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Abstract

This paper examines the estimation and forecasting of heterogeneous

panel data models by various estimation techniques, of which a par-

ticular pooling averaging approach is of central interest. Furthermore,

the research addresses the potential time-varying nature of financial

products. This is done by incorporating optimal window size selection

in the estimation of regression parameters. These methods are applied

to forecast sovereign CDS spreads. By considering two different angles

of approach for window determination, it is found that these methods

can help improving forecasting performance significantly.
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1 Introduction

Sovereign credit risk and credit debt of countries have obtained particular attention since the

outbreak of the worldwide financial crisis and the euro crisis. In order to investigate the concept

of credit risk of various countries, sovereign credit default swaps (CDS) need to be thoroughly

studied. For the sake of policy making, it is important to know whether these financial products

are mainly driven by local variables or global variables. Next to that, it is also of great interest

to forecast the values of sovereign CDS swaps, especially in these times when some European

countries suffer from political and financial stability, such as the United Kingdom and Italy.

Much research that has been performed on sovereign CDS swaps only examines the effect of

variables by individual regressions or a pooled regression model, such as respectively Longstaff

et al. (2011) and Remolona et al. (2008). Individual ordinary least squares (OLS) regression

has the beneficial characteristic that there is no bias in estimation. However, since this estima-

tion technique does not exploit any cross-sectional information, it usually has a larger variance

than necessary. Pooled estimation maximally uses this cross-country information, resulting in

efficient but biased estimation results. This estimation method namely does not consider indi-

vidual effects, while existing literature implicates that heterogeneity is present in the effect of

determinants across countries.

This choiche on whether to estimate series individually or pooled, is a dilemma that is

commonly known in econometrics as ”to pool or not to pool”. However, the choiche does not

have to be between these two extremes. In order to obtain estimates for these individual effects

in a heteroskedastic panel, an optimal trade-off between zero bias and efficiency can be obtained

by choosing a weighted combination between individual OLS and pooled estimation. In the

research of Maddala et al. (1997), one possible method for choosing weights between these two

estimators is proposed.

In this paper, the Mallows Pooling Averaging (MPA) estimation technique, proposed by

Wang et al. (2018), is considered. This method attempts to find an optimal bias-variance

trade-off by combining multiple pooling specifications and choosing weights that minimize the

well-known Mallows criterion. Since the number of various pooling specifications can already

become very large for a reasonable number of individuals, I use a pre-screening method that

makes all pooling averaging techniques computationally feasible. In order to do this, individuals

will be structured into groups. Regression coefficients are homogeneous within groups but het-

erogeneous across different groups. Recently, new methods have been developed for specifying

group membership and group estimators, for example Ando and Bai (2016) proposed grouping
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from the starting-point of unobserved group factors. The preliminary process that I will use

concerns the Classifier-Lasso (C-Lasso) approach, proposed by Su et al. (2016) and also imple-

mented by Wang et al. (2018). In addition to this, to account for possible heterogeneity within

groups, the sample will be conditioned on two structural break points that are detected by Wang

et al. (2018).

In this paper I will re-estimate the effects of local and global variables on sovereign CDS

estimates using the proposed methods of Wang et al. (2018). Also, forecasts will be constructed

for the various estimation techniques and their associated forecasting performances are examined

and compared.

This research adds to the literature with respect to modelling heterogeneity for the effects

of the determinants to obtain the best performing forecasts possible. In order to improve the

forecasting performance of the MPA technique, the estimation window size will be determined

explicitly for each forecast by choosing it such that an MSFE expression is minimized. The

proposed approach of Inoue et al. (2017) for selecting the optimal window size for a univariate

time series will be used and adjusted for the multivariate panel model that is under consider-

ation. This adjustment will be done in two ways; namely by determining the optimal window

size for each country individually, and alternatively by selecting it for groups of countries, over

the various grouping structures the C-Lasso procedure establishes. Individual window selection

intuitively provides accurate estimations for the individual window sizes, but ignores potentially

valuable cross-sectional information. Grouped window selection uses this information, but may

yield inaccurate estimated windows, since the groups from the C-Lasso procedure remove valu-

able individual country information. This can particularly be the case when all countries are

shrinked in a very small number of groups. Results on the forecasting performance suggest that

in most cases, both approaches provide better forecasts than the original MPA technique.

The research is structured in the following way. In Section 2, a literature overview on

heterogeneous panel estimation is provided. A description of the used data can be found in

Section 3. The methodology is described in Section 4 and its empirical application to sovereign

CDS spreads in Section 5, which together represents the part of my research that replicates

the methods of Wang et al. (2018). In Section 6, I specify my extension on optimal estimation

window selection and provide results on forecasting performance of these proposed techniques.

Section 7 concludes the research and offers recommendations for further research.
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2 Literature Review

For approximately five decades, extensive research has been performed on estimating the slope

parameters in heterogeneous panel data models. It commenced with Swamy (1970), who pro-

posed a mean estimator that is asymptotically efficient and consistent and an unbiased variance

estimator for one form of the random coefficient model (RCM). This estimator is now com-

monly known in the field of econometrics as the generalised least squares (GLS) estimator.

Hsiao (1975), Hildreth and Houck (1968), Rosenberg (1972) and others have proposed other

closely related types of the stationary RCM, each with a particular set of assumptions. A con-

sistent estimator for heterogeneous panels can also be found under more general assumptions

than made by Swamy (1970). Pesaran and Smith (1995) suggested a mean group estimator for

dynamic random coefficient models, which is simply an average of individual OLS estimators.

This estimator is algebraically equivalent to the GLS estimator in case of a large number of

observations. In this context, an estimator can also be obtained from a Bayesian perspective,

which assumes all variables and parameters are random variables. It is shown in Hsiao and Pe-

saran (2008) that this is a weighted combination of the individual OLS estimator and Swamy’s

mean estimator. Mean and mean grouped estimators work very well when the average causality

is most important. However, in this paper I want to forecast sovereign CDS swaps for fourteen

individual countries as best as possible. This means the interest is drawn to more sophisticated

estimators that are also able to take other effects than only the mean into account. Maddala

et al. (1997) estimates the heterogeneous individual effects in a cross-sectional way. This is done

by means of taking a weighted combination of the pooled estimator and the individual estima-

tor. In this way, all heterogeneous estimators are shrinked towards a pooled estimator. Baltagi

and Griffin (1997) proves the necessity of such a method, since it shows that purely pooled

models cannot capture heterogeneous individual effects and that purely individual models do

not account for general changes or underlying shocks. Methods and techniques that attempt

to account for individual as well as common effects, have substantially improved over the last

years, mainly because of a wide range of research that is performed on the specification of groups

of individuals. Ando and Bai (2016) developes a new estimation technique for heterogeneous

panel data models with unobserved factor structures. The regression coefficients in this type of

model can be homogeneous or group specific. The estimation of the number of groups and group

membership of all individuals require new estimation techniques, such as the k-means approach

or the Classifier-Lasso procedure. These methods are proposed and proven to be asymptotically

efficient in several papers, namely in Su et al. (2016), Lin and Ng (2012) and Bonhomme and
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Manresa (2015). A clear distinction need to be made between estimation when estimation accu-

racy is of central interest and estimation when forecasting performance is most important. As

forecasting is of central interest for the application to sovereign CDS swaps, the estimated group

structure, number of groups and estimated group coefficients do not need to be correct. They

need to perform best from a forecasting perspective, that is by giving us the lowest forecasting

error possible.

The k-means and C-Lasso procedures require knowledge of the correct number of groups.

The fact that this is usually not known and more importantly that it is not necessarily relevant

for the forecasting performance of the estimates, drives Wang et al. (2018) to propose a new

estimate for heterogeneous panel models. This estimation technique makes a trade-off between

bias and variance by minimizing the MPA criterion. In this way the grouping structure and

parameters can be estimated in such a way that the MSFE is minimised, resulting in an optimal

forecasting performance.

Pesaran et al. (2013) argues that parameter instability is a common cause of bad forecasting

performance in financial products. Much research has been done on testing for structural breaks

in panel data models. Works to consider are for example those of Evans and Kim (2011), Qian

and Su (2016), Li et al. (2016). In order to account for parameter instability, Wang et al. (2018)

applies the methods of Baltagi et al. (2016) and estimates the parameters heterogeneous for these

different regimes. The paper of Wang et al. (2018), on which this research is based, investigates

whether ignoring these structural breaks or taking them into account in the estimation window,

is best for the forecasting performance.

However, like most described research on estimating parameters in heterogeneous panels,

the window size is ignored as a potential source of forecasting improvement. Pesaran and

Timmermann (2007) develop multiple techniques for explicitly choosing the estimation window

optimal with regard to minimizing forecasting errors, when a forecasting model is conditioned

on structural breaks. An alternative perspective on this is comprehended by Pesaran et al.

(2013), which derives expressions for optimal weights under a conditioned forecasting model.

More recently, Inoue et al. (2017) introduces a new approach for optimal rolling window size

selection in forecasting models with potential breaks, in which these breaks are generalised to

being smooth parameter changes over all time points. By combining this approach for optimal

window selection with the proposed estimation technique of Wang et al. (2018), I hope to find

improved forecasting results for the concerned empirical application of sovereign CDS spreads.
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3 Data

In order to examine the sovereign credit risk of a country, the sovereign credit default swap

spreads are used as a proxy. By means of a sovereign CDS spread, an investor can offset his

credit risk, for example the risk of a default, to another investor. In exchange, a lasting premium

has to be payed for swapping this risk, just as is done with an insurance contract. The 5-year

sovereign CDS spreads for 14 different countries are used, which are Brazil, Bulgaria, Chile,

China, Hungary, Japan, South-Korea, Malaysia, Philippines, Poland, Romania, Slovak, South

Africa and Thailand. These are expressed as monthly basis points running from January 2003

to January 2016, in total 156 observations over time. The main summary statistics of these

sovereign CDS spreads for the different countries are denoted in Table A.1, which can be found

in Section A.1 of the Appendix.

Because I also want to explore the determinants of sovereign credit risk, I use the monthly

data on local stock market return, foreign currency reserves and local exchange rates for each

of the 14 countries for local examination. Regarding global determinants, the effects of the

U.S. stock market returns, treasury yields, high-yield corporate bonds spreads, equity premium,

volatility risk premium, equity flows and bond flows are obtained. The data on these local and

global variables have the same time span as the data on sovereign CDS spreads. A comprehensive

explanation on the definition of these variables can be found in Longstaff et al. (2011).

The data on CDS spreads, local and global variables is the same as in Wang et al. (2018)

and conveniently is obtained upon request of one of the authors. In this research on which this

paper is based, the data of Longstaff et al. (2011) for the concerned 14 countries is used and

extended to 2016. Regarding the sovereign CDS spreads, first differencing is necessary to obtain

the alteration data, since the CDS spreads are expressed as level data.

4 Methodology

4.1 Model Specification

The setup model is specified in the following way.

yi = Xiβi + ui, i = 1, ..., N. (4.1.1)

In this specification, yi is the vector of dependent variables for country i and time points t =

1, ..., T . Xi is a matrix of explanatory variables; Xi = [X ′i1, ..., X
′
iT ]′, in which Xit =

[xit,1, ... , xit,K ] with K the number of explanatory variables. It is assumed that the system is

stationary and exogenous, since there are no lagged yi present in the set of explanatory variables.
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There are three possibilities for the heterogeneity structure of the error terms. First of all, they

can be homoskedastic within and across individuals i, which means that the variance of ui is

constant over time and the same for all countries. A more comprehensive option concerns error

terms that are heteroskedasticity between countries, but homoskedastic within countries over

time. In the most general case, errors are conditionally heteroskedastic, which means they are

varying across individuals and within the time span of each individual country. Each of these

options yields a different estimated variance matrix, as we will see in computations later on

in this paper. In the first case, the regression parameter βi = [βi1, ..., βik]
′ is assumed to be

time-invariant and heteroskedastic across individuals, as is assumed in the setup model of Wang

et al. (2018).

4.2 Estimation of Regression Parameters

Since I have assumed that the system 4.1.1 is stationary and exogenous, Ordinary Least Squares

(OLS) can be used in order to estimate the regression coefficients βi individual for each country i.

In case of correct specification, which I will assume for the moment, the vector of OLS estimators

β̂ = (β̂′1, ..., β̂
′
N )′ is unbiased. However, it is probably not efficient, as it does not make use of

the information that lies in the cross-sectional variation of the different countries. In order to

make optimal use of this information, one can consider the pooled estimator β̂pool = (b′, ... , b′)′,

which can be computed by the following expression:

b = (
N∑
i=1

X ′iXi)
−1

N∑
i=1

X ′iXiβ̂i, (4.2.1)

in which β̂i represents the individual OLS estimator of country i. The OLS estimator on the

one hand and the pooled estimator on the other hand are two extremes in possible estimation

methods. While the individual OLS estimator is unbiased but inefficient, the pooled estimator

has minimal variance but a relatively high level of bias. The essence of this paper is to combine

these two extreme estimation methods, such that an optimal trade-off between unbiasedness

and efficiency will be achieved, from a perspective of forecasting.

A range of possible combinations between the individual and pooled estimator is represented

by a general pooling strategy, in which regression coefficients are estimated through OLS with

some of these coefficients restricted to be equal. This restricted OLS estimator can generally be

expressed by the following:

Rmβ = 0, (4.2.2)

in which Rm is the restriction matrix that corresponds to the mth pooling strategy. The re-

striction matrix is directly derived from the imposed restrictions on the coefficients from the
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different countries. If, for example, countries i and j are restricted to have the same regression

coefficients for the mth pooling strategy, then Rm = [0k×(i−1)k, Ik, 0k×(j−i−1)k,−Ik, 0k×(N−j)k].

Every restriction matrix corresponds to a certain projection matrix; the projection matrix for

the mth pooling strategy can be constructed as follows:

Pm = INk − (X ′X)−1R′m(Rm(X ′X)−1R′m)−1Rm. (4.2.3)

Ideally, we would like to directly evaluate or compute which pooling strategy has the optimal

trade-off between bias and variance. This can be done by computing the Mean Squared Error

(MSE) for estimation accuracy or the Mean Squared Forecasting Error (MSFE) for forecasting

performance. However, selecting the actual true restrictions by this approach is not feasible,

since the (forecasting) error cannot distinguish whether the possible cause concerns a bias in

estimation or loss in efficiency. Therefore, the focus in this research is on minimizing this error,

instead of uncovering the true relations between regression parameters of different countries.

4.3 Shrinking the Number of Pooling Strategies

In general, for the different pooling averaging strategies that I will consider hereafter, there

will not be chosen one pooling strategy based on some criterion. Instead, multiple pooling

strategies will be considered and a weighted combination of the estimates that results from

these approaches will be chosen in an optimal way. This means that for a pooling averaging

strategy, the weights will be chosen based on some criterion. A general expression for a pooling

averaging strategy is as follows:

β̂(w) =

M∑
m=1

wmβ̂(m) =

M∑
m=1

wmPmβ̂ = P (w)β̂. (4.3.1)

Since the number of pooling strategies can become very large, first shrinking the number of

potential pooling strategies will be implemented, in order to allow for computational feasibility.

Pooling strategies that restrict parameters to be the same while actually these are significantly

different from each other, are not desired to be considered. A procedure that I will use as a

preliminary step before considering optimal weights for the different pooling strategies is the

classifier-Lasso (C-Lasso) procedure, according to Su et al. (2016).

This is a recently developed estimation method for panel data that can be used in case

of heterogeneous panel data with an unknown group classification. Su et al. (2016) proposes

two different approaches for this sort of panel estimation. Since there are no lagged versions

of the dependent variable or endogenous variables in the model, I use the Penalized Profile

Likelihood (PPL) method for model shrinkage. In this approach, it is assumed that the regression
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parameters βi can be grouped by the following general structure:

βi =
K∑
k=1

αk1{i ε Gk}, (4.3.2)

where ∪Kk=1Gk = {1, 2, ..., Gmax} denotes the set of different true groups. Each country will

be grouped in one of these Gk groups and all countries in one group share the same regression

parameter αk. The estimates of α and β from the C-Lasso procedure are obtained by minimizing

the so-called PPL criterion function:

QK0
1NT,λ1

= Q1,NT (β) +
λ1
N

N∑
i=1

K0∏
k=1

‖βi − αk‖, (4.3.3)

where K0 denotes the true number of groups and Q1,NT (β) the profile log-likelihood function

that is proposed by Hahn and Newey (2004) and Hahn and Kuersteiner (2011). λ1 represents

the tuning parameter, a certain chosen constant on which I will elaborate later in this paper.

For the pooling averaging estimator, optimal weights will be chosen over the C-Lasso esti-

mates, obtained for several different numbers of groups G = 1, ... , Gmax. Each estimated vector

of regression parameters β̂(m) of the m-th pooling strategy corresponds to a grouping structure

with an associated number of groups in the C-Lasso procedure. Since the estimates for the

various group structures are combined in an optimal way for a pooling averaging approach,

the information criterion that is proposed by Su et al. (2016) will not be used in the pooling

averaging procedure.

4.4 Choosing Mallows Pooling Averaging Weights

The procedure for choosing optimal weights in pooling averaging estimation, which of central

interest in this research, is the Mallows pooling averaging approach. The feasible Mallows

criterion is specified as follows:

C∗A(w) = ‖P (w)β̂ − β̂‖2A + 2tr[P ′(w)AV̂ ]− ‖β̂ − β‖2A (4.4.1)

The distance ‖γ‖A is defined as γ′Aγ for any vector or matrix γ. In case forecasting performance

is of central interest, A is set equal to X ′X, and when obtaining accurate estimation results is the

ultimate aim, A = INK . As is already specified in equation 4.3.1, P (w) is the projection matrix

and P (w)β̂ is the eventual coefficient estimate that results from Mallows pooling averaging,

for which the weights w are to be find. This criterion is a generalization of the criterion that

was first proposed by Hansen (2007), for which A should be equal to X ′X and the variance of

the errors is assumed to be homoskedastic. The optimal weights can naturally be obtained by

minimizing the criterion with respect to vector of weights w:

ŵ∗ = arg min
wεW

C∗A(w) (4.4.2)
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V̂ is the estimated variance-covariance matrix that depends on the assumptions for the errors

ui in model setup 4.1.1. The three different cases for the error structure are already described

in Section 4.1. In case of homoskedasticity, V is estimated by:

V̂homo = σ̃(X ′X)−1,

in which σ̃2 denotes the variance of the OLS residuals, that is σ̃2 = (Y −Xβ̂)′(Y −Xβ̂)/(NT −

NK). When the variance is heteroskedastic between individuals, this expression is:

V̂bh = diag(σ̂21Q
−1
1 , ..., σ̂NQ

−1
N ),

where σ̂i is the estimated variance of individual i that is obtained from the OLS residuals

ui; σ̂
′
iσ̂i/(T − k). In addition to that, Qi is computed as Qi = X ′iXi/T for i = 1, ..., N . In

the most general case, the variance is assumed to be different across groups and conditionally

heteroskedastic within individuals. The estimated variance then can be obtained by the formula:

V̂ch =
1

T (T − k)
diag(Q−11

T∑
t=1

û21tX
′
1tX1tQ

−1
1 , ...,

T∑
t=1

û2NtX
′
NtXNtQ

−1
N ).

Now that the procedure of choosing weights through minimizing Mallows Criterion is clear, let

us have a closer look on the theoretical justification of this approach. Under four conditions that

are specified by Wang et al. (2018), it can be proved that the MPA estimator in combination with

the proposed C-Lasso approach as a preliminary model shrinkage procedure, exhibits asymptotic

optimality:

LA(ŵS)

infwεWLA(w)
→ 1.

In this expression, LA(ŵS) is the squared loss function LA(w) = ‖β̂(w)−β‖2A for the weights ŵS

associated with the pooling averaging estimator ŵS = arg minwεWS C∗A(w). In this pooling aver-

aging expression, WS is the restricted space of all possible weight vectors; WS = {w ε [0, 1]M :∑
m∈MS wm = 1 and

∑
m/∈MS = 0}. The corresponding model space can be mathematically

denoted by MS and is a subset of M = {1, ..., M}. Conveniently, all weights that are restricted

to sum up to one for all pooling techniques in the model space are included in the restricted

model space, for which zero weight should be assigned to all pooling strategies that are shrinked

out by, in our case, the C-Lasso procedure. The proof of this optimality theorem is done in the

research of Wang et al. (2018), which is based on an asymptotic optimality proof that is given

by Zhang et al. (2016).

4.5 Alternative Pooling Averaging Strategies

In order to compare the estimation and forecasting performance of the MPA estimator with

other estimation techniques, I will estimate the regression coefficients through various alternative
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techniques. Note that the associated forecasts for the estimated parameter β̂ can be computed

as ŷ = Xβ̂, for each estimation technique. First of all, the forecasts from the MPA estimator

can be directly compared to the individual and pooled forecasts.

Another estimator that immediately weights the individual and pooled estimators is the

shrinkage estimator, which is proposed by Maddala et al. (1997). It is defined as:

β̂shrinkage = (1− ν

F
)β̂ind +

ν

F
β̂pool, (4.5.1)

where F is the test statistic for equal coefficients across individuals i = 1, ..., N , thus the F

statistic for the pooled model restrictions. The degrees of freedom is given by ν = (N−1)K−2
NT−NK+2 .

Another class of estimators selects the group estimate that results from the C-Lasso proce-

dure, based on some data driven criterion. From this class, I will use two approaches for selecting

the number of estimated groups, namely the commonly known AIC-criterion and BIC-criterion.

The grouped estimates of the C-Lasso procedure with the smallest associated AIC and BIC

will be chosen as estimators for these two estimation methods, respectively. Another possibility

is to minimize these data driven criteria over the various estimates that result from choosing

different numbers of groups. This results in a AIC and BIC optimal choice of the weight vector,

the so-called Smoothed AIC (SAIC) and Smoothed BIC (SBIC) estimators. The weights will

be chosen by minimizing the SAIC and SBIC criterion, which are specified by Burnham and

Anderson (2004) in the following way, respectively:

wi,SAIC =
exp(−∆AICi/2)∑M

m=1 exp(−∆AICm/2)
, (4.5.2)

where ∆AICi = AICi −minm=1,...,MAICm, for all groups i = 1, ...,M .

wi,SBIC =
exp(−∆BICi/2)∑M

m=1 exp(−∆BICm/2)
, (4.5.3)

where ∆BICi = BICi −minm=1,...,MBICm, for all groups i = 1, ...,M .

5 Application to CDS Swaps

Now that I have specified the assumed model setup and explained several pooling averaging

strategies, of which MPA estimation is of most interest, the theory can be applied to various

financial products. Pooling averaging estimation will be used to determine the effect of local

and global variables on sovereign CDS spreads for fourteen different countries. The countries

concerned in this paper and the local and global determinants used in the regression are already

specified in Section 3.
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Sovereign CDS swaps are nowadays particularly interesting, because since the worldwide

financial crisis in 2008, credit risk of countries has become more important. In addition to that,

investigating these financial products by a pooling averaging approach as MPA estimation, is

very relevant. Current research has namely focused on estimating and predicting sovereign

CDS swaps by individual regressions. In the research of Aizenman et al. (2013) for example, a

common pattern is observed for five countries in the South-West Eurozone. Also, the results of

Dieckmann and Plank (2011) on sovereign CDS swaps for mostly European countries suggest

that a fiscal insurance mechanism drives the value of these financial products. The observed co-

movement for sovereign CDS swaps has not been used in these works of literature for improving

estimation and forecasting. Thus applying MPA estimation and forecasting for this kind of

financial product can be seen as a useful continuation and extension on the already existing

research. The model that will be estimated in this empirical application is given by:

∆CDSit = αi +X ′i,t−1βi + εit, i = 1, ..., N t = 1, ..., T. (5.0.1)

As becomes clear from this expression, the prices of CDS swaps are first differenced for each

country individually, which yields ∆CDSit = CDSit − CDSi,t−1. In this way, all dependent

variable series are stable, as can be proved by performing unit root tests. Xi,t−1 is the lagged

vector of local and global determinants, for which exogeneity will be assumed. All variables

in this model are normalized, as is done in Wang et al. (2018), in order to make the individ-

ual coefficients comparable to each other. Note that this means that the constant term αi is

automatically removed from the regression for each country i. For now, the vector of regres-

sion coefficients βi is assumed to be homogeneous within countries and heterogeneous across

countries.

The defined pooling average technique requires that the data series is stable over time.

Considering the fact that a financial crisis is present in the time period, this can still be a

questionable assumption. There are multiple ways to capture the potential heterogeneity for the

regression coefficient in (5.0.1). One method is to allow for structural breaks. In the literature

of Wang et al. (2018), two structural breaks are found through the structural break detection

method of Baltagi et al. (2016). The time points of these discrete breaks are January 2009 and

December 2009, which consequently results in three different regimes. In my research I will

directly implement these break points for estimation and forecasting.

5.1 Determining Local and Global Effects

For determination of the local and global determinants of the fourteen concerned countries, I will

apply MPA estimation to the model 5.0.1. As already mentioned in this paper, this approach
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combines individual characteristics and co-movement of countries in an optimal way. Since it

requires stability of the estimated model, I will implement this pooling averaging estimation

to the three regimes separately. To facilitate computational feasibility, a preliminary step of

model shrinkage is required. The C-Lasso procedure will be implemented for this, with tuning

parameter λ = cλs
2
Y T
−1/3, as is used by Su et al. (2016). In this expression, sY represents

the sample variance of ∆CDSit for i = 1, ..., N and t = 1, ..., T . Also, for the constant c, a

geometrically increasing sequence {0.0625, 0.125, 0.25, 0.5, 1} will be used. The preliminary C-

Lasso will be performed for the possible groups G = 1, ..., Gmax, in which the maximum number

of groups Gmax is set to N/2. Using the C-Lasso estimated for the various groups, I will compute

optimal weights for the MPA estimator by minimizing Mallows Criterion, specified in 4.4.1. Since

I want to make statistical inference and the mentioned C-Lasso procedure and MPA criterion

only calculate point estimates, a bootstrap procedure is implemented in both pre-screening and

estimation. Using this bootstrap procedure, the empirical variance and confidence intervals can

be calculated using B cross-sectional resamples, as is proposed by Kapetanios (2008).

5.2 Forecasting Sovereign Credit Risk

The introduced pooling averaging approach by Wang et al. (2018) cannot only help improving

estimation accuracy, but can also achieve better forecasting performance. In order to evaluate

the MPA strategy on forecasting performance, it will be used for out-of-sample forecasting

sovereign CDS swaps.

This will be done for the whole sample and for post-samples after each of the two structural

breaks. For the purpose of comparison, other estimation methods will be utilised by forecasting

the same data set of sovereign CDS swaps. As explained in Section 4.5, these methods are;

C-Lasso, SAIC, SBIC, AIC, BIC, pooled estimation, FGLS, SHK and individual estimation.

A proportion τ will be used to estimate the model, and consequently 1 − τ % will be used for

out-of-sample forecasting. I will evaluate the forecasts based on three out-of-sample proportions;

namely 0.1, 0.05 and 0.01. The Root Mean Squared Forecasting Error (RMSFE) will be the

evaluation criterion for the forecasts of each estimation method, averaged over the fourteen

different countries. For the purpose of comparison, all RMSFEs of the different forecasting

techniques will be divided by the full sample individual time series RMSFE.

The results on the out-of-sample forecasting performance for the rolling window based on a

fixed window size 1 - τ % are represented in Table 1. A rolling estimation window is implemented

instead of a fixed window, because of the upcoming extension of optimal window size, which is

only relevant in rolling or expanding window models. In this way, forecasting performance for
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Table 1: Out-of-sample forecasting comparison with fixed window size for three sample

choices and out-of-sample proportions 0.1, 0.05 and 0.01

Full sample Post-first-break sample Post-second-break sample

1 - τ % 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.951 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

C-Lasso 0.952 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

SAIC 0.951 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

SBIC 0.952 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

AIC 0.952 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

BIC 0.952 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

Pool 0.952 0.953 0.902 0.947 0.809 0.651 1.065 0.870 0.619

FGLS 1.002 1.006 0.972 0.983 0.990 1.061 1.005 0.984 1.000

SHK 0.991 0.993 0.986 0.986 0.886 0.793 1.067 0.894 0.630

Indiv 1.000 1.000 1.000 0.993 0.928 0.841 1.090 0.931 0.663

Note: All RMSFEs are divided by the individual RMSFEs that are estimated with the full sample

for the out-of-sample proportions 0.1, 0.05 and 0.01

this extension can conveniently be compared to original results. Forecasts are also performed

for an expanding window technique, these results are shown in Table 5 in the Appendix. It

can be clearly seen that the MPA estimator gives the best estimation results from a forecasting

perspective, although several estimation techniques yield almost equally good forecasts. Appar-

ently, the (smoothed) criterion estimation approaches are very good at selecting the best pooling

strategies, which usually concerns the strategy in which all individual countries are contained

in one group. This means a pooled model provides the best forecasts in most cases, as can also

be justified by the RMSFE from the pooled model that is almost equal to that of MPA for all

subsamples and out-of-sample forecasting fractions. Thus the MPA estimators, with the matrix

A chosen in such a way that it provides optimal forecasts, is very different from those that are

obtained in Section 5.1, when A is set such that estimation accuracy is the goal.

6 Optimal window selection with structural breaks

Estimating and forecasting financial products correctly regarding time-varying effects of the local

and global parameters is a topic that needs extensive research. As Pesaran and Timmermann

(2004) mention, not covering time-varying breaks in regression coefficients correctly, can become

very costly. In the paper of Wang et al. (2018), the heterogeneity of the regression parameters

is captured through selecting separate estimation windows with regard to the detected discrete
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time breaks. In this way, forecasts for the various estimation techniques are constructed by

using an estimation window based on the whole sample period, the sample period after the first

structural break and the sample period after the second one. In Section 5.2 however, it can be

observed that this does not necessary result in improved forecasts. Selecting a fixed window size,

based on the possibility of two discrete breaks, is a very convenient but also rather restrictive

way of accounting for time-varying regression parameters in estimation. For this reason, it would

be interesting to incorporate a technique for optimally selecting the window, at each point in

time a forecast is executed. Note that this is something that is explicitly left as a topic that

deserves further research in the paper of Wang et al. (2018).

For this purpose, I will use the recently proposed method of Inoue et al. (2017) to address

the potential time-varying nature of the effects of the concerned local and global variables on the

sovereign CDS spreads. This approach chooses an optimal rolling window size for each time point

at which a forecast is to be made for the next unknown observation. This is done by minimizing

the MSFE at the end of the estimation sample, which makes this approach very suitable for

the objective of providing optimal forecasts. Note that this approach is originally specified for

a univariate data generating process (DGP). This requires me to extend the technique, in order

to make it compatible with the heteroskedastic panel model that is under consideration.

The methodology of Inoue et al. (2017) is actually specified for a data generating process

(DGP) with a vector of time-varying parameters, in other words a model that allows for smooth

breaks over time. However, simulation results in this research show that the MSFE criterion

for choosing the optimal window size performs also well for a process with structural, discrete

breaks. This is even the case for DGPs with only one time break. This makes the method very

well appropriate for system 5.0.1 that is conditioned on two already obtained structural breaks,

also when there would be no actual smooth change of the regression parameters over time.

Before explaining the methodology of this extension, I first need to clearly specify several

important considerations. Firstly, when generalizing the procedure of Inoue et al. (2017) for a

multivariate panel model, the optimal rolling window size can be determined for each country

individually, or for each group in each of the N/2 grouping structures, resulting from the C-Lasso

shrinkage procedure. Since it is my goal to develop a window selection technique that optimizes

forecasting performance, I will implement both methods in order to possibly induce a preferred

multivariate method for window selection.

Secondly, for both techniques, the resulting rolling window is used for estimating all parame-

ters in the MPA criterion 4.4.1, determining the projection matrices and for choosing the matrix

A = X ′X. The estimation of the conditional heteroskedastic variance structure, as is explained
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in Section 4.4, is calculated from the whole rolling window using the fraction 1 - τ % of the

concerned sample. In this way, I still get an estimated variance matrix that is as accurate as

possible and does not use different samples for the explanatory variables that define the error

terms over time. This means the original individual OLS estimates are used for estimating the

matrix that captures covariance.

6.1 Individual Optimal Windows

In the individual window selection approach, the optimal window size Ri is chosen such that

the MSFE at the last observation of the estimation sample, t = T , is minimized. Thus, for each

forecast in the forecasting sample, an optimal window is selected from the prior rolling window

of 1 - τ percentage of concerned sample. This will be done in such a way that the MSFE of

the concerned forecast will be minimised. Following the derivation of Inoue et al. (2017), this is

equivalent to minimizing the following expression:

(β̂i,R − βi)′Xi,TX
′
i,T (β̂i,R − βi). (6.1.1)

It is infeasible to minimize this expression, since the true value of the regression parameter is

unknown. The actual parameter βi has to be estimated through the most accurate estimation

technique possible. In Inoue et al. (2017), β̂i,R is calculated as the rolling OLS estimate and βi

is replaced with the local linear regression estimator β̃i:

(β̂i,R − β̃i)′Xi,TX
′
i,T (β̂i,R − β̃i). (6.1.2)

In this paper, I take β̂i,R to be the rolling OLS estimate that is calculated from the estimation

window, with the R most recent observations of country i at the last observation t = T of the

estimation sample:

β̂i,R = (

T∑
t=T−R+1

Xi,t−1X
′
i,t−1)

−1(

T∑
t=T−R+1

Xi,t−1∆CDSi,t) (6.1.3)

β̃i represents the local linear regression estimator. Using this estimation technique for obtaining

the actual regression parameter can be justified by the research of Cai (2007), which shows that

this estimator exhibits the same asymptotic behaviour at interior points as at boundaries. The

vector of the local linear regression estimate β̃i and its first derivative β̃
(1)
i in the associated

Taylor expansion for country i, is computed in the following ay:β̃i,T
β̃
(1)
i,T

 =

 ∑T
t=T−R0+1Xi,t−1X

′
i,t−1

∑T
t=T−R0+1Xi,t−1X

′
i,t−1(

t−T
T )∑T

t=T−R0+1Xi,t−1X
′
i,t−1(

t−T
T )

∑T
t=T−R0+1Xi,t−1X

′
i,t−1(

t−T
T )2

−1

×

 ∑T
t=T−R0+1Xi,t−1∆CDSit∑T

t=T−R0+1Xi,t−1∆CDSit(
t−T
T ).


(6.1.4)
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Using these two estimation techniques results in a feasible approach for selecting the optimal

individual window at t = T :

R̂ = arg min
Rε�R

(β̂i,R − β̃i)′Xi,TX
′
i,T (β̂i,R − β̃i). (6.1.5)

Note that the initial optimal window size R0 for this minimization procedure is set to be the

one computed from the proposed technique of Pesaran and Timmermann (2007).

Table 2: Out-of-sample forecasting performance with optimal individual window size

selection for three sample choices and out-of-sample proportions 0.1, 0.05 and 0.01

Full sample Post-first-break sample Post-second-break sample

1 - τ % 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

C-Lasso 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

SAIC 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

SBIC 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

AIC 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

BIC 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

Pool 0.669 0.612 0.366 0.616 0.552 0.311 0.637 0.561 0.314

FGLS 0.651 0.694 0.457 0.634 0.645 0.421 0.710 0.638 0.310

SHK 0.756 1.359 0.427 0.657 1.341 0.319 2.058 2.179 0.334

Indiv 0.673 0.627 0.399 0.603 0.617 0.309 0.626 0.614 0.321

Table 3: Out-of-sample forecasting performance with fixed window size for three

sample choices and out-of-sample proportions 0.1, 0.05 and 0.01

Full sample Post-first-break sample Post-second-break sample

1 - τ % 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.621 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

C-Lasso 0.622 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

SAIC 0.621 0.657 0.426 0.618 0.549 0.307 0.694 0.600 0.292

SBIC 0.622 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

AIC 0.622 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

BIC 0.622 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

Pool 0.621 0.657 0.426 0.618 0.558 0.307 0.694 0.600 0.292

FGLS 0.654 0.694 0.459 0.637 0.634 0.421 0.714 0.632 0.313

SHK 0.647 0.684 0.465 0.632 0.611 0.374 0.696 0.616 0.297

Indiv 0.652 0.690 0.472 0.648 0.640 0.397 0.711 0.642 0.313
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The resulting RMSFE for the different estimation techniques and out-of-sample proportions

are reported in Table 2. To facilitate comparison between the forecasting performance of this

extended method with the original forecasting results of Section 5.2, the results on forecasting

performance for the initial fixed window size model are displayed in Table 3 again, now with

RMSFEs that are not normalized by the RMSFE of individual regressions using the full sample

period.

When comparing the results of Table 2 to those of Table 3, it becomes clear that extending

MPA estimation with the optimal rolling window selection approach of Inoue et al. (2017) does

not yield better forecasts in all cases. However, the constructed forecasts are better for the

out-of-sample proportions 0.05 and 0.01 for the full sample and for the fractions 0.1 and 0.05,

if only post-first-break or post-second-break data points are used. From this, it can be induced

that selecting optimal windows in MPA estimation can be useful for rather small forecasting

proportions, when all discrete breaks are ignored. It is also profitable for large proportions,

when parameter stability is already incorporated in the selection of the estimation window

through discrete breaks. The latter also suggests that the adjusted approach of Inoue et al.

(2017) captures the smooth change of the regression parameters well within regimes. This also

establishes the suspicion of smoothly time-varying regression parameters for the data set under

consideration.

Regarding other estimation techniques, a significant improve for the individual forecasts

can be observed for almost all cases. This improvement is of a certain level that it causes the

individual estimation with optimal window selection to defeat the MPA estimation, in which

optimal window sizes are not taken into consideration. This is particularly the case in situations

in which the generalised MPA technique also beats the one from the original replication approach.

6.2 Group Optimal Windows

Adjusting optimal window selection for the concerned multivariate panel model can also be

done by a pooled estimation approach for the optimal window size within each group. This

means countries that are captured in the same group share the same optimal window size for all

forecasts, which naturally is allowed to be time-varying. Countries that are grouped in different

entities are allowed to have different optimal window sizes. While seven different grouping

structures are constructed for the MPA estimation, this approach is implemented for each of

the seven grouping structures, after which weights will be chosen to be optimal according to the

usual MPA criterion.

One difficulty for this method concerns the fact that there are seven possible individual OLS
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estimates for β in this criterion 4.4.1, each corresponding to a window size selection for one

grouping structure. I will choose β to be the vector of individual OLS estimates from optimal

window selection in which all countries are shrinked into one group. It is chosen like this, since

the pooled model proves itself to provide good forecasts in Section 5.2. This could namely

suggest that a pooled window size vector is also the best choiche from a forecasting perspective.

As this still concerns a suspicion and not something that is explicitly proved, choosing alternative

window sizes for β regarding the grouped window selection remains a topic that deserves further

research. Consequently, the pooled, shrinkage and FGLS estimation techniques are also based

on the individual OLS estimates that select a pooled window size for one group.

Most methodological expressions for individual window selection can be utilised in this

grouped procedure. For each time point t = T , at which a forecast should be constructed

for the next observation, the feasible MSFE of each individual country is denoted by 6.1.2. In

this expression, the rolling OLS estimate β̂i,R and the local linear regression estimate β̃i are

computed by the formulas 6.1.3 and 6.1.4, respectively. The crucial difference in computation

now concerns the fact that the optimal window size R̂ at each time point T is obtained through

the following expression:

R̂i = arg min
Rε�R

∑
iεGk

(β̂i,R − β̃i)′Xi,TX
′
i,T (β̂i,R − β̃i), (6.2.1)

where Gk is the k-th group in a particular grouping structure. In this way, the average MSFE

within each group is minimized with respect to the window size. This results in seven individual

OLS-estimators, in each of which the window size is selected in an optimal way regarding the

associated group structure. For every individual vector of estimates, the projection matrix is

constructed with the same estimation window for each group of individuals. Minimizing the

MPA criterion for each of these quantities results in RMSFEs that are shown in Table 4.

These results show that the MPA estimator for which the grouped procedure of choosing

optimal window sizes is incorporated, yields forecasts that are better than those associated with

the original MPA estimates for most cases. Nevertheless, the better forecasting performance

is not consistent in any of the samples, since for all three sample cases, there is one out-of-

sample proportion for which MPA with selected grouped window sizes performs worse than the

previous MPA estimates. For the full sample and the post-first-break sample, it performs better

with relatively small fractions 0.05 and 0.01, while for the post-second-break case, it performs

best for the two biggest proportions 0.10 and 0.05. These results, together with the results

in Table 2, imply that the window selection method of Inoue et al. (2017) can be useful for

MPA estimation in a significant amount of cases, as a way of capturing the smooth change of

regression parameters to improve forecasting performance.
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Table 4: Out-of-sample forecasting performance with optimal group window size se-

lection for three sample choices and out-of-sample proportions 0.1, 0.05 and 0.01

Full sample Post-first-break sample Post-second-break sample

1 - τ % 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.691 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

C-Lasso 0.691 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

SAIC 0.682 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

SBIC 0.691 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

AIC 0.682 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

BIC 0.691 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

Pool 0.691 0.638 0.358 0.631 0.554 0.290 0.638 0.585 0.295

FGLS 0.656 0.698 0.460 0.646 0.644 0.404 0.721 0.664 0.316

SHK 1.223 0.697 0.781 0.736 1.983 0.317 1.080 1.600 1.065

Indiv 0.682 0.669 0.389 0.639 0.621 0.281 0.644 0.620 0.355

When the two optimal window selection methods are particularly compared to each other,

it can be said that the individual window method performs better for the rather large out-of-

sample proportions 0.1 and 0.05, and that the grouped window method gives better forecasts for

a small out-of-sample proportion of 0.01. The fact that this is the case for all three sample cases

makes this notion quite credible, although it should be mentioned that it cannot be generalised

directly for several other financial products or different data sets.

7 Conclusion and Discussion

In this research, I have replicated the paper of Wang et al. (2018) for estimating and forecasting

sovereign CDS spreads through regression on several local and global determinants for 14 coun-

tries. This has been done by a proposed pooling average technique that minimizes the MPA

criterion. I have extended the research by incorporating a time-varying estimation window that

aims to further minimize the MSFE of the forecasts. This has been done by selecting an optimal

time-varying window size, firstly for individual countries and after that for groups of countries.

For the replication part, MPA usually provides optimal forecasts when compared to alter-

native estimation techniques. However, the choiche of optimal weights for the considered fixed

rolling window size does not improve forecasting performance significantly if MPA is compared

to approaches that choose only one pooling technique based on some (smoothed) information

criterion, such as C-Lasso IC, (S)AIC and (S)BIC. The reason for this concerns the notion that
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when forecasting is of central interest in the MPA procedure, mostly full weight is assigned to

the pooled model. This is the reason why the RMSFE of MPA forecasts usually is quite similar

to that of the purely pooled forecasts.

This paper shows that MPA can be further improved with respect to forecasting perfor-

mance by addressing potential smooth change of regression parameters. Individual selection of

optimal windows improves the forecasting errors for most out-of-sample proportions for different

subsamples. Selecting optimal windows for estimated group structures of countries instead of

individual countries also gives better forecasts for most cases. Since one of the two window se-

lection approaches does not consistently yields better forecasts than the other, a general rule for

window selection cannot be induced from the obtained results. Nevertheless, since the individual

window technique commonly provides best forecasts for rather large out-of-sample proportions,

and the grouped window technique does so for the smallest out-of-sample proportion, it can be

suggested that the two approaches can be used in conjunction, dependent on the fraction and

number of forecasting observations.

Further research can be performed on using the proposed methods for determining optimal

window sizes in a broader range of financial products, such that general rules can be estab-

lished for the forecasting performance of these techniques. Furthermore, incorporating optimal

weights within estimation windows may also improve forecasting performance for the window

optimization techniques.
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A Appendix

A.1 Data Description

As is mentioned in Section 3, the summary statistics of the sovereign CDS spreads for all

countries are shown below. These are from left to right the mean, standard deviation (SD),

minimum value (min), median (med) and maximum value (max) for each country.

Mean SD Min Med Max

Brazil 269.08 263.76 62.16 161.59 1733.33

Bulgaria 166.41 118.83 13.42 150.16 597.39

Chile 75.82 47.42 13.16 74.67 266.56

China 69.48 44.52 10.00 71.79 248.34

Hungary 188.24 164.00 11.00 163.00 623.20

Japan 41.82 35.69 2.17 39.50 146.47

Korea 84.89 2.57 14.30 67.34 432.48

Malaysia 88.36 55.74 12.86 85.32 296.39

Philippines 227.32 141.26 82.16 171.16 617.50

Poland 86.52 73.93 8.13 67.67 366.00

Romania 200.02 140.34 17.75 182.49 723.56

South Africa 150.52 82.22 25.06 150.25 459.93

Slovakia 66.97 65.21 6.00 50.33 298.29

Thailand 97.15 55.49 26.94 100.13 298.34

When these are compared to the summary statistics of Longstaff et al. (2011) for the same

countries, I observe that the mean values of the various countries are closer to each other. Also,

the maximum values are less extreme. This can be a sign of globalisation of the past several

years, since the data set of Longstaff et al. (2011) terminates in 2010.
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A.2 Expanding Window Forecasting Results

Table 5: Out-of-sample forecasting comparison with expanding window for three sam-

ple choices and out-of-sample proportions 0.1, 0.05 and 0.01

Full sample Post-first-break sample Post-second-break sample

1 - τ % 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.956 0.960 0.903 1.019 0.795 0.652 1.021 0.867 0.619

C-Lasso 0.956 0.960 0.903 1.019 0.795 0.652 1.021 0.867 0.619

SAIC 0.956 0.960 0.913 1.048 0.799 0.686 0.997 0.883 0.616

SBIC 0.956 0.960 0.913 1.048 0.799 0.686 0.997 0.883 0.616

AIC 0.968 0.960 0.913 1.048 0.799 0.686 0.997 0.883 0.616

BIC 0.968 0.960 0.913 1.048 0.799 0.686 0.997 0.883 0.616

Pool 0.956 0.960 0.903 1.019 0.795 0.652 1.021 0.867 0.619

FGLS 1.016 1.005 0.978 1.114 0.967 0.894 1.055 0.965 0.665

SHK 0.992 0.993 0.986 1.076 0.894 0.793 1.023 0.899 0.631

Indiv 1.000 1.000 1.000 1.108 0.936 0.842 1.046 0.939 0.663
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A.3 Code Explanation

A.3.1 Estimation

1. main

• The main program, which calculates the MPA estimates without bootstrap for the

three different regimes

2. main boot

• The main program, which calculates the standard errors for the MPA estimates

through the bootstrap technique proposed by Kapetanios (2008), for the three differ-

ent regimes

Note: The other programs in the folder Estimation are also present in the folder Forecasting,

although slightly adapted in order to be used by a program that provides and evaluates forecasts.

These still have the exact same functions as the corresponding functions in the folder Estimation,

which is the reason these are not explained in this subsection, but only once in subsection A.3.2.

A.3.2 Forecasting

1. mainrolling

• Main program for calculating the RMSFE for all estimation techniques, subsamples

and out-of-sample proportions

2. dataTransformation

• Function that transforms the given data set by first differencing the sovereign CDS

swaps, ensuring the explanatory variables are incorporated as one-period lagged vari-

ables

3. individualEstimation

• Estimates individual OLS estimates for a given sample

4. CLasso

• Shrinks the set of possible pooling strategies through grouping with the C-Lasso

procedure. This code is literally obtained from ’https://github.com/zhentaoshi/C-

Lasso/blob/master/ generic functions/SSP PLS est.m’

27



5. numberOfRestrictions

• Function that calculates the number of equality restrictions for a given grouping

structure that is obtained from the C-Lasso procedure

6. CLassoIC

• Function that calculates the performance of a given grouping structure by determining

the sigma part of the information criterion that is specified by Su et al. (2016). This

code is literally obtained from ’https://github.com/zhentaoshi/C-Lasso/blob/master/

app saving PLS/hat IC.m’

7. pooledEstimation

• Function that calculates the pooled regression estimates for a given sample

8. shrinkageEstimation

• Function that calculates the shrinked estimates for a given sample

9. FGLSEstimation

• Function that calculates the FGLS estimates for a given sample

10. computeHOMOVariance

• Function that estimates the variance-covariance structure for the estimation window

data, by assuming homoskedastic errors

11. computeBHVariance

• Function that estimates the variance-covariance structure for the estimation window

data, by assuming a between-heteroskedastic error structure

12. computeCHVariance

• Function that estimates the variance-covariance structure for the estimation window

data, by assuming a conditionally heteroskedastic errors

13. calculateProjection

• Function that calculates the projection matrix and the pooled regression estimator

for a given sample and grouping structure

14. computeSSR
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• Function that calculates the sum of squared residuals for a given sample and estima-

tor, which is needed for several estimation techniques, such as the (S)AIC estimation

and (S)BIC estimation approach

15. calculateWeightsMPA

• Optimal MPA weights estimator that calculates the weights by minimizing Mallows

criterion for given estimations of the variance matrix, individual parameters, projec-

tion matrix and matrix A

16. criterionEstimation

• Program that picks the pooled estimator from the pooling strategy that minimizes a

certain criterion, in our case the AIC and BIC, respectively

17. SAICEstimation

• Function that returns the SAIC estimator by choosing weights over given pooling

strategy estimators which minimizes the smoothed AIC criterion

18. SBICEstimation

• Function that returns the SBIC estimator by choosing weights over given pooling

strategy estimators which minimizes the smoothed BIC criterion

19. mainexpanding

• Main program that does the same as mainrolling, but now for a window that expands

as forecasts are iteratively obtained

20. calculateProjectionExpanding

• Program that calculates the projection matrix and the associated pooled beta for a

given grouping structure for an expanding window size

21. mainIndVarWinSize

• Main program for calculating the RMSFE for all estimation techniques, subsamples

and out-of-sample proportions, in which the optimal window selection approach of

Inoue et al. (2017) is individually incorporated for all countries

22. calculatingVaryingWindowSize
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• Function that calculates the optimal estimation window size for each country indi-

vidually, at each time point a forecast is to be constructed

23. individualOptEstimation

• Function that computes the individual OLS estimates, by using the individual optimal

window sizes from the function calculatingVaryingWindowSize

24. pooledOptEstimation

• Function that computes the pooled estimate, by using the individual optimal window

sizes from the function calculatingVaryingWindowSize

25. shrinkageOptEstimation

• Function that computes the shrinkage estimator, by using the individual optimal

window sizes from the function calculatingVaryingWindowSize

26. calculateOptProjection

• Program that calculates the projection matrix and associated pooled strategy esti-

mator, like the function calculateProjection also does, but now by taking the optimal

individual window sizes into account

27. calculateInitialWindowSize

• Function that calculates the initial optimal window size, as proposed by Pesaran et al.

(2013), which will be used for the minimization procedure of calculatingVaryingWin-

dowSize

28. localLinearEstimation

• Function that estimated the regression parameters of the individual countries via

local linear regression, which is needed for estimating the MSFE in the function

calculatingVaryingWindowSize

29. mainGrVarWinSize

• Main program for calculating the RMSFE for all estimation techniques, subsamples

and out-of-sample proportions, in which the optimal window selection approach of In-

oue et al. (2017) is incorporated for each group over the different grouping structures,

which result from the model shrinkage procedure
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30. getOptimalGroupWindows

• Function that computes the vector of optimal window size estimates for given esti-

mation data and a particular grouping structure

31. calculateGroupWindow

• Function that computes the optimal group window size for a given group from the

function getOptimalGroupWindows

32. normalize

• Normalizes input data, for our data this naturally concerns the sovereign CDS spreads

and all explanatory local and global panel data
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