family = selectRes$family ,par = selectRes$par ,par2 = selectRes$par2 ,type = 1)

8 ll.dcv <- array()

9 for (i in 1:4753){

10 path <- PATHS_DCVP[i,]

11 u <- U.ordered[i,]

12 ll <- CDVineLogLik(u,family = rep(1,6),par = path , type = 1)

13 ll.dcv[i] <- ll$loglik

14 }

15 ll.dcv <- sum(ll.dcv)

16

17 aic.dcv <- 2*28 - 2 * ll.dcv

18 aic.scv <- 2*18 - 2* ll.scv

19

20 bic.dcv <- log (4753) - 2 * ll.dcv

21 bic.scv <- log (4753) - 2 * ll.scv

Listing 9. SCAR estimation R version

1 ##Reference to Hafner et al .(2012)

2 ##The computational time is so long that we did not implement

3 ##SCAR estimation using this function

4 ##We use the Matlab package from Hafner et al .(2019) instead

5

6

7 path <<- data.frame ()

8 LL <- function(u,v,ga,de,nu ,N,fam , par2 = 0){

9 ## choice of copulas:

10 # 1 = Gumbel Copula

11 # 2 = Clayton

12 # 3 = Normal

13 # 4 = Frank

14 # 5 = Rotated Gumbel

15 # 6 = Rotated Clayton

16 # so this is not valid anymore

17 iterations <- 5
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18 seed <- 100

19 ga <- ga

20 de <- de

21 nu <- nu

22 print(list(ga = ga, de = de , nu = nu))

23 T = length(u)

24

25 ap = matrix(nrow = T, ncol = 1)

26 q = matrix(nrow = T, ncol = 1)

27 av = matrix(nrow = T, ncol = 1)

28

29

30 if (abs(de) >0.99 | nu < 0.001 | nu > 1){

31 f = 10000;

32 return(f)

33 }else{

34 la = matrix(nrow = T+1, ncol = N)

35 set.seed(seed = seed)

36 crn <- matrix(rnorm ((T+1)*N),nrow = T+1, ncol = N)

37 # crn <- as.matrix(RN)

38 eps = nu*crn

39 la[1,] = rep(ga/(1-de),N)

40

41 for (j in 2:(T+1)){

42 la[j,] <- rep(ga,N) + de*la[j-1,] + eps[j,]

43 }

44

45 for (jj in 1 : iterations){

46 lnx = matrix(0, nrow = N,ncol = 1)

47 a1 = matrix(nrow = T,ncol = 1)

48 a2 <- matrix(nrow = T, ncol = 1)

49 la1 <- distort(la ,family = fam)

50

51 for (t in T:1){

52 ones <- matrix(rep(1,N),nrow = N,ncol = 1)

53 c2 <- matrix ((la[t+1,]), nrow = N, ncol = 1)

54 c3 <- matrix ((la[t+1 ,]^2), nrow = N, ncol = 1)

55 x <- cbind(ones ,c2,c3)

56 uu = u[t]

57 vv = v[t]

58 l = la1[t+1,]

59 y <- logd(u = uu , v = vv, lambda = l ,family = fam , iftranspose = FALSE)

60 y <- y + lnx

61 est <- solve(t(x)%*%x)%*%t(x)%*%y

62 a1[t] <- est[2]

63 a2[t] <- est[3]

64 E1 = ga + de*la[t,]

65 V2 = (nu^2)/(1-2*(nu^2)*est [3])

66 E2 = V2 * ((E1/(nu^2))+ est [2])

67

68 lnx = matrix (0.5*(((E2^2)/V2) -((E1^2)/(nu^2))),nrow = N, ncol = 1)

69

70 ap[t]=V2*((ga/(nu^2))+est [2])

71 q[t]=(V2/(nu^2))*de

72 av[t]=V2

73 }

74

75 for (j in 2:(T+1)){

76 la[j,] = ap[j-1] + q[j-1]*la[j-1,] + sqrt(av[j-1])*crn[j,1:N]

77 }

78

79 # if (mean(mean(la ,na.rm = TRUE)) >0){

80 # f = 10000

81 # return(f)

82 # }

83 }

84 }

85

86 ones <- matrix(1,nrow = 1,ncol = N)

87 av.mat <- av%*%ones

88 mu1s <- (la[2:(T+1) ,] - sqrt(av.mat)*crn [2:(T+1) ,])^2

89 mu0s <- (ga + de*la[1:T,])^2

90 lnx <- 0.5*((mu1s/(av.mat)) - (mu0s/nu^2))

91

92 CL = matrix(0,nrow = T, ncol = N)

93 la1 = distort(lambda = la, fam = fam)
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94

95 for (i in 1:N){

96 CL1 <- logd(u,v,family = fam , lambda = la1 [2:(T+1),i])

97 CL2 <- (a1) * la[2:(T+1),i]

98 CL3 <- (a2) * la[2:(T+1),i]^2

99 CL4 <- lnx[,i]

100 CL5 <- matrix (0.5*log(nu^2),nrow = T,ncol = 1)

101 CL6 <- 0.5*log(av)

102 CL[,i] <- CL1 - CL2 - CL3 + CL4 - CL5 + CL6

103 }

104 scal1 = mean(CL)

105 scal2 = mean(scal1)

106 lngs = -scal2 + CL

107 tg1 = log(mean(exp(colSums(lngs))))

108 f = T*scal2 + tg1

109

110 f = -f

111

112 path <<- la1 [2:(T+1) ,]

113 print(f)

114 return(f)

115

116 }

117

118 distort <- function(lambda ,family){

119

120 if (family ==1) distort <- (exp(2*lambda) - 1) / (exp(2*lambda) + 1) #normal copula

121 else if (family == 2) distort <- (exp(2*lambda) - 1) / (exp(2*lambda) + 1) #t copula

122 else if (family == 3) distort <- exp(lambda) #Clayton copula

123 else if (family == 4) distort <- exp(lambda)+1 #Gumbel Copula

124 else if (family ==5) distort <- lambda #Frank

125 else if (family == 13) distort = exp(lambda)

126 else if (family == 14) distort = exp(lambda)+1

127 return(distort)

128 }

129

130 logd <- function(u,v,lambda ,family , par2 = NULL , iftranspose = FALSE){

131 logd <- matrix(nrow = length(u),ncol = 1)

132 if (length(u) == length(lambda)){

133 for (k in 1: length(u)){

134 logd[k,1] <- BiCopPDF(u[k],v[k],family = family , par = lambda[k], par2 = par2)

135 }

136 return(log(logd))

137 }else{

138 logd <- sapply(lambda , function(x) BiCopPDF(u,v,family = family , par = x, par2 = par2))

139 logd <- log(logd)

140 if (iftranspose){

141 logd <- t(logd)

142 }

143 }

144 return(logd)

145 }

Appendix L. Matlab Programming Code

Listing 10. Transformation into Copula DATA using SV models

1 europe = ["r_dax","r_cac"];

2 % others = ["r_fx1","r_fx2","r_gold "];

3 us = ["r_dji","r_nas "];

4 % asia = ["r_sse","r_nik "];

5 % varlist = [europe ,us ,asia ,others ];

6

7 varlist = [us,europe]

8

9 N = length(varlist);

10 model = 1;

11 U = NaN(size(returns));

12 EPS = NaN(size(returns));

13 RES = cell(size(returns));

14 STD = NaN(size(returns));
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15 count = 0;

16 PARAM_SV = NaN(3,N);

17 logl_SV = NaN(N,1);

18 for i = varlist

19 count = count + 1;

20 r = returns{:,i};

21 res = SV_MLE_EIS(r,model);

22 std = sqrt(res.path);

23 STD(:,count) = std;

24 eps = r./std;

25 u = normcdf(eps);

26 U(:,count) = u;

27 EPS(:,count) = eps;

28 PARAM_SV(:,count) = res.theta;

29 logl_SV(count) = res.logl;

30 end

31

32 % U(:,10) = [];

33 % EPS(:,10) = [];

34 % U = array2table(U);

35 % U.Properties.VariableNames = varlist;

36 % U.date = date;

37 % EPS.date = date;

38 STD = array2table(STD (: ,1:4));

39 STD.Properties.VariableNames = varlist;

40 Mean = array2table(mean(returns{:,varlist }));

41 Mean.Properties.VariableNames = varlist;

42 EPS = array2table(EPS);

43 EPS.Properties.VariableNames = varlist;

44 PARAM_SV = array2table(PARAM_SV);

45 PARAM_SV.Properties.VariableNames = varlist;

46 writetable(PARAM_SV ,"PARAM_SV.csv");

47

48

49 plot(EPS)

50

51 wes = ["r_fx1","r_dji","r_nas","r_cac","r_dax"];

52 est = ["r_fx2","r_sse","r_nik"];

Listing 11. SCAR Estimation and Out-of-Sample Forecasting

1 % %train test split

2 % n = numel(dji);

3 % trainRange = 1:(n-250);

4 % testRange = (n -250+1):n;

5 % r1 = dji(trainRange);

6 % r2 = nas(trainRange);

7 % rt1 = dji(testRange);

8 % rt2 = nas(testRange);

9 %

10 % model = 1;

11 %

12 % res_dji = SV_MLE_EIS(r1,model);

13 % res_nas = SV_MLE_EIS(r2,model);

14 %

15 % sigma_dji = sqrt(res_dji.path);

16 % sigma_nas = sqrt(res_nas.path);

17 %

18 figure (1);

19 subplot (2,1,1)

20 plot(bDates ,sigma_dji ,’k’,’LineWidth ’ ,2)

21 xlabel ("year")

22 ylabel (" volatility ")

23 title(" volatility DJ")

24 set(gca ," FontSize ",12," FontWeight",’bold’)

25 subplot (2,1,2)

26 plot(bDates ,sigma_nas ,’k’,’LineWidth ’ ,2)

27 xlabel ("year")

28 ylabel (" volatility ")

29 title(" volatility NQ")

30 set(gca ," FontSize ",12," FontWeight",’bold’)

31 %

32 % %probability integral transform

33 % eps_1 = r1./sigma_dji;

34 % eps_2 = r2./sigma_nas;
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35 % u_1 = normcdf(eps_1);

36 % u_2 = normcdf(eps_2);

37

38 figure ()

39 scatter(u_1,u_2,’k’)

40 xlabel ("DJ")

41 ylabel(’NQ’)

42 title(" scatter plot of copula data")

43 set(gca ," FontSize ",12," FontWeight",’bold’)

44 copList = [3,5,4,2];

45

46 % copList = 3;

47 matlogl = NaN(numel(copList) ,1);

48 matstd = NaN(numel(copList) ,3);

49 matpara = NaN(numel(copList) ,3);

50 paths = NaN(numel(u_1),numel(copList));

51 matpvars = NaN(1,numel(copList));

52 matloglres = NaN(numel(copList) ,1);

53 names = [];

54 count = 0;

55 for i = copList

56 count = count + 1;

57 res = Stochastic_Copula_MLE(u_1,u_2,i);

58 matstd(count ,:) = res.stderr;

59 matpara(count ,:) = res.theta;

60 matlogl(count) = abs(res.logl);

61 paths(:,count) = mean(res.path ,2);

62 matpvars(count) = res.LRpval;

63 matloglres(count) = abs(res.loglres);

64 name = [name ,res.model];

65 end

66 paths = array2table(paths);

67 paths.Properties.VariableNames = [" Normal","rGumbel", "Frank", "Clayton "];

68

69 paths_sm = smoothdata(paths);

70 paths_sm.Properties.VariableNames = [" Normal","rGumbel", "Frank", "Clayton "];

71 paths_sm.date = bDates;

72 figure (1)

73 for i = 1:4

74 subplot(2,2,i)

75 p = paths_sm{:,i};

76 nom = paths_sm.Properties.VariableNames{i};

77 plot(paths_sm.date ,p,’k’,"LineWidth ",2)

78 xlabel(’year’);

79 set(gca ,’FontSize ’,12, ’FontWeight ’,’Bold’)

80 title(nom)

81 end

82

83 %out -of-sample forecasting

84

85 disp("phase 1 done");

86 %obtain the ’true ’ paths

87 res_dji1 = SV_MLE_EIS(rt1 ,model);

88 res_nas1 = SV_MLE_EIS(rt2 ,model);

89

90 sigma_dji1 = sqrt(res_dji1.path);

91 sigma_nas1 = sqrt(res_nas1.path);

92

93 eps_t1 = rt1./sigma_dji1;

94 eps_t2 = rt2./sigma_nas1;

95 u_t1 = normcdf(eps_t1);

96 u_t2 = normcdf(eps_t2);

97 paths_t = NaN(numel(testRange),numel(copList));

98 count = 0;

99 for i = copList

100 count = count + 1;

101 res_t = Stochastic_Copula_MLE(u_t1,u_t2,i);

102 paths_t(:,count) = res_t.path;

103 end

104 paths_t = array2table(paths_t);

105 paths_t.Properties.VariableNames = ...

106 [" Normal","rGumbel", "Frank", "Clayton "];

107 disp("phase 2 done")

108

109 nCop = numel(copList);

110 nTest = numel(testRange);
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111 theta0 = paths{end ,:};

112 lamt0 = NaN(1,nCop);

113 lamt0 (1) = 0.5*log ((1+ theta0 (1))/(1-theta0 (1)));

114 lamt0 (2) = log(theta0 (2) -1);

115 lamt0 (3) = theta0 (3);

116 lamt0 (4) = log(theta0 (4));

117 mu = matpara (:,1)./(1-matpara (:,2));

118 nu = matpara (:,3);

119 beta = matpara (:,2);

120 lamt = NaN(nTest ,nCop);

121 sigt = NaN(nTest ,nCop);

122 for i = 1:numel(testRange)

123 lamt(i,:) = mu ’ + (beta ’.^(i)).*(lamt0 - mu ’);

124 sigt(i,:) = sqrt((nu.^2).*(1-beta .^(2*i))./(1 - beta .^2));

125 end

126

127 thetat = NaN(nTest ,nCop);

128 upper = NaN(nTest ,nCop);

129 lower = NaN(nTest ,nCop);

130 for i = 1:4

131 lam = lamt(:,i);

132 sig = sigt(:,i);

133 if i == 2

134 thetat(:,i) = exp(lam + (sig .^2)/2) + 1;

135 upper(:,i) = logninv (0.975 ,lam ,sig) + 1;

136 lower(:,i) = logninv (0.025 ,lam ,sig) + 1;

137 elseif i == 4

138 thetat(:,i) = exp(lam + (sig .^2)/2);

139 upper(:,i) = logninv (0.975 ,lam ,sig);

140 lower(:,i) = logninv (0.025 ,lam ,sig);

141 elseif i == 1

142 add1 = (exp(2*lam) - 1)./(exp(2*lam)+1);

143 den = -4*(exp(2*lam) -1).*(exp(2*lam)).*(sig .^2);

144 nom = (exp(2*lam) + 1).^3;

145 add2 = den./nom;

146 thetat(:,i) = add1 + add2;

147 nql = norminv (0.975 ,lam ,sig);

148 nqu = norminv (0.025 ,lam ,sig);

149 upper(:,i) = (exp(2*nql) -1)./(exp(2*nql)+1);

150 lower(:,i) = (exp(2*nqu) -1)./(exp(2*nqu)+1);

151 else

152 thetat(:,i) = lam;

153 % upper(:,i) = norminv (0.975 ,lam ,sig);

154 % lower(:,i) = norminv (0.025 ,lam ,sig);

155 upper(:,i) = lam + 1.96*sig;

156 lower(:,i) = lam - 1.96*sig;

157 end

158 end

159

160 figure;

161 for i = 1:4

162 switch i

163 case 1

164 titre = "Normal ";

165 case 2

166 titre = "rGumbel ";

167 case 3

168 titre = "Frank";

169 case 4

170 titre = "Clayton ";

171 end

172 subplot(2,2,i)

173 plot(smoothdata(paths_t{:,i}),’k’,’LineWidth ’ ,2,...

174 ’DisplayName ’,"Estimated \theta");

175 hold on

176 plot(thetat(:,i),’Color ’ ,[0 0 0.3],’LineStyle ’,’--’,’LineWidth ’ ,2,...

177 ’DisplayName ’,"r-step ahead \theta ");

178 hold on

179 plot(upper(:,i),’Color ’ ,[0.3 0 0],’LineStyle ’,’:’,’LineWidth ’ ,2,...

180 ’DisplayName ’,"Upperbound ");

181 hold on

182 plot(lower(:,i),’Color ’ ,[0 0.3 0],’LineStyle ’,’:’,’LineWidth ’ ,2,...

183 ’DisplayName ’,’Lowerbound ’);

184 xlabel ("r-step")

185 ylabel (" dependence param")

186 title(titre)
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187 legend ()

188 set(gca ,’FontSize ’,12,’FontWeigh ’,’bold’)

189 hold off

190 end

Listing 12. Estimation of Dynamic C-vine Copula

1 %Sequential estimation of Dynamic C-vine copula

2 %After executing each block , switch to R and use ’pipeline.r’

3 %to obtain pseudo -observations for the next block

4 %(i.e. to perform h(‘) function

5

6 PATH_wes = table();

7 N = 100;

8

9 copulas_layer_1_wes = ["fx1_dji","fx2_nas","fx1_cac","fx1_dax"];

10 U_paired_wes = getPairedArgument(U,wes);

11 [res_layer_1_wes , U_layer_1_wes ,paths_layer_1_wes] = biSCAR(U_paired_wes);

12 PATH_wes.layer_1 = getAvgPath(paths_layer_1_wes ,N,copulas_layer_1_wes);

13

14 %moving to the next layer

15 copulas_layer_2_wes = ["dji_nasCfx1","dji_cacCfx1","dji_daxCfx1 "];

16 H = csvread ("H.csv", 1, 1);

17 H = array2table(H);

18 H_paired_1_wes = getPairedArgument(H,[]);

19 [res_layer_2_wes , U_layer_2_wes ,paths_layer_2_wes] = biSCAR(H_paired_1_wes);

20 PATH_wes.layer_2 = getAvgPath(paths_layer_2_wes ,N,copulas_layer_2_wes);

21

22 %moving to the third layer

23 copulas_layer_3_wes = ["nas_cacCfx1_dji","nas_daxCfx1_dji"]

24 H = csvread ("H.csv", 1, 1);

25 H = array2table(H);

26 H_paired_2_wes = getPairedArgument(H,[]);

27 [res_layer_3_wes , U_layer_3_wes ,paths_layer_3_wes] = biSCAR(H_paired_2_wes);

28 PATH_wes.layer_3 = getAvgPath(paths_layer_3_wes ,N,copulas_layer_3_wes);

29

30 %moving to the last layer

31 copulas_layer_4_wes = "cac_daxCfx1_dji_nas"

32 H = csvread ("H.csv", 1, 1);

33 H = array2table(H);

34 H_paired_3_wes = getPairedArgument(H,[]);

35 [res_layer_4_wes , U_layer_4_wes ,paths_layer_4_wes] = biSCAR(H_paired_3_wes);

36 PATH_wes.layer_4 = getAvgPath(paths_layer_4_wes ,N,copulas_layer_4_wes);

Listing 13. SCAR estimation(Eastern Block)

1 %Estimation the Eastern Market Block

2 %using SCAR model

3 varlist = ["r_sse","r_nik "];

4

5 U_est = U(: ,1:2);

6 csvwrite ("U_est.csv",U_est);

7

8 res_est = Stochastic_Copula_MLE(U_est(:,1),U_est(:,2) ,3);

9

10 df_interagir = csvread ("df_interagir.csv");

11

12 u_est = dfinteragir.Asian;

13 u_wes = dfinteragir.Western;

14 RAM = dfinteragir.RAM;

15 RAM_alt = double(RAM >2);

16 res_interaction = Stochastic_Copula_MLE(u_est ,u_wes ,3)

17 res_interaction_alt = Stochastic_Copula_MLE(u_est ,u_wes ,7,"xx",RAM_alt);

18 res_interaction_gumbel = Stochastic_Copula_MLE(u_est ,u_wes ,8,"xx",RAM_alt);

19

20 paths = res_interaction_alt.path;

21 mean_paths = mean(paths ,2);

22

23 %Scatter plot of the copula data of the two blocks

24 scatter(u_wes ,u_est ,’k’);

25 title(" Scatter plot of copula data of western market and eastern market ");

26 xlabel (" Western ")

27 ylabel (" Eastern ")
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28 set(gca ," FontSize ",12," FontWeight",’bold’)

Listing 14. Holistic Dependence

1 %two models are involved in this file

2 % 1. SCARX

3 % 2. Dynamic -C-vine

4

5 %---------SCAR -CVine for markets interaction ------------------------------

6

7 %Evaluate bivariates SCAR seperately

8 %Number of invovled financial assets:

9 % r_gold: London gold fixing

10 % c_wes: Western market condition

11 % c_est: Estern market condition

12

13 %----------------BLOCK 1--------------

14 interagir = ["RA","c_wes","c_est"];

15 U_ew = csvread ("U_ew.csv",’R1’,2,’C1’ ,2);

16 U_ew = array2table(U_ew);

17 U_ew.Properties.VariableNames = ["c_wes","c_est"];

18 U_ew.RA = r_gold;

19 PATH = table();

20 N = 100;

21 copulas_layer_1 = ["gold_wes","gold_est "];

22 U_paired_est = getPairedArgument(U,[]);

23 [res_layer_1_est , U_layer_1_est ,paths_layer_1] = biSCAR(U_paired_est);

24 PATH.layer_1 = getAvgPath(paths_layer_1,N,copulas_layer_1);

25

26 %moving to the next layer

27 %----------------------BLOCK 2------------------------

28 copulas_layer_2 = "wes_estCRA ";

29 H = csvread ("H.csv", 1, 1);

30 H = array2table(H);

31 H_paired = getPairedArgument(H,[]);

32 [res_layer_2, U_layer_2,paths_layer_2] = biSCAR(H_paired);

33 PATH.layer_2 = getAvgPath(paths_layer_2,N,copulas_layer_2);

34

35

36 %NEXT MODEL

37 %-------------------------SCARX ---------------------------------

38 model = 7;

39 xx = U_ew.RA;

40 u = U_ew.c_est;

41 v = U_ew.c_wes;

42 res_ew = Stochastic_Copula_MLE(u,v,7,"xx",xx);

Listing 15. SCAR under alternative Hypothesis of constant dependence parameter

1

2 %-------For obtaining the log -likelihood under alternative hypothesis ------------

3 %Reference to Hafner et al .(2012) , performing LR test

4

5 function [f path]= MLEFnNormal(u,v,theta)

6

7 la1 = theta;

8

9 %now calculate the average of the log -likelihood

10

11 f = log(PdfNormal(u,v,la1));

12

13 f = -sum(f);

14

15 end

16

17 function [f path]= MLEFnGumbel(u,v,theta)

18

19 la1 = theta;

20

21 %now calculate the average of the log -likelihood

22

23 f = log(PdfGumbel(u,v,la1));

24

53



25 f = mean(f);

26

27 f=-f; %this is the output

28 path=la1;

29

30 end

31

32 function [f path]= MLEFnClayton(u,v,theta)

33

34 la1 = theta;

35

36 %now calculate the average of the log -likelihood

37

38 f = log(PdfFrank(u,v,la1));

39

40 f = -sum(f);

41

42 end

43

44 function [f path]= MLEFnClayton(u,v,theta)

45

46 la1 = theta;

47

48 %now calculate the average of the log -likelihood

49

50 f = log(PdfClayton(u,v,la1));

51

52 f = -sum(f);

53

54 end

1 function [RES , t_U,t_paths] = biSCAR(U)

2 %Estimating SCAR pair -copula

3 %U: pair -wise arguments

4

5 [nrow ,ncol] = size(U);

6 model = 3;

7 nPair = 0;

8 t_U = [];

9 t_paths = [];

10 RES = cell(8,ncol/2);

11 for i = 1:2: ncol

12 nPair = nPair + 1;

13 U.adhoc = U{:,i:i+1};

14 u = U.adhoc (:,1);

15 v = U.adhoc (:,2);

16 results = Stochastic_Copula_MLE(u,v,model);

17 path = results.path;

18 t_paths = [t_paths path];

19 t_U = [t_U U.adhoc];

20 RES(:,nPair) = struct2cell(results);

21 end

22

23 %Save the results to a given directory

24 %they will later be read into R

25 csvwrite ("U.csv",t_U);

26 csvwrite ("paths.csv",t_paths);

27 end

28

29 %Obtain the smoothed time path

30 function [avgPaths] = getAvgPath(paths ,N,name)

31 [nR ,nC] = size(paths);

32 nVar = nC/N;

33 avgPaths = NaN(nR ,nVar);

34 for i = 1:nVar

35 range = (i-1)*N +1 : i*N;

36 avgPaths(:,i) = mean(paths(:,range) ,2);

37 end

38 avgPaths = array2table(avgPaths);

39 avgPaths.Properties.VariableNames = name;

40 end

41

42 function [U_new] = getPairedArgument(U,order)

43 %Obtain Pair -wise argument for pair copula

44 if (~isempty(order))

54



45 U = U(:,order);

46 end

47 [~,nc] = size(U);

48 U_new = [];

49 u_pivot = U{:,1};

50 for i = 2:nc

51 U_adhoc = [u_pivot , U{:,i}];

52 U_new = [U_new U_adhoc];

53 end

54 U_new = array2table(U_new);

55 end

Listing 16. File Preperation

1 %creating csv files that will be passed to R for later analyses

2

3 %creating residual files(which will be used to estimate multivariate normal

4 %distribution)

5 writetable(EPS(:,2:end) ,"EPS.csv");

6 %creating path files

7 writetable(PATH_est.layer_1, "paths_layer_1_est.csv");

8 writetable(PATH_est.layer_2,"paths_layer_2_est.csv");

9

10 writetable(PATH_wes.layer_1, "paths_layer_1_wes.csv");

11 writetable(PATH_wes.layer_2, "paths_layer_2_wes.csv");

12 writetable(PATH_wes.layer_3, "paths_layer_3_wes.csv");

13 writetable(PATH_wes.layer_4, "paths_layer_4_wes.csv");

Listing 17. Log-likelihood of Normal SCARX

1 function [f path]=LL_Normal_EIS_X(u,v,xx ,theta ,N)

2

3 %This function is built upon ’LL_Normal_EIS ’ from Hafner et al .(2012)

4

5 %computes the log -likelihood of the stochastic Gaussian copula by efficient

6 %importance sampling using results from Liesenfeld and Richard (2003)

7 %seed is the variable for the random number generation , so as to use the

8 %same one always

9

10 %xx: risk -aversion measure

11 %the latent process follows an ARX process

12 iterations =5; %number of iterations used to draw trajectories

13

14 seed =100;

15

16 ga=theta (1); %set parameters ("ga" is the intercept , "de" the AR coefficient and "nu" the error standard deviation

17 de=theta (2);

18 phi = theta (3);

19 nu=theta (4);

20 %ga=thetabar -de*thetabar; %this is for an alternative specification restricting the unconditional estimate to equal it’s

ML value

21

22 T=rows(u);

23

24

25 ap=zeros(T,1); %initialize parameters for importance sampler

26 q=zeros(T,1);

27 b=zeros(T,1);

28 av=zeros(T,1);

29

30 %penalty for parameter values at the boundary or rather extrem values to

31 %ensure stability of numerical procedures

32 if abs(de) >0.999||nu <0.001||nu >1

33 f=10000;

34 path =1;

35 return

36 else

37

38

39 %Step 0: generate trajectories of theta_t from the natural sampler

40 la=zeros(T+1,N); %"la" is the underlying process for the copula dependence parameter

41 randn(’state’,seed);

42 crn=randn(T+1,N); %always use the same random number when optimizing. otherwise it will not be a smooth

function
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43 eps=nu*crn;

44 la(1,:)=(ga+mean(xx))/(1-de);

45 xx = [mean(xx);xx];

46 xx = repmat(xx ,1,N);

47 for j=2:T+1

48 la(j,:)=ga+de*la(j-1,:)+ phi * xx(j-1,:) + eps(j,:); %generate the first lambda series from

49 %a natural sampler

50 end;

51

52

53 for jj=1: iterations

54 %Step t: solve back -recursive problem by LS

55 lnxsi=zeros(N,1);

56 a1=zeros(T,1);

57 a2=zeros(T,1);

58 la1=(exp(2*la) -1)./(exp(2*la)+1); %inverse Fisher transform , alternative may be considered

59 for t=T:-1:1

60

61 x=[ones(N,1) la(t+1,:)’ la(t+1,:).^2’];

62

63 y=log(PdfNormal(u(t),v(t),la1(t+1,:)))’+lnxsi; %here I simply inserted the log of the Normal pdf as

dependent variable

64

65 est=inv(x’*x)*x’*y;

66 a1(t)=est (2);

67 a2(t)=est (3);

68 E1=ga+de*la(t,:)+phi*xx(t,:); %parameters for the xsi function(E1: the entire nominator

69 V2=(nu^2)/(1-2*(nu^2)*est(3));

70 E2=V2*((E1/(nu^2))+est (2));% -0.5

71

72 lnxsi =(0.5*(((E2.^2)/V2) -((E1.^2)/(nu^2))))’; %update the chi -term

73

74 ap(t)=V2*((ga/(nu^2))+est(2));% -0.5

75 q(t)=(V2/(nu^2))*de;

76 b(t) = (V2/(nu^2))*phi;

77 av(t)=V2;

78 % %calculate the R^2

79 % yhat = x*est;

80 % resid = y - yhat;

81 % sigu = resid ’*resid;

82 % ym = y - mean(y);

83 % rsqr1 = sigu;

84 % rsqr2 = ym ’*ym;

85 % R2(t) = 1.0 - rsqr1/rsqr2; % r-squared (seems to be always one)

86

87 end;

88 % mean(R2)

89

90 %Step T+1: draw N trajectories of lambda from m-function (including

91 %iteration steps)

92 for j=2:T+1

93 la(j,:)=ap(j-1)+q(j-1)*la(j-1,:)+b(j-1)*xx(j-1,:)+sqrt(av(j-1)).*crn(j,1:N); %data drawn from the

importance sampler m

94 end;

95 if mean(mean(isnan(la))) >0 %activate this part when there are numerical problems creating many warnings

96 f=10000;

97 path =1;

98 return

99 end;

100 end;%(here the iteration ends)

101

102

103 %now calculate the average of the log -likelihood

104

105 mu1s=(la(2:T+1,:)-sqrt(av*ones(1,N)).*crn (2:T+1,:)).^2; %parameters for xsi

106 mu0s=(ga+de*la(1:T,:)+phi*xx(1:T,:)).^2;

107

108 lnxsi =0.5*((mu1s./(av*ones(1,N))) -(mu0s/(nu^2)));

109

110

111

112 %now calculate the average of the log -likelihood

113 CL=zeros(T,N);

114 la1=(exp(2*la) -1)./(exp(2*la)+1);

115

116 for i= 1:N

56



117

118 CL(:,i) = log(PdfNormal(u,v,la1(2:T+1,i))) -...

119 (a1).*la(2:T+1,i) -(a2).*(la(2:T+1,i).^2) +...

120 lnxsi(:,i) -0.5*log(nu^2) +0.5*log(av);

121

122 end;

123 scal1=mean(CL); %these lines because mean of log is not equal to log of mean

124 scal2=mean(scal1);

125 lngs=-scal2+CL;

126 tg1=log(mean(exp(sum(lngs))));

127 f=T*scal2+tg1;

128

129 f=-f %this is the output

130 % path=mean(la1(2:T+1,:) ’)’;

131 path = la1(2:T+1,:);

132

133 end;
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